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Abstract

The emergence of programmable network hardware devices allowed engineers to deploy Network Func-

tions that perform orders of magnitude faster than previous programmed software NFs. The improved

performance of these devices comes at the expense of increasing programming complexity, which re-

quires a thorough understanding of the underlying pipeline and hardware details. Some recent domain-

specific languages, such as P4, have tried to optimize network packet forwarding by providing additional

constructs and externs. However, the task of programming hardware devices still remains associated

with steep learning curves and their integration in networks is limited to specialized engineers.

The state-of-the-art solutions address this challenge by means of rule-based approaches, often used

in compiler design, to automatically generate code for these network devices. In this thesis we follow a

different approach. We developed SyNAPSE, a program synthesis-based technique that leverages static

analysis tools to generate NF implementations in P4 that are semantically equivalent to the original

NF code. Our prototype reduces the effort required to program network devices by generating NF

implementations for a P4 software switch and a standard x86 controller from NFs that were written in

the well-known programming language C.
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Resumo

Na última década, foram introduzidos dois paradigmas que tiveram um grande impacto na indústria de

redes: as Redes Definidas por Software (SDN) e a virtualização de Funções de Rede (NFV). Estes

novos paradigmas introduziram um certo grau de programabilidade, aumentaram a flexibilidade e ag-

ilizaram a operação das redes. No plano de dados, em particular, o paradigma NFV permite cor-

rer funções de rede em software. As vantagens ao nı́vel da flexibilidade trazem consigo o desafio

do desempenho. Entretanto, a evolução nas arquiteturas de chips de redes resultaram em disposi-

tivos de hardware programáveis com velocidades de processamento ordens de grandeza superiores às

funções de rede virtualizadas. Em contrapartida, estes dispositivos estão associados a linguagens de

programação de baixo-nı́vel, e a sua introdução na infrastrutura exige por isso engenheiros de redes

altamente especializados.

Como solução para este desafio, investigação recente propôs mecanismos de tradução baseados

em regras, semelhantes aos usadas em compiladores, para este contexto. Neste tese propomos uma

abordagem diferente: a utilização de técnicas de sı́ntese de programas para sintetizar código para estes

dispositivos de redes programáveis, com o intuito de reduzir a sua acentuada curva de aprendizagem.

Com base nestas ideias, desenvolvemos o SyNAPSE, um protótipo que gera implementações de NFs

para um switch P4 em software e para um controlador x86, a partir de NFs programadas em C. O

protótipo aplica técnicas de sı́ntese a partir de representações obtidas através de execução simbólica.
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The latest advances in the networking industry have contributed to an era of unseen innovation and

development. Similarly to the computing industry, the networking sector has traditionally been depen-

dent on vendors to supply network products, or middleboxes, specifically designed to address specific

problems other than traffic forwarding, such as security and performance. The substantial demand

for these products paired with their inflexible deployment has resulted in massive costs to network op-

erators. These constraints led to difficulties scaling networks as adding new middleboxes to already

extremely complex network infrastructure required a lot of effort: complying with the established network

policies, optimizations and quality-of-service requirements. These difficulties, which were more evident

as networks grew in size, motivated paradigms that tried to tackle issues that were stifling innovation.

Software-Defined Networking (SDN) [1] was developed to address management issues by decou-

pling traffic forwarding (the data plane) from routing logic and network management (control plane). SDN

also introduced network programmability by allowing the network control plane to be logically centralized

on a software controller. SDN motivated the development of Network Function Virtualisation (NFV) [2].

NFV enabled developers to provide middlebox functionality previously performed by specialised network

devices by using general-purpose commodity servers to run software Network Functions (NFs).

With the adoption of these new network paradigms, by decoupling the NFs from the hardware and

the control plane from the data plane, the installation of fixed-function hardware middleboxes across

the network was considerably reduced. This translated in a decrease of the overall network complexity

and largely contributed to a more efficient and flexible deployment of NFs granting some degree of

abstraction to program network devices.

SDN introduced a new approach to determine the forwarding behavior of packets processed by the

hardware. Flow rules allowed for programmers to decide which packet-processing actions would be ap-

plied to packets that would match the designated match fields. In the early stages of SDN, the rigid switch

designs only accepted matching a fixed set header fields. However, the available packet-processing ac-

tions and the header fields have progressively increased to more general hardware designs. Nowadays,

data plane packet processing can be programmable in hardware, and still guarantee line rate process-

ing. This data plane programmability has emerged as another alternative to the inflexible middleboxes,

allowing NFs to be programmed and compiled to programmable networking hardware capable of running

at Terabit speeds.

1.1 Motivation

Unfortunately, programming network devices and their multi-stage forwarding pipelines can involve a lot

of effort and time. Programs have to consider all the available resources and the forwarding pipeline lim-

itations in order to run at line-rate [3]. These devices are usually associated with low-level chip-specific

2



languages, with inconvenient learning curves. For example, optimizing linear-rate programs requires a

deep knowledge of the underlying hardware constraints to take full advantage of all their capabilities.

Some domain-specific language (DSL) languages, such as the P4 language [4], offers a way to program

these switches, allowing to specify how packets are processed in the data plane. P4 programs are de-

signed to be target-independent as they can be compiled against a wide range of forwarding elements,

including hardware or software switches, network interface cards, and programmable network appli-

ances. Despite enabling data plane programmability, P4 does not make it easy the task of programming

the device. Programming in this language requires specialized knowledge of the target architecture, in

order to guarantee line rate processing of packets.

When expanding and scaling networks, developers are therefore faced with the decision of whether

to use software NFs, which provide greater flexibility and familiarity, or programmable hardware, which

offers improved packet-processing speeds but is more difficult to program and optimize according to

network constraints. If a network developer chose the latter, building a network function would take far

more time and effort than implementing the NF in software using a more familiar programming language.

Additionally, developers must consider the effort that programmable network hardware will require to

optimize whenever network alterations are required.

In recent years, some tools have shown success in generating network-wide configurations utilizing

program synthesis techniques (i.e., to program the control plane). Following on from these ideas, in this

thesis we suggest to address the complexity of programming these intricate hardware devices by also

following a program synthesis approach, but for the network data plane. Contrary to the state-of-the-

art approach [5] that uses rule-based techniques, a program-synthesis solution can consider a larger

search space of solution, potentially enabling the generation of packet-processing code that is faster and

better optimized to the considered architecture. However, using program synthesis techniques instead

of traditional compiler techniques has one main disadvantage: finding programs that fit the specified

hardware constraints without sacrificing performance can lead to increased compile time, as this process

is a complex combinations problem and the search space can grow exponentially with the program size.

The challenge is therefore to develop domain-specific heuristics that prune and optimize the search

space.

1.2 Contributions

This thesis adds to the state-of-the-art by proposing SyNAPSE. SyNAPSE is a tool that is able to gen-

erate new implementations of NFs that were originally written in C (using the Vigor [6] libraries), into

semantically equivalent NFs that offload packet-processing to a P4-programmable software switch and

to a x86 SDN controller.

3



The prototype incorporates two previously existing tools, Vigor and Maestro, which perform static

analysis of software NFs. It receives as input a network function programmed in C language in the

context of Vigor – a software-verification framework. The Vigor framework explores the use of symbolic

analysis to check NF behavior against a specifications for correctness. These static analysis methods

are then used by Maestro to build a sound and complete representation of the NF behaviour. Maestro

is used to automatically parallelize sequential implementations of NFs, by distributing traffic across CPU

cores while preserving the semantics of the sequential implementation. We adopt the model of the NF

behaviour of Maestro to obtain an intermediate representation of the NF, from which we are able to

generate code for both the P4 switch and the SDN controller, resulting in a semantically equivalent NF

to the original NF.

Our prototype allows network developers to write NFs in a language they are more familiarized with,

thus reducing the time and effort required to deploy NFs directly in P4.

1.3 Organization

The remainder of this dissertation is divided into four chapters.

In the following chapter, we analyze the state-of-the-art in Software-Defined Networks, Network

Function Virtualization, and Data Plane Programmability. We will investigate the motivation for program

synthesis and some existing frameworks and tools. Additionally, we present the two tools on which this

prototype builds on, namely Vigor and Maestro. Then, Chapter 3 explains the design and implemen-

tation of the SyNAPSE prototype, and how it generates new implementations of NFs. This prototype

can be described as a sequential set of three modules that continuously modify the initial input until the

generated code is obtained. In Chapter 4, we evaluate the prototype, and in chapter 5 we conclude and

discuss future work.
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In this chapter, we start by presenting some backgorund information on Network Function Virtualiza-

tion and Software Defined Networks. We then introduce program synthesis and verification, and present

state-of-the-art solutions that apply these techniques in the context of computer networks.

2.1 Software-Defined Networking

Computer networks are complex systems of interconnected nodes that can be arranged in a variety

of topologies and subjected to many requirements. In the past years, cloud datacenters and service

providers have seen increasing complexity in their network infrastructures and policies. The number of

network elements in infrastructure ramped up with the emergence of dedicated hardware to implement

specific network functions, such as firewalls, network address translators (NAT) and intrusion detection

systems (IDS). To comply with these standards, datacenter objectives include optimizing performance

while coping with continuous network link failures, all while maintaining security and quality-of-service

requirements [7]. As a result, network implementation and subsequent maintenance have become more

difficult, requiring highly qualified and specialized engineers, resulting in high operational expenses.

SDN emerged as a solution to this overwhelming problem, enabling efficient network configuration

and providing network programmability by allowing the network control plane to be logically central-

ized on a software controller. By decoupling traffic forwarding (the data plane) from routing logic and

network management, SDN technology seeks to simplify network design, implementation, and manage-

ment (control plane). The data plane is responsible for processing all incoming packets according to

basic rules. A controller establishes these rules depending on network architecture and global network

policy goals. These rules are encoded in forwarding tables populated by the control plane and usually

processed at very high requirements [8].

In SDN, control logic is moved to an external entity called the SDN controller, a logically central-

ized system to manage and control all resources available represented by one or multiple controller

instances. Three main elements can be distinguished (Figure 2.1): the controller, and its southbound

and northbound APIs. Controllers serve as an intermediate component between the network control ap-

plications and the data plane. Applications can program the network by defining a set of functions and

services through a northbound API, which subsequently interacts with underlying network services us-

ing the southbound API. The controller also collects network information, such as state of the resources

or changes in topology, to continuously adapt network configurations according to desired policies.

In SDN, forwarding decisions are flow-based instead of destination-based [1]. Flows are an abstrac-

tion that group traffic by matching a set of packet fields to a set of actions, unifying behaviour of multiple

network devices, like switches, routers, and other middleboxes. This abstraction increases flexibility for

network programmers. This concept was introduced by OpenFlow [9] with flow rules that defined for-

warding behaviours and an interface for controlling the data plane. A flow rule comprises match fields,

7



Figure 2.1: Simplified view of an SDN architecture.

counters and set of instructions. Packets are compared against specific patterns and if a match occurs

packets will follow through with the configured action. These actions can include for example, dropping,

forwarding to one or multiple ports, changing the packet headers and sending the packet to the con-

troller for further processing. In the latter case, the controller can subsequently generate new flow rules

and send them to the switch. Each network element in the network maintains a Flow Table with all the

controller defined rules. In OpenFlow 1.1, the Flow table abstraction was refined with the adoption of

chaining multiple flow tables, where flow entries point to another tables flow entry.

Another defining feature was the OpenFlow protocol which allowed the secure transmission of flow

rules from the controller to the switch. The first implementations of SDNs didn’t get much attention

from the network community, however, the introduction of OpenFlow in 2008 gained significant traction

and resulted in the creation of the Open Networking Foundation (ONF) in 2011, to promote SDN and

OpenFlow. Since then SDN has seen wide adoption and multiple APIs and Controllers have been

developed.

2.1.1 Data Plane Programmability

OpenFlow introduced new abstractions and the possibility of programming the network control plane but

the technology was limited to match previously determined header fields and to chip-specific capabilities.

In the following years, new switching chip architectures contributed to the increased flexibility while

maintaining processing speeds required for deployment in networks. For example, the Reconfigurable

Match Table [3] (RMT) model allowed the forwarding plane to be changed in the field without modifying

the hardware, and the Protocol Independent Switch Architecture (PISA), an architecture that allows

8



Figure 2.2: Programmable blocks of the Portable Switch Architecture.

forwarding pipelines to be programmed by high-level languages, such as P4 [4]. The possibility of

programming functionality onto data plane resulted in a turning point for how ASICs (Application-Specific

Integrated Circuit), and network devices overall, were developed.

The general approach to implement new functionalities onto fixed-function ASICs, followed a top-

down design: New functionality had to be first standardized according to clients needs. Then the new

design would have to be implemented in ASICs by chip designers. The complete process was slow

hurting flexibility and hindering innovation [8]. The emergence of programmable network data planes

allowed network engineers to dictate exactly how each packet should be processed. Directly program-

ming the forwarding pipeline to implement new functionalities became a task operators could perform

without depending on vendors, leading to rapid design cycles and quick innovation.

2.1.2 P4 Language

The P4 programming language was presented in 2014 [4] as a proposal for how OpenFlow “should

evolve in the future”. A revision to the P4 language was released in 2016, resulting in the P416 language

specification [10]. P4 is a domain-specific language (DSL) to program forwarding planes. This DSL is

protocol-independent, as it allows developers to specify the structures of the packet headers and how

they are extracted and processed, and target independent as it supports multiple hardware architectures.

P4 uses a compiler to map target hardware resources to the target-independent description, generating

the necessary configurations [4].

P4 programs specify the behaviour of the programmable blocks of a given architecture. For exam-

ple, the Portable Switch Architecture (PSA) Model [11] is composed of two pipelines: ingress pipeline

(composed of a parser, ingress, deparser and a Packet buffer and Replication Engine (PRE)) and an

egress pipeline (composed of a parser, egress, and Buffer Queuing Engine (BQE)). Packets traverse the

pipeline in the order specified in 2.2. The P4 programmable parser enables user defined packet headers

according to implementation needs. The main logic of the P4 program is defined in the ingress/egress

blocks. In these blocks, the programmer can implement custom actions and define match-action tables

with different combinations of matching entries, matching types and associated actions. Finally, the user

can use these actions and/or tables freely, for example, depending on the parsed packet header ele-

ments. Besides defining packet processing throughout the pipeline, the architecture also defines a set
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of P4 externs that extend P4 functionality, for example, counters, meters and registers which allow to

maintain state between packets.

