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Abstract

Hybrid rocket propulsion is characterised by one propellant being a liquid and the other one a solid and it

is becoming increasingly prevalent among New Space launch vehicles. In fact, companies like HyImpulse

or Gilmour Space are developing sounding rockets or even small orbital launch vehicles that use hybrid

rocket motors. However, the technology is still not as developed as liquid or solid rockets are. It is known

that hybrid rockets can be an environmentally friendly and cost-effective option, which could explain the

recent trend to use them as the industry transitions into an ecosystem of affordable access to space.

In this context, this work intends to provide a tool for the development and optimization of hybrid-

propelled launch vehicle concepts, using custom, adjustable models developed in a MATLAB environment

to suit a wide range of requirements and mission types. Four different disciplines – Propulsion, Sizing,

Aerodynamics and Trajectory – are iterated on an MDF optimization loop. The program uses inputs

from DATCOM and NASA’s CEA code for the aerodynamic coefficients and for the combustion chamber

properties, respectively. The trajectory module was upgraded to a 3-DOF with rotation model, allowing

the optimization to support constraints and multi-objective function variables such as apogee and burnout

velocity. These combined methods grant this tool a multidisciplinary approach that is not very common

in hybrid propulsion design optimization. The tool was validated and developed for rockets using the

nitrous oxide-paraffin propellant combination, but other propellant choices are possible. The results are

consistent with flight-proven rockets.

Keywords: Hybrid Propulsion, MDO, Suborbital Rocket, MATLAB, Trajectory
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Resumo

A propulsão de foguete híbrida caracteriza-se por utilizar um propelente no estado líquido e outro no

estado sólido e está a ganhar notoriedade na indústria de lançadores do New Space. Empresas como

a HyImpulse ou a Gilmour Space estão a desenvolver pequenos lançadores orbitais que fazem uso

desta tecnologia. Porém, esta não está ainda a par da propulsão sólida ou líquida em termos de

desenvolvimento. À medida que a indústria transita para a sustentabilidade e baixos custos no acesso

ao espaço, esta tendência recente pode ser explicada pelos propelentes híbridos serem mais amigos do

ambiente e relativamente baratos.

Neste contexto, o objetivo deste trabalho é fornecer uma ferramenta para o desenvolvimento conceptual

e otimização de lançadores híbridos, com recurso a modelos MATLAB customizáveis e ajustáveis a

uma vasta gama de requisitos e tipos de missão. São executadas quatro disciplinas - Propulsão,

Dimensionamento, Aerodinâmica e Trajetória - num esquema de otimização MDF. O programa utiliza

inputs dos programas CEA, da NASA, e DATCOM para obter as propriedades da câmara de combustão e

os coeficientes aerodinâmicos, respetivamente. A disciplina da Trajetória foi atualizada para um modelo

com 3 graus de liberdade, permitindo o uso de constrangimentos como o apogeu ou a velocidade. A

combinação destas disciplinas confere à ferramenta um cariz multidisciplinar pouco comum na otimização

de propulsão híbrida. A ferramenta foi validada e desenvolvida com a combinação óxido nitroso-parafina,

mas outras escolhas de propelente também são possíveis. Os resultados mostram-se coerentes com

dados de foguetes reais.

Palavras-Chave: Propulsão Híbrida, MDO, Foguete Suborbital, MATLAB, Trajetória

ix



x



Contents

Contents xi

List of Figures xiii

List of Tables xv

Abbreviations xvi

Nomenclature xviii

1 Introduction 1

1.1 Topic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Hybrid Rocket Technology Overview and Applications 5

2.1 Hybrid Rocket Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Similarities between hybrid and solid propulsion . . . . . . . . . . . . . . . . . . . 6

2.1.2 Similarities between hybrid and liquid propulsion . . . . . . . . . . . . . . . . . . . 8

2.1.3 Propellants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Increasing the regression rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Use Cases and Competitiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Launch Vehicle Multidisciplinary Design Optimization 19

3.1 Mission Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Multidisciplinary Design Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Design Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 State and Coupling Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xi



3.2.5 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.6 MDO Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Hybrid Rocket Optimization Tool Implementation 30

4.1 Launch Vehicle Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Vehicle Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 Propulsion System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Trajectory and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Optimization Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Problem Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Multi-objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.4 MDO Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Results and Discussion 42

5.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.2 Mass & Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.3 Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusions and Future Work 48

6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 50

A MATLAB Source Code 53

A.1 RocketOptimization.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 Multidisciplinar7.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Constraints6.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.4 Propulsion2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.5 Mass_sizing2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.6 Aerodynamics.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.7 Trajectory.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



List of Figures

1.1 The Rocket Experiment Division team at the European Rocketry Challenge, in October

2021, with their solid rocket Blimunda. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Schematic of a Hybrid Rocket Engine. This example features a pressurizing gas tank.

Source: [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A diagram of the Star 37N, a spherical upper stage solid motor. Source: Thiokol [14]. . . 6

2.3 Six examples of propellant grain perforation configurations, viewed as cross-sections of

the combustion chamber. Source: [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Computer model of a spherical hydrazine tank, featuring a bladder pressurization system.

Hydrazine is stored inside the bladder (in red) and pushed out of the tank through the

central perforated pipe by a pressurizing gas that fills the volume between the rigid tank

walls (in white) and the bladder [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Cross-section cut illustration of the pintle injector mechanism which was successfully used

in the Apollo Lunar Module Descent Engine. Notice the only moving part is the sliding

sleeve, whose movement shapes the two concentric annular openings from where the two

propellants are injected. Source: [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Illustration of the three boundary layer model of the hybrid combustion process. Notice the

temperature increase in the middle diffusion flame layer. Source: [13]. . . . . . . . . . . . 13

2.7 Depiction of the theoretical performance of liquid oxygen burning with paraffin and HTPB

under a 500 psi chamber pressure. Source: [7]. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Comparison of performance of several hybrid propellant combinations for a chamber

pressure of 3.5 MPa and sea-level exit pressure. Source: [21]. . . . . . . . . . . . . . . . 16

2.9 HyImpulse’s visualisation of the combined strong points of solid and liquid propellant rockets

(and monopropellant configurations as well) in hybrid rockets, as presented on their website

[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 Virgin Galactic’s SpaceShipTwo soaring upwards under thrust from its powerful hybrid

motor. Source: marsscientific.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Sliced view of the sounding rocket Bella Lui II, from the Swiss EPFL University team. The

team won an award at the EuRoC 2021 competition with this vehicle. Source: [26]. . . . . 19

xiii



3.2 Example of a Pareto front plot from a rocket system optimization problem, where apogee

(vertical axis) and GLOW (horizontal axis) are the two objectives. Source: [32]. . . . . . . 23

3.3 Example of an MDO design process with coupling variables in feed-forward and feedback

coupling. Source: [34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Visual interpretation of the evolution of a population from one generation to the next. The

mutation process is not represented. Adapted from [29]. . . . . . . . . . . . . . . . . . . . 26

3.5 XDSM of an All at Once MDO architecture. All functions and discipline residuals can be

evaluated in parallel. Source: [33]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 XDSM of an Individual Discipline Feasible MDO architecture. Source: [33]. . . . . . . . . 28

3.7 XDSM of a Multidisciplinary Feasible MDO architecture with three disciplines. Source: [33]. 29

4.1 The internal conditions and mass flows of each of the three control volumes are modelled

at each time step in the MATLAB framework. Source: [10]. . . . . . . . . . . . . . . . . . 31

4.2 The fuel grain regression model implemented considers the regression rate is uniform on

both the axial and the radial directions. r = rpor t is the radius of the fuel port, while ¤r is the

regression rate of the fuel surface. Source: [10]. . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 A diagram of a rocket flying in the positive x and z directions. The forces acting on the

vehicle are shown (thrust,T , weight,W , aerodynamic force, F ) as well as its velocity vector,

v , angle of attack α , flight path angle, γ, and thrust vectoring angle, ε. F is split between

its two components, drag and lift, illustrated in red. Source: [37]. . . . . . . . . . . . . . . 34

4.4 A diagram of a rocket showing the optimization problem’s sixteen design variables. These

are directly controlled by the optimizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 The XDSM representation of the program’s simplified MDF architecture. . . . . . . . . . . 40

5.1 Comparison between the experimental data, in yellow, and the simulated data from the

hybrid rocket Propulsion function, in orange. Source: [9]. . . . . . . . . . . . . . . . . . . 43

5.2 Oxidizer tank pressure comparison between the experimental data from the EPFL Rocket

Team static fire tests 8 through 10 and the simulated data from the hybrid rocket Propulsion

function. Source of experimental data: [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Thrust comparison between the experimental data from the EPFL Rocket Team static

fire tests 8 through 10 and the simulated data from the hybrid rocket Propulsion function.

Source of experimental data: [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Simulation of the Xi-16 flight on the MATLAB trajectory code. . . . . . . . . . . . . . . . . 46

5.5 Falcon 9 DM-1 mission flight altitude and velocity over time, as recorded by the flight teleme-

try and as simulated by the MATLAB tool. The bottom plot is the acceleration/propulsion

profile introduced into the Trajectory discipline to simulate the Falcon 9 propulsion system. 47

xiv



List of Tables

4.1 Input and output variables of each discipline, according to the chosen problem formulation.

Non-variable inputs (simulation parameters) have been omitted. State variables not used

outside the function they are computed in are also not represented. . . . . . . . . . . . . . 35

4.2 Description of the problem’s sixteen design variables. The last column indicates which

optimization disciplines take which design variables as input. . . . . . . . . . . . . . . . . 36

5.1 Relative errors between simulated variables and test data from three hybrid engines [9]. . 42

5.2 Relative errors between Bella Lui II’s engine static fire test number 9 (SFT09) results and

simulated data. Source of experimental data: [26]. . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Relative errors between Bella Lui II’s component masses and external diameter and the

same variables modelled in the MATLAB software. Source of experimental data: [26]. . . 44

5.4 Relative errors between simulated flight and test flight data from the Xi-16 flight. . . . . . . 45

5.5 Relative errors between the simulated flight and flight telemetry data from the Falcon 9

Crew Dragon DM-1 mission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xv



Abbreviations

AAO All at Once

ABS Acrylonitrile Butadiene Styrene

AMROC American Rocket Company

CEA Chemical Equilibrium with Applications

COESA Committee on Extension to the Standard Atmosphere

DOF Degree(s) of Freedom

DLR German Aerospace Center

EuRoC European Rocketry Challenge

GA Genetic Algorithm

GLOW Gross Lift-off Weight

H2O2 Hydrogen Peroxide

HRE Hybrid Rocket Engine

HTP High-Test Peroxide

HTPB Hydroxyl-terminated polybutadiene

IDF Individual Discipline Feasible

LEO Low Earth Orbit

LOX Liquid Oxygen

MDA Multidisciplinary Analysis

MDF Multidisciplinary Feasible

MDO Multidisciplinary Design Optimization

N2O Nitrous Oxide

N2O4 Nitrogen Tetroxide

NASA National Aeronautics and Space Administration

PBAN Polybutadiene Acrylonitrile

RP-1 Rocket Propellant-1

SAND Simultaneous Analysis and Design

SRM Solid Rocket Motor

SQP Sequential Quadratic Programming

TRL Technology Readiness Level

TVC Thrust Vectoring Control

xvi



XDSM Extended Design Structure Matrix

xvii



Nomenclature

c Effective Exhaust Velocity or Constraint Function

cc Consistency Constraint Function

Ci nj Effective Injection Area

dext External Diameter

f Objective Function

g Gravitational Acceleration

G Mass Flux

Isp Specific Impulse

It ot Total Impulse

Lf Fuel Grain Length

m Mass

¤m Mass Flow Rate

O/F Oxidizer-to-Fuel ratio

pCC Combustion Chamber Pressure

pf eed Pressure Loss through the Injector and Feed System

pOT Oxidizer Tank Pressure

rpor t Fuel Port Radius

¤r Fuel Regression Rate

R Discipline Residuals Vector

∆v Change in Velocity

x Downrange Distance

x Design Variables Vector

xviii



y Coupling Variables Vector
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Chapter 1

Introduction

1.1 Topic Overview

Space travel has been a reality for more than sixty years. However, rockets and rocket-powered

spaceplanes remain the only transportation vehicles capable of reaching space and achieving orbit of

the Earth. Thus, further developing rocket technology is key in increasing accessibility to outer space.

The state of affairs currently allows many different countries and companies to place objects in orbit for

varying purposes, from military applications to space tourism. But the so-called democratization of space

[1] is still an ongoing process.

The technology has proliferated not only on the space segment, but also on the launch segment as

well. The launch vehicle market can only grow sustainably, however, if there is demand for it on the

payload side. In fact, luckily, the satellite market has been steadily growing, especially the CubeSat market

[2, 3]. Small satellites can be launched individually or using some sort of rideshare solution. However, the

latter is not ideal for many applications, like, for example, if the customer requires a specific deployment

orbit or if the launch is requested on short notice; either of these scenarios would render a combined

launch of many such payloads impractical.

Hence, there will always be a niche for dedicated small launchers for small payloads and many launch

vehicle start-ups are betting on this prospect [4, 5]. This is being regarded as part of the New Space era,

a significant wave of trends that are shaping the space sector into being more liberal and agile [6]. For

example, the first successful launch from Rocket Lab, one of those New Space small launcher companies,

was completed in January 2018. Rocket Lab is probably the most successful private small launcher

company to date, but a few more have had their maiden launches since and even more are expected to

do so in the coming years.

Environmental concerns, paramount in the 21st century, and profitability are two variables that must

be taken into account when designing a modern launch vehicle. One common approach that addresses

these issues is designing the vehicle to be cheap to mass produce and efficient. To accomplish this, an

increasing number of companies is employing hybrid rockets as the main propulsion devices in their small

launch vehicles - Gilmour Space Technologies, from Australia, HyImpulse Technologies [4], from Germany,
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and HyPr Space [5], from France, just to name a few. In fact, combining liquid and solid propellants give

hybrid rockets some competitive advantages, which are further explored in chapter 2.

The hybrid rocket is not a new concept. The first rocket launch using such technologies is thought to

have occurred in 1933 [7], in the former Soviet Union. The vehicle, two and a half meters tall, burned

liquid oxygen as the oxidizer, and gelled gasoline as the fuel. Despite its early debut, the technology

would remain sparsely used until the formation of the American Rocket Company (AMROC), which in

the late 20th century tried to develop large hybrid-propelled rocket boosters. It was only at the turn of

the millennium that hybrid rocket technology had its resurgence, certainly thanks to AMROC and to

research centers such as the Standford University [7]. As new fuel technologies began to be explored

and developed, hybrid rockets became a noteworthy technology, culminating in the hybrid-propelled

SpaceShipOne’s flight to the Kármán Line, in 2004.

Finally, designing a rocket is a hard skill and necessarily a multidisciplinary endeavour, which directly

correlates to the objectives of this work. A bad design can be inefficient or, worse, not really useful.

Optimization of a vehicle’s design can not only lower the needed resources (specially, propellant) for its

operation and accompanying pollutant emissions, but is also vital for one intended to be economically

competitive. Multidisciplinary Design Optimization, which is a relatively recent field of knowledge, enabled

by the always improving computer technology, provides tools to solve the problem of designing not just to

meet requirements, but to provide an optimal result.

1.2 Motivation

Over the years, many aerospace students have the opportunity to participate in university clubs and

extra-curricular projects linked with space technology. Rocketry teams, for example, are one of the most

complete experiences an engineering student can partake. Teams such as Rocket Experiment Division

(Figure 1.1), from Técnico Lisbon, are competing among each other annually in rocketry engineering

competitions. The most relevant two are perhaps the Spaceport America Cup, held in the United States,

and the European Rocketry Challenge (EuRoC), held in Portugal.

The goal of the competitions is to develop a sounding rocket that delivers a standard-mass payload to

a very specific target altitude, usually 10000 ft or 30000 ft. Many of the teams choose to develop hybrid

rocket engines to propel their rockets up to the target altitude. Furthermore, mass budgets are tightly

controlled and some vehicles even feature aerodynamic altitude control mechanisms (such as airbrakes)

to reach as close as possible to the target apogee, without surpassing it.

Having said that, it’s not too far fetched to say that the engineering challenge offered by this competition

format closely mimics the challenge of designing and optimizing a small launch vehicle to put a payload

into low Earth orbit - albeit, in a very different scale, of course. Hence, these competition-level sounding

rockets can provide a simpler, more forgiving test-bed to develop and validate design and optimization

tools, namely software, before attempting to use them for suborbital flights or orbital-class rocket vehicles.

This is precisely the philosophy behind this work.

This thesis is also being developed in the context of a booming launch industry, with new launch

2



Figure 1.1: The Rocket Experiment Division team at the European Rocketry Challenge, in October
2021, with their solid rocket Blimunda.

vehicles being announced every year and the reusability paradigm shift still ongoing. There’s also a

growing interest around sounding rockets per se, as they can be very useful for incremental technology

testing. For this purpose, in Portugal, for example, an enterprise consortium is studying Viriato [8], a

reusable suborbital launcher.

In addition to all of this, there’s interest in flying these vehicles from Europe and from Portuguese soil,

namely from the Azores, making this thesis subject very much current in the grand scheme of international

and national space policy and technology development.

1.3 Objectives

In the current landscape of new emerging space launch solutions, this thesis is intended to continue

the development of an engineering software tool to help in the conceptual and preliminary optimal design

of hybrid propulsion sounding rockets or even small orbital launch vehicles. It aims to support as broad a

design range as possible, so it remains relevant and useful for a large variety of mission requirements

and rocket configurations.

To do so, the tool shall model a vehicle using a multidisciplinary approach in which each discipline is

addressed sequentially in an optimization loop. The main objectives are:

• Explore the conceptual design optimization of hybrid propulsion systems and hybrid rockets;

• Improve the performance of the existing MATLAB multidisciplinary design optimization tool;

• Expand the tool’s optimization envelope and capability;

• Validate the tool by comparing it with test flight data.

3



Since the working assumption is that the scope of the project lies in conceptual design, no high-

fidelity tools like computational fluid dynamics or finite element analysis will be used. Quicker, less

resource-intensive models shall be chosen.

1.4 Previous Work

This work follows on the footsteps of Gustavo Yamada, who worked on this software in his master

thesis, in 2019 [9]. He developed an optimization program for hybrid sounding rockets in MATLAB using

a modified Individual Discipline Feasible Multidisciplinary Design Optimization architecture, to which a

gradient-based search algorithm was applied.

The program was tailored for the optimization of university student hybrid rockets competing in the

Spaceport America Cup competition. Hence, the design envelope contemplated low altitude (3 km

apogee) sounding rockets with student-developed propulsion. The propulsion discipline is the heart of

the program and was developed first by the University of Victoria’s UVic Rocketry team and by Benjamin

Klammer [10].

Those Propulsion models were adapted by Yamada, to which he added a heat transfer model for

the oxidizer tank. However, given the usually short burn times (a few seconds), the heat transfer model

has little effect on the final performance and, as such, it was removed from the present work to improve

performance and simplify the optimization architecture.

1.5 Thesis Outline

After the brief introductory Chapter 1, Chapter 2 will introduce the topic of Hybrid Rocket Propulsion,

along with some general space propulsion concepts as well. The different components of a hybrid rocket

will be presented and explained. On section 2.1.4, the regression rate problem will be discussed and

the new developments that partially solved that problem, allowing for the current resurgence of hybrid

propulsion to emerge, are shown.

Then, on Chapter 3, the thesis reviews the classic multidisciplinary design optimization approaches

and how they apply to rocket design, followed by the methodology employed on this work to solve that

optimization problem in Chapter 4.

Some results are briefly presented in Chapter 5 before the conclusions and future work are laid out in

the final part, Chapter 6.

The source code for the MATLAB tool can be found in the Appendix.
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Chapter 2

Hybrid Rocket Technology Overview

and Applications

2.1 Hybrid Rocket Propulsion

Chemical bi-propellant rocket propulsion, the most common type of rocket propulsion, is characterised

by burning two propellants - a fuel and an oxidizer - in a rocket engine, with or without the need for a

catalyst or an igniter to begin the reaction. The two propellants are most often physically separated until

they are burned. In a liquid propulsion system, the fuel and the oxidizer are stored in separate tanks

before they are fed into the combustion chamber, using pressure or pumps. Conversely, in a solid rocket

motor, the fuel and the oxidizer are mixed and bonded together in a solid state fuel grain which burns

when ignited.

Figure 2.1: Schematic of a Hybrid Rocket Engine. This example features a pressurizing gas tank.
Source: [11].

Hybrid rocket propulsion concepts, on the other hand, as the one illustrated on Figure 2.1, make use

of these two propellants in different states of matter. One, usually the fuel, is a solid and the other, usually

the oxidizer, is in liquid form. These roles can, however, be switched, in which case the rocket is said to
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be a reverse hybrid [12]. When one refers to a "hybrid rocket", usually that is a reference to a vehicle that

uses a hybrid rocket engine (HRE), sometimes called a hybrid motor, as its main propulsion device. That

is the meaning of the expression "hybrid rocket" in the context of this work, although it may be used to

refer to just the motor system.

Hybrid rockets are a blend of their solid and liquid counterparts not only in relation to the propellants

themselves, but also in the techniques and technology used. Many developments in solid and liquid rocket

technology can be applied to hybrids as well, since most of the components and processes of hybrids

have an equivalent in at least one of the other two types [13].

2.1.1 Similarities between hybrid and solid propulsion

HREs feature a solid "block" of propellant, called grain, stored inside the combustion chamber, much

like a solid rocket motor. This is usually the fuel. Logically, greater quantities of fuel require a more

voluminous combustion chamber.

A simple solid rocket motor (SRM) is comprised of a nozzle and a combustion chamber. The chamber

itself is comprised typically of an outer casing (commonly made of materials such as steel, aluminum or

fiber composites [13]), a thermal insulation layer and the propellant grain. The casing is not generally made

of a single piece, but includes segments and/or a top bulkhead, sealed off using o-rings (the component

that famously and unfortunately failed on the Space Shuttle Challenger, in 1986) and other mechanical

devices. Evidently, an SRM can have no moving parts and that can help explain why they are considered

relatively simple machines. The same cannot be said of HREs, which require at the very least an actuated

oxidizer valve.

Figure 2.2: A diagram of the Star 37N, a spherical upper stage solid motor. Source: Thiokol [14].

Solid motors are produced in varying sizes and formats. Figure 2.2 shows the Star 37N, a spherical

SRM intended to be used outside the atmosphere. However, the most common shape for a solid rocket,

especially when addressing atmospheric launch vehicle applications, is a cylindrical tube, containing the

propellant grain, which, in turn, features a built-in hollow core. This empty core is where the combustion

will take place, as the grain is consumed from its inside walls while its external surface is protected from

the flame, placed against the motor’s casing. The propellant grain core cross-section can be given any

shape, with the simpler option being a circle. The shape is directly related to the size of the internal
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burning surface, which directly influences the pressure and thrust generated by the motor. Some core

shape examples are shown in Figure 2.3.

A star-shaped core on a propellant grain can ensure the burn is initially quicker, meaning more mass

will be ejected through the nozzle and more thrust will be produced at the start of the burn, than for example

a circle-shaped core. This is called a regressive burn pattern, since burning surface area, pressure and

thrust decrease with time. Neutral or progressive burn patterns can also be achieved to suit vehicle or

mission requirements. The same technique can be applied to the solid fuel grains on hybrid rockets to

manipulate thrust in a programmed manner.

Figure 2.3: Six examples of propellant grain perforation configurations, viewed as cross-sections
of the combustion chamber. Source: [12].

The thermal insulation layer is essential in the structural design of many rocket motors. Made from

ablative cooling materials, it protects the casing from the intense heat of combustion inside the chamber.

Although the propellant grain inside the motor is most often bonded to the chamber walls, which separates

and protects them from the hot combustion products until the final moments of motor operation, parts of

the chamber remain without propellant attached and, thus, without protection.

Hybrid rockets commonly feature two sections unprotected by the fuel grain - the pre-combustion

and the aft combustion chambers, situated on the forward and aft sections of the chamber, respectively.

These sections need to be protected by an insulating layer, otherwise the interior temperatures, higher

than the melting point of metals, would destroy the casing [15].

Thermal insulation layers are designed to prevent casings from absorbing too much heat during the

motor operation. This makes casings typically the only part of a solid motor that can be made reusable.

Consider, however, that time is critical here. An optimal design would have the insulation layer just thick

enough to ablate fully when the motor burns out. This, however, does not mean the casing remains cool

after the motor is no longer operating, as this is not really a requirement if the casing is not meant to be

reused in another flight. In HREs, this approach might not be useful, either because the casing is meant

to be reused or because the mission profile requires it to be restarted later in flight.
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Other processes and components of HREs similar to those found in solid rocket motors may be the

casting of the solid propellant and the concept of regression rate, but those are subjects of section 2.1.3.

