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Abstract

Byte-addressable Persistent Memory (PM) technologies present a new paradigm for interacting with

non-volatile memory, allowing applications to access PM directly and with much lower latency than be-

fore. Unfortunately, the combination of PM with Hardware Transactional Memory (HTM) has been far

from trivial to implement due to the volatile nature of CPU caches, requiring the use of software instru-

mentation and techniques like Shadow Paging (SP) to guarantee durable HTM to PM. The commercial

release of Intel Optane DC PM and the support for systems with Enhanced Asynchronous DRAM Re-

fresh allows for CPU caches to be considered persistent as well, greatly simplifying the model for durable

HTM. However, the use of software instrumentation techniques like Shadow Paging can still provide sig-

nificant benefits for durable HTM solutions by taking advantage of the higher performance and lower

latency of DRAM. This dissertation presents and evaluates a new solution based on the use of DRAM

shadow paging for architectures with PM and durable CPU caches in order to improve performance and

throughput.
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Resumo

As tecnologias de Memória Persistente Endereçável por Byte (PM) apresentam um novo paradigma

para interagir com memória não volátil, permitindo que aplicações tenham acesso directo a PM e com

latência muito inferior do que anteriormente. Infelizmente, a combinação de PM com Memória Transa-

cional de Hardware (HTM) está longe de ser trivial de implementar devido à natureza volátil das caches

de CPU, exigindo o uso de técnicas de instrumentação de software como Shadow Paging (SP) para

garantir HTM durável para PM. A disponı́bilidade comercial de Intel Optane DC PM e o suporte para

sistemas com Atualização de DRAM Assı́ncrona Melhorada (eADR) permitem que as caches do CPU

também sejam consideradas persistentes, simplificando bastante o modelo para HTM durável. No en-

tanto, o uso de técnicas de instrumentação de software como Shadow Paging ainda podem fornecer

benefı́cios significativos para soluções HTM duráveis, aproveitando o maior desempenho e a menor

latência da DRAM. Esta dissertação apresenta e avalia uma nova solução baseada no uso de Shadow

Paging em DRAM para arquiteturas com PM e caches de CPU duráveis com o objetivo de melhorar o

desempenho.
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Memória Transacional de Hardware

v





Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 7

2.1 Persistent Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Intel Optane Persistent Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Persistence Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Software Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Hardware Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Hybrid Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Combining Transactional Memory with Persistent Memory . . . . . . . . . . . . . . . . . . 13

2.3.1 Write-Ahead Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Shadow Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Early Studies of Plain HTM on eADR Systems . . . . . . . . . . . . . . . . . . . . 14

2.4 Durable HTM Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 NV-HTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 SPHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 SPHT-eADR 21

3.1 Study of Current Off-the-Shelf Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Pure HTM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Using SPHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Overview of SPHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



3.2.1 Log Commit Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Wait for Preceding Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Flush Transaction Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 SPHT Simplified for eADR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Maintaining Flushes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Implementation of SPHT-eADR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Experimental Evaluation 33

4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Flushing Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Evaluating SPHT-eADR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Synthetic Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 STAMP Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 TPC-C Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusion 45

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49

viii



List of Figures

3.1 Throughput comparison of SPHT and HTM+SGL with mixed access pattern . . . . . . . . 25

3.2 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for SPHT

and HTM+SGL with mixed access pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Throughput comparison of SPHT and HTM+SGL with read-intensive access pattern . . . 27

3.4 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for SPHT

and HTM+SGL with read-intensive access pattern . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Throughput for synthetic benchmark with 5 writes and 5 reads using CLFLUSHOPT . . . . 36

4.2 Throughput for synthetic benchmark with 5 writes and 5 reads using CLWB . . . . . . . . . 36

4.3 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for syn-

thetic benchmark with 5 writes and 5 reads using CLFLUSHOPT . . . . . . . . . . . . . . . 37

4.4 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for syn-

thetic benchmark with 5 writes and 5 reads using CLWB . . . . . . . . . . . . . . . . . . . 37

4.5 Throughput for synthetic benchmark with 1 write and 9 reads . . . . . . . . . . . . . . . . 38

4.6 Throughput for synthetic benchmark with 5 writes and 45 reads . . . . . . . . . . . . . . . 38

4.7 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for syn-

thetic benchmark with 1 write and 9 reads . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for syn-

thetic benchmark with 5 writes and 45 reads . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.9 Throughput for synthetic benchmark with 5 writes and 5 reads . . . . . . . . . . . . . . . 38

4.10 Throughput for synthetic benchmark with 25 writes and 25 reads . . . . . . . . . . . . . . 38

4.11 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for syn-

thetic benchmark with 5 writes and 5 reads . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.12 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for syn-

thetic benchmark with 25 writes and 25 reads . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.13 Throughput for synthetic benchmark with 9 writes and 1 read . . . . . . . . . . . . . . . . 39

4.14 Throughput for synthetic benchmark with 45 writes and 5 reads . . . . . . . . . . . . . . . 39

ix



4.15 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for syn-

thetic benchmark with 9 writes and 1 read . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.16 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for syn-

thetic benchmark with 45 writes and 5 reads . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.17 Throughput for GENOME benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.18 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for

