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Resumo
“Mini magnetosferas” à escala iónica fornecem um meio único para estudar fı́sica de plasmas à es-

cala cinética e foram observadas à volta de cometas, asteróides fracamente magnetizados, e regiões

localizadas da Lua. Nesta Tese, apresentamos simulações particle-in-cell (PIC) não colisionais de

magnetosferas à escala iónica que reproduzem recentes experiências em laboratório realizadas no

Large Plasma Device (LAPD) na UCLA. Nas nossas simulações PIC, um plasma impulsionador super-

Alfvénico flui contra um campo magnético dipolar que está incorporado num plasma ambiente uni-

forme e magnetizado. As simulações replicam as principais estruturas magnetosféricas observadas

nas experiências, nomeadamente a magnetopausa à escala cinética e as distribuições de corrente do

plasma. As propriedades de mini magnetosferas criadas nesta interação são estudadas para diferentes

parâmetros do dipolo e do plasma, e simulações PIC são utilizadas para extrair observáveis chave para

as experiências e as condições em que se formam.

Adicionalmente, também desenvolvemos um modelo semi-analı́tico dos parâmetros que caracteri-

zam o acoplamento entre os plasma impulsionador e ambiente. O modelo semi-analı́tico é comparado

com as simulações, mostrando boa concordância. O modelo é também usado para fornecer limites

para os parâmetros experimentais, tais como as densidades dos plasmas.

Palavras-chave: mini magnetosferas, acoplamento de plasmas, simulações PIC, astrofı́sica

no laboratório, fı́sica do espaço
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Abstract
Ion-scale “mini magnetospheres” provide a unique environment for studying kinetic-scale plasma

physics and have been observed around comets, weakly-magnetized asteroids, and localized regions of

the Moon. In this Thesis, we present collisionless particle-in-cell (PIC) simulations of ion-scale magneto-

spheres that reproduce recent laboratory experiments performed in the Large Plasma Device (LAPD) at

UCLA. In our PIC simulations, a super-Alfvénic driver plasma flows against a dipolar magnetic field that

is embedded in a uniform magnetized background plasma. The simulations replicate the main magneto-

spheric structures observed in the experiments, namely the kinetic-scale magnetopause and the plasma

current distributions. The properties of mini magnetospheres created in this interaction are studied for

different dipole and plasma parameters, and PIC simulations are utilized to extract key observables for

the experiments and conditions in which they form.

Additionally, we develop a semi-analytical model of the parameters that characterize the coupling

between the driver and the magnetized background plasmas. The semi-analytical model is compared

with the simulations, showing good agreement. The model is also used to provide bounds for the

experimental parameters, such as the densities of the plasmas.

Keywords: mini magnetospheres, plasma coupling, PIC simulations, laboratory astrophysics,

space physics
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Chapter 1

Introduction

1.1 Motivation
A vast range of space and astrophysical scenarios are driven by the rapid expansion of plasmas,

gases with free ions and electrons, through space. Such examples include interplanetary coronal fast

ejecta [1], the expansion of the stellar material from supernovae remnants [2], and artificial magneto-

spheric releases of tracer ions [3]. When these expanding plasmas encounter obstacles of magnetic

nature, the resultant interaction leads to highly nonlinear and complex dynamics.

In the solar system, the upper region of the Sun’s atmosphere is continuously expanding at velocities

close to 400 km s-1, which can lead to similar scenarios in space. This results in the emission of a

plasma, designated by solar wind [4], that near the Earth has a density of a few particles per cm3.

This plasma travels through interplanetary space, interacting with planets, satellites, and other smaller

objects, and it is very dynamic as its density, temperature, and speed change in space and time.

As it approaches the Earth, it is under the effect of the strong magnetic fields associated with Earth’s

intrinsic magnetic field structure. The fields are strong enough to significantly reduce the velocities of

solar wind particles and deflect them around the Earth. Plasmas also pile up in this interaction, forming

a compressed bow-shaped region called the bow shock. As the plasma gets even closer, the magnetic

field increases until the magnetic pressure is enough to stop the plasma particles, forming a rarefied

plasma surrounding the Earth. The region where the magnetic field dominates the pressure exerted by

the solar wind is designated by magnetosphere.

Even though the magnetosphere is a tenuous plasma region in space, with a density close to 50

particles per cm3 [5], it prevents the solar wind from reaching the atmosphere and protects the surface

from the hazard radiation and energetic particles emitted by the Sun, that could otherwise compromise

life on Earth. Additionally, as the solar wind leads to sudden changes in the magnetic field, the mag-

netosphere prevents magnetic disturbances that could trigger large voltages on power grids, pipelines,

and transoceanic cables, which could seriously affect human activities. Figure 1.1 illustrates Earth’s

magnetosphere.

The region of space where the pressure exerted by the solar wind equals the pressure exerted by

the Earth’s magnetic field, which defines the region of the immobilization of the plasma, is designated by
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Bow shock

Solar wind

Magnetosphere

Magnetopause

Figure 1.1: Representation of Earth’s planetary magnetosphere and identification of its main features.
The blue lines represent magnetic field lines. Original image from NASA.

magnetopause and determines the effective radius of the magnetic obstacle associated with the mag-

netosphere. This pressure equilibrium can be described approximately by the magnetohydrodynamics

(MHD) formalism [6], and it is expressed in CGS units by n0miv
2
0 = B2/8π, where the left-hand side rep-

resents the plasma ram pressure, with density n0, ion mass mi, and fluid velocity v0, and the right-hand

side represents the pressure associated with the magnetic field B. For the Earth, the magnetic field is

approximately dipolar, described by Bdip = M/r3, where M ≈ 7.95×1022 A m2 is the magnetic moment,

and r the distance to the dipole, resulting in magnetic fields close to 50 µT at the Earth’s surface [7].

The distance at which we obtain the pressure balance determines the effective magnetic obstacle radius

designated by standoff distance L0, which is close to 65 000 km (around 10 Earth radii) for the Earth.

When the standoff distance L0 is of the same order as the typical ion kinetic scales of the plasma, i.e.,

comparable to the ion gyroradius and/or the ion skin depth, the magnetospheres formed are designated

by mini magnetospheres. Mini magnetospheres occur at much smaller scales, unlike the planetary

magnetospheres, such as Earth’s, where the obstacle size is around a hundred times larger than the

gyroradius.

Additionally to Earth’s magnetic field, the internal magnetic field B0 of the solar wind plasma is also

present. The properties of the plasma flow can be summarized in its Alfvénic Mach number, defined as

MA≡ v0/vA = v0
√
4πn0mi/B0, and corresponds to the ratio between the fluid velocity v0 and the Alfvén

velocity vA, related to the information travel speed of magnetized media. In large-scale magnetospheres,

plasmas can be divided in the super-Alfvénic (MA > 1) unperturbed plasma flow of the solar wind, and

the sub-Alfvénic (MA < 1) turbulent flow surrounding the Earth [8].

1.1.1 Observations and futuristic applications of mini magnetospheres

The study of mini magnetospheres in past years was mainly motivated by the observation of crustal

magnetic anomalies on the lunar surface [9–13]. Although the Moon does not have a global magnetic

field like Earth, it does have small localized regions of crustal magnetic field of 10–100 nT over distances

of 100–1000 km [9], which are of the same order of magnitude as the gyroradius of solar wind ions near
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the Moon’s surface. As a result, when these regions of the lunar surface are exposed to the solar wind,

mini magnetospheres can form.

Mini magnetospheres are closely related to the “lunar swirls” structures observed on the Moon’s

surface [13, 14], which have been associated with magnetic anomalies. As the solar wind gets under

the effect of the magnetic field of these anomalies, it starts to be deflected, leading to side regions

that are under a high exposure of the solar wind, and regions below the magnetic cavity with a low

concentration of plasma. As a result, the regions of the lunar surface that are shielded from the solar

wind bombardment are surrounded by darker regions due to the increased erosion by the solar wind.

An example of a lunar swirl is shown in Figure 1.2.

Figure 1.2: The Reiner Gamma formation, an example of a lunar swirl, pictured on the left side of the
image. The formation is named after the Reiner impact crater, shown on the right, at a distance of 117
km to the east, and has a diameter of 30 km [14].

Other interactions between the solar wind and small-sized patches of magnetic field also occur in

other regions of the solar system. Such examples include Mars [15], where the induced magnetosphere

interacts with the crustal fields; Mercury [16] and Ganymede [17], where the small magnetospheres

interact with the solar wind and Jupiter’s magnetosphere, respectively, and comets and asteroids [18],

when interacting with the solar wind.

The concept of shielding in the magnetic-dominated region of mini magnetospheres can be extended

to multiple futurist applications. One of the most interesting proposals consists in using mini magneto-

spheres to protect spacecrafts from energetic particles, which would allow human space exploration for

long term missions [19, 20]. Such design would be highly effective, as it would not need to stop the

interplanetary plasma particles, only deflecting them instead. It would also be preferable to the purely

proposed electromagnetic deflector shields, as the efficiency can be boosted with the addition of plasma

to the shield.

A concept of mini magnetospheric plasma propulsion for spacecrafts was also proposed [21]. Such a

prototype would create a magnetic bubble around a spacecraft, deflecting and picking up the momentum

from the solar wind high velocities particles. It would require a low power consumption and only a few

mechanical structures and could reach velocities higher than 50 km s-1.

After the different observations of the ion-scale magnetospheres in the solar system and the revolu-

tionary applications that these systems could bring for space exploration, the astrophysical and plasma

community performed multiple studies with simulations and in laboratories to improve our knowledge of

the formation of these systems. In our work, we explore multiple simulations of mini magnetospheres

in laboratory plasmas and resort to analytical models to determine the necessary conditions for the
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formation of magnetospheric characteristics in laboratory configurations.

1.2 State of the art

1.2.1 Efforts in reproducing space and astrophysical scenarios in the labora-

tory

The observations made with space probes of mini magnetosphere systems, although useful to under-

stand the interaction of space plasmas with magnetic obstacles, have multiple limitations. These include

the limited accessible space regions that can be studied and the difficulty in performing high-resolution

measurements. To complement these studies, the space and astrophysics plasma communities have

attempted, over the last decades, to perform laboratory experiments that would reproduce diverse space

and astrophysical scenarios.

Such attempts achieved significant progress, for example, in the RAL Space, at the Rutherford Ap-

pleton Laboratory [22], in the Large Plasma Device (LAPD) at the University of California, Los Ange-

les [23], and in the Laboratoire pour l’Utilisationdes Lasers Intenses (LULI) at École Polytechnique, in

France [24]. In such experiments, explosive, laser-produced debris plasmas, designated as driver plas-

mas, and preformed, magnetized ambient plasmas, designated as background plasmas, were created

to replicate space and astrophysical scenarios, such as the ones observed in the expansion of stel-

lar material through the surrounding interstellar medium in supernova remnants and the interaction of

interplanetary coronal mass ejections with the Earth’s magnetosphere. The fast-moving plasma flows

are usually driven by resorting to high-intensity lasers focused onto solid targets of plastic or metal

composition [25–27]. These laser-ablated plasmas can be mildly collisional or collisionless, replicating

astrophysical conditions [28–31].

To ensure that these experiments could be properly executed, many studies focused on the cou-

pling between the laser-driven plasma and the preformed magnetized plasma to ascertain if the driver

plasma could transfer enough energy in the laboratory and allow the study of astrophysical scenarios.

Such experiments studied the different coupling regimes observed in the laboratory [32, 33] and the

physics of the coupling [29, 34, 35]. By adding dipole field sources against the plasma flows, we can

study mini magnetospheres in the laboratory. Previous experiments studied possible applications for

spacecrafts [19, 22, 36], the formation of lunar swirls [14], and the conditions for the formation of mag-

netosphere features [6, 24, 37, 38]. Although these experiments achieved important breakthroughs in

the study of ion-scale magnetospheric physics, they were limited to i) 1D measurements of the magnetic

field and plasma density profiles and ii) fixed properties of the obstacle and plasma flow.

1.2.2 Recent LAPD experiments with ion-scale magnetospheres

To overcome the limitations of previous experiments with mini magnetospheres, a new experimental

platform to study ion-scale magnetospheres was recently developed in the LAPD [39]. In these exper-

iments, fast collisionless plasma flows generated by high-repetition-rate lasers were collided with the

magnetized ambient plasma provided by the LAPD and with a dipolar magnetic field obstacle, lead-

ing to the formation of ion-scale magnetospheres. Using motorized probes, high spatial and temporal
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resolution measurements of the magnetic field allowed the characterization of 2D magnetic field and

current density structures. The goals of these new experiments are to study the formation and struc-

ture of laser-driven ion-scale magnetospheres, the effect of magnetic reconnection on magnetosphere

dynamics, and the generation of bow shocks.

In these LAPD experiments, a laser-driven plasma expands into a dipole magnetic field embedded in

an ambient magnetized plasma (see Figure 1.3) so that the total magnetic field topology is analogous to

that of the Earth’s magnetosphere. In Figure 1.4, we can observe the first results of these experiments,

which focused on the formation of magnetosphere structures with sub-Alfvénic flows.

Figure 1.3: Schematic of the experimental setup on the LAPD [39]. A laser ablates a plastic target to
create a supersonic plasma flow, which flows toward a dipole magnet inserted into the LAPD from the
top. The dipole magnet is embedded in a uniform magnetized background plasma generated by the
LAPD. Probes inserted from the east port collect volumetric data from the regions around the dipole. A
fast-gate image shows the expansion of the laser-driven plasma.

Figure 1.4: Main results of the LAPD experiments [39]. (Top panels) Dayside magnetic field streak
plots along y in the plane perpendicular to the field {x, z} = {0.75, 0} cm for different dipole magnetic
moments M . In (e), there is no background plasma or magnetic field B0. The colorbars are saturated
to make features clearer. (Bottom panels) 2D contour plots of the derived dayside current density in the
x–y plane, taken at the time of peak current for each M . Overplotted is the current density vector field
(white arrows).
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Figure 1.4 shows the magnetic field variation and the current density structures for different dipolar

magnetic moments. We can observe the formation of a magnetic cavity upstream and a magnetic

compression downstream, and for most cases, a reflection of the magnetic compression. In the current

plots, we observe the formation of two current structures near the dipole [39].

Because the dimensions of space and astrophysical plasma physics are much higher than the di-

mensions in the laboratory, the parameters for the experiments require proper rescaling [40] so that the

main parameter relations in space scenarios, such as the ratio between the standoff distance and the

ion gyroradius or the ion skin depth, remain the same. These include, for example, increasing the mag-

netic field and the plasma densities in the laboratory. Furthermore, in these experiments, the system

parameters must ensure that the coupling between the driver and background plasmas is sufficient to

observe the astrophysical scenarios being studied. The understanding of the coupling mechanism is,

therefore, of high interest for the design of laboratory experiments of space scenarios.

1.2.3 Analytical work

Multiple analytical calculations were performed to interpret the physics of the interaction between

collisionless plasmas and miniature obstacles. The first attempts used the MHD formalism, consisting

of the macroscopic description of plasma as a single electrically charged fluid subject to the presence of

self-consistent and external magnetic fields. Using the MHD equations, the balance between the plasma

pressure and the magnetic field pressure allowed us to obtain a good estimate of the standoff distance

of mini magnetospheres [6].

Furthermore, the MHD equations can also be used to understand the interaction of an expanding

unmagnetized driver plasma with a magnetized background plasma, which commonly occurs in the

laboratory and astrophysical scenarios, such as in ion-scale magnetospheres. When we have a dis-

continuity separating two plasmas with different properties, the relationship between the states of both

sides of the discontinuity obeys the Rankine-Hugoniot (RH) jump conditions [8], which can be used to

evaluate the coupling between the two plasmas.

By considering hybrid models, where the ion species are treated kinetically and the electrons as a

charge-neutralizing fluid, other works were able to calculate the electric field that describes the collision-

less coupling between the expanding and the magnetized plasmas, i.e., the efficiency of energy and

momentum transfers between the two plasmas [29, 30]. For super-Alfvénic and magnetically dominated

plasmas, this electric field provides the dominant coupling mechanism. It was also possible to conclude

that the increase of the density ratio between the driver and background plasma improves the plasma

coupling [41].

Other analytical works focused on calculating the changes to the system parameters during the

driver-background interaction [34] and on calculating the spatial scales of the interaction, more specif-

ically, the size of the magnetic cavity created by the driver plasma [42]. As the driver expands against

the magnetized background, it expels the magnetic field, which can lead to a magnetic cavity of almost

null magnetic field [34]. By considering energy conservation arguments, multiple attempts were made

to calculate the maximum extent of this cavity [36, 43–47].
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1.3 Simulations and the particle-in-cell method
The interaction of plasma flows with magnetic obstacles is a highly nonlinear process [8]. Numer-

ical simulations are therefore essential in complementing the study from analytical and experimental

research, as they can resolve the dynamics of such systems and play a key role in interpreting and

designing experiments [48].