Similar to OpenFlow 1.1, pipelines are composed of multiple match+action stages, except in P4 they

can be processed in parallel. To address dependencies between headers Table Dependency Graphs

(TDGs) are used. This process is performed by the P4 compiler to identify possible conflicts before

mapping match+action tables to their location in the pipeline. After being validated in the parser, packet

headers are passed to an ingress match-action pipeline determining operations to be applied to each

packet. The ingress deparser identifies which packet contents and metadata are sent to the buffer.

Buffers are not part of the P4 architecture and are used to place packets waiting for their respective

actions, reducing congestion. Metadata fields can carry information that are not contained in packet

headers but are relevant to execution, for example, timestamps used for some traffic shaping policy. Both

metadata and packet headers can be used as match fields in match+action tables and are processed

in equal manner. Packets can be forwarded to one or to multiple egress ports (multicast), dropped

or placed in queues where traffic shaping policies are applied. In the multicast case, the packet is

replicated the necessary number of times before being sent to the PRE, where they are placed in a

buffer and processed when possible. The PSA also allows for packets to be recirculated or resubmitted.

In this case, they are sent to the beginning of the pipeline. PSA also defines a library of commonly used

constructs, called externs. Externs allow P4 code to be extended with new constructs not supported by

the language but made available by the target platform.

To summarize, SDN enhanced flexibility enabling a logically centralized control plane to manage

network devices from different vendors and with diverse characteristics. Data plane programmability

enabled new functionality to be implemented faster and more efficient usage of hardware resources.

This trade-off between programmability and hardware performance made SDN a trending technology

since it first appeared. SDN has seen wide adoption across data centers, Wide Area Networks (WANs)

and access networks and has complemented, together with P4, the development of technologies such

as Intent-Based Networking and In-Band Network Telemetry.

2.2 Network Function Virtualization

As mentioned before, the number of network elements in cloud datacenters and service provider net-

works have increased in order to accommodate more users and services. Users have specific con-

straints and requirements for their traffic related to security, isolation and quality-of-service, which result

in complex policies. This functionality is commonly implemented as Network Functions (NFs) and is

often supported by dedicated intermediary hardware, also known as ”middleboxes,” which increase for-

warding efficiency by decoupling specific network functions from the forwarding plane.
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To comprehend the impact of the network architecture covered in this section, it’s important to un-

derstand the market background of networking industry prior to it. Network functions were mostly imple-

mented by proprietary equipment - vertically integrated solutions sold by large companies that developed

all underlying technology, from hardware to middlebox operating systems. Thus, a network could de-

mand the deployment of multiple middleboxes in order to offer a given service.

As networks grew in size and complexity, more functionalities were necessary to comply with user re-

quirements and the increasing data line rates. Implementing a new functionality and updating equipment

required network administrators to continuously purchase and store new integrated solutions directly to

vendors. Scalability was also an issue for large networks, which would require as many middleboxes as

forwarding elements [12], and the exponential difficulties in integrating solutions from different vendors

in the same network. Combined with the slow-paced approach of producing new equipment mentioned

in Section 2.1.1, this model of developing networks where implementing new functions depended on

available solutions hindered innovation. All these constraints lead to high Operating Expenses (OPEX)

and Capital Expenses (CAPEX) [2]. Telecommunications Service Providers (TSPs) started noticing

these increasing costs and were forced to find more dynamic approaches to building and maintaining

networks.

Network Function Virtualization (NFV) has been proposed to address the above mentioned chal-

lenges offering a new design to deploy services and improving resource management. NFV aims to

decouple network functions from the underlying equipment offering more agility to deploy services and

better resource management. This technique eliminates the network dependency on specialized hard-

ware to perform network functions. Instead, network functions can be treated as plain software and

decomposed in sets of Virtual Network Functions (VNFs) that can be deployed in standard physical

servers. Such convenience makes scalability of networks possible and the deployment of services

much faster, a task which once required network operators to purchase new equipment and develop

appropriate skills to manage and integrate it. With NFV, capital expenses were also reduced as network

functions could be deployed in commodity servers.

The concept of NFV was first suggested in October 2012 in a white paper [9]. The paper was the

result from collaborative work from leading telecommunications companies calling for industrial and re-

search action. The premise of this work was to decouple functions of proprietary hardware and move

them to virtual servers, deployed in a wide range of hardware appliances. High-performance computing

could be offloaded to virtual servers, for example, to COTS (Commercial off The Shelf) clusters, ben-

efiting from affordable prices due to economies of scale. Some of the telecommunications companies

that worked in the white paper selected ETSI (European Telecommunication Standards Institute) as the

responsible entity for the NFV Industry Specification Group (ESTI ISG NFV)

The ETSI NFV framework consists of three main components: Virtualized Network Function (VNF),
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VNF Infrastructure (VNFI) and VNF Management and Orchestration (VNF-MANO) [2].

1. NFVI corresponds to the environment in which VNFs are deployed. It includes every network

element that provides either processing, storage, or connectivity to VNFs, thus including both

hardware and software resources. Virtual resources are abstractions from the underlying physical

resources, obtained using a virtualization layer.

2. VNF is the implementation of network functions deployed on virtual resources. VNFs can be

deployed over multiple VMs depending on their internal components.

3. NFV MANO is responsible for managing all underlying resources and corresponding virtualised

instances, performing operations such as configuring VNFs and any underlying infrastructure.

Although the Network Function Virtualization (NFV) architecture borrows concepts initially proposed

in SDN to address challenges imposed by static architectures, no dependency exists between them.

While both pretend to implement automation and virtualization, their goal is distinct. NFV main focus is

on decoupling NF from specialized hardware whereas SDN separates the network control from packet

handling. Nevertheless, leveraging both the network virtualization and logically centralized intelligence -

SDN-based NFV - can lead to great value as VNFI benefits from having a central orchestration point.

Software-defined NFV can be applied to service-chaining and service deployment replacing time-

consuming complex tasks of installing, connecting hardware to implement new functions or validating

and testing network infrastructures. This approach allows maximizing the usage of network resources

and reducing the overall costs of providing/adding services.

2.2.1 Architectures

The virtualization of NFs and the advances in data plane programmability (Section 2.1.1) have resulted in

a wide-range of devices used for general forwarding and performing network functions [8], from general-

purpose hardware to hardware designs like ASICs and FPGAs (Field-programmable Gate Array).

Network Processing Units (NPUs) are specialized accelerators employed in switches and NICs

(Network Interface Cards). They target network packet processing being capable of performing

network-specific operations such as load-balancing and encryption. NPUs are optimized to perform

parallel computation to process packets from individual network flows and have powerful dedicated

memories such as SRAMs (Static Random Memory Access), DRAMs and TCAMs. These memories

are organized in a specific manner to aid packet-processing by hosting frequently accessed data and

forwarding tables used to determine packet forwarding.

FPGAs are integrated circuits based around a matrix of configurable logic blocks and can be recon-

figured in the field as per client needs. FPGAs are typically programmed with hardware description

languages, like Verilog, but can also, in some cases, be programmed in C or P4.
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Additionally, these devices offer high performance, being primarily used to offload packet processing

from servers.

ASICs , contrary to FPGAs, have more rigid designs, implementing fixed pipelines or processing

steps. As a result, they can process packets significantly faster than any alternative, but their pro-

grammability is limited. As seen in Section 2.1.1 reconfigurable ASIC architectures have been pro-

posed, for example, RMT [3] and PSA [11] enabling programmability to implement custom network

functions and forwarding, with the same performance of their fixed-function counterparts.

General-purpose Servers have been deployed at massive scales in datacenters to implement net-

work processing. Traditional NIC interfaces are not optimized for high-performance packet process-

ing, as they are designed to be used in simpler contexts.

In server-based solutions, processing packets requires copying packet’s data from NIC buffers to the

CPU, where modifications are performed before copying data back to another buffer. This simple series

of actions is difficult to implement in general-purpose hardware.

To accelerate network processing in commodity hardware some frameworks have been developed

to increase processing rates, including DPDK [13] and Netmap [14]. For example, zero-copy [15] uses

buffers visible both to applications and the NIC, avoiding costly memory copy operations. Kernel bypass

gives direct NIC control to userspace processes to avoid system calls and context switching. These tech-

niques avoid copying from kernel buffers and system calls, saving CPU cycles and memory bandwidth.

When a packet is transmitted over a network, a sequence of operations must be followed, including

the acquisition of locks for the respective queue. Processing packets in batches (groups) reduces the

number of necessary lock acquisitions and minimizes system call overhead by reducing the number of

PCI-E bus registers.

The integration of SDN and NFV in real networks contributed for increased flexibility allowing compa-

nies to easily deploy new services over a broader range of hardware appliances. This translated into an

increasing ability to scale the network according to its needs. The minimal dependency of middleboxes

impacts greatly their cost. Besides these benefits, running software-based implementations of network

functions in commodity hardware lead to the lack of reliability in these software NFs. Frameworks that

perform software verification to NFs, such as Vigor, have been developed with the goal of mitigating

possible security vulnerabilities and other potential bugs.

2.3 Vigor as an Analysis Framework

Vigor [6] is a software stack and toolchain for building and running software network middleboxes with the

ability to automatically verify their correctness, while preserving competitive performance and developer

productivity. Vigor allows NF developers to write NF code in C on top of the DPDK I/O framework. It uses
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libVig, a library of formally verified data structures, to store persistent states across packets. Symbolic

execution is performed by the KLEE engine. This technique is used for live code path extraction which

is then used to generate Call Paths. Instead of real values, symbolic execution analyses the program

simulating the execution with symbolic values. These values are shaped in order to reflect operations

and for any given branches presented in the program, the symbolic execution continues the simulation

on both paths independently.

Besides verifying NF code correctness, the Vigor verification process includes verification of the

entire NF stack to guarantee correctness in its entirety — libraries, packet-processing frameworks, op-

erating system and device drivers. Verifying all these components would be inefficient and lead to path

explosion given the complete stack dimensions. As a solution, its authors built a small, custom operating

system (NFOS) that can be symbolically executed in an exhaustive manner, and modified both DPDK (in

order to make it verifiable) and KLEE - to discard unnecessary paths and to speedup the process [16].

The authors guarantee that NFs are semantically correct, crash-free and memory safe [6] in four

steps:

1. Obtain all live paths through the code - call paths - using exhaustive symbolic execution.

2. Convert symbolic execution traces to programs, where each one of them represents a path

through the stateless code.

3. Annotate each trace with lemmas corresponding to the NF specification

4. Validate each annotated trace, using the pre- and post-conditions from the libVig API contracts.

Vigor uses symbolic execution to analyse the NF code and generates call paths. Each call path repre-

sents a possible execution path and collectively, the call paths generated by Vigor represent the complete

behaviour of an NF and show all possible paths through the code triggered by a packet’s arrival.

In this thesis, we propose the use of the call paths utilized for NF verification as the initial input to the

SyNAPSE prototype. To these complete and sound representation of the NFs behaviour we will later be

apply synthesis-based techniques to generate NF implementations.

2.4 Program Synthesis

Program synthesis is the task of automatically finding programs that satisfy given high-level formal spec-

ifications [17]. The process of finding correct programs constitutes a complex search problem that can

be optimized by using different techniques, like complementing the specification with a general structure

of the solution (Section 2.4.2) or examples of the program input and respective outputs (Section 2.4.1).

The search for correct programs is a hard combinatorial problem because the search space of candidate

programs grows exponentially with program size, which translates into increased compile time - the main

drawback of a program synthesis approach.
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Synthesizers are characterized by three key dimensions: the kind of constraints that represent user

intent, the search space of candidate programs, and the search technique it employs. User intent can

appear in forms of logical specification, examples (Section 2.4.1), traces or partial programs (Section

2.4.2). Logical specifications are difficult to express as they declare logical relations for a program’s

inputs and outputs. A trace is a detailed step-by-step description of programs behaviour according to its

inputs, showing how they are transformed.

Because the search space should capture a high number of candidate programs whilst maintaining

search efficiency, some optimization approaches are capable of pruning it efficiently. We decided to

highlight the following approaches:

• Divide-and-conquer, a Deductive search strategy that recursively reduces the search problem into

sub-problems. Analyzing smaller parts of the program individually can improve synthesis perfor-

mance.

• Constraint solving, strategy that usually involves two main steps: constraint generation, where the

applications are able to translate synthesis problems into constraints; and constraint resolution,

where the constraints generated on the previous phase are solved.

2.4.1 Programming by Example

Many Program Synthesis implementations explore programming by example (PBE) techniques to infer

correct program implementations. In PBE, the specifications given as input to the synthesizer consist

in input-output examples. More generally, examples demonstrate behaviours/actions the system should

have for different input states. Using examples specifications makes PBE more tractable than other

program synthesis approach and are much easier for users to specify [18]. There are three main com-

ponents in a PBE engine.

• The Search algorithm that efficiently finds programs that mimic behaviours specified in examples.

The search space is pruned using divide-and-conquer techniques.

• Ranking Techniques that rank correct programs among the options that satisfy examples.

• The User Interaction Model, to guide synthesis and avoid selecting wrong programs.

The authors in [18] make an interesting comparison between Machine Learning (ML) and PBE as

motivation to suggest that ML techniques are able to enhance the performance of PBE engines. Both

involve prediction on new data after example-based training, yet the way they get to these predictions is

very distinct. While ML requires huge quantities of training to generate sophisticated models with almost

perfect precision for new inputs, PBE is expected to learn using few examples and generate solutions

that provide perfect precision on new inputs. In any component, PBE engines use heuristic techniques,

meaning that they can’t guarantee that the search method or approach to the problem is optimal. ML

can be used to learn and improve such heuristics, for example by analysing the structure of input-output
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examples and capturing critical features.

Ranking techniques can also benefit from machine learning. Ranking schemes are used to differ-

entiate programs that only perform as expected for given examples, from correct programs by giving

them higher rankings. The subtle differences between both programs can be identified with the intent of

building efficient learning rankers. User interaction models can accelerate synthesis process, for exam-

ple, the user can rank multiple synthesized programs based on preference. In this module, PBE engine

comes across multiple heuristic decisions including which programs to present to the user and in what

order. The correctness of these decisions can be improved with ML.