GENOME benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.19 Throughput for INTRUDER benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.20 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for IN-

TRUDER benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.21 Throughput for KMEANS LOW benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.22 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for

KMEANS LOW benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.23 Throughput for KMEANS VLOW benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.24 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for

KMEANS VLOW benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.25 Throughput for LABYRINTH benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.26 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for

LABYRINTH benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.27 Throughput for SSCA2 benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.28 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for

SSCA2 benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.29 Throughput for VACATION LOW benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.30 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for VA-

CATION LOW benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.31 Throughput for YADA Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.32 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for YADA

benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.33 Throughput for TPC-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.34 Breakdown of committed (via the HTM and SGL paths) and aborted transactions for TPC-C 44

x



List of Algorithms

1 NV-HTM: transaction processing at thread t . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 SGL with Undo Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Original SPHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 SPHT-eADR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 SPHT-eADR with Flushes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xi



xii



1
Introduction

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1



2



1.1 Introduction

1.1.1 Motivation

Persistent storage options for computing systems have traditionally been limited to mass storage devices

such as hard disk drives (HDD) and solid-state drives (SSD), whose performance is orders of magnitude

slower than volatile main memory (DRAM). These mass storage devices are not directly accessible to

applications and instead require the use of Application Programming Interfaces (API) provided by the

Operating System (OS), along with costly serialization and deserialization processes to translate the

data between its volatile representation and a format that can be stored on non-volatile devices.

The emergence of new byte-addressable Persistent Memory (PM) technologies like Intel Optane DC

Persistent Memory opened the door to a new paradigm for interacting with non-volatile memory. These

new PM technologies offer performance that is closer to DRAM and can be connected to the processor’s

memory bus.

This allows applications to address PM directly, without the need for OS-level API calls or serialization

and deserialization steps. Additionally, these new PM technologies have lower energy consumption and

provide higher capacity than DRAM at a lower cost.

Given that multicore processors are the standard architecture for current computing systems, it is

imperative to consider how new technologies fit in a concurrent computing environment. However, de-

veloping parallel applications is not an easy process, and abstractions like transactional memory are an

important area of research for taking advantage of multiple cores while reducing the complexity of par-

allel application development. Hardware Transactional Memory (HTM) implementations are particularly

desirable due to their focus on minimizing the overhead of instrumentation.

The development of concurrent applications that can take advantage of these new PM technologies

has led to significant attention in research into the implementation of Persistent Transactional Memory

in systems equipped with PM and HTM.

However, HTM’s reliance on volatile CPU caches means that committed transactions cannot be

guaranteed to be atomically persisted to PM due to the possibility of remaining in the cache. It is thus

required to complement transactions with complex software instrumentation in order to ensure durable

HTM.

This approach of combining transactions with additional software instrumentation in order to guar-

antee atomicity and durability has been successfully utilized by state-of-the-art approaches such as

NV-HTM [1], DudeTM [2], cc-HTM [3], Crafty [4], and SPHT [5].

One technique that is particularly notable is the use of Shadow Paging (SP) [1, 2, 5] in combination

with Write-Ahead Logging (WAL), which is used in all these solutions, with the exception of Crafty.

With this technique updates are performed on local private copies rather than directly over the original

3



data, allowing easier modification without the issue of consistency constraints. The original data is then

replaced by the shadow copy, making the updates durable.

More recently, the introduction of new persistence domains for computing systems with small amounts

of reserve power, such as Intel Extended Asynchronous DRAM Refresh (eADR), offered the possibility

of treating CPU caches as non-volatile. In this new environment, HTM transactions that deal exclusively

with PM data are able to rely entirely on hardware-level instructions without the need for any additional

instrumentation in order to ensure durability.

However, despite offering performance that is significantly faster than persistent mass storage de-

vices, current PM modules still have higher latency and slower write speeds than DRAM. It can thus be

desirable to use an algorithm that makes use of DRAM in order to increase performance and reduce

latency while taking advantage of HTM and the new eADR persistence domain for persistence [6].

Shadow Paging is a possible solution for achieving this goal. However, existing durable HTM so-

lutions based on Shadow Paging have been designed for an ADR environment and are thus more

computationally expensive than necessary in eADR. These solutions include mechanisms which are no

longer required and do not take into consideration particular idiosyncracies of eADR environments, such

as the possibility of flush operations being used to improve the performance of write operations.

1.1.2 Contributions

This work revisits proposals for durable HTM based on DRAM shadow paging for architectures with

volatile caches and, based on those state-of-the-art proposals (SPHT [5], NV-HTM [1], DudeTM [2],

etc), introduces a new solution optimized for systems with durable caches, such as eADR-based archi-

tectures.

This work revisits proposals for durable HTM based on DRAM shadow paging for architectures with

volatile caches and presents four main contributions.

As a first contribution, it includes a preliminary study which shows that, counter to common intuition,

the use of shadow copying in an eADR environment can bring performance benefits when compared to

the use of HTM directly on persistent memory.