Early MHD simulations attempted to explain the formation and characteristics of lunar ion-scale mag-

netospheres and validate experimental and analytical models [37, 49, 50]. Hybrid simulations were used

to study the role of ion kinetic effects, obtain conditions for the formation of magnetospheres [51], and

replicate previous experimental results [52]. However, these simulations do not resolve the electron

scales nor capture important kinetic effects on the magnetosphere’s boundary, e.g. charge separation

effects and nonthermal particle distributions, that are necessary to resolve these systems [8].

For collisionless electron kinetic-scale systems, particle-in-cell (PIC) codes are ideal numerical meth-

ods, and they were already used to study the formation of ion-scale magnetospheres [8, 48]. The PIC

method consists of self-consistently solving the equations of motion for all the particles in a discretized

spatial grid [53]. In PIC codes, the numerical particles represent an ensemble of real particles, called

macro particles, which are initialized in the grid. From the macro particles’ position and velocity, xp and

vp, the charge and current densities, ρ and J, are deposited at the grid cells’ edges, from which the

electric and magnetic fields, E and B, are calculated using Maxwell’s equations. The fields are then

interpolated to the velocities, and these are updated in time by integrating the relativistic equation of mo-

tion with the Lorentz force. This loop process is repeated for each simulation time step, as represented

in Figure 1.5.

Integration of field
equations on grid
(E,B)i ← (ρ,J)i

Interpolation ; calculation of
forces exerted to particles

(E,B)i → Fp

Integration of the equations
of motion; moving particles

Fp −→ vp −→ xp

Interpolation ; calcu-
lation of grid currents
(x,u)p → (ρ,J)i

∆t

Figure 1.5: Scheme of a typical cycle of the PIC algorithm [53]. The quantities are represented for a
particle p and grid cell i.

Because the PIC method does not apply fluid and collective approximations that would compromise

the observation of the microphysical processes associated with kinetic scale plasmas, it is ideal for

studying mini magnetospheres, of kinetic-scale and collisionless nature.

Previous studies used fully kinetic simulations, such as PIC, to study mini magnetospheres. The

first works studied the formation of lunar mini magnetospheres and confirmed that the lunar magnetic

anomalies are strong enough to standoff the solar wind [54–56] and that kinetic effects play important
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roles in the properties of the lunar plasma environment [57, 58]. In more recent works, PIC simulations

were employed to study the formation of collisionless shocks in mini magnetospheres [59]. They suc-

cessfully obtained conditions for shock formation and different regimes of the magnetic obstacle size

for the motion of the particles. Other studies also concluded that the obstacle size is dependent on the

relative orientation of the magnetic fields [60].

1.4 Objectives

The goal of this Thesis is to determine the main characteristics of ion-scale magnetospheres in

the laboratory in a similar configuration to the recent LAPD experiments described in Section 1.2.2.

We aim to validate the experimental results and method and understand the evolution of the system

and the formation of the different structures observed. By performing different parameter scans and

configurations with simulations, we also aim to understand how each parameter of the system affects

the experimental results and outline the necessary conditions that future experiments must obey to

observe the features observed in the experiments.

To better understand the interaction of the experimental plasmas with the magnetospheric obstacle,

we also aim to understand the interaction between the commonly used laser-driven and background

plasmas. To achieve this, we attempt to describe the interaction of the plasmas analytically and apply

these results to the study of mini magnetospheres.

1.5 Outline

The work developed for this Thesis is focused on determining the characteristics of ion-scale mag-

netospheres performed in the laboratory. To fully understand the evolution of these systems, we need

to understand these systems under different parameter regimes and how the system behaves under a

simplified configuration, where no magnetospheric obstacle is present.

In Chapter 2, we study the coupling, i.e., the energy and momentum transfer efficiency between

a moving plasma and a magnetized plasma, before studying magnetospheric configurations. From

multiple 1D PIC simulations, we discover how these systems typically evolve under different regimes of

parameters, and from conservation laws, we determine analytical expressions for average quantities that

describe these simulations. We also compare the expressions obtained in this Chapter with previous

works in the literature and verify, for certain ranges of parameters, that our equations are substantially

more accurate.

The main results and characteristics of 2D PIC simulations of ion-scale magnetospheres in labora-

tory plasmas are studied in Chapter 3. We replicate the main results of the LAPD experiments presented

in Section 1.2.2 and successfully validate the formation of ion-scale magnetospheres in the laboratory.

By determining the different pressures that arise in the simulations, we study the formation of a magne-

topause and derive analytical expressions for the pressure balances that describe the system.

To better understand the role of each parameter of the system, Chapter 4 shows the results of mul-

tiple parameter scans for the simulations of ion-scale magnetospheres. We determine how the system

changes with the different plasma and dipole parameters and the conditions that these parameters must
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obey to ensure the formation of the main characteristics discussed in Chapter 3. At the end of the

Chapter, we test the validity of some simplifications assumed in most simulations by performing new

simulations with more realistic configurations.

Finally, the conclusions of this Thesis and future work are presented in Chapter 5. In Appendix A,

we derive some of the equations presented in Chapter 2, and in Appendix B, we show a list of the main

simulations performed with mini magnetospheres and compare the parameters of these simulations with

the experiments and space observations.
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Chapter 2

Coupling between a fast-driven

plasma and a magnetized plasma

In the LAPD experiments described in Section 1.2.2, a mini magnetosphere was produced in a

laboratory setting by driving an unmagnetized driver plasma against a dipole embedded in a uniform

magnetized background plasma. In this setup, the driver plasma interacts first with the background

plasma before suffering significant effects from the magnetic field of the dipole. This early interaction is

highly dependent on the coupling between the two plasmas, i.e., the efficiency of energy and momentum

transfer from one plasma to the other.

In the early stages, the driver transfers energy and momentum to the background. Due to the large

mass discrepancies between the ions and electrons, the driver electrons near the driver-background

interface are highly magnetized while the driver ions are effectively unmagnetized. This resulting space

charge separation creates the electric field E near the boundary between the plasmas that deflects the

driver ions and provides an E × B drift for the driver electrons. The electrons generate a diamagnetic

current that produces an opposing magnetic field to the background magnetic field, forming a magnetic

cavity of null magnetic field. With this process, the background moves with the driver plasma. The

electron scales are important during this process, and therefore, numerical studies need to resolve the

electron scales of the system.

It is the result of the coupling that determines the properties of the plasmas that interact with the

dipole and ultimately determines the formation of a mini magnetosphere and the subsequent dynamics.

Determining how and by how much the background plasma is compressed may help us understand

experiments where we only have limited data, e.g. the magnetic field compression. To fully study the

dynamics of mini magnetospheres, we need to understand the interaction of the driver plasma with a

uniform magnetized background plasma.

In this Chapter, we study the coupling between a fast unmagnetized driver plasma flow with a magne-

tized background plasma. Using energy and momentum conservation arguments over averaged quan-

tities, we obtain analytical expressions for multiple parameters of the system, which are consistent with

the results of multiple 1D PIC simulations. The results allow us to describe the evolution of the plasmas
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from initial conditions.

2.1 PIC simulations and coupling parameters

2.1.1 Setup of the simulations

To study the coupling between the plasmas, we performed multiple 1D simulations with OSIRIS, a

massively parallel and fully relativistic PIC code [61, 62]. The simulations consider an unmagnetized

plasma flowing against a magnetized background plasma for a wide range of parameters. With PIC

simulations, we can accurately resolve the plasma kinetic scales of these systems. These simulations

allow us to comprehend how the two plasmas interact with each other and, from it, assume plasma

models that help us deduce analytical expressions to describe the dynamics of the interaction.

The 1D simulations consist of a 25 di length region with open boundary conditions at x = −5 di and

x = 20 di, where di = c/ωpi =
√
mi,0c/4πn0e2 is the ion skin depth of the background plasma, with c the

speed of light in vacuum, ωpi the ion plasma frequency, e the electron charge, and mi,0 and n0 the ion

mass and the density of the background plasma, respectively. Note that this length is much larger than

any scale of the LAPD experiments since here, we are interested in studying the quasi-stationary regime

of the system for a sufficient amount of time. Since the most relevant dynamics of the simulations occur

at the ion kinetic scales, the spatial scales were normalized to di and the time scales to the ion cyclotron

frequency of the background plasma ω−1
ci = mi,0c/eB0, where B0 is the background magnetic field. The

simulations consider 200 particles per cell per species. To resolve the dynamics of the electron kinetic

scales, we used 10 grid cells per electron skin depth, de = di
√

me/mi,0.

We consider an idealized and simplified driver plasma in the simulations when compared to the

laser-produced plasma in the experiments. The driver flows toward the positive x direction with fluid

velocity v0 = v0 x̂, has a uniform density nd, and a length of Lx, that is typically 5 di. The driver is

initially located between x = −5 di and x = 0, and it is composed of a single species of ions with

mass mi,d and electrons. Equivalently, the background plasma has a density of n0 and a length of 20

di. It is located between x = 0 and x = 20 di, and it is also composed of a species of ions with mass

mi,0 and electrons. Unlike the driver, the background plasma is magnetized by an internal and uniform

magnetic field B0 = B0 ẑ. The magnitude of B0 is calculated from the Alfvénic Mach number, defined

as MA ≡ v0/vA = v0
√
4πn0mi,0/B0, where vA is the Alfvén velocity. For both plasmas, all the ions have

charge qi = e, and the electrons have mass me.

The simulations consider cold plasmas, reduced ion mass ratios mi,0/me = 100, and faster fluid

velocities v0 = 0.1 c than expected in experiments and most astrophysical scenarios. These approxima-

tions reduce the computational resources necessary to perform the simulations, allow extended scans

over different parameters, and simplify our analysis. The chosen ion-to-electron mass ratio in the sim-

ulations is high enough to ensure sufficient separation between electron and ion spatial and temporal

scales. In these systems, the thermal effects are typically negligible and do not affect the main results.

We considered electron thermal velocities vthe = 0.1 v0, with vthe,x = vthe,y = vthe,z = vthe/
√
3, for both

the driver and background plasmas, and that the ions and electrons are initially in thermal equilibrium.
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Figure 2.1: a) Ion densities ni and b) x component of the ion velocities vx, for the driver (orange) and
background (blue) plasmas. The green line shows the magnetic field Bz. Columns 1–3 correspond to
three different time steps. The simulation considers nd/n0 = 2, mi,d/mi,0 = 1, and MA = 1.5.

Additionally, n0 is the independent variable of OSIRIS. We ensure that v0 is low enough to neglect

relativistic effects on the system. By using proper space and time scales (di, ω−1
ci ), we expect the system

to be v0 independent if we define the system by the main dimensionless physical parameters (MA, nd/n0

and mi,d/mi,0). Therefore, the simplifications considered in the simulations should not affect the main

results.

In this Chapter, we show the results of multiple parameter scans from these simulations. During the

parameter scans, we keep the background parameters n0 and mi,0 unchanged, and instead change

the driver parameters nd and mi,d, and the Mach number MA. The simulation scans consider driver

densities such that 0.2 ≤ nd/n0 ≤ 10, ion masses for the driver such that 1 ≤ mi,d/mi,0 ≤ 9 and low

Alfvénic Mach numbers such that 0.5 ≤MA ≤ 1.5.

2.1.2 Basic system dynamics

Figure 2.1 illustrates the basic temporal evolution of the system, and shows the ion densities ni of

the driver and background plasmas, the ion phase spaces, and the magnetic field Bz, for three different

time steps. The initial setup of the simulations is represented in Figures 2.1 a1) and b1). The simulation

represented considers nd/n0 = 2, mi,d/mi,0 = 1, and MA = 1.5.

For the parameters chosen, we observe a strong coupling between the driver and magnetized back-

ground plasmas [32]. As the driver flows to the right, it pushes the background plasma and the magnetic

field with it, leading to a relocation of the interface between the two plasmas and creating two high-

density regions on both sides of the interface, as we can see in Figures 2.1 a2) and a3). During this

process, the driver plasma is mostly confined in the upstream region, relative to the plasma flow, while

the background plasma is mostly confined downstream.
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In the transition between the unmagnetized driver and the magnetized background regions, there is

a sudden jump in the magnetic field profile. The existence of a gradient in Bz leads to the presence of

an electric field in the x direction. This electric field is discussed in Section 2.3.2. As the driver particles

flow with velocity v0 against the background, they interact with this electric field and end up reflected

upstream with a new velocity v1 < v0, as we observe in Figures 2.1 b1) to b3). This reflection leads to

the increase of the driver and background densities observed in Figures 2.1 a2) to a3). As this happens,

the bulk of the driver travels to the right through the region initially occupied by the background plasma

and, due to the diamagnetic property of the plasmas created by the E ×B drift of the electrons, it also

expels the magnetic field, creating a magnetic cavity with null magnetic field in the region of the driver.

The energy and momentum lost by the driver plasma during this process are transferred to the

background, resulting in a perturbation of the system characteristics. The initially stationary background

ions are accelerated, and the magnetic field in the background is compressed. During this process,

multiple waves and instabilities form in the background region, leading to the oscillations observed in

Figure 2.1. We also see in Figure 2.1 that the size of the perturbed background region also increases

over time.

Figure 2.1 also shows that the magnetic field and the plasma densities of the system are not constant.

However, some averaged quantities of the system do not change significantly over time. The average

velocity of the accelerated background ions and the average of the compressed magnetic field are such

examples. We can, therefore, consider that the system achieves a quasi-stationary regime that can be

represented by its average properties. In Section 2.5, we show that these properties depend on the initial

parameters of the system, can be predicted by analytical expressions, and can be used to describe the

coupling of the plasmas.

2.1.3 Magnetic and current density diagnostics and coupling parameters

To comprehend the dynamics of these systems, it is important to investigate the evolution of Bz

since it describes the motion of the particles and the electric fields. Additionally, from Ampère’s law,

the y component of the current density is given by Jy ≈ −(c/4π) · ∂Bz/∂x, and so we can use Jy to

investigate the changes in the magnetic field.

To illustrate these two important quantities, we show in Figure 2.2 the temporal evolution of a) the

variation of the magnetic ∆Bz = Bz − Bz,ini, where Bz,ini is the initial magnetic field, and b) the current

density Jy. These are similar diagnostics to the ones shown in Figure 1.4 and can be replicated in

experiments. To understand how the system depends on the initial parameters, these diagnostics are

shown for three driver densities: 1) nd/n0 = 0.5, 2) nd/n0 = 2, and 3) nd/n0 = 5, with MA = 1.5 and

mi,d/mi,0 = 1.

We observe the same main structures for the three driver densities in Figure 2.2. As discussed in

Section 2.1.2, while the driver flows against the background, it expels the magnetic field, creating a

magnetic cavity with null magnetic field, as observed in Figures 2.2 a1) to a3). This magnetic cavity

expands over time, and its maximum distance increases with the driver density. This is expected since

the coupling between the driver and background plasmas improves for denser drivers [41], and the
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Figure 2.2: Temporal evolution of a) the variation of the magnetic field Bz and b) the current density Jy
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shown in Figure 2.1. In all frames, we observe the Magnetosonic (MS) waves in the background.

energy and pressure exerted by the driver increases with the driver density. Therefore, for high driver

densities, the driver has the capacity to expel more energy from the background region, leading to

larger magnetic cavities. The velocity at which the magnetic cavity travels through the background is

designated by coupling velocity, or cavity velocity, and represented by vc. This velocity is always lower

than v0 and, as visible in Figure 2.2, it increases with the driver density.

As observed in Figures 2.1 b1) to b3), the driver ions flow with velocity v0 against the background

region and get reflected by the electric field at the interface between the plasmas. As a result, the number

of driver ions traveling with velocity v0 shrinks over time, while the number of ions that end up with the

reflected velocity v1 increases. If the driver does not have enough energy to push the background

plasma any further, after all the driver ions end up reflected, then the magnetic cavity will be reflected as

well. This occurs for the nd/n0 = 0.5 and nd/n0 = 2 cases (at tωci ≈ 5 and tωci ≈ 8, respectively). For

the nd/n0 = 5 case, after all the ions with velocity v0 get slowed down (tωci ≈ 10), the reflected ions with

velocity v1 still have enough energy to push the background, although at a lower velocity. We consider

the stopping distance Lstop as the distance that the driver ions with velocity v0 are able to push the

magnetic cavity through the background region before being totally reflected.

In Figures 2.2 a1) to a3), we also observe the magnetic compression in the downstream region,

where the background is located. While the compressed magnetic field is not constant, its average does

not change significantly over time (during the main interaction of the plasmas). The average ratio of

compressed to initial magnetic field is designated by compression ratio, and it is represented by α.

Additionally, the background region of the compressed magnetic field increases over time. The velocity
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at which the magnetic compression travels through the unperturbed background plasma is designated

by front velocity, or compression velocity, and it is represented by vf . Figure 2.2 shows that vf also

increases with the driver density. After the driver’s reflection, some of the compressed plasma continues

to move through the unperturbed background.