2.1.2 Similarities between hybrid and liquid propulsion

Processes and components of hybrid rockets similar to those found in liquid rockets include, for exam-

ple, the combustion chamber injectors. These are a combination of perforations, tubes and manifolds that

connect the liquid propellant feed lines to the inside of the combustion chamber. These perforations, or

holes, on a bulkhead-type wall form the injector assembly, which main purpose is to mix the propellants

efficiently inside the combustion chamber [12]. This is usually achieved by splitting the liquid into small

droplets (atomization), making sure the gases mix in the correct stoichiometry and disperse as intended

throughout the combustion chamber [13]. Injector design varies wildly, since it must consider the charac-

teristics of different propellant combinations and different engine operating states [15]. Some propellants

require pre-mixing before being sprayed into the chamber, while most are mixed in the chamber after

being sprayed out of the injector holes, in a meticulous pattern of impinging high pressure streams.

In the case of HREs, since there is only one liquid propellant being injected, the injector design can be

simpler, as there is no mixing involved, just atomization and dispersion. The mixing happens along the

length of the solid fuel grain, which sits inside the elongated combustion chamber.

Perhaps the most easily interchangeable major component between liquid and hybrid rockets is the

liquid propellant tank. As stated before, that propellant is usually the oxidizer, while the fuel assumes a

solid state and is stored in the combustion chamber instead of in a tank. First of all, the tank is where the

oxidizer needed for the thrust-generating combustion process is stored. The more propellant a rocket

vehicle carries, the more thrust it can generate from expelling that propellant through a nozzle. On the

other hand, the propellant has mass and the more massive a rocket, the more inertia it has and the more

propellant it needs to consume to move by a certain amount. In fact, one of the best ways to increase

performance of a rocket (e.g. increase delta-V ) may not be to increase its propellant mass, but to decrease

its inert mass. This can be understood by analysing the Tsiolkovsky Rocket Equation, equation (2.1) [16].

∆v = c ln m0

m
(2.1)

where ∆v represents the change in velocity of the vehicle, c is the effective exhaust velocity of the

propellants coming out of the nozzle and m and m0 represent the current and initial mass of the vehicle.

When the vehicle depletes its propellant, the difference between m0 and m is the inert (or dry) mass of

the vehicle.

So, it is of paramount importance for the tanks to be lightweight, in order to decrease the total dry

mass of the rocket. This is usually achieved by making the tanks out of materials such as aluminum, steel

alloys or fiber composites. These materials are both light and strong enough to hold the pressure inside

the tank. In fact, another aspect crucial for many space vehicles is the pressurized manner in which liquid

propellants are stored. The reasons for this are varied and include [13]:

• In pressure-fed engines, a high-pressure propellant feed is required at the injectors and since fluids
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moves from high to low pressure zones, the propellant tank needs an operating pressure higher

than that of the combustion chamber of the engine;

• In pump-fed engines, tank pressurization, although at lower pressures, is still important to push the

liquid propellant into the pump, mitigating cavitation;

• Some propellant tanks double as structural elements of the launch vehicle and a pressurized vessel

can withstand greater structural loads without deforming (the phenomenon can be observed with

drink cans, which are easily crushed once opened).

Hence, the necessity of a tank pressurization system is also a commonality between liquid and hybrid

propulsion systems. Some tanks are pressurized using mechanical systems such as pistons or flexible

bladders, but the most common approach, at least in space applications, is to use direct gas pressurization

[13]. Gas pressurization systems are as old as rockets themselves. In fact, the first liquid engine rocket

ever to be flown, developed and launched by the rocketry pioneer Robert H. Goddard, in 1926, used a

gas pressurization system to push its gasoline and liquid oxygen out of the tanks and into the combustion

chamber [13][12].

Figure 2.4: Computer model of a spherical hydrazine tank, featuring a bladder pressurization
system. Hydrazine is stored inside the bladder (in red) and pushed out of the tank through the
central perforated pipe by a pressurizing gas that fills the volume between the rigid tank walls (in
white) and the bladder [17].

The pressurizing gas may be sourced from a number of different alternatives. Some options rely on a

heat source (for example, the engine) to heat and vaporize a small fraction of the propellant, expanding

it, and then flowing it back into the propellant tank. Cryogenic propellants could potentially achieve this

effect just by evaporating with time, although at a slower, uncontrolled pace. Another alternative is to

create gas from a chemical reaction. This can be achieved by taking a small portion of propellant from the

tanks and running it through a gas generator, using it then to pressurize the propellant tanks. However,

this option is not easily applicable to HREs, since there are not two different accessible propellants to
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feed a reaction, but it could be done with a dedicated gas generator using, for example, a small quantity

of solid propellant.

Excluding other exotic methods, two approaches to tank pressurization remain. The most common,

not only on hybrid rockets but in general, consists of using an inert gas pressurization system. The other

relies on the use of self-pressurizing propellants and is commonly used when nitrous oxide is the oxidizer.

Section 2.1.3 explores these propellants in greater detail.

The aforementioned most common approach of using an inert gas (usually Nitrogen or Helium [13])

pressurization system can be further classified according to where in the rocket the gas is stored. If it is

stored in the empty ullage volume of the propellant tank, the method is known as a Blowdown system. If

the pressurizing gas is stored on a separate high-pressure tank, then it is called a Regulated Pressure

system. The stored gas is inserted into the lower pressure propellant tank using feed lines running through

a pressure regulator and valves that assure the tank remains at a constant pressure. Regulated Pressure

systems can be engineered to use heated gas, just like the propellant pressurization systems described

before. This would increase the complexity of the feed system, but larger vehicles could benefit from a

reduction in the inert gas mass, since, at higher temperatures, a smaller amount of gas could provide the

pressure needed.

Blowdown systems are lighter and less complex than Regulated Pressure systems. No additional gas

tank is required, nor extra plumbing, though the tank should be larger to hold the pressurizing gas together

with the propellant. The major drawback of this configuration is that the pressure inside the tank decays

as the propellant is consumed which translates to decaying pressure downstream of the tank as well.

Finally, hybrid and liquid propellant rockets share a functional upper hand over conventional solid

rocket architectures which is the ability to produce variable thrust [18]. To be precise, solid rocket motors

do produce variable thrust - in any motor, the thrust is not completely constant over time. There is an initial

phase of thrust build up, while the propellant is being ignited, and a wind down phase as it is consumed.

Also, as mentioned before, the geometry of solid propellant grains can be tailored, during design and

production, to manipulate the way the thrust varies over time and obtain specific thrust profiles. Several

examples of this are shown in Figure 2.3.

The actual difference is that liquid and hybrid engines can produce variable thrust in a non-prescribed

random manner as needed during flight, using a feature called throttling. On HREs, this is achieved by

adjusting the oxidizer valve aperture, feeding the combustion chamber injector assembly with a lower

mass flow than optimal. Because thrust is almost proportional to the propellant mass flow, this actuation

of the valve results in an almost proportional control of the thrust. While pressure-fed engines use valves,

pump-fed engines can throttle by changing the rotary speed of the pumps [13]. This ability comes at

a cost, however, since injector flow dynamics change as the overall mass flow through the engine is

reduced, stripping away efficiency from atomization and mixing. All in all, when lowering the throttle in an

engine to a sub-optimal mass flow, the chamber pressure and specific impulse decrease.

Still, there are glaring differences between the throttle capability of some engines and others. Most

throttleable engines allow only for a slight reduction of the generated thrust; up to about 40%. This is true

for launch vehicles like the Falcon 9 and the Space Shuttle Orbiter, which reduce thrust during the ascent
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phase to minimse aerodynamic loads. The Falcon 9 actually lands thanks to that throtttling capability,

even though it is not enough to allow the rocket to "hover".

Reducing the throttle further, on the other hand, something called deep throttling, is a much rarer

capability and usually requires a more intricate design of the injectors to avoid combustion instabilities.

A good example is the variable geometry pintle injector design from the Apollo Lunar Module landing

engine (Figure 2.5), which allowed the astronauts to soft land on the lunar surface and is still the only fully

human-rated engine for landings [15].

Figure 2.5: Cross-section cut illustration of the pintle injector mechanism which was successfully
used in the Apollo Lunar Module Descent Engine. Notice the only moving part is the sliding sleeve,
whose movement shapes the two concentric annular openings from where the two propellants are
injected. Source: [15].

2.1.3 Propellants

As mentioned before, hybrid rocket engines are characterized by the two propellants being in different

states of matter. Thus, an analysis of the different propellants available for these engines can be divided

into two sections, the oxidizers and the fuels.

Starting with the liquid oxidizers, right away the two most common choices are liquid oxygen (LOX)

and nitrous oxide (N2O) [15]. LOX is a well-known propellant and provides great performance overall.

It’s deeply cryogenic, so it is adequate for large hybrid boosters, like the ones intended to be used by

the German spaceflight start-up HyImpulse Technologies [4], but not for use-cases requiring a storable

chemical.

Nitrous oxide is a more niche propellant than LOX, with its use being more famous in hybrid rocketry

than elsewhere. They share as advantages their lower toxicity and cost when compared with other oxidizers

such as N2O4, for example, a typical storable, hypergolic propellant. Virgin Galactic’s SpaceShipTwo,
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which propelled four passengers plus a crew of two to the edge of space (86 km in altitude, to be precise)

in July 2021 [19], uses nitrous oxide, making this probably the most high-profile use of the oxidizer on a

hybrid propulsion system. On the other hand, nitrous oxide is a common choice for small hybrid rocket

engine, often times amateur in nature, in part thanks to its self-pressurizing property and relatively safety.

Even so, it can decompose quickly if heated or in the presence of impurities, which poses a storage risk.

The oxidizer tank sometimes does not need to be pressurized by a dedicated pressurization system,

such as those discussed in section 2.1.2. This is mostly dependent on the oxidizer itself. If the oxidizer

is self-pressurizing, external pressurizing equipment may not be needed. Self-pressurizing propellants

are liquid substances or mixtures that evaporate in such a way that the gaseous phase provides high

enough internal pressure to the propellant tank to feed the oxidizer injector (and, hence, the combustion)

effectively. This is one of the advantageous properties of nitrous oxide, thanks to its high vapor pressure

at room temperature of around 50 bar.

Some cryogenic propellants, such as LOX, can also be evaporated while inside the tank to support

self-pressurization, but the experience with that approach is quite limited [13]. However, the mixture of

LOX and N2O has been studied as a viable, self-pressurizing, refrigerated oxidizer, where the more volatile

LOX is dissolved in cold nitrous oxide and, as it evaporates, creates pressures of up to 120 bar, which

is enough for a wide range of applications [7]. Due to the nitrous oxide being refrigerated to negative

temperatures, this mixture is denser than pure N2O but it still retains the self-pressurizing property and is

less prone to decomposition.

Another common oxidizer choice is hydrogen peroxide (H2O2). Peroxide has a great heritage as a

rocket fuel in Europe, most notably in Great Britain. The 60s British orbital launcher Black Arrow burned

peroxide and RP-1 in its liquid rocket engines [20]. Peroxide also burns adequately with solid fuels, making

a very volume-efficient combination, as high concentration H2O2, called High-Test Peroxide (HTP), has a

density almost 50% greater than water. Like nitrous oxide, it also suffers from stability issues and should

be stored and handled with great care [7].

As for the fuel in a hybrid rocket motor, it corresponds generally to the solid propellant and is oftentimes

considered the bottleneck when it comes to making large hybrid motors viable, due to the difficulty of

getting traditional solid fuels to evaporate quickly enough to obtain relevant thrust outputs [7]. That is

the case of hydroxyl-terminated polybutadiene (HTPB), a low-energy chemical frequently used in solid

rocket propellants as a binder, turning an otherwise incohesive mixture of fuel and oxidizing agents into

a homogeneous propellant. Alone, it can be cast into a hybrid combustion chamber and will achieve a

respectable performance with various oxidizers.

Polybutadiene acrylonitrile (PBAN) has a similar role and properties to HTPB. It is being used as a

constituent of the solid propellant on NASA’s Space Launch System boosters and has also seen use as a

hybrid fuel. According to Calabro [21], one of the highest values of specific impulse ever recorded from a

hybrid engine test, around 380 seconds, used PBAN with lithium and lithium hydride as a solid fuel. The

oxidizer was a mixture of liquid oxygen and liquid fluorine.

Metal additives have been added to solid fuels to try to increase its performance, either by increasing

the regression rate of the fuel grain or by shifting the oxidizer to fuel ratio. Aluminum powders and metal
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hydrides like the lithium hydride mentioned before are common examples.

3D-printing plastics such as ABS have also been tested on small engines and are easily accessible

and safe for amateurs or university laboratories. Polyethelene also saw extensive testing as a hybrid fuel

by General Electric [21]. In fact, almost any combustible material can be burned in a hybrid combustion

chamber and generate thrust, albeit few will give useful performance.

2.1.4 Increasing the regression rate

The combustion process and internal ballistics of a hybrid motor are considerably different from both

solid and liquid engines [15]. For adequate burning to occur, the oxidizer and the fuel must be thoroughly

mixed. In a solid motor, they are mixed in the solid state before being burned. In a liquid engine, the

mixing happens shortly after injection into the chamber, with the two propellants mixing as they vaporize.

In a hybrid, the two propellants aren’t mixed as soon as they become gaseous. The hot combustion inside

the chamber heats the outer layers of the fuel grain core, causing them to evaporate, as drawn in Figure

2.6. This will form a film of fuel vapor covering the rest of the still solid fuel. Eventually, this boundary

layer of gas mixes with the also gaseous oxidizer stream flowing through the center of the combustion

chamber, from the injector. It is between these two layers of pure oxidizer and pure fuel that the mixing

and combustion process actually takes place.

This implies that, in a hybrid motor, heat transfer to the solid fuel is ruled by the behaviour of the

boundary layer. This process is different from a solid motor, in which the combustion happens closer

to the surface of the grain, immediately after vaporization of the solid propellant. In addition to this, the

combustion in a solid is evidently premixed, while a hybrid motor’s combustion is diffusive.

Figure 2.6: Illustration of the three boundary layer model of the hybrid combustion process. Notice
the temperature increase in the middle diffusion flame layer. Source: [13].

Because of the boundary layer effect, the complete mixing and combustion of the last portion of the
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fuel grain only happens further downstream from the grain end - hence, an aft-combustion chamber,

about as long as the chamber is wide [15], is usually needed before the nozzle to improve the combustion

efficiency of the motor. This unique combustion process also has implications in the solid fuel regression

rate - the rate, usually measured in mm/s, at which the solid fuel surface is consumed. As the fuel surface

absorbs heat from convection and radiation, its vaporization creates the fuel boundary layer and, thus,

a "blowing" effect that counters the heat transfer. Without an effective heat transfer mechanism, fuel

regression rates are low and insufficient to generate the levels of thrust needed for large hybrid rocket

boosters and many other applications.

Several approaches have been pursued to solve this issue, most of them intended to facilitate the heat

transfer to the fuel [7]. One is called themixed hybrid approach, wherein the solid fuel is doped with a small

amount of solid oxidizer. A similar approach is to use metal additives in the fuel, as mentioned in section

2.1.3, to increase the heat radiation mechanism to the fuel [13]. On the other hand, the problem can be

addressed by increasing the surface area of the fuel, instead of increasing the regression rate, but this

does not lead to satisfactory solutions in most cases. To increase the surface area, the chamber volume

also needs to be increased or a multi-port design is employed. Each option has their own disadvantages,

but they both lead to a lower filling factor (empty volume) and consequent higher structural mass fraction

of the rocket vehicle.

While increasing the regression rate has been historically difficult, a new class of liquefying (or "melting")

fuels gained traction in the late 1990s that could solve this issue. When heated, these fuels turn from

solid to a low viscosity liquid state before being vaporized, unlike HTPB or PBAN. From this group of

fuels, paraffin wax stands out as ubiquitous. Stanford University pioneered the research into paraffin at

the start of the millennium. It was first fired at Stanford University in 1998 with oxygen as the oxidizer [7].

Paraffin in HREs burns at a regression rate several times higher than common polymeric fuels, thanks to

a process called entrainment, in which fuel droplets from the melting surface of the fuel are released into

the flow, vaporizing away from the blowing effect of the fuel boundary layer - effectively increasing the fuel

mass flow rate. The dominant constraint on the regression rate ceases to be the rate of heat transfer to

the fuel and becomes the viscosity and surface tension of the liquid fuel layer. Entrainment is the process

represented on the magnified detail of Figure 2.1.

2.1.5 Performance

In terms of performance, hybrids also occupy the middle space between solids and liquids, although

they are much less mature and less tested. One of the better developed hybrid propellant combination so

far is liquid oxygen with HTPB fuel, which gives acceptable performance (its nominal Isp of 280 seconds

(see Equation 3.1) and low O/F ratio are comparable to the main orbital launch vehicles operating in

the commercial market). However, HTPB is being dropped in favor of higher regression rate fuels, like

paraffin, for high-thrust cryogenic booster stage applications without significant losses in efficiency, as

shown by Figure 2.7. All-in-all, the paraffin and LOX combination can become a serious candidate to see

widespread commercial use, as exposed further in section 2.2.
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Figure 2.7: Depiction of the theoretical performance of liquid oxygen burning with paraffin and
HTPB under a 500 psi chamber pressure. Source: [7].

N2O and paraffin wax, not necessarily together, have seen widespread use in recent years among

amateurs and universities due to the ease of handling and operation. The better performing pairs are

metallized fuels with fluorine oxidizers, but these are expensive and/or dangerous, in many cases defeating

the point of using hybrid propellants in the first place. The two together produce an Isp of 248 seconds,

with an oxidizer-to-fuel ratio of 8, as shown on the table of Figure 2.8.

2.2 Use Cases and Competitiveness

In section 2.1, the many peculiarities of HREs were discussed and compared to both liquid and solid

propulsion. This section provides a more system-level overview of how those characteristics can come

together to generate a useful product in the form of a hybrid-propelled rocket vehicle.

Figure 2.9 does a good job of stating the main strong points of hybrid propulsion in a visual manner.

As evidenced by the gray area of the Figure, rockets and spaceplanes using HREs are well suited for

missions requiring throttling and restart capabilities. This can be the case with in-space operations, for

which hybrid upper stages with a storable oxidizer would be appropriate and better performing than solid

kick motors like the Star 37 [14]. Another case, which some players in the industry are already looking

into [5], is reusable first stages using hybrid propellants. The propulsive recovery of a rocket booster

requires an in-flight re-ignition right before landing and fine throttle control, which a solid motor cannot do.

One may argue that reusable rocket vehicles have been landing propulsively for the past years with

liquid engines, so HREs do not bring anything new to that area. Nevertheless, when safety and simplicity

(of operation and development) are more important than performance, hybrids are an interesting solution.

Launch start-ups, for example, might leverage the safety aspect of HREs to develop their technology

quicker and with a lower initial investment, eventually even using HREs as a stepping stone to liquid

propulsion.

Some hybrid propellant combinations have a higher volumetric specific impulse than most liquid or
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Figure 2.8: Comparison of performance of several hybrid propellant combinations for a chamber
pressure of 3.5 MPa and sea-level exit pressure. Source: [21].

solid alternatives, making hybrid rockets more compact for the same mission than alternative designs

(even if, in terms of gravimetric specific impulse, the performance of liquid propellants is usually higher).

This could have potential military applications, for example. Nitrous oxide is a particular good fit for

low-mass, small sounding rockets, since the self-pressurization allows tight mass budgets to be feasible

and it can be stored for some time.

However, HREs have a few drawbacks worth mentioning. First of all, the overall Technology Readiness

Level (TRL) of these systems is not exactly on par with their liquid and solid counterparts, which have

been studied a lot more in the past. Fortunately, the recent renewed interest in hybrids, driven also by

environmental and safety concerns [22], is starting to make up for it. Still, new HREs designs often suffer

from combustion instability problems and their complicated internal ballistics make designing larger motors

difficult.

16



Figure 2.9: HyImpulse’s visualisation of the combined strong points of solid and liquid propellant
rockets (and monopropellant configurations as well) in hybrid rockets, as presented on their website
[4].

Furthermore, controlling themixture ratio of the propellants is not straightforward. As the solid propellant

grain is consumed, the burning area changes and, in order to maintain the fuel to oxidizer ratio, the injector

valve would have to be adjusted in accordance. A similar perturbation of the mixture also happens when

throttling, but in this case, adapting the burning area to the changing liquid propellant flow is not possible.

The issue is that any less-than-optimal mixture ratio degrades the specific impulse of the engine, making

it less efficient, as becomes evident when looking at Figure 2.7.

Looking forward, as the TRL of hybrids improve, these disadvantages are dissipating and the ad-

vantages are starting to make hybrid propulsion a relevant and cost-effective alternative, especially with

respect to solid motors. The German company HyImpulse Technologies [4] is evidence of this trend.

This start-up was formed in 2018, stemming from a research group at the DLR (German Aerospace

Center), whose founders’ first experience with hybrid rockets had been in student sounding rocket projects

[23, 18]. Their aim is to differentiate themselves from the rest of the European small launcher start-ups by

using hybrid propulsion in their vehicles. They are developing a modular three-stage small launch vehicle

which they claim will be able to put 500 kg payloads into a dedicated orbit.

The rocket will use a proprietary paraffin-based fuel, to which a minor percentage of additives is added,

and liquid oxygen as the oxidizer. This promises to be an environmentally friendly combination, as well as

relatively easy and safe to be handled during the manufacturing process and launch operations, one of

the major hurdles being the handling of liquid oxygen at cryogenic temperatures and its loading into the

vehicle [24].

Also born in the 21st century, Virgin Galactic is another spaceflight company that is exploiting the

benefits of hybrid propulsion in the main thruster of their suborbital manned spaceplanes. Virgin Galactic

is currently conducting tourism flights, like the one depicted on Figure 2.10, to the edge of space using

passenger spaceplanes whose design evolved from SpaceShipOne, the craft that flew the first privately

funded manned spaceflight, back in 2004 [19].
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Figure 2.10: Virgin Galactic’s SpaceShipTwo soaring upwards under thrust from its powerful hybrid
motor. Source: marsscientific.com

In fact, human spaceflight is another realm where hybrid propulsion can thrive, thanks to its overall

safety aspects, especially for suborbital "hops" that don’t require too high performance. SpaceShipTwo is

propelled by nitrous oxide but the oxidizer tank does not rely on self-pressurization [25].
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Chapter 3

Launch Vehicle Multidisciplinary

Design Optimization

Conceptualizing a rocket vehicle is a complex design challenge that benefits from breaking down the

full system into smaller, less complex parts, modelling each one separately and analyzing their interactions.

In this spirit, rocket design is usually split into various interdependent subsystems, like the propulsion

system, structure, aerodynamic and control surfaces, etc.

Figure 3.1: Sliced view of the sounding rocket Bella Lui II, from the Swiss EPFL University team.
The team won an award at the EuRoC 2021 competition with this vehicle. Source: [26].

For optimization (or simply design improvement) purposes, all these subsystems can be improved

independently, but, given the great level of mutual interdependence in an aerospace system such as this,

a multidisciplinary optimization approach can leverage the analysis of subsystem interactions to provide

better results [27].

3.1 Mission Requirements

There’s another subsystem that deserves a mention - the payload. No transportation vehicle is made

without a purpose and a rocket’s goal is usually to deliver a payload to a destination. Like luggage on an

automobile, the payload is not needed for the rocket to function, except when it is also playing a structural

and/or aerodynamic role. However, the payload is instrumental in defining the mission requirements for a

launch vehicle [16], together with its destination - an altitude, for a suborbital flight, or an orbit.

19



The capability of a rocket vehicle is usually measured in terms of how much payload mass it can place

at a given altitude, at a given velocity. For orbital launch vehicles, this can translate to being capable of

putting a 500kg payload into Low Earth Orbit (LEO), as is the case with HyImpulse’s SL1 rocket [4], for

example. For suborbital vehicles, it can translate to reaching a given apogee (with null vertical velocity).

In either situation, the payload must be accelerated to a precise velocity vector at a precise point in space

(or in the atmosphere).

For the purposes of conceptual design validation and optimization, a full set of orbital elements isn’t

necessarily required or relevant. Thus, it is possible to model a launch vehicle’s mission objective in a

simplified way, using a target scalar velocity, with the appropriate flight path angle, at the target altitude

at which that velocity must be verified. These three variables are, thus, constraints on the optimization

algorithm being defined here.

Additionally, a commercial rocket designer and manufacturer is not interested in developing a vehicle

that fulfils the mission requirements whatever the cost. For it to be worth an investment, it must result in

an economically viable product. Accurately estimating the cost of rocket launchers is not a straightforward

subject and many of the available models are ill-suited to the twenty-first century reality of commercial

small launch vehicles, as evidenced by Drenthe [28]. However, the gross lift-off weight (GLOW) of the

vehicle is a central variable for estimating cost, and as such it can be minimized in the design as a simpler

alternative to estimating and optimizing the cost.

Cost is an important factor, but environmental and operational concerns also drive the need for

minimizing the mass of the vehicle. Likewise, minimizing the amount of propellant consumed directly

minimizes pollutant emissions generated from using the propellant or from producing it. The best indicator

of propellant consumption efficiency is the specific impulse,

Isp =
It ot
mp g0

=
c

g0
(3.1)

which measures, in seconds, the amount of time a rocket can produce thrust of magnitude equal to the

total weight of its propellant under standard Earth gravity, g0 [12]. c is the effective exhaust velocity of the

engine. Thus, maximizing the specific impulse and minimizing the GLOW should be objectives of any

rocket design optimization process.

