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Abstract

Today, there are many software applications that have been designed using monolithic configurations

that could benefit from being decomposed into a combination of microservices or, in some cases, state-

less functions. However, when decomposing a monolithic application in microservices, the programmer

needs to write additional code to correct the anomalies that may be generated when executing the

composition in a decentralized system. Tools that support the decomposition of monolithic applications

into microservices automatically compute a number of complexity metrics, providing an estimate for the

amount of effort required to code the compensating actions for a given decomposition. This information

guides the programmer in finding the most suitable decomposition. A limitation of these tools is that

they have been developed under the assumption that the execution environment is unable to offer any

type of support for transactions. We aim at extending these tools with mechanisms that can consider

the different consistency models supported at runtime, in particular, Transactional Causal Consistency.

For this purpose we will use automated procedures to identify potential anomalies generated during the

execution of a given decomposition under the TCC model. The identification of these anomalies can be

used to guide the development of compensating actions, and offer a principled method to estimate the

complexity associated to the deployment of a given decomposition.
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Resumo

Hoje em dia, grande parte das aplicações desenvolvidas com base em arquiteturas monolı́ticas pode-

riam beneficiar da sua decomposição numa arquitetura de microserviços ou, em alguns casos, funções

stateless. No entanto, para decompor uma aplicação monolı́tica num conjunto de microserviços, o pro-

gramador precisa de escrever código adicional que corrija as anomalias que são geradas ao executar

a decomposição numa configuração distribuı́da. Algumas ferramentas de suporte à decomposição de

aplicações monolı́ticas num conjunto de microserviços calculam automaticamente os valores para uma

série de métricas de complexidade, que correspondem à aproximação para o esforço necessário para a

implementação das ações compensatórias para uma determinada decomposição. Esta informação ori-

enta o programador no objetivo de encontrar a decomposição em microserviços mais apropriada para

um certo sistema monolı́tico. Uma limitação destas ferramentas é o facto de terem sido desenvolvidas

sob a consideração de que o ambiente de execução não oferece nenhum tipo de apoio transacional. O

objetivo deste trabalho é ampliar a utilidade destas ferramentas com mecanismos que consigam ter em

conta diferentes modelos de consistência, em particular a Consistência Causal Transacional. Com esta

finalidade em vista, utilizaremos mecanismos automatizados de forma a identificar potenciais anoma-

lias durante a execução de uma decomposição quando o ambiente de execução garante Consistência

Causal Transacional. A descoberta destas anomalias pode ser utilizada para guiar a implementação de

ações compensatórias e para oferecer uma estimativa para a complexidade associada ao desenvolvi-

mento de uma determinada decomposição.

Palavras Chave

Microserviços, Consistência de Dados, Anomalias de Serializabilidade, Sistemas Distribuı́dos
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The microservice architectural style has been widely adopted for the past years. In opposition to

monolithic architectures, microservice architectures decompose an application into a set of small and

well-contained services, each having its own cohesive set of responsibilities. This modularization of

the system function offers many benefits: services are smaller and less complex, and hence easier to

implement, modify and test, and each service can be independently deployed using the technology and

hardware resources that are more appropriate to its nature. Regarding system performance, microser-

vices allow for higher availability and fault isolation: a fault in one of the services will not bring the whole

system down, as is the case with monoliths, where one misbehaving component could compromise

the operation of the entire application. Furthermore, each service can also be subject to independent

horizontal scaling according to its type of demand.

1.1 Motivation

Implementing a microservice architecture can bring many advantages, but can also impose additional

complexity during the development: distributed computing is complex, and adds intricacy to application

development, testing and deployment. Services need to be able to handle faulty behaviour and unavail-

ability of other services, and dependencies between them need to be taken into account. Also, to ensure

a high decoupling between the different microservices, these are usually deployed on infrastructure that

has no support for distributed transactions. Instead, most microservices and FaaS architectures rely on

weakly consistent storage services. This means that a modular decomposition of the monolithic applica-

tion is exposed to intermediate states and to inconsistent data versions that may cause the occurrence

of anomalies. To mitigate the impact of these anomalies, the programmer must develop additional code,

for instance, compensating actions, that can correct the effects of unintended behaviours generated

during the execution. Monolithic versions of the same application are not exposed to these anomalies,

considering they usually rely on a transactional substrate that can offer strong consistency, such as Se-

rializability, typically offered by a single datastore that relies on ACID properties (Atomicity, Consistency,

Isolation and Durability).

Given the tension between the benefits that come from modularity and the additional complexity that

results from the lack of isolation, the task of finding the best decomposition for an otherwise monolithic

application, i.e., the task of defining the boundaries of each service and the redesign of the system’s

functionalities to accommodate the partition according to the consistency policy required is not trivial. To

ease this task, a number of tools to support the decomposition of monolithic applications to microser-

vices automatically compute a number of complexity metrics, that provide an indicative estimate for the

amount of effort required to code the compensating actions that can correct latent anomalies during the

execution of a given composition [1,2]. A limitation of these tools is that they have been developed under
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the assumption that the execution environment is unable to offer any type of support for transactions.

This project is based on the insight that there are a number of transactional consistency models that

have been developed for geo-replicated systems and have enormous potential to simplify the program-

ming of applications that use microservice and FaaS architectures. Most notably, we are interested in

materialising the concept of Transactional Causal Consistency (TCC) [3, 4] in this context. It is known

today that TCC is the strongest semantics that can be implemented using non-blocking algorithms and

without requiring the execution of consensus among participants in a transaction [5–7]. TCC ensures

that clients observe a sequence of write operations that respects causality and, furthermore, guarantees

that the results of a transaction are atomically visible. This prevents a number of anomalies that can be

hard or even impossible to compensate when using the Saga pattern. In virtue of these advantages, the

use of TCC has been broadly advocated for several settings, including FaaS architectures [8].

We extended previous works that support the decomposition of monolithic applications into a set of

microservices with mechanisms that can take into account the different consistency models supported

at runtime, in particular, TCC. For this purpose, we used automated mechanisms to identify anomalies

that can arise during the execution of a given decomposition under the TCC model. In particular, we

leveraged on existing tools, such as CLOTHO [9], a framework that detects serializability violations of

Java applications executing on top of weakly consistent distributed databases. CLOTHO employs a

static analyzer and a model checker to generate abstract executions of the input program, discover

serializability violations in these executions and translate them back into concrete test inputs that can

then be used for assessment by application developers. The identification of these anomalies can be

used to guide the development of compensating actions, and offer a principled method to estimate the

complexity associated to the deployment of a given decomposition.

1.2 Contributions

This work addresses the problem of estimating the complexity of decomposing a monolithic system into

microservices for execution environments that support Transactional Causal Consistency.

We designed a tool that takes as input a monolithic application, generates a set of microservice

decompositions for the application, and outputs information that can help in assessing the complexity

of implementing these decompositions on top of TCC, including details of the anomalies that can occur

during the execution and hints regarding the compensating actions required to address these anomalies.

We extended previous tools, namely the work of Santos and Rito Silva [2], that breaks a monolithic

application in different sets of microservices, and CLOTHO [9], a tool that automatically detects the

anomalies that can occur during the execution of a distributed application.
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1.3 Results

This thesis produced the following results:

• A novel and precise calculation for the complexity of decomposing a monolith

• A propotype of the proposed tool

• A detailed explanation of the proposed solution

• A thorough evaluation of the proposed solution, including a comparison of the complexity metric

produced by our tool and the complexity metrics proposed in [2]

1.4 Research History

This work is motivated by two distinct research efforts on-going at INESC-ID. First, under the supervi-

sion of Prof. António Rito Silva, several students are working on the identification of metrics and tools

that can guide the decomposition of a monolithic application into a micro-services architecture. Sec-

ond, under the supervision of Prof. Luı́s Rodrigues, several students are working on providing support

for Transactional Causal Consistency (TCC) in micro-service and Function-as-a-Service architectures.

Our work aims at bridging these research lines, by researching tools that can help to understand (and

quantify) the benefits that TCC support can bring when decomposing monoliths.