Figures 2.2 b1) to b3) show the current densities for the three driver densities nd/n0 = 0.5, 2 and 5.

The jump in the magnetic field from the magnetic cavity to the magnetized plasma is described by the

diamagnetic current. In the background region, we also observe multiple current structures associated

with the waves that form in the background plasmas.

For a homogeneous magnetized plasma, the MHD formalism predicts three characteristic electro-

magnetic plasma waves: the fast, the slow, and the intermediate modes. The intermediate mode is the

traditional Alfvén wave which has a phase velocity of vϕ = ω/κ = vA cos θ, where ω, κ, vA, and θ are

the frequency, wave number, Alfvén velocity, and angle between the magnetic field and the wavenum-

ber, respectively. The other two modes are the branches of the magnetosonic (MS) waves with phase

velocities given by

vϕ =
ω

κ
=

{
1

2

[
v2A + c2s ±

√
(v2A + c2s)

2 − 4v2Ac
2
s cos

2 θ

]} 1
2

, (2.1)

where cs is the sound speed. Because the magnetic field in these systems is perpendicular to the wave

propagation (θ = π/2), and because we considered cold plasmas in our simulations, the Alfvén wave

cannot form, and vA ≫ cs. Therefore, only the slow and fast magnetosonic waves can develop in these

simulations, with ω/κ ≈ 0 and ω/κ ≈ vA, respectively. Both these waves can be seen in Figure 2.2. The

phase velocities of these waves in the simulations are close to the expected values.

It is simple to measure the quantities vc, vf , α, and Lstop, that describe the coupling between the

plasmas, by only using the magnetic diagnostics shown in Figure 2.2. If we derive analytical expres-

sions for these quantities, then we can estimate the necessary parameters of the system that ensure

good/weak coupling, and use that information for future experiments. It is worth noting, however, that

although these three quantities tend to remain constant over the main interaction between the plasmas,

the same does not always occur in experiments with similar configurations [34, 63]. In the experiments,

it is not always possible to create sufficiently large uniform plasmas, and we need to consider 3D effects.

However, as we observed in Figure 1.4 a), some experiments still show similar results to Figure 2.2.

2.2 Laminar electric field

To analytically model the simulations, we first look at the electric field that arises in these systems. For

the collisionless, magnetic pressure dominated (βe ≡ 8πneTe/B
2 ≪ 1, where ne and Te are the electron

density and temperature), and low Mach number (MA ∼ 1) scenarios considered, neither Coulomb

collisions nor instabilities effectively transfer momentum and energy between the driver plasma and

the perpendicularly magnetized background plasma. Consequently, for these conditions, the laminar

electric field provides the dominant coupling mechanism between the two plasmas [34]. Using a hybrid

model [29], where the ion species are considered kinetically, and the electron species as a charge

16



0 2 4 6 8 10

x/di

−6

−4

−2

0

2

4

6

B
z
/B

0
,
E
x
c/
v 0
B

0

a)

Bz

Ex

E1,x

0 2 4 6 8 10

x/di

−6

−4

−2

0

2

4

6

B
z
/B

0
,
E
y
c/
v 0
B

0

b)

Bz

Ey

E2,y

Figure 2.3: Comparison between the main terms of Equation (2.2) and the electric field of the simulation
presented in Figure 2.1, for tωci ≈ 5.0. The x components of the electric field are shown in a) and the y
components in b). Ex and Ey refer to the electric field profiles of the simulation (blue), and E1 and E2
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neutralizing fluid, and considering that the magnetic field is mostly defined in the z direction, then the

laminar collisionless electric field of the system, for the regimes discussed, is approximately given by

E ≈ − 1

4πene
Bz∇⊥Bz −

1

enec
(J0 + Jd)×Bz −

∇pe
ene

. (2.2)

In Equation (2.2), ne is the electron density and Jj = Zjnjvj the current density of the driver (j = d) or

of the background (j = 0) plasmas. Zj , nj and vj are the ions charge, density, and velocity, respectively,

for the plasma j. Here, pe = nemev
2
the is the electron pressure. With quasi-neutrality, we have ne ≈

Z0n0 + Zdnd.

The electric field in Equation (2.2) is composed of three different terms. The first term E1 =

−Bz∇⊥Bz/4πene depends on the gradient of the magnetic field and is more relevant in the regions

where Bz changes rapidly, namely, the interfaces between the magnetic cavity and the magnetic com-

pression, and the magnetic compression and the unperturbed plasma. Since turbulence can be ne-

glected, we have |∂B/∂y| ≪ |∂B/∂x|, and so E1 is primarily defined along the x direction.

The second term in Equation (2.2), E2 = −(Jb + Jd)×Bz/enec, is dependent on the ion currents of

the system. Since the ion motions are mostly defined in the x direction, this term is mostly defined in the

y direction, and it is approximately given by E2 ≈ (vx/c)Bz y. As a result, this term opposes the Lorentz

force term v × B that attempts to gyrate the particles, and the background ions gain flow velocity after

interacting with the driver plasma.

Finally, the third term of Equation (2.2), E3 = −∇pe/ene, is mostly defined in the x direction. The

ratio |E3|/|E1| scales with βe. Since we consider cold plasmas in the simulations, this last term can be

neglected when compared to the other two terms of Equation (2.2).

To verify if Equation (2.2) correctly describes the electric field of the system, the main terms in

Equation (2.2) and the electric field of the simulation previously presented in Figure 2.1 and Figures 2.2

a2) and b2), are compared in Figure 2.3, for tωci ≈ 5.0.

Figure 2.3 shows that we can use Equation (2.2) to calculate the electric field in these systems. In

Figure 2.3 a), we see that the x component of the electric field of the simulations can be predicted from
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the first term of Equation (2.2), which depends on the magnetic field gradient, as we initially expected.

Within the interface that separates the magnetic cavity from the compressed magnetic field, we see that

there is a significant negative electric field. This electric field is responsible for the reflection of the driver

ions back to the upstream region.

Figure 2.3 b) also shows that the y component of the electric field can be described by the second

term of Equation (2.2). In the background region, Ey is always positive and is approximately +vxBz.

Although not represented in Figure 2.3, the third term of Equation (2.2) was also calculated, and we

confirmed that it is not relevant to describe the electric field in these simulations.

After confirming that Equation (2.2) can be used to calculate the electric field of these systems, we

can use it to derive a relation between the different coupling parameters vc, vf , and α, as we will see in

Section 2.3.2.

2.3 Physics at the boundaries

2.3.1 Simplified model for the system

As discussed in Section 2.1, as the driver pushes the background, and if the two plasmas are long

enough, the system reaches a quasi-stationary regime, where some parameters of the system do not

change significantly over time. Under this regime, we can consider a few assumptions. With average

quantities and the MHD formalism, the system can be separated into different regions with similar prop-

erties and described by the model shown in Figure 2.4. We neglect thermal effects, wave formation,

instabilities, electron pressure effects, and particle trapping. These simplifications should not affect our

description of the coupling for the low Mach number (MA ∼ 1), cold plasmas, and uniform density

profiles considered in this Chapter.

The model considers three regions characterized by different magnetic and kinetic properties. The

first one refers to the magnetic cavity, where Bz ≈ 0. The driver plasma is located in this upstream region,

and the ion motion of the driver can be described by two ion flows with velocity v0 and v1. The second
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region refers to the magnetic compression, where the average magnetic field is αB0. In this region, the

background ions accelerated by the interaction with the driver plasma have an average velocity of vm.

The third region refers to the background region that remains unperturbed by the interaction of the two

plasmas. Here, the magnetic field is B0 and the background ions have no flow velocity. These three

regions are present in Figure 2.2.

These regions are separated by two discontinuities labeled A and B, where the properties change

abruptly. Discontinuities A and B move through the simulation box with velocity vc and vf , respectively.

From the upstream to the downstream side of the discontinuities, the mass, momentum, and energy

flows must be conserved. By considering macroscopic properties, these conservation laws lead to the

Rankine-Hugoniot (RH) jump conditions, which relate the parameters of each side of the discontinu-

ities [64].

2.3.2 Electric field at the boundaries

We can also use the the electric field to study the physics at the boundaries. We now focus on the

discontinuity A in Figure 2.4 and look at the reflection of the driver ions when facing the background

magnetic field. Near this discontinuity, unmagnetized driver ions move with velocity v0 against the com-

pressed background magnetic field of average value αB0. This discontinuity moves with velocity vc, and

the driver ions are eventually reflected upstream with velocity v1.

In Section 2.2, we observed that a strong electric field in discontinuity A is responsible for the reflec-

tion of the driver ions. From Equation (2.2), this field is approximately given by

Ex ≈ −
1

4πene
Bz

(
∂Bz

∂x

)
. (2.3)

For simplicity, we consider that the jump of the magnetic field across discontinuity A is linear and

described by Bz(x
′) ≈ αB0(x

′/∆), where ∆ is the full width of this transition, and x′≡x−xA the position

in the transition region, with 0 ≤ x′ < ∆, and xA the initial position of discontinuity A, which varies in

time. The equation of motion of a driver ion passing through boundary A, in the reference frame of this

interface, and considering Ex ≫ vyBz, is

mi,d

dv′i,d,x
dt′

= − 1

4πne

(
αB0

∆

)2

x′ ⇐⇒
dv′i,d,x
dx′ v′i,d,x = − 1

4πmi,dne

(
αB0

∆

)2

x′ , (2.4)

where v′i,d,x≡vi,d,x − vc is the driver ion velocity in the reference frame of the barrier. In this frame,

the driver ions have initial velocity v′i,d,x = v0 − vc and start to be reflected upstream when v′i,d,x = 0.

Integrating Equation (2.4), we get

∫ 0

v0−vc

v′i,d,x dv′i,d,x = − 1

4πmi,d

(
αB0

∆

)2 ∫ ∆

0

x′

ne
dx′ . (2.5)

After looking through the simulations performed in this Chapter, we consistently observed a peak in
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the electron density of ne ≈ 4 nd. Assuming this value in Equation (2.5), we finally obtain

(v0 − vc)
2

2
=

1

4πmi,d

(
αB0

∆

)2
∆2

8nd
⇐⇒ 2ndmi,d(v0 − vc)

2 =
(αB0)

2

8π
. (2.6)

Equation (2.6) represents a pressure balance in region A. If we consider that the mass flux of

driver ions is conserved through discontinuity A, i.e., all the driver ions that reach this interface are

reflected upstream, and there are no ions that leak to the background or pile up in this region, then

nd(v0−vc) = n′
d(vc−v1), where n′

d is the density of the reflected driver ions. From symmetry arguments,

we must also have v0 − vc = vc − v1, and therefore, n′
d = nd. At the reference frame of the discontinuity,

the magnetic pressure in the downstream region, B2
z/8π = (αB0)

2/8π, balances the pressure exerted

by the driver plasma in the upstream region, nimiv
2
i,x = 2ndmi,d(v0 − vc)

2, where a factor of 2 in the

density was added to consider both the ions with v0 and v1 velocities, leading to the pressure equilibrium

in Equation (2.6).

Equation (2.6) shows a relation between the coupling parameters vc and α and the initial parameters

of the system. Besides the electric field that acts on the particles, we can look at the conservation

laws that rise from the MHD and Maxwell’s equations to study the physics of the discontinuities. These

conservation laws are expressed in the Rankine-Hugoniot jump conditions.

2.3.3 Rankine-Hugoniot jump conditions

To relate the parameters of each region represented in Figure 2.4, we first look at the conservation

laws for the simple scenario where only one discontinuity exists. We define regions 1 and 2 as the

upstream and downstream sides of this discontinuity, respectively, and that each region is described by

a different set of parameters. We also assume that the normal to the discontinuity is aligned along the x

direction and that the discontinuity is infinite in the y and z directions.

By integrating the MHD and Maxwell’s equations over the discontinuity, we can relate the plasma

quantities in regions 1 and 2. In the reference frame of the discontinuity, we can drop the time derivatives,

and the problem reduces to determining the solution of a stationary system [8, 64]. In this reference

frame, the MHD and Maxwell’s equations result in the following relations

∇ · (nv) = 0 (2.7)

∇ · (nmvv) +∇
(
p+

B2

8π

)
− 1

4π
∇·(BB) = 0 (2.8)

∇ ·
[
nmv

(
1

2
v2 + ω

)
+ v

(
p+

B2

4π

)
− B

4π
(v ·B)

]
= 0 (2.9)

∇× (v ×B) = 0 . (2.10)

In these expressions, n, m, and v are the average density, mass, and velocity of the plasma, respectively,

B the magnetic field, p the plasma pressure, and ω = p/(γ − 1)nm the plasma enthalpy, with γ the

adiabatic index.
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For a generic scalar quantity X, the integration of its gradient is equal to

∫ 2

1

dX

dx
dx =

∫ 2

1

dX = X2 −X1 ≡ [X] . (2.11)

For a generic vector X = (Xx, Xy, Xz), the integrations of its divergence and curl are

∫ 2

1

∇ ·X dx =

∫ 2

1

∂Xx

∂x
dx = [Xx] (2.12)∫ 2

1

∇×X dx =

∫ 2

1

(
∂Xy

∂x
z− ∂Xz

∂x
y

)
dx = [Xy]z− [Xz]y . (2.13)

For the configurations considered in this work, B is mostly defined in the z direction and v in the x

direction. If we consider cold plasmas and neglect thermal effects, we have ω = 0 and p = 0, and we

can simplify the relations further. Integrating Equations (2.7) to (2.10) with Equations (2.11) to (2.13)

leads to

[nvx] = 0 (2.14)[
nmv2x +

B2
z

8π

]
= 0 (2.15)[

1

2
nmv3x +

B2vx
4π

]
= 0 (2.16)

[vxBz] = 0 . (2.17)

Equations (2.14) to (2.17) are known as the Rankine-Hugoniot (RH) jump conditions and set the

relations between the upstream and downstream parameters around a discontinuity. We can use these

equations to determine analytical expressions for the coupling parameters. However, some caution

must be taken since these equations are deduced for a single boundary, while two boundaries form in

the simulations, as represented in Figure 2.4.

2.3.4 Applying the RH equations to the discontinuities

As mentioned in Section 2.3.2, the mass flow of the driver ions must be conserved during the evolu-

tion of the system. This law corresponds to the RH Equation (2.14). Applying this Equation to boundary

A leads to

nd(v0 − vc) + n′
d(v1 − vc) = 0 . (2.18)

As previously discussed, due to symmetry arguments, vc = (v0 + v1)/2, and as a result, nd = n′
d.

From Equation (2.17), and assuming the model of Figure 2.4, we also have for the boundary A

(vm − vc)αB0 = 0 ⇐⇒ vm = vc , (2.19)

21



as expected. Using these two conservation laws for boundary B, we obtain

(vm − vf )αB0 = −vfB0 ⇐⇒ α =
vf

vf − vc
(2.20)

(vm − vf )n
′
0 = −vfn0 ⇐⇒

n′
0

n0
=

vf
vf − vc

. (2.21)

Equation (2.20) shows a relation between α, vc, and vf . As we observed in Figure 2.1, the back-

ground plasma gets compressed, and its density increases from n0 to n′
0 in the magnetic compression

region. Equation (2.21) shows that the background density increases by the same ratio as the magnetic

field, i.e., by a factor of α.

Finally, we look at the conservation of momentum by applying Equation (2.15) to discontinuity A

ndmi,d(v0−vc)2+n′
dmi,d(v1−vc)2 =

(αB0)
2

8π
+αn0mi,0(vm−vc)2 ⇔ 2ndmi,d(v0−vc)2 =

(αB0)
2

8π
. (2.22)

Equation (2.15) leads to the same result as Equation (2.6), calculated from the electric field. We now

have two different equations, Equations (2.20) and (2.22), that relate the coupling parameters vc, vf ,

and α. A third equation will allow for the derivation of analytical expressions for these quantities. This

last equation can be obtained from the conservation of energy.

As previously mentioned, we must be careful when applying these RH equations, derived for a single

discontinuity, to systems with two discontinuities moving at different velocities. We cannot use Equa-

tion (2.16) as it does not consider the energy flows shared by boundaries A and B. However, we can

solve this issue by deriving the different energy variation terms that describe these systems and correct-

ing the energy conservation law.

2.4 Energy conservation of the system

In Section 2.3, we derived Equations (2.20) and (2.22) by looking at the physics at boundaries of the

plasmas. If we now consider these equations and the energy conservation law, we can obtain analytical

expressions for the coupling parameters vc, vf , and α.