As a second contribution, it introduces SPHT-eADR, a new solution based on SPHT that has been

designed for systems with durable caches and reconsiders several mechanisms that are no longer nec-

essary in an eADR environment.

As a third contribution, it considers the results of recent studies in eADR [7] and explores an opti-

mization of SPHT-eADR that improves the performance of write operations in eADR by explicitly flushing

log data with low temporal locality.

As a fourth and final contribution, it presents an experimental evaluation of SPHT-eADR compared to

the standard version of SPHT and an almost pure HTM approach, using STAMP [8], and TPC-C [9], and

4



synthetic no-contention benchmarks. This experimental evaluation shows that it significantly improves

on the performance of previous state-of-the-art solutions, reaching 2–3x the throughput performance

of SPHT and 4x the throughput of HTM+SGL in synthetic (no contention) benchmarks and 1.5x the

throughput of SPHT and 2x the throughput of HTM+SGL at similar thread counts on TPC-C.

1.2 Organization of the Document

This thesis is is organized as follows: Chapter 2 discusses topics that form the background and related

work, covering the subjects of Persistent Memory, Transactional Memory, techniques for Combining

Transactional Memory with Persistent Memory, and state-of-the-art Durable HTM Solutions. Chapter 3

presents the design of SPHT-eADR. Chapter 4 discusses the benchmarks used and presents the eval-

uation of SPHT-eADR, comparing it with previous state-of-the-art approaches. And finally, Chapter 5

summarizes conclusions for this work and discusses potential future directions that can be explored.
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This section presents an overview of the related work in the areas of Durable Hardware Transactional

Memory. Section 2.1 begins with Persistent Memory (PM) and discusses the topics of PM technologies,

Memory Hierarchies and Persistence Domains. Section 2.2 presents Transactional Memory (TM) in a

volatile environment and covers Software Transactional Memory (STM), Hardware Transactional Mem-

ory (HTM), and Hybrid Transactional Memory (HyTM) approaches. Section 2.3 combines the topics of

PM and TM and covers Write-Ahead Logging (WAL) and Shadow Paging (SP) techniques, along with

the changes introduced by an eADR Environment. Finally, Section 2.4 presents SPHT and NV-HTM,

two state-of-the-art solutions for Durable HTM.

2.1 Persistent Memory

The advent of byte-addressable PM technologies has the potential to revolutionize the way in which

data-intensive applications are developed. When compared to DRAM, these new technologies have

significantly higher storage density, lower power consumption, and the ability to retain their contents for

extended periods of time in the absence of power. Additionally, unlike traditional NVM mass storage

devices, these new technologies are byte-addressable and connect directly to the computer’s memory

bus, allowing applications to address them directly without the need for translation steps to serialize and

deserialize between representations or to go through any Operating System APIs.

However, despite the groundbreaking new features, these new persistent memory technologies also

have notable drawbacks. Latency times for write operations are significantly higher than for read opera-

tions, which may cause serious performance degradation in write-intensive applications. There is finite

write endurance, meaning that there is a limited number of times each bit may be written before failure.

And finally, bandwidth and performance are still limited compared to DRAM.

2.1.1 Intel Optane Persistent Memory

Intel Optane is the first, and currently the only, PM technology commercially available on the market.

Optane DC memory is available in two different formats: as an NVMe SSD storage module that connects

to the PCIe bus just like all other NVM mass storage devices, and in a DIMM format, which uses the

physical DDR4 packaging and memory bus. It is this latter format, Optane DC, that is of most interest

for PM applications, allowing it to be byte-addressable and much closer to DRAM in terms of latency.

Optane DC PM offers a latency of up to about 350 ns, several orders of magnitude lower than the typical

10,000–100,000 ns latency of NAND-based SSD mass storage devices, but still higher than the 10–20

ns latency range for DDR4 DRAM [10].

However, despite the dramatic improvement in terms of latency, the bandwidth performance of Intel

Optane, especially in terms of write operations, is still significantly worse than DRAM and closer to SSD
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mass storage devices [11].

Intel advertises a write endurance of 60 drive writes per day for an average lifetime of 5 years.

While this level of endurance is significantly higher than the write endurance of NAND-based SSD mass

storage devices, it can still become problematic when used as main memory in write-intensive applica-

tions [11].

2.1.2 Memory Hierarchy

Introducing a new type of memory that combines the relatively fast speed and byte-addressability of main

memory with the larger capacities and non-volatile nature of secondary memory allows for different

configurations of the memory hierarchy. Intel Optane DC PM is capable of operating in two distinct

modes: Memory Mode and App Direct Mode.

In Memory Mode, DRAM operates as an L4 cache layer between Optane DC and the CPU caches,

being exposed to the application as a single pool of addressable memory. This configuration is trans-

parent to the application and offers Optane DC’s larger memory capacity while taking advantage of

DRAM’s performance in order to hide Optane DC’s higher write latency. However, data in Memory Mode

is considered volatile and does not take advantage of Optane DC’s persistent memory properties.

In App Direct Mode, DRAM and Optane DC PM are exposed to the application as two distinct ad-

dressable pools of memory: a persistent pool for Optane DC and a volatile pool for DRAM. Operating

in this mode requires applications to be programmed specifically with these independent pools in mind,

but allows for applications to take advantage of whichever medium is ideal for the task.