1.5 Organization of the Document

The rest of this thesis is organized as follows: Chapter 2 introduces relevant concepts and an overview of

the related work; Chapter 3 describes the frameworks and methods used to calculate system complexity;

Chapter 4 reveals the results of the experimental evaluation; Chapter 5 concludes this document by

outlining the main contributions and directions for future work.
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This section aims to introduce concepts that will be relevant to the understanding of the document,

as well as a review of the related work. We start by briefly discussing the advantages and disadvan-

tages of microservices architectures versus monolithic architectures, before adressing the challenges of

providing strong consistency in microservices architectures. We then review commonly used strategies

to mitigate the negative effects of weak consistency in microservice architectures. After all background

concepts have been introduced, a literary review of the most relevant works for this project is done: we

briefly introduce two tools that have been designed with the goal of supporting the decomposition of

monolithic applications into microservices. Finally, we assess a number of works that provide mecha-

nisms or tools to determine consistency anomalies in the form of serializability violations of programs.

2.1 Monolithic versus Microservice Architectures

In a monolithic architecture, all functionalities of an application are executed by a single machine or

server that implements all the application logic. Furthermore, the application state is typically stored in a

single database. This setup makes it straightforward to execute functionalities in the context of transac-

tions, safeguarding isolation between concurrent executions of the same or different functionalities [10].

In a microservice architecture, different functionalities can be executed by different machines, each

making use of an independent storage system. Functionalities that are executed uniquely inside a single

microservice can be executed employing some transactional substrate, but those that are executed over

multiple microservices cannot be guaranteed to yield high isolation semantics [10], as will be discussed

below.

Both architectural patterns have advantages and disadvantages.

Monoliths, on the one hand, present limitations in performance due to the large shared data domain

that is accessed by all functionalities of the system. This provokes a major setback in availability and

fault-tolerance, and thus instigates the need for a novel, distributed architectural pattern that addresses

these concerns. On the other hand, when using monoliths, the programmer can leverage transactions

to avoid reasoning about concurrency.

In turn, microservice architectures have the opposite pros and cons. For one thing, the modularity

provided by this paradigm allows the allocation of different developer teams, programming languages,

and data storage technologies to each service. Also, individual services execute in individual processes

or machines, which provides the additional benefit of lowering the probability of full-scale failure when

a set of the services is anomalous. For another, distributed systems are harder to program, and those

who take up this pattern have to tackle the overhead caused by remote communication and global syn-

chronization of data. Maintaining strong data consistency is immensely challenging and the tendency

of faults is significantly larger. To design performant and correct microservices, architects and program-

9



mers need to consider all the consequences of failure for every remote execution, as well as those

deriving from the difficulty of synchronizing distributed objects.

2.2 Serializability

A transaction is an abstraction that allows the programmer to group a sequence of operations on multiple

objects of a data store such that they are executed as an atomic unit. Transactions can either commit

or rollback: if a transaction commits, all its effects are permanent and visible to other transactions; if it

cannot commit, the transaction will be rolled-back, reversing all operations that it consists of and leaving

the database unchanged. Furthermore, the execution of a transaction is isolated from the concurrent

execution of other transactions, relieving the programmer from explicitly implementing concurrency con-

trol. The properties of transactions are also known as the ACID properties [11]: Atomicity, stating that all

changes to data are performed as if they were a single operation and either all changes happen or none

do; Consistency, which requires that the transactions always leave the database in consistent states

that respect business rules; Isolation, specifying that intermediate states of a transaction should not be

seen by other transactions; Durability, implying that the changes to data are to be definitive after the

transaction is committed, and cannot be undone even in the case of system failures.

Transactional systems have been widely studied in the literature, namely - but not exclusively -,

by the database community. Different consistency criteria that characterize precisely how transactions

are isolated from each other have been proposed. The strongest consistency model for transactional

systems is serializability, stating that a concurrent execution of a set of transactions should be equivalent

to some serial execution of these transactions. Serializability is intuitive for programmers and designers:

if an application is correct in serial executions, it will remain correct in concurrent executions.

However, enforcing serializability is expensive, because automated techniques to enforce concur-

rency control introduce inefficiencies in the system operation. In distributed systems, enforcing serial-

izability requires ordering the transactions in a total order and coordination, typically in the form of a

two-phase commit protocol [12]. For these reasons, the consistency models implemented by modern

datastores are often weaker than serializability. Bailis et al. [5] conducted a survey where 18 off-the-shelf

popular database systems were analyzed, and only 3 of those provided serializability as the default con-

sistency model. Perhaps surprisingly, 8 of the systems considered in their evaluation did not provide

serializability at all.

10



2.3 Consistency in Microservice Architectures

Microservice architectures are deployed on distributed systems and therefore inherit the advantages

and challenges associated with distribution. On the one hand, as discussed before, microservice ar-

chitectures can be made more fault-tolerant and more scalable than centralized systems. On the other

hand, implementing coordination among multiple services is costly and may impair system availability.

The trade-off between availability and consistency in distributed systems is captured by the CAP The-

orem [13], stating that any given distributed system can deliver only two of the following three desired

characteristics: consistency, availability, and partition tolerance. Intuitively, this limitation results from the

fact that nodes may not be able to coordinate when there is a partition in the network. Therefore, in the

presence of a partition, one must choose between consistency and availability.

Most microservice architectures favour availability and, therefore, avoid depending on distributed

transactions that span multiple services. Instead, transactions can be used internally by each individual

microservice, such that functionalities that are executed by the same microservice are isolated from each

other, but functionalities that are executed by multiple microservices are assumed to execute without any

form of concurrency control. This implies that end-users will be exposed to intermediate states in the

functionality execution graph that would not occur in a monolithic system. Furthermore, intermediate

states of different functionalities can interact with one another, which adds to the number of inconsistent

states that the business logic of one functionality needs to consider.

Given that most microservice architectures favour availability and scalability, avoiding the costs of en-

suring strong consistency, programmers need to deal explicitly with the anomalies that may be generated

when executing different microservices concurrently, without isolation. In this section we enumerate the

main anomalies that can occur for which the programmer needs to write compensating actions. These

anomalies are illustrated with the help of figures figs. 2.1(a), 2.1(b), 2.2(a), 2.2(b) and 2.3, where each

transaction is represented by a gray box, and operations of transactions are represented by ellipses

inside the boxes. The connecting dotted arrow with label vis represents the visibility relation between

operations. If two operations are connected by such arrow, it means that the effects of the first can be

seen by the second.

Dirty Read A Dirty Read anomaly is the result of some transaction being allowed to observe the effects

of either uncommitted, aborted or intermediate states of another transaction executing concurrently.

In fig. 2.1(a), transaction T2 reads x1. This value results of an intermediate state of transaction T1,

considering that it is overwritten by value x2 later in the same transaction. In a serial execution, the read

made by T2 should return the committed value x2.
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update (x1)

update (x2)

select (x1)

T1
T2

vis

(a) Dirty read

update (x1)

update (y1)

update (x2)

update (y2)

T1 T2

T3

select (x2)

select (y1)

visvis

(b) Dirty write

Figure 2.1: Consistency anomalies: dirty read and dirty write

Dirty Write Berenson et al. [14] define a Dirty Write anomaly by drawing on the following example:

some transaction T updates one data object and, before it has the opportunity to commit or rollback,

transaction T’ initiates and updates the same data object. If either transaction T or T’ were to rollback, it

is unclear what the value for the data object should be.

For the context of this work, we define this anomaly as the behavior perceived by a third transaction

T3, when reading updates made by two concurrent transactions, T1 and T2. Under atomic executions,

T3 should observe either version 1 or version 2 of both objects, never a different version of each object,

which is what is depicted in fig. 2.1(b).

Lost Update A lost update anomaly (fig. 2.2(a)) occurs when two transactions, T1 and T2, update

the same object concurrently based on their local values for that object. Because neither of the two

transactions observes the other’s update, this anomaly originates a faulty behavior. If we consider the

initial value x1 = 0, a serial execution of the two transactions would lead to a final state of x = 20.

However, in a concurrent execution of this example program, if the underlying consistency model does

not forbid this behavior, the final state could yield a value of either x = 10 or x = 20.

Write Skew The Write Skew anomaly (fig. 2.2(b)) can be described as a generalization of 2.3 to

multiple data objects. It occurs when transaction T1 reads object x and writes to object y, and transaction

T2 reads object y and writes to object x. This is commonly the case when some program state needs to

be maintained before making a modification to a certain object. For example, consider a banking system

where x and y represent the current values of two different accounts. Transaction T1 reads the value of
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one account, and, if some constraint is observed, updates the other account. Concurrently, transaction

T2 reads the value of the account that is being modified by T1, and decides to update the other account.