Considering ∆Edr, ∆E0, ∆Emag, and ∆Eele as the energy variations of the system associated with

the driver plasma, the background plasma, the magnetic field, and the electric field, respectively, over a

time ∆t, we must have

∆Ed +∆E0 +∆Emag +∆Eele = 0 . (2.23)

Figure 2.3 showed that the electric field of the system is of the same order as v0B0. This means

that the energy term ∆Eele can be neglected when compared to the magnetic energy ∆Emag since

E2
ele/E

2
mag ∼ (v0/c)

2 ≪ 1. To determine the coupling parameters, we need to find the energy terms in

Equation (2.23) as a function of vc, vf , α, and the initial parameters of the system.

To derive the expressions for these energy terms, we will assume the model in Figure 2.4, which

considers a quasi-stationary regime of a system described by averaged magnetic and kinetic parameters

without thermal effects or instabilities.
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2.4.1 Driver plasma energy variation

Because we are neglecting thermal effects and me ≪ mi, most of the driver’s energy is transferred

by the ions instead of the electrons. As discussed in Section 2.3, the mass flux of the driver ions must

be constant through the reflection process, and so n′
d = nd and v1 = 2vc − v0.

With these assumptions, the the energy of the driver lost during the interaction between the plasmas,

∆Ed, can be calculated by the energy gained by the ion population traveling with velocity v1 plus the

energy lost by the ion population with velocity v0. The energy variation of each population can be

calculated by multiplying the kinetic energy of each ion with the variation of the number of ions within

the population. Recalling that the interface between the driver and the background plasmas travels with

velocity vc, then for an area transverse to the plasma flow AT , and for a time ∆t, the energy variation of

the driver plasma is given by

∆Ed = −1

2
mi,dv

2
0nd(v0 − vc)AT∆t+

1

2
mi,dv

2
1n

′
d(vc − v1)AT∆t = −2ndmi,d(v0 − vc)

2vcAT∆t . (2.24)

With Equation (2.24), we can represent the driver’s energy with the initial parameters and vc.

2.4.2 Background plasma energy variation

In Figure 2.4, the background plasma is located in two different regions. Since the plasma is station-

ary in the unperturbed background region, the background plasma energy variation ∆E0 is equal to the

increase of energy of the compressed background region.

From Equation (2.19), we saw that vm=vc. The average energy of each background ion is thus

mi,0v
2
c/2. The density of the compressed background n′

0, in the region of the magnetic compression,

can be calculated with Equation (2.21). We also see in Figure 2.4 that the back and front boundaries

of the magnetic compression region travel with velocities vc and vf , respectively, and thus the length of

this region increases at a velocity equal to vf − vc. The variation of background plasma energy is then

described by

∆E0 =
1

2
mi,0v

2
cn

′
0(vf − vc)AT∆t =

1

2
mi,0v

2
cn0vfAT∆t , (2.25)

which depends on vc, vf , and the initial parameters of the system.

2.4.3 Magnetic energy variation

Finally, we need an expression for the variation of the magnetic energy ∆Emag to apply Equa-

tion (2.23). As the driver pushes the background region, it expels the magnetic field initially located within

the magnetic cavity region and compresses the magnetic field in the background. From Figure 2.4, we

observe that this interaction leads to the magnetic compression region, with an average magnetic field

equal to αB0 and a length that increases at a velocity vf − vc, and the unperturbed background region,

with a magnetic field B0 and a length that changes at a velocity −vf .

The magnetic energy variation is then described by

∆Emag =
(αB0)

2

8π
(vf − vc)AT∆t− B2

0

8π
vfAT∆t =

B2
0

8π

[
α2(vf − vc)− vf

]
AT∆t . (2.26)
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Figure 2.5: Energy flux of a) the driver ions Φd and b) the magnetic field Φmag, for multiple Mach numbers
MA and driver density ratios nd/n0. The energy fluxes calculated from the changes in the total energy
are represented by scatter points, while the energy fluxes calculated from Equations (2.24) and (2.26),
with the coupling parameters measured in each simulation, are connected by dashed lines.

With Equations (2.23) to (2.26), we can finally determine analytical expressions for the coupling

parameters that only depend on the initial parameters of the system.

2.4.4 Validation of the energy expressions

Before deriving the analytical expressions for the coupling parameters, we first check the validity

of the previous energy variation equations. To achieve this, we performed multiple simulations with a

wide range of parameters and compared the energy diagnostics of the simulations with Equations (2.24)

to (2.26).

As discussed in Section 2.1.3, we can use the magnetic field data to calculate the coupling param-

eters vc, vf , and α. For each time in the simulations, we detected sudden jumps in the magnetic field

data and localized the boundaries A and B. By fitting a linear function to these positions, the coupling

and front velocities were determined. These calculations only considered the main interaction between

the plasmas, i.e., times before the reflection of the magnetic cavity and the full reflection of the driver

plasma. For α, we averaged the magnetic field between these two boundaries for the times considered.

For each simulation, the different kinetic and magnetic energy fluxes Φj ≡ ∆E/AT∆t were calculated

from the variations of the total energies of the system (with j = d, 0, and mag for the driver, background,

and magnetic field, respectively). These fluxes were then compared to Equations (2.24) and (2.26),

which used the measured coupling parameters of the simulations. Because we ensure that a quasi-

stationary regime forms in each case, these fluxes remain constant during the main interaction of the

system.

We performed simulations for three different Alfvénic Mach numbers MA and multiple driver to back-

ground density ratios nd/n0. We considered mi,d/me = mi,0/me = 100. Figure 2.5 shows the energy

fluxes of a) the driver ions Φd and b) the magnetic field Φmag for the simulations performed.

With Figure 2.5, we verify that Equations (2.24) and (2.26) can be used to describe the energy

variations associated with the driver plasma and the background magnetic field for the parameters and

time scales of interest to this work. In Figure 2.5 a) we see that, as expected, the flux of driver energy

decreases with increasing driver density since the driver has larger initial energy. For higher Mach

numbers, because the background is less magnetized, the driver is less efficient at transferring energy
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Figure 2.6: a) Energy flux of the background plasma Φ0. The fluxes calculated from the changes in
the total energy are represented by the scatter points, while the energy fluxes calculated from Equa-
tion (2.25), with the measured coupling parameters measured, are connected by the dashed lines. b)
Fraction of thermal energy to total energy of the background ions, for each simulation, in the final stage
of the main interaction.

to the background, and therefore, it loses energy at a lower rate. Similarly, in Figure 2.5 b), we observe

that the magnetic energy flux is larger for denser drivers and lower Mach numbers. This means that,

for lower Mach numbers, the background magnetic field will receive more energy than the background

plasma.

In Figures 2.5 a) and b), we also observe in some simulations (MA = 0.5 and nd/n0 < 1, for

example) that the driver plasma gains energy while the magnetic field loses energy. These scenarios

correspond to the cases where the initial magnetic pressure B2
0/8π is larger than the ram pressure of the

driver plasma 2ndmi,dv
2
0 , so the driver is pushed back by the background, leading to negative coupling

velocities. From Equation (2.22), we see that the background suffers a decompression instead of a

compression, and it is the background magnetic field that transfers energy to the driver plasma.

Although the analytical expressions for the driver and magnetic energies are consistent with the

simulations, as seen in Figure 2.5, the same is not verified for the background plasma energy. Figure 2.6

a) shows the energy flux of the background plasma Φ0, and we can observe that, for the higher Mach

numbers and higher driver densities, Equation (2.25) is not a good approximation to describe the energy

changes of the background plasma. However, for low Mach numbers, Equation (2.25) seems to be a

good description of the background ion energy.

For higher Mach numbers MA and density ratios nd/n0, instabilities form in the background plasma

and start to have an important role in the energy partition of the plasma. Since Equation (2.25) does not

consider the thermal energy of the background plasma, these instabilities are not incorporated in the

equations, so Equation (2.25) underestimates the variation of the background energy, as we observe in

Figure 2.6 a). Figure 2.6 b) shows the average ratio of thermal energy of the background ions Ei,0,th

to the total energy of the background ions Ei,0,total near the final stage of the main interaction. These

fractions were calculated from the ion density and thermal and flow velocities of the background ions. We

observe that for higher Mach numbers and driver densities, a significant percentage of the background

ions’ energy is thermal energy, which is not included in Equation (2.25). For low Mach numbers, the

thermal energy is negligible, and Equation (2.25) describes well the background energy, as seen in
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Figure 2.6 a).

In this work, we focus on low Mach numbers and do not attempt to consider instabilities in Equa-

tion (2.25). With the confirmation that Equations (2.24) to (2.26) correctly describe the energy of the

system for the parameters of interest, we can now obtain analytical expressions for the different cou-

pling parameters.

2.5 Coupling parameters

2.5.1 Derivation of the analytical expressions

In Section 2.4.4, we confirmed that Equations (2.24) to (2.26) can be used to represent the energy

variations of the system for most parameters. We can finally derive the analytical expressions for vc,

vf , and α, with the compressed density and magnetic field ratios of the background (Equation (2.20)),

the pressure balance at the boundaries of the plasmas (Equation (2.22)), and the energy conservation

equation (Equation (2.23)).

The derivation of the three coupling parameters is presented in Appendix A.1. We show that if we

define the Alfvénic Mach number MA with the initial background plasma parameters

MA =
v0
vA

, vA =
B0√

4πn0mi,0

, (2.27)

and the quantity Rn, which depends on the density and mass ratios between the driver and background

plasmas

Rn =
1

2

(
n0

nd

mi,0

mi,d

) 1
2

, (2.28)

then the coupling parameters α, vc, and vf can be calculated with

α =
1 +MA

1 +Rn
(2.29)

vc
v0

=
1

MA

MA −Rn

1 +Rn
(2.30)

vf
v0

=
1

MA

MA + 1

1 +Rn
. (2.31)

These analytical expressions for the three coupling parameters depend only on the initial parameters,

as initially intended. We stress that these three quantities are easily calculated from the magnetic

diagnostics of the simulations and of the experiments, and we can use them to evaluate the coupling of

the system.

From Equations (2.24) and (2.25), we obtain that the transfer of energy from the driver plasma to the

background plasma is
∆E0

−∆Ed
=

MA −Rn

MA + 1
=

vc
vf

. (2.32)

The ratio between the coupling and front velocities is then a direct tool to evaluate the efficiency of the

energy transfer from the driver to the background.

The equations shown here are only valid for the main interaction of the system, i.e., before all the
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Figure 2.7: Comparison between the coupling parameters measured in the simulations for a) vc/v0
with Equation (2.30), b) α with Equation (2.29), and c) vf/v0 with Equation (2.31), for different MA and
nd/n0 values. These simulations considered mi,d = mi,0. The coupling parameters measured in the
simulations are represented by dots, and the analytical expressions by dashed lines.

driver ions are reflected and the velocity of the magnetic cavity changes. After the main interaction, the

reflected driver ions can still have enough energy to push the background forward, creating a second

coupling interaction between the driver and the background.

2.5.2 Dependency on the driver density

We now verify the validity of Equations (2.29) to (2.31). Figure 2.7 shows the measured values for

the coupling parameter ratios α, vc/v0, and vf/v0, for multiple simulations with different Mach numbers

MA and driver densities nd, with mi,d = mi,0. The measured coupling parameters are plotted alongside

Equations (2.29) to (2.31). As previously mentioned, these coupling parameters were measured in the

simulations by finding the locations of discontinuities A and B (see Figure 2.4).

Figure 2.7 shows that Equations (2.29) to (2.31) can be used to describe the coupling of the system

for a wide range of parameters. In Figure 2.7 a) we see that for higher Mach numbers, the coupling

velocity increases since the background magnetic field is lower, and offers less resistance to the motion

of the driver. Similarly, as the driver density increases, the driver plasma can exert a higher pressure on

the background, leading to higher coupling velocities. As previously discussed in Section 2.4.4, some

of the simulations performed did not have a sufficiently high driver density and were not able to push

the background plasma, leading to negative coupling velocities. These simulations correspond to the

scenarios 2ndmi,dv
2
0 < B2

0/8π. The measured vc values are consistent with Equation (2.30), for the

parameter ranges considered.

In Figure 2.7 b), the measured α values of the simulations are compared to Equation (2.29). Sim-

ilarly to the coupling velocity, α increases with the Mach number and the driver density. For the sim-

27



−0.2

0.0

0.2

0.4

0.6

0.8

1.0
v c
/v

0
a)

0.0 0.5 1.0 1.5 2.0
MA

0.0

0.5

1.0

1.5

2.0

2.5

α

b)

0.0 0.5 1.0 1.5 2.0
MA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

v f
/v

0

c)

mi,d/mi,0 = 1

mi,d/mi,0 = 3

mi,d/mi,0 = 5

mi,d/mi,0 = 7

mi,d/mi,0 = 9

Figure 2.8: Comparison between the coupling parameters measured in the simulations for a) vc/v0
with Equation (2.30), b) α with Equation (2.29), and c) vf/v0 with Equation (2.31), for different MA and
mi,d/mi,0 values. These simulations considered nd = n0. The coupling parameters measured in the
simulations are represented by dots, and the analytical expressions by dashed lines.

ulations with negative coupling velocities, we observe that α < 1, which means that the background

suffered a magnetic decompression. The α values obtained with the simulations are consistent with

Equation (2.29).

Finally, in Figure 2.7 c), we see that the front velocity vf measured in the simulations is mostly

consistent with the values calculated with Equation (2.31). The font velocity increases with the driver

density but decreases with the Mach number. For low and high Mach numbers, the small differences

between the simulations and the analytical equations are more meaningful than in Figures 2.7 a) and b).

For low Mach numbers, these differences are associated with the difficulty in measuring vf in the

simulations. As we saw in Figure 2.7 b), for low Mach numbers, the compressed magnetic field is

almost equal to the initial magnetic field, i.e., α ≈ 1, and it becomes more challenging to separate

the compressed region from the unperturbed background region in the simulations. Additionally, the

large width associated with discontinuity B and the waves that form in the background plasma (see

Figure 2.1), also lead to difficulties in the measurement of the front velocity in the simulations. For high

Mach numbers, Equation (2.25) underestimates the energy of the background since it does not consider

instabilities, leading to the differences between the simulations and Equation (2.31), as discussed in

Section 2.4.4.

2.5.3 Dependency on the driver ion mass

To fully verify the validity of the deduced coupling equations, we now compare the coupling parame-

ters measured in the simulations with Equations (2.29) to (2.31) for different driver ion masses mi,d and

Mach numbers MA in Figure 2.8. The simulations shown in this Section consider nd = n0.
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errorbars account for the non-sharp magnetic cavity reflection in some simulations. a) Scan for different
driver densities nd and Mach numbers MA, with mi,d = mi,0. b) Scan for different Mach numbers MA

and driver ion masses mi,d with nd = n0.

Similarly to the density scan of Figure 2.7, the results obtained in the simulations are consistent with

Equations (2.29) to (2.31). Once again, Equation (2.31) overestimates the front velocities, in particular

for low Mach numbers. The results presented in Sections 2.5.2 and 2.5.3 demonstrate that Equa-

tions (2.29) to (2.31) successfully describe the coupling between the driver plasma and the background

plasma, and now, we can use them to evaluate other characteristics of the system.

2.5.4 Stopping distance

In Sections 2.5.2 and 2.5.3, we showed that we can use the obtained analytical expressions to

describe how the system evolves over time for a range of parameters. These equations are also useful to

obtain other parameters of the system, such as the stopping distance Lstop, i.e., the maximum distance

that the magnetic cavity can travel through the background region, during the main interaction of the

system.

As previously discussed, the reflection of the magnetic cavity that we observed in Figure 2.2 occurs

nearly at the same time as the full reflection of the driver by the background. The magnetic cavity travels

a distance Lstop through the background region, with velocity vc, while the driver with a length Lx is

reflected by the background with a velocity v0 − vc. The stopping distance can then be determined by

Lx

v0 − vc
=

Lstop

vc
⇐⇒ Lstop = Lx

vc
v0 − vc

= Lx
MA −Rn

Rn(1 +MA)
. (2.33)

To test Equation (2.33), Figure 2.9 shows the measured stopping distance Lstop in the simulations, at

the end of the main interaction, and the corresponding values calculated from Equation (2.33). Figure 2.9

a) shows the results for different driver densities nd and Mach number MA values, and Figure 2.9 b) for

different driver ions masses mi,d and MA.

Similarly to the coupling parameters, Figure 2.9 shows good agreement between the deduced ex-

pression and the distances measured in the simulations, especially for low Mach numbers and low driver

ion masses. For high Mach numbers and masses, the stopping distances start to be overestimated by

29



Equation (2.33). As we observed in Figure 2.7 a) and Figure 2.8 a), the coupling velocity is close to v0 for

these values. Since the stopping distance, calculated by Equation (2.33), is proportional to vc/(v0 − vc),

it is very reactive to small variations of vc, for vc ≈ v0. This means that, although the calculated vc were

consisted with the data measured in the simulations, the small differences between Equation (2.30) and

the simulations may lead to big differences in the Lstop values, as we see in Figure 2.9.