3.2 Multidisciplinary Design Optimization Problems

According to Martins and Ning [29], optimization is the concept of "finding the best possible solution

by changing variables that can be controlled, often subject to constraints". Multidisciplinary Design

Optimization (MDO), then, is the engineering discipline of combining numerical optimization methods with

complex system design, such as aircraft wings, chemical reactors or whole vehicles, which due to their

nature need the contribution of various disciplines.

While design in engineering is usually an iterative process, MDO requires less time to complete,

while increasing the final design performance by ensuring its optimality [29]. Formulating an optimization
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problem begins by assessing which are the most relevant design variables, that is, the ones which have a

stronger influence on the design outcome. One way of evaluating this is through sensitivity analysis.

Sensitivity analysis examines the impact on the outputs of small variations, whether deliberate changes

or uncertainties, in the input (design) variables. One method of sensitivity analysis, finite differencing,

is used to compute gradients in the design space by introducing small perturbations on each design

variable while maintaining all the other variables constant [30]. The computation of these gradients is

often referred to, in an engineering optimization context, simply as "sensitivity analysis".

With this technique, it is possible to assess which variables have the greatest impact on a given area

of the design space and, as a consequence, which are the most relevant to choose as design variables

for the optimization problem.

3.2.1 Design Variables

The design variables are the inputs to the optimizer and they, in conjunction with any constant system

parameters, describe the system undergoing optimization. Together, the design variables form the design

vector x = [x1, x2, x3, ..., xn ]. These variables are handled by the optimizer, although some optimization

architectures require the user to input an initial design vector, as a starting point for the optimization

process. In practice, this can be an existing design that is intended to be optimized or just a feasible

placeholder, from which the optimizer may deviate considerably [29].

The design variables need to be independent from one another [29]. For example, when choosing a

design variable, the designer should make sure: that variable is not a linear combination of other variables;

that it is not determined by simulation parameters; or that it is not directly related to the value of other

design variables. Otherwise, the optimizer will not be able to iterate on all components of x freely, resulting

in a poorly defined problem.

In optimization problems with physical significance, as is the case with rocket vehicle design, setting

boundaries on the variables values is sometimes necessary. Mass, length and cost are just some examples

of properties that loose meaning if, during the optimization process, they become negative. Thus, a

hard-coded lower bound with the value zero (or some positive real number close to zero) is customary

for such properties. Setting a lower and upper bound for each variable may also be instrumental in

the prevention of computational errors in the models, which depend, of course, on the specific problem

definition and implementation.

If a user is looking for an optimal design in a known region of the design space, it can make sense to

constrain the bounds as much as possible around the target region. However, if the user is too conservative

on the bounds definition, it can have the opposite effect, hindering the optimizer from exploring the design

space further for better solutions [29].

3.2.2 Objective Function

The design outcome mentioned in the beginning of section 3.2 must be translated into a mathematical

formulation in order to be quantified and optimized. That formulation is called the objective function,
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f (x ), and, by convention, its value is to be minimized in the optimization process. When the intent is to

maximize the objective function (e.g., maximize the mission duration of a satellite in a decaying Low Earth

Orbit (LEO)), the problem can be formulated, equivalently, as

max [f (x )] = −min [f (−x )],

as stated by Martins and Ning [29]. The objective function can be computed, assuming it is defined, in

every point of the design space. The point with the lowest f (x ) value is the optimum point.

The objective function choice is not as trivial as it is vital. Its simplest form is a scalar value, whose

reduction should denote an improvement or optimization of the system, even though that simple scalar

may be the result of a complex sequence of equations or algorithms instead of a single, simple variable.

There may also be more than one relevant variable to minimize in a given problem, resulting in a trade-off

situation where the designer may need to decide which is the best variable to minimize. Alternatively, the

optimization designer may resort to multi-objective optimization, which returns a set of possible solutions

instead of a single one [29]. This may be preferable to obtaining a single solution in cases, such as this

work, in which the models being analysed are not very precise and a group of preliminary solutions are

chosen to later be analysed by more advanced tools. This is usually the case with feasibility studies or

concept generation.

More methods exist (see Martins and Ning [29]), but perhaps the most common approach to multi-

objective optimization is to use a weighted sum function as the objective - in essence, a linear combination

of the n objectives such that the new and only objective function is given by

f̄ =
n∑
i

wi fi (x ) (3.2)

where wi is a value between 0 and 1 and the sum of all the n weights is equal to one. If there are only two

objectives, then the weighted sum can be simply written as

f̄ = wf1 (x ) + (1 −w )f2 (x ). (3.3)

The weighted sum is, in fact, not the best method by any reasonable metric other than being widely

used [29]. Another widespread method is the epsilon-constraint method, which is as simple to use

and provides better results in the presence of non-convex Pareto sets [31]. It consists of turning all of

the objectives except one into optimization constraints, which are discussed in section 3.2.3, and then

computing the solution for various different constraint values.

In multi-objective optimization, since the objective function is no longer a single variable but actually a

linear combination of multiple variables, this means there are now infinite optimal solutions, assuming all

variables are continuous. A new optimality concept is used, the Pareto optimality, based on the principle of

domination. A solution design point is said to dominate another if it is better than the other on all objective

functions [31]. To better visualize this, it is usual to plot a so called Pareto front, like the one on Figure 3.2.

The figure shows the values of the two objective functions plotted for each design point.
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Figure 3.2: Example of a Pareto front plot from a rocket system optimization problem, where
apogee (vertical axis) and GLOW (horizontal axis) are the two objectives. Source: [32].

In this case, the problem was to optimize a sounding rocket, where the GLOW and the apogee were

the two objectives. We can see that the non-dominated design points follow a more or less asymptotic

behavior, meaning that a trade-off relationship between altitude and mass is present. Dominated design

points are not represented, only non-dominated ones - these form the Pareto front. In case of more than

two objectives optimization, the visualization of the Pareto front is not as straightforward as a 2D plot.

3.2.3 Constraints

As discussed in section 3.2.1, the design variables are usually bounded to ensure they maintain

physical meaning. However, this alone does not grant physical feasibility to the solution. To make sure

the optimized solution conforms to the problem specifications, physical realism and user requirements, a

set of constraints ought to be implemented within an MDO architecture.

Just like with defining variables and objectives, constraint formulation is an art [27] that requires some

level of experience with optimization. Constraints are computed using variables in algorithms with varying

degrees of complexity, just like with objective function computation. Constraints also play an important

role in most MDO architectures by ensuring the convergence of different simulation variables. To this end,

there are equality constraints, of the form g (x ) = 0, where the constraint function g is required to be equal

(within a certain numerical tolerance) to a fixed value; and inequality constraints, of the form g (x ) ≤ 0,

where the constraint function can not go over (or below, depending on the inequality direction convention)
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a certain value [29].

If a solution satisfies all constraints, it is said to be in the feasible region of the design space. On par

with optimality, feasibility is the parameter that guides the optimizer in the search for a solution. Solution A

may have a lower objective function value than solution B, but if A does not comply with all the constraints,

then the optimizer will opt for solution B if it sits in the feasible region. Hence, adding more constraints to

an optimization problem will necessarily decrease the optimality of the solutions, or, at best, produce no

change [29]. Over-constraining a problem is, then, a real possibility if the designer is too conservative or if

the problem, under the considered assumptions and models, is unfeasible.

3.2.4 State and Coupling Variables

In multidisciplinary optimization, the optimizer runs more than one discipline analysis, which translate

to mathematical models that calculate some output response variables, usually known as state variables.

State variables originating from discipline i are represented by the vector ȳ i [33]. The usefulness of

MDO is that it simulates discipline interaction, through the exchange of information between the different

disciplines, resulting in the manipulation of the same variables by different models in a way that every

discipline agrees with each other in the end - a process called convergence.

The exchange of information can be done in multiple different ways, but it usually relies on coupling

variables, as illustrated on the example Figure 3.3. Coupling variables, y , are a transformed subset of the

state variables (not necessarily all variables computed by a discipline are used to model interdisciplinary

interactions). For MDO architectures running disciplines in parallel, multiple copies of the same coupling

variables may be needed. These copies sometimes act in the same way as design variables, being input

into the disciplines and controlled by the optimizer, and can be considered "target" variables, ŷ .

Figure 3.3: Example of an MDO design process with coupling variables in feed-forward and
feedback coupling. Source: [34].
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3.2.5 Optimization Algorithms

When solving a multidisciplinary design optimization problem, a designer has to go through a multi-

step process. First, it’s the problem definition, as previously described on the beginning of section 3.2.

Choosing variables, objectives, and so on. Secondly, classifying the problem is important, because not all

optimization problems are created equal and, to be solved efficiently (or solved at all), different problems

require different strategies [29].

Variable definition, being the a start point for problem definition, can also be the start point for problem

classification. Whether variables are discrete or continuous greatly influences the difficulty of the problem

and the solving strategies at our disposal, with discrete being the more restrictive case [29]. Mixed (some

continuous, some discrete variables) problems are also possible.

Like continuity, convexity has a similar influence on the difficulty of a problem and the possible paths

to solving it. The most well-known optimization methods can solve convex and non-convex problems

alike. However, if a problem is known to be convex, it is wise to use methods that are specially adapted to

solve such types of problems. Convex problems require the objective function and inequality constraints

to be convex as well, resulting in problems that are, generally-speaking, simpler than most aerospace

optimization problems. Linear and quadratic programming techniques are two examples of algorithms

that take advantage of the convexity of a problem to solve it [29].

The third property to consider, after convexity and continuity, is differentiability. Whether it is possible

to compute the derivatives of the functions of interest or not, the choice of optimization strategies becomes

more or less limited. Optimization algorithms supported on derivative computation and analysis are usually

called gradient-based, as opposed to gradient-free algorithms [29].

Under the right circumstances - objective function smoothness, for example -, gradient-based algo-

rithms will converge to an optimum point using less computational resources (in other words, quicker)

than gradient-free methods [30]. However, gradient-based methods are not good tools to find the global

optimum solution of a problem, even when paired with techniques like multistart, where a local search

method is run several times from different points in the design space, in an attempt to find better solutions

[29]. Note, though, the distinction between the gradient-based or gradient-free classification and the local

or global classification of optimization strategies. Even though gradient-based methods usually obtain

local solutions, these concepts are not interchangeable.

Gradient-free methods, sometimes called zeroth order methods, are better suited for when there

are few design variables, when the design space is multimodal (non-convex), or when gradients cannot

be obtained, either because the functions have plenty of discontinuities or because the models under

optimization are "black-boxes", which means the optimizer only has access to the model’s outputs, not its

inner workings or governing equations [29][30].

Gradient-based methods generally use some type of sensitivity analysis to model the problem, approxi-

mately, in the vicinity of the current point. This is the strategy the Sequential Quadratic Programming (SQP)

method employs to solve constrained nonlinear C 2 continuous problems [27]. Using finite differences,

SQP estimates and solves a local quadratic programming problem to find the next point in the optimization

process. Thus, SQP is, as its designation implies, an iterative, sequential resolution of local quadratic

25



programming problems. Finite differencing introduces errors due to the size of the step used to compute

derivatives, but it can be used to compute derivatives of black box models [29].

While SQP is one of the most useful gradient-based algorithms for aerospace applications, genetic

algorithms are the most well-known evolutionary algorithms, which are a subset of gradient-free opti-

mization methods characterized by a global search using heuristics [29]. Genetic algorithms (GA) are

based on a population of initial points. The larger the initial population, the better the design space will be

covered. Each iteration of a GA is called a generation - the nomenclature, like the algorithms themselves,

are inspired by natural reproduction and selection processes [29].

The population in a GA, from generation to generation, changes, or evolves, using three different

processes. The exact details of how these processes are implemented vary widely between different GA.

First, selection: the best design points, according to some sort of heuristic or evaluation, are selected to

reproduce, to the detriment of the non-selected. Then, there’s crossover between "parent" design points,

producing new points that combine characteristics from the parents. Finally, the third process is mutation,

which translates into a more or less random introduction of new characteristics to diversify the population

of design points.

Figure 3.4: Visual interpretation of the evolution of a population from one generation to the next.
The mutation process is not represented. Adapted from [29].

Genetic algorithms are able to search effectively in non-convex spaces, where the objective function is

not linear nor simple, a clear advantage with relation to gradient based alternatives. They are not hard to

implement [27], although they require a large population and many generations to be effective, rendering

their use impractical in many engineering scenarios.

Finally, the last step in the design of an MDO problem framework is the choice of an architecture to

support the solver algorithm. This will be the focus of section 3.2.6.

3.2.6 MDO Architectures

The MDO architecture is simply the way the optimization problem is structured and solved. This

section focuses on monolithic architectures only, meaning a single optimization is being solved instead of

distributing it into various smaller problems. To easily visualize MDO architectures, along with discipline

interdependency and process flow, a type of diagram named the Extended Design Structure Matrix

(XDSM), proposed by Lambe and Martins [35], is used.

Monolithic architectures are very similar to one another, with the differences being related to the
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handling of design and coupling variables by the optimizer. In fact, every MDO formulation has its roots in

the fundamental multidisciplinary optimization architecture, called All at Once (AAO) [33]. Optimization

problems can be specified and formulated in a formal mathematical declaration. For example, an AAO

problem can be mathematically formulated as

minimize f (x , y )

with respect to x , y , ȳ , ŷ

subject to c0 (x , y ) ≤ 0

c i (x 0, x i , y i ) ≤ 0 for i = 1,..., N

cc
i
= ŷ i − y i = 0 for i = 1,..., N

R i (x 0, x i , y i , ȳ i , ŷ j,i ) = 0 for i = 1,..., N ,

(3.4)

where c represent constraint functions, cc are consistency constraint functions and R i correspond to

discipline i governing equations’ residuals. Its XDSM representation can be seen of Figure 3.5.

Figure 3.5: XDSM of an All at Once MDO architecture. All functions and discipline residuals can
be evaluated in parallel. Source: [33].

In reality, AAO is a primordial monolithic formulation and, despite being the root of all others, isn’t

really used in practice [33]. It can be very easily simplified by removing the copies of the state variables

and, thus, the consistency constraints, which are not really necessary because the optimizer is handling

all the variable modifications. This simplified version of AAO is called Simultaneous Analysis and Design

(SAND).

The main issue with SAND (and AAO) is the computation of the disciplines’ governing equations

residuals, R i . These methods use the discipline analysis equations as constraints, making the residuals

of these equations and their derivatives necessary and accessible. This fact precludes the use of "black

box"-type models in the disciplinary analysis, because these only reveal the coupling variables [33].

The Individual Discipline Feasible (IDF) architecture is answering this concern. IDF is obtained from

AAO by introducing discipline solvers instead of burdening the optimizer with discipline analysis constraints.

This removes the need for residuals knowledge. Instead, the method makes use of the optimizer-controlled

coupling variable copies ŷ , which were eliminated in SAND. State and actual coupling variables become

a function of design variables and coupling variable copies and are determined in and by the discipline
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solvers. This way, after discipline evaluation, the comparison between the optimizer’s "guesses" for the

coupling variables and the actual modeled coupling variables can be made. Mathematically, to assess

their convergence, IDF resorts to the consistency constraints cc .

The optimization problem formulation under an IDF architecture is, thus,

minimize f0 (x , y (x , ŷ ))

with respect to x , ŷ

subject to c0 (x , y (x , ŷ )) ≤ 0

c i (x 0, x i , y i (x 0, x i , ŷ j,i )) ≤ 0 for i = 1,..., N

cc
i
= ŷ i − y i (x 0, x i , ŷ j,i )) = 0 for i = 1,..., N .

(3.5)

The discipline analysis constraints, R i , present in the AAO formulation, have been removed, along

with all state variables ȳ . As observable in its XDSM representation, which can be seen on Figure

3.6, the discipline analysis can be run in parallel, considering they only depend on variables x and ŷ ,

determined by the optimizer in the loop’s initial step [33]. On the other hand, the consistency constraints

that ensure coupling variable convergence need to be evaluated after model analysis, alongside with the

other constraints and objective function, thereupon closing the optimization loop.

Figure 3.6: XDSM of an Individual Discipline Feasible MDO architecture. Source: [33].

Compared to AAO/SAND, IDF problems are smaller and simpler, from the optimizer’s point of view.

However, this does not say much, because AAO/SAND problems handle all the variables, in an intrusive

manner, making it the largest MDO architecture [29]. If the number of coupling variables is high and

this cannot be mitigated by changing the position of certain models in between disciplines, to minimize

variable transfers, then the size of the optimization may hamper its efficiency.

Another consequence of the IDF approach is that disciplines are solved independently from one

another in a given iteration, meaning they could be, in theory, modelling completely dissimilar systems at

a given time, before the optimization algorithm assures convergence of the equality constraints [29]. This

stands in stark contrast to the Multidisciplinary Feasible (MDF) architecture.

Of all classic monolithic architectures, Multidisciplinary Feasible generates the smallest optimization

architectures. It is also the most suitable for heavily coupled interdependent systems such as those

developed in the aerospace industry [27].
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MDF, formulated as

minimize f0 (x , y (x , y ))

with respect to x

subject to c0 (x , y (x , y )) ≤ 0

c i (x 0, x i , y i (x 0, x i , y j,i )) ≤ 0 for i = 1,..., N ,

(3.6)

does not use consistency constraints, like IDF, nor does it need access to the discipline state variables

and residuals, like SAND. Figure 3.7 presents a representation of the MDF architecture, which includes

a Gauss-Seidel Multidisciplinary Analysis (MDA) loop, initiated by a driver component. The MDA is

responsible for making the coupling variables consistent between the various disciplines on each iteration.

Instead of feeding copies of the coupling variables to the different disciplines and running them in parallel,

the MDF runs disciplines sequentially, feeding the component 1 output into component 2, as shown in

Figure 3.7. This process is computationally demanding, converging slowly, and harder to implement than

just a simple IDF [29].

Figure 3.7: XDSM of a Multidisciplinary Feasible MDO architecture with three disciplines. Source:
[33].

On the other hand, the optimization loop is very simple, with only the design vector, objective function

and design constraints being controlled by the optimizer [33]. A clear advantage of this strategy is that

every iteration of an MDF is physically meaningful, that is, if an optimization run were to stop prematurely,

the resulting design point would be realistic, albeit not necessarily feasible with regards to the design

constraints and, of course, not optimal.
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Chapter 4

Hybrid Rocket Optimization Tool

Implementation

4.1 Launch Vehicle Modelling

4.1.1 Vehicle Subsystems

The vehicle models weren’t too much changed from the work of Yamada [9]. The Mass and Sizing

discipline depends on semi-empirical relationships to compute the masses of all subsystems. Some, like

the oxidizer tank and the combustion chamber masses are computed analytically, resorting to simple

geometric models.

Although avionics and recovery subsystem models were implemented by Yamada [9] in his work, it

was decided to abandon those detailed specifications and substitute the two subsystems by a single one,

referred to as components. There were some reasons for this:

• In an attempt to reduce the computational resources needed by the program and its execution time,

merging those two subsystems into one meant that two less coupling variables had to be handled

by the optimizer and functions (two mass and two length variables turned into one of each).

• Users may not intend to include a parachute recovery system on their design.

• Avionics systems are hard to model empirically or analytically, both in mass and volume. Accurately

modelling electronic components goes beyond the scope of a conceptual level analysis, which is

this work intention.

• It is significantly easier to build accurate empirical models for non-structural components as a whole

in a rocket than to develop several different models for each component or subsystem imaginable.
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4.1.2 Propulsion System

The hybrid propulsion system is simulated using the framework developed by Klammer [10] and

Yamada [9], wherein three control volumes are modelled to represent the oxidizer tank, the combustion

chamber and the nozzle, as illustrated by Figure 4.1. Mass and energy fluxes are simulated from the

oxidizer tank, through the chamber and to the nozzle. In addition to these three components, only one

other is modelled - the injector. Otherwise, the tool does not model ignition devices or cooling systems.

There is also no tank pressurization system being modelled because the tool was developed under the

assumption that nitrous oxide would be the oxidizer of choice, which is self-pressurizing. This does not

mean the tool cannot function with other oxidizers, but some hard-coded parameters need to be changed

accordingly and the user has to design an adequate pressurization system separately, if desired.

Figure 4.1: The internal conditions and mass flows of each of the three control volumes are
modelled at each time step in the MATLAB framework. Source: [10].

The oxidizer is stored in both liquid and gaseous phases inside the tank. Its two-phase equilibrium

is modelled by the sub-function thermoSat, using a table of thermodynamic properties of the oxidizer

at saturated conditions, from the melting point up to the critical temperature. This way, knowing the

oxidizer vapor pressure (which corresponds to the tank pressure, pOT ) and the pressure loss through the

injector and feed system, pf eed , the possibility of oxidizer flow to the combustion chamber is verified. If

the combustion chamber pressure, pCC , is such that

pOT − pf eed − pCC > 0 (4.1)

then the pressure in the tank is enough to sustain the oxidizer flowing to the chamber. This is quantified

by the oxidizer mass flow rate, ¤mox , and calculated by means of equation 4.2, under the assumption of

incompressible single-phase fluid flow.
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¤mox = Ci nj
√
2ρd (pOT − pf eed − pCC ) (4.2)

where Ci nj is the effective injection area, obtained by multiplying the injector area by a discharge coefficient,

and ρd is the discharge fluid density.

The fluid in the combustion chamber is assumed to be homogeneous, with the combustion process

modelled as instantaneous and complete. To assure this is a reasonable assumption, the combustion

chamber is sized so that the fuel grain sits between two empty portions of the chamber of combined

length greater than the external radius of the vehicle, dext - the pre-combustion and the aft combustion

chambers. They improve oxidizer atomization and combustion completeness, respectively.

One limitation of the software tool is how it only simulates cylindrical grain port shapes. This facilitates

the simulation of the fuel regression, since it only depends on the regression rate as shown on Figure 4.2.

Although this rate can vary axially along the length of the grain, the fuel is assumed to regress uniformly

in the code as the uncertainty associated with modelling those differences would make the additional

accuracy not be worth the added computational cost [10].

Figure 4.2: The fuel grain regression model implemented considers the regression rate is uniform
on both the axial and the radial directions. r = rpor t is the radius of the fuel port, while ¤r is the
regression rate of the fuel surface. Source: [10].

Usually, in the literature [13], the fuel regression rate is given by

¤r = aG nox (4.3)

where a and n are empirically-fitted parameters highly dependent on the propellant choices and Gox is

the oxidizer mass flux through the port, obtained iteratively by dividing the oxidizer mass flow rate by the

port section area, which gradually increases as the fuel is consumed. The fuel mass flow rate, ¤mf is also

given iteratively by multiplying the fuel port surface area by the regression rate and the fuel density:

¤mf = 2πrpor tLf ¤r ρf (4.4)

32



As explained by Klammer [10], the regression rate’s a and n empirical parameters originally used in

the simulation tool were determined considering the full average mass flux through the port, G (calculated

including ¤mf ), in the equation instead ofGox , so that is still implemented and parameters are set accordingly.

It is fairly simple to switch the code to use the oxidizer flux only, if necessary.

The oxidizer mass flow rate, ¤mox , is one of the most relevant parameters in hybrid rocketry, because

Gox depends on it and fuel flow, in turn, depends on Gox . As explained in section 2.1.2, this allows

the thrust of a hybrid rocket to be controlled by limiting oxidizer flow by means of a valve, for example.

Although this feature is not modelled in the present work, it is something that could be added in the future.

Finally, the flow behaviour in the nozzle section is simulated using ideal nozzle theory, under the

assumption of isentropic, ideal gas flow. The nozzle’s throat diameter and area ratio are design variables

supplied by the optimizer. The combustion chamber pressure and the oxidizer-to-fuel ratio are used as

inputs to search for the other corresponding chamber properties in look-up tables, which data is compiled

from NASA’s Chemical Equilibrium with Applications (CEA) program [36] for the appropriate propellant

combination. CEA does not have many of the hybrid propellants on its default library, but they can be

manually introduced if their composition and formation enthalpy are known.

4.2 Trajectory and Control

Klammer [10] and Yamada [9] have previously included in their hybrid rocket optimization codes a

1-degree of freedom (DOF) trajectory simulation function, first developed in 2016 by Michael Pearson

[10]. However, when the scope of this work was defined, it became clear that a 1-DOF model would soon

be insufficient as the program evolves. Hence, developing a new three-dimensional model was made a

priority.

Section 3.1 explored how the mission requirements under consideration for the purposes of booster

stage and sounding rocket conceptual design optimization are the payload mass, the apogee (or booster

separation altitude), and the velocity vector, v - or, simpler still, the speed, v , and the flight path angle, γ,

which is illustrated on Figure 4.3 and defined as

γ = arctan ¤z¤x (4.5)

where ¤x and ¤z are, respectively, the horizontal and vertical components of the velocity vector [37].