Since none of the transactions is able to observe the other’s updates, an inconsistent final state will be

originated by this execution, and user constraints may be violated.

select (x1)

update (x1 + 10)

T1 T2

select (x1)

update (x1 + 10)

(a) Lost update

select (x0)

update (y1)

T1 T2

select (y0)

update (x1)

(b) Write skew

Figure 2.2: Consistency anomalies: lost update and write skew

Long Fork A Long Fork anomaly (fig. 2.3) happens whenever two concurrent transactions, T1 and T2

make concurrent updates to distinct objects. A third transaction, T3, can see the update made by T2,

but not the one made by T1. A fourth transaction, T4, only sees the update made by T1. Therefore, from

the perspectives of T3 and T4, the writes made by T1 and T2 happen in different orders.

select (x1)

select (y0)

update (x1)

T3

T2

vis

T1

update (y1)

T4

select (x0)

select (y1)

vis

Figure 2.3: Consistency anomaly: long fork
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2.4 Weak Consistency

As we have discussed above, monoliths are commonly built on top of transactional systems that offer

serializability, while microservices are generally built assuming no consistency guarantees across differ-

ent services. However, there are a number of weaker forms of consistency that can be enforced without

incurring the costs associated with serializability, namely without compromising availability. There is

potential in simplifying the implementation of applications using the microservice architecture if some

of these models are supported by the execution environment. In this section, we survey some weaker

consistency models that have been proposed in the literature.

2.4.1 Session Guarantees

A session is an abstraction that captures a sequence of read and write operations executed by a pro-

gram. Session guarantees are properties that are ensured by the system on individual operations of

a session (in opposition to properties enforced on groups of operations, as in transactional systems).

Session guarantees are assured even if the program interacts with different servers during the session,

and have been defined to simplify the design of distributed applications. Terry et al. [15] define four

different session guarantees: Monotonic Reads, Monotonic Writes, Writes Follow Reads and Read Your

Writes:

Monotonic Reads (MR) within a session, repeated reads to a data object never return older versions

than the last observed version.

Monotonic Writes (MW) writes become visible to other participants in the order that they were sub-

mitted by the originating session.

Writes Follow Reads (WFR) if a session performs a write operation W and afterwards performs an-

other write operation W ′, then any other sessions that can observe the effect of W ′ will also be able to

observe the effects of W , since W happens before W ′.

Read Your Writes (RYW) whenever a session reads a data object after updating it, the read value will

always yield the updated value, or a value that overwrote that update.

Causal Consistency (CC) The combination of all of the four specified guarantees originates Causal

Consistency [16, 17], which has been proven to be the strongest guarantee compatible with high avail-

ability [5, 18]. This guarantee captures the notion that causally-related operations should appear in the

same order to all sites in a system. If an update is visible at some site, then all the updates that it

14



is dependant on should also be visible at that site. Because causally-consistent memory does not re-

quire the establishment of a total order of events, it allows for scalable, partition tolerant and available

implementations, and thus is widely used in practice.

Causal+ Consistency (Causal+) Causal+ is an extension of CC. In addition to guaranteeing causality,

Causal+ further ensures that copies of the same data objects will eventually converge to the same value,

by forcing that, when concurrent updates are seen, one of the updates is applied last at all sites.

2.4.2 Highly Available Transactions

Session guarantees, as previously stated, are defined on individual operations, and do not apply to

groups of operations, i.e., to transactions. It is also possible, in a transactional context, to define con-

sistency criteria that are weaker than serializability and do not compromise availabililty; these criteria

are known to provide Highly Available Transactions [5]. We define a system as highly available if a user

that can contact at least one of the nodes in the system is guaranteed to always get a response, even

in the case of network partitions, which would prevent that node to communicate with others in the sys-

tem. Consistency semantics vary in their level of transaction isolation, and those compatible with high

availability are described in the following lines.

Read Uncommited (RU) A total order for all writes is established, and updates should be applied at

each service according to that ordering. This isolation level prevents the Dirty Writes anomaly.

Read Commited (RC) Isolation level RC prohibits the Dirty Writes and Dirty Reads anomalies by

buffering new updates either on the client or the server side, until the data is able to be commited. This

ensures that transactions will never read intermediate versions of data.

Monotonic Atomic View (MAV) MAV provides a higher level of atomicity: it ensures that if some

effects of a certain transaction are observed by other transactions, then all its effects should also be

seen by those transactions, guaranteeing an ”all or nothing” visibility of transactions. MAV prevents Dirty

Reads and Dirty Writes, and is considered to be relatively stronger than RC, but slightly weaker than

TCC.

Cut Isolation (CI) Cut Isolation - also called Repeatable Read - states that each transaction reads

from a non-changing cut or snapshot over the data items, which means that if a transaction reads the

same data more than once, it sees the same value each time. There are two isolation levels that stem

from this concept: Item Cut Isolation (I-CI), where this property holds over reads from discrete data
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items, and Predicate Cut Isolation (P-CI) where the cut is maintained over predicate-based reads (e.g.

SELECT WHERE). To implement this, transactions store a copy of all data read, and subsequent reads

are loaded from this local copy, returning the same value observed before. This value only changes if

the transaction overwrites it itself. Cut Isolation prevents Read Skew but allows Dirty Writes and Dirty

Reads.

Transactional Causal Consistency (TCC) Causally consistent memory, as previously discussed, is

defined for single operations on single data objects. This allows for certain abnormal behaviors to arise.

Consider the following example, based on a social network scenario, where people can create profiles

for themselves and define reciprocal friendship relations, meaning that the profiles that maintain this

relationship can mutually access content published on the other’s profiles. Profile A and profile B are

friends with each other. Suppose that at a certain point in time, profile A decides that it does not want

profile B to access profile A’s content anymore and it removes the friendship relationship with B. After

this, profile A publishes a post, assuming that profile B will not have access to it. If this application is

based on the aforementioned CI isolation level, the program will mistakenly allow profile B to see the

new post of profile A, because the cached value for the friendship will not have been updated.

This anomaly happens because operations do not respect causality: profile A’s friendship removal

happens-before its new post, and thus, read operations that observe the writing of the post, should also

observe the update on the friendship state. Transactional Causal Consistency (TCC) is an extension of

Causal+, where the definition of Causal Consistency is lifted to the level of transactions, guaranteeing

the consistency of reads and writes for a set of keys by demanding that all operations are applied on top

of the same causal snapshot. In this specific case, it would impose that the new post from profile A is

observed together with the relationship removal, which in turn would block profile B from seeing the new

post.

TCC ensures atomic visibility of written keys - either all writes from a transaction are seen or none

are - by using non-blocking algorithms that employ control information stored together with the data, in

order to verify if transactions are reading from a causal cut or not. However, this semantics does not

require the operations to be totally ordered - as is the case with Snapshot Isolation and Serializability -

meaning that it can be achieved without the use of expensive consensus protocols and thus providing

the strongest semantics attainable with high availability [19].

2.5 Managing Weak Consistency

The Saga [20] pattern is one of the main alternatives to the use of distributed transactions in the context

of the microservice architecture. Each transaction that spans multiple services is a saga. A saga is
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a sequence of local transactions, where each local transaction updates data within a single service

according to the ACID properties, and then triggers the next local transaction in the saga. If some local

transaction fails because it somehow violates a business rule, then the saga must execute a series of

compensating transactions that will rollback the changes made by the local transactions that precede

the one that failed.

Sagas can be coordinated in two manners: a choreography is a saga where each local transaction

publishes an event upon completion that will trigger the next local transaction in a different service; an

orchestration is a saga that is coordinated by an orchestrator object or class that is responsible for telling

the participants of the saga when to execute the corresponding local transactions.

Sagas cannot be automatically rolled back as is the case with traditional ACID transactions. Each

step of the saga commits its changes locally, thus if one of the steps fails, the effects of each of the pre-

vious transactions must be undone through the use of compensating transactions. The saga executes

these compensating transactions in reverse order of the forward transactions.

Considering the execution of a single saga, there are three types of local transactions:

Pivot Transaction The pivot transaction divides the execution of the saga. It is considered to be the

go/no-go point at which the success of the saga is determined. If this transaction commits, then the

saga will run until completion. An example for this would be the last local transaction that verifies the

conditions for a money transfer to be possible, such as the confirmation that the account has more

money than the value to be withdrawn.

Compensatable Transactions In the case that the pivot transaction fails, all transactions that have

executed before it must be compensated for. These are the compensatable transactions. There must

be a compensating transaction for all compensatable transactions that write or update data.