Finding an analytical expression for the stopping distance can be rather useful because it can give an

estimation of the typical scales of the system. Equation (2.33) can be also useful to determine unknown

parameters in the experiments.

2.5.5 Applicability to experiments

Through Section 2.5, we observed that we could relate the coupling parameters with the initial param-

eters of the system by using Equations (2.29) to (2.31). In the experiments with a similar setup to those

presented in Section 1.2.1, there is high uncertainty on some parameters of the system, in particular, on

the driver and background densities nd and n0, and the fluid velocity v0. We can use Equations (2.29)

to (2.31) to estimate these quantities. Rewriting these, we obtain

n0 =
B2

0(α− 1)2

4πmi,0v20
nd =

α2B2
0

16πmi,d(v0 − vc)2
. (2.34)

We can use these equations to determine some parameters of the experiments, for the cases MA ∼
1. However, it requires that we know the experimental value of v0, which normally is uncertain. We also

need to be careful for the cases where nd is much larger that n0. As we observe in Figure 2.7, for large

nd values, the coupling parameters start to change slowly with nd. This means that, for these ranges,

similar coupling parameters could lead to very different density values.

Finally, we look at possible applications of Equation (2.33). In experiments with similar configurations,

the stopping distance Lstop is normally used as a benchmark, to estimate some initial parameters of the

system. This is normally done by using the equal mass radius Rm for high Mach numbers, which is

obtained when we consider that the driver stops when it overruns an equal mass of background plasma

ndmi,dLx = n0mi,0Rm ⇐⇒ Rm =
ndmi,d

n0mi,0
Lx . (2.35)

We consider that the driver expansion is only 1D, as in our simulations. For low Mach numbers, the

magnetic stopping radius RB is used instead, which is obtained when we consider that all the driver

energy was used to expel the background magnetic field, leading to

1

2
ndmi,dv

2
0Lx =

B2
0

8π
RB ⇐⇒ RB = RmM2

A . (2.36)

If we considered the energy transferred both to the magnetic field and the background plasma, we

can also have the Equation (2.37), that should be a better at predicting the stopping distance of the
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Figure 2.10: Comparison between the stopping distance Lstop measured for multiple simulations (dots),
and the analytical Equations (2.35) to (2.37) deduced in previous works (lines). The colors represent the
different Mach numbers, and the line styles represent the different equations.

magnetic cavity for MA ∼ 1

1

2
ndmi,dv

2
0Lx =

1

2
n0mi,0v

2
0RBM +

B2
0

8π
RBM ⇐⇒ RBM =

RB

1 +M2
A

. (2.37)

As we can see in Figure 2.10, these equations, however, fail for the simulations performed, when

compared to Equation (2.33) and Figure 2.9. These happens, because the previous equations consider

that the driver transfers all its energy to the background region, and do not account for change in the

densities and magnetic fields, nor mixed energy transfers to the background plasma and background

magnetic field. Because of this difference between the measured distances and the expressions, pre-

vious works tended to use the previous equations as scaling laws or in fitting models, and adjust the

models for each laboratory and used for benchmark. Having a better estimate for Lstop, such as that in

Equation (2.33), for the ranges MA ∼ 1, could thus lead to improved benchmarks for future experiments.

Some caution must also be considered when applying these results to the experiments. For most

of the experiments performed, that consider a driver plasma expanding to a magnetized background

plasma, the driver plasma is not long enough to reach the quasi-stationary regime that we observed in

our simulations. This may lead to weak coupling between the driver and the background plasmas in

the experiments, invalidating the analytical equations for the coupling, while in the simulations, for the

parameters observed, we always observed strong coupling. Furthermore, in the experiments, we may

not be able to consider that the driver has a plasma with initial uniform density and uniform velocity

profile, like in the simulations. Besides the non homogeneity of the experiments, we must also consider

3D effects, such as the driver expansion, the experiments have higher temperatures than consider in the

simulations, and possible multiple ion-species in the plasmas.

2.6 Conclusions

A vast range of space and astrophysical scenarios are driven by the rapid expansion of plasmas

through magnetized mediums. To understand the evolution of these systems, these systems are also

replicated in laboratory, as it was done in the LAPD experiments showed in Figure 1.4, where a driver

plasma flowing against magnetized plasma and a dipole. In this Chapter, we studied an idealized system
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of what typically occurs in these experiments and astrophysical scenarios, by considering a uniform

unmagnetized driver plasma flowing with constant velocity against a uniform magnetized background

plasma, and studied these systems by performing simulations and analytical studies.

As discussed in this Chapter, the jump in the magnetic field from the unmagnetized driver to the mag-

netized background regions, leads to an electric field that slows down the driver particles that reached

near the background. During this process, the energy and momentum lost by the driver plasma is trans-

ferred to the magnetized background plasma, leading to a region of compressed magnetic field and

density in the background. Due to the large discrepancies between the ion and electron masses, a

diamagnetic current forms in the interface driver-background, and the magnetic field is expelled by the

driver, leading to the formation of a magnetic cavity.

The driver-background interaction also leads to an acceleration of the initially stationary background

plasma particles, and as a result, the driver plasma pushes the background forward, until it has no more

energy and momentum. We also observed that this interaction leads to the formation of waves and

instabilities in the background plasma. For the configuration considered in our simulations, where the

plasma flows are perpendicular to the magnetic field, we detected both slow and fast magnetosonic

waves. For sub-Alfvénic Mach numbers MA < 1 (and low driver densities), the fluctuations in the

background is mostly described by these two waves, but for super-Alfvénic Mach numbers MA > 1 (and

high driver densities), the fluctuations are also driven by instabilities.

As we observed in this Chapter, during the main interaction between these two ideal plasmas con-

sidered in our simulations, the driver expels the magnetic field, leading to a magnetic cavity region that

travels through the background with constant coupling velocity vc. As the magnetic field is expelled in the

driver region, the averaged magnetic field and density of the background plasma are compressed by a

constant ratio α, and this compression travels with constant front velocity vf . These three quantities (vc,

α, and vf ) describe the coupling between the two plasmas, and increase for higher driver to background

density or mass ratios. For higher Mach numbers, the parameters vc and α increase while vf decreases.

We also observed that, for some parameters, the driver plasma does not have enough momentum and

energy to push the background plasma, and instead it is pushed back by the background.

By applying the mass, momentum, and energy conservation laws on the system, similarly to the

Rankine-Hugoniot jump conditions, we showed that these three quantities (vc, α, and vf ) can be cal-

culated accurately from the initial parameters of the system, for Mach numbers MA ∼ 1. With the

derived analytical expressions, we can determine multiple averaged quantities of the system, such as

the distance that the magnetic cavity is able to travel through the background, and understand how the

interaction of the plasmas changes their properties. In this Chapter, we also showed that these expres-

sions can be used to estimate some initial parameters of the system that are not very well known in the

experiments.
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Chapter 3

PIC simulations of laboratory

ion-scale magnetospheres

With Chapter 2, we described the interaction of a uniform unmagnetized driver plasma flow with a

uniformly magnetized background plasma, for Mach numbers close to one. In general, this interaction

results in the transfer of energy from the driver plasma to the background plasma, generating a complex,

magnetized plasma flow. If a magnetic obstacle are in the path of this plasma flow, it can be deflected

and further compressed, leading to the formation of a magnetosphere. By introducing a dipole in the

system, we form a ion-scale magnetosphere. In this Chapter, we investigate the generation of ion-

scale magnetospheres with PIC simulations, in the configurations of the LAPD experiments described

in Section 1.2.2, and compare the results with the experimental study.

3.1 Setup of the simulations

We have performed 2D PIC simulations with OSIRIS, a massively parallel and fully relativistic PIC

code [61, 62], to accurately resolve the plasma kinetic scales characteristic of mini magnetospheres

dynamics. These simulations stem from a simplified description of the LAPD experimental setup, rep-

resented in Figure 3.1. In these simulations, a driver plasma moves against a background plasma

permeated by a uniform magnetic field B0 and a dipolar magnetic field Bdip. B0 and Bdip are oriented

along the z direction and are transverse to the driver plasma flow. Since the most relevant dynamics of

the simulations occurs at the ion kinetic scales, all the spatial scales are normalized to the ion skin depth

of the background plasma di = c/ωpi =
√
mi,0c2/4πn0e2. In turn, the temporal scales are normalized

to 1/ωci, where ωci = eB0/mi,0c is the ion cyclotron frequency of the background. The simulation box is

a 12 di × 12 di area with open and periodic boundary conditions in the x and y directions, respectively.

The flow is in the x direction and the size of the simulation domain in the y direction is large enough to

avoid re-circulation of the particles through the whole interaction. The simulations considered 25 parti-

cles per cell per species. To resolve the dynamics of the electron kinetic scales, we used 10 grid cells

per electron skin depth de = di
√

me/mi,0 in both x and y directions, where me is the electron mass.

The driver plasma, shown in region I in Figure 3.1, represents ideally the plasma ablated from the
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Figure 3.1: Schematic illustration of the initial setup of the 2D PIC simulations performed. The system
considers a vacuum region at the left, a driver plasma (I) of density nd and length Lx, travelling to the
right with flow velocity v0, and a background plasma (II) with constant density n0 and with an internal
magnetic field B0. A dipole is included at the center of the background region. Both the uniform and the
dipolar magnetic fields are oriented in the z direction. An illustration of the effective magnetic obstacle
created by the dipole and of the magnetic field profile at y = 0 are also shown in a dashed circumference
and in a solid black line, respectively.

plastic target in the experiments. We assume that this driver has a length Lx that is typically 2 di, and

a width Ly that is typically infinite. It has a constant density nd, and it is initialized moving to the right

side with initial flow velocity v0. The driver is composed of an electron species and a single ion species,

with ion mass mi,d. Because the driver plasma is reflected during the interaction with the background,

an empty region at the left of the driver was added to accommodate the reflecting particles.

The background plasma is represented in region II. It is an 8 di length and infinite width plasma and

it has uniform density n0. The initial interface between the driver and background plasma is located

at xB = −4 di. Like the driver plasma, it has an electron species and a single ion species, of mass

mi,0. The background plasma is magnetized with an internal uniform magnetic field B0 = B0ẑ, and its

magnitude is defined such that the Alfvénic Mach number of the flow, MA ≡ v0/vA = v0
√
4πn0mi,0/B0

matches the peak experimental value MA = 1.5, where vA is the Alfvén velocity.

A dipolar magnetic field is externally imposed in our simulations (i.e., it is added to the plasma self-

consistent electromagnetic fields to advance particle momenta but is not included in Maxwell’s equations

to advance the fields). The dipole is centered at (x, y) = (0, 0) and its associated magnetic field is

Bdip = Bdipẑ, with Bdip = M/r3, where M is the dipolar magnetic moment, r =
√
x2 + y2 + δ2 is the

distance to the origin of the dipole and δ = 0.25 di is a regularization parameter. For most simulations,

the magnetic moment M was chosen such that the expected standoff, obtained from Equation (3.1), is

similar to the experimental value L0 = 1.8 di [39].

ndmi,dv
2
0 =

(B0 +Bdip)
2

8π
(3.1)
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For this particular magnetic moment, the total initial magnetic field B0 +Bdip is ≈ 3.0 B0 at the standoff

distance. Near the interface between the driver and background plasmas, the magnetic field of the dipole

is relatively small and the initial magnetic field is ≈ 1.2 B0.

In this Thesis, we present simulations with different drivers and magnetic dipole moments. All the

simulations presented here, and their respective parameter sets, are listed in Table B.1. Simulation B is

used to discuss the overall dynamics of the system, while simulations C, D, and E illustrate the role of the

driver length, the density ratio, and the magnetic moment, respectively. Simulations F show the results

for more realistic choices of parameters and simulation G for a more realistic driver shape. The physical

parameters of the simulations (e.g. MA, L0/di) were adjusted to be similar to the LAPD experiments,

whereas other parameters (e.g. mi/me, v0, vthe) were chosen to make simulations computationally

feasible. The experimental and numerical parameters are presented in Table B.2 and compared with

lunar mini magnetospheres.

In most simulations, we considered a reduced mass ratio mi/me = 100, a flow velocity v0/c =

0.1, and cold plasmas to reduce the required computational resources, allow extended scans over the

different parameters of the system, and simplify our analysis. The thermal effects are negligible for the

main results, and the chosen ion-to-electron mass ratio is high enough to ensure sufficient separation

between electron and ion spatial and temporal scales. We confirm the validity of our assumptions in

Section 4.5.

In most of the simulations presented in this and the next Chapter, we have assumed that ions and

electrons are initially in thermal equilibrium, and thus used the electron thermal velocities vthe shown

in Table B.1, to compute the ion thermal velocities vthi. Because we aim to study the role of the hy-

drogen ions of the experimental driver in the interaction with the background plasma, these simulations

considered equal ion masses for the driver and background plasmas, i.e., mi,d = mi,0.

3.2 Evolution and formation of a mini magnetosphere

To identify the main magnetospheric and kinetic-scale structures that arise from the initial configu-

ration, simulation B was performed. It considered a driver with length Lx = 2 di and density nd = 2 n0

(twice the background density). Figures 3.2 a1-3) represent the total ion density ni = ni,d + ni,0, for

three different times, and Figures 3.2 b1-3) show the variation of the z component of the magnetic field,

from its initial value, ∆Bz = Bz −Bz,initial.

In Figure 3.2 a1), we see the total ion density for an early time (tωci = 1.5). Given the small distance

propagated by the driver plasma at this time, the dipolar magnetic field does not significantly affect the

interaction between the plasmas. For this reason, we can express the early system as a driver flowing

against a uniform magnetized background plasma, like that described in Chapter 2. In Figure 3.2 b1), we

observe that this interaction creates a region of compressed magnetic field in the downstream region,

where the background plasma is located, and expels the magnetic field in the region of the driver, leading

to a magnetic cavity in the upstream region with approximately null magnetic field [29].

In Figures 3.2 a2) and b2), we start to observe the effects of the dipolar magnetic field for a later time

(tωci = 3.0). As the magnetic pressure exerted against the plasmas increases, a region of compressed
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Figure 3.2: Spatiotemporal evolution of a) the total ion density and b) the variation of the z component
of the magnetic field in simulation B (see Table B.1 for a list of parameters). Columns 1-3 correspond to
three different times in the simulation. The vertical and circular dashed lines mark the initial border be-
tween the driver and background plasma and the dipolar magnetic obstacle with radius L0, respectively.

background plasma forms in front of the dipole, as Figure 3.2 a2) shows. After the interaction between

the background and the dipole, the magnetic field pressure becomes large enough to counterbalance the

kinetic pressure of the driver, reflecting it upstream. This can be seen in Figure 3.2 a3) for a subsequent

time (tωci = 4.5). After the reflection, there is no longer a plasma flow pushing the magnetic compression

forward or holding the decompression by the left side of the background region, and as a result, the

region near the dipole quickly decompresses — see Figure 3.2 b3).

3.3 Magnetic field and current density synthetic diagnostics

To compare the numerical results with the experimental data shown in Figure 1.4, synthetic diagnos-

tics were obtained from the simulations. In Figure 3.3, the variation of the magnetic field ∆Bz and the

density current Jy measured at the axis of symmetry y = 0 and as a function of time are plotted for sim-

ulation B. These diagnostics are important to comprehend the system dynamics, due to the importance

of the z direction of the magnetic field in the motion of the particles.

The main features of Figure 3.3 are consistent with the experimental results. In the magnetic field

plot of Figure 3.3 a), both the upstream magnetic cavity and the downstream magnetic compression are

present. Between tωci = 0 and tωci ≈ 1.5, the system behaves approximately as a driver piston moving

against a uniform magnetized plasma. As the driver pushes the background plasma and magnetic field,

the discontinuity that separates these two media travels at constant coupling velocity vc < v0, measured

as vc ≈ 0.49 v0 for this simulation. The leading edge of the compression of the magnetic field travels
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y = 0 for the simulation B. The driver has a 2 di length and a density nd = 2 n0. The dashed lines have
slopes that match the flow velocity v0, the coupling velocity vc and the reflection velocity vr.

with a velocity close to v0 for the runs considered.

The driver experiences increasingly higher magnetic fields until the magnetic pressure is enough to

reflect the driver near the expected standoff x0 = −L0, at tωci ≈ 3. The magnetic cavity and magnetic

compression are also reflected, and the boundary between these two regions travels with a velocity vr

after reflection. The background magnetic decompression is seen after tωci = 5.

In the current density plot of Figure 3.3 b), we can observe the diamagnetic current that supports

the magnetic field gradient between the driver and background plasmas and that identifies the leading

edge of the magnetic cavity. During the driver reflection, this current branches into multiple components

due to the multi-stream velocity distributions developed in the driver and background plasmas. We can

also verify that this structure is reflected near the expected standoff x0 = −L0. Between tωci ≈ 2

and tωci ≈ 3, a second current structure is present in the background region. It is associated with the

magnetopause of the system and the small decompressed field region that we see in Figure 3.3 a),

and it arises from the interaction of the accelerated background ions with the dipole, as we show in

Section 4.4. The presence of these two current structures is consistent with the experimental results.