2.4.2 Sketch

Sketching [19] allows programmers to design algorithms using sketches and high-level insights, leaving

implementation of low-level details to be synthesized automatically. In Sketching, the programmer will

provide a sketch and define the expected behaviour of the program, either in a set of tests the generated

code must pass or in the form of reference implementation. A sketch is a partial program describing a

general solution where difficult statements are unspecified — holes. The correct value for all holes are

derived from this high-level strategy, using inductive synthesis, leaving the implementation of low-level

details to be solved automatically by synthesis procedures.

Sketch relies on the Counterexample Guided Inductive Synthesis (CEGIS) algorithm to determine

correct values for holes. CEGIS combines a SAT-based inductive synthesizer and an automated valida-

tion procedure, that checks if a candidate implementation is correct and produces new counterexamples.

CEGIS alternates between two phases: (1) the synthesis phase, where an inductive synthesizer gener-

ates candidate programs that assign values to all holes in an attempt to satisfy the input implementation;

and (2) the verification phase, where an automated validation checks if generated candidate program is

indeed correct. In the cases the validation isn’t accepted, the validation procedure produces counterex-

amples that demonstrate the failure, which can are then passed back to the synthesizer to inform its next

iteration. The idea behind CEGIS is to utilise a checking tool capable of generating counterexamples to

avoid testing the implementation on inputs that will fail in identical ways. By exposing problems associ-

ated to each candidate program, the synthesizer will gradually produce solutions closer to the desired

solution and effectively guide the synthesis process.

Sketching often requires that developers are knowledgeable of the various low-level languages which

is not suitable for practical programming.

Holes are marked with generators defining a set of expressions that can be selected by the synthe-

sizer for their completion. The generator used to define unknown values is represented by ’??’.

The repeat statement can be used in cases where the programmer has doubts about the number of

times assignments should be in a loop. The construct repeat(n) produces n copies of the statement and
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solves each copy independently. Sketch synthesis can be applied to multiple complex problems [19]. It

successfully implemented an AES cipher by synthesizing fragments of code, for instance, the reference

implementation used was transcribed from the NIST standard. The performance of the generated code

by the sketch was found to be 10% less efficient when compared to hand written optimized code. Given

the complexity of the problem, the quality of the optimized code was considered a good result. Many

implementations of program synthesis combine techniques to generate low-level code for networking

devices, developing new synthesis procedures for the different platforms. We explore these next.

2.5 Network Synthesis

Configuring data plane devices requires hardware expertise in the existing programmable network sub-

strates. The ability to abstract the underlying hardware is one of the obstacles we face in this thesis: how

to program a P4 programmable data plane from a generic network function specification, considering

the underlying pipeline architecture and constraints.

Programmable devices and their respective programming languages have benefited from remarkable

evolution in recent years, but are still at an early age and face challenges related to lack of abstractions

for hardware features and capabilities, inhibiting their deployment in large scale networks. In this section,

we will study how current synthesizers use program synthesis to generate different types of implemen-

tations. Systems will be separated in three different types according to their synthesis objective:

1. Configurations Synthesis, where systems are able to generate configuration that implement net-

work wide policies (e.g, Cisco and Juniper) in conventional networks.

2. SDN Synthesis: systems able to generate policies to be executed on top of a SDN controller.

3. NF Synthesis: systems able to generate programs that implement network functions.

4. Synthesis of network programs: where systems are able to generate low-level configurations for

network switching devices.

2.5.1 Configuration Synthesis

Network re-structuring can be highly disruptive to live traffic as the process of modifying and adjusting

configurations for individual nodes is demanding and error-prone. In this section we analyse tools that

aim to solve this issue by synthesizing optimized router configurations that implement network-wide

policies in conventional networks, avoiding operator misconfigurations and any subsequent network

outages. In fig. 2.3 we demonstrate a general example for these kind of synthesis tools.

Inspired by recent work on program synthesis, Beckket et al. [20] developed Propane/AT, a system

capable of generating BGP configurations from high-level specifications for network topology, routing

policies and fault-tolerance requirements. This framework was designed to be a improved version of
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Figure 2.3: Illustrative example of Configuration Synthesis tools.

Propane [21], which introduced program analysis and compilation algorithms to translate regular policies

into graph-based intermediate representations from which BGP configurations could be derived. These

tools used regular expression to represent the various network specifications.

Additionally, Propane/AT takes as input the policy for the abstract topology. The policy consists of

routing policy and a fault-tolerance policy. The synthesis process is divided into three phases. First,

the routing policy and abstract topology are combined into a product graph (PG) containing the routing

information for the topology in a policy-compliant manner. The algorithms used to manipulate Graphs

are adapted from Propane. Second, Propane/AT checks compliance with the fault-tolerance policy.

If met, a template for each node is generated in a third step. Transforming the template into BGP

configurations — concretization — is done using a vendor-independent BGP configuration language.

Results show that this framework is effective in real-world topologies and policies and configuration

synthesis is considerably faster than systems that operate over concrete topologies.

At the time, the current existing tools supported a limited number of protocols, for example, Propane/AT

was limited to BGP configurations and Genesis was limited to generating static router configurations. Ad-

dressing this limitation, El-Hassany et al. proposed a system capable of extending its supported routing

protocols. SyNET [22] was able to synthesize correct network configurations for multiple and interacting

routing protocols (OSPF and BGP) and static routes from requirements specified by an operator. Differ-

ently from the previous tools, SyNET does not uses regular expressions to describe network policies but

Stratified Datalog, an expressive and complex declarative programming language suitable for describing

routing protocols and capturing behaviour of the network in a clear and declarative manner, and a allow-
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ing operators to model routing protocols, the interactions between them, the topology of the network, and

requirements such as reachability, path requirements, and traffic isolation. To synthesize configurations,

SyNET applies an iterative algorithm to generate configurations by reducing input synthesis problem to

SMT constraints. SyNET scales to real-world networks, synthesizing configurations for networks with

32 or less routers within an hour. For larger networks, with more than 64 routers, SyNET can take more

than 24 hours to synthesize configurations, leaving some space for optimization. Another relevant topic

discussed in SyNET is the idea that it is possible to take advantage of networks that are organized hier-

archically around some regions and whose configurations can be synthesized independently. Although

SyNAPSE does not consider network topologies, this idea could be applied to the binary decision di-

agram our Search Engine takes as input. SyNET approaches synthesis in a distinct manner from the

above mentioned synthesis-based compilers by using a declarative logic language to describe routing

protocols. The authors compared SyNET to tools of the likes of Propane/AT and Genesis and affirmed

that SyNET is a more general system, as it allows for routing protocols to be added in stratified Datalog

to synthesize configurations.

El-Hassany et al. presented a tool with the same goal of assisting network operators in modifying

existing network-wide configurations to comply with new routing policies, using Sketch (section 2.4.2).

Similarly to SyNET, NetComplete [23] supports static routes, OSPF, BGP and additionally, other routing

requirements such as load balancing and traffic isolation are supported. The synthesizer scales much

better for large networks, performing orders of magnitude faster than NetComplete. The synthesizer

takes three inputs: the network topology, routing requirements and configuration sketches. NetCom-

plete follows three steps to synthesize configurations for network-wide configurations. Firstly, the static

routes defined in the routing requirements are synthesized. After that, BGP router-level configurations

are synthesized from BGP requirements and policy sketches, computing a propagation graph with the

order of BGP announcements. This process can also produce a set of constraints that need to be

enforced in the OSPF synthesizer. Finally, the OSPF synthesizer uses CEGIS to comply with all require-

ments. This is known to be a complex search problem mainly for larger networks. CEGIS significantly

improves OSPF synthesis compared to naive synthesis, where all requirements are simply introduced in

a constraint solver to discover a model that computes link costs. With this search method, NetComplete

evaluation results showed that the system is at least 600 times faster than SyNET and, as mentioned

before, it is capable of synthesizing configurations for large topologies for which SyNET times out.

2.5.2 SDN Synthesis

With the emergence of Software Defined Networks, network controllers allow operators to implement a

wide range of policies controlling switches in a network through SDN protocols. In this section we men-

tion tools that generate configurations that are executed on top of a SDN from high-level specifications
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Figure 2.4: Illustrative example of SDN Synthesis tools.

of network policies and changes in the network state, as illustrated in fig. 2.4. The high-level domain-

specific languages developed in the past years have greatly reduced the complexity of programming

controller interfaces, however, programming SDN networks is still limited to a very reduced number of

specialized network developers.

Towards the mitigation of this condition, Saha et al. [24] developed NetGen, a tool that automates the

process of synthesizing configurations for the changes in the data-plane, and a specification language to

express desired changes in an existing network. NetGen updates configurations by finding the minimal

amount of changes to the network to satisfy a high-level specification.

NetGen presents a high-level language, based on regular expressions, to express desired changes

in an existing network. The synthesis algorithm is capable of finding new network changes based on

abstractions and constraint-solvers that generate new data plane states, different from the current imple-

mented configurations in the network. The algorithm uses a state-machine to find the most reasonable

number of changes to obtain the new data plane state. A distinct aspect of NetGen is that paths can be

synthesized independently without affecting existing synthesized paths. NetGen was tested for larger

networks with success with the authors proving its scalability by using NetGen in real-world networks

of large dimensions. In comparison with previously developed synthesis-based compilers (2015), Net-

Gen was more flexible and more widely applicable. It also approached configuration synthesis from

a different perspective, as existing synthesis-based compilers like FatTire, Alloy and Merlin attempted
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to synthesize configurations for specific requirements, whereas NetGen uniquely synthesized new con-

figurations by performing changes to existing ones. The use of regular expressions by tools allowed

developers to define desired traffic patterns, however, Subramanian et al. [7] verified that the use of reg-

ular expressions can lead to increased number of constraints introduced in the SMT solver, thus slowing

down the search process. Subramanian et al. presented Genesis, a network management system for

multi-tenant datacenter networks and the use of tactics, a restricted form of regular expressions, that

blacklists paths in a network based on patterns that are not desired. In Genesis, rich policies can be

specified in a declarative manner allowing SMT constraint solvers to be used to program the underlying

data plane, more specifically, to synthesize switch forwarding tables, that are subsequently introduced in

network devices by a controller. By allowing developers to use isolating policies, a feature which was not

implemented in similar previous tools, Genesis sped up significantly the synthesis procedure. Genesis

is also capable of handling failures using a mechanism called minimal repair that calculates the minimal

number of switches whose rule tables are modified before transitioning from a disrupted data plane to a

new, and once again, policy-compliant state. To synthesize policies authors use a divide-and-conquer

strategy to partition synthesis problems into smaller ones. These tools were significant advances in

the area of program synthesis for network-wide configurations, however they were somewhat limited as

Genesis only supported static routes and Propane/AT only supported BGP configurations.

Yuan et al. followed a different approach to generate SDN programs, presenting a scenario-based

programming tool named NetEgg [25]. NetEgg allows network operators to program policies by describ-

ing representative example behaviours, from which it synthesizes automatically policy implementations

to be executed on top of a centralized controller. The scenarios NetEgg receives as input are composed

of examples of packet traces and their corresponding actions to each packet. The tool is capable of

synthesizing automatically controller programs that are consistent with the example behaviours while

the interpreter executes the policies according to incoming network events on the controller and infers

rules that can be pushed onto switches [25].

NetEgg provides a configuration language to express network behaviour in representative scenarios,

where packet variables and fields are typed. A packet-type consists of a list of names of fields of the

packet along with their types. NetEgg also provides a library with standard packet fields and actions,

such as flood, send(port), and modify(f,v ) (modifying the value of a given field). Before the synthesizer

tries to generate a policy according to these scenarios, it checks for any existing conflicts between

them. If any exist, they are displayed to the network operator to be resolved.NetEgg can generate policy

implementations within seconds with less overhead, when compared to other POX [26] implementations

(the platform used for SDN control applications). The interpreter was tested for its Rule installation

process, and results show that rules are installed correctly from the first incoming packet-in event.

NetEgg pioneered the approach of using examples to write network programs, however it only con-
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sidered networks where the control plane was centralized in a single controller. In an SDN network, the

control plane can be physically centralized or distributed, with controller processes running on multiple

network nodes. McClurg et al. [27] addresses the problem of programming distributed controllers by

taking a buggy decentralized program and inserting the necessary synchronization to make it correct.

The authors highlight two concurrency challenges specific to networks with multiple controllers. They

are controller races and packet races and both capable of introducing serious problems such as packet

loss. The packet race happens when one of the controllers removes a forwarding rule, to introduce a

new one. In between the two events the controller receives a packet, resulting in a dropped packet. The

controller races happens when only one of the controllers adds rules that forward incoming packets in an

incorrect manner. Its authors use a program synthesis approach to simplify writing distributed controller

programs, so that programmers don’t need to focus on keeping track of possible interleavings of con-

troller processes and inserting low-level synchronization constructs which constrain interactions among

controller processes to ensure the specification is always in compliance.

McClurg uses a CEGIS algorithm to find synchronization constructs to correctly synchronize the

event net. CEGIS uses an event net repair engine to synthesize candidate event nets from the input

event nets and a finite set of known counterexample traces and uses an event net verifier to check

whether the candidate satisfies the LTL property, producing a counterexample trace if not. The devel-

oped prototype is deployed efficiently in several network topologies.

2.5.3 Network Function Synthesis

Yanjun Wang et al. [28] suggests an approach to learn the objectives of a network design through iter-

ative interactions with the network architect. Frameworks mentioned earlier are capable of generating

a solution assuming well-defined objectives, but in practice it can be challenging for an architect to pre-

cisely state the desired objectives. Its authors argue that besides the challenge of solving well-defined

problems, the task of obtaining a formal specification that reflects the architects goals is also a complex

problem. The challenge in network design relates to the determination of objective functions that rec-

onciles multiple criteria, such as resource allocation and traffic engineering goals (latency, throughput,

fairness). This approach is motivated by PBE systems (section 2.4.1), however, PBE techniques don’t

suit comparative synthesis as it requires the architect to specify and provide feedback on exact objec-

tives. In this context if the architect could provide such feedback, he would have written the precise

objective function. To explain the synthesis process we will consider the example mentioned by the au-

thors, where the goal is to synthesize an objective function on both throughput and latency of a network

design. The synthesis process starts with one or more sketches (section 2.4.2) or templates of typical

objective functions, that reconcile throughput and latency. Initially, random weights are assigned to each

unknown variable and the system queries the user about the ranking of a given set of concrete scenar-
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ios. User’s preferences are then recorded in a Direct Acyclic Graphs (DAG) used to discard incorrect

solutions and provided better scenarios, i.e. with better SMT-generated candidates, from which the user

will continue to choose. As the user provides feedback in each iteration, the DAG grows in size, the

SMT solver produces better candidates, and scenarios start to converge to the preferred user scenario.