2.1.3 Persistence Domains

One of the ideas that are central to computing systems with PM devices is the concept of a Persistence

Domain (PD); the definition of the region of a computing system that is able to guarantee persistence.

Once data reaches the PD, it can be guaranteed to have been persisted and recoverable upon system

restart. The PD is not just limited to PM devices though; it may also include volatile devices that are able

to hold state for long enough to be able so that it can be guaranteed to reach a persistent device. Intel

Optane DC PM supports two different persistence domains, Asynchronous DRAM Refresh (ADR) and

Enhanced Asynchronous DRAM Refresh (eADR).

In an ADR environment, the system has enough reserve energy to flush the memory controller’s

Write Pending Queue (WPQ) to PM. This means that it is sufficient for the application data to reach the

memory controller in order to guarantee that it can be considered persistent under ADR.

In an eADR domain, computing systems have a higher amount of reserve energy than in ADR which,

in addition to providing enough power to flush the memory controller’s WPQ, also have enough power
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to allow the system to execute the required instructions to guarantee that CPU caches are also flushed

to PM. The inclusion of the CPU caches in the eADR persistence domain brings significant advantages

over ADR to the PM programming model. In an ADR environment data becomes visible to other cores via

the CPU L3 cache layer before it has a chance to reach the memory controller and become persistent.

It is also necessary for applications to explicitly flush caches in order for a store to become persistent. In

an eADR environment, it is no longer necessary for applications to flush the caches in order to ensure

persistence, and data becomes persistent before it becomes visible to other cores through the L3 cache

layer. This offers the opportunity to simplify the programming model for durable HTM transactions by

allowing durable HTM transactions to be executed entirely without the need for software instrumentation

since values on the CPU cache can now be considered persistent.

2.2 Transactional Memory

The concept of a transaction was initially developed for database systems that needed to perform a

set of operations that could manipulate data atomically in order to allow concurrent access to the data

without sacrificing consistency. Database transactions guarantee this by ensuring 4 essential properties:

atomicity, consistency, isolation, and durability (ACID) [12].

These properties are also essential in the context of parallel and concurrent programming where

critical sections of code need to be executed sequentially and in isolation. This can be ensured through

the use of locks, but lock-based programming is difficult to tune and notoriously known for being prone to

programming errors [13, 14]. Global or coarse-grained locks are easier to implement, but can seriously

degrade performance and restrict parallelism. Fine-grained locking allows for better parallelism and

performance but is complex to implement and prone to errors that can be difficult to identify.

Transactional Memory takes advantage of the transaction abstraction from database systems in or-

der to provide a much easier and safer programming model for parallel and concurrent computing, where

the programmer is only required to identify and annotate the critical section of code as a transaction,

making it much easier to focus on the application logic rather than how to coordinate lock-based synchro-

nization mechanism. A transaction can only have one of two possible outcomes: either the transaction

is committed and its changes are atomically applied, or the transaction is aborted and its changes are

discarded.

The use of Transactional Memory allows for critical sections to be run speculatively and only commit-

ted if no conflicts are detected. If a conflict is detected, the transaction is aborted and no changes are

applied.

One way to define the set of guarantees provided by Transactional Memory is through the correctness

criterion of Opacity [15, 16]. The concept of Opacity is strongly related to Serializability, which is the
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strongest correctness criterion that is typically applied in the context of database systems. Opacity is a

stronger criterion and can be thought of as an extension of Serializability with the enforcement of two

additional requirements:

• Even aborted transactions are not allowed to access an inconsistent state.

• Committed transactions have to be serialized in the real-time order of the execution of the transac-

tions.

2.2.1 Software Transactional Memory

The Transactional Memory abstraction can be achieved through a purely software-based runtime ap-

proach, without the need for support from the underlying hardware [17, 18]. Using a Software Transac-

tional Memory (STM) implementation allows for code portability across a wide range of hardware. STM

is implemented by instrumenting the read and write operations performed in the context of a transaction

in order to track changes and identify potential conflicts between transactions.

While the portability and hardware independence is an attractive advantage, STM implementations

typically suffer from poor performance due to the high instrumentation costs and overheads.

2.2.2 Hardware Transactional Memory

Unlike with STM, Transactional Memory implemented at the hardware level does not require the instru-

mentation of read and write operations. Instead, it relies on the cache coherence protocol to achieve

atomicity and isolation without suffering from the high costs and overheads of instrumentation. This

allows for better performance but also means that currently available HTM implementations are consid-

ered best-effort [19, 20]. Best-effort HTM is limited by cache capacity and cannot handle transactions

that are too large to fit in the private CPU cache.

There are proposals for Unbounded HTM which overcome the size limitations of best-effort HTM, but

their implementations introduce significant additional complexity at the hardware level [21–23].