In Figure 3.3 b) we can also see the formation of waves in the background plasma, near the dipole

region. These waves are excited in regions of highly non-uniform density and magnetic field, and have

periods and wavelengths between the ion and electron kinetic scales. We have also verified that their

properties change significantly for different ion thermal velocities. A detailed characterization of these

waves and the conditions for their formation is out of the scope of this Thesis, and shall be addressed in

a future work. However, our early results suggest that these waves may be slow magnetosonic waves

under a dipolar magnetic field.

3.4 Phase spaces and motion of the particles

To better understand the particle motion during the events described in Section 3.2, we show in

Figure 3.4 the phase spaces of ions and electrons located near y = 0. For the ions, the x component
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the background plasmas, and the right dashed line marks the expected standoff x0 = −L0.

of the velocity of the particles is presented, to illustrate their reflection and accumulation, while for the

electrons, the y component is shown instead, to show the formation of the currents. The magnetic

field Bz and the current density Jy profiles for y = 0 are also represented. Once again, we used the

parameter set B of Table B.1.

Figure 3.4 a1) shows the vx velocity of the ions when the dipole field is still negligible. The ions

initially move upstream with velocity v0 until they interact with the background field. After reaching

the background, they are decelerated and reflected by electric field at the interface between the plas-

mas [29], and end up with a flow velocity that is close to zero for the simulation considered. The reflection

occurs near the boundary of the magnetic cavity, which moves with velocity vc through the background,

as mentioned above. During this stage, the background ions accelerate from rest to velocities of average

close to vc.

The driver and the accelerated background ions continue to approach the dipole until they are re-

flected. This can be seen in Figure 3.4 a2). During this interaction, two main current structures are

visible in the Jy profile. The first one (from the left) corresponds to the typical diamagnetic current, while

the second one corresponds to the magnetopause. To the right of these two main current structures,

we can see the background waves observed in Figure 3.3 b). In Figure 3.4 a3), the driver ions are

totally reflected. The ions reflected by the dipole obtain a velocity close to −v0, while the magnetic cavity

moves back with velocity vr.

Because the simulation considers a cold plasma approximation, the ion thermal velocities remain

small everywhere and for most of the time, except at the boundary between the two plasmas, where
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the velocity of the ions changes abruptly. The same does not occur for the electrons. We can see in

the vy velocity of the electrons, represented in Figures 3.4 b1) to b3) that, although the electron thermal

velocities are initially small, they rapidly increase considerably. At the boundary, the electrons can reach

thermal velocities of 6 v0, much higher than the ion velocities. Because the electron and ion density

profiles are very similar during the entire evolution of the system, the current density Jy = e(niviy−nevey)

is then mainly transported by the electrons, where nj is the density and vjy the y component of the

velocity of the ions and electrons (j = i, e, respectively). This is also consistent with the observed

spatial distribution of electrons during the reflection, which shows an excess of fast electrons around the

standoff position.

3.5 Pressure balances and formation of the magnetopause

To identify the pressure balances associated with the two observed standoffs, and because the

magnetic and kinetic pressures vary over time, we studied the temporal evolution of the different plasma

and magnetic pressure components of the system. In particular, we calculated the spatial profiles of the

magnetic pressure B2/8π, the ram pressure njmjv
2
flj and the thermal pressure njmjv

2
thj as functions of

time for y = 0. In these expressions, nj , mj , vflj and vthj refer to the density, mass and flow and thermal

velocities, respectively, of the ions (j = i) and electrons (j = e). The magnetic pressure was calculated

from the magnetic field measured in each PIC grid cell located at y = 0. The flow and thermal pressures

were calculated from averaged particle data. To ensure that the calculation of each kinetic pressure

considered a sufficiently large number of particles, all the particles between −0.1 di < y < 0.1 di were

binned into equal-sized bins of width 0.05 di over the x direction. For each bin we computed: i) the

average density of each species, ii) the flow velocity, corresponding to the average of the velocity of

the particles, and iii) the thermal velocity, corresponding to the standard deviation of the velocity of the

particles [65]. With these averaged quantities, the ram and thermal pressures were calculated in each

bin for each species of ions and electrons and each component of the velocity x, y, and z. The y and z

velocity components, however, are negligible for the pressure calculation.

These pressure profiles were obtained and are plotted in Figure 3.5 for times where a) the magne-

topause and b) the diamagnetic current standoff can be observed. The kinetic pressures represented

were calculated by adding all the components of the ram and thermal pressures of the ions and electrons

for the background (P0) and the driver (Pd) plasmas. In Figure 3.5 a) and b), we represent also the total

and relative magnetic field pressures, defined as Pmag = B2
z/8π and Prel = Pmag −B2

0/8π, respectively.

The pressures were normalized to the initial ram pressure of the driver ions.

Figure 3.5 a) shows the magnetic and kinetic pressures at time tωci ≈ 2.33 where we observed the

magnetopause in Figure 4.4 b3). When the driver starts pushing the background, the pressure of the

driver at the interface between the plasmas increases because the driver density and thermal velocities

also increase. During the interaction, the driver transfers energy and momentum to the background

plasma, and as a result, the background develops a strong kinetic pressure. At the time represented in

Figure 3.5 a), the background plasma pressure equals the total and the dipolar magnetic pressures in

x ≈ −1.4 di, near the location of the magnetopause current of Figure 4.4 b3). This observation sup-
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Figure 3.5: Pressures profiles calculated for simulation E3 with a magnetic moment M = M0/2 (shown
in Figure 4.4 c)), during the occurrence of a) the magnetopause and b) the standoff of the diamagnetic
current. The magnetic pressures are Pmag = B2

z/8π and Prel = Pmag − B2
0/8π. The kinetic pressures

Pd and P0, corresponding to the driver and background plasmas, respectively, consider both the ions
and electrons and the flow and thermal components of the velocity. c) Temporal evolution of the varia-
tion of the total kinetic energies of the driver ∆Wkin,d and background ∆Wkin,0 plasmas, the magnetic
energy ∆Wmag, and the total energy of the simulation box ∆Wtot. The total energy is calculated by
adding all the kinetic energies and the electric and magnetic energies. Since the background plasma
is magnetized, the electric energy term is many orders of magnitude smaller than the magnetic energy
term. The energies were normalized to the initial total energy of the driver ions Wd,ini. The loss of energy
conservation near tωci ≈ 4 is caused by the escape of background plasma particles and magnetic field
through the right hand side of the simulation box.

ports the hypothesis that this current emerges from the standoff between the background and magnetic

pressures. Figure 3.5 b) shows the pressures for tωci = 3 where we see the beginning of the reflection

of the driver. The driver pressure equals the magnetic and dipolar pressures near x0 = −L0 ≈ −1.4 di.

After this time, the driver is incapable of moving any further into the background because the magnetic

pressure exceeds its kinetic pressure.

The energy variations integrated over the entire simulation domain can also help us understand the

system dynamics. Figure 3.5 c) shows the variation of the total driver and background kinetic energies,

∆Wkin,d and ∆Wkin,0, respectively, as well as the variation of the magnetic energy ∆Wmag, and of the

total energy ∆Wtot. The kinetic energies of the background and driver plasmas consider all ions and

electrons, and not only those around y = 0, as previously considered. In early times tωci < 3, as

the driver and background plasmas interact, the driver transfers its energy to the background plasma

and the magnetic field. The total energy, given by the sum of the electromagnetic energy and kinetic

energies, remains constant during this period. After the driver is fully reflected by the dipole for tωci > 3,

the magnetic field loses most of its energy to the background and driver plasmas, leading to a drop of

the magnetic energy. After tωci ≈ 4, the background ions start to leave the simulation box, and the total

energy is no longer conserved. The background kinetic energy remains approximately constant because

the background plasma loses energy to the sink at the right boundary of the simulation but gains energy

from the magnetic field. For both driver and background plasmas, the ions carry most of the energy.

From Figure 3.5, we can identify the positions where multiple pressure balances occur, and there-

fore, develop an insight into the pressure equilibria that are behind the structures of the current density

synthetic diagnostics. Using the previously calculated pressures, we obtained the equilibrium positions

where certain pressure balances manifested and plotted them in Figure 3.6 alongside Jy.
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This analysis shows that the system has, in general, two magnetopause structures: one driven by

the background, and one by the driver plasma. The former structure is defined by the balance P0 = Prel.

For the latter structure to form, the driver needs to have enough energy to push the diamagnetic current

up to the magnetopause, defined by Equation (3.1). This is illustrated in Figure 3.6, where we show the

location of the pressure equilibrium between the driver kinetic pressure and the total magnetic pressure,

Pd = Pmag.

As shown in Figure 3.5, the current associated with the background magnetopause seems to overlap

with the region of background and magnetic pressure balance. Unlike the driver, the background plasma

is magnetized. If we neglect the compression of the magnetic field in the downstream region, the

pressure balance that describes this magnetopause can then be estimated by the equilibrium of the

kinetic pressure of the background plasma with the relative magnetic pressure, P0 = Prel. In Figure 3.6,

we show that this pressure balance, represented by the dotted line, describes well the position of the

current feature identified as the magnetopause between times tωci ≈ 2 and tωci ≈ 3.

After tωci ≈ 3, the magnetopause current is well described by the pressure balance Pd = Prel, as

illustrated by the dashed line in Figure 3.6. In fact, after inspecting the phase spaces in Figures 3.4

a3) and b3), we can observe that a combination of driver plasma particles (separated from the bulk

distribution) and background ions pushes the dipolar field and sets the position of the magnetopause.

We stress that, because we are determining equilibria via MHD pressure balances but are checking

the intersection between pressure curves with kinetic resolution, some caution must be made to ensure

that we are observing the equilibrium between pressures and not merely the interface between the differ-

ent regions of interest. To ensure that the pressure equilibria were correctly obtained, the corresponding
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pressure profiles were always carefully inspected with additional diagnostics.

3.6 Applying the coupling study to the pressure equations

For our simulations with ion-scale magnetospheres, we considered a driver plasma flowing against

a uniform magnetized background plasma, and a dipole located at its center. To estimate the standoff

position of the driver plasma x0 = −L0, we used Equation (3.1), which represents the initial pressure

balance between the driver ram pressure the magnetic field pressure. However, as discussed in Chap-

ter 2, the characteristics of the plasmas change from the initial parameters considered in Equation (3.1),

with the interaction driver-background, before reaching the dipolar obstacle. More specifically, the mag-

netic field increases in the downstream region and the driver density increases by a factor of two, since

we must also consider the driver plasma reflected by the dipole. The correct pressure balance for the

driver standoff should then be

2ndmi,dv
2
0 =

(αB0 +Bdip)
2

8π
. (3.2)

To compare Equation (3.2) to Equation (3.1), we performed a small scan of the driver density and

of the magnetic moment. The positions of the diamagnetic current were measured for each simulation

and are compared to the expression in Figure 3.7. In the simulations, we ensured that the length of the

driver was high enough to measure these positions. Due to small fluctuations of the current positions,

these values are show with uncertainties.

As we can observe, for the Mach number MA = 1.5, both Equations (3.1) and (3.2) are able to

predict the measured standoff distances, however, the new expression is slightly better. For Figure 3.7,

we used Equation (2.29) to calculate the α parameter in Equation (3.2), but as discussed in Section 3.2,

the background will start to decompress after the driver reaches the dipole. Therefore, the compression

ratio α will decreases over time, and it will be lower than the value calculated from Equation (3.2). We

observed that, if we use a lower value for α in Equation (3.2), the measured distances will be even more
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consistent with the calculated values.

From the pressure study done in Section 3.5, we also obtained pressure balances that describes the

different magnetopauses of the system. Using the coupling expressions deduced in Chapter (2.5), we

can also determine analytical expressions for the correspondent pressure balances, that only depend on

the initial parameters of the system. The magnetic field on the upstream side of the magnetopause, can

be approximated again by αB0. On the downstream side, the magnetic field is given by αB0+Bdip. Since

αB0 is present on both sides, to predict the position of the magnetopause, we can make a rough approx-

imation and remove it entirely from the pressure balance. The density of the accelerated background

plasma ions increases to a near-constant value during the initial flow, as they move alongside with the

magnetic field compression. By looking at Figure 3.3, we can consider that the head of the accelerated

background plasma moves with a velocity close to v0 while the tail with vc. From Equation (2.21), in

Chapter 2, we observed that the density of the accelerated background plasma increases, by a factor of

α = vf/(vf − vc). The pressure balance associated with the magnetopause can then be estimated with

n0

1− vc/vf
mi,0v

2
c ≈

B2
dip

8π
. (3.3)

In the simulation scan performed, the position of the magnetopauses varied over time for some of

the simulations, due to the formations of waves in the background region that changed the parameters

of the background. A similar study to Figure 3.7 was done for Equation (3.3), for the magnetopause

locations, in an attempt to validate the model, but due to these fluctuations, this study was inconclusive.

3.7 Conclusions
In this Chapter, we showed the results of PIC simulations of mini magnetospheres in the interaction

between a plasma flow and a magnetized background, in a super-Alfvénic regime. We have successfully

reproduced the results from recent experiments performed at the LAPD, validating the experimental

results and the platform used to study mini magnetospheres in the laboratory.

In the simulations considered, a driver plasma flows against the background plasma magnetized

by an internal uniform magnetic field and by a dipole, located in the center of the background. In the

early times of the simulations, the effect of dipolar field is small and can neglected, and so, the system

behaves similarly to the simulations described in Chapter 2. As previously observed, and during this

time, a magnetic cavity with null magnetic field forms in the upstream region, as the driver flows against

the background, and as a result, the magnetic field in the background is compressed in the downstream

region.

The driver plasma travels through the background until the magnetic field pressure is large enough to

counterbalance the driver plasma pressure. When this happen, the driver and part of background plas-

mas are reflected back upstream. These reflections leads to a quick decompression of the background

magnetic field, leading to a reflection of the background magnetic compression.

The interaction of the two plasmas with the dipole results in two different magnetopauses. The

first corresponds to the interaction background-dipole, and describes the balance between the kinetic

pressure of the propelled background plasma plus the pressure of the plasma internal magnetic field,
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and the total magnetic pressure. The second corresponds to the interaction driver-dipole, and describes

approximately the balance between the kinetic pressure of the driver plasma separated from the bulk

distribution and the relative magnetic pressure. Using the coupling study in Chapter 2, we can calculate

these pressure terms, and estimate the positions of the different magnetopauses and standoffs from the

pressure balance equations.

We also observed the formation of waves in the background plasma region, where the magnetic

field gradient was significant. These waves were not observed in the experiments, and are out of the

scope of this Thesis, however, a basic study on these waves suggested that they may be the result slow

magnetosonic waves under a dipolar magnetic field.
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Chapter 4

Variation of the magnetospheric

features with the system parameters

The parameters used for the simulation of the previous chapter were successful in recreating the

main features of the experiment, more specifically, the reflection of the magnetic compression and the

observation of a magnetopause current structure. In order to identify the ideal conditions for the ob-

servation of these features, and to understand the role of the kinetic and magnetic parameters of the

system in the results, multiple parameter scans were performed. In this Chapter, the results of these

scans are presented.

In Sections 4.1 to 4.3 we discuss how properties of the system, such as the reflection of the magnetic

compression and the formation of a magnetopause, vary with the driver parameters, namely its length,

density and ion mass. In Section 4.4, the magnetic moment is varied. In Section 4.5, the results for

realistic ion mass ratios and thermal velocities are shown to confirm that the simplifications adopted in

most simulations, due to computation limitations, do not change the main results. Finally, in Section 4.6,

possible effects caused by the finite width and irregular shape of the experimental driver are discussed.

The list of simulations presented in this Chapter are their corresponding parameters are presented

in Table B.1 (Appendix B.1).

4.1 Driver length

To find the driver length that best reproduces the experimental results shown in Figure 1.4 and to

understand its role on the magnetic field and current density structures, simulations B1 to B3 (see

Table B.1 in Appendix B.1) were performed with varying driver length Lx. In Figure 4.1, we show ∆Bz

and Jy at y = 0, for Lx = 1 di (B1), Lx = 4 di (B2) and for an infinite driver (B3). For these simulations,

the properties of the background plasma and the width of the driver Ly were kept unchanged. The

density of the driver was nd = 2 n0.

In Figures 4.1 a1) and b1), we see the magnetic field and current density plots for the short driver

length Lx = 1 di. We observe most of the features of Figure 3.3, namely the reflection of the compressed

magnetic field in a1) and the diamagnetic and magnetopause currents in b1). For this length, however,
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the driver never fully interacts with the dipole. The closest that the diamagnetic current structure gets to

the dipole is xr ≈ −3.0 di, i.e., much farther than the expected standoff x0 = −L0 = −1.8 di. To replicate

the experimental results and ensure that the driver can reach the dipole, we should thus use a sufficiently

long driver such that xr > x0. Additionally, short drivers risk entering in a decoupling regime between

the two plasmas [41], which can compromise the observation of a magnetopause. The coupling effects

on the results are discussed in detail in Section 4.2.