Eventually, if the preference graph is rich enough the SMT will return unsatisfiable, meaning only one

possible solution is viable. Because the initial inputs are randomly assigned the experiments are non-

deterministic. The authors conclude that (1) the developed prototype is capable of synthesizing correct

object functions from multiple interactions with the user, and (2) the most optimal solution is for the user

to rank 3 scenarios at time, which only reduced the amount of interaction moderately but decreased the

total time of synthesis significantly. Similarly to this implementation, our tool should be able to discard

solutions and make decisions to achieve a desired metric by manipulating DAGs, for example, ”reconcile

throughput and latency”.

2.5.4 Network Program Synthesis

In this section we will examine compilers that use program synthesis to program configurations onto

programmable network devices. Although these devices allow to deploy NFs onto networks and support

packet processing at high speeds, programming them its a task that requires knowledge of the pipeline

and other hardware details. Even with the recent development of DSLs targeting these devices, there

is still a significantly learning curve for the average operator. Program synthesis can address this issue

and has been used automatically generate packet-processing code that can result in faster processing/-

forwarding. In fig. 2.5 we demonstrate a general description for network program synthesis tools.

Haoxian et al. developed Facon [29], a tool that addressed the proliferation of DSLs for pro-

grammable networks enabling automatic generation of control plane programs using arbitrary DSLs,

based on input/output examples. Instead of generating device configurations, like NetEgg does, Facon

generates the program whose function is to generate data plane configurations. The synthesizer takes

two kinds of inputs, either the mentioned examples or Network DataLog (NDLog) relation schemas, and

produces an NDLog program that satisfies all input-output examples.

The developed prototype was only used to evaluate feasibility and performance of Facon, thus only

4 simple programs were synthesized: a learning switch, a recursive reachability program, a stateful

firewall, and a program for application-based forwarding. All were synthesized within a reasonable time

budget, even for programs with a larger input size (a stateful firewall and application-based forwarding),

as Facon is able to reduce the number of iterations to search within huge search spaces. Additionally,

because Facon generates a program instead of configurations, the programs can be moved between

networks with different underlying architectures. Generating the programs from input/output examples

also allows Facon to transform from one DSL to others. Facon proposes search algorithms and heuris-
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tics, to guide the search direction, that can serve as inspiration to improvements to our first prototype.

However, they target control plane programs, while we target data plane programs. Our challenge is

therefore different as the data plane programs are more low-level, closer to the hardware architecture.

One of the challenging characteristics of programming hardware devices relates to their all-or-nothing

nature, where if a program can fit within pipeline resources, it will run at line rate; otherwise, it will not run

at all. Usually this task is handed over to a compiler, but standard rule-based compilers often are unable

to rewrite programs so that they fit within the switch limited resources. Motivated by these drawbacks

and by the achievements of program synthesis in related areas, Gao et al. proposed synthesizing code

for hardware devices, presenting Chipmunk [30, 31] as a compiler that uses the SKETCH synthesizer

to transform high-level programs (P4 or Domino) to switch machine code that fits within resource limits.

The synthesizer takes two inputs, a specification and a sketch, and generates a pipeline implementa-

tion. The sketch (section 2.4.2) is a partial problem with holes that represent unknown values in a finite

range of integers that describe low-level machine code.To speed up synthesis, its authors developed a

technique called slicing where each slice corresponds to a simpler synthesis problem. After synthesized,

each slice is merged by stacking the resulting pipeline on top of each other composing the final hard-

ware implementation. Other optimizations where introduced in the Chipmunk compiler, such as scaling

up synthesis to larger inputs, constant synthesis and canonicalization. Chipmunk was designed with the

intention to be retargetable, i.e to apply the same underlying program synthesis to multiple backend tar-

gets, generating machine code for different pipeline architectures by analysing declarative specification

of given targets. In order to accomplish retargetability, the authors developed a DSL — the pipeline de-

scription language — to specify hardware pipeline capabilities. A switch hardware simulator was used

to compare Chipmunk to Domino, in order to evaluate its performance against rule-based compilers.

Domino [32] is a high-level language to program data-plane algorithms. Domino programs are compiled

into low-level code that can run in programmable line-rate switching chips. Some noticeable findings

included:

• Chipmunk is able to compile programs that are rejected by Domino, yet Domino’s compile times

are faster than Chipmunk.

• Chipmunk generates code with fewer pipeline stages — a highly constrained switch resource

• The slicing technique speeds up synthesis process by 51 times, on average.

The approach used here to build a retargetable compiler, as well as the optimization techniques used,

are also highly relevant to this thesis and have informed our design choices. However, they generate

a compiler from P4 to machine code, while our goal is to generate a P4 program from a high-level

language program.

Other approach with a similar goal to Chipmunk – and therefore different to ours – is Lyra [33], a high-

level language and compiler that enables programmers to efficiently program the data plane through a
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”one-big-pipeline” abstraction that allows programmers to use simple statements to express their intents

without worrying about the underlying hardware details. Lyra also supports simultaneous deployment of

multiple programs and programs that need to be executed in distributed ways, challenges mentioned in

2.5. The motivation example presented in Lyra’s paper is a load-balancer that requires that NF to be

deployed in different nodes according to their functionality in the network.

Data plane programs are written in chip-specific languages (P4 and NPL) that are tightly coupled

to chip-specific architectures. Nevertheless, Lyra is capable of synthesizing code pieces for different

chip-specific architectures while meeting functional correctness specified by the input Lyra program. Its

key methodology consists in encoding all logic and constraints into an SMT problem and use an SMT

solver to find an optimal implementation and deployment strategy for a target network.

The single pipeline abstraction is composed of chained modules that can be divided into Front-End

and Back-End, taking as input high-level Lyra program, an algorithm scope describing each algorithm’s

placement, and a network topology and its configurations.

Because the constraints introduced by the P4 and NPL programming languages are distinct, each

DSL has its own synthesis algorithm for generating chip-specific code.

To optimize and improve efficiency of resource usage, Lyra tries to reduce the number of P4 gener-

ated tables related to metadata fields that are redundant to program functionality. This mechanism can

reduce by up to 50% the number of generated P4 tables. Other optimizing techniques consist of speci-

fying requirements, for example, maximizing the usage of one particular switch, or minimizing the overall

usage of switches. In Lyra’s evaluation, the challenges mentioned in 2.5 are surpassed as the com-

piler is able to program distributed network functions and generate chip-specific code for multi-vendor

switches. Furthermore, the code produced by Lyra uses fewer hardware resources than human-written

programs.

To the best of our knowledge, Zhang et al.’s Gallium [5] is the closest work to ours. Its authors

start from our main premise: with programmable hardware, developers can obtain performance gains

significantly superior to what network functions deployed in software middleboxes can offer. However, as

we also argue, the procedure of offloading NFs requires that operators manually select the components

and write the P4 code. Zhang et al. [5] suggested Gallium to achieve this offloading automatically,

transforming an input software network function into a functionally equivalent middlebox implementation

that has two parts - a P4 program that runs on a programmable switch and a C++ program that runs

on a traditional middlebox server. The intent of generating these two parts is to split the functionality

between them and to improve performance by offloading packet-processing to a programmable switch.

This goal is the same as ours. However, the strategy they use to synthesize the programs is different.

Gallium follows a rule-based approach: it splits the input middlebox into three partitions that are

traversed by incoming packets in the following order: pre-processing partition, non-offloaded partition,
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Figure 2.5: Illustrative example of Network Program Synthesis tools.

and post-processing partition. Pre-processing and post-processing are run on the programmable switch

as a single P4 program, while the non-offloaded is executed on the middlebox server. Gallium must

ensure that this order is followed, as well as the functional-equivalence between the source code and

the generated program. Gallium keeps the instruction-level dependencies equivalent, and guarantees

that the generated P4 program satisfies any resource constraints of the programmable switches. For

each partition and according to its code, a control flow graph (CFG) is built. The generation of P4

code is done by mapping CFG instructions to P4 primitives, for example, temporary variables in CFGs

correspond to metadata fields in P4 and Maps correspond to P4 Tables.

The main limitation of a rule-based approach such as Gallium is that its problem space is very

limited. Our rationale in SyNAPSE is that by following a program synthesis-approach we can search a

larger problem space to obtain better code translations.

2.6 Summary

In this section we studied how current synthesizers use program synthesis techniques to solve chal-

lenges introduced by data plane programmability and network paradigms, like SDN and NFV. These

approaches reduce the risk related to error-prone tasks performed by network developers, saving time

and effort as well as generating better solutions. The tools covered in this section are summarized in

table 2.1. These program synthesis tools are organized by the technologies and methodologies used to

synthesize configurations for both traditional and SDN networks, as well as complex network hardware

devices.
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For conventional networks (section 2.5.1), we examined 3 tools: Propane/AT and SyNet [22] that

employed constraint-solving techniques, and NetComplete [23] that generated configurations for con-

ventional networks using sketching and CEGIS. These tools simplify the process of individually config-

uring network devices to comply with continuous link failures and changing network policies. Following

these tools, in the SDN synthesis section 2.5.2, we studied tools that solved similar challenges in SDN

networks: NetGen, NetEgg, Genesis and McClurg. These four tools are capable of generating rules

to be executed on top of a SDN controller, in order to comply with new policy implementations.

Network program synthesizers are the frameworks that are more relevant to our work as they are

able to synthesize configurations for the programmable network device that require developers to be ac-

quainted with their respective low-level languages. Facon focuses on generating SDN control programs.

In contrast, Chipmunk [31] and Lyra [33] focus on generating efficient data plane machine code (start-

ing from either P4 [31] or a new language [33]). Differently, the goal of Gallium and SyNAPSE is to start

from a NF written in a high-level language, and both have the goal of offloading packet-processing to a

programmable network device to improve the NF performance. However, Gallium follows a rule-based

compilation approach, while we use program synthesis techniques. The benefit of a program synthesis

approach is that we use techniques (from the Vigor toolchain) that result in a complete representation of

the original NF program (the Call Paths). This representation increases the likelihood of finding more and

better NF implementations in our search space that satisfy the original constraints. Additionally, Vigor

NFs can be programmed in C, a widely popular programming language that is not limited to network

developers.
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Paper Synthesis Mechanism Input Output

Propane/AT Constraint-solving. Propane Language BGP configurations

SyNet Constraint-solving. Stratified Datalog Router configurations

NetComplete Sketch and CEGIS Partial configurations (sketches) Router Configurations

NetGen Abstraction and constraint-solving. Network Specifications (based on 
regular expressions) SDN controller program

NetEgg Programming By Example Scenarios described w/ NetEgg 
Language SDN controller program

Genesis Constraint-solving and Divide-and-conquer to 
speed up synthesis. 

"Tactics on labels" + Network Topology 
Considerations Static router configurations

McClurg Constraint Solving and CEGIS Petri Event Nets SDN controller program

Yanjun Sketch; Programming By Example; 
Interactions with the Architect Sketch + Scenario Preferences Objective Function

Facon Programming By Example Input/Output Examples, NDLog Relation 
schemas

Declarative Networking 
Programs

Chipmunk Sketch and CEGIS (P4 or Domino) Sketch P4 or Domino program

Lyra Constraint-solving. Lyra Language Program; topology 
configuration

Chip-specific code (NPL and 
P4)

Gallium Rule-based compiler Software NF (C/C++) P4 program + x86 controller 
program

SyNAPSE Modular Search Software NF (C/C++) P4 program + x86 controller 
program

Table 2.1: Comparative Table for all Related Tools.
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Figure 3.1: SyNAPSE architecture.

This thesis adds to the state of the art by presenting SyNAPSE, a tool capable of offloading packet-

processing to a programmable software switch. It generates configurations for a P4 programmable

platform and a x86 Controller from a network function (NF) programmed in the C language, in the

context of the Vigor framework [6]. We use Vigor’s static analysis tools to obtain a complete and sound

representation of the NF. Then, by applying synthesis-based techniques to this output, we generate a

semantically equivalent NF in the P4 language, which is compiled to a software switch with the goal to

offload packet-processing functionality.

This chapter describes how SyNAPSE generates configurations for a P4 programmable software

switch and a x86 controller. It is divided into 4 sections. First, we describe the architectural structure of

our solution. Then, the subsequent sections are dedicated to each of the sub-components of SyNAPSE.

3.1 Overview

The SyNAPSE pipeline is composed of 3 main elements: Network Function Analysis, Search Engine,

and Code Generator (Figure 3.1).

The Network Function Analysis component builds on two tools – Vigor and Maestro – to perform

static analysis of the software NFs. Vigor (Section 2.3) is a software NF verification tool that explores

the use of symbolic analysis to check NF behavior against a specification for correctness. These static

analysis methods are used by Maestro [16], the second tool, to build a sound and complete represen-

tation of the NF behaviour. Maestro uses the NF representation to automatically parallelize sequential

implementations of NFs, distributing traffic across cores and preserving the semantics of the sequen-

tial implementation. We, on the other hand, adopt this complete representation of the NFs behaviour

to apply synthesis-based techniques in the Search Engine component. This component outputs an

intermediate representation of the NF from which we are able to generate code for both the P4 and

C programs. The resulting programs, produced by the Code Generator component, are semantically

equivalent to the original NF and offload as much packet-processing functionality to the P4 switch as
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possible. SyNAPSE generates the P4 code by mapping function calls of the libVig data structures from

Vigor directly to P4 tables. The SyNAPSE prototype successfully generates implementations for 5 Vigor

NFs: a NOP, a static-bridge, a Learning Bridge, a Firewall and a NAT.