In fact, the new 3-DOF trajectory discipline provides the needed outputs to optimize a vehicle for

those mission requirements. The payload mass is a design parameter, while the vehicle’s position and

velocity vectors as a function of time, in cartesian coordinates, are calculated and placed in the state

structure of the simulation program to be passed along to other functions. As inputs, the trajectory module

needs, besides the design variables and general program parameters, the thrust and propellant mass

data as a function of time, the launch altitude and angle, and general geometric and mass values for the

computation of aerodynamic forces and moments of inertia.

The vehicle’s motion variables are computed on a while loop. At the end of each iteration, the variables
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Figure 4.3: A diagram of a rocket flying in the positive x and z directions. The forces acting on
the vehicle are shown (thrust, T , weight,W , aerodynamic force, F ) as well as its velocity vector,
v , angle of attack α , flight path angle, γ, and thrust vectoring angle, ε. F is split between its two
components, drag and lift, illustrated in red. Source: [37].

are stored, and the simulation time is incremented. The loop breaks when the vehicle returns to ground

altitude, after following a ballistic trajectory from wherever propulsion ceased.

The vehicle altitude z (t ) is used at each time step to calculate atmospheric properties, namely air

pressure, density and local speed of sound, through the 1976 COESA model MATLAB function. The

model is extrapolated up to an altitude of 150 km, above which the program considers a vacuum. Likewise,

the altitude, Mach number and angle of attack are used to search for the corresponding lift and drag

coefficients, CL and CD , from look-up tables estimated for a sounding rocket by the Digital DATCOM script,

an implementation of the United States Air Force DATCOM [38].

The following phase is the pitch guidance, which relevance is dependent on the type of vehicle and

mission. A sounding rocket should not require pitch guidance, nor is it likely to have thrust vectoring

control (TVC) or aerodynamic control surfaces to follow any active guidance. But for orbital-class vehicles,

an adequate trajectory profile, usually called a gravity turn, is an optimum way of reaching the desired

altitudes and speeds. For these vehicles, until the propulsion system cuts-off, a guidance algorithm is run

to determine the desired pitch, θd , for the vehicle.

This is achieved in three phases. First, once the vehicle clears the launch tower, θd is increased

linearly, with the linear rate being handled by the optimizer. Then, after a certain time, the desired pitch

decreases exponentially, to allow for a smooth transition into the third phase, the gravity turn itself, during

which the pitch guidance law is simply θd = γ.

θd is then introduced as a reference into a simple proportional feedback controller, where it is subtracted

by the simulated pitch angle, θ, obtained from the dynamics equations in the previous time step. This

difference is multiplied by a simple negative gain, ranging from 0 to -1, to obtain ε, the TVC angle. This

goes through a saturation condition to ensure it does not exceed the maximum allowed TVC angle

magnitude, which is a simulation parameter.

Finally, the equations of motion, through which the accelerations in x and z are calculated, are adapted

from Equations (21a-b) of Campos and Gil [37].
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4.3 Optimization Problem Setup

In this section, the suborbital hybrid rocket optimization problem is formulated and discussed. When

following the optimization problem solving process previously discussed in section 3.2, the first step is to

define the problem, its variables, objectives and constraints.

The scope of the problem led to the division of the rocket system modelling into four different disciplines:

Propulsion, Mass and Sizing, Aerodynamics, and Trajectory and Control. Each discipline is represented

by a different component in the MDO architecture, as illustrated by Figure 4.5.

4.3.1 Problem Variables

The four disciplines share data between them in the form of coupling variables. Table 4.1 shows the

four disciplines and their input and output variables, in no particular order. The order of the four disciplines,

on the other hand, is not arbitrary. The order in which the MDO components are executed determines

how the exchange of data between them is done. Notice how all coupling variable are fed forward to the

next disciplines in the loop.

Table 4.1: Input and output variables of each discipline, according to the chosen problem formu-
lation. Non-variable inputs (simulation parameters) have been omitted. State variables not used
outside the function they are computed in are also not represented.

Propulsion Mass and Sizing Aerodynamics Trajectory and Control
Inputs Outputs Inputs Outputs Inputs Outputs Inputs Outputs
VOT T mf mr ock et Lcone xOT dext h

Ci nj mf mox Lbody mcomponent s CG mr ock et v

Lf mox rCCi n Lr ock et mf i ns SM SM accel

dpor t ,0 rCCi n rOT dext mnoz CG

dt h Isp LCC mCC mcone Lr ock et
A/A∗ pCC Df i n mOT Lbody T

pOT Bf i n mbody dext A/A∗
G bf i n LOT mbody dt h

madd Lcomponent s mOT g ai n

maddcone mcomponent s mCC ∆tpo
VOT mf i ns mr ock et ∆θ

mnoz LOT
mcone Lcomponent s
Vcone Df i n
Lcone Bf i n

bf i n
LCC
mox

mf

From all variables included in Table 4.1, some are chosen as system design variables. For example,

all six Propulsion inputs are design variables, whose values are selected iteratively by the optimizer.

This is intentional. This way, Propulsion does not depend on the other disciplines directly, which makes

it adequate to be the first discipline to be executed in the optimization loop. Table 4.2 lists all design

variables and their purpose, while Figure 4.4 showcases the relationship between each one and different

parts of a rocket.
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Table 4.2: Description of the problem’s sixteen design variables. The last column indicates which
optimization disciplines take which design variables as input.
x Design Variable Description Discipline(s)
1 VOT Oxidizer Tank Volume, in m3 Propulsion, Mass and Sizing
2 Ci nj Effective Injection Area, in m2 Propulsion
3 Lf Fuel Grain Length, in m Propulsion
4 dpor t ,0 Initial Fuel Port Diameter, in m Propulsion
5 dt h Nozzle Throat Diameter, in m Propulsion, Trajectory and Control
6 A/A∗ Nozzle Area Ratio, dimensionless Propulsion, Trajectory and Control
7 LCC Combustion Chamber Length, in m Mass and Sizing, Aerodynamics
8 Df i n Fin Span, in m Mass and Sizing, Aerodynamics
9 ROT Oxidizer Tank Radius, in m Mass and Sizing
10 Bf i n Fin Root Chord, in m Mass and Sizing, Aerodynamics
11 bf i n Fin Tip Chord, in m Mass and Sizing, Aerodynamics
12 madd Ballast Mass in the Fuselage, in k g Mass and Sizing
13 maddcone Ballast Mass in the Nosecone, in k g Mass and Sizing
14 g ai n Pitch Controller Gain, dimensionless Trajectory and Control
15 ∆tpo Pitch-Over Maneuver Duration, in s Trajectory and Control
16 ∆θ Pitch-Over Angle, in r ad Trajectory and Control

Figure 4.4: A diagram of a rocket showing the optimization problem’s sixteen design variables.
These are directly controlled by the optimizer.

Observing all the variables, it is easy to conclude the problem is continuous. There are some discrete

quantities in the simulation, such as the number of fins, for example, but this is considered a constant

simulation parameter (nf i ns = 4) that can be altered by the user.

All design variables are constrained by upper and lower bounds, to ensure they maintain their physical

significance. All masses and lengths are lower-bounded by small positive values to ensure a null length

or mass does not generate errors on the code. In fact, on most variables, a null length would not make

sense. An exception could be the fins’ dimensions, with Df i n = 0 meaning the vehicle has no fins, which

could be compensated by the thrust vectoring control system. However, that possibility has not been

tested on the code and the stability constraints (see section 4.3.3) would need to be omitted.
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4.3.2 Multi-objective Function

The rationale behind the choice of an objective function for the optimization of a rocket launch vehicle

has been layed out previously in section 3.1, reaching the conclusion that the vehicle’s mass, mr ock et ,

and the motor’s specific impulse, Isp , are two interesting parameters to optimize since they convey cost.

These two variables were, then, chosen as the constituents of the optimization problem multi-objective

function.

Note, however, that a lower mass does not always translate to a lower cost in engineering, as sometimes

the difficulty of miniaturization and the manufacturing or procuring of small components inverts the cost

relationship [29]. Even so, the author does not expect the mass-cost relationship of this system to invert

itself given the design envelope of this problem. Nevertheless, this objective function should be viewed for

what it is - an approximated model for cost - and an actual cost model should be employed in the future, if

viable.

Since the intention is to maximize Isp and minimize mr ock et , introducing these variables into the

weighted sum multi-objective function from equation 3.3 will result in

f̄ = −w
Isp

E1
+ (1 −w )mr ock et

E2
. (4.6)

The minus sign on the first operand is to comply with the minimization convention, under which the

optimizer will try to minimize Isp if we do not change its sign. E1 and E2 are two optional constants that

can be introduced to normalize the two objectives. Choosing E1 and E2 as the expected value of each

corresponding variable can be a good choice, as it will balance the influence of each term.

The value of the weight w can be chosen by the user. Higher values will grant more importance to

the specific impulse, resulting in a higher engine performance but, perhaps, a heavier vehicle. Lower w

values will have the tendency to achieve the opposite.

4.3.3 Constraints

Constraints must be put in place to ensure the simulation model corresponds has a correspondence

with physical reality. Furthermore, the definition of constraints is particularly dependent on the architecture

choice. If the MDO architecture employed is an IDF, which was briefly explained in section 3.2.6, then

the program will need to include a set of consistency constraints, cc , one for each coupling variable copy.

Likewise, it is not always clear whether an objective should actually be a constraint and vice-versa. In the

case of ε-constraint methods, for example, all objectives become constraints at some point.

For this particular architecture, which is explained in further detail in section 4.3.4, there are no

consistency constraints. However, the mission requirements pointed out in section 3.1 - target altitude and

target velocity at apogee - are introduced as equality constraints. The rationale behind this decision is that

the vehicle should be design to achieve a very precise apogee and/or payload insertion point. Having an

equality constraint for the altitude is also practical for the design of sounding rockets for the university-level

student competitions, such as Spaceport America Cup or EuRoC, which require very precise apogees.

37



Thus, the equality constraints are given by

ceq , 1 = h (t t ) − ht

ceq , 2 = v (t t ) − v t (4.7)

ceq , 3 = γ (t t ) − γt

where ht , v t and γt are the target altitude, speed and flight path angle, respectively, and t t is the time

instant at which the target altitude is obtained. In practice, ceq (1) is self-evident and could be left out.

However, for simple sounding rocket problems, whose goal is to reach a given altitude and come back

down again, the equality constraints simplify to just

ceq = h (t apogee ) − ht . (4.8)

Regarding the inequality constraints, it is possible to link each one of them to a physical limitation or

phenomenon that isn’t otherwise modelled. They are:
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c1 = pcc − 0.8 pOT − pf eed ≤ 0

c2 = G − 500 ≤ 0

c3 = accel − 100 ≤ 0

c4 = Lf + dext − LCC ≤ 0

c5 = bf i n − 0.9Bf i n ≤ 0

c6 =
Df i n

Bf i n+bf i n
2

− 3 (4.9)

c7 = maddcone −Vcone ρP b ≤ 0

c8 = −mcomponent s ≤ 0

c9 = 1 − SM ≤ 0

c10 = SM − 3 ≤ 0

c11 = 27 − vof f r ai l ≤ 0.

c1 is a more conservative version of Equation 4.1, introduced to guarantee the combustion backflow

failure mode does not happen with some margin of safety. Also to do with the propulsion system, c2 puts

the limit of 500 k g/s .m2 on the mass flux through the grain port, since higher values are associated with

combustion instability issues, according to Fraters and Cervone [39]. In a similar way, the third constraint

holds the maximum acceleration of the vehicle below a safe value (in this case, approximately 10G), to

prevent component or structural failure. The second-order effect of this constraint is to limit the thrust

produced by the engine. The last constraint related to the propulsion system is c4, which ensures the aft

and pre-combustion chambers are well sized, using the vehicle external diameter as a reference.

c5 and c6 ensure the finsmaintain a short trapezoidal shape that is both aerodynamically and structurally

sound, while c9 and c10 bound the static margin, SM , that they grant to the vehicle. The last constraint is

also related to stability. It guarantees that passively stabilized vehicles launch out of their rail guide with

enough speed to maintain stable flight.

c8 is essential to prevent the mass of components, mcomponent s , from being negative, which can happen,

given its empirical determination model, if the variable is not controlled and bounded by the optimizer.

Finally, c7 is responsibly for making sure the added ballast mass on the nose cone, given by the design

variable maddcone , fits inside the nosecone volume if it were made of lead. It acts, then, as a density check.

4.3.4 MDO Architecture

The program was originally designed to use the gradient-based Sequential Quadratic Programming

algorithm on an IDF architecture. Despite its multimodality, the models are generally smooth and SQP

will converge to the local minimum rather quickly. SQP also has the great advantage of being able to
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recover from function errors, which are very common in the Propulsion discipline. These errors happen

when a variable, like the O/F ratio, for example, goes outside the bounds of the provided look-up tables,

resulting in a NaN, the termination of that iteration and the choice of a new design point.

Now, the MDO archtecture resembles an MDF structure, as can be seen of Figure 4.5. The number of

variables handled by the optimizer decreased substantially, from more than 30 (design plus state variables)

to the current 16.

Figure 4.5: The XDSM representation of the program’s simplified MDF architecture.
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4.4 Numerical Methods

Throughout the MATLAB program, but especially in the Propulsion and Trajectory disciplines, some

numerical approximations must be done. At each time step in the Trajectory and Propulsion function

loops, ordinary differential equations are integrated using the Forward Euler method, an explicit first-order

Runge-Kutta algorithm. The error of this method is proportional to the step size, so a compromise between

speed and accuracy has to be arranged. The time step size, ∆t , is an easily changeable parameter in the

program.

As an example, the horizontal position, x , of the vehicle is determined, at each time step i , by using

the Euler method such that

x (i + 1) = x (i ) + ¤x (i )h (4.10)

where h is the step size, which is a fixed discipline parameter.

Linear interpolation is used to extract values from the look-up tables for the N2O saturation and CEA

combustion chamber thermodynamic properties. Cubic spline interpolation is used on the trajectory

discipline to get continuous thrust data. For the aerodynamic force coefficients, no interpolation is

done. Rather, the nearest value is chosen to impede small numerical variations in the angle of attack to

introduce a lift component on the vehicle. The root-finding bisection algorithm is employed to determine

the temperature of the oxidizer tank and the Mach number of the nozzle flow. The secant method was

previously used, but this was changed because the program would sometimes crash when the secant

method tried to calculate the internal energy of a negative temperature. Using the bisection method

guarantees these variables stay within bounds and converge.

41



Chapter 5

Results and Discussion

5.1 Validation

The program validation can be done at both the system and subsystem levels, by comparing the

output results of each model with a known vehicle design or another tool with the same purpose. For the

exercise to make sense, the inputs to the model should also correspond to that vehicle’s characteristics.

Some uncertainties will be present in the inputs, since the information for a vehicle may be hard to obtain

precisely and some estimation work may be necessary.

5.1.1 Propulsion

The Propulsion system was not substantially altered since Yamada [9] analysed and validated its

results against experimental data from three different small hybrid sounding rockets from the Spaceport

America Cup competition, using the N2O and paraffin-based fuel propellant combination. His simulations

showed the thrust, pressure and tank temperature profiles agreed with the test data with an acceptable

error for conceptual design purposes, given the uncertainties associated with the data. Table 5.1 shows

the summary of the model errors obtained on those three comparisons with test data. Figure 5.1 shows

the simulated thrust curve of Phoenix 1A compared to its experimental data, as an example. Table 5.1

and Figure 5.1 were extracted from [9].

Table 5.1: Relative errors between simulated variables and test data from three hybrid engines [9].
Rocket Name Deliverance II Boundless Phoenix 1A
pOT error 1.55 % 15 % -
pCC error 10.7 % 25.7 % 12.3 %
T error 7.55 % 32.8 % 12.2 %

Hence, the validation of the propulsion discipline was, this time, done with a different propellant

combination. The HRE chosen for the comparison exercise was the one powering the Bella Lui II rocket

(Figure 3.1), built by the EPFL Rocket Team, a student team from Switzerland that competed in the 2021

edition of EuRoC. The liquid oxidizer is still Nitrous Oxide, but its fuel is ABS plastic. The engine has a

star-shaped center hole, which is not a shape modelled by the MATLAB program.
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Figure 5.1: Comparison between the experimental data, in yellow, and the simulated data from
the hybrid rocket Propulsion function, in orange. Source: [9].

(a) Experimental data.
(b) MATLAB model output.
Tank pressure is the blue
curve.

Figure 5.2: Oxidizer tank pressure comparison between the experimental data from the EPFL
Rocket Team static fire tests 8 through 10 and the simulated data from the hybrid rocket Propulsion
function. Source of experimental data: [26].

On Figures 5.2 and 5.3, it’s possible to observe very clearly the two phases of engine burn: during

the first phase, the tank pressure drops slowly as liquid oxidizer exits the tank until it runs out; during

the second phase, only gaseous oxidizer remains in the tank and both pressure and thrust drop as

the combustion chamber is fed with lower pressure gaseous oxidizer. The most relevant propulsion

parameters obtained from static fire tests of the Bella Lui II engine are listed on Table 5.2 and compared

to the same parameters obtained from the MATLAB simulation.

As evidenced by Figure 5.3, there’s a thrust peak at the beginning of the burn which isn’t being modelled

properly by the MATLAB tool. The initial peak in thrust is characteristic of star-shaped ports, which should

be the main reason for disparity here, since the MATLAB tool can only simulate a single circular-shaped

hole in the grain. This fact can help explain the larger error on the maximum thrust parameter. Otherwise,

the errors are smaller and compatible with the scope of the tool. Another source of input uncertainty is the

ABS plastic composition, since the exact mixture ratio of the three ingredients that make up the material
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(a) Experimental data.
(b) MATLAB model output.

Figure 5.3: Thrust comparison between the experimental data from the EPFL Rocket Team static
fire tests 8 through 10 and the simulated data from the hybrid rocket Propulsion function. Source
of experimental data: [26].

Table 5.2: Relative errors between Bella Lui II’s engine static fire test number 9 (SFT09) results
and simulated data. Source of experimental data: [26].

Parameter Relative Error
Average Thrust (liquid phase) [N ] +2.62 %
Avg. Thrust (liquid phase) [N ] -15.14 %

Isp [s ] -0.18 %
Burn Duration (liquid phase) [s ] -15.99 %

Max. Thrust [N ] -23.38 %

used by the experimental tests may not coincide with the mixture introduced in the CEA code.

Nonetheless, the Propulsion discipline is considered still adequate for the end purposes of the software

tool after the small changes and bug fixes implemented and using a fuel other than paraffin.

5.1.2 Mass & Sizing

The same Bella Lui II rocket, from a university team competing at the EuRoC competition, was used

as baseline for the Mass & Sizing discipline validation. Like before, the component masses and rocket

body diameter are taken from the team’s report and webpage [26] and compared to the outputs generated

by the Mass & Sizing discipline on the MATLAB program. The inputs used to run the model, namely the

design and propulsion variables, were introduced manually and correspond to the Bella Lui II design.

Table 5.3 collects and compares the variable values.

Table 5.3: Relative errors between Bella Lui II’s component masses and external diameter and
the same variables modelled in the MATLAB software. Source of experimental data: [26].

Parameter Bella Lui II MATLAB Simulation Relative Error
Oxidizer Tank Mass [kg] 5.7 4.831 -17.6 %

Combustion Chamber Mass [kg] 3.3 2.487 -33.9 %
Diameter [m] 0.16 0.161 +2.5 %
Total Mass [kg] 42 44.161 +5.7 %

Again, some discrepancies are present. This was to be expected, since the Mass & Sizing is the

lower fidelity model in the program, being defined partially by empirical multivariate regressions. The

combustion chamber mass, however, is computed analytically, albeit that computation is dependent on

a number of hard-coded parameters such as wall thickness and material density. These two alone, if
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incorrect, can be enough to justify the mass difference. Furthermore, inner coatings or thermal insulation,

structural elements, valves and other objects are not modelled by the tool but may be included in the

mass value presented by the rocketry team.

5.1.3 Trajectory

Regarding the newly developed Trajectory discipline, it was first validated by checking that the flight

simulations matched the results obtained on other similar tools, such as OpenRocket, for the same inputs.

The maximum error found on single variable (apogee, maximum velocity, maximum acceleration, time to

apogee) comparison was 5% when doing a results comparison exercise with the Open Rocket tool with

low-altitude sounding rocket designs. The new 3-DOF code was also compared with the former 1-DOF

script on sounding rocket (up and down) flights and the errors were negligible (≤1%), indicating the tool

retained its accuracy in vertical flight.

Validation was performed by comparison with experimental flight data as well. By running the trajectory

script with experimental thrust and inertial data from a given test-flown rocket, it is possible to compare the

results obtained with the data measured in flight. Table 5.4 shows the comparison between experimental

data recorded from the flight computer of the Xi-16 rocket, launched on February 16, 2020, by Richard

Nakka [40] and the corresponding simulated flight. Some uncertainties can help explain part of the error.

The thrust curve of the engine corresponded to static test fire data, not from the flight itself. There is

no guarantee the solid rocket motor from Xi-16 performed equally on both occasions. Additionally, the

aerodynamic coefficients were estimated, using DATCOM, for another rocket, similar enough in shape

and size so as the resulting coefficients to be similar, but certainly not identical.

Table 5.4: Relative errors between simulated flight and test flight data from the Xi-16 flight.
Variable Apogee Maximum Time to

Acceleration Apogee
MATLAB program 1034 m 185 m/s2 14.15 s
Xi-16 flight data 1150 m 220 m/s2 14.3 s
Relative error 10.1 % 15.9 % 1.1 %

To validate the trajectory script on a 3-DOF use-case, the same exercise was done, but comparing to

the flight profile of SpaceX’s Falcon 9 first stage, up until second stage separation, on the Crew Dragon

Demo-1 mission, flown on March 2nd, 2019. Once more, input uncertainties are not negligible. The

aerodynamic coefficients are difficult to estimate for the altitude and speed regimes in which the Falcon

9 flies. Thrust and trajectory data for the launch vehicle was extracted from internet sources [41] that

recorded the flight telemetry from the company’s live launch webcast.

The outputs from the simulation were compared with the flight data at two moments in time - 100 and

157 seconds after lift-off, as the latter was moments before second stage separation. The results are

shown on Table 5.5 and a velocity and altitude comparison graph can be found in Figure 5.5. Once more,

the results look favorable, showing small errors and demonstrating the tool’s ability to simulate 3-DOF

gravity turns, a maneuver essential to larger Launch Vehicle missions that insert payloads or second

stages into orbit.
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Figure 5.4: Simulation of the Xi-16 flight on the MATLAB trajectory code.

Table 5.5: Relative errors between the simulated flight and flight telemetry data from the Falcon 9
Crew Dragon DM-1 mission.

Altitude Velocity Altitude Velocity
(t =100s) (t =100s) (t =157s) (t =157s)

MATLAB Simulation 25.76 km 0.68 km/s 81.82 km 1.79 km/s
Falcon 9 flight telemetry 25.80 km 0.70 km/s 84.00 km 1.88 km/s

Relative error 0.16 % 2.86 % 2.60 % 4.79 %

Regarding the multidisciplinary design optimization results, Yamada [9] conducted optimization studies

for different objective function weights, for a low altitude sounding rocket. Recent results have confirmed

the tool remains useful in that range, after the implementation of the new changes. Optimization studies

for other flight envelopes and vehicles sizes are being compiled and preliminary results look favorable.
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Figure 5.5: Falcon 9 DM-1 mission flight altitude and velocity over time, as recorded by the flight
telemetry and as simulated by the MATLAB tool. The bottom plot is the acceleration/propulsion
profile introduced into the Trajectory discipline to simulate the Falcon 9 propulsion system.
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Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

The proposed MATLAB multidisciplinary design optimization framework is a useful tool for the concep-

tual design (Phase 0, Phase A) of new hybrid propellant rocket vehicles. Given the increasing prevalence

of hybrid propulsion and new use cases emerging for it, it’s predicted this tool will continue to be expanded

and developed and it has the potential to be useful for designing experimental suborbital vehicles and

student-built hybrid sounding rockets.

The changes implemented in this work have granted the software a much-needed versatility, allowing

it to simulate trajectories in a two-dimensional orbital plane, a requirement for modelling gravity turns of

orbital-class booster stages, and establishing the ground works for the introduction of new features, such

as throttle control, and reusability.

The trajectory and propulsion disciplines have been updated and validated by comparison with other

simulating software and experimental data, with acceptable error rates. On the other disciplines, more

work needs to be done in the following weeks and improvements are required to allow the tool to design

higher mass and higher apogee vehicles with acceptable errors.

Looking back at the objectives set in Chapter 1, the work has met all of them to varying degrees. The

completion of the first objective is somewhat subjective, meaning the objective itself was poorly written.

Although, in fact, the design optimization of hybrid launch vehicles was explored, much was left untouched.

For example, even though the problem is relatively simple and does not need any sophisticated MDO

architecture, only the most classic architectures (IDF, MDF, SAND and AAO) were discussed and only

IDF and MDF were experimented with. A gradient-free optimization algorithm could have been tested

and evaluated against the SQP method. On the rocket subsystems modelling, though, very little was

accomplished outside the Trajectory discipline.