2.2.3 Hybrid Transactional Memory

In order to overcome the limitations of STM and HTM, there have been proposals for a Hybrid Trans-

actional Memory (HyTM) approach [24]. HyTM solutions attempt to take advantage of best-effort HTM

whenever possible but provide an STM fallback solution in order to guarantee progress whenever the

HTM-based transaction aborts or is unable to handle the transaction.
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2.3 Combining Transactional Memory with Persistent Memory

The use of byte-addressable persistent memory technology enables applications to access and modify

durable state without the need for an intermediate layer like the OS filesystem API, but still requires

developers to ensure that modifications to the data are consistently applied to PM in the event of a

failure. This is especially true when trying to guarantee the failure-atomicity of multiple operations that

should either all be persisted together, or none should be persisted at all [25].

There are multiple durability abstractions for programming with PM, such as Persistent Data Struc-

tures [26–29] and Failure Atomic Sections (FASE) [30] with Epoch [31–35], Lock [30,36–38], and Trans-

action [39–41] based approaches. The scope of this work is related to transactions and will therefore

focus primarily on describing that programming model.

Similarly to TM in a volatile computing environment, early literature and solutions combining TM

with PM focused on software-based approaches. One particularly important early contribution in the

topic was Mnemosyne [40], which borrowed ideas such as write-ahead redo logging from database

systems [12] to provide a lightweight persistent transactional memory framework.

As hardware support for transactional memory started becoming available in commercial comput-

ing systems, some hardware-based solutions were also published, although early proposals required

changes to the existing hardware. In order to bridge the gap between the properties offered by HTM

and the properties required to guarantee durability with persistent memory, durable HTM solutions took

advantage of hardware-based transactions and complemented them with software instrumentation. The

majority of systems employed the use of two techniques from the world of database systems: write-

ahead logging and shadow paging. NV-HTM [1], described in more detail below, along with DudeTM [2]

and cc-HTM [3] make use of both of these techniques.

2.3.1 Write-Ahead Logging

Typically used by database systems to provide failure atomicity and durability. This technique requires

updates to PM to be recorded and persisted in a log before actually being written to their memory

locations in PM. There are two main logging schemes in use in current PM systems: undo logging and

redo logging. Undo logging approaches save the old version of the data in the log before changing

the data in persistent memory, which allows the system to roll back changes in case of a failure. Redo

logging, on the other hand, records the new version of the data in the log, before writing it directly to PM.

In case of a failure, it is possible to replay the log and rebuild the state of the system.

Current commodity HTM systems do not allow flushing cached logs to PM within the context of a

transaction, which prevents the use of write-ahead logging techniques.
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2.3.2 Shadow Paging

The Write-Ahead Logging approach described earlier performs in-place updates, meaning that all changes

are performed directly on PM, overwriting the previous value. Shadow Paging allows for updates to be

performed out-of-place. Instead of performing the update directly on the original object, it first creates a

private copy of the object so that persistent updates can be applied to it without disturbing or modifying

the original object. Since these private objects are local, they can be modified without worrying about

the order of persist instructions. When a transaction is about to commit, the original objects are then

replaced with the updated copies.

This approach presents two significant advantages in the context of PM. Private copies are stored

in DRAM and are able to take advantage of its lower latency, allowing for better write performance,

especially in the case of hot objects that are overwritten multiple times. A second advantage is that it

can help improve the write endurance of PM systems by absorbing repeated overwrites in DRAM before

issuing a single write operation to PM.

2.3.3 Early Studies of Plain HTM on eADR Systems

Even though the previously described approaches of Shadow Paging and Write-Ahead Logging are no

longer necessary to guarantee durable HTM transactions in an eADR environment, they can still be used

to mitigate some of the limitations of current PM technologies, such as limited write endurance and the

significantly higher latency for write operations [10].

Pantea Zardoshti et al. [6] studied the performance of Intel Optane DC PM in ADR and eADR envi-

ronments using a variety of different Persistent Transactional Memory algorithms. They also evaluated

the same algorithms running in DRAM (not persistent) in order to compare the performance difference to

Optane. They concluded that using Optane in an eADR environment provided substantial performance

gains over an ADR environment in almost all tested workloads. The single exception was a workload

with a significant amount of work between transactions, which resulted in only a small fraction of the

execution-time being transaction-related.

However, despite the performance advantage of running in an eADR environment, the authors found

that it still does not reach the performance of DRAM, and that scalability on Optane is worse than on

DRAM.

2.4 Durable HTM Solutions

In this section I illustrate an approach to durable HTM through the use of Shadow Paging by presenting

two complete solutions that are representative of the state-of-the-art in this area.
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First I present NV-HTM [1], which combines Shadow Paging with Write-Ahead Logging and illustrates

an approach used by a larger group of solutions, like DudeTM [2] and cc-HTM [3]. Next I present

SPHT [5], which improves on the work done in the previous mentioned solutions and represents the

state-of-the-art in durable HTM via Shadow Paging.

2.4.1 NV-HTM

NV-HTM, proposed by Daniel Castro et al. [1], combines unmodified commodity HTM with PM in order

to provide durable HTM. It achieves this through the use of an additional redo log saved in persistent

memory that tracks all the write operations issued by transactions. In order to be able to provide crash-

atomicity, it ensures all transactional updates are persisted in the log before any values in persistent

memory can be modified.