The position where the driver is fully reflected by the background can be estimated as xr ≈ xB +

Lxvc/(v0 − vc), where xB is the initial boundary position between the two plasmas. This estimate is

obtained by computing the volume of the background plasma required for the driver plasma to deposit

its kinetic energy, i.e., xr − xB corresponds to the magnetic stopping radius Lstop of the system [66],

defined in Chapter 2.

In the simulation with Lx = 4 di, represented in Figures 4.1 a2) and b2), we observe once more the

main features identified in Figure 3.3, but unlike the Lx = 1 di case, the driver is long enough and ends

up reflected by the dipole. We observe that the diamagnetic current reaches the expected standoff and

has enough plasma to maintain it near the dipole for a time period (tωci ≈ 3 to tωci ≈ 5) longer than

the 2 di case shown in Figure 3.3. As a result, the magnetic decompression in the background region

is delayed for longer drivers. However, because the full driver reflection also occurs later, longer drivers

will result in short-lived reflections of the compression of the magnetic field.

In Figures 4.1 a3) and b3), we show the results for a driver with infinite length (Lx = +∞). In

this simulation, the driver plasma is only partially initialized inside the simulation domain, and a flow is

continuously injected from the lower x boundary. An infinite driver configuration allows us to understand

the dynamics of the system in an asymptotic regime in which the driver plasma stays close to the dipole.

As expected, until tωci = 3, the features observed are very similar to Lx = 2 di and Lx = 4 di. After

this time, the magnetic and the driver kinetic pressures balance each other near x0, so the diamagnetic

current remains stationary. Because the driver can hold for longer near the dipole, the decompression

in the background region is much slower and is not visible for the time range of the plot. We can also

observe that the background waves are only visible during a transient.

In all the three simulations C1-3, the coupling velocity measured was always vc ≈ 0.49 v0. Given the

results shown in Figure 4.1, we chose a driver length of 2 di to reproduce the experimental results. This

driven length is large enough to ensure that the driver arrives at the dipole and small enough to observe

a significant reflection of the compression of the magnetic field as we see in the experiments.

4.2 Driver density

As expected from previous works and from the results presented in Chapter 2, increasing the ratio

between the driver and background plasma densities should improve the coupling between the two

plasmas [29, 41], meaning that, for denser drivers, the transfer of momentum and energy from the driver

to the background plasma is more efficient. To better understand the role of the coupling mechanism, we

performed simulations with different values of the driver density, namely nd = n0 (D1), nd = 2 n0 (D2) and

nd = 4 n0 (D3), while keeping a constant background density n0 and a driver length Lx = 2 di. For each
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Figure 4.1: Temporal evolution of ∆Bz and Jy at y = 0, for driver lengths of a) 1 di, b) 4 di and for c)
an infinite driver length (see Table B.1 for a full list of the parameters). The dashed lines represent the
slopes of the flow velocity v0, the coupling velocity vc, and the reflection velocity vr.

run, the magnetic moment was chosen such that the expected standoff obtained from Equation (3.1)

was always L0 = 1.8 di. The synthetic magnetic field and current density diagnostics were obtained for

these simulations and are shown in Figure 4.2.

In Figures. 4.2 a1) and b1) we can see ∆Bz and Jy for the lowest driver density considered, nd = n0

(i.e., background and driver with the same initial density). In this regime, the coupling is less efficient

and, as a result, the coupling velocity vc ≈ 0.38 v0 is lower than obtained in the higher densities cases

represented in Figures 4.2 b) and c). Due to the low coupling velocity, the driver plasma is reflected more

quickly by the background than for denser drivers, and the expected position xr for the total reflection on

the background is farther from the dipole than the expected standoff x0, meaning xr < x0. As a result,

Figure 4.2 a) shows similarities with the short driver length represented in Figure 4.1 a), because, in

both simulations, the driver parameters do not ensure that the driver arrives near the dipole.

In Figures. 4.2 a2) and b2), we show the results for nd = 2 n0, which is the same run represented in

Figure 3.3. For this density, the coupling velocity, measured as vc ≈ 0.49 v0, is high enough to ensure a

reflection of the driver by the dipole, as we observe at tωci ≈ 3. In Figures 4.2 a3) and b3) we show the

case with the highest driver density nd = 4 n0, where the measured coupling velocity was vc ≈ 0.56 v0,

i.e., only slightly larger than the vc measured for nd = 2 n0. In the high density case, we also see that the

current density structures during the plasma reflection are filamented, due to analogous multi-stream

velocity distributions discussed in Section 4.1 (and shown in Figure 4.1).

To guarantee that the driver reaches the expected standoff, we should thus require that xr > x0, as

argued in Section 4.1. In fact, the position where the driver is reflected xr, for no dipole cases, increases

with the driver length Lx and the velocity ratio vc/v0, and thus, both quantities must be large enough to
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Figure 4.2: Temporal evolution of ∆Bz and Jy at y = 0, for different ratios between the driver and
background densities nd/n0. The magnetic moment was chosen so that the expected standoff distance
L0, calculated from Equation (3.1), was kept as 1.8 di for all the simulations. Panels a-c) show results
for nd = n0, nd = 2 n0 and nd = 4 n0, respectively.

guarantee that xr > x0. In turn, the ratio vc/v0 increases with increasing driver density ratio nd/n0 (see

Section 2.5 for details), and so, the driver should be sufficiently long and dense to effectively couple to

the background plasma. Our results (in particular Section 3.2) show that a driver with Lx = 2 di and

nd = 2 n0 qualitatively reproduces the experimental results.

4.3 Mass of the driver ions

Motivated by the presence of carbon ions on the experimental drivers, an additional run with heavier

driver ions was considered to study how the relative mass ratio between the driver and background ions

could change the results. The synthetic magnetic and current diagnostics obtained for the driver ion

scan are represented in Figure 4.3. The mass ratios of a) mi,d/mi,0 = 1, b) mi,d/mi,0 = 3, and c)

mi,d/mi,0 = 5 were considered. The magnetic moment was adjusted to ensure L0 = 1.8 di.

The typical structures observed in Figure 3.3 can also be observed for the heavier ions simulation,

as expected. Figure 3.3 also shows that the reflection of the magnetic compression occurs earlier for

the heavier driver ions simulations. These results were also observed in simulations with driver densities

larger than those shown in Figure 4.2.

As discussed in Chapter 2, both the velocity of the magnetic compression vf and the compression

ratio α increase with the density and ion mass of the driver. The background decompression occurs

earlier for higher vf and lower α. Because the decompression time is a nonlinear function of the driver

mass and density, the reflection of the magnetic compression occurs earlier for some range of values,

and then later for higher values. Additionally, we observe in Figures 4.2 and 4.3 that vr decreases with
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Figure 4.3: Temporal evolution of ∆Bz and Jy at y = 0, for different ratios between the driver and
background ion masses mi,d/mi,0. The magnetic moment was chosen so that the expected standoff
distance L0, calculated from Equation (3.1), was kept as 1.8 di for all the simulations. Panels a-c) show
results for mi,d = mi,0, mi,d = 3 mi,0 and mi,d = 5 mi,0, respectively.

the increase of the density and mass of the driver, leading to faster magnetic decompression.

With these results, we show that the driver length, density and ion masses all affect the observations

of the reflection of the magnetic compression feature. However, the driver length is the most relevant

parameter, for the simulations considered in this Thesis.

4.4 Magnetic moment of the dipole

To confirm that the features previously associated with the magnetopause location change according

with its expected position, we performed simulations with a 2 di long driver with density nd = 2 n0

for three different magnetic moments. Considering the magnetic moment that results in the expected

standoff L0 = 1.8 di as M0, simulations with the magnetic moments 2 M0 (E1) and M0/2 (E3) were also

performed, corresponding respectively to the expected standoffs L0 ≈ 2.3 di and L0 ≈ 1.4 di. Figure 4.4

shows the ∆Bz and Jy synthetic diagnostics at y = 0 for the three simulations.

Figures. 4.4 a1) and b1) show the results for the highest magnetic moment M = 2 M0. We see that

the current structures associated with the magnetopause and the background waves are less evident

than for the lower magnetic moments, as they are formed farther from the dipole. Figures 4.4 a2) and

b2) correspond to the magnetic moment M0 that leads to L0 = 1.8 di and are the same results shown

in Figure 3.3. As previously mentioned, there are two main observable current structure standoffs. The

first one is associated to the diamagnetic current, which is reflected around tωci ≈ 3 near the expected

value x0 = −L0 = −1.8 di. This standoff is related to the interaction between the driver ions and the

dipole. The second standoff occurs between tωci ≈ 2 and tωci ≈ 3 and it is located in the background
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Figure 4.4: Temporal evolution of ∆Bz and Jy at y = 0, for three different magnetic moments. The
magnetic moments M considered were a) M = 2 M0, b) M = M0 and c) M = M0/2, where M0

represents the magnetic moment that corresponds to L0 = 1.8 di for nd = 2 n0. The corresponding
standoffs for these simulations are a) L0 ≈ 2.3 di, b) L0 = 1.8 di and c) L0 ≈ 1.4 di.

plasma region. This standoff also occurs near x = −1.8 di.

In Figures 4.4 a3) and b3), we show the results obtained for the half magnetic moment M = M0/2.

In this case, the magnetic pressure exerted by the dipole is lower, leading to a smaller L0, and conse-

quently, the diamagnetic current feature visible in b3) is closer to the dipole than in Figures 4.4 b1) and

b2). The main changes, however, occur in the magnetopause current. Unlike what we observe for the

other magnetic moments, the magnetopause current, pinpointed in the current density plot, lasts for a

longer time (until tωci ≈ 4). This current is also more separated from the diamagnetic current standoff

and is easier to identify. This is consistent with the experimental observations.

4.5 Realistic parameters

Due to the need for more extensive scans (and thus using physically equivalent but computationally

feasible parameters), the simulations shown so far considered reduced ion mass ratios, cold plasmas,

and higher velocities than the ones used in the LAPD experiments - see Table B.2. To ensure that

the main results presented in the previous sections are also valid with realistic parameters, we have

performed a set of simulations with parameters similar to those expected experimentally.

Three simulations were performed, labeled as runs F1 to F3. Run F1 employs realistic mass ratios

mi,d/me = mi,0/me = 1836. Additionally, run F2 also considers a ratio between the electron thermal

and flow velocities close to the ones expected for the LAPD experiments, namely vthe,x/v0 = 2.5 and

vthi,x/v0 = 0.033, leading to higher temperatures than in the previous simulations, and thus allowing

possible thermal effects on the system. Finally, run F3 considers the same electron thermal velocity
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Figure 4.5: Temporal evolution of a) ∆Bz and b) Jy at y = 0, for the simulations with similar parameters
to the experiments. Run F1 considers realistic mass ratios for the driver and background plasmas and
low ratios between the thermal and flow velocities; run F2 uses realistic mass ratios and thermal velocity
ratios close to the ones expected in the experiments; run F3 uses the realistic thermal velocity ratios but
reduced mass ratios.

ratios of F2 but the standard reduced mass ratios.

The ∆Bz and Jy plots for these simulations are shown in Figure 4.5. Note that, due to changes

in mi/me, the spatial and temporal scales were recalculated for the new parameters. Once again, the

magnetic dipole moment for the three simulations was adjusted to ensure that L0 = 1.8 di.

As expected, these simulations show the same main structures discussed in the previous sections.

We observe the typical reflection of the compression of the magnetic field and the current structures of

the magnetopause and diamagnetic cavity. However, some differences are also visible. In Figures 4.5

a1) and b1), i.e., for the realistic mass ratios but cold plasmas simulation, we observe a stronger fila-

mentation of the plasma flow reflected off the dipole and a thinner diamagnetic current. This is because

de is the characteristic length scale of the current layer and we have lower de/di values for larger mi/me.

Figures 4.5 a2) and b2), for the simulation with higher temperatures, show no major differences with

Figures 4.5 a1) and b1), even though there is a significant increase in the thermal velocities.

In Figures 4.5 a3) and b3), however, we observe significant differences for reduced mass ratios with

realistic thermal velocity ratios. In particular, we observe in the current density plot smoother magnetic

and current structures and less defined background waves between the magnetopause and the dipole.

This is expected, since the characteristic plasma scales, e.g. the ion and electron gyroradii, change with

the ion to electron thermal velocities and the mass ratios. We also observed for increased ion thermal

velocities, for example, vthi/v0 ≈ 0.25, that the background waves are no longer visible.

Additionally, other simulations were performed to look for possible changes with realistic parameters.
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A simulation with a lower flow velocity v0 = 0.01 c and realistic thermal velocity ratios lead to no significant

features observed, and the obtained synthetic diagnostics were very similar to the ones in Figures 4.5

a3) and b3), meaning that the system scales well with v0. Another simulation was performed to observe

if the shape of the initial density profiles of the plasmas would affect the main results. Namely, the

constant density profiles used on both the driver and background plasmas were replaced by Gaussian

density profiles with a typical gradient scale σ = 1 di on the edges of the plasmas. This simulation did

not show meaningful differences, in agreement with previous plasma coupling works, which observed

that the leading edge of the plasmas evolves similarly for different initial density profiles [67].

4.6 Realistic driver shape
For simplicity, and because we were more interested in studying the system along the axis of sym-

metry y = 0, the previous simulations only considered a driver with infinite width Ly and a length of

Lx = 2 di. In the experiments, however, the drivers had a width comparable to their lengths and did not

have the sharp boundaries used in the simulations. To investigate if and how our results are modified

with a more complex-shaped driver, we performed a simulation with a finite width, semi-circular-shaped

driver plasma. This driver is initially defined with the conditions (x + 7.25 di)
2 + y2 < (3.25 di)

2 and

x > −6 di and has length Lx = 2 di and width Ly = 6 di. Figure 4.6 shows the results of this simulation

and includes the initial shape of the driver in Figure 4.6 a).

Due to the finite width of the new driver and its particular shape, we should expect to see significant

differences in the regions of the simulation plane far from y = 0. In the total ion density plot of Figure 4.6

a) for a time tωci = 3, when there is a strong interaction of the driver with the dipolar magnetic field, we

observe the propagation of waves at the lower and upper sides of the dipole caused by the finite width

of the driver, that was not present for infinite width drivers.

In Figures 4.6 b) and c), we see the usual magnetic and current density plots at y = 0 for this

simulation. By shortening the driver plasma width, the background particles escape from the bottom and

top regions of the simulation box, and the driver has more difficulty holding the magnetic decompression
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in the background region. The decompression, therefore, occurs quicker for finite drivers, as seen in

Figure 4.6 b), leading to short reflections of the magnetic compression.

Although this complex-shaped driver gets us closer to the experimental configuration, the simulations

did not include all the properties of the experimental driver, as for example, the non-uniform density, ve-

locity profiles of the plasmas and the flow divergence. Additionally, 3D effects should also be considered.

Future simulations are planned to study the effect of these properties in the results. However, we expect

that these features will not change the main results of the simulations.

4.7 Conclusions

By performing multiple simulations scans of mini magnetospheres, under different parameters, we

were able to understand the necessary conditions for the formation of the structures observed in the

LAPD experiments, and understand how the main properties of this system changes with the different

parameters.

In most simulations shown in this Chapter, some features are always visible under the different pa-

rameter regimes. The formation of a magnetic cavity and the compression of the background magnetic

field are also present, and after the reflection of the driver plasma, a fast decompression of the back-

ground magnetic field follows. If this background decompression occurs after the total reflection of the

driver plasma, located near the dipole, then we also observe the reflection of the compression of the

magnetic field.

To ensure that the driver plasma is able to reach the dipolar obstacle, it must have sufficient energy

and momentum to push the background close to it. This can be ensured if the driver starts at a distance

from the dipole shorter than the magnetic stopping distance, calculated in Chapter 2. Our simulations

scans also showed that, if the driver plasma is long enough to ensure that it is able approach the dipole,

but short enough to anticipate the driver reflection relative to the background decompression, then a

reflection of the magnetic compression in the background region can be observed.

Using simulations with different dipole moments, we have shown that, for lower magnetic moments,

the driver and background standoffs are closer to the center of the dipole, and the magnetopause current

is more clearly identified than for higher magnetic moments. Furthermore, it is also easier to separate the

magnetopause and diamagnetic currents for lower magnetic moments, consistently with experimental

observations.

Most of the simulations presented in this work were performed in idealized configurations. In partic-

ular, we used reduced ion-to-electron mass ratios, unrealistically high flow velocities, a simple flat-top

driver density profile, and neglected thermal effects. In Section. 4.5 and 4.6, we presented simulations

that drop some of these simplifications, to test the validity of our simulations. Replacing reduced ion

mass ratios with realistic ones and considering high thermal velocities ratios close to the obtained in the

experiments did not lead to significant changes in the results. The same occurred when considering

smoothed density profiles. It was also possible to conclude that the main features of the system scaled

as expected with the absolute value of the driver flow velocity.