Retriable Transactions Retriable transactions are the ones that follow the pivot transaction, and thus

are guaranteed to succeed. There is no need to write compensating transactions for these.

Sagas differ from ACID transactions in that they lack the isolation property [10], which ensures that

the result of executing a set of concurrent transactions is the same as if that set of transactions was

executed sequentially. In sagas, updates made by each local transaction are immediately visible to

other sagas as soon as the transaction commits, meaning that it is possible that sagas change data

accessed by another saga while the latter is executing, and that sagas can read the updates of others

before they have completed, which can lead to inconsistent states and anomalies. One way to deal

17



with the lack of isolation in sagas is through the use of countermeasures such as Semantic Locks,

Commutative Updates, Pessimistic View, Reread Value or Version File [10].

2.6 Decomposing Monolithic Applications into Microservices Com-

positions

In this section, we briefly introduce two tools that have been designed with the goal of supporting the

decomposition of monolithic applications into microservices.

2.6.1 A Complexity Metric for Microservices Migration

In [2], Santos and Rito Silva propose a tool to estimate the cost of migrating a monolith to a microservice

architecture, and mechanisms to generate several different decompositions based on a proposed set

of criteria. The tool works by collecting data from the source code of the monolithic system using

static analysis. More precisely, the tool assembles the read and write operations made to the system’s

domain entities and the sequence of those accesses done by each functionality. This information is

used to derive metrics of correlation between domain entities. Intuitively, two entities are correlated if

they are accessed together by one or more functionalities. The work is based on the premise that one

should favor decompositions where the entities that are more frequently accessed together should be

clustered in the same service, to reduce the amount of synchronization needed between clusters. Entity

correlation is measured by four similarity measures that are described below:

• Access: considers the number of functionalities that access two entities, for each pair of domain

entities in the system

• Read: this measure is an instance of the Access measure, where accesses made are reads, by

counting the number of functionalities that read two given entities, for each pair of domain entities

in the system;

• Write: this measure is an instance of the Access measure, where accesses made are writes, by

counting the number of functionalities that write two given entities, for each pair of domain entities

in the system;

• Sequence: considers the number of cases where the two domain entities appear in consecutive

positions in the sequence of accesses of the functionalities, for each pair of domain entities in the

system.
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The values for the similarity between entities capture how coupled they are, and this information is

fed to a clustering algorithm that will generate new candidate decompositions for the monolith.

To evaluate the candidate microservice configurations, the authors propose complexity metrics that

estimate the development effort needed to migrate the original system into each of the decomposi-

tions. These metrics are related to the number of accesses made by distinct microservices to correlated

entities. The rationale for this is that, as we have discussed earlier, when entities are accessed by

functionalities implemented by the same microservices, the accesses can be performed in a transac-

tional context, but when they are made by functionalities in different microservices, the accesses cannot

be protected by a transaction and will expose anomalies that need to be compensated for, generating

complexity in development.

The authors of this work compute the value for the complexity of one candidate decomposition in the

following manner:

Complexity of decomposition d: The complexity of a decomposition is the average of the complexi-

ties of all the functionalities in d.

Complexity of a functionality f in a decomposition d: The complexity of f in d is the sum of the

complexities of accessing the clusters in the sequence of accesses of f.

Complexity of accessing cluster c on the sequence of accesses of a functionality f: The com-

plexity of accessing c is the sum of complexities of the accesses made by f to the entities in c.

Complexity of accessing entity e in cluster c by functionality f: The complexity of accessing an

entity depends on the type of operation being made: if entity e is being read by f, the complexity of the

access is related to the number of other functionalities that write to e. If entity e is being written to by f,

the complexity of the access is related to the number of other functionalities that read e.

The value for the complexity of a given decomposition helps architects and system designers in

choosing the most valuable one in the set of generated decompositions, taking into account the available

resources (e.g. number of developers and time) to carry out the process of partitioning a monolith.

Their work also makes a valuable contribution to the problem of deciding the boundaries and respon-

sibilities of each service when decomposing a monolith. The clustering algorithm used by the authors

takes as input the values of the similarity measures for each pair of entities in the system, but the four

similarity measures can have different weights in the generation of the decomposition. For each input

monolith, different combinations for the valuation of each similarity measure are created, and for each
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combination, a decomposition is generated. After calculating the complexity for each generated de-

composition, the authors reckoned that there is no single combination for the weights of the similarity

measures that can be universally applied to all monoliths and originate the decomposition with the lowest

complexity.

2.6.2 Monolith Migration Complexity Tuning Through the Application of Microser-

vices Patterns

In [6], Almeida and Rito Silva extend the work above, and propose a refinement to the complexity metric

of [2] by splitting it into two new ones: the complexity introduced specifically by the redesign of each of

the monolith’s functionalities to accommodate the decomposition into microservices and the complexity

added to the system when obliged to deal with inconsistent views introduced by the distributed nature of

the new version of the system.

The authors further explore the effort in decomposing a monolith by introducing a representation

scheme for reasoning about microservice functionality: a functionality execution graph. In this graph,

the nodes are the local transactions that execute inside a single service, and the edges are the remote

invocations between those local transactions.

A distinct contribution of this work was the creation of a set of operations to be performed over the

initial functionality execution graph. The purpose of these operations is to redesign the execution flow of

the application’s functionalities before applying the Saga pattern to the monolith decomposition, avoiding

some compensating actions, for instance by merging local transactions and, in this way, avoiding some

intermediate state to become visible. To apply these operations, one needs to study the source code of

the application and determine which parts of the code should be separated into different functionalities

and, for each functionality, the possible points-of-failure. Examples of this would be exception-throwing

fragments in the code, which are parts of the execution flow where, if there is a failure, the ACID transac-

tion in the monolith will abort. However, in the corresponding microservice decomposition, such excep-

tions correspond to a local transaction in a single service that has failed and compensating transactions

will have to be triggered. The proposed operations are described below:

Sequence Change Given a functionality and its functionality execution graph, we will consider three

distinct local transactions (nodes) lt1, lt2 and lt3, the remote invocation (edge) ri = (lt1, lt3) and the ad-

ditional information that lt3 executes after lt2. However, in the case that it is required that the microser-

vice’s functionalities execute as a Saga orchestration, it is useful to have one of the local transactions

trigger all the others. In this example, since lt2 executes before lt3, that is, it does not depend on data

generated by lt3, it would be possible to replace ri by ri′ = (lt2, lt3), if lt2 was to be the orchestrator

node of the Saga.
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Local Transaction Merge This operation is useful for, when during the redesign process two different

local transactions in the same service become adjacent in the functionality execution graph, and thus,

can be merged into a single local transaction, which can aid in reducing the number of intermediate

states.

Add Compensating This operation is used to add a new local transaction and a remote invocation to

connect the new node to the already existing functionality execution graph. The new node represents the

compensating transaction that deals with one of the previously-mentioned compensatable transactions

in a Saga.

2.7 Verifying Serializability of Applications to Calculate Complex-

ity

While the two previously-mentioned works provide essential insights on how to determine boundaries

between microservices and contribute with valuable complexity metrics, they only reason about static

relations between the entities of the system when calculating complexity, not taking into account the

specific parameters given as inputs to the programs on each individual execution. This does not allow

for a precise identification of the interactions that may generate concurrency problems, generating a

large number of false positives when counting potential sources of anomalies in applications.

In order to solve this, our work tends towards a more dynamic approach for the computation of

complexity. We assessed a number of works that provide mechanisms or tools to determine consistency

anomalies in the form of serializability violations of programs.

2.7.1 Robustness Against Transactional Causal Consistency

The work of Beillahi et al. [21] investigates the relationships between different variations of Causal Con-

sistency, and provides theoretical proofs for mechanisms that automatically verify the serializability of a

transactional program executing on top of a causally consistent database. Their main effort is towards

investigating the decidability for the problem of checking robustness of programs. A program executing

on top of a weaker semantics is said to be robust against serializability if the effects of executing that

program while enforcing serial behaviors are equivalent to the effects of executing the same program

relying instead on the original weaker semantics.

The authors consider three different variations of Causal Consistency: weak causal consistency

(CC), causal memory (CM) and causal convergence (CCv). CC has been discussed in section 2.4. CCv

differs from CC because the former enforces a total order between all transactions that defines the order
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in which delivered concurrent transactions are executed at every site, guaranteeing that all sites reach

the same state after delivering all transactions. CM differs from CC because it assures that all values

read by a site can be explained by an interleaving of the transactions consistent with the causal order.