Speaking of which, the new 3-DOF model was implemented successfully and did expand the scope

and capabilities of the software, although more thorough testing is needed with regards to the optimizer

handling of the pitch control design variables.
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6.2 Future Work

As is expected with a software tool of this kind, there’s an endless sea of possibilities for expansion of

capabilities and performance optimization. That being said, the area probably needing more attention is

the Mass and Sizimg discipline, where a complete overhaul of the empirical models, specially the mass

regression laws, should be done. An attempt was made at building new empirical models, again resorting

to multivariate regressions of the mass of some components with relation to the propellant mass, apogee

or payload mass. However, a lot of data needs to be collected on existing rocket systems to build a high

confidence model, which is a labour intensive task, not to mention there isn’t a lot of published reports of

detailed mass budgets for rocket vehicles.

Besides the masses and lengths calculated with regression data, there are a lot of variables whose

values are hard-coded or just linearly dependent on others. For example, the nozzle length and mass.

Under the new MDF architecture, a Genetic Algorithm may be better suited to solve the problem, since

it should be able to explore the non-convex parts of the design space better than SQP. Under the SQP,

the initial design point guess is very important.

And finally, a true cost model for the objective function would be a great addition to the software,

especially for more commercial applications.
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Appendix A

MATLAB Source Code

A.1 RocketOptimization.m

1 %% Main Funct ion f o r the Rocket Opt im iza t ion Program

2

3 % Main f unc t i on i npu t

4 fun = @( x ) Mu l t i d i s c i p l i n a r 7 ( x ) ;

5 nonl incon = @( x ) Cons t ra in ts6 ( x ) ;

6

7 %% Boundaries d e f i n i t i o n

8 %FULL ENVELOPE (MAXIMUM AND MINIMUM BOUNDS) − ADAPT TO YOUR CASE

9 %lb = [0 .004 , 5e−6 , 0 .2 , 0.030 , 0.02 , 2 , 4 , 1 , 0 .1 , 0 .4 , 0 .4 , 0 .7 , 0.15 ,

0 .3 , 0.01 , 0.04 , 0.01 , 0.01 , 0.25 , 0 .1 , 0 .3 , 0.25 , 0.01 , 0 .1 , 0.05 , 0 .5 ,

0.039 , 0 .1 , 0 .5 , 0.04 ,0 ,0 , −1 ,0 , −8∗ p i / 1 80 ] ;

10 %ub = [6 , 1e−3 , 5 , 3 .5 , 0.30 , 12 , 70000 , 30 , 4 , 4000 , 4000 , 15000 , 10 , 9 ,

2 , 3 .9 , 3 , 2 , 6 , 2 , 500 , 8000 , 500 , 1000 , 1000 , 25 , 3.89 , 30000 , 50000 ,

3.9 ,1500 ,1000 ,0 ,6 ,8∗ p i / 1 80 ] ;

11

12 %For gener ic 10km−50km rocke t

13 l b = [0 .003 , 1e−6 , 0 .1 , 0.030 , 0.01 , 2 , 0 .3 , 0.01 , 0.035 , 0.01 , 0.01 , 0 , 0 ,

−1 , 0 , −8∗ p i / 1 80 ] ;

14 ub = [ 0 . 3 , 5e−3 , 5 .0 , 3 .5 , 0.35 , 12 , 5 , 1 , 4 , 1 , 0.75 , 50 , 30 , 0 , 6 , 8∗ p i

/ 1 80 ] ;

15

16 l b = lb ' ;

17 ub=ub ' ;

18

19 %% I n i t i a l guess x0
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20 x0 = [0 .02 ,4 .379e

−05 ,0 .2 ,0 .05 ,0 .0276 ,6 .07 ,0 .712 ,0 .175 ,0 .07835 ,0 .28 ,0 .125 ,0 ,0 ,0 ,0 ,0 ] ;

21

22 %% Mu l t i S t a r t

23 %rng de f au l t

24 opts = opt imopt ions (@fmincon , ' Algor i thm ' , ' sqp ' , ' Disp lay ' , ' i t e r ' , ' t o l con ' ,1e

−3 , ' MaxFunct ionEvaluat ions ' ,5000 , ' FunValCheck ' , ' o f f ' ) ; % , ' PlotFcn ' , [ '

opt imp lo tx ' , ' op t imp l o t f v a l cons t r ' ]

25 problem = createOptimProblem ( ' fmincon ' , ' ob j e c t i v e ' , fun , ' x0 ' , x0 , ' l b ' , lb , 'ub '

, ub , ' nonlcon ' , nonl incon , ' opt ions ' , opts ) ;

26 ms = Mu l t i S t a r t ( ' Disp lay ' , ' i t e r ' , ' StartPointsToRun ' , ' bounds ' ) ;

27 %ms. UsePara l le l = t r ue ;

28 [ x_sqp , f_sqp , e x i t f l a g , outpt , so l u t i ons ] = run (ms, problem ,10 ) ;

A.2 Multidisciplinar7.m

1 f unc t i on [ obj , s t a te ] = Mu l t i d i s c i p l i n a r 7 ( x )

2 % Mu l t i d i s c i p l i n a r 7 i s the main f unc t i on t ha t uses

3 % the i n d i v i d u a l d i s c i p l i n e s to create an opt ima l

4 % design of a hybr id rocke t .

5

6 % DESIGN VARIABLES + STATE VARIABLES

7

8 % PROPULSION

9 % Inputs :

10 % ' V_tank ' − ox i d i z e r tank volume (m^3) [ x0 ]

11 % ' C_inj ' − e f f e c t i v e i n j e c t o r area (m^2) [ x1 ]

12 % 'L ' − f u e l g ra in leng th (m) [ x1 ]

13 % ' d_po r t _ i n i t ' − i n i t i a l f u e l g ra in po r t diameter (m) [ x1 ]

14 % ' d_th ' − nozzle t h r oa t diameter (m) [ x0 ]

15 % ' A_rat io_nozz le ' − nozzle area r a t i o as a f r a c t i o n [ x0 ]

16 % Outputs :

17 % 'RCC_in ' − combustion chamber i n t e r n a l rad ius (m) [ y1 ]

18 % ' Mfuel ' − f u e l mass ( kg ) [ y1 ]

19 % 'Mox ' − f u e l mass ( kg ) [ y1 ]

20

21 % MASS&SIZING

22 % ' V_tank ' − ox i d i z e r tank volume (m^3) [ x0 ]

23 % 'ROT ' − ox i d i z e r tank rad ius (m) [ x0 ]
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24 % 'LCC ' − combustion chamber leng th (m) [ x0 ]

25 % ' Dfin ' − f i n span (m) [ x0 ]

26 % ' Bf in ' − f i n roo t chord (m) [ x0 ]

27 % ' b f in ' − f i n t i p chord (m) [ x0 ]

28 % 'Madd ' − add i t i o na l mass i n the recovery bay ( kg ) [ x2 ]

29 % 'Madd_cone ' − add i t i o na l mass i n the nose cone ( kg ) [ x2 ]

30 % 'mass ' − rocket ' s mass ( kg ) [ y2 ]

31 % ' Lfue l ' − f u e l leng th (m) [ ? ]

32 % 'De ' − rocket ' s ex te rna l diameter (m) [ y2 ]

33 % 'MCC' − combustion chamber mass ( kg )

34 % 'MOT' − ox i d i z e r tank mass ( kg )

35 % 'Mtube ' − ex te rna l s t r u c t u r e mass ( kg )

36 % 'LOT ' − ox i d i z e r tank leng th (m)

37 % ' Lcomponents ' − other components leng th (m)

38 % 'Mcomponents ' − other components mass ( kg )

39 % ' Mfins ' − f i n s mass ( kg )

40 % 'Mnozzle ' − nozzle mass ( kg )

41 % 'Mcone ' − cone mass ( kg )

42 % 'RCC ' − combustion chamber rad ius (m)

43

44 % AERODYNAMICS

45 % ' A_rat io_nozz le ' − nozzle area r a t i o as a f r a c t i o n [ x0 ]

46 % ' Dfin ' − f i n span (m) [ x0 ]

47 % ' Bf in ' − f i n roo t chord (m) [ x0 ]

48 % ' b f in ' − f i n t i p chord (m) [ x0 ]

49 % 'LCC ' − combustion chamber leng th (m) [ x0 ]

50 % ' d_OT_i ' − d is tance between nose cone t i p and ox i d i z e r tank (m) [ y3 ]

51 % 'CP ' − center o f pressure [ y3 ]

52 % 'CG' − center o f g r a v i t y [ y3 ]

53 % 'SM' − s t a t i c margin [ y3 ]

54

55 % TRAJECTORY

56 % ' d_th ' − nozzle t h r oa t diameter (m) [ x0 ]

57 % ' A_rat io_nozz le ' − nozzle area r a t i o as a f r a c t i o n [ x0 ]

58 % ' vel ' − v e l o c i t y o f the rocke t over t ime vec to r (m/ s ) [ y4 ]

59 % ' gain ' − %p i t ch c o n t r o l l e r gain [ x ]

60 % ' de l ta t_po ' − seconds , p i t ch −over manoeuvre du ra t i on [ x ]

61 % ' de l ta_ the ta ' − rad , p i t ch −over angle [ x ]

62
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63 % CONSTANTS

64 % ' p_feed ' − feed system pressure drop (Pa)

65 % ' rho_f ' − so l i d f u e l dens i t y ( kg /m^3)

66 % 'a ' − regress ion ra te c o e f f i c i e n t (m/ s )

67 % 'n ' − regress ion ra te exponent

68 % ' l aunchAl t ' − a l t i t u d e of launch s i t e (m)

69 % 'p_amb ' − ambient pressure a t launch s i t e (Pa)

70 % 'T_amb ' − ambient temperature a t launch s i t e (K)

71 % ' zeta_d ' − discharge co r r e c t i on f a c t o r

72 % ' zeta_cstar ' − c h a r a c t e r i s t i c v e l o c i t y co r r e c t i on f a c t o r

73 % ' zeta_CF ' − t h r u s t c o e f f i c i e n t co r r e c t i on f a c t o r

74

75 %% INPUTS %%

76 % Load inpu t f i l e s

77 s ta te .CEA = load ( 'n2o−paraff in_20211026_21h30 . mat ' ) ;% Combustion product

lookup tab le f o r ABS f ue l

78 s ta te . N2Osat = load ( 'N2Osat . mat ' ) ; % Ni t rous oxide sa t u r a t i on p rope r t i e s

79

80 % Declare add i t i o na l non−design model i npu t

81 del_ t ime = 0 .01 ; % ( s ) Time step

82 time_max = 70; % ( s ) Maximum model run t ime

83 f i l l _ l e v e l = 0 .70 ; % (%) I n i t i a l l i q u i d volume f r a c t i o n i n tank

84 p_ t ank_ i n i t = 6000000; % (Pa) I n i t i a l tank pressure

85 p_feed = 100000; % (Pa) Feed system pressure drop

86 rho_ f = 930; % ( kg /m^3) Fuel dens i t y . For ABS = 1040. For p a r a f f i n = 930.

87 a = 0.000155; % Regression ra te constant f o r p a r a f f i n&N2O

88 n = 0 .5 ; % Regression ra te exponent f o r p a r a f f i n&N2O

89 %a = 0.0001267; % Regression ra te constant f o r ABS&N2O

90 %n = 0.3728; % Regression ra te exponent f o r ABS&N2O

91 l aunchA l t = 1400; % (m) A l t i t u d e above mean sea l e v e l o f the launch s i t e or

launch pad

92 launchAngle = 86; % ( degrees ) I n c l i n a t i o n o f the launch r a i l . I f no launch

r a i l i s used , set t h i s to 90.

93 r a i l _ l e n g t h = 12; % (m) Launch r a i l l eng th . I f there i s no r a i l , se t to

zero .

94 T_amb = 301; % (K) Ambient Temperature a t Launch S i t e

95 p_amb = 85600; % (Pa) Pressure a t 1400m ASL

96 zeta_d = 1 .05 ; % Nozzle discharge co r r e c t i on f a c t o r

97 ze ta_cs ta r = 0 .90 ; % Cha r a c t e r i s t i c v e l o c i t y co r r e c t i on f a c t o r
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98 zeta_CF = 0 .90 ; % Nozzle c o e f f i c i e n t co r r e c t i on f a c t o r

99 N_f ins = 4; %Number o f f i n s

100 TVC_enabled = 0; %Thrust vec to r i ng system . Disabled = 0 , Enabled = 1

101

102 %% Inputs arrangement

103 % Place values i n t o s t r u c t f o r f unc t i on handl ing

104 s ta te . parameters = [ del_t ime , time_max , f i l l _ l e v e l , p_ tank_ in i t , p_feed ,

rho_f , a , n , T_amb, p_amb , zeta_d , zeta_cstar , zeta_CF ] ;

105 s ta te . N_f ins = N_f ins ;

106 s ta te .TVC = TVC_enabled ;

107 s ta te . l aunchA l t = launchA l t ;

108 s ta te . launchAngle = launchAngle∗ p i /180 ; %conver ts deg to rad

109 s ta te . r a i l _ l e n g t h = r a i l _ l e n g t h ;

110 s ta te . p_amb = p_amb ;

111 s ta te . design = x ( 1 : 6 ) ; %[ V_tank , C_inj , L , d_po r t _ i n i t , d_th ,

A_ra t io_nozz le ]

112 s ta te .LCC = x (7 ) ;

113 s ta te . D f in = x (8 ) ;

114 s ta te .ROT = x (9 ) ;

115 s ta te . B f i n = x (10) ;

116 s ta te . b f i n = x (11) ;

117 s ta te .Madd = x (12) ;

118 s ta te .Madd_cone = x (13) ;

119 s ta te . gain = x (14) ;

120 s ta te . de l ta t_po = x (15) ;

121 s ta te . de l t a_ the ta = x (16) ;

122 %% Create Constants

123 %Length

124 Lpay = 0 .45 ;

125 Lnozzle = 0 . 2 ; %average value from reference

126 s ta te . leng th = [ Lpay , Lnozzle ] ;

127

128 %Mass payload

129 s ta te . payload = 15; % ( kg ) payload mass

130

131 %% Model Ca l cu la t i ons

132 %Propu ls ion

133 t r y

134 s ta te = MMPropulsion2 ( s ta te ) ;
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135 catch ME

136 s ta te .ME = ME; % I f e r r o r gets thrown , r e t u rn NaN

137 s ta te . I_sp = NaN;

138 s ta te . apogee = NaN;

139 s ta te . pcc_max = NaN;

140 s ta te . Thrust_max = NaN;

141 obj = NaN;

142 r e t u rn

143 end

144 s ta te = MMMass_sizing2 ( s ta te ) ;

145 s ta te = MMAerodynamics ( s ta t e ) ;

146 s ta te = MMTrajectory ( s t a t e ) ;

147

148 i f max( isnan ( s ta te . a l t ) ) == 0 && max( s ta te . a l t ) > s ta te . r a i l _ l e n g t h

149 s i = f i n d ( s t a t e . a l t ~= 0 , 1 , ' f i r s t ' ) ; % F i r s t index t ha t i s not zero

150 e i = f i n d ( s ta t e . a l t > s ta te . r a i l _ l e ng t h , 1 , ' f i r s t ' ) ; % F i r s t index

where a l t i s g rea te r than nine meters

151 s ta te . v e l _ o f f _ r a i l = i n t e r p1 ( s t a t e . a l t ( s i : e i ) , s t a t e . ve l ( s i : e i ) , s t a t e .

r a i l _ l e n g t h ) ; % Calcu la te o f f − the− r a i l v e l o c i t y

152 else

153 s ta te . v e l _ o f f _ r a i l = 0 ;

154 end

155

156 % Calcu la te Ob jec t i ve Funct ion

157 i f ~ isnan ( s ta te . I_sp )

158 obj_1 = rea l ((1000− s ta te . I_sp ) /(1000 −180) ) ;

159 obj_2 = rea l ( s t a t e .mass /100) ;

160 weight = 0 .85 ;

161 obj = weight ∗obj_1 + (1−weight ) ∗obj_2 ;

162 else

163 obj = NaN;

164 end

165

166 end

A.3 Constraints6.m

1 f unc t i on [ c , ceq ] = Cons t ra in ts6 ( x )

2 c = zeros (11 ,1 ) ;
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3 ceq = zeros (1 ,1 ) ;

4

5 %% Model Inpu ts

6 % Load inpu t f i l e s

7 s ta te .CEA = load ( 'n2o−paraff in_20211026_21h30 . mat ' ) ;% Combustion product

lookup tab le f o r p a r a f f i n f u e l

8 s ta te . N2Osat = load ( 'N2Osat . mat ' ) ; % Ni t rous oxide sa t u r a t i on p rope r t i e s

9

10 % Declare add i t i o na l non−design model i npu t

11 del_ t ime = 0 .01 ; % ( s ) Time step

12 time_max = 70; % ( s ) Maximum model run t ime

13 f i l l _ l e v e l = 0 .70 ; % (%) I n i t i a l l i q u i d volume f r a c t i o n i n tank

14 p_ t ank_ i n i t = 6000000; % (Pa) I n i t i a l tank pressure

15 p_feed = 100000; % (Pa) Feed system pressure drop

16 rho_f = 930; % ( kg /m^3) Fuel dens i t y . For ABS = 1040. For p a r a f f i n = 930.

17 a = 0.000155; % Regression ra te constant f o r p a r a f f i n&N2O

18 n = 0 .5 ; % Regression ra te exponent f o r p a r a f f i n&N2O

19 %a = 0.0001267; % Regression ra te constant f o r ABS&N2O

20 %n = 0.3728; % Regression ra te exponent f o r ABS&N2O

21 l aunchA l t = 1400; % (m) A l t i t u d e above mean sea l e v e l o f the launch s i t e

or launch pad

22 launchAngle = 86; % ( degrees ) I n c l i n a t i o n o f the launch r a i l . I f no launch

r a i l i s used , set t h i s to 90.

23 r a i l _ l e n g t h = 12; % (m) Launch r a i l l eng th . I f there i s no r a i l , se t to

zero .

24 T_amb = 301; % (K) Ambient Temperature a t Launch S i t e

25 p_amb = 85600; % (Pa) Pressure a t 1400m ASL

26 zeta_d = 1 .05 ; % Nozzle discharge co r r e c t i on f a c t o r

27 ze ta_cs ta r = 0 .90 ; % Cha r a c t e r i s t i c v e l o c i t y co r r e c t i on f a c t o r

28 zeta_CF = 0 .90 ; % Nozzle c o e f f i c i e n t co r r e c t i on f a c t o r

29 N_f ins = 4; %Number o f f i n s

30 TVC_enabled = 0; %Thrust vec to r i ng system . Disabled = 0 , Enabled = 1

31

32 %% Inputs arrangement

33 % Place values i n t o s t r u c t f o r f unc t i on handl ing

34 s ta te . parameters = [ del_t ime , time_max , f i l l _ l e v e l , p_ tank_ in i t , p_feed ,

rho_f , a , n , T_amb, p_amb , zeta_d , zeta_cstar , zeta_CF ] ;

35 s ta te . N_f ins = N_f ins ;

36 s ta te .TVC = TVC_enabled ;

59



37 s ta te . l aunchA l t = launchA l t ;

38 s ta te . launchAngle = launchAngle∗ p i /180 ; %conver ts deg to rad

39 s ta te . r a i l _ l e n g t h = r a i l _ l e n g t h ;

40 s ta te . p_amb = p_amb ;

41 s ta te . design = x ( 1 : 6 ) ; %[ V_tank , C_inj , L , d_po r t _ i n i t , d_th ,

A_ra t io_nozz le ]

42 s ta te .LCC = x (7 ) ;

43 s ta te . D f in = x (8 ) ;

44 s ta te .ROT = x (9 ) ;

45 s ta te . B f i n = x (10) ;

46 s ta te . b f i n = x (11) ;

47 s ta te .Madd = x (12) ;

48 s ta te .Madd_cone = x (13) ;

49 s ta te . gain = x (14) ;

50 s ta te . de l ta t_po = x (15) ;

51 s ta te . de l t a_ the ta = x (16) ;

52

53 %% Create Constants

54 %Length

55 Lpay = 0 .45 ;

56 Lnozzle = 0 . 2 ; %average value from reference

57 s ta te . leng th = [ Lpay , Lnozzle ] ;

58

59 %Mass payload

60 s ta te . payload = 15; % ( kg ) payload mass

61

62 %% Model Ca l cu la t i ons

63 t r y

64 s ta te = MMPropulsion2 ( s ta te ) ;

65 catch ME

66 s ta te .ME = ME; % I f e r r o r gets thrown , r e t u rn NaN

67 s ta te . I_sp = NaN;

68 s ta te . apogee = NaN;

69 s ta te . pcc_max = NaN;

70 s ta te . Thrust_max = NaN;

71 obj = NaN;

72 r e t u rn

73 end

74 s ta te = MMMass_sizing2 ( s ta te ) ;
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75 s ta te = MMAerodynamics ( s t a t e ) ;

76 s ta te = MMTrajectory ( s t a t e ) ;

77

78 i f max( isnan ( s ta te . a l t ) ) == 0 && max( s ta te . a l t ) > s ta te . r a i l _ l e n g t h

79 s i = f i n d ( s t a t e . a l t ~= 0 , 1 , ' f i r s t ' ) ; % F i r s t index t ha t i s not zero

80 e i = f i n d ( s ta t e . a l t > s ta te . r a i l _ l e ng t h , 1 , ' f i r s t ' ) ; % F i r s t index

t ha t i s h igher than r a i l

81 s ta te . v e l _ o f f _ r a i l = i n t e r p1 ( s t a t e . a l t ( s i : e i ) , s t a t e . ve l ( s i : e i ) , s t a t e .

r a i l _ l e n g t h ) ; % Calcu la te o f f − the− r a i l v e l o c i t y

82 else

83 s ta te . v e l _ o f f _ r a i l = 0 ;

84 end

85

86 %% Var iab les f o r Cons t ra in ts

87 pcc = s ta te . pcc ;

88 ptank = s ta te . ptank ;

89 pfeed = s ta te . pfeed ;

90 G = s ta te .G;

91 accel = s ta te . accel ;

92

93 i f max( isnan ( pcc ) ) == 0

94 f o r count =1: leng th ( pcc )

95 CC_P_constraint ( count ) = pcc ( count ) − 0 .8∗ ( ptank ( count )−pfeed ) ;

96 end

97 end

98

99 i f max( isnan (G) ) == 0

100 f o r count =1: leng th (G)

101 Fuel_gra in_const ( count ) = G( count ) −500;

102 end

103 end

104

105 %% Cons t ra in ts EQ

106 i f ~ isnan ( s ta te .De)

107 ceq (1 ) = r ea l ( s t a te . apogee − 47500) /100 ;

108 %ceq (2 ) = r ea l ( s t a t e . ve l ( s t a t e . t a rge t_ t ime ) − 450) / 10 ;

109 %ceq (3 ) = r ea l ( s t a t e . fpa ( s t a t e . t a rge t_ t ime ) − (20∗ p i /180) ) ;

110

111 else
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112 ceq ( : ) = NaN;

113 end

114

115 %% Cons t ra in ts

116 i f ~ isnan ( s ta te . v e l _ o f f _ r a i l )

117 c (1 ) = r ea l (max( CC_P_constraint ) /1000) ;

118 c (2 ) = r ea l (max( Fuel_gra in_const ) / 10 ) ;

119 c (3 ) = r ea l (max( accel ( 1 : s t a t e . t ime_to_apogee ) ) − 100) ;

120 c (4 ) = r ea l ( x ( 3 ) +s ta te .De−s ta te .LCC) ;

121 c (5 ) = r ea l ( ( s t a te . b f i n − 0.9∗ s ta te . B f i n ) ∗10) ;

122 c (6 ) = r ea l ( s t a te . D f in / ( ( s t a t e . B f i n + s ta te . b f i n ) / 2 ) − 3) ; %Fin Aspect

Rat io Cap

123 c (7 ) = r ea l ( ( s t a te .Madd_cone − s ta te . Vcone∗11340) /10 ) ; %Added mass i ns i de

cone must be lower than lead dens i t y

124 c (8 ) = r ea l (− s ta te . Mcomponents /10 ) ;

125 c (9 ) = r ea l ( 1 −( s t a t e .SM) ) ∗5;

126 c (10) = rea l ( s t a te .SM − 3) ∗5;

127 c (11) = rea l (27 − s ta te . v e l _ o f f _ r a i l ) ;

128 else

129 c ( : ) = NaN;

130 end

131 end

A.4 Propulsion2.m

1 f unc t i on [ s t a te ] = Propuls ion2 ( s ta te )

2 % PROPULSION

3 % Propuls ion2 i s a f unc t i on t ha t s imula tes the hybr id

4 % rocke t motor . I t i s used f o r design op t im i za t i on

5 % using " Mu l t i d i s c i p l i n a r 7 " as the main f unc t i on .