In the following sections we analyse how the remaining elements that take part in the NF functionality

are mapped to P4 code.

3.2 SyNAPSE in Detail

SyNAPSE is able to generate configurations from software NFs written in the context of the Vigor frame-

work. To understand how each SyNAPSE component works, it is necessary that we are familiarized

with the Vigor data structures and other Vigor implementation details. In this section we also introduce

a practical example to provide a better insight of how each of the SyNAPSE’s components work in con-

junction towards the goal of offloading packet-processing functionality to a P4 programmable software

switch.

3.2.1 Vigor Data Structures

Vigor is a software stack and toolchain for building and running NFs that are guaranteed to be cor-

rect while preserving competitive performance and developer productivity (Section 2.3). To implement

stateful parts of the NF code, NF developers can utilize a set of validated data structures. The three

most relevant data structures used to implement network functions with Vigor are the map, vector and

dchain. For each of the Vigor data structures we briefly explain the most common auxiliary functions,

used by the programmers to manipulate these data structures.

map. The map data structure is a consistent hash-table which stores integers associated with a

hashed key, of arbitrary type. To add an entry to a given map, the programmer can utilize the map put

method. To retrieve a map entry, one can use a key as an argument to the method map get, which

returns the corresponding stored integer.

vector. The vector data structure is used to store arbitrary type data associated with an integer

index [16]. Similarly to the map data structure, the vector libVig provides methods to insert new entries

(vector allocate) and retrieve data (vector borrow and vector return).

dchain. The double-chain is a double linked-list of integers. It has a limited number of integers

available and allows users to allocate a new index and verify if it is already allocated. Every index is

associated with a timestamp and can be rejuvenated by the user, otherwise the index times-out and

becomes unallocated.

Vigor NFs use the dchain data structure simultaneously with the map and vector data structures

to expire entries associated to a given flow that is possibly no longer being used. Typically, the index
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allocated by the dchain is stored in the other two data structures and used to check whether a specific

index was allocated. This value is obtained with the method dchain allocate new index. Additionally,

Vigor offers methods to extend the life-time of a given entry, expire an entry or free an index.

The above mentioned functions often operate directly over specific header fields. In order to handle

variable length headers the Vigor API allows NFs to access the packets in chunks, as opposed to a

single buffer containing the whole packet. This allows the Vigor API to calculate which packet field is

being passed as an argument by checking the number of packet chunks requests made before the call.

When the symbolic execution is applied to a Vigor NF, every call that uses a specific header field as an

argument, this argument will later be described with the packet chunk symbol.

We are able to generate P4 code to NFs written in C by mapping directly calls to libVig functions to

P4 tables. For example, the behaviour of a map get function or a vector borrow can be represented

in P4 by a hit/miss in a P4 table. During the next sections we will investigate how other elements, that

are part of the NF functionality, are mapped to elements of a P4 program or of a x86 controller program.

3.2.2 Running Example

We will use a simplified version of a Learning Bridge, whose functionality is represented in the pseudo-

code in the listing 3.1. In order to correctly forward packets, the Bridge NF must first dynamically asso-

ciate MAC addresses and ports. In this example we use the a single map data structure, that uses MAC

addresses as key to an integer value that corresponds to a port.

When a packet arrives to the switch, two possible outcomes are possible: the packet is broadcasted

(sent to all ports) or forwarded to a specific port. The latter only happens if both MAC addresses are

known and mapped to a specific port connected to the switch. More concretely, the behaviour of the

Bridge NF is the following:

1. The Ethernet header is processed and the source and destination MAC addresses are retrieved

(line 4 of the listing 3.1).

2. If the source MAC address is not yet stored, a new table entry is added (lines 5 and 6 of the

listing 3.1).

3. If the destination MAC address is NOT present, the packet is broadcasted (lines 9 and 10 of

listing 3.1).

4. If the destination MAC address is present, then both MAC address are known and packet is

forwarded map (lines 12 and 13 of listing 3.1).

During this chapter we study the modifications that each SyNAPSE component performs to the initial

input in a simplified manner. The goal is to provide concrete examples that assist the theoretical

explanation of each component.
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Listing 3.1: Pseudo-code of vigbridge.
1 struct Map* map;
2

3 void process packet(int device, pkt t packet) {
4 header t p = get ethernet header(packet);
5 if (!map contains(map, p.mac src)) {
6 map put(map, p.mac src, device);
7 }
8

9 if (!map contains(map, p.mac dst)) {
10 broadcast(p);
11 } else {
12 int dst device = map get(map, p.mac dst);
13 forward(p, dst device);
14 }
15 }

Figure 3.2: NF Analysis Module architecture.

3.3 Network Function Analysis

In this module, the main goal is to generate a Binary Decision Diagram (BDD) that represents all abstract

functionality of the NF. The components of this module can be visualized in Figure 3.2. We analyse the

NFs code using an exhaustive symbolic execution engine to generate a set of Call Paths. These Call

Paths represent all the possible paths through the code triggered by a packet’s arrival [16]. The Call

Paths are then used to progressively assemble the binary decision diagram (BDD) containing all the NF

functionality.

3.3.1 Call Paths

As mentioned in Section 2.3 Vigor written NFs are built on top of DPDK, an open-source framework built

for fast packet processing that offers a set of software libraries and drivers. They are formally verified by

Vigor, meaning they are guaranteed to be semantically correct, memory-safe and crash-free. The goal

of this sub-component is to generate a complete and sound representation of the NFs behaviour, using

KLEE symbolic execution engine.
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Listing 3.2: Call paths generated for the example NF by the symbolic execution engine.
1 1: !map contains 0 && !map contains 1
2 => get ethernet header(packet)
3 => map contains(map, p.src port) -> map contains 0
4 => map put(map, p.src port, device)
5 => map contains(map, p.dst port) -> map contains 1
6 => broadcast(p)
7

8 2: map contains 0 && !map contains 1
9 => get ethernet header(packet)

10 => map contains(tb, p.src port) -> map contains 0
11 => map contains(tb, p.dst port) -> map contains 1
12 => broadcast(p)
13

14 3: !map contains 0 && map contains 1
15 => get ethernet header(packet)
16 => map contains(map, p.src port) -> map contains 0
17 => map put(map, p.src port, device)
18 => map contains(tb, p.dst port) -> map contains 1
19 => map get(tb, p.dst port) -> map out 0
20 => forward(p, map out 0)
21

22 4: map contains 0 && map contains 1
23 => get ethernet header(packet)
24 => map contains(tb, p.src port) -> map contains 0
25 => map contains(tb, p.dst port) -> map contains 1
26 => map get(tb, p.dst port) -> map out 0
27 => forward(p, map out 0)

Each call path represents a possible outcome when processing a newly arrived packet. Thus, the

set of all Call Paths obtained is able to depict the NFs full behaviour. A Call Path is composed of calls

and constraints. The calls correspond to either calls to packet management functions, for example the

get ethernet header in listing 3.1), or calls to libVig functions such as map get and map put. The

constraints identify the call path by stating the conditions that must be true, or false, in order for a packet

to trigger a particular code path and the corresponding calls. When a packet arrives, whenever all the

criteria are met for a given call path, then what follows is the execution for every call specified in the call

path.

When the symbolic execution is applied to the function process packet of our running example

(listing 3.1) we obtain the call paths observed in listing 3.2. Every time an if condition appears in the

code, the symbolic execution engine will identify the constraint that discerns the two groups of call paths.

In the lines 5 and 9 of the listing 3.1 we can observe the two if conditions in our NF, regarding the outcome

of the map auxiliary function map contains. The function is used to tells us if there is a pairing between

a port and the respective MAC address.

Each if condition has two possible outcomes, so the symbolic execution engine will generate four

possible call paths, represented in the lines 1, 8, 14 and 22 of the listing 3.2. In this listing 3.2 each

call path is identified by an integer followed by their symbolic constraints and a list of function calls. The

symbolic constraints correspond whether a pairing between the ports and the source/destination MAC

addresses exists.
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Keep in mind that in a less simplistic case, the complexity of a Learning Bridge NF would have

generated more detailed call paths, with more data structures involved, and the complexity of the nodes

would be superior, as they would reflect all the manipulated symbolic values.

3.3.2 Binary Decision Diagrams

After generating the call paths for the NF program in listing 3.1, we resort to Maestro’s work to analyse

them and assemble the Binary Decision Diagram [16]. This component outputs a BDD that represents

all possible outcomes for an incoming packet.

The nodes in the BDD represent calls to packet management functions, calls to libVig functions and

conditional statements. While the conditional statements in the BDD simply contain a KLEE expression

of the discriminating constraint, the remaining BDD nodes contain data such as the function name and its

call arguments, as well as selected byproducts of the symbolic execution. The stored KLEE expressions

contain symbols that vary depending on the Vigor API calls and their corresponding arguments. It is

important to retain that every node describes a specific functionality represented in the NF code. For

example, a BDD node representing the map get Vigor call would indicate the name of the call, the map

ID and the KLEE expression that resulted from the symbolic execution.

The process of assembling the BDD starts with the iteration over all the generated call paths at the

same rate. After each iteration the algorithm will compare the calls between all processed call paths. If

all the call paths share the same call, a new corresponding node is added to the tree. If this requirement

the algorithm proceeds to identify the discriminating constraint that discerns the two groups of call paths

and adds a conditional node to the BDD. Whenever a conditional node is added to the tree, it bifurcates

into two subtrees: one corresponding to the program flow in which the condition is true, and the other to

the condition in which the condition is false. Then, to each one of the trees, we make recursive calls to

the algorithm. The process is repeated until, eventually, all call paths are processed.

Now that we understand the algorithm that assembles BDDs, let us consider the call paths that were

generated by the symbolic engines for our example Bridge NF. The call paths represent all the possible

outcomes for a packet when processed for our NF, so when we apply the BDD assembling algorithm, the

BDD will represent the complete functionality of the original NF code. As the algorithm iterates over all

the call paths at the same rate, it first checks if the first call of all the call paths is the same. In listing 3.2

we verify that all call paths share the same call. As such, the algorithm adds the corresponding node

for the call map contains( tb, p.src port ) checking whether the source port of a packet is already

paired to a MAC address in the map tb.

In the second iteration the BDD assembling algorithm encounters two different calls in the set of

call paths. While the call paths 1 and 3 are followed by the call map put, the remaining are followed

by the call map contains. For the two groups of call paths the algorithm would find the discriminating
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Figure 3.3: Generated binary decision tree for the call paths in listing 3.2.
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Figure 3.4: Search Engine Module architecture.

constraint and add a conditional node to the tree, separating the tree in two scenarios: one where the

constraint is verified and other where the constraint is false. The algorithm would then be applied to

each sub-tree, adding new nodes if calls are the same between all nodes of a sub-tree or recursively

calling the algorithm whenever conditional nodes need to be added.

If we analyse the call paths we can observe that the discriminating constraint corresponds to the

result of the map contains function call. In the context of the example Bridge NF, this result corresponds

to the presence of the Ethernet source address in the map tb. At this point the algorithm would be applied

recursively to the two sides of the branch and the process is repeated until the algorithm iterates through

all call paths. When the sub-trees are fully processed they are attached as branches to the original BDD.

The resulting BDD for the example NF is described in Figure 3.3. The four green nodes correspond to

the possible outcomes, this was expected as the symbolic execution engine generates four call paths.

3.4 Search Engine

In this section we analyse the search methods and the algorithms employed by the SyNAPSE Search

Engine, in order to analyse the BDD and produce an Execution Plan (EP) - a tree structured intermediary

representation of the NF functionality.

While the BDD only represents the abstract functionality and calls required to implement the NF

logic, the intermediate representation achieved in this component can describe concretely the set of

operations necessary to the x86 controller and P4 target platform.

We created the Module entities to describe all of the available operations for both our targets: the

x86 controller or the P4 Software Switch. The Modules allow the developers to add support for other
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functionality, or adding support for new targets, by creating new Modules. During the search process,

we progressively replace the nodes in the BDD if any of the existing Modules matches their described

functionality. The BDD node is replaced by an Execution Plan Node incorporating data elements of both

the Module and the BDD node.

Considering our target, the x86 controller and the P4 Software Switch, the output of this component

consists in a combination of EP Nodes associated to the P4 Software Switch and the x86 Controller.

From the resulting multiple combinations of EP Nodes we choose the EP that is best aligned with our

goal of offloading the packet-processing functionality to a P4 target. The strategy we use to estimate

which combination of nodes is the best solution, consists in a heuristic mechanism that compares EPs

and outputs the EP that has the greater number of EP Nodes that target the P4 Software Switch. By

prioritizing solutions with the highest count of P4 Switch nodes in an Execution Plan, it is expected that

the final NF implementation will be more reliant on the P4 target than the x86 controller. Given that most

of the NF functionality can be implemented in a P4 Switch, we can expect that the initial nodes of the

EP will target the P4 switch. Eventually, after a few algorithm iterations, the algorithm will find a node

that can only be processed by a x86 controller. When there is a change in the targets of the EP nodes,

from P4 Modules to x86 Modules, additional attention is required. We will address this challenge in more

detail later in this section. We have determined that for more simple NF implementations the exclusive

use of P4 switch modules to represent the functionality in a BDD is possible. However, stateful NFs

always require an interaction of both the P4 switch and the controller, thus the EP solution is always a

mix of Modules.

Our Search Engine receives as inputs: a BDD and a pool of Modules consisting in all the available

modules for the P4 Software Switch and the x86 controller targets, and outputs an Execution Plan where

the nodes specify the operations required from the P4 Software Switch target and the x86 controller

target in order, creating a functionally equivalent implementation to the one represented in the BDD.

3.4.1 Search Space Algorithm

Let’s analyze how the Search Engine algorithm finds a combination of Modules that can implement all

the operations specified in the BDD nodes. As mentioned, the Search Engine receives as inputs: the

BDD and a pool of Modules (which consists in all the available modules for the considered targets). The

initial Execution Plan will have the same structure as the BDD. For each BDD node, the algorithm will find

a Module that can represent the behaviour described. When a Execution Plan replaces the BDD node

by a Module, the Module is added as an Execution Plan Node to Execution Plan. During the execution

of the algorithm, multiple EPs will be generated from the initial EP in order to explore different solutions,

so we always keep track of the next BDD node to be processed for each of the EPs. The algorithm can

be explained in three phases: sorting Execution Plans, Module processing and EP construction. During
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the search process multiple Execution Plans can be created.