CC is strictly weaker than both CM and CCv.

The notion of robustness presented in this work relies on an interpretation of program behaviors

as traces that document causal dependencies between transactions, which allows for a more precise

identification of serializability violations than other state-based approaches. Their advances are purely

theoretical, opening the door to the use of existing tools and frameworks to check robustness of appli-

cations.

2.7.2 Decidable Verification under a Causally Consistent Shared Memory

Lahav and Boker [22], similarly to [21], make efforts towards establishing the decidability for the prob-

lem of verifying safety properties - serializability - of finite-state transactional programs executing on

top of Causal Convergence (CCv), which is also given the name of Strong-Release-Acquire (SRA).

The authors deduce that reasoning about the problem of safety verification under SRA is equivalent

to reasoning about the problem of SRA reachability : considering the execution graph of a program P

executing on top of SRA, a state p of P is reachable under SRA if some execution of P that satisfies

the conditions of SRA generates state p. Despite providing theoretical grounds for the implementation

of novel frameworks and tools that check serializability of programs, this work does not propose one.

2.7.3 Static Serializability Analysis for Causal Consistency (C4)

C4 [23] is an end-to-end static analysis framework for client-applications of causally consistent databases.

The authors propose a novel serializability criterion for local evaluation and combine the already exist-

ing graph-based techniques with the encoding of the new criterion into first-order logic formulae. This

framework is independent of the datastore API or programming language and thus can be used with any

system that satisfies convergence, atomic visibility and causal consistency.

C4 starts its analysis by inferring the abstract history of the program. An abstract history of a program

is a generalization of all possible ways in which said program can interact with the datastore. The

graphic representation of an abstract history is a Static Serialization Graph (SSG), which is derived

from the abstraction of all possible concrete Dependency Serialization Graphs (DSG). DSGs are graphs

representing concrete executions of a program, where there is a node for each executed transaction

and an edge between each two nodes depicting session order and dependencies. If the SSG for a

particular program is acyclic, then it can be deduced that said program is serializable. Despite being

fast and efficient, SSG-based analysis does not capture specific semantics of the exact objects being
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manipulated because it generalizes all existing dependencies for the set of possible executions of the

program. In an individual execution, the dependencies may not exist, and thus this technique generates

a considerable number of false positives. To overcome this, the authors propose a complementary

procedure to vouch for the results given by the SSG-based analysis. It consists in the encoding of the

input program’s SSG to logical formulae to be checked by SMT solvers. This allows to precisely reflect

control-flow between operations to eliminate infeasible cycles in the abstract history. The SMT-based

analysis is applied whenever the SSG-based analysis indicates a potential serializability violation, and

produces a counter-example for each proven anomaly.

For a given program executing on top of a causally consistent distributed database, C4 either proves

that the program is serializable, or detects a non-serializable behavior. If the program is not serializ-

able, the tool outputs the set of violations found for up to two sessions, and determines if this result is

generalizable to an arbitrary number of sessions.

2.7.4 Automated Detection of Serializability Violations under Weak Consistency

(ANODE)

Nagar and Jagannathan [24] propose a fully automated approach for finding serializability violations

under any weak consistency model. The framework takes as input a program written in a simplified

version of the SQL language, which is described in detail in their report.

Their main effort is to determine the conditions under which said transactional program can be stati-

cally identified to always yield a serializable execution without the need for global synchronization. The

ANODE framework can be used with any weak consistency model whose specification can be expressed

in first-order logic.

From the input program, a dependency graph with a cycle is construed. The framework then tries to

discover a valid execution of the input program under the given consistency specification that can result

in such graph. The authors propose two different approaches for verifying serializability: the Shortest

Path approach and the Inductive approach. Both are employed, and the anomalies found are output to

the user together with the transactions involved and their parameters.

Since this framework is parametric over the consistency specification, it can be used to determine

the weakest consistency policy for which the program is serializable, or simply modify the transactions

where anomalies are present.

2.7.5 Directed Test Generation for Weakly Consistent Database Systems (CLOTHO)

CLOTHO [9], an improvement of the tool of name ANODE discussed in Section 2.7.4, is a framework

that detects serializability violations of Java applications that make use of weakly consistent distributed
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databases. It employs a static analyzer and a model checker to generate abstract executions of the input

program, discover serializability violations in these executions and translate them back into concrete test

inputs that can then be used for assessment by application developers.

More specifically, CLOTHO takes as input a Java class that manipulates a database through a JDBC

API where each method is treated as a transaction, and outputs a set of satisfying assignments to the

parameters of the input application that cause serializability anomalies.

CLOTHO generates a precise encoding of database applications, which allows it to accurately rep-

resent the complex dependency relations between SQL select and update operations. As in many other

works, the authors reason over abstract executions of input applications. An abstract execution of a pro-

gram is a generalization of its execution that captures visibility and ordering relations among read and

write operations on the database. Potential serializability violations in an abstract execution manifest

as cycles in a dependency graph that represents said visibility and ordering relations. When encoun-

tering such violations, CLOTHO synthesizes concrete tests that can be used to drive executions of the

program that will exhibit its points of failure. The abstract representation of database programs used by

CLOTHO is automatically generated from the input program’s Java source code. It is then passed to

an encoding engine that constructs first-order logic formulae that captures the conditions under which a

dependency cycle forms. A theorem prover is then used to compute the generated SAT representation

of the problem. All satisfying solutions given by the solver are converted to test configuration files that

contain the collected abstract anomalies. Such files provide details about concrete executions that can

potentially manifest the discovered anomalies. This work stands out from others for the fact that it offers

a test-and-reply environment that allows mapping anomalies identified in the abstract executions to be

translated to concrete inputs that can be executed subsequently.

2.7.6 Comparison

We now provide a brief comparison of the systems surveyed in the previous paragraphs. Table 2.1

summarizes the key aspects of the different studied tools.

The work of Beillahi et al. [21] offers a trace-based approach for detecting serializability of applica-

tions, which is more precise than the other state-based approaches, that require the set of reachable

states under serializability to be equal to the set of reachable states under a weaker consistency model.

State-based approaches are more prone to false positives for the violations in robustness. However, the

authors of this work only provide the theoretical proof for the decidability of this problem and do not im-

plement any tools that we can make use of. Similarly, neither [21] or [22] implement tools or frameworks

that we can use in our project.

The ANODE [24] and CLOTHO [9] projects have produced tools that we can use. Since ANODE is a

predecessor of CLOTHO, we have decided to adopt the latter, as it includes a number of improvements
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Trace/State Original Memory
Model Assumed

Detects
Violations of

SMT-based
analysis

Filtering
Methods Output Available

Decidable Verification
under a Causally
Consistent Shared
Memory

State CCv/SRA Serializability No No - No

Robustness Against
Transactional Causal
Consistency

Trace CC, CCv or CM Serializability No No - No

C4 State CC Serializability Yes Yes

The set of violations and
whether this result is

generalizable to an arbitrary
number of sessions

Yes

ANODE State Any (parameter of the tool) Serializability Yes No
The serializability anomalies
and the transactions involved

and their parameters
No

CLOTHO State
Any (the tool determines

the underlying
consistency model)

Serializability Yes Yes

Concrete tests to replay
the discovered anomalies

(database file and annotated
Java class files)

Yes

Table 2.1: Comparison of different approaches for detecting anomalies in transactional programs

over ANODE: while ANODE receives as an input the underlying consistency model of the program to

be tested, CLOTHO discovers these semantics automatically by capturing the various visibility and or-

dering relations between reads and writes. This allows users to strengthen these characteristics of input

programs as needed, while still being able to use the testing framework to discover new serializability

violations. Only the code for CLOTHO was available at the time of this project.

To compare CLOTHO with C4, we consider the inputs and outputs of both frameworks: while CLOTHO

can be configured to address datastores with different consistency guarantees, C4 assumes that the in-

put program executes on top of causally consistent databases. In the context of our project, we will

be assessing the impact of executing microservice compositions on top of storage layers that provide

either Transactional Causal Consistency or Eventual Consistency. Modifying C4 to deal with Eventually

Consistent datastores may be challenging. Furthermore, CLOTHO also provides a testing environment

to reproduce the discovered serializability anomalies, which can be given as an additional output to the

developers of microservices.
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This chapter describes the work produced on the scope of this project, a study on the complexity

of decomposing a monolithic system into a set of microservices, when considering that the execution

environment provides some consistency guarantees. Section 3.1 describes the goals our work aims to

achieve. Section 3.3 portrays the obstacles to the application of existing frameworks and the settlements

and solutions implemented. Section 3.4 describes all the modifications made to CLOTHO [9] in order to

accomplish the proposed mission.