6 %

7 % A l l c a l c u l a t i o n s performed in met r i c un i t s

8

9 %% INPUTS %%

10 CEA = s ta te .CEA; % Combustion product lookup tab le

11 N2Osat = s ta te . N2Osat ; % Ni t rous oxide sa t u r a t i on p rope r t i e s

12

13 design = num2cell ( s t a t e . design ) ; % D i s t r i b u t e design vec to r

14 [ V_tank , C_inj , L , d_po r t _ i n i t , d_th , A_ra t io_nozz le ] = design { : } ;
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15

16 parameters = num2cell ( s t a t e . parameters ) ; % D i s t r i b u t e parameter vec to r

17 [ del_t ime , time_max , f i l l _ l e v e l , p_ tank_ in i t , p_feed , rho_f , a , . . .

18 n , T_amb, p_amb , zeta_d , zeta_cstar , zeta_CF ] = parameters { : } ;

19

20 i t e r a t i o n _ t o l e r a n ce = 0 .01 ; % Frac t i on to le rances on i t e r a t i v e so lve rs

21

22 t i c ; % S ta r t t im ing f unc t i on

23

24 %% INITIAL CALCULATIONS %%

25 % Calcu la te i n i t i a l thermodynamic p rope r t i e s from tank pressure

26 t he rmo_sa t_ in i t = thermoSat ( p_ tank_ in i t , 'p ' , { 'T ' , ' r ho_ l i q ' , ' rho_vap ' , '

u_ l i q ' , ' u_vap ' } ) ;

27 t he rmo_sa t_ in i t = num2cell ( t he rmo_sa t_ in i t ) ;

28 [ T_tank , rho_ l i q , rho_vap , u_ l iq , u_vap ] = the rmo_sa t_ in i t { : } ;

29

30 i f ~ e x i s t ( ' m_ox_tank_in i t ' , ' var ' ) % I f o x i d i z e r mass i s not given ,

ca l cu l a t e i t using f i l l l e v e l

31 m_ox_tank_in i t = V_tank ∗ ( r ho_ l i q ∗ f i l l _ l e v e l + (1− f i l l _ l e v e l ) ∗ rho_vap ) ;

% Calcu la te i n i t i a l o x i d i z e r mass based on f i l l l e v e l

32 end

33

34 x_tank = ( V_tank / m_ox_tank_in i t − 1/ r ho_ l i q ) / ( 1 / rho_vap − 1/ r ho_ l i q ) ; %

Calcu la te vapour mass f r a c t i o n

35 u_tank = ( x_tank∗u_vap + (1− x_tank ) ∗ u_ l i q ) ; % ( J / kg∗K) Ca lcu la te s p e c i f i c

i n t e r n a l energy

36 U_tank = m_ox_tank_in i t ∗u_tank ; % ( J ) Ca lcu la te t o t a l i n t e r n a l energy

37

38 i f x_tank <= 0

39 e r r o r ( ' Propuls ion2 : too high ox i d i z e r mass . The i n i t i a l o x i d i z e r mass i s

too high f o r the considered maximum pressure ( x_tank <= 0) ' )

40 end

41

42 % Ca lcu la t i on o f constants

43 R_const = 8.3144598; % ( J / mol∗K) Gas constant

44 A_th = p i ( ) ∗ ( d_th / 2 ) ^2 ; % (m^2) Nozzle Throat Area

45 V_tank_eps = i t e r a t i o n _ t o l e r a n ce ∗V_tank ; % (m^3) Set acceptable tank volume

e r r o r to 1% of tank volume

46 u_tank_eps = i t e r a t i o n _ t o l e r a n ce ∗u_tank ; % (m^3) Set acceptable tank
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s p e c i f i c i n t e r n a l energy e r r o r to 1% of i n i t i a l tank s p e c i f i c i n t e r n a l

energy

47 A_rat io_nozzle_eps = i t e r a t i o n _ t o l e r a n ce ∗A_ra t io_nozz le ; % (m^3) Set

acceptable nozzle area r a t i o e r r o r to 1% of nozzle area r a t i o

48

49 % Set t i ng i n i t i a l cond i t i ons

50 m_tot = 0 ; % ( kg ) I n i t i a l i z e t o t a l mass of p r ope l l an t

51 m_ox_tank = m_ox_tank_in i t ; % ( kg ) Mass of o x i d i z e r i n tank

52 r_cc = d_po r t _ i n i t / 2 ; % (m) Combustion chamber po r t rad ius

53 p_cc = p_amb ; % (Pa) I n i t i a l Combustion chamber pressure

54 T_cc = T_amb ; % (K) Combustion chamber temperature

55 T_stag = T_amb ; % (K) Combustion chamber s tagna t ion temperature

56 R_cc = R_const /0 .02897; % ( J / kg∗K) Molar mass of a i r a t 298K

57 k_cc = 1 . 4 ; % Spec i f i c heat r a t i o o f a i r a t 298K

58 Ma = 3; % I n i t i a l i z e the mach number near so l u t i o n to ensure convergance

59 burn_t ime = time_max ; % I n i t i a l i z e burn t ime to max t ime

60

61 %% MODEL CALCULATIONS %%

62 t = 1 ;

63 t r y % S ta r t t r y b lock to catch e r r o r s t ha t occur i n the main loop ( f o r

debugging )

64 whi le 1 % Run u n t i l break

65 i f isnan ( T_stag ( t ) )

66 T_stag ( t +1) = NaN;

67 break

68 else

69 i f x_tank ( t ) < 1

70 % OXIDIZER TANK CALCULATIONS FOR SATURATED LIQUID AND

VAPOUR %

71 Vin .U = U_tank ( t ) ;

72 Vin .m = m_ox_tank ( t ) ;

73 Vin .V = V_tank ;

74 i f abs ( Ver ror ( T_tank ( t ) , Vin ) ) > V_tank_eps

75 T_tank ( t ) = secant (@Verror , T_tank ( t ) , Vin ) ;

76 end

77

78 % Ca lcu la t i on o f tank thermo p rope r t i e s

79 thermo_sat_tank = thermoSat ( T_tank ( t ) , 'T ' , { 'p ' , ' h_ l i q ' ,

. . .
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80 ' h_vap ' , ' r ho_ l i q ' , ' rho_vap ' , ' u_ l i q ' , ' u_vap ' } ) ;

81 thermo_sat_tank = num2cell ( thermo_sat_tank ) ;

82 [ p_tank ( t ) , h_ l iq , h_vap , rho_ l i q , rho_vap , u_ l iq , u_vap ] =

thermo_sat_tank { : } ;

83 x_tank ( t ) = ( U_tank ( t ) / m_ox_tank ( t ) − u_ l i q ) / ( u_vap − u_ l i q

) ;

84 u_tank ( t ) = x_tank ( t ) ∗u_vap + (1− x_tank ( t ) ) ∗ u_ l i q ;

85 h_tank ( t ) = x_tank ( t ) ∗h_vap + (1− x_tank ( t ) ) ∗ h_ l i q ;

86 rho_tank ( t ) = 1 / ( x_tank ( t ) / rho_vap + (1− x_tank ( t ) ) / r h o_ l i q )

;

87

88 rho_discharge = r ho_ l i q ;

89 h_discharge = h_ l i q ;

90

91 % Record burn t ime to be the t ime at which the tank runs

out o f o x i d i z e r

92 i f x_tank ( t ) > 1

93 burn_t ime = t ∗del_ t ime ;

94 end

95 else

96 % OXIDIZER TANK CALCULATIONS FOR VAPOUR ONLY %

97 rho_tank ( t ) = m_ox_tank ( t ) . / V_tank ;

98 u_tank ( t ) = U_tank ( t ) / m_ox_tank ( t ) ;

99 u in . rho = rho_tank ( t ) ;

100 u in . u = u_tank ( t ) ;

101 i f abs ( ue r ro r ( T_tank ( t ) , u in ) ) > u_tank_eps

102 T_tank ( t ) = b i sec t i on (@uerror , 1 , 1000 , uin , T_tank ( t ) ∗

i t e r a t i o n _ t o l e r a n ce ) ;

103 end

104

105 thermo_span_tank = thermoSpanWagner ( rho_tank ( t ) , T_tank ( t ) ,

{ 'p ' , 'h ' } ) ;

106 p_tank ( t ) = thermo_span_tank (1 ) ;

107 h_tank ( t ) = thermo_span_tank (2 ) + 7.3397e+05; % Convert

from Span−Wagner entha lpy convent ion to NIST

108

109 h_discharge = h_tank ( t ) ;

110 rho_discharge = rho_tank ( t ) ;

111
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112 end

113

114 i f p_tank ( t )−p_feed−p_cc ( t ) < 0 % Check t ha t the chamber

pressure i s s u f f i c i e n t l y lower than the tank pressure

115 e r r o r ( ' Propuls ion2 : highPressure ' , 'The combustion chamber

pressure i s too high ( p_cc=%7.0 f Pa , p_tank=%7.0 f Pa , )

\ n ' , p_cc ( t ) , p_tank ( t ) )

116 end

117 m_dot_ox_in ( t ) = C_ in j ∗ sq r t (2∗ rho_discharge ∗ ( p_tank ( t )−p_cc ( t )−

p_feed ) ) ; % Incompress ib le f l u i d assumption ( be t t e r than

noth ing )

118 i f t == 1 % Take average over l a s t two t ime per iods to

a t tenuate numer ical i n s t a b i l i t y

119 m_dot_ox_in = 1/2∗m_dot_ox_in ;

120 else

121 m_dot_ox_in ( t ) = 1/2∗m_dot_ox_in ( t ) + 1/2∗m_dot_ox_in ( t −1) ;

122 end

123

124 del_m_ox_tank = −m_dot_ox_in ( t ) ∗del_ t ime ; % Ox id ize r tank mass

d i f f e r e n t i a l equat ion

125 %Q_tank = HeatOT (De,ROT, T_tank ( t ) ,LOT,RCC, d_OT_i , ve l ( t ) ) ; %

Ox id ize r tank heat t r a n s f e r

126 %del_U_tank = (−m_dot_ox_in ( t ) ∗h_discharge − Q_tank ) ∗del_ t ime ;

% Ox id ize r tank energy d i f f e r e n t i a l equat ion ( o r i g i n a l )

127 del_U_tank = −m_dot_ox_in ( t ) ∗h_discharge∗del_ t ime ; % Ox id ize r

tank energy d i f f e r e n t i a l equat ion ( a l t e r ed )

128

129 % COMBUSTION CHAMBER CALCULATIONS %

130 A_cc ( t ) = p i ( ) ∗ r_cc ( t ) ^2 ; % Por t geometry

131 G( t ) = m_dot_ox_in ( t ) / A_cc ( t ) ; % Ox id ize r mass f l u x

132 del_r_cc ( t ) = a∗G( t ) ^n ∗ del_ t ime ; % Regression ra te law

133 m_dot_f ( t ) = 2∗ p i ( ) ∗ r_cc ( t ) ∗L ∗ rho_ f ∗ ( de l_r_cc ( t ) / de l_ t ime ) ;

% Fuel mass f low ra te from geometry

134

135 % I t e r a t i v e l y so lve f o r m_dot_f

136 k = 0;

137 m_dot_f_temp = 0;

138 whi le abs ( m_dot_f_temp − m_dot_f ( t ) ) > 0.01∗m_dot_f ( t ) && k <

100 % u n t i l m_dot_f converges
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139 m_dot_f_temp = m_dot_f ( t ) ;

140 m_dot_cc ( t ) = m_dot_f ( t ) + m_dot_ox_in ( t ) ; % To ta l mass

f low in

141 G( t ) = ( m_dot_ox_in ( t ) + m_dot_cc ( t ) ) / ( 2∗A_cc ( t ) ) ; %

Average mass f l u x accross en t i r e po r t

142 del_r_cc ( t ) = a∗G( t ) ^n ∗ del_ t ime ; % Regression ra te law

using updated average mass f l u x

143 m_dot_f ( t ) = 2∗ p i ( ) ∗ r_cc ( t ) ∗L ∗ rho_f ∗ ( de l_r_cc ( t ) /

de l_ t ime ) ; % Fuel mass f low ra te from geometry

144 k = k+1;

145 end

146

147 OF( t ) = m_dot_ox_in ( t ) . / m_dot_f ( t ) ; % Calcu la te Oxid izer −Fuel

Rat io

148 p_stag ( t ) = m_dot_cc ( t ) / ( zeta_d∗A_th ) ∗ sq r t ( T_stag ( t ) ∗R_cc ( t ) /

k_cc ( t ) ∗ ( ( k_cc ( t ) +1) / 2 ) ^ ( ( k_cc ( t ) +1) / ( k_cc ( t ) −1) ) ) ; % Steady

s ta te choked f low expression f o r pressure

149

150 i f t > 1 % F i r s t t ime step i s too co ld f o r accurate v e l o c i t y

co r r e c t i on

151 vel_cc ( t ) = m_dot_cc ( t ) / ( rho_cc ( t ) ∗A_cc ( t ) ) ;

152 vel_cc ( t ) = 1/2∗ vel_cc ( t ) + 1/2∗ vel_cc ( t −1) ; % Average

v e l o c i t y over l a s t t ime step f o r numer ica l s t a b i l i t y

153 T_cc ( t ) = T_stag ( t ) − vel_cc ( t ) ^2 / (2∗ cp_cc ( t ) ) ;

154 else

155 T_cc ( t ) = T_stag ( t ) ;

156 end

157

158 p_cc ( t ) = p_stag ( t ) ∗ ( ( T_cc ( t ) / T_stag ( t ) ) . ^ ( k_cc ( t ) / ( k_cc ( t ) −1) )

) ; % Ve loc i t y co r r e c t i on f o r s tagna t ion pressure

159 thermo_comb = CEAProp (OF( t ) , p_cc ( t ) , { 'T ' , ' rho ' , ' cp ' , ' k ' , '

M ' } ) ;

160 thermo_comb = num2cell ( thermo_comb ) ;

161 [ T_stag ( t +1) , rho_cc ( t +1) , cp_cc ( t +1) , k_cc ( t +1) , M_cc ( t +1) ] =

thermo_comb { : } ; % Calcu la te chamber p rope r t i e s a t next t ime

step

162 T_stag ( t +1) = T_stag ( t +1)∗ ze ta_cs ta r ^2 ; % Correct temperature

w i th cs ta r e f f i c i e n c y

163 R_cc ( t +1) = R_const /M_cc ( t +1) ;
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164

165 % NOZZLE AND THRUST CALCULATIONS %

166 Ain . k = k_cc ( t ) ;

167 Ain .A = A_ra t io_nozz le ;

168 i f abs ( Aer ror (Ma( t ) , Ain ) ) > A_rat io_nozzle_eps % Nozzle mach

number so l ve r

169 Ma( t ) = secant (@Aerror , Ma( t ) , Ain ) ; % Supersonic so l u t i o n

170 end

171

172 p_ex i t ( t ) = p_stag ( t ) . / ( 1 + ( k_cc ( t ) −1) . / 2 . ∗Ma( t ) . ^ 2 ) . ^ ( k_cc ( t ) / (

k_cc ( t ) −1) ) ; % Nozzle e x i t pressure

173 i f x_tank ( t ) >= 1 % Phys i ca l l y wrong , but the cond i t i on i s used

to hide the t r a n s i t i o n t ha t r e s u l t s from overexpansion

174 p_ex i t ( t ) = p_stag ( t ) ∗ ( 2 / ( k_cc ( t ) +1) ) ^ ( k_cc ( t ) / ( k_cc ( t ) −1) )

; % Throat pressure

175 ve l _ e x i t ( t ) = sq r t (2∗ k_cc ( t ) ∗R_cc ( t ) ∗T_stag ( t ) / ( k_cc ( t ) +1) )

; % Throat v e l o c i t y

176 A_ra t i o_nozz le_e f f = 1 ; % Throat area r a t i o

177 else

178 T_ex i t ( t ) = T_stag ( t ) . / ( 1 + ( k_cc ( t ) −1) . / 2 . ∗Ma( t ) . ^ 2 ) ; % (K)

Temperature o f gas a t e x i t o f nozzle

179 ve l _ e x i t ( t ) = Ma( t ) .∗ sq r t ( k_cc ( t ) .∗R_cc ( t ) .∗ T_ex i t ( t ) ) ; % (

m/ s ) Ve l oc i t y o f gas a t e x i t o f nozzle

180 A_ra t i o_nozz le_e f f = A_ra t io_nozz le ; % E f f e c t i v e nozzle

area r a t i o i s ac tua l nozzle area r a t i o

181 end

182 F_th rus t ( t ) = zeta_CF ∗ (m_dot_cc ( t ) .∗ ve l _ e x i t ( t ) + ( p_ex i t ( t )−

p_amb) .∗ A_th .∗ A_ra t i o_nozz le_e f f ) ; % (N) Rocket Motor Thrust

! ! !

183

184 % ITERATE FORWARD IN TIME %

185 i f t < time_max / de l_ t ime && m_ox_tank ( t ) / m_ox_tank_in i t > 0.05

% I f less than max burn t ime and more than 5% of ox i d i z e r i s

l e f t , s tep forward i n t ime

186 % Oxid ize r Tank Values

187 m_ox_tank ( t +1) = m_ox_tank ( t ) + del_m_ox_tank ;

188 U_tank ( t +1) = U_tank ( t ) + del_U_tank ;

189 x_tank ( t +1) = x_tank ( t ) ;

190 T_tank ( t +1) = T_tank ( t ) ;
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191 m_dot_ox_in ( t +1) = m_dot_ox_in ( t ) ;

192

193 % Combustion Chamber Values

194 m_tot ( t +1) = m_tot ( t ) − m_dot_cc ( t ) ∗del_ t ime ;

195 r_cc ( t +1) = r_cc ( t ) + del_r_cc ( t ) ;

196 p_cc ( t +1) = p_cc ( t ) ;

197 Ma( t +1) = Ma( t ) ;

198 t = t +1;

199 else

200 break % Ex i t loop i f no more t ime or ox i d i z e r

201 end

202 end

203 end

204 catch ME % Catch any e r r o r s

205 i f i sa ( s ta te , ' double ' ) && ( leng th ( s t a t e ) ==6)

206 s ta te = NaN;

207 r e t u rn

208 end

209 re throw (ME)

210 end

211 t ime = 0: de l_ t ime : ( de l_ t ime ∗ ( t −1) ) ; % Create a t ime vec to r

212

213

214

215 %% OUTPUTS %%

216 i f max( isnan ( T_stag ) )== 0 && i s r e a l ( m_dot_ox_in )

217 % Major output c a l c u l a t i o n s

218 m_out = t rapz (m_dot_cc ) ∗del_ t ime ; % ( kg )

219 m_tot = m_tot + m_out ;

220 m_f = ( t rapz ( m_dot_f ) ∗del_ t ime ) ; % ( kg )

221 I _ t o t = ( t rapz ( F_ th rus t ) ∗del_ t ime ) ; % (N∗s ) Just t o t a l impulse dur ing

222 v_e = I _ t o t / m_out ; % E f f e c t i v e exhaust v e l o c i t y (m/ s )

223 I_sp = ( v_e / 9 . 81 ) ; % ( s )

224 %c_sta r = mean( p_cc ) ∗A_th /mean(m_dot_cc ) ; % (m/ s )

225

226 % Save metadata o f s imu la t i on

227 t ime_sim = toc ; % Save how long the s imu la t i on took ( minus load ing data

and p l o t t i n g f i g u r e s )

228 t ime_stamp = da tes t r ( datet ime ) ; % Save the cu r ren t t ime and date
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229 computer_name = computer ; % Save which computer the code i s running on

230 function_name = mfilename ; % Save the name of the f unc t i on t ha t i s

being ca l l ed

231

232 % Output t h r u s t and mass vs t ime f o r t r a j e c t o r y ana lys i s

233 TCurve = [ I _ t o t , mean( F_ th rus t ) , m_out ] ;

234 TCurve = ve r t c a t ( TCurve , [ t ime ; F_ th rus t ; m_tot ] ' ) ;

235

236 % Save a l l p e r t i n en t data to the s ta te va r i ab l e

237 s ta te .TC = TCurve ;

238 s ta te . burn = burn_t ime / de l_ t ime ;

239 s ta te . mass_prop = m_out ;

240 s ta te . Mfuel = m_f ;

241 s ta te .Mox = m_ox_tank_in i t ;

242 s ta te .OF = OF;

243 s ta te . RCC_in = r_cc ( end ) ;

244 s ta te . I_sp = I_sp ;

245 s ta te . Ath = A_th ;

246 s ta te .AR = A_ra t io_nozz le ;

247 s ta te . Thrust_max = max( F_ th rus t ) ;

248 s ta te . pcc_max = max( p_cc ) ;

249 s ta te . meta = [ time_sim , time_stamp , computer_name , function_name ] ;

250 s ta te . ptank = p_tank ;

251 s ta te . pfeed = p_feed ;

252 s ta te . pcc = p_cc ;

253 s ta te .G = G;

254 s ta te . I _ t o t = I _ t o t ;

255 s ta te . ptank_max = max( p_tank ) ;

256 s ta te . t ime_prop = t ime ;

257 s ta te . Thrust = F_ th rus t ;

258 s ta te . Tcc = T_cc ;

259 else

260 s ta te .TC = NaN;

261 s ta te . burn = NaN;

262 s ta te . mass_prop = NaN;

263 s ta te . Mfuel = NaN;

264 s ta te .Mox = NaN;

265 s ta te .OF = NaN;

266 s ta te . RCC_in = NaN;
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267 s ta te . I_sp = NaN;

268 s ta te . Ath = NaN;

269 s ta te .AR = NaN;

270 s ta te . Thrust_max = NaN;

271 s ta te . pcc_max = NaN;

272 s ta te . meta = [NaN, NaN, NaN, NaN ] ;

273 s ta te . ptank = NaN;

274 s ta te . pfeed = NaN;

275 s ta te . pcc = NaN;

276 s ta te .G = [NaN,NaN ] ;

277 end

278

279

280 %% SUBFUNCTIONS %%

281 f unc t i on [ out ] = CEAProp (OF, p , i n )

282 %MASSFRAC Calcu la tes the mass f r a c t i o n s o f products f o r a given

reac t i on

283 % 'OF ' i s the ox i d i z e r to f u e l weight r a t i o

284 % 'p ' i s the pressure o f the combustion chamber

285 % ' alpha ' i s an ar ray o f weight f r a c t i o n s

286 i f OF < CEA.OF(1 ) % Check t ha t query i s i n s i de bounds

287 e r r o r ( 'CEAProp : lowOF ' , ' Outside O/F range : \ n OF = %f ' , OF)

288 e l s e i f OF > CEA.OF( end )

289 e r r o r ( 'CEAProp : highOF ' , ' Outside O/F range : \ n OF = %f ' , OF)

290 e l s e i f p < CEA. p (1 )

291 e r r o r ( 'CEAProp : lowP ' , ' Outside pressure range : \ n p = %f Pa ' , p

)

292 e l s e i f p > CEA. p ( end )

293 e r r o r ( 'CEAProp : highP ' , ' Outside pressure range : \ n p = %f Pa ' ,

p )

294 end

295

296 i f ~ isnan (OF)

297 f o r mm = 1: leng th (CEA.OF)

298 i f OF < CEA.OF(mm) % Find f i r s t index t ha t i s l a r ge r than

OF

299 break

300 end

301 end

71



302 end

303

304 i f ~ isnan ( p )

305 f o r nn = 1: leng th (CEA. p )

306 i f p < CEA. p ( nn ) % Find f i r s t index t ha t i s l a r ge r than p

307 break

308 end

309 end

310 end

311

312 out = zeros ( s ize ( i n ) ) ;

313

314 i f isnan (OF) | | isnan ( p )

315 %OF_int = NaN;

316 %p_ in t = NaN;

317 %C_int = NaN;

318 %ou t_ i n t = NaN;

319 f o r kk = 1: leng th ( i n )

320 out ( kk ) = NaN;

321 end

322 else

323 f o r kk = 1: leng th ( i n ) % I t e r a t e through a l l products

324 % Do some b i l i n e a r i n t e r p o l a t i o n ( equat ions from wik iped ia )

325 OF_int = [CEA.OF(mm)−OF, OF−CEA.OF(mm−1) ] ;

326 p_ in t = [CEA. p ( nn )−p ; p−CEA. p ( nn−1) ] ;

327 C_int = 1 / ( (CEA.OF(mm)−CEA.OF(mm−1) ) ∗ (CEA. p ( nn )−CEA. p ( nn−1)

) ) ;

328 ou t _ i n t = CEA. ( i n { kk } ) (mm−1:mm, nn−1:nn ) ;

329 out ( kk ) = C_int .∗ OF_int∗ ou t _ i n t ∗ p_ in t ;

330 end

331 end

332 end

333

334 f unc t i on [ va l_ou t ] = thermoSat ( va l_ in , in , out )

335 %THERMOSAT re tu rns thermodynamic p rope r t i e s a t sa t u r a t i on

336 % ' va l_ in ' i s a double spec i f y i ng the value o f thermodynamic

proper ty i npu t t ed

337 % ' in ' i s a s t r i n g spec i f y i ng the given inpu t thermodynamic

proper ty
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338 % ' out ' as a c e l l a r ray spec i f y i ng the des i red output

thermodynamic proper ty

339 % ' val_out ' i s a double spec i f y i ng the value o f thermodynamic

proper ty re tu rned

340 va l_ou t = zeros ( s ize ( out ) ) ;

341 f o r mm = 1: leng th ( out ) % For each des i red output

342 % Locate which va r i ab l e column i s input , and which i s output

343 i i = f i n d ( ( i n == N2Osat . meta ( 1 , : ) ) , 1 , ' f i r s t ' ) ;

344 j j = f i n d ( ( out (mm) == N2Osat . meta ( 1 , : ) ) , 1 , ' f i r s t ' ) ;

345 % In t e r p o l a t e between the two values

346 f o r kk = 1: leng th (N2Osat . data ( : , i i ) )

347 i f v a l _ i n < N2Osat . data ( kk , i i )

348 break

349 end

350 end

351 va l_ou t (mm) = ( va l _ i n − N2Osat . data ( kk −1 , i i ) ) . / ( N2Osat . data ( kk ,

i i )−N2Osat . data ( kk −1 , i i ) ) . ∗ ( N2Osat . data ( kk , j j )−N2Osat . data (

kk −1 , j j ) ) + N2Osat . data ( kk −1 , j j ) ;

352 end

353 end

354

355 f unc t i on [ out ] = thermoSpanWagner ( rho , T , i n )

356 %THERMOSPANWAGNER Calcu la tes thermodynamic p rope r t i e s f o r N2O as a

non− i d ea l gas

357 % ' in ' i s a c e l l a r ray con ta in ing the des i red output parameters

358 % ' rho ' i s the dens i t y i n kg /m^3

359 % 'T ' i s the temperature i n K

360 % ' out ' i s an ar ray con ta in ing the output values i n the order

l i s t e d i n ' in '

361

362 % Hardcode in data f o r N2O ( from " Modeling Feed System Flow Physics

f o r Sel f −Pressu r i z ing Prope l l an t s )

363 R = 8.3144598/44.0128∗1000; % ( J / kg∗K) Gas constant

364 T_c = 309.52; % (K) C r i t i c a l Temperature

365 rho_c = 452.0115; % ( kg /m^3) C r i t i c a l Densi ty

366 n0 = [0.88045 , −2.4235 , 0.38237 , 0.068917 , 0.00020367 , 0.13122 ,

0.46032 , . . .