Finally, we also presented a simulation to study possible effects associated with the complexity of
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the experimental laser-ablated driver. A simple circular segment-shaped driver was considered and led

to similar results in the axis of symmetry as the infinite width driver simulations. However, wave-like

structures were observed on both the bottom and upper sides of the dipole. For future experiments

probing the regions outside the axis of symmetry, a more complex driver shape must be considered in

the simulations.

54



Chapter 5

Conclusions and Future Work

With both numerical and analytical studies, we were able to derive analytical expressions that de-

scribe the coupling between a driven-plasma and a magnetized background plasma. We also performed

PIC simulations of mini magnetospheres in the interaction between the driven and the magnetized plas-

mas, and a dipole, in a super-Alfvénic regime. In particular, we have successfully reproduced results

from recent experiments performed at the LAPD, validating the experimental platform to study mini

magnetospheres in the laboratory. We have also explored an extensive parameter space defining the in-

teraction, allowing us to i) determine how the main properties of the system change with the parameters

and ii) identify the required conditions for the magnetospheric features observed the experiments.

Our simulations have shown that some system features are present across multiple regimes. The

initial flow of the driver expels the magnetic field in the upstream region, leading to a magnetic cavity, and

compresses the downstream magnetic field. We have studied this interaction analytically and numeri-

cally, resorting to PIC simulations. For Mach numbers close to unity, we calculated the velocities of the

magnetic cavity and magnetic compression, and the magnetic field compression ratio. For higher Mach

numbers, instabilities are triggered during the interaction, which change the system energy partition,

invalidating our model.

For the flows considered, the driver particles are reflected upstream during the interaction with the

background plasma and the magnetic field, by an electric field. This reflection continues until the driver

plasma is totally reflected. We have derived coupling equations that allow us to determine the maximum

distance that the magnetic cavity can travel through the background. The equations were were con-

sistent with numerical results. During the reflection, the background ions are accelerated and pushed

forward, leading to the formation of the slow and fast magnetosonic waves and other instabilities in the

plasmas.

When a magnetic dipole is placed in front of the flow, the driver travels through the background

until the magnetic pressure is large enough to counterbalance the driver kinetic pressure, leading to the

formation of mini magnetospheres. A fast decompression of the background magnetic field then follows.

If the background decompression occurs after the total reflection of the driver plasma, then we can

observe the reflection of the magnetic field compression. Resorting to simulations across a wide range
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of parameters, we have shown that, in order to see this feature, the driver needs to be short enough to

anticipate the driver reflection relative to the decompression but sufficiently long to ensure that it can get

close to the dipole.

The interaction of the plasmas with the dipole results in two magnetopauses. The first occurs where

there is a balance between the kinetic pressure of the propelled background plasma plus the pressure

of the plasma internal magnetic field and the total magnetic pressure. The second occurs where there is

a balance between the kinetic pressure of the driver plasma separated from the bulk distribution and the

relative magnetic pressure. Using simulations with different dipole moments, we have shown that the

magnetopause current is more clearly identified and easier to separate from the diamagnetic current, for

lower magnetic moments, consistent with experimental observations.

In these simulations, we also observed the formation of waves in the background plasma region, be-

tween the magnetopause and the center of the dipole, where the magnetic field gradient was significant.

These waves result from the excitation that always followed the formation of the magnetopause and were

only observed for background plasmas with relative low ion thermal velocities. These waves are out of

the scope of the Thesis, but a preliminary study suggested that they are the result of magnetosonic

waves under a dipolar magnetic field.

Most simulations presented in the coupling and mini magnetospheres studies were performed in

idealized configurations of the laboratory system. In particular, we used reduced ion-to-electron mass

ratios, unrealistically high flow velocities, a simple flat-top driver density profile, and neglected thermal

effects. With more realistic simulations, we showed that these simplifications do not lead to significant

changes in the results, and we can use these simplifications to model the laboratory systems.

In conclusion, the simulations were consistent with the LAPD experimental results, and the multiple

parameter scans performed dictated the formation conditions of the main features of mini magneto-

spheres. Analytical expressions derived for the energy and momentum transfers between the driven-

plasma and the magnetized plasma were also successful in describing the evolution of these systems

for certain ranges of parameters.

In the future, we plan to reform the coupling expressions for high Mach numbers, by considering

instabilities into the energy terms, and explore other regimes and configurations, such as higher ion and

electron temperatures, and different driver ion charges. This would extend the range of scenarios that

the coupling study would cover, and assist in the design of future experiments with driven-plasmas and

magnetized backgrounds. For the mini magnetosphere project, we intend to exploit sub-Alfvénic mini

magnetospheres simulations, exploit anti-parallel magnetic field configurations, perform 3D simulations,

study the formation of bow shocks in laboratory, and consider even more realistic properties of the driver.

These studies would help us better understand laboratory mini magnetospheres and explore important

phenomena, such as reconnection and the formation of a bow shock.
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Appendix A

Derivation of the coupling equations

A.1 Main interaction

Chapter 2 studies the coupling between a driver plasma with density nd, ion mass md,i, and length

Ld, flowing with fluid velocity v0 against a magnetized background plasma with density n0, ion mass m0,i,

and uniform magnetic field B0. We observed that the system forms a magnetic cavity, of null magnetic

field that travels through the background with coupling velocity vc, while the magnetic background field

is compressed by a ratio α that travels with front velocity vf .

In Chapter 2, we observed that we could relate the coupling parameters vc, vf and α with the initial

parameters of the system, by the energy conservation equation

∆Ed +∆E0 +∆Emag +∆Eele = 0 , (A.1)

where ∆Ed is the energy variation of the driver plasma, ∆E0 of the background plasma, ∆Emag of

magnetic energy, and ∆Eele of electric energy. In Section 2.4, we showed that these energies could be

estimated for an area transverse to the flow AT and a time duration ∆t by the expressions

∆Ed = −2nd,0mi,d(v0 − vc)
2vcAT∆t (A.2)

∆E0 =
1

2
mi,0v

2
cn0vfAT∆t (A.3)

∆Emag =
B2

0

2

[
α2(vf − vc)− vf

]
AT∆t . (A.4)

The electric energy Eele can be neglected. Equation (A.1) becomes
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− 2nd,0mi,d(v0 − vc)
2vc +

1

2
mi,0v

2
cn0vf +

B2
0

8π

[
α2(vf − vc)− vf

]
= 0

⇐⇒ −2nd,0mi,d

n0mi,0

vc
v0

(
1− vc

v0

)2

+
1

2

vf
v0

(
vc
v0

)2

+
B2

0

8πn0mi,0v20

[
α2

(
vf
v0
− vc

v0

)
− vf

v0

]
= 0

⇐⇒ − 1

R2
n

vc
v0

(
1− vc

v0

)2

+
vf
v0

(
vc
v0

)2

+
1

M2
A

[
α2

(
vf
v0
− vc

v0

)
− vf

v0

]
= 0 . (A.5)

where the initial Alfvénic Mach number MA and the ratio Rn are defined by

MA ≡
v0
vA

=

√
4πn0mi,0v20

B0
(A.6)

Rn ≡
1

2

(
n0

nd,0

mi,0

mi,d

) 1
2

. (A.7)

From Section 2.3.4, we also saw that the Rankine-Hugoniot equations lead to

α =
vf

vf − vc
⇐⇒ vf

v0
=

α

α− 1

vc
v0

. (A.8)

By applying Equation (A.8) to replace vf/v0 in Equation (A.5), we obtain

− 1

R2
n

vc
v0

(
1− vc

v0

)2

+
α

α− 1

(
vc
v0

)3

+
2

M2
A

vc
v0

[
α2

(
α

α− 1
− 1

)
− α

α− 1

]
= 0

⇐⇒ − α− 1

R2
n

(
1− vc

v0

)2

+ α

(
vc
v0

)2

+
2α(α− 1)

M2
A

= 0

⇐⇒ − (α− 1)M2
A

(
1− vc

v0

)2

+ αM2
AR

2
n

(
vc
v0

)2

+ α(α− 1)R2
n = 0 . (A.9)

From the pressure balance in the interface between the driver and background plasmas, discussed

in Section 2.2, we also observed that

2ndmi,d(v0 − vc)
2 =

(αB0)
2

8π

⇐⇒ 2ndmi,d

n0mi,0

(
1− vc

v0

)2

=
(αB0)

2

8πn0mi,0v20

⇐⇒ 1

R2
n

(
1− vc

v0

)2

=
α2

M2
A

. (A.10)

Replacing vc/v0 in Equation (A.9) with Equation (A.10), and considering that vc < v0 and α > 0, we

obtain
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− (α− 1)α2R2
n + αM2

AR
2
n

(
1− αRn

MA

)2

+ α(α− 1)R2
n = 0

⇐⇒ − (α− 1)αR2
n +R2

n (MA − αRn)
2
+ (α− 1)R2

n = 0

⇐⇒ α2
(
R2

n − 1
)
+ 2α (1−RnMA) +

(
M2

A − 1
)
= 0 .

Equation (A.11) results in two possible solutions for α

α =
−1 +RnMA ±

√
(1−RnMA)2 − (R2

n − 1)(M2
A − 1)

R2
n − 1

=
−1 +RnMA ± (Rn −MA)

R2
n − 1

,

which leads to the analytical expressions for the parameter α

α1 =
1 +MA

1 +Rn
∧ α2 =

MA − 1

1 +Rn
. (A.11)

With these two solutions, and Equations (A.8) and (A.10), we can also obtain the solutions for vc and

vf

(
vc
v0

)
1

=
1

MA

MA −Rn

1 +Rn
∧

(
vc
v0

)
2

=
1

MA

MA +Rn

1 +Rn
(A.12)(

vf
v0

)
1

=
1

MA

1 +MA

1 +Rn
∧

(
vf
v0

)
2

=
1

MA

MA +Rn

MA −Rn

MA − 1

1 +Rn
. (A.13)

Solution 2 leads to vc > v0 and α > 0 for MA > 1 and allows negative values for vf , and therefore, it

is not a valid solution for the system. Solution 1, in the other hand, always ensures α > 0, vc < v0 and

vf > vc. The analytical expressions on Equations (A.11) to (A.13), marked with the label ’1’ represent

then the correct analytical expressions for the coupling parameters of the system, as a function of the

initial parameters of the system.

We should note, however, that the coupling equations here presented are only valid for a set of

conditions. For high Mach numbers MA, for example, where instabilities take an important role on the

dissipation of energy in the background plasma, these equations are no longer valid. Thermal effects

and trapped particles were also neglected, and we assume that the plasmas are long enough to ensure

a good coupling and a quasi stationary regime. Additionally, other factors, such as 3D effects, must be

consider when attempting to apply these expressions to experiments. These limitations are discussed

with more detail on Chapter 2.
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Appendix B

Mini magnetosphere parameters

B.1 List of mini magnetosphere simulations performed

Table B.1: List of PIC simulations performed with ion-scale magnetospheres and their correspondent
parameters. Run A corresponds to the simulation used for chapter 3, and it was reused for the scans of
the driver density, the driver ion mass and the dipolar magnetic moment. All the simulations considered
equal initial components of the thermal velocity of the particles for all directions, i.e., vth,x = vth,y = vth,z.

Run v0/c vthe,x/v0 vthi,x/v0 nd/n0 mi,d/me mi,0/me Lx/di Ly/di L0/di

A/C2/D1/E2 0.1 0.1 0.01 2 100 100 2 +∞ 1.8

B1 0.1 0.1 0.01 2 100 100 1 +∞ 1.8
B2 0.1 0.1 0.01 2 100 100 4 +∞ 1.8
B3 0.1 0.1 0.01 2 100 100 +∞ +∞ 1.8
C1 0.1 0.1 0.01 1 100 100 2 +∞ 1.8
C3 0.1 0.1 0.01 4 100 100 2 +∞ 1.8
D2 0.1 0.1 0.01 2 300 100 2 +∞ 1.8
D3 0.1 0.1 0.01 2 500 100 2 +∞ 1.8
E1 0.1 0.1 0.01 2 100 100 2 +∞ 2.3
E3 0.1 0.1 0.01 2 100 100 2 +∞ 1.4
F1 0.1 0.1 0.002 2 1836 1836 2 +∞ 1.8
F2 0.1 2.5 0.033 2 1836 1836 2 +∞ 1.8
F3 0.1 2.5 0.033 2 100 100 2 +∞ 1.8
G 0.1 0.1 0.01 2 100 100 2 6 1.8

B.2 Parameters of lunar mini magnetospheres, the LAPD experi-

ments, and simulations
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Table B.2: Typical parameters associated with lunar mini magnetospheres [4, 9, 14, 68], the range of
parameters of LAPD [39] and the canonical simulation B. The parameters are written in both physical
and normalized units to facilitate the comparison between the space, the laboratory environments and
the PIC simulations. The experimental parameters are presented in ranges of values computed with
the possible LAPD values for the flow velocity v0, the density n0 and the electron and ion temperatures
Te,0 and Ti,0, respectfully, of the background plasma. The plasma parameters shown for lunar mini
magnetospheres are relative to the solar wind, while for the experiments and the simulations, they are
relative to the background plasma. The ion data shown corresponds to only the hydrogen ions. The
ion and electron gyroradii and gyroperiods for the experiments and simulations are estimated with the
driver velocity v0 and the magnetic field B0. The magnetic field Bstd is calculated at the standoff position,
i.e., at a distance L0 from the center of the obstacle. Some driver parameters for the experiments are
not represented because their values are not well known. However, we have an idea for the order of
magnitude for some of these parameters [69].

Parameters Lunar mini magnetospheres LAPD experiments PIC simulations
Physical units Normalized units Physical units Normalized units Normalized units

Background parameters
Density, n0 — — 1012 − 1013 cm−3 1 n0 1 n0

Mass ratio, mi,0/me — — — 1836 100
Ion skin depth, di — — 7−23 cm 1 di 1 di
Electron skin depth, de — — 0.2−0.5 cm 0.02 di 0.1 di
Electron temperature, Te,0 — — 10 eV — —
Ion temperature, Ti,0 — — 1 eV — —
Electron thermal velocity, vthe,0 — — 2300 km/s 7.7−11.5 v0 0.1 v0
Ion thermal velocity, vthi,0 — — 17 km/s 5.7−8.4×10−2 v0 0.01 v0
Internal magnetic field, B0 — — 300 G 3−9×10−2 mec2/ede 0.67 mec2/ede
Ion gyroradius, ρi — — 7−10 cm 0.3−1.5 di 1.5 di
Electron gyroradius, ρe — — 4−6×10−3 cm 2−8×10−4 di 0.15 di
Ion gyroperiod, ω−1

ci — — 350 ns 1 ω−1
ci 1 ω−1

ci

Electron gyroperiod, ω−1
ce — — 0.2 ns 5.5×10−4 ω−1

ci 0.01 ω−1
ci

Alfvén velocity, vA — — 200−640 km/s 0.7−2.2×10−3 c 0.067 c
Driver parameters
Flow velocity, v0 400 km/s 10−3 c 200−300 km/s 0.7−1.0×10−3 c 0.1 c
Density, nd 5 cm−3 1 nd — — 2 n0

Mass ratio, mi,d/me — 1836 — 1836 100
Ion skin depth, di,d 100 km 1 di,d — — 0.7 di
Electron skin depth, de,d 2 km 0.02 di,d — — 0.07 di
Electron temperature, Te,d 20 eV — — — —
Ion temperature, Ti,d 10 eV — — — —
Electron thermal velocity, vthe,d 3200 km/s 8 v0 — — 0.1 v0
Ion thermal velocity, vthi,d 54 km/s 0.1 v0 — — 0.01 v0
Ion gyroradius, ρi,d 500 km 5 di,d 7−10 cm 0.3−1.5 di 1.5 di
Electron gyroradius, ρe,d 800 m 8× 10−3 di,d 4−6×10−3 cm 2−8×10−4 di 0.15 di
Ion gyroperiod, ω−1

ci,d 1 s 1 ω−1
ci,d 350 ns 1 ω−1

ci —
Electron gyroperiod, ω−1

ce,d 6×10−4 s 6×10−4 ω−1
ci,d 0.2 ns 5.5×10−4 ω−1

ci 0.01 ω−1
ci

Magnetic parameters
Alfvénic Mach number, MA — — — 0.3−1.5 1.5
Magnetic obstacle size, L0 300 km 3 di,d 14−18 cm 0.6−2.5 di 1.8 di
Standoff magnetic field, Bstd 5× 10−4 G 0.07 mec2/ede,d 100−600 G 0.02−0.2 mec2/ede 2.0 mec2/ede
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