In the sorting phase a set of partial EPs is sorted according to the Heuristic, that compares multiple

EPs according to the overall number of nodes and of P4 switch Modules. This phase will return the

preferred EP that will be analysed by the Module Processing phase.

The module processing phase is responsible for finding Modules that can implement the functionality

described in the BDD nodes. In this phase every existing Module will try to process the current BDD

node, considering the context in which the BDD node is being processed, i.e. it analyses all the Modules

that have been previously added to the Execution Plan. Thus, different contexts can cause that a BDD

node is processed in a distinct manner.

In the third phase of the algorithm, EP construction, for every Module that is able to process a BDD

node, we create a new Execution Plan and replace the BDD node with the corresponding Module.

When the Modules replace the BDD nodes, they are added as an Execution Plan Node, inheriting all

the expressions generated by the KLEE symbolic engine. Later these expressions will be essential to

generate the code for the P4 and x86 programs.

At this point we apply a node reordering algorithm to the newly created Execution Plans. In this

algorithm we identify possible rearrangements and create new EPs, which are then finally added to

the Search Space. Although these node rearrangements do not always lead to better solutions, they

alternative scenarios to be explored. The reordering algorithm can perform two kinds of rearrangements:

1. Reorder consecutive nodes that have no dependency with each other.

2. Identify a common node (corresponding to a call or a conditional statement) that is used in all

code paths in a given sub-tree. This node is removed and placed before the first common node

of the sub-tree.

Once all modules try to process a BDD node, and we have created all the subsequent EPs, the

EP that was initially picked in the sorting phase can be removed from the search space as all possible

solutions have been explored. The algorithm moves to the next iteration.

3.4.2 Implementation Details

In the Search Engine one operation described by a BDD node can be implemented in various ways

and by multiple targets. This contributes to the number of solutions that constitute the Search Space,

but what creates the explosion in the number of solutions are the EPs created by the node reordering

algorithm. This becomes more evident as the complexity of the Vigor NFs increases. At the time of

writing, the prototype’s Search Engine is not capable of pruning the large search spaces efficiently as

the implemented heuristics are to naive, which translates into unfeasible times to completely explore all

solutions generated.

Optimization. We have developed a mechanism that allow us to reduce the number of generated
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P4 tables (that are a byproduct of a map get call) by merging tables that originally accessed the same

map data structure. With this optimization, even though the exact same number of table entries need

be introduced, we are able to reduce complexity on the controller side as we don’t need to determine in

which table an entry should be added. We try to perform this optimization during the execution of the

search algorithm whenever a map get call is found. We use the Table Lookup Module to replace the

BDD node call and merge it, if the same map was already stored in the past.

Module Types. As mentioned previously, the BDD nodes contain information about the condition

or call they represent, such as the libVig data structure ID, the libVig function name, the arguments

associated and the symbols they manipulate. In order for the Modules to replace BDD nodes in the

Execution Plans, the algorithm will try to match all the Modules against the BDD nodes. For these

matches to happen, the Module presents a number of assertions that must be cleared, usually including

the supported libVig functions, validating the header field values and verifying the libVig call arguments.

Before studying how the Search Engine algorithm acts, we first need to investigate the Modules

that will replace the BDD nodes and that take part in the Execution Plans. We will focus on the ones

necessary to explain the running example, but also other common and important Modules. The Module

Table Lookup can replace map get and vector return calls. These calls to libVig data structures

can be represented as a P4 table as they simply refer to a table inspection. In this module we also

implement the table merging optimization mentioned above. However, the Module Table Lookup can

not replace calls like map put and vector borrow, as from a P4 standpoint, they represent adding new

table entries. Since this behaviour can only be implemented by a controller, we replace these calls with

a Send to controller Module that is responsible for shifting the NF implementation target, that up to that

point was being implemented by P4 switch Modules. As mentioned before, Vigor accesses packets in

chunks in order to support packets with different header length sizes. Vigor allows user to interact with

packet headers using sequential calls to the packet borrow next chunk call. The Search Engine will

replace these calls to packet management functions with specific Modules depending on the number

of existing calls to the ”chunks”. For example, when the the first packet borrow next chunk call is

identified, the algorithm will replace it by a Module that will retrieve all necessary header fields of the

Ethernet header, the second call would be replaced by a Module targeting the IP protocol and the third

call would be substituted by a Module targeting the layer 4 protocols, TCP and UDP. Lastly, the BDD

nodes that represent conditional statements are simply replaced by Conditional Modules that create two

diverging branches and keep the same KLEE expression.

3.4.3 Running Example

Now that we understand all elements of the search algorithm and its general methods of operation, let’s

apply all these concepts to our running example. For sake of understanding, we will only explain the
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first iterations of the algorithm, complementing the explanation of the Search Engine component with

important insights and details.

Let’s first analyse the inputs to our Search Engine: the BDD generated by the previous NF Analysis

component (fig. 3.3) and the pool of Modules that target the P4 Software Switch and the x86 Controller.

In the BDD (fig. 3.3) we can observe different libVig function calls that operate over the same map

data structure. We can easily deduct that a single map is going to appear in the P4 program as all the

calls related to this data structure access the same data. We can also predict that resulting EP will

include nodes that target the P4 Software Switch and the x86 controller, as there is one map put node

in the BDD, whose functionality can only be implemented by a controller, as it represents adding a new

table entry in our P4 table.

The resulting EP is represented in fig. 3.5. The projections are evident in the figure but let’s address

the fact that the number of nodes in the EP is substantially different from the BDD. Looking at fig. 3.5 we

can verify that what follows node 5 (Table Lookup) is not the result of processing the next BDD node,

but the entire original BDD targeting the x86 controller. The reason is the need of our next SyNAPSE

component (Code Generator) to split the Execution Plan according to the nodes target platforms. This

way, the Code Generator can correctly generate the x86 controller code in conformance with the NF

logic.

In the first iteration the algorithm starts with an Execution Plan that has no Modules. At this point, the

sorting phase is trivial as no BDD node has been processed, so we move to the second phase, where

each of the available Modules will try to process the first node in the BDD. The first node of the BDD

corresponds to a packet management function responsible for verifying the Ethernet Header fields. Both

our targets can process this node, resulting in the creation of two single-node new EPs. After exploring

all possibilities to process a module, the EP that was elected in the sorting phase can be discarded. In

the second algorithm iteration, we first elect the EP with more P4 nodes. In the second step we verify

which Modules can process the second node of the BDD map contains. After discovering that it can

be processed by two modules: an x86 MapGet and a P4 Table Lookup, we move to the third and final

step where two new Execution Plans are created.

This process of picking an existing partial EP, individually find Modules that can process a BDD

node and creating EPs and adding them nodes, repeating itself until all nodes in the original BDD are

replaced. By the end of this process we achieve a semantically equivalent NF representation, where the

functionality is split between a P4 Software Switch and a standard x86 controller.
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Figure 3.5: Resulting Execution Plan for the Running Example.

Figure 3.6: Code Generator Module architecture.
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3.5 Code Generator

In the Code Generator component, shown in fig. 3.6, the goal is to process the Execution Plan and

generate the P4 and x86 controller code. This is the only responsibility of the last SyNAPSE component,

as all optimizations are performed by the previous modules.

The first task of this component is to partition the Execution Plan according to the target platforms of

each node. Considering our two targets (the x86 controller and the P4 switch), two Execution Plans are

generated. The information contained in these EPs is gathered and used to generate code for the two

programs. In each program we start with pieces of code that are common to all NF implementations. In

the P4 template program we define the global configuration of the pipeline for the software switch that is

our target (the V1model switch, from p4.org). The generated code will complete the template program

by defining the required packet headers fields and metadata fields, completing the parser and deparser

logic and defining the ingress logic of the controller. In the latter we instantiate the tables and actions

required to represent the behaviour described in the partitioned EP.

We apply the same process for the x86 controller program. The x86 controller program is used to

complete the original controller used in Vigor, replacing the Vigor loop cycle (responsible for processing

packets redirected to the controller) with a newly developed SyNAPSE Runtime API, an extra layer that

complements the P4Runtime API. These Runtime APIs allow the network controller to manipulate data

plane elements defined by a P4 program, such as tables, actions and externs like counters, meters and

registers. The generated x86 controller code will complete the template code by declaring the required

libVig data structures, additional requirements for the SyNAPSE Runtime API and the two main functions

of the Vigor programs: nf init which instantiates the required libVig data structures and the nf process

function that specifies all the NF controller logic. P4Runtime uses a Protobuf-based API to automatically

generate gRPC client/server code for multiple languages.

3.5.1 Implementation Details

One of the main challenges for the Code Generator component dwells in maintaining state between

all tables in the data plane. As mentioned before, we map libVig data structures (map and vector)

operations to P4 tables. When multiple tables are being used in a P4 program it is required that all

packets are processed according to the most recent state of every table. To avoid situations where

a packet reads inconsistent states between the tables, we developed a versioning control mechanism

implemented with an extra table that uses tags to identify different states. These tags individually track

the version of all tables by incrementing its value every time the controller performs a write operation. All

SyNAPSE generated tables have a matching field with the corresponding version of the table. Since the

tag control table is the first table applied to a packet, the packet-processing action applied to the packet

43



is altered if any of the tables does not match on the version indicated.

During runtime, the x86 controller program is essentially used to add or expire new table entries.

The interaction between the control plane and the data plane is performed via Protobuf messages of

the P4Runtime API mentioned before. To add new table entries we resort to P4Runtime’s Packet I/O

framework which allows to capture additional information by defining supplementary P4 headers. This

framework allows to specify additional information such as the original data plane port where the packet

was received, the timestamp when the packet was received or if the packet is a clone. These special P4

headers are required for the P4runtime server to process packet-in and packet-out stream messages.

We define a function send to controller that receives a code id parameter and assembles the packet in

header. Depending on the logic of the NF, a packet can be sent to the controller in different situations

during the execution of the P4 program. For example it might be required that the controller adds a new

table entry to a distinct table, or to a specific group of tables. In order to handle these multiple scenar-

ios and trigger the correct behaviour in the controller, each send to controller of the program passes

a different code id, then we generate the different scenarios to handle the packets in the controller

accordingly.

To generate the controller and the P4 program, the Code Generator will first analyse the partitioned

EPs nodes. The information gathered from the EP nodes is categorized and subsequently used to

complete templates of a P4 program and a C controller program. These templates consist of lines of

code that are common to all NF implementations. In the P4 program template we define keywords, the

headers that take part in controller interaction, general state transitions and packet-processing actions

that are responsible to send the packets between ports (e.g forward and send to controller ). Additionally,

we identify specific areas of the template program that will be completed with the information retrieved

by the Code Generator.

Considering the code generation for the P4 program, the information retrieved in the EP nodes is

categorized according to the forwarding pipeline stages that the nodes will be part of. The nodes can

be used to gather data for P4 structures, such as metadata, tables and headers, or even pipeline stages

like the parser and ingress stages. In some occasions, the information in the EP nodes can be used to

complete more than one of these structures. For instance, the EP nodes that correspond to conditional

statements are used in the parser stage and in the apply block of the ingress stage. In the parser stage

we generate the stage transitions by organizing the conditions according to the the logic outlined by the

EP node, to check whether the packet header fields can be used to generate the conditions designated

in the EP node’s KLEE expressions. If we are not able to generate these conditions the P4 program

immediately rejects the packet or sends it to the controller, thus avoiding further processing of these

packets. In the ingress stage the P4 code generated for the conditional statements will be used to

navigate the full logic of the EP (e.g applying tables, forward and drop actions), instead of transitioning
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to other parser stages. We were able to achieve P4 code that followed syntax and semantic rules after

some iterations of trial and error, during which we found limitations and features of the P4 compiler.

Some of these findings required to adapt and refactor our code base to generate better P4 code.

In the Search Engine (section 3.4) we were able to produce an Execution Plan that depicted the

behaviour of our example Bridge (fig. 3.5). To finally generate the code for the Bridge example imple-

mentation, first we need to partition the EP taking into account the backend of each node (x86 controller

and P4 switch). At the end of this stage we have one EP that only targets the controller and one EP that

targets the P4 software switch.

To generate the code for each backend program, the Code Generator traverses each of the EPs,

retrieving and categorizing information of the EP nodes. Then, for the controller program, we analyse

the number of tables to be created and the circumstances in which each table can be called. For the

P4 program we collect information for the all pipelines, defining the P4 table that corresponds to the

map data structure and the actions that are responsible for forwarding the packets when there is a

MAC address and port pairing registered in the P4 table. The most relevant task consists in the code

generation for the apply block of the ingress stage, where the NF logic is defined and the packet is

processed.

3.6 Summary

In this section, we detailed the design and implementation of SYNAPSE. We described in detail how

the three components of the current prototype manipulate their inputs in order to generate valid NF

implementations. In the first module, we apply static analysis methods to Vigor software NFs to obtain

a complete and sound representation of the NFs functionality, in the form of a Binary Decision Diagram.

The nodes that compose the BDDs describe the libVig calls and conditional statements that need to

occur in order to represent the behaviour of the original NF. This intermediary representation of the

NF allows us to apply synthesis-based techniques to find NF implementations that offload the packet

processing functionality to a P4 software switch. The Search Engine module includes a heuristic that is

capable of choosing a solution based on the characteristics of the intermediary representation. Finally,

in the code generator component we translate the representation of the NF to a C program and a P4

program, that correspond to a semantically equivalent implementation of the initial NF, targeting an

x86 controller and a P4 programmable software switch. We discussed the map merging optimization

implemented, the algorithms employed, an their impact in the search space of our particular problem.

In the next chapter we evaluate the NFs generated by the SyNAPSE prototype when subjected to

real network traffic.
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3.6.1 Contribution

The SyNAPSE prototype is being developed as part of a CMU-PT project, and as such is a joint effort.

In this closing section I will detail my contribution in this thesis.

My first contribution to the SyNAPSE prototype started with a serialization and deserialization mech-

anism for the BDD. Before developing this mechanism, the NF Analysis module would need to gener-

ate the Call Paths and assemble the BDD before any Search Engine operation. As this process was

repetitive and time-consuming, my mechanism enabled reducing the total time to generate solutions.