367 −0.0036985 , −0.23263 , −0.00042859 , −0.042810 , −0.023038];

368 n1 = n0 ( 1 : 5 ) ; n2 = n0 (6 :12 ) ;

73



369 a1 = 10.7927224829;

370 a2 = −8.2418318753;

371 c0 = 3 . 5 ;

372 v0 = [2 .1769 , 1.6145 , 0 .48393] ;

373 u0 = [879 , 2372 , 5447] ;

374 t0 = [0 .25 , 1.125 , 1 .5 , 0.25 , 0.875 , 2.375 , 2 , 2.125 , 3 .5 , 6 .5 ,

4.75 , 1 2 . 5 ] ;

375 d0 = [1 , 1 , 1 , 3 , 7 , 1 , 2 , 5 , 1 , 1 , 4 , 2 ] ;

376 P0 = [1 , 1 , 1 , 2 , 2 , 2 , 3 ] ;

377 t1 = t0 ( 1 : 5 ) ; t2 = t0 (6 : 12 ) ;

378 d1 = d0 ( 1 : 5 ) ; d2 = d0 (6 :12 ) ;

379

380 % Calcu la te non−dimensional va r i ab l es

381 tau = T_c / T ;

382 de l t a = rho / rho_c ;

383

384 % Calcu la te e x p l i c i t he lmhol tz energy and de r i v a t i v e s ( from

385 ao = a1 + a2∗ tau + log ( de l t a ) + ( c0−1)∗ l og ( tau ) + sum( v0 .∗ l og (1−exp

(−u0 .∗ tau . / T_c ) ) ) ;

386 ar = sum( n1 .∗ tau . ^ t1 .∗ de l t a . ^ d1 ) + sum( n2 .∗ tau . ^ t2 .∗ de l t a . ^ d2 .∗ exp

(− de l t a . ^P0) ) ;

387 ao_tau = a2 + ( c0−1) / tau + sum( v0 .∗ u0 . / T_c .∗ exp(−u0 .∗ tau . / T_c ) . / ( 1 −

exp(−u0 .∗ tau . / T_c ) ) ) ;

388 ao_tautau = −(c0−1) / tau .^2 + sum(−v0 .∗ u0 . ^ 2 . / T_c . ^ 2 . ∗ exp(−u0 .∗ tau . /

T_c ) . / ( 1 − exp(−u0 .∗ tau . / T_c ) ) . ^ 2 ) ;

389 ar_tau = sum( n1 .∗ t1 .∗ tau . ^ ( t1 −1) .∗ de l t a . ^ d1 ) + sum( n2 .∗ t2 .∗ tau . ^ ( t2

−1) .∗ de l t a . ^ d2 .∗ exp(− de l t a . ^P0) ) ;

390 ar_ tautau = sum( n1 .∗ t1 . ∗ ( t1 −1) .∗ tau . ^ ( t1 −2) .∗ de l t a . ^ d1 ) + sum( n2 .∗

t2 . ∗ ( t2 −2) .∗ tau . ^ ( t2 −2) .∗ de l t a . ^ d2 .∗ exp(− de l t a . ^P0) ) ;

391 ar_de l ta = sum( n1 .∗ d1 .∗ de l t a . ^ ( d1−1) .∗ tau . ^ t1 ) + sum( n2 .∗ tau . ^ t2 .∗

de l t a . ^ ( d2−1) . ∗ ( d2−P0.∗ de l t a . ^P0) .∗ exp(− de l t a . ^P0) ) ;

392 a r_de l t ade l t a = sum( n1 .∗ d1 . ∗ ( d1−1) .∗ de l t a . ^ ( d1−2) .∗ tau . ^ t1 ) + sum(

n2 .∗ tau . ^ t2 .∗ de l t a . ^ ( d2−2) . ∗ ( ( d2−P0.∗ de l t a . ^P0) . ∗ ( d2−1−P0.∗ de l t a

. ^P0)−P0 . ^ 2 . ∗ de l t a . ^P0) .∗ exp(− de l t a . ^P0) ) ;

393 ar_de l t a tau = sum( n1 .∗ d1 .∗ t1 .∗ de l t a . ^ ( d1−1) .∗ tau . ^ ( t1 −1) ) + sum( n2

.∗ t2 .∗ tau . ^ ( t2 −1) .∗ de l t a . ^ ( d2−1) . ∗ ( d2−P0.∗ de l t a . ^P0) .∗ exp(− de l t a

. ^P0) ) ;

394

395 out = zeros ( s ize ( i n ) ) ;
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396 f o r kk = 1: leng th ( i n )

397 swi tch i n { kk }

398 case 'p ' % Pressure (Pa)

399 out ( kk ) = rho∗R∗T∗(1+ de l t a ∗ ar_de l ta ) ;

400 case 'u ' % Spec i f i c i n t e r n a l energy ( J / kg )

401 out ( kk ) = R∗T∗ tau ∗ ( ao_tau+ar_tau ) ;

402 case ' s ' % Spec i f i c entropy ( J / kg∗K)

403 out ( kk ) = R∗ ( tau ∗ ( ao_tau+ar_tau )−ao−ar ) ;

404 case 'h ' % Spec i f i c entha lpy ( J / kg )

405 out ( kk ) = R∗T∗(1+ tau ∗ ( ao_tau+ar_tau )+de l t a ∗ ar_de l ta ) ;

406 case ' cv ' % Spec i f i c heat constant pressure ( J / kg∗K)

407 out ( kk ) = R∗− tau ^2∗ ( ao_tautau+ar_ tautau ) ;

408 case ' cp ' % Spec i f i c heat constant pressure ( J / kg∗K)

409 out ( kk ) = R∗(− tau ^2∗ ( ao_tautau+ar_ tautau ) + (1+ de l t a ∗

ar_de l ta −de l t a ∗ tau ∗ ar_de l t a tau ) ^2/(1+2∗ de l t a ∗

ar_de l ta+de l t a ^2∗ a r_de l t ade l t a ) ) ;

410 case 'a ' % Speed of sound (m/ s )

411 out ( kk ) = sq r t (R∗T∗(1+2∗ de l t a ∗ ar_de l ta+de l t a ^2∗

a r_de l t ade l t a − (1+ de l t a ∗ ar_de l ta −de l t a ∗ tau ∗

ar_de l t a tau ) ^ 2 / ( tau ^2∗ ( ao_tautau+ar_ tautau ) ) ) ) ;

412 otherwise

413 e r r o r ( ' I n v a l i d i npu t ' )

414 end

415 end

416 end

417

418 f unc t i on [ x ] = secant ( fun , x1 , i n )

419 %SECANT i s a zero− f i n d i n g f unc t i on based on the secant method

420 % ' fun ' i s the f unc t i on handle f o r which the zero i s des i red

421 % ' x1 ' i s the i n i t i a l guess

422 % ' in ' i s a s t r u c t con ta in ing any add i t i o na l i npu ts ' fun ' might

requ i re

423 % ' x ' i s the value o f the zero

424 x_eps = x1 ∗0.005; % Set the to le rance to be 0.5% of i n i t i a l guess

425 x2 = x1−x1 ∗0.01 ; % Set a second po in t 1% away from the o r i g i n a l

guess

426 F1 = fun ( x1 , i n ) ; % Evaluate f unc t i on a t x1

427 F2 = fun ( x2 , i n ) ; % Evaluate f unc t i on a t x2

428 kk = 1; % Set up counter
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429 kk_max = 1000;

430 whi le abs ( x2−x1 )>=x_eps && kk<kk_max % While e r r o r i s too la rge and

counter i s less than max

431 x3 = x2 − F2∗ ( x2−x1 ) / ( F2−F1 ) ;

432 x1 = x2 ; % Move every th ing forward

433 x2 = x3 ;

434 F1 = F2 ;

435 F2 = fun ( x2 , i n ) ;

436 kk = kk+1;

437 end

438 x = x2 ;

439 end

440

441 f unc t i on [ x ] = b i sec t i on ( fun , a , b , in , t o l )

442 % BISECTION i s a zero− f i n d i n g f unc t i on based on the b i sec t i on

method

443 % ' fun ' i s the f unc t i on handle f o r which the zero i s des i red

444 % 'a ' i s the lower value o f the i n t e r v a l

445 % 'b ' i s the lower value o f the i n t e r v a l

446 % ' in ' i s a s t r u c t con ta in ing any add i t i o na l i npu ts ' fun ' might

requ i re

447 % ' t o l ' i s the e r r o r to le rance

448 % ' x ' i s the value o f the zero

449

450 c=(a+b ) / 2 ;

451 kk = 1; % Set up counter

452 kk_max = 1000;

453

454 whi le ( abs ( fun ( c , i n ) ) >= t o l && kk<kk_max )

455 i f ( fun ( c , i n ) ∗ fun ( a , i n ) ) <0

456 b=c ;

457 c=(a+c ) / 2 ;

458 e l s e i f ( fun ( c , i n ) ∗ fun ( b , i n ) ) <0

459 a=c ;

460 c=( c+b ) / 2 ;

461 e l s e i f f ( c ) ==0

462 break ;

463 end

464 kk=kk+1;

76



465 end

466 x=c ;

467 end

468

469

470 % SET UP FUNCTIONS TO BE ITERATIVELY SOLVED %

471 f unc t i on V = Verror (T , i n ) % Finds the d i f f e r ence between the est imated

and ac tua l tank volume

472 thermo = thermoSat (T , 'T ' , { ' r ho_ l i q ' , ' rho_vap ' , ' u_ l i q ' , ' u_vap ' } ) ;

473 thermo = num2cell ( thermo ) ;

474 [ rho_l , rho_v , u_l , u_v ] = thermo { : } ;

475 x = ( i n .U/ i n .m − u_l ) / ( u_v − u_ l ) ;

476 V = in .m∗((1 −x ) / rho_ l + x / rho_v ) − i n .V ;

477 end

478

479 f unc t i on U = uer ro r (T , i n ) % Finds the d i f f e r ence between the est imated

and ac tua l tank i n t e r n a l energy

480 U = ( thermoSpanWagner ( i n . rho , T , { 'u ' } ) + 7.3397e+5) − i n . u ;

481 end

482

483 f unc t i on A = Aerror (M, i n ) % Finds the d i f f e r ence between the est imated

and ac tua l nozzle r a t i o

484 A = ( 1 /M^2) ∗ ( 2 . / ( i n . k+1) .∗ ( 1+ ( i n . k−1) . / 2 . ∗M.^2 ) ) . ^ ( ( i n . k+1) . / ( i n . k

−1) ) − i n .A^2 ;

485 end

486

487 f unc t i on Q = HeatOT (De,ROT,TOT,LOT,RCC, d_OT_i , ve l )

488 % Constants

489 Ta i r = 301; % (K)

490 K_cond = 0.0264704; % (W/m K) thermal c ondu t i v i t y a i r 30 degC

491 g = 9 .81 ;

492 beta = 0.0033; % ( 1 /K) expansion c o e f f i c i e n t a i r 30 degC

493 nu = 15.9668e−6; % (m^2/ s ) k inemat ic v i s c o s i t y a i r 30 degC

494 Pr = 0 .71 ; % Prand t l number

495 re = De / 2 ;

496 %a l f a = 22.07e−6; %Thermal D i f f u s i v i t y m^2/ s

497

498 % For model v a l i d a t i o n

499 % nu = 14.96e−6; % (m^2/ s ) k inemat ic v i s c o s i t y a i r 19 degC
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500 % K_cond = 0.025618; % (W/m K) thermal c ondu t i v i t y a i r 19

degC

501

502 %R convect ion i n t e r n a l

503

504 L_heat = 2∗ ( log (RCC/ROT) ) ^ ( 4 / 3 ) / (RCC^( −3/5) + ROT^( −3/5) ) ^ ( 5 / 3 ) ;

505 Gr = g∗beta∗abs (TOT−Ta i r ) ∗L_heat ^3 / nu ^3 ;

506 Ra = Gr∗Pr ;

507 K_ef f = K_cond∗0.386∗ ( Pr / ( Pr +0.861) ) ^0.25∗Ra^0 .25 ;

508

509 i f K_ef f < K_cond

510 K_ef f = K_cond ;

511 end

512

513 R_conv_in = log (RCC/ROT) / ( 2∗ p i ∗LOT∗K_ef f ) ;

514

515 %R conduct ion

516

517 k_cond = 2; %(W/mK) thermal c ondu t i v i t y carbon f i b e r −epoxy

518

519 R_cond = log ( re /RCC) / ( 2∗ p i ∗k_cond∗LOT) ;

520

521 %R convect ion ex te rna l

522

523 dx = LOT/1000;

524 x = d_OT_i ;

525 %cont = 1 ;

526 i t e r a t i o n s = c e i l ( ( x−LOT) / dx ) ;

527 h = zeros ( i t e r a t i o n s , 1 ) ;

528

529 f o r i = 1 : i t e r a t i o n s

530 pos i t i o n = x + ( i −1)∗dx ;

531 Re = ve l ∗ pos i t i o n / nu ;

532 Nu = 0.0296∗Re^ ( 4 / 5 ) ∗Pr ^ ( 1 / 3 ) ;

533 h ( i ) = Nu∗K_cond / pos i t i o n ;

534 end

535

536 h_average = t rapz ( h ) ∗dx /LOT;

537
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538 R_conv_ex = 1 / ( h_average∗2∗ p i ∗ re ∗LOT) ;

539

540 %T = TOT;

541 Q = (TOT−Ta i r ) / ( R_conv_in+R_cond+R_conv_ex ) ;

542

543 end

544 end

A.5 Mass_sizing2.m

1 f unc t i on [ s t a te ] = Mass_sizing2 ( s ta te )

2 % MASS_SIZING2

3 % Mass_sizing2 i s a f unc t i on t ha t est imates the rocke t

4 % mass and s ize . I t i s used f o r design op t im i za t i on

5 % using " Mu l t i d i s c i p l i n a r 7 " as the main f unc t i on .

6

7

8 i f ~ isnan ( s ta te . RCC_in )

9 %% INPUTS %%

10 l eng th = num2cell ( s t a t e . leng th ) ;

11 [ Lpay , Lnozzle ] = leng th { : } ; %parameters

12 M_pay = s ta te . payload ; %parameter

13 N_f ins = s ta te . N_f ins ; %parameter

14 Mfuel = s ta te . Mfuel ; %from propu ls ion

15 Mox = s ta te .Mox ; %from propu ls ion

16 Rcc_in = s ta te . RCC_in ; %from propu ls ion

17 ROT = s ta te .ROT; %from x

18 LCC = s ta te .LCC; %from x

19 Df in = s ta te . D f in ; %from x

20 Bf in = s ta te . B f i n ; %from x

21 b f i n = s ta te . b f i n ; %from x

22 Madd = s ta te .Madd ; %from x

23 Madd_cone = s ta te .Madd_cone ; %from x

24

25 design = num2cell ( s t a t e . design ) ; % D i s t r i b u t e design vec to r

26 [ V_tank , ~ , ~ , ~ , ~ , ~] = design { : } ;

27

28

29
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30 %% Constants

31 N_nozzle = 0 . 3 ; %percentage of nozzle leng th outs ide o f the tube

32 t_CC = 0.006;

33 t_OT = 0.005;

34 t_ tube = 0.002;

35 t_cone = 0.0024;

36 t _ f i n s = 0.002;

37 rho_CC = 2700; % Aluminum 6061 T6 dens i t y

38 %rho_CC = (3∗2700+3∗1329) / 6 ; % Approximate dens i t y o f Aluminum 6061 T6

casing wi th pheno l ic paper l i n e r

39 %rho_OT = 2700;% Aluminum 6061 T6 dens i t y

40 rho_OT = (1.5∗2700+2.6∗1750) / 4 . 1 ; % = 2097.56 kg /m^3 Approximate

dens i t y o f Aluminum 6061 T6 inner l i n e r wrapped wi th carbon f i b r e

composite

41 %rho_ f i ns = 340; %Carbon f i b e r −foam sandwich (14 mm) dens i t y

42 r ho_ f i ns = 1750;

43 rho_tube = 1750; %Carbon f i b e r epoxy dens i t y

44 rho_cone = 1800; %Fiberg lass epoxy dens i t y

45

46 %% Ca lcu la t i on

47 %Diameter

48 Rcc = Rcc_in + t_CC ;

49 r_OT = ROT − t_OT ;

50 i f Rcc>ROT

51 R_tube = Rcc + t_ tube ;

52 else

53 R_tube = ROT + t_tube ;

54 end

55 De = 2∗R_tube ;

56

57

58 %Length

59 LOT = ( V_tank − ( 4 /3 ) ∗ p i ∗r_OT^3) / ( p i ∗r_OT^2)+2∗ROT; %Hemispher ical Head

Cy l inder approximat ion

60 Lcone = 1.35∗Lpay + De ;

61 L_tube = LOT + LCC + Lnozzle ∗(1−N_nozzle ) ;

62 L_rocket = ( L_tube + Lcone + Lnozzle ∗ N_nozzle ) /0.59394036 − 1.32444;

%from the l i n e a r regress ion

63 L_rec = 0.2404∗ L_rocket − 0.4193;
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64 L_components = L_rec + (0.6891∗ L_rec − 0.0784) ;

65 L_tube = L_tube + L_components ;

66 L_rocket = L_tube + Lcone + Lnozzle∗N_nozzle ;

67

68 %Transversa l area

69 Atrans = p i ∗ ( (De+Df in ) / 2 ) ^2 ;

70

71 %Volume

72 V_CC = LCC∗ p i ∗ (Rcc^2−Rcc_in ^2) ;

73 V_OT = LOT∗ p i ∗ (ROT^2−r_OT^2) + (4 /3 ) ∗ p i ∗ (ROT^3−r_OT^3) ; %Hemispher ical

Head Cy l inder approximat ion

74 V_tube = L_tube∗ p i ∗ ( R_tube ^2 − ( (R_tube− t_ tube ) ^2) ) ;

75

76 %Cy l i n d r i c a l components

77 M_CC = rho_CC∗V_CC;

78 M_OT = rho_OT∗V_OT;

79 M_tube = rho_tube∗V_tube ;

80

81 % Nose cone

82 g_cone = sq r t ( Lcone^2 + R_tube ^2) ;

83 A_cone = p i ∗R_tube∗g_cone ;

84 V_cone = ( p i ∗R_tube^2∗Lcone ) / 3 ; %zero wa l l th ickness approximat ion

85 Factor_cone = 1 .3 ;

86 M_cone = A_cone∗ t_cone∗ rho_cone∗Factor_cone ;

87 M_cone = M_cone + Madd_cone ; %Add weight f o r s t a b i l i t y

88

89 % Fins

90 A_f ins = N_f ins ∗ ( B f i n+ b f i n ) ∗Df in / 2 ;

91 M_fins = A_f ins ∗ t _ f i n s ∗ r ho_ f i ns ;

92

93 % Mass es t ima t ion

94 M_prop = Mfuel+Mox ;

95 Mass_s t ruc tu ra l = 0.434866∗M_prop + 259.0147∗De − 13.2621; % Calcu la te

s t r u c t u r a l mass from emp i r i c a l l y f i t t e d equat ion

96 M_struct_components = Mass_st ruc tura l −M_tube−M_cone−M_fins−M_CC−M_OT+

Madd ;

97 M_nozzle = rea l (0 .15∗M_CC) ;

98 M_aero = M_tube+M_cone+M_fins+M_CC+M_OT+M_nozzle ;

99 M_rocket = r ea l (M_prop+M_aero+M_pay+M_struct_components ) ;
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100

101 %% outputs

102 s ta te .mass = M_rocket ;

103 s ta te . Ltube = L_tube ;

104 s ta te . Lrocket = L_rocket ;

105 s ta te .De = De ;

106 s ta te . Atrans = Atrans ;

107 s ta te .MCC = M_CC;

108 s ta te .MOT = M_OT;

109 s ta te . Mtube = M_tube ;

110 s ta te .LOT = LOT;

111 s ta te . Lcomponents = L_components ;

112 s ta te . Mcomponents = M_struct_components ;

113 s ta te . Mf ins = M_fins ;

114 s ta te . Mnozzle = M_nozzle ;

115 s ta te .Mcone = M_cone ;

116 s ta te . Vcone = V_cone ;

117 s ta te .RCC = Rcc ;

118 s ta te . Lcone = Lcone ;

119

120 else

121 s ta te .mass = NaN;

122 s ta te . Ltube = NaN;

123 s ta te . Lrocket = NaN;

124 s ta te .De = NaN;

125 s ta te . Atrans = NaN;

126 s ta te .MCC = NaN;

127 s ta te .MOT = NaN;

128 s ta te . Mtube = NaN;

129 s ta te .LOT = NaN;

130 s ta te .LCC = NaN;

131 s ta te . D f in = NaN;

132 s ta te .ROT = NaN;

133 s ta te . B f i n = NaN;

134 s ta te . b f i n = NaN;

135 s ta te . Lcomponents = NaN;

136 s ta te . Mcomponents = NaN;

137 s ta te . Mf ins = NaN;

138 s ta te . Mnozzle = NaN;
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139 s ta te .Mcone = NaN;

140 s ta te .RCC = NaN;

141 s ta te . Lcone = NaN;

142 end

143 end

A.6 Aerodynamics.m

1 f unc t i on [ s t a te ] = Aerodynamics ( s t a te )

2 % AERODYNAMICS

3 % Aerodynamics i s a f unc t i on t ha t s imula tes the rocke t

4 % t r a j e c t o r y and s t a b i l i t y . I t i s used f o r design

5 % op t im i za t i on using " Mu l t i d i s c i p l i n a r 7 " as the main

6 % func t i on .