However, current commodity HTM implementations are not able to flush the cached log of a transac-

tion to persistent memory before committing the transaction. In order to overcome this, NV-HTM makes

use of a hardware-software co-design by instrumenting write operations issued through HTM transac-

tions and tracking them in a persistent redo log before committing. Once committed in hardware, the

NV-HTM transaction is able to make its updates and logs visible to other threads, but not necessarily

persisted in PM. At this point, the transaction is considered non-durably committed.

In order for a thread to durably commit an HTM transaction, it needs to postpone the commit event

until the log of that transaction, along with the logs of any other transactions it may depend on, have

been persisted to PM. It is at this point that the transaction can be considered durably committed.

This ensures that when a transaction’s commit is made visible, all of its log entries have already been

persisted and can thus be replayed. However, the application’s state persisted in memory may not yet

reflect all of the durably and non-durably committed transactions. In case of failure and recovery, the key

insight behind NV-HTM is to discard the application state and reconstruct it by replaying the logs of all

durably committed transactions on top of a consistent checkpoint.

NV-HTM utilizes a decentralized design where each thread maintains its own local log that only stores

information related to transactions that it executed. It also builds a non-durable log during the execution

of a transaction that only gets persisted after the non-durable HTM commit event. This log is marked

as persistent through a commit marker added via software, which turns it into a durable commit. This

design overcomes the issues of the log becoming a contention spot in highly concurrent systems and

also overcomes the limitation of commodity HTM systems not allowing the log to be flushed during the

execution of the transaction.

In order to reduce the duration of the recovery process and the unbounded growth of the redo log,

NV-HTM introduces a checkpointing process called Backward Filtering Checkpointing to create con-

sistent snapshots persisted to PM from which the application is able to recover. Backward Filtering
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Checkpointing persists all the updates of durably committed transactions to the consistent persistent

snapshot and is designed in order to filter repeated flushes to cache lines or writes to the same memory

location by different transactions in the logs. It only needs to persist the most recent update and is able

to discard all previous updates to the same location. This improves not only performance but also write

endurance by minimizing the number of write operations made to each location in persistent memory.

In case of a failure, NV-HTM is able to recover its state by replaying the durably committed logs on

top of the consistent persistent snapshot.

At a high level, the architecture of NV-HTM is comprised of:

• A working process that runs a set of parallel worker threads which execute hardware transactions

on the working snapshot. The working snapshot is a private memory pool that is initially created

using copy-on-write to transparently create a volatile copy of the PM page. It starts by mapping

pages that are stored entirely in PM but will evolve to contain a mix of clean pages in PM and dirty

page copies in DRAM.

• A durable log which is stored in PM and is used to track updates from durably committed transac-

tions. Each thread maintains its own private log in order to avoid contention.

• A checkpointing process that applies the updates stored in the logs with the goal of building a con-

sistent persistent snapshot that reflects all the durably committed transactions. This checkpointing

process also prunes the logs in order to ensure the log size never exceeds a predefined maximum

size. The checkpointing process makes use of Backward Filtering Checkpointing.

Algorithm 1 presents the pseudo-code for the behaviour of an NV-HTM worker thread in an environ-

ment with volatile caches, as proposed by Daniel Castro et al. [1]
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Algorithm 1 NV-HTM: transaction processing at thread t

Shared variables
1: log[N ] ▷ One log per thread, stored in PM
2: ts[N ]← {+∞, . . . ,+∞}

▷ Per-thread timestamp of active tx; +∞ if none is active

Thread local variables
3: locTs ▷ timestamp of committing transactions
4: isRO ▷ flag used to identify read-only tx

Functions
5: function BEGIN
6: isRO ←TRUE

7: ts[t]←READTS()
8: mem fence ▷ Ensure other threads know we are in a tx
9: htm begin() ▷ Start hw tx

10: function WRITE(addr, value)
11: isRO ←FALSE

12: if logCheckSpace (log[t])=FULL then
13: ABORT(LOG FULL)
14: ∗addr ← value ▷ Write to working snapshot
15: log[t].append(< addr, value >)

16: function ABORT(abort code)
17: htm abort(abort code)
18: ts[t]← +∞

19: function COMMIT
20: if isRo then ▷ Commit logic for read-only txs
21: htm commit()
22: ts[t]← +∞ ▷ Others do not need to wait for RO tx
23: WAITCOMMIT()
24: else ▷ Commit logic for update txs
25: locTs← READTS()
26: htm commit()
27: ts[t]← locTs
28: logFlush(log[t]) ▷ Flush current log entries
29: WAITCOMMIT()
30: log[t].append(< COMMIT, locTS >)
31: log[t].endP ← locEndP
32: logFlush(log[t]) ▷ Flush commit marker and endP
33: ts[t]← +∞

34: function WAITCOMMIT
35: for all t∗ ∈ [1, N ] s.t. t∗ ̸= t do
36: wait until ts[t∗] > ts[t]
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2.4.2 SPHT

SPHT, proposed by Daniel Castro et al. [5], builds on the concepts utilized in NV-HTM [1] and intro-

duces novel mechanisms aimed at improving scalability during transaction processing and recovery.