However, because we made structural modifications to the call paths, the BDD nodes and their symbols,

new issues had to be addressed. The main complications introduced by modifying the BDD symbols

required changes in the algorithm of node reordering, auxiliary functions for the search engine and the

map merging mechanisms.

In the Search Engine component I was involved in the creation of the modules for the target plat-

forms, with focus on the P4 Switch Modules. I focused on code refactoring of the existing SyNAPSE

structure to simplify the overall system complexity, discarding redundant structures. Additionally, for the

Table Lookup module I contributed to the implementation of the table merging mechanism explained

earlier in this chapter 3.4, by developing auxiliary functions which allow to find map data structures that

could be merged during the execution of the Search Engine.

In the Code Generator component I implemented the partitioning of the EPs according to the backend

target, the target Code Generators, and the heuristic scoring system. My contribution included testing

the generated code. During this phase, we discovered limitations of the P4 compiler and fixed some

bugs, which we will share with the community.

Finally, I performed the evaluation of the SyNAPSE prototype, which will be described in the next

chapter.
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SyNAPSE is able to generate semantically equivalent NFs of five Vigor NFs: a NOP, a Static Bridge,

a dynamic Learning Bridge, a Firewall and a NAT.

We have manually developed P4 NF implementations equivalent to the Vigor NFs. These hand-

written implementations where designed to offload as much as possible packet processing to the P4

switch. With these implementations we intend to emulate non-expert P4 developers and compare them

to SyNAPSE generated implementations. Since SyNAPSE generates implementations for a P4 soft-

ware switch, we are unable to provide precise performance metrics. As an alternative, we evaluate the

generate NFs by assessing how they interact with the controller, as this is a proxy for performance: the

more packets are sent to the controller, the less performant is the resulting NF.

We aim to answer to two main questions:

1. How much time does it take for SyNAPSE to generate implementations for every NF?

2. How do hand-written NFs and SyNAPSE generated NFs compare in terms controller interaction

(number of packets sent to the controller)?

The first section of this chapter describes the Vigor NFs from which the prototype can create imple-

mentations, followed by a discussion of the setup and environment in which the NFs were evaluated,

and consequently a section in which we present and discuss the results obtained. In this section we also

estimate the throughput of the implementations generated by SyNAPSE if they were to be deployed in a

real production-leve hardware switch (such as the Intel Barefoot Tofino). The last section of this chapter

compares the generated NFs with NFs developed by hand using P4 externs, to simulate an experienced

P4 programmer.

4.1 NF Description

SyNAPSE is able to generate implementations for 5 Vigor NFs: a NOP, a Static Bridge, a Learning

Bridge, a Firewall and a NAT. The static analysis methods we employ allow us to obtain complete and

sound representations of the Vigor NF code. The applied synthesis-based search allows us to generate

NFs that are semantically equivalent to the ones defined in Vigor.

In this section, we explain the behaviour of each Vigor NF from which we have generated an hand-

written NF implementation. Additionally, we analyse the number of call paths generated and the time

it takes SyNAPSE to synthesize NF implementations. All NFs were designed and adapted to fit the

topology described in fig. 4.1. In the following descriptions we use the terminology LAN and WAN to

refer to the ports each host is connected to.

NOP. This NF is a simple stateless NF that forwards packets from the LAN port to the WAN port and

vice-versa. Takes SyNAPSE less than one second to generate a NOP implementation. The resulting

code consists in single P4 program, as no controller interaction is required for this NF.
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Learning-Bridge associates MAC addresses to ports. Initially the Bridge does not know any pairing

and, as new connections reach the NF, it dynamically learns new associations forwarding the following

packets according to its the registered associations. In the hand-written version we use a table to

register port-MAC addresses connections. The prototype successfully generates an implementation in

159 minutes and 21 seconds and the total search space consists in 1453 solutions.

Static-Bridge. This implementation constitutes a static version of the Learning Bridge. In this version

the MAC table that contains the MAC addresses to port associations is filled at configuration time.

SyNAPSE finds 29 possible solutions and takes 1.6 seconds to find and generate an implementation for

the Static Bridge. Similarly to the NOP NF, there are no packets sent to the controller, thus the resulting

code is entirely ran on the P4 Software Switch.

Firewall. The Vigor’s firewall implementation only allows bidirectional communication if the connec-

tion is initiated from the LAN side, using a map to store flows. Flows originated in the WAN and that

were not previously registered are dropped. To check whether a packet received in the WAN side is

already in the map, the TCP/UDP ports and IP addresses are inverted. We use a similar strategy in the

hand-written NFs that need to operate with 5-tuple flows (Firewall and NAT). For each connection we

register two different table entries, switching the layer 4 ports and the IP addresses. For the SyNAPSE

prototype it takes 541 minutes to iterate over the entire search space, which is composed of more than

33000 solutions.

NAT. A Network Address Translator (NAT) translates addresses between network addresses spaces.

This NF allows communication between devices inside a private network with devices on the Internet

through a single public IPv4 address. Vignat, a NAT implementation in Vigor, stores flows coming from

the LAN and allocates a port that is used to index that flow. When a reply packet is sent to that port,

vignat checks if the IP source address and TCP source port matches the IP destination address and TCP

destination port of the stored flow, translating and redirecting it to the LAN if this check holds true [16].

SyNAPSE takes close to 298 minutes and 45 seconds to iterate over all 17875 solutions and generate

a NAT implementation.

4.2 Benchmarking methodology

In this section I explain the general setup of the environment for the tests. All the results were obtained

by running SyNAPSE in a virtualBox Virtual Machine with 10 cores and 16GB of RAM.

We use mininet to emulate a network topology composed of two hosts connected to a P4 software

switch, as seen in fig. 4.1. For the P4 software switch we opted to use the Simple Switch GRPC

implementation of the Behavioural Model version 2 (BMv2), the reference software switch used to testing

and developing P4 implementations. The advantages of this implementation is that its architecture
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allows to establish TCP connections with an external controller using the P4Runtime API. We use the

P4Runtime API in order to manipulate tables for the hand-written NFs and a newly developed SyNAPSE

Runtime API, an extra layer that complements the P4Runtime API, to manipulate the table instances

defined in the SyNAPSE generated implementations. In the context of the tests we have performed, the

main use for these APIs consisted in inserting and expiring table entries in the P4 tables.

In order to evaluate all the NF implementations we subject them to different traffic distributions and

measure the number of interactions with the network controller. This indicator will later be used as

a performance estimator, as gathering more accurate indicators such as throughput and delay is not

accurate with a P4 software switch. For all the experiments, we used the tcpreplay tool to inject traffic in

the network, from the Host 1 (LAN) to the Host 2 (WAN) and traversing the P4 Switch. The tcpreplay tool

allows to replay previously captured traffic. We tested the NF implementation against packet captures

of 1 million packets with Uniform and Zipfian distributions, obtained by applying Zipfian and Uniform

parameters to traffic samples collected in a university network [34, 35]. The packet captures that follow

Zipfian distributions are more suitable to represent real-world Internet traffic, where a large percentage

of the total traffic corresponds to a small percentage of flows.

During each experiment, we documented the number of interactions with the controller that were

triggered by table entry requests. To add table entries, the P4 switch, uses the packet I/O stream mes-

sages mentioned in section 3.5. We define special headers annotated with controller header notation,

that contain relevant data for the controller to add new table entries. In each experiment we vary the

time that it takes the controller to expire table entries that timeout. To expire table entries the controller

compares the timestamp of the last match for each and every table entry with the timeout defined for a

given table. When the controller verifies that the timeout has expired, it sends an IdleTimeoutMessage

containing the table entry IDs that have expired. This notification message is forwarded to the P4 switch

which is responsible for clearing the table entries.

In the packet capture with Zipfian distribution there are a total of 8386 flows and 77 of those flows

corresponds to 80% of the total traffic, whereas the packet capture with the uniform distribution there are

a total of 34000 different flows and 25000 of them correspond to 80% of the total traffic. The hand-written

implementations we designed for these experiments do not use any P4 externs to optimize the program.

In a general case, these implementations only access the controller when a new flow is required to be

added to a table.

4.3 Performance Benchmarking

In this section we evaluate the obtained results and compare the hand-written NFs against the NFs

generated with SyNAPSE, in terms of percentage of packets that required interaction with the network

controller. We collected statistics for the five available NFs and conducted four distinct experiments for
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Figure 4.1: Simplified view of the network topology.

each NF, with timeouts of 15 and 45 seconds in each experiment.

The graphs in the figures 4.2, 4.3, 4.4, 4.4 compare the controller interaction for all SyNAPSE gen-

erated NFs and Hand written NFs subjected to both traffic distributions and considering expiration times

of 15 and 45 seconds. The NOP and Static-Bridge NF do not require any controller interaction as these

NFs do not require maintaining any state regarding flows. The NOP simply forwards packets from one

switch port to another and the Static-Bridge previously parses all the flows that traverse the NF, adding

them to a static table where no table entries are expired. For the remaining stateful implementations,

in each experiment, the results obtained from both SyNAPSE generated and hand-written implementa-

tions are similar. As expected, we see that the increase in the expiration times from 15 to 45 seconds

translates into more packets being sent to the controller, with a 0.46% and 0.56% bump for Zipfian and

Uniform distributions, respectively. This indicates that, like our hand-written implementations, SyNAPSE

can generate implementations that only access the controller when processing a packet of a flow that

has not yet been stored in the switch.

We also conducted experiments with the stateful NFs (Bridge, NAT, and Firewall) and additional

expiration times of 30 and 60 seconds to further investigate the behavior of the NF implementations

generated by SyNAPSE, as well as the consistency and reliability of the SyNAPSE Runtime API. The

results of these experiments can be observed in the graphs of the figures 4.6, 4.7, 4.8, 4.9, 4.10 and

4.11. We can see from these graphs that all of the experiments resulted in similar results for both hand-

written and generated NFs. Every experiment repetition for any of the expiration times yields statistically

similar results, giving us positive indicators of the accuracy and reliability of the SyNAPSE Runtime API.

The impact of increasing the expiration times is more noticeable in the Zipfian Distribution packet capture

(figures 4.7, 4.9, and 4.11), where the percentage of interaction with the controller diminishes when the

expiration times increase. For the uniform distribution packet capture, this percentage stabilizes after
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the 30 second expiration time. The traffic with a Zipfian distribution has a higher packet count for a small

number of flows which translates into smaller time intervals between packets of the same flow. When

we increase the expiration time, the table entries timestamps are renewed more frequently, resulting in

a reduction in the number of expired flows.

We developed SyNAPSE to generate implementations that follow the same NF packet-processing

approach as our hand-written NF implementations, which were created with the goal of minimizing

controller interaction as much as possible without using any type of P4 externs. We can infer that this

goal was achieved given the statistically similar results of all of our experiments.

Throughput Estimation. The P4 programs that are compiled correctly are able to run at line-rate in

physical equipment. In the following arithmetic operations, we estimate the throughput of the generated

implementations if they were to be deployed in a Wedge Barefoot Tofino with 32 ports each with a

100 Gbps rate. We use a weighted average (eq. (4.1)) to estimate the throughput of the SyNAPSE

generated NFs, using a Controller Throughput of 1 Gbps, as documented in [36] and a (Controller

Packet % that fluctuates according to the collected results. Because we are estimating performance

metrics for different NF implementations we need to adapt the P4 Switch Throughput accordingly. If

we see that the NF implementations could be adapted so that all of the 32 ports of the Barefoot Tofino

would be used, we consider the throughput value of 3.2 Tbps. This remains true for the generated

implementations of the NOP and Static and Learning Bridge NFs. For the remaining NAT and Firewall

implementations, we consider a maximum throughput of 100 Gbps, using only two ports (the LAN port

and WAN port), just like the original Vigor NF implementations.

P4 Switch Throughput ∗ (1−Controller packet %)+ Controller Throughput ∗ Controller packet %

(4.1)

To estimate the throughput of the generated NFs we use the results obtained in the experiment

documented in fig. 4.4, with the table entry expiration time of 15 seconds and 1 million packets with

a Zipfian Distribution, as this distribution can better describe real-world traffic scenarios. The estimate

throughput for the stateless NFs like the NOP and the Static-Bridge, where no packet is sent to the

controller, is 3.2 Tbps (eq. (4.2)).

3200 ∗ (1− 0.00) + 1 ∗ 0.00 = 3200 Gbps (4.2)

In the Learning Bridge, we observe that 1,68% of the packets are sent to the controller, resulting in

an average throughput of 3146,256 Gbps (eq. (4.3)).

3200 ∗ (1− 0.0168) + 1 ∗ 0.0168 = 3146, 257 Gbps (4.3)
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Table 4.1: Comparing throughput estimation for SyNAPSE NFs and the Maestro NFs.

The NAT and the Firewall implementations also reported that 1,68% of the packets are sent to the

controller, thus the resulting throughput is 98,337 Gbps (eq. (4.4)).

100 ∗ (1− 0.0168) + 1 ∗ 0.0168 = 98, 337 Gbps (4.4)

These estimations indicate us that the NOP and Static Bridge can run at line-rate, as no packets

are sent to the controller. The Learning Bridge estimation also has a positive outlook as it is close to

line-rate processing values. The remaining stateful NF implementations were generated considering

only the WAN and LAN ports, nonetheless we obtained estimated values close to the ceiling 100 Gbps.

We compared the throughput values obtained in the evaluation of the Maestro NFs [16], a multi-core

optimized versions of the Vigor NFs [6], as demonstrated in the table 4.1. We found that the estimated

values for the SyNAPSE NFs surpass the throughput values obtained in of the Maestro NFs shown

in [16].

4.4 Discussion

In the previous sections we studied how SyNAPSE generates stateful NF implementations for a software

switch. Initially, the scope of this thesis also included generating NF implementations that resorted to P4

externs to optimize the performance of the NFs, but due to time constraints we were unable developed

the required modules to attain this goal. However, we manually developed hand NF versions that would

be compared, in the evaluation section, to the SyNAPSE optimized implementations.

In these manually developed advanced versions of the NFs we focused on reducing the controller

interaction by adapting P4 registers to store and match information, replacing the functionality of the

traditional P4 match-action tables. The P4 registers are stateful memories whose values can be read
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Figure 4.2: Comparison of the percentage of packets sent to the controller for all NFs, with a 15 second expiration
time and 1 million packet with Uniform distribution.