7 %% INPUTS

8

9 l eng th_ rocke t = num2cell ( s t a t e . leng th ) ;

10 [ Lpay , Lnozzle ] = leng th_ rocke t { : } ; %parameters

11 Mpay = s ta te . payload ; %parameter

12 n_ f i ns = s ta te . N_f ins ; % number o f f i n s , parameter

13 Lcone = s ta te . Lcone ; %from s i z i ng

14 Mcomponents = s ta te . Mcomponents ; %from s i z i ng

15 Mfins = s ta te . Mf ins ; %from s i z i ng

16 Mnozzle = s ta te . Mnozzle ; %from s i z i ng

17 Mcone = s ta te .Mcone ; %from s i z i ng

18 Ltube = s ta te . Ltube ; %from s i z i ng

19 De = s ta te .De ; %from s i z i ng

20 Mtube = s ta te . Mtube ; %from s i z i ng

21 MOT= s ta te .MOT; %from s i z i ng

22 MCC = s ta te .MCC; %from s i z i ng

23 Mtota l = s ta te .mass ; %from s i z i ng

24 LOT = s ta te .LOT; %from s i z i ng

25 Lcomponents = s ta te . Lcomponents ; %from s i z i ng

26 Df in = s ta te . D f in ; %from x

27 Bf in = s ta te . B f i n ; %from x

28 b f i n = s ta te . b f i n ; %from x

29 LCC = s ta te .LCC; %from x

30 Mox = s ta te .Mox ; %from propu ls ion

31 Mfuel = s ta te . Mfuel ; %from propu ls ion
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32

33

34 %% CG and CP

35 %Areas

36 A_ f i n _ t r i = ( Bf in −b f i n ) ∗Df in / 2 ; %t rapezo i da l

37 A_fin_quad = b f i n ∗Df in ;

38

39 %Distances ( w i th the nose cone as re ference )

40 d_cone = 2∗Lcone / 3 ;

41 d_tube = ( Lcone + Ltube / 2 ) ;

42 d _ f i n _ t r i = Lcone+Ltube−b f in −( Bf in −b f i n ) / 3 ;

43 d_f in_quad = ( Lcone+Ltube−b f i n / 2 ) ;

44

45 %Center o f pressure Barrowman Equation

46 CN_nose = 2;

47

48 R = De / 2 ;

49 Lf = ( Df in ^2 + ( B f i n /2 − b f i n / 2 ) ^2) ^0 . 5 ;

50 x_B = Lcone + Ltube − Bf in ;

51 x_R = Bf i n − b f i n ;

52

53 CN_fins = (1+ R/ ( Df in + R) ) ∗ (4∗ n_ f i ns ∗ ( D f in /De) ^2) / (1+(1+(2∗ Lf / ( B f i n+ b f i n ) )

^2) ^0 .5 ) ;

54 x_ f i n s = x_B + x_R /3∗ ( B f i n +2∗ b f i n ) / ( B f i n+ b f i n ) + ( B f i n + b f i n − Bf in ∗ b f i n / (

B f i n+ b f i n ) ) / 6 ;

55

56 CP = rea l ( ( CN_nose∗d_cone + CN_fins∗ x_ f i n s ) / ( CN_nose+CN_fins ) ) ;

57

58 %Add i t i c ona l d is tances

59 d_pay = Lcone + Lpay / 2 ;

60 d_components = Lcone + Lpay + Lcomponents / 2 ;

61 d_OT = Lcone + Lpay + Lcomponents + LOT/ 2 ;

62 d_CC = Lcone + Lpay + Lcomponents + LOT + LCC/ 2 ;

63 d_nozzle = Lcone + Lpay + Lcomponents + LOT + LCC + Lnozzle / 2 ;

64 d_OT_i = d_OT − LOT/ 2 ;

65

66 %Fuel and ox i d i z e r on CC and OT

67 M_OT = MOT + Mox ;

68 M_CC = MCC + Mfuel ;
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69

70 %Center o f g r a v i t y

71 CG = rea l ( ( d_cone∗Mcone + d_tube∗Mtube + d _ f i n _ t r i ∗ A_ f i n _ t r i ∗Mfins / (

A _ f i n _ t r i +A_fin_quad ) + d_f in_quad∗A_fin_quad∗Mfins / ( A _ f i n _ t r i +

A_fin_quad ) + d_components∗Mcomponents + d_pay∗Mpay + d_OT∗M_OT + d_CC∗

M_CC + d_nozzle∗Mnozzle ) / Mto ta l ) ;

72

73 %% S t a b i l i t y

74 SM = rea l ( (CP−CG) /De) ; %S t a t i c Margin , CP&CG measured according to the nose

cone

75

76

77 %% OUTPUTS

78 s ta te .CP = CP;

79 s ta te .CG = CG;

80 s ta te . d_OT_i = d_OT_i ;

81 s ta te .SM = SM;

82 end

A.7 Trajectory.m

1 f unc t i on [ s t a te ] = T ra j ec t o r y ( s t a te )

2 % TRAJECTORY

3 % Tra jec t o r y i s a f unc t i on t ha t s imula tes the rocke t

4 % t r a j e c t o r y ( pos i t i on , v e l o c i t y and acce le ra t i on ) . I t i s used f o r design

5 % op t im i za t i on using " Mu l t i d i s c i p l i n a r 7 " as the main

6 % func t i on .

7 %

8 % Miguel Morgado ( I n s t i t u t o Super ior Tecnico ) − 2021

9 % Based on the work o f Michael Pearson (2016) and Benjamin Klammer (2019)

10 %

11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

12 % Funct ion Desc r i p t i on

13 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

14 % Inpu t i s s t r u c t ' s ta te ' , which must con ta in f i e l d s :

15 % 'De ' con ta in ing the outer diameter o f the rocke t i n m

16 % 'mass ' con ta in ing the t o t a l mass of the rocke t i n kg

17 % ' Lrocket ' con ta in ing the lengh t o f the rocke t i n m

18 % ' l aunchAl t ' con ta in ing the launch e leva t i on i n m

85



19 % ' p_ex i t ' con ta in ing the nozzle design ambient pressure

20 % ' Ath ' con ta in ing the nozzle t h r oa t area i n m^2

21 % 'CG' con ta in ing the center o f mass pos i t i o n from the nose cone in m

22 % 'AR ' con ta in ing the nozzle area r a t i o

23 % 'SM' con ta in ing the rocke t S t a t i c Margin

24 % 'TC ' con ta in ing an ar ray w i th burn t ime in column 1 , t h r u s t data i n

25 % column 2 , mass i n column 3 , and wi th the f i r s t row con ta in ing t o t a l

26 % impulse i n column 1 , average t h r u s t i n column 2 , and t o t a l mass

27 % inc l ud i ng p rope l l an t and case i n column 3

28 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

29 %

30

31 %% INPUTS

32

33 l aunchA l t = s ta te . l aunchA l t ; %parameter

34 launchAngle = s ta te . launchAngle ; %parameter

35 r a i l _ l e n g t h = s ta te . r a i l _ l e n g t h ; %parameter

36 De = s ta te .De ; %from s i z i ng

37 rocket_mass = s ta te .mass ; %from s i z i ng

38 p_ex i t = s ta te . p_amb ; % Pa , Ambient pressure used i n Propu ls ion f o r t h r u s t

co r rec t i on , parameter

39

40 area = p i ∗ (De / 2 ) ^2 ;

41 t_po = 0; % seconds , p i t ch −over manoeuvre elapsed t ime

42 t_pd = 0; % seconds , p i t c h decay manoeuvre elapsed t ime

43

44 i f i s f i e l d ( s ta te , 'SM ' )

45 SM = s ta te .SM; %from aerodynamics

46 Lrocket = s ta te . Lrocket ; % m, from s i z i ng

47 CG = s ta te .CG; % m, from aerodynamics

48 TC = s ta te .TC; %from propu ls ion

49 A_ex i t = s ta te .AR∗ s ta te . Ath ; % Nozzle e x i t area f o r t h r u s t co r rec t i on ,

should come d i r e c t l y from x

50 gain = s ta te . gain ; %p i t c h c o n t r o l l e r gain %range : −0 −> −1

51 de l ta t_po = s ta te . de l ta t_po ; % seconds , p i t ch −over manoeuvre du ra t i on %

range : 0 −> 6

52 de l t a_ the ta = s ta te . de l t a_ the ta ; % rad , p i t ch −over angle %range : −8 deg

−> +8 deg

53 de l ta t_pd = 4∗ de l ta t_po ; % seconds , p i t c h decay manoeuvre dura t i on
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54 i f s t a t e .TVC == 0

55 gain = 0;

56 end

57 else % to run t h i s f unc t i on outs ide the Rocket Opt im iza t ion program

58 SM = 0;

59 Lrocket = 70; % m

60 CG = 40; % m

61 gain = −0.05; %p i t c h c o n t r o l l e r gain %range : −0 −> −1

62 de l ta t_po = 1; % seconds , p i t ch −over manoeuvre du ra t i on %range : 0 −> 6

63 de l t a_ the ta = −3∗ p i /180 ; % rad , p i t ch −over angle %range : −8 deg −> +8

deg

64 de l ta t_pd = 4∗ de l ta t_po ; % seconds , p i t c h decay manoeuvre dura t i on

65 TC = s ta te . motor ;

66 A_ex i t = p i ∗ ( 0 . 92 / 2 ) ^2 ; % Nozzle e x i t area f o r t h r u s t co r r e c t i on

67 end

68

69 %DATCOM IMPORT FROM FILE

70 %aux=datcomimport ( " Datcom_output . out " ) ;

71 %datacom=aux { 1 , 1 } ;

72

73 %DIRECT IMPORT

74 load ( " datacom .mat " , ' datacom ' ) ;

75

76 %% POSITION AND ATTITUDE ESTIMATION

77

78 i f ~ isnan (TC)

79 [ a l t , vel , accel , t ime ,~ ,~ ,~ ,~ ,~ , fpa1 , ~ ] = motion (TC, datacom ) ;

80 a l t = a l t − l aunchA l t ; % Subt rac t launch a l t i t u d e to get AGL a l t i t u d e

81 [ maximum_alt , t ime_apogee_index ] = max( a l t ) ;

82

83 %%% PLOTS

84 %time_to_apogee = t ime ( time_apogee_index ) ;

85 %SOoutput ( a l t , x1 , vel , accel , fpa1 , t ime , maximum_alt , t ime_to_apogee ) ;

86

87 %OUTPUTS

88 s ta te . a l t = a l t ;

89 s ta te . ve l = ve l ;

90 s ta te . accel = accel ;

91 s ta te . apogee = maximum_alt ;
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92 s ta te . t ime_aero = t ime ( end ) ;

93 s ta te . time_to_apogee = time_apogee_index ;

94 s ta te . fpa = fpa1 ;

95

96 else

97 s ta te . apogee = NaN;

98 s ta te . ve l = NaN;

99 s ta te . a l t = NaN;

100 s ta te . accel = NaN;

101 end

102

103 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

104 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

105 %% Sub Funct ions / |

106 % ,−−−−−−' '−−−−−−−..

107 % (____________________−+

108 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

109 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

110

111 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

112 %% Rocket motion f unc t i on

113 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

114 f unc t i on [ z , vel , accel , t ime_vec , x , x_dot , z_dot , x_2dot , z_2dot , fpa ,mass ] =

motion ( TCurve ,AC)

115

116 %%% Thrust and p rope l l an t mass curves i n t e r p o l a t i o n %%%

117 T = g r i dded In t e r po l an t ( TCurve ( 2 : end , 1 ) , TCurve ( 2 : end , 2 ) , ' sp l i ne ' ) ; %

sp l i ne ob jec t t ha t i n t e r p o l a t e s the propu ls ion t h r u s t data

118 propel lant_mass = g r i dded In t e r po l an t ( TCurve ( 2 : end , 1 ) , TCurve ( 2 : end

, 3 ) , ' sp l i ne ' ) ; %sp l i ne ob jec t t ha t i n t e r p o l a t e s the p rope l l an t

mass data

119

120 %%% Prea l l o ca t i on %%%

121 x_dot = zeros (1 ,100) ; %m/ s

122 z_dot = zeros (1 ,100) ; %m/ s

123 ve l = zeros (1 ,100) ; %m/ s

124 x_2dot = zeros (1 ,100) ; %m/ s^2

125 z_2dot = zeros (1 ,100) ; %m/ s^2

126 accel = zeros (1 ,100) ; %m/ s^2
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127 x = zeros (1 ,100) ; %m

128 z = zeros (1 ,100) ; %m

129 the ta_dot = zeros (1 ,100) ; %rad / s

130 t he ta = zeros (1 ,100) ; %rad

131 the ta_2dot = zeros (1 ,100) ; %rad / s^2

132 fpa = zeros (1 ,100) ; %rad

133 AoA = zeros (1 ,100) ; %rad

134 I _ rocke t = zeros (1 ,100) ; %kgm^2

135 t ime_vec = zeros (1 ,100) ; %s

136 mass = zeros (1 ,100) ; %kg

137

138 %%% I n i t i a l cond i t i on values and De f i n i t i o n s %%%

139 z (1 ) = launchA l t ; %m

140 t he ta ( 1 ) =launchAngle ; %rad

141 fpa (1 ) =launchAngle ; %rad

142 mass (1 ) = rocket_mass ; %kg

143 dt =0.05; %seconds

144 t e rm ina te_ f l ag = 0;

145 i =1;

146

147 %%% main loop %%%

148 whi le t e rm ina te_ f l ag == 0

149 %%% ca l cu l a t e atmospheric cond i t i ons %%%

150 i f z ( i ) <150000

151 h = 6371000∗z ( i ) /(6371000+z ( i ) ) ; %h − geopo ten t i a l he ight ,

r0 = 6371000 m, average rad ius o f Earth

152 [ ~ , a , p_act , rho ] = atmoscoesa (h , 'None ' ) ;

153 M = ve l ( i ) / a ; %Mach number

154 else

155 M = 1000;

156 p_act = 0 ;

157 rho = 0;

158 end

159

160 I _ rocke t ( i ) = (mass ( i ) / 12 ) ∗ (3∗ (De / 2 ) ^2+Lrocket ^2) ; %I_yy

161 % The above assumes the CG i s i n the center o f the rocke t

162

163 %%% lookup aerodynamic c o e f f i c i e n t s %%%

164 [ ~ , indexA ] = min ( abs (AC. alpha ( : ) −(AoA( i ) ∗180/ p i ) ) ) ; % Find the
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index o f the c loses t mach number i n Cd tab le to ac tua l mach

number

165 [ ~ , indexM ] = min ( abs (AC.mach ( : ) −M) ) ; % Find the index of the

c loses t mach number i n CL tab le to ac tua l mach number

166 [ ~ , indexH ] = min ( abs (AC. a l t ( : ) −z ( i ) ) ) ;

167

168 Cl = AC. c l ( indexA , indexM , indexH , 7 ) ; %fou r se l e c t i on parameters :

alpha , mach number , a l t i t u d e , con f i g u r a t i o n

169 Cd = AC. cd ( indexA , indexM , indexH , 7 ) ;

170

171 i f abs (AoA( i ) ) > p i /2

172 Cl = −Cl ; %I f the rocke t " f l i p s " , the L i f t f o rce po in t s i n

the oppos i te d i r e c t i o n

173 end

174

175

176 %%% ca l cu l a t e g r a v i t a t i o n a l acce le ra t i on %%%

177 g = grav ( z ( i ) +6371000) ; % g r a v i t y decreases as you get f a r t h e r

from ear th

178

179 %%% increments t ime %%%

180 t ime_vec ( i +1) = time_vec ( i ) + d t ;

181

182 %%% Thrust and mass update %%%

183 i f t ime_vec ( i ) <=TCurve ( end , 1 )

184 mass ( i +1) = mass ( i ) − ( propel lant_mass ( t ime_vec ( i ) )−

propel lant_mass ( t ime_vec ( i +1) ) ) ; %ca l cu l a t es the change

in mass

185 Thrust = T( t ime_vec ( i ) ) + ( p_ex i t − p_act ) ∗A_ex i t ; %t h r u s t

co r r e c t i on w i th a l t i t u d e

186 else

187 mass ( i +1) = mass ( i ) ;

188 Thrust = 0 ;

189 end

190

191 i f Thrust ~= 0 && gain ~= 0 %don ' t waste t ime running these

ca l c u l a t i o n s i f there i s no ac t i ve TVC or t h r u s t to vec to r

192 %%% TVC Pi tch guidance %%%

193 i f z ( i ) < launchA l t+ r a i l _ l e n g t h

90



194 the tad = launchAngle ;

195 e l s e i f de l ta t_po == 0 | | de l t a_ the ta == 0

196 the tad = launchAngle ;

197 e l s e i f t_po <= de l ta t_po %u n t i l the p i t ch −over phase

dura t i on i s exceeded

198 t_po = t_po + dt ;

199 the tad = fpa ( i ) + ( de l t a_ the ta ∗ t_po / de l ta t_po ) ;

200 e l s e i f t_pd <= de l ta t_pd && de l ta t_pd ~= 0

201 t_pd = t_pd + dt ;

202 the tad = fpa ( i ) + de l t a_ the ta ∗exp(−3∗ t_pd / de l ta t_pd ) ;

203 else

204 the tad = fpa ( i ) ;

205 end

206

207

208 i f z ( i ) > launchA l t +120

209 eps i l on = gain ∗ ( thetad − t he ta ( i ) ) ; %rad , TVC angle

210 i f eps i l on > 2∗ p i /180 %max vec to r i ng angle

211 eps i l on = 2∗ p i /180 ;

212 e l s e i f eps i l on < −2∗ p i /180 %min vec to r i ng angle

213 eps i l on = −2∗ p i /180 ;

214 end

215 else

216 eps i l on = 0;

217 end

218 else

219 eps i l on = 0;

220 end

221

222 %%% Aux i l i a r y ca l c u l a t i o n s and r o t a t i o n a l dynamics %%%

223 q = 0.5∗ rho∗area ∗ ( x_dot ( i ) ^2+z_dot ( i ) ^2) ; %dynamic pressure

t imes re ference area

224 torque = − q∗De∗SM∗ ( Cl∗cos (AoA( i ) ) +Cd∗ s in (AoA( i ) ) ) −( Lrocket −CG)

∗Thrust ∗ s in ( eps i l on ) ;

225 the ta_2dot ( i +1) = torque / I _ rocke t ( i ) ;

226 the ta_dot ( i +1) = r ea l ( theta_2dot ( i +1)∗ dt+ the ta_dot ( i ) ) ;

227

228

229 %%% ca l cu l a t e acce l e ra t i on %%%
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230 x_2dot ( i +1) = ( Thrust ∗cos (AoA( i ) +eps i l on+fpa ( i ) ) − q∗ (Cd∗cos (

AoA( i ) +fpa ( i ) ) +Cl∗ s in (AoA( i ) +fpa ( i ) ) ) ) /mass ( i ) ;

231 z_2dot ( i +1) = ( Thrust ∗ s in (AoA( i ) +eps i l on+fpa ( i ) ) − q∗ (Cd∗ s in (

AoA( i ) +fpa ( i ) )−Cl∗cos (AoA( i ) + fpa ( i ) ) ) ) / ( mass ( i ) ) − g ;

232

233 %%% UPDATE VELOCITIES %%%

234 x_dot ( i +1) = r ea l ( x_2dot ( i +1)∗ dt+x_dot ( i ) ) ;

235 z_dot ( i +1) = r ea l ( z_2dot ( i +1)∗ dt+z_dot ( i ) ) ;

236

237 %%% UPDATE POSITIONS %%%

238 x ( i +1) = r ea l ( x_dot ( i +1)∗ dt+x ( i ) ) ;

239 z ( i +1) = r ea l ( z_dot ( i +1)∗ dt+z ( i ) ) ;

240

241 %%% check i f rocke t h i t s ground %%%

242 i f z ( i +1) < launchA l t

243 z ( i +1) = launchA l t ;

244 z_dot ( i +1) = 0 ;

245 x_dot ( i +1) = 0 ;

246 i f Thrust == 0

247 t e rm ina te_ f l ag = 1;

248 end

249 end

250

251

252 %%% Update P i t ch %%%

253 t he ta ( i +1) = r ea l ( the ta_dot ( i +1)∗ dt+ the ta ( i ) ) ; %rad , p i t c h

angle

254

255 i f t he ta ( i +1) > p i

256 t he ta ( i +1)= the ta ( i +1) −(2∗ p i ) ;

257 end

258 i f t he ta ( i +1) <= −p i

259 t he ta ( i +1)= the ta ( i +1) +(2∗ p i ) ;

260 end

261

262

263 %%% Update F l i g h t Path Angle %%%

264 fpa ( i +1) = atan2 ( z_dot ( i +1) , x_dot ( i +1) ) ; %rad , f l i g h t path

angle
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265

266 i f x_dot ( i +1) == 0 && z_dot ( i +1) == 0

267 i f i ==1

268 fpa ( i +1) = launchAngle ; %The cond i t i on below should

a l ready guarantee t h i s

269 else

270 fpa ( i +1) = fpa ( i ) ;

271 end

272 end

273

274 %%% Update Angle o f At tack %%%

275 AoA( i +1)= the ta ( i +1)− fpa ( i +1) ; %rad , Angle o f At tack

276

277 i f AoA( i +1) > p i

278 AoA( i +1)=AoA( i +1) −(2∗ p i ) ;

279 end

280 i f AoA( i +1) <= −p i

281 AoA( i +1)=AoA( i +1) +(2∗ p i ) ;

282 end

283

284

285 %%% Compute output vec to rs %%%

286 ve l ( i +1) = ( x_dot ( i +1)^2+z_dot ( i +1) ^2) ^ ( 1 / 2 ) ;

287 accel ( i +1) = ( x_2dot ( i +1)^2+z_2dot ( i +1) ^2) ^ ( 1 / 2 ) ;

288 i = i +1;

289

290 %%% Erro r

291 i f isnan ( z ( i ) ) | | i s i n f ( z ( i ) ) | | i > 120000

292 t e rm ina te_ f l ag = 2;

293 end

294 end

295 end % end motion f unc t i on

296

297 end % end main program

298 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

299 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

300

301 %% Calcu la tes g r a v i t a t i o n a l acce l e ra t i on a t a l t i t u d e

302 f unc t i on g = grav ( r )
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303 g = ((6.67408E−11) ∗ (5.972E24 ) ) / ( r ^2) ;

304 end

305

306 %% Outputs data and creates p l o t s

307 f unc t i on SOoutput ( a l t , x , vel , accel , fpa , t ime , max_alt , t_apogee )

308 data ( 1 , : ) = c e l l s t r ( [ 'km ' ; 'km ' ; 'km/ s ' ; 'm/ s^2 ' ; ' s ' ] ) ;

309 data ( 2 , : ) = num2cell ( [ max_alt ,max( abs ( x ) ) ,max( ve l ) ,max( accel ) , t_apogee ] ) ;

310

311 % ∗∗∗ To output performance tab le , uncomment t h i s sec t ion ∗∗∗

312 ar ray2 tab le ( data , ' VariableNames ' . . .

313 , { 'Apogee ' 'Downrange ' 'Max Vel ' 'Max Accel ' 'Time To Apogee ' } , '

RowNames ' . . .

314 , { ' Uni ts ' , ' Value ' } )

315

316 % [~ , time_apogee_index ] = max( a l t ) ;

317 % t = l inspace (0 , t_apogee , leng th ( a l t ( 1 : time_apogee_index ) ) ) ;

318 %

319 % f i g u r e (1 ) ;

320 % t i l e d l a y o u t (3 ,2 )

321 %

322 % to p _ l e f t = n e x t t i l e ;

323 % p l o t ( t , a l t ( 1 : t ime_apogee_index ) )

324 % hold on

325 % p l o t ( [ 0 , t ( end ) ] , [ 100000 ,100000 ] , ' : ' )

326 % xl im ( [ 0 , t ( end ) ] ) ;

327 % yl im ( [ min ( a l t ) ∗1.1 ,max( a l t ) ∗1 . 1 ] ) ;

328 % y labe l ( t o p_ l e f t , { ' A l t i t u d e AGL (m) ' } ) ;

329 %

330 % top_ r i g h t = n e x t t i l e ;

331 % p l o t ( t , x ( 1 : t ime_apogee_index ) )

332 % hold on

333 % p l o t ( [ 0 , t ( end ) ] , [ 100000 ,100000 ] , ' : ' )

334 % xl im ( [ 0 , t ( end ) ] ) ;

335 % yl im ( [ min ( x ) ∗1.1 ,max( x ) ∗1 . 1 ] ) ;

336 % y labe l ( t op_ r i gh t , { ' Downrange (m) ' } ) ;

337 %

338 % midd l e_ l e f t = n e x t t i l e ;

339 % p l o t ( t , ve l ( 1 : t ime_apogee_index ) ) ;

340 % xl im ( [ 0 , t ( end ) ] ) ;
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341 % yl im ( [ 0 ,max( ve l ) ∗1 . 1 ] ) ;

342 % y labe l ( m idd le_ le f t , { ' Ve loc i t y (m/ s ) ' } ) ;

343 % x labe l ( m idd le_ le f t , ' Time ( s ) ' ) ;

344 %

345 % midd le_ r i gh t = n e x t t i l e ;

346 % p l o t ( t , accel ( 1 : t ime_apogee_index ) ) ;

347 % xl im ( [ 0 , t ( end ) ] ) ;

348 % yl im ( [ 0 ,max( accel ) ∗1 . 1 ] ) ;

349 % y labe l ( m idd le_r igh t , { ' Acce le ra t i on (m/ s ^2) ' } ) ;

350 % x labe l ( m idd le_r igh t , ' Time ( s ) ' ) ;

351 %

352 % bo t tom_ le f t = n e x t t i l e ;

353 % p l o t ( t , fpa ( 1 : time_apogee_index ) ) ;

354 % xl im ( [ 0 , t ( end ) ] ) ;

355 % yl im ( [ − pi , p i ] ) ;

356 % x labe l ( bo t tom_ le f t , ' Time ( s ) ' ) ;

357 % y labe l ( bo t tom_ le f t , { ' F l i g h t Path Angle ( rad ) ' } ) ;

358 % hold o f f

359 %

360 % f i g u r e (2 ) ;

361 % p l o t ( x ( 1 : time_apogee_index ) , a l t ( 1 : time_apogee_index ) ) ;

362 % x labe l ( ' Downrange (m) ' ) ;

363 % y labe l ( ' A l t i t u d e (m) ' ) ;

364

365 end
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