3.1 Goals

This work addresses the problem of estimating the complexity of decomposing a monolithic system into

microservices for execution environments that support various consistency models, such as Transac-

tional Causal Consistency.

We have implemented a novel method for calculating the complexity of decomposing a monolithic

system into microservices, on the basis that the number of anomalies occurring in the execution of a set

of microservices equates to effort that needs to be put into developing compensating actions to mitigate

these anomalies. Our work leverages upon the efforts made by the authors of [9] and [2].

3.2 CLOTHO

CLOTHO is a testing framework for detecting serializability violations in Java database applications that

execute on weakly consistent storage systems. This application combines a static analyzer and a model

checker to generate abstract executions and identify serializability violations in concrete executions of

the input program. CLOTHO also translates these anomalies back into test inputs, with the specific

parameters to the transactions that originated the anomalies. The input programs for CLOTHO must

contain a Java class that manipulates a database through the standard JDBC API, where each method

is treated as a transaction.

In the first stage of the analysis, the input program is translated into an abstract representation, which

captures key features of the program, including the database schema, the set of transactions, and the

set of operations (data retrieval and modification) that each transaction consists of. It is assumed that

CLOTHO’s input programs are interpreted on a finite number of partitions, each of which has its own

copy of the database. The execution of these programs is described as a finite sequence of system

states. Each state is represented by a triple, (str, ar, vis), where str is a set of operations of the program,

ar records the exact sequence of database operations that have been executed and vis relates two

effects if one witnesses the other at the time of creation. A local view of the database at each partition

can be constructed from a system state by applying the effects of operations stored in the str component
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of the partition according to the respective order in the ar component.

After constructing the abstract model from the input program, CLOTHO begins the identification of

non-serializable executions in the abstract representation of the program. The authors consider that a

certain execution of the input program is serializable if there exists another strictly serial execution that

is constructed by reordering the operations of the first execution, such that the final set of effects in both

executions is equivalent. Programs that contain a serializability anomaly can be decomposed into a

serial execution followed by a non-serializable execution.

The problem of determining the serializability of an execution is reduced to the detection of cycles

in the dependency graph of the final state of the execution. The nodes of this graph are the set of

operations in an execution state. The edges of the dependency graph are from the set of dependency

relations {WR,WW,RW}. The Read dependency, WR, relates two operations if one witnesses a value

that is written by the other; the Write dependency, WW, relates two operations if one overwrites the value

written by the other; the Read anti-dependency, RW, relates two operations if one witnesses a value that

is later overwritten by the other. Recalling the previous definition of serializability, the reordering of the

operations to obtain an equivalent serial execution cannot exist if there are cyclical dependencies in the

dependency graph. Thus, if there is a cycle in the dependency graph of the execution of a program,

such program is not serializable.

The identification of dependency cycles in an execution is done by checking the satisfiability of a

First-Order-Logic formula. This formula contains variables for each of the dependency, visibility and

arbitration constraints in the execution, and is designed such that the assignments to these variables in

a satisfying model can be used to reconstruct the anomalous execution of the original program. One

of the components of the FOL encoding contains the rules for the consistency model of the underlying

database. These can be described using the previously mentioned vis and ar relations between read and

write operations. The authors of CLOTHO include the constraints for a few popular consistency models,

but CLOTHO itself does not implement any of them. This means that all transactions are executed

considering that replicas of the system maintain no synchronization between each other - Eventual

Consistency (EC).

The output of this tool is the number of serializability anomalies found in the input program. For

each of the discovered anomalies, CLOTHO automatically determines the execution order of queries

and values of input arguments required for its manifestation. This information can be viewed in the form

of a graphic that also includes dependency and visibility relations between operations in the anomaly.

Although it is not our main focus for this project, another functionality of CLOTHO is the ability to

replicate anomalous executions on a concrete environment. A cluster of Docker containers is created in

order to run replicated database instances that have been instantiated according to the test configuration

- a database initialization file and a set of Java class files annotated with execution orders and input
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parameters.

The Analyzer module of CLOTHO contains two different components: the front-end compiler that

performs the analysis of the input Java program, detecting loops, conditional structures and database

accesses, and the Z3 component, which makes use of the Z3 library [25] to determine satisfying assign-

ments to the constructed FOL formula.

In order to supply CLOTHO with different consistency models other than Eventual Consistency, we

had to provide the SMT solver Z3 with stronger constraints. We followed the guide presented on the

work of Rahmani et al. [9], which proposed the following constraints:

Causal Visibility

ΨCV = ∀(o1, o2, o3) · vis(o1, o2) ∧ vis(o2, o3) ⇒ vis(o1, o3) (3.1)

The predicate vis relates two operations o1 and o2, vis(o1, o2), if o1 is able to observe the effects

produced by o2.

The eq. (3.1) states that if an operation o1 is able to observe the effects caused by operation o2

and, in turn, operation o2 observes the effects caused by operation o3, then o1 also observes the effects

caused by operation o3. This is, thus, called Causal Visibility.

Causal Consistency

ΨCC = ∀(o1, o2) ·ΨCV ∧ (st(o1, o2) ⇒ vis(o1, o2) ∨ vis(o2, o1)) (3.2)

The predicate st relates two operations x and y, st(x, y), if x and y have the same parent transaction,

this is, they are both operations of the same transaction.

Causal Consistency (eq. (3.2)) states that Causal Visibility must be established and that if two oper-

ations o1 and o2 are in the same transaction, then either o1 observes the effects of o2 or o2 observes the

effects of o1.

Read Committed

ΨRC = ∀(o1, o2, o3) · st(o1, o2) ∧ vis(o1, o3) ⇒ vis(o2, o3) (3.3)

Read Committed (eq. (3.3)) states that if two operations are in the same transaction and if one of

them is able to observe the effects of a third, then the second one should also be able to observe the

effects of it. This grants some atomicity to the execution environment.

Repeatable Read

ΨRR = ∀(o1, o2, o3) · st(o1, o2) ∧ vis(o3, o1) ⇒ vis(o3, o2) (3.4)
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The Repeatable Read consistency model (eq. (3.4)) obliges that if one operation is able to observe

the effects of another operation o1, then it should also be able to observe the effects of all operations in

the same transaction as o1

Linearizability

ΨLIN = ar ⊆ vis (3.5)

The predicate c relates two operations o1 o1 and o2, ar(o1, o2), if o1 is arbitrarily ordered to happen

before o2. Linearizability (eq. (3.5)) states that all database operations are able to observe the effects

of operations that were arbitrarily ordered before them. Thus, if the relation vis(o1, o2) is true, so is

ar(o1, o2).

Serializability

ΨSER = ΨRC ∧ΨRR ∧ΨLIN (3.6)

Serializability, captured by eq. (3.6) is a combination of Read Committed (eq. (3.3)), Repeatable

Read (eq. (3.4)) and Linearizability (eq. (3.5)).

Considering that the main focus of our work was, initially, to explore the results of providing Trans-

actional Causal Consistency guarantees to distributed systems, we ought to extend the Causal Consis-

tency model that was implemented in CLOTHO in order to reproduce this. We propose the following

isolation guarantee:

Transactional Causal Consistency

ΨTCC = ∀(o1, o2, o3) ·ΨCC ∧ (vis(o1, o2) ∧ st(o2, o3) ⇒ vis(o1, o3)) (3.7)

The line of thought behind the implementation of Transactional Causal Consistency (eq. (3.7)) is

that it is an extension of Causal Consistency that considers causal relations on multiple operations over

multiple objects. Thus, if one operation o2 is visible from the point-of-view of operation o1, then all

operations that belong to the same transaction as o2 should also be visible to o1.

The above isolation guarantees were implemented by extending the Analyzer module of CLOTHO.

All these models were implemented in the context of this work, and were tested making use of the

benchmarks developed by the authors of CLOTHO: Dirty Read, Dirty Write, Long Fork, Lost Update and

Write Skew.

The reason for the use of these benchmarks for the testing of our own extension to CLOTHO is that

it provided a stable and forward manner to validate the correction of the different consistency models,
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seeing that the results of the execution of the different consistency anomalies under the implemented

guarantees is theoretically known. The results and settings of these tests can be seen under Chapter 4

3.3 Obstacles

During the course of this project, a number of obstacles occurred in the adaptation of CLOTHO.