It addresses scalability challenges connected with redo logging by introducing a new highly scalable

commit protocol that amortizes the cost of ensuring immediate durability [42] across multiple concurrent

transactions.

The architecture for SPHT is comprised of 2 main processes:

• The transaction executer, which is comparable to the working process from NV-HTM. It spawns

multiple worker threads responsible for executing the transactions and creates a shadow copy of

the persistent heap shared by all threads and serves as a working snapshot that transactions

access directly. Updates performed by HTM transactions on the working snapshot are not imme-

diately written to the persistent heap and are thus still volatile.

• The log replayer, which spawns the replayer threads responsible for replaying the durably commit-

ted logs and updating the persistent heap.

Similarly to NV-HTM, each worker thread has its own private durable redo log used to track updates

performed by each transaction. Since the results of a transaction can remain in the cache, the redo log

needs to be explicitly flushed to persistent memory after the HTM commit. Once the redo log has been

persisted, a timestamped commit marker is used to mark the transaction as durable.

SPHT takes advantage of the observation that at a high thread count, multiple transactions are likely

to be concurrently attempting to commit. It takes advantage of this by ensuring the immediate durability

of all transactions that are trying to commit through a single update of the persistent global marker with

the timestamp of the most recent durable transaction. Just like NV-HTM, SPHT uses physical clocks to

establish the order of transactions.

After an HTM commit, SPHT allows threads to flush their logs out of order, without considering

thread synchronization. However, those logs cannot be marked as durable yet since they may depend

on logs from other threads that may not yet have been flushed. It overcomes this by ensuring that each

thread transaction waits for all threads with earlier timestamps to finalize persisting their logs. During this

waiting phase, it also determines which transaction in the commit phase has the highest timestamp. If

there is a transaction with a higher timestamp, the current transaction avoids updating the global marker.

Only the transaction with the highest timestamp updates the global marker, which reduces the number

of updates and flushes to the marker. This marks all transactions with earlier timestamps as durable.

SPHT also improves the scalability of log replay by employing 2 novel ideas, a log-linking mecha-

nism that spares the replayer threads from the cost of having to determine which transaction should be
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replayed next, and parallelization of the log replay process in a Non-Uniform Memory Access (NUMA)

aware fashion.

SPHT also improves the log replay process with the introduction of two new mechanisms:

• Linked transactions in the logs through the addition of an entry that stores a pointer to the begin-

ning of the next transaction in the replay order and spares the replayer threads from the cost of

having to determine which transaction should be replayed next. This ordering can also be done

through backward linking, which allows for filtering techniques that reduce the number of writes by

absorbing repeated writes to the same address and writing only the most recent value for each

address.

• NUMA-Aware Parallel log replay, in which replayer threads target disjoints regions of memory,

ensuring that the log can be processed in parallel without violating the sequential order established

in the logs.
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The study of the state of the art presented in Chapter 2 shows that ensuring persistence in an ADR

environment requires complex software instrumentation in order to guarantee that values do not remain

lingering in volatile cache. The introduction of the new eADR domain in which caches can be considered

durable means that it is now possible to implement durable HTM without the need for complex software

instrumentation in order to identify which cache lines have been modified and guarantee they have

been persisted. However, even though it is now possible to guarantee persistence entirely through

HTM without the need for any additional software instrumentation, PM modules still suffer from finite

write endurance and higher access latencies, particularly regarding write operations. Thus, it can still

be beneficial to use some of these software techniques, such as shadow paging, in order to improve

performance by taking advantage of the lower latency and higher performance of DRAM.

This section presents an analysis of how durable HTM applications can be developed in an eADR

environment and describes the work that was done to develop a new optimized solution that makes

use of software instrumentation techniques. Section 3.1 presents a study of how current off-the-shelf

approaches can be used to develop applications that make use of eADR. Section 3.2 presents some

of the fundamental mechanisms of SPHT that were required for an ADR environment, and Section 3.3

describes how these mechanisms can be simplified or modified to take advantage of eADR. Finally,

Section 3.4 describes the implementation for SPHT-eADR.

3.1 Study of Current Off-the-Shelf Approaches

The introduction of eADR leaves open the question of how to develop applications that are able to take

advantage of this new persistency domain. Given that caches can now be considered persistent, one

possible approach would be to avoid the use of software instrumentation techniques and rely entirely

on existing HTM mechanisms. Another possible approach would be to use an existing state-of-the-

art solution like SPHT [5], which was designed with ADR in mind but can also be used in an eADR

environment.

3.1.1 Pure HTM Approach

A pure HTM approach has the advantage of the simplicity of implementation, operating directly on the

data stored in PM. It relies on mechanisms provided by the hardware without the added complexity of

software instrumentation to ensure data has been persisted. However, even though it is now possible

to guarantee the persistence of a successful transaction entirely through mechanisms provided by the

hardware, it is still not possible to guarantee progress by relying exclusively on these mechanisms.