Figure 4.3: Comparison of the percentage of packets sent to the controller for all NFs, with a 45 second expiration
time and 1 million packet with Uniform distribution.
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Figure 4.4: Comparison of the percentage of packets sent to the controller for all NFs, with a 15 second expiration
time and 1 million packet with Zipfian distribution.

Figure 4.5: Comparison of the percentage of packets sent to the controller for all NFs, with a 45 second expiration
time and 1 million packet with Zipfian distribution.
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Figure 4.6: Percentage of packets sent to the controller for different expiration times in the Learning Bridge NF (1
Million packets with a Uniform Distribution).

Figure 4.7: Percentage of packets sent to the controller for different expiration times in the Learning Bridge NF (1
Million packets with a Zipfian Distribution).
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Figure 4.8: Percentage of packets sent to the controller for different expiration times in the Firewall NF (1 Million
packets with a Uniform Distribution).

Figure 4.9: Percentage of packets sent to the controller for different expiration times in the Firewall NF (1 Million
packets with a Zipfian Distribution).
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Figure 4.10: Percentage of packets sent to the controller for different expiration times in the NAT NF (1 Million
packets with a Uniform Distribution).

Figure 4.11: Percentage of packets sent to the controller for different expiration times in the NAT NF (1 Million
packets with a Zipfian Distribution).
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and written during packet forwarding and used as keys in the match-action tables.

In this section, we are going to carry out the following exercise: use the hand-written advanced

NF implementations to infer the performance of the optimized implementations that SyNAPSE would

generate. To derive these performance indicators we evaluated the hand-written advanced NFs and ap-

plied the same principles as in 4.3, where we analysed the controller interaction and applied a weighted

average to deduce the NF’s throughput.

Let us analyse how P4 registers were used in these implementations. To emulate the behaviour of

a P4 table we used two P4 registers. For each flow, we use P4s hash mechanism to hash the 5-tuple

and retrieve an index. By storing information in this index position we are able to check if a flow has

been previously parsed by the NF. We use the first P4 register to store the timestamp of the last ”hit”

for each flow entry and the second P4 register to store the flow addresses and ports. Whenever a new

packet arrives to the switch we hash its 5-tuple to find its corresponding index. Depending on the NF

functionality and in the content stored in the register we can retrieve/alter the data relative to the flow

and apply packet forwarding actions. To apply these actions a set of requirements are necessary, for

example we can forward the packet, if the flow is not expired and data stored in the second register

contains data checks out against the packet that’s being processed. Whenever different flows result in

the same index (”collision”), we send the packet to the controller.

In the following graphs we compare all NF versions: the implementations generated by SyNAPSE,

the previously studied Hand-written (Simple) implementations and their respective optimization (ad-

vanced). We can affirm that using this approach, where the registers act as a cache memory, we

are able to significantly the number of controller interactions.

Throughput Estimation. We now infer the throughput of the NF advanced versions Regarding the

estimate throughput for the stateless NFs like the NOP and the Static-Bridge, where no packet is sent

to the controller, we obtained the same result of 3.2 Tbps.

3200 ∗ (1− 0.00) + 1 ∗ 0.00 = 3200 Gbps (4.5)

In the Learning Bridge, we observe that only 0,04% of the packets are sent to the controller, resulting

in an average throughput of 3187,204 Gbps.

3200 ∗ (1− 0.004) + 1 ∗ 0.004 = 3187, 204 Gbps (4.6)

The NAT and the Firewall implementations also reported that 1,68% of the packets are sent to the

controller, thus the resulting throughput is 99,604 Gbps.

100 ∗ (1− 0.004) + 1 ∗ 0.004 = 99, 604 Gbps (4.7)
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Table 4.2: Comparing throughput estimation for simple and advanced SyNAPSE NFs and the Maestro NFs.

Figure 4.12: 45 second expiration time and Uniform distribution.

We can compare all NF versions throughput estimation in 4.2. These estimations results we have

calculated improve the values obtained in the previous section and show us the potential for SyNAPSE,

if it were able to automatically synthesize optimized NF implementations. We leave these tasks for

Future Work 5.2.
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Figure 4.13: 15 second expiration time and Uniform distribution.

Figure 4.14: 45 second expiration time and Zipfian distribution.
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Figure 4.15: 15 second expiration time and Zipfian distribution.
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5.1 Conclusions

This dissertation contributes to the state of the art of program synthesis and Software-Defined Networks

(SDN) by introducing SyNAPSE, a tool capable of generating NF implementations that are split between

a software P4 switch and a x86 controller, with the goal of offloading most of the packet-processing to

the switch. These new NFs are synthesized from NFs programmed in the C language in the context of

the Vigor framework, allowing non-network developers to benefit from the upsides of P4 without actually

having to learn how to program in a network-oriented, low-level language.

To synthesize semantically equivalent NF implementations from NFs programmed in C, the SyNAPSE

prototype gradually processes the NF code resorting to three different modules: NF Analysis module,

Search Engine and Code Generator. In the NF analysis module we resort to Vigor’s KLEE symbolic

engine to obtain a complete and sound representation of the NFs behaviour. With this representation

we make use of Maestro’s to generate a functional model - a Binary decision diagram (BDD) - that

represents all abstract functionality of the NF.

The BDD is introduced to the Search engine, the next component of the pipeline, where we’ll apply

synthesis-based techniques to generate an Execution Plan (EP). This intermediate representation can

describe concretely the set of operations necessary to be performed by the x86 controller and P4 target

platform. The Search Engine will produce multiple EP solutions, from which its heuristic mechanism will

prioritize the solutions that are more reliant on the P4 switch target. To finally generate the C controller

program and the P4 switch program, we pass the Execution Plan to the Code Generator. The first task

of this component is to partition the Execution Plan according to the target platforms of each node. The

information gathered from the EP nodes is categorized and subsequently used to complete program

templates of a P4 program and a SDN controller program. These templates consist in lines of code

that are common to all NF implementations. The final result will be two programs that represent a

semantically equivalent NF of the input Vigor NFs

We evaluated our solution by comparing 5 different NFs implemented using SyNAPSE with hand-

written implementations. The results show that SyNAPSE is able to synthesize NF implementations

that, just like the hand-written ones, only interact with the x86 controller when a new flow reaches the

software switch. In other words, we move most processing to the switch. Thus, we can conclude that

SyNAPSE allows developers to make use of P4 software switches with no previous expertise.

5.2 Limitations and Future Work

Due to time constraints and issues with the tools we used, our implementation and evaluation still have

some limitations. First, due to issues with the Barefoot proprietary software (the Software Development

Kit), the generation of P4 code targeting a real hardware switch, following the the Tofino Native Archi-
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tecture (TNA), was abandoned. We developed simple hand-written NFs targeting the TNA and Modules

that targeted the TNA architecture by adapting the existing P4 Software Switch Modules, but we have

not been able to move much forward on integrating it into the SyNAPSE prototype.Additionally, we would

also need to extend the compatibility of the SyNAPSE Runtime API to the Tofino Switch.

In our initial evaluation our goal was to analyse the systems performance with real network traces.

In the process we faced limitations in the latest stable versions of the BMv2 Simple Switch GRPC

implementations, that inhibited us from performing the experiments we originally planned for (consisting

of around 12 million packets each). We have anyway tweaked some configuration parameters the BMv2

swich and we were able to inject about 1 million packets per experiment.

In the section 4.4, we concluded that the use of P4 externs to minimize controller interaction produces

favourable results. The strategy we have implemented to reduce the controller interaction includes the

combined use of P4 tables and P4 registers, with slight adjustments to the type of information we store in

the P4 registers, depending on the NF functionality. We leave this challenge of generating optimized NF

implementation and finding a generic solution that can be applied to any libVig function (that currently

generates a P4 table) for future work.
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Jan. 2021.

[17] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Found. Trends Program. Lang., vol. 4,

no. 1-2, pp. 1–119, 2017. [Online]. Available: https://doi.org/10.1561/2500000010

[18] S. Gulwani and P. Jain, “Programming by examples: Pl meets ml,” 11 2017, pp. 3–20.

67

https://doi.org/10.1145/3093333.3009845
https://www.techrxiv.org/articles/preprint/The_Programmable_Data_Plane_Abstractions_Architectures_Algorithms_and_Applications/12894677/1
https://www.techrxiv.org/articles/preprint/The_Programmable_Data_Plane_Abstractions_Architectures_Algorithms_and_Applications/12894677/1
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/3139645.3139648
https://doi.org/10.1145/2342356.2342359
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://doi.org/10.1561/2500000010


[19] A. Solar-Lezama, “Program sketching,” Int. J. Softw. Tools Technol. Transf., vol. 15, no. 5-6, pp.

475–495, 2013. [Online]. Available: https://doi.org/10.1007/s10009-012-0249-7

[20] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Network configuration synthesis

with abstract topologies,” SIGPLAN Not., vol. 52, no. 6, p. 437–451, Jun. 2017. [Online]. Available:

https://doi.org/10.1145/3140587.3062367

[21] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t mind the gap: Bridging

network-wide objectives and device-level configurations,” in Proceedings of the 2016 ACM

SIGCOMM Conference, ser. SIGCOMM ’16. New York, NY, USA: Association for Computing

Machinery, 2016, p. 328–341. [Online]. Available: https://doi.org/10.1145/2934872.2934909

[22] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide configuration synthesis,”

in Computer Aided Verification, R. Majumdar and V. Kunčak, Eds. Cham: Springer International
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Aided Verification, R. Majumdar and V. Kunčak, Eds. Cham: Springer International Publishing,

2017, pp. 301–321.

[28] Y. Wang, C. Jiang, X. Qiu, and S. G. Rao, “Learning network design objectives using a program

synthesis approach,” in Proceedings of the 18th ACM Workshop on Hot Topics in Networks, ser.

HotNets ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 69–76. [Online].

Available: https://doi.org/10.1145/3365609.3365861

68

https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/3140587.3062367
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2774993.2775006
https://doi.org/10.1145/2716281.2836119
https://github.com/noxrepo/pox
https://doi.org/10.1145/3365609.3365861


[29] H. Chen, A. Wang, and B. T. Loo, “Towards example-guided network synthesis,” in

Proceedings of the 2nd Asia-Pacific Workshop on Networking, ser. APNet ’18. New

York, NY, USA: Association for Computing Machinery, 2018, p. 65–71. [Online]. Available:

https://doi.org/10.1145/3232565.3234462

[30] X. Gao, T. Kim, A. K. Varma, A. Sivaraman, and S. Narayana, “Autogenerating fast

packet-processing code using program synthesis,” in Proceedings of the 18th ACM Workshop

on Hot Topics in Networks, ser. HotNets ’19. New York, NY, USA: Association for Computing

Machinery, 2019, p. 150–160. [Online]. Available: https://doi.org/10.1145/3365609.3365858

[31] X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K. Varma, P. G. Kannan, A. Sivaraman,

S. Narayana, and A. Gupta, “Switch code generation using program synthesis,” in Proceedings

of the Annual Conference of the ACM Special Interest Group on Data Communication on

the Applications, Technologies, Architectures, and Protocols for Computer Communication, ser.

SIGCOMM ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 44–61.

[Online]. Available: https://doi.org/10.1145/3387514.3405852

[32] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan, G. Varghese,

N. McKeown, and S. Licking, “Packet transactions: High-level programming for line-rate

switches,” in Proceedings of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New

York, NY, USA: Association for Computing Machinery, 2016, p. 15–28. [Online]. Available:

https://doi.org/10.1145/2934872.2934900

[33] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai, M. Zhang, and M. Yu, “Lyra:

A cross-platform language and compiler for data plane programming on heterogeneous asics,” in

Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication

on the Applications, Technologies, Architectures, and Protocols for Computer Communication, ser.

SIGCOMM ’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 435–450.

[Online]. Available: https://doi.org/10.1145/3387514.3405879

[34] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and K. Argyraki, “Automated synthesis

of adversarial workloads for network functions,” in Proceedings of the 2018 Conference

of the ACM Special Interest Group on Data Communication, ser. SIGCOMM ’18. New

York, NY, USA: Association for Computing Machinery, 2018, p. 372–385. [Online]. Available:

https://doi.org/10.1145/3230543.3230573

[35] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in the wild,”

in Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, ser. IMC ’10.

69

https://doi.org/10.1145/3232565.3234462
https://doi.org/10.1145/3365609.3365858
https://doi.org/10.1145/3387514.3405852
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/3230543.3230573


New York, NY, USA: Association for Computing Machinery, 2010, p. 267–280. [Online]. Available:

https://doi.org/10.1145/1879141.1879175

[36] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “Oflops: An open framework for

openflow switch evaluation,” in Passive and Active Measurement, N. Taft and F. Ricciato, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 85–95.

70

https://doi.org/10.1145/1879141.1879175


71


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organization

	2 Related work
	2.1 Software-Defined Networking
	2.1.1 Data Plane Programmability
	2.1.2 P4 Language

	2.2 Network Function Virtualization
	2.2.1 Architectures

	2.3 Vigor as an Analysis Framework
	2.4 Program Synthesis
	2.4.1 Programming by Example
	2.4.2 Sketch

	2.5 Network Synthesis
	2.5.1 Configuration Synthesis
	2.5.2 SDN Synthesis
	2.5.3 Network Function Synthesis
	2.5.4 Network Program Synthesis

	2.6 Summary

	3 Architecture
	3.1 Overview
	3.2 SyNAPSE in Detail
	3.2.1 Vigor Data Structures
	3.2.2 Running Example

	3.3 Network Function Analysis
	3.3.1 Call Paths
	3.3.2 Binary Decision Diagrams

	3.4 Search Engine
	3.4.1 Search Space Algorithm
	3.4.2 Implementation Details
	3.4.3 Running Example

	3.5 Code Generator
	3.5.1 Implementation Details

	3.6 Summary
	3.6.1 Contribution


	4 Evaluation
	4.1 NF Description
	4.2 Benchmarking methodology
	4.3 Performance Benchmarking
	4.4 Discussion

	5 Conclusion
	5.1 Conclusions
	5.2 Limitations and Future Work

	Bibliography