CLOTHO was originally designed to test the correction of programs making use of distributed databases.

This means that it assumes a scenario where different replicas execute the same program (e.g. the same

code) and eventually, concurrency problems will manifest due to different replicas having to maintain dif-

ferent versions of the same database.

However, Microservices do not work the same. The Microservice architectural model is based on

the premise of separation of concerns, which means that each service executes different functionalities,

and can make use of different technologies and databases. By principle, two different services will be

responsible for two different sets of system domain entities, and concurrency challenges will not arise

due to maintaining two different versions of the same entity, but because one needs to make sense of

different entities that should look that they were updated atomically.

CLOTHO keeps one copy of the same database in each replica and this ultimately means that we

cannot simulate an architecture of Microservices where each service keeps different schemas and enti-

ties.

In order to make sense of this problem, we routed towards a different solution, one that would make

it possible to use CLOTHO as is to test a distributed system with some level of separation of concerns.

We considered FaaS as an alternative to the Microservices architetural style. Function-as-a-Service

describes an application where storage services are disaggregated from the machines that support

function execution. These applications consist of compositions of functions, where each function may

run on a separate machine and access remote storage. Programmers can upload arbitrary functions

and execute them in the cloud without having to provision or maintain the servers. Because different

functions may not run on the same machine, the challenge of maintaining data consistency rises.

In some ways, a parallel between the FaaS and Microservices architectural models can be estab-

lished: functions in the FaaS model would correspond to different services in the Microservices model.

Increasing the number of instances running the same function is equivalent to adding replicas to a ser-

vice in the Microservice architecture. In this sense, we could adapt our initial idea to be applied to a

FaaS system with one single replicated function and calculate the number of anomalies that would arise

in this context. Then, we would have to alter the calculations in the complexity metric given by [2] in

order to be able to apply it to a FaaS system instead of a Microservices’ one.

However, when studying the complexity metric in [2], we understood that this was not feasible, since
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the complexity value for any system where there is only one cluster of domain entities - which is the

case in a FaaS system with a single function - is always zero. This value would not be comparable to

the number of anomalies output by CLOTHO.

In mono2micro [2], the complexity value is determined based on similarity measures. In a 1-function

FaaS system, all domain entities of the system would be accessed by the same function, the only one

that exists. This leads to all domain entities being clustered in the same service. Since there is no

decomposition, the complexity of decomposing this system is zero.

From a different point of view, let us suppose we would generate bogus domain entity decompositions

in this 1-function FaaS system. In order to create decompositions for which the complexity value is non-

zero, there would have to different transactions altering different databases.

It is not possible to mimic the partition of domain entities in CLOTHO.

One possible solution to this problem is to limit the interactions between transactions in CLOTHO

in pursuance of emulating the system of microservices. The complexity metric in [2] only considers

concurrency issues happening in distributed transactions, i.e, that traverse multiple services. To convey

this pattern to CLOTHO, we would need to only consider serializability anomalies happening between

transactions of different services. One way to implement this is to label the transactions according to the

service they would execute on, and modify CLOTHO to only analyze anomalies between transactions

that have different labels on them. Anomalies inside each service need not be considered because they

execute under Serializability or some other strong consistency model. Only the anomalies in interactions

between different services add to the complexity of decomposing a monolith.

Another hindrance to our work was the fact that, in order to use CLOTHO to test applications, these

needed to be in the form of Java classes, where each method is a transaction in the system. Not a

lot of real-life applications are built this way. Mainly, the programs used for testing during the course of

this project were small examples assembled by us and translated into code that could be processed by

CLOTHO.

3.4 Implementation

3.4.1 Changes Made to CLOTHO

3.4.1.A Consistency Models

CLOTHO, by default, assumes an execution environment where no isolation or atomicity guarantees are

given. The seven consistency guarantees discussed in 3.2 were implemented during the scope of this

project. To do so, we created new code on the Z3 component of CLOTHO. This code makes use of the

Java binding for Z3.
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3.4.1.B Distinguishing Labels for Transactions

As mentioned in 3.3, one aspect to the adaptation of CLOTHO was to figure out how to mimic the

distributed nature of Microservices. Each service should execute different local transactions, where

serializability (or other equivalent strong consistency criteria) is maintained. To this extent, anomalies

found under the interactions of the same transaction are negligible.

With the purpose of limiting the analysis to only transactions executing in different services, we

attributed labels to each transaction, signifying the service/cluster that it would be executed on.

Further on, during the analysis of the anomalies in a program, we only allowed CLOTHO to check for

anomalies between a pair of transactions that did not belong to the same cluster, i.e, was not attributed

the same label.

This was done by skipping loops in the code whenever the label for the transaction was identical.

3.4.1.C Implementation of New Relation Between Operations

During the implementation of the new consistency models, we came across the lack of a relation be-

tween operations: the st relation - designating operations that belong to the same transaction.

After analyzing the code of the CLOTHO framework, we found a different but similar relation, the

sibling relation, that relates two operations if they belonge to the same transaction instance.

The two are different: st is more general, since it is true for all operations for which the sibling relation

is true, but it is also true for operations for which the sibling relation is not true but the class originating

the parents of those operations is the same.

For two different instances of the same transaction class, all child operations belong to the same

transaction, but the siblings are the pairs of operations inside each transaction instance.

Summary This chapter presents the steps made towards the accomplishments of the goals to our

work. It explains the obstacles and conclusions taken during the implementation of extensions of

CLOTHO, and the specific modifications made to it. The next chapter addresses the experimental eval-

uation of our work and presents evidence to prove the pertinency of our work.
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4.1 Goals of the Evaluation

The central goal of this evaluation is to determine if our extensions of CLOTHO allow it to lawfully predict

the number of serializability anomalies in real weakly-consistent database applications.

The value for the number of serializability anomalies aims to be equivalent to a measure of complexity

for such distributed applications. Ideally, our proposed metric should be in line with theoretical concep-

tions for the complexity of decomposing a monolithic system in several microservices, which means that

the higher the number of anomalies, the more difficult it should be to devise such application.

Our metric must also be compared with the one proposed by [2], so as to verify that it agrees with the

common notion of complexity in a distributed system, but also to establish if our intention to strengthen

previously proposed metrics is successfully carried out.

Finally, the adjustments made to CLOTHO should not impair its performance or functionality.

4.2 Experimental Setting

The evaluation process was structured into different segments: the validation of the implemented con-

sistency criteria and the verification of the newly proposed complexity metric.

4.2.1 Validating the Implemented Consistency Models

The first step for evaluating our program and its correctness is to test the newly implemented consis-

tency criteria. In order to do so, we compare theoretical values for the number of anomalies in several

transactional applications under different consistency levels with the ones calculated by our program.

The following are the benchmarks used to perform the assessments. These are Java classes that

implement methods representing different transactions used as input to CLOTHO.

4.2.1.A Dirty Write

1 two_reads(key):

2 read(key)

3 read(key)

4

5 one_write(key , x):

6 write(key , x)

Listing 4.1: Dirty Write class abstraction as used in CLOTHO
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4.2.1.B Dirty Read

1 one_read(key):

2 read(key)

3

4 two_writes(key , x, y):

5 write(key , x)

6 write(key , y)

Listing 4.2: Dirty Read class abstraction as used in CLOTHO

4.2.1.C Long Fork

1 two_reads(key1 , key2):

2 read(key1)

3 read(key2)

4

5 one_write(key , x):

6 write(key , x)

Listing 4.3: Long Fork class abstraction as used in CLOTHO

4.2.1.D Lost Update

1 one_increment(key , amount ):

2 x = read(key)

3 write(key , x+amount)

Listing 4.4: Lost Update class abstraction as used in CLOTHO

4.2.1.E Write Skew

1 one_increment(key1 , key2 , x):

2 read(key1)

3 write(key2 , x)

Listing 4.5: Write Skew class abstraction as used in CLOTHO
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EC CV CC TCC RC RR LIN SER
Dirty Read ✓ ✓ ✓ ✓ ✓ x x x
Dirty Write ✓ ✓ ✓ ✓ x ✓ x x
Long Fork ✓ ✓ ✓ ✓ ✓ ✓ x x
Lost Update ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
Write Skew ✓ ✓ ✓ ✓ ✓ ✓ ✓ x

Table 4.1: Expected results for the existence of anomalies in each benchmark for each consistency model. The tick
symbol (✓) indicates that the consistency allows some anomalies for the benchmark, whereas the cross
symbol (x) implies that the consistency model does not allow any anomalies for such benchmark

EC CV CC TCC RC RR LIN SER
Dirty Read 1 1 0 0 0 1 1 0
Dirty Write 3 3 3 0 3 0 1 0
Long Fork 3 3 3 0 3 0 1 0
Lost Update 2 2 2 2 2 2 0 0
Write Skew 2 2 2 2 2 2 0 0

Table 4.2: Observed number of serializability anomalies when executing benchmarks in CLOTHO under each con-
sistency model

The five benchmarks were tested under the different consistency criteria, where EC refers to Eventual

Consistency, CV to Causal Visibility, CC to Causal Consistency, TCC to Transactional Causal Consis-

tency, RC to Read Committed, RR to Repeatable Read, LIN to Linearizability and SER to Serializability.

Table 4.1 assembles the expected values for the number of anomalies of each benchmark under a

certain consistency model, according to academical research.

Table 4.2 presents the results obtained when executing the modified version of CLOTHO with each

of the different benchmark classes as inputs, while tweaking the consistency level by wavering between

the implemented consistency models. The value in each cell represent the results observed after a large

number of executions of each test instance under each model, to safeguard the reliability of these tests.

4.2.2 Validating the Complexity Metric

Mono2micro [2] collects data from codebases implemented with Spring Boot and the Fenix Framework,

and can only be executed using previously developed applications BlendedWorkflow, FenixEdu Aca-

demic and LdoD, which are much too complex to be tested by CLOTHO. In order to validate our new

complexity metric, we need to test both CLOTHO and mono2micro using the same input application,

which entails producing a new test example that is complex enough to manifest different behaviours

when analyzed by the two tools.

Instead, we developed a new test scenario small enough to be manually tested by mono2micro, and

convert to Java code to be tested by CLOTHO. This test instance consists of three simple transactions:
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1 write_A(int key):

2 write(var_A , key)

3

4 write_B(int key):

5 read(var_A)

6 write(var_B , key)

7

8 check_vars ():

9 var_A = read(var_A)

10 var_B = read(var_B)

11 assert_coherence(var_A , var_B)

Listing 4.6: Test class abstraction as used in CLOTHO

The intention of this test instance is to mimic the following scenario: the microservice system man-

aging this application consists of two different microservices: the first is responsible for handling domain

entity A and the second for domain entity B. Each service executes, respectively, the first and second

transactions in listing 4.6, and transaction check vars is executed by both services, where the read to

domain entity A is made in the first service, and the read to entity B is made in the second service. In re-

spect to transaction check vars, asserting the coherence of domain entities implies that the serializability

of the writes of these variables was respected.

Computing the value for decomposition complexity using mono2micro’s metric was the next step.

The following formulae (eqs. (4.1) to (4.3)) were used, as presented in [2]:

complexity(d) =

∑
f∈F complexity(f, d)

#F
(4.1)

Equation 4.1: Complexity of a microservice decomposition: the complexity of a decomposition is given by the
average of the complexities of its functionalities

complexity(f, d) =
∑
c∈C

complexity(c, f, d) (4.2)

Equation 4.2: Complexity of a functionality f in decomposition d: the complexity of a functionality is given by the
sum of the complexities of accessing each service c in the sequence of accesses made by f. Note
that if functionality f is not distributed, its complexity is 0

Finally, the complexity of accessing an entity through functionality f in decomposition d, complexity(a, f, d)

is given by the number of other distributed functionalities that access that same entity using a different

access mode. Access modes can be either read or write. Then, the complexity of reading an entity is
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complexity(c, f, d) = # ∪a∈c complexity(a, f, d) (4.3)

Equation 4.3: Complexity of accessing service c through functionality f in decomposition d: the complexity of ac-
cessing a service is the cardinality of the union of the complexities of each entity accessed by f in
s

EC CV CC TCC RC RR LIN SER
Example Program 3 3 0 0 0 1 1 0

Table 4.3: Observed number of serializability anomalies when executing our test program in CLOTHO under each
consistency model

the number of other distributed functionalities that write to it, and the complexity of writing to an entity is

the number of other distributed functionalities that read it.

The complexity of the decomposition presented in listing 4.6 can be calculated using the following

reasoning. There are two different services: clusterA, dealing with domain entity A, and clusterB ,

dealing with domain entity B. There are three functionalities (transactions): write A, which is composed

of a write operation to domain entity A; write B, which is composed of a read operation of domain entity

A, followed by a write operation to domain entity B; check vars, which is composed of a read operation

of domain entity A followed by a read operation of domain entity B.

The complexity of the decomposition is given by the average of the values for the complexity of the

three functionalities. Functionality write A is not distributed - it only accesses service clusterA, and thus,

its complexity is 0. Functionality write B is a distributed functionality, and accesses service clusterA and

service clusterB . Then, the complexity of functionality write B is given by the sum of the complexities

of accessing the two services. The complexity of accessing service clusterA is the cardinality of the

union of the complexities of each entity accessed by write B in clusterA. Only one access is made by

that functionality in that service: a read operation to domain entity A. The complexity of reading A is the

number of other distributed functionalities that write to it, which is zero. The complexity of accessing

clusterB in the context of functionality write B is 1, since there is one other distributed functionality that

reads B, check vars. Thus, the complexity of functionality write B has a value of 1. The complexity of

functionality check vars can be computed in a similar way, and its value is also 1. Finally, the average of

the complexities of the three functionalities has a value of 2
3 .

The following phase for validating our complexity metric is to test the same program using CLOTHO.

Although mono2micro only considers Eventual Consistency, CLOTHO is able to determine the number of

serializability anomalies when the program is executed under multiple consistency models. We decided

to include this strengthening of the underlying consistency model to demonstrate the benefit of improving

the level of isolation on microservice systems. The results for the evaluation of such program with

CLOTHO are displayed on table 4.3
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4.3 Discussion

While analyzing the results of the evaluation presented on the previous sections, the following was

concluded: in relation to the implemented consistency criteria, we consider that this development was

successful, since all the obtained values conform to what would be expected, as seen in tables 4.1

and 4.2.

Regarding the soundness and relevance of the new complexity metric given by analyzing test input

programs using CLOTHO, we consider that it is a pertinent novel way to estimate the expected effort

to decompose a monolithic system, as it determines exactly what the key serializability violations in the

input programs are, giving programmers thorough evidence of where that effort must be applied in order

to develop correct and sound distributed systems. Comparing the metrics produced by this work and

the work of mono2micro [2], we observe that, although the numbers on the developed test instance

are not significantly different, due to the fact that said instance is not extensive and serves only as a

proof-of-concept, our metric and testing tool provide more far-reaching and meaningful hints concerning

the points of failure of a microservice system.

Adding to this, our metric also considers different consistency models, which means it is more ver-

satile in regards to the set of programs and systems that it can be applied to. Mono2micro overlooks the

existence of stronger consistency criteria, and always assumes Eventual Consistency. Using CLOTHO

also allows us to study the direct improvement that strengthening the consistency model of the under-

lying system can have on the simplification of the development of the transactional programs on top of

these systems.

Summary In this chapter, we have presented the experimental evaluation of our work, describing the

conditions under which these tests were conducted in order to analyze its relevance and correctness.

The results show that our implementation is in conformance to theoretical expectations and proves to be

relevant due to the new information added to previously developed metrics. The next chapter concludes

this document by making the final conclusions and discussing possible ideas for future work.

44



5
Conclusion

Contents

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

45



46



5.1 Conclusions

Partitioning a monolithic application into different services is not an easy task: although the decom-

position of responsibilities provides some benefits, it also interferes with the effort of reasoning about

system logic. This work provides some insight into the intricacy of monolith decomposition, by improving

previously developed metrics to assess the complexity of this development, and adding important infor-

mation to the points of failure of the resulting systems. The results of this project proved to be relevant

and meaningful in the context of our research and this document presents as a guide for the interpreta-

tion of complexity, points of failure and decomposition in distributed systems, mainly in the microservice

architectural model.

5.2 Limitations and Future Work

This project was limited by a few obstacles, namely in the usage of tools that were not completely

appropriate to microservice systems. A possible path for future development is to further extend our

work to better adapt to a microservice architectural style, mainly by adding to CLOTHO the capability to

segregate responsibilities in different services.
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