HTM is still a best-effort synchronization mechanism [19,20] and requires a software-based fallback

path in order to ensure progress. This fallback path can be implemented in the form of a Single Global
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Lock (SGL) that is used whenever a transaction repeatedly aborts over a pre-configured number of

times. The SGL causes any concurrent transactions to be aborted, ensuring there are no conflicts with

other transactions. Since this mechanism is implemented via software and memory access is performed

directly on PM, any write operations made inside the SGL fallback path are written directly to PM. If an

SGL transaction fails or aborts after having performed any write operations, those partial changes will

still be present in PM, violating the principle of atomicity and leading to an incorrect system state. This

requires the use of additional instrumentation to maintain consistency.

Algorithm 2 SGL with Undo Log

Persistent Variables
1: pundoLog[]

Thread Local Volatile Variables
2: vSGL

3: function BEGINTX
4: while !CAS(&vSGL, 0, 1) do ▷ Take SGL
5: WAITPRECEDINGTXS ▷ Writing the SGL causes an HTM abort
6: CREATEUNDOLOG ▷ Creates a new undo log

7: function WRITE(addr, val)
8: prevVal← ∗addr ▷ Save previous value
9: undoLogWrite(addr, prevVal) ▷ Log previous value PM
10: ∗addr← val ▷ Execute write
11: function COMMITTX
12: CLEARUNDOLOG ▷ Undo log no longer necessary
13: SGL← 0 ▷ Release SGL, needs memory barrier

A possible solution for this problem when operating directly on PM is the use of an undo log used to

track write operations performed by an SGL transaction. In case of a failure or an aborted transaction,

this undo log can be used to revert changes that had already been written to persistent memory and

restore the consistent state of the system before that SGL transaction had been initiated. The algorithm

for this is shown in Algorithm 2. As far as it was possible to determine, this thesis is the first work that

implements and evaluates HTM for eADR using an instrumented fallback path.

3.1.2 Using SPHT

Even though SPHT was designed for an ADR environment and does not take advantage of the durable

caches introduced with eADR, it can still be used in this new environment. All the properties SPHT

guarantees in ADR are also enforced in the eADR environment. This approach is more complex and

does not provide any benefits over executing in an ADR environment, but can potentially provide better

performance due to the use of shadow paging in DRAM.

3.1.3 Comparative Study

A small comparative study of both these approaches was conducted in order to determine the feasibility

of each solution and to determine if existing state-of-the-art solutions can still provide any benefits over
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the simpler approach of using pure HTM mechanisms with a software fallback path to ensure progress.

The test for the study was performed with a synthetic benchmark in which each transaction generates a

total of 5 read and 5 write operations at random over a uniform persistent heap.
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Figure 3.1: Throughput comparison of SPHT and HTM+SGL with mixed access pattern

This study was conducted on an Intel Xeon processor with 12 cores and 24 threads; more detailed

specifications for the machine are available in Section 4.1. The tests were performed with a synthetic

benchmark in which each transaction generates a fixed number of read and write operations at random

over a uniform 1 GB persistent heap space in which each thread accesses its own private memory pool

and all results are the average of 10 runs of each test.

In a first scenario, shown on Figure 3.1 and Figure 3.2, the workload is comprised of small trans-

actions with a mixed access pattern in which each transaction generates a total of 5 read and 5 write

operations. These results show that even though SPHT does not take advantage of the durable caches

offered by the eADR environment, it still provides a significant advantage in throughput and scalability

over the HTM approach, which is limited by the bandwidth capacity of the PM module.

In a second scenario, shown on Figure 3.3 and Figure 3.4, the workload is comprised of large

transactions with a read-intensive access pattern in which each transaction generates a total of 45

read and 5 write operations. Latency times for write operations are significantly higher than for read

operations in currently available PM modules [10]. A read-intensive access pattern could help avoid

performance degradation in the HTM+SGL solution, but the results show that SPHT still provided a
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Figure 3.2: Breakdown of committed (via the HTM and SGL paths) and aborted transactions for SPHT and
HTM+SGL with mixed access pattern

significant throughput and scalability advantage over HTM+SGL operating directly on PM.

These results show that the software instrumentation techniques used in state-of-the-art solutions

like SPHT still provide benefits over operating directly on PM and motivate the need to develop a new

solution that improves on existing state-of-the-art solutions by taking advantage of the new possibilities

introduced with eADR.

3.2 Overview of SPHT

As mentioned previously, SPHT was originally developed for an ADR environment in which caches are

considered volatile. This required the mechanisms described below, which can be seen in Algorithm 3,

in order to ensure immediate durability and visibility of changes across threads.

3.2.1 Log Commit Marker

Each worker thread in SPHT has a private durable redo log that is used to log updates performed by

each transaction. However, since caches are volatile, the updates performed by a transaction commit

may still be lingering in volatile cache and not considered durable. This requires explicit flushing of the

redo log to PM after the HTM commit terminates successfully. Since the log is only persisted after the
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Figure 3.3: Throughput comparison of SPHT and HTM+SGL with read-intensive access pattern

transaction commits, SPHT makes use of a durable timestamped log commit marker to indicate the

transaction is considered durable.

3.2.2 Wait for Preceding Transactions

One of the key ideas used in SPHT in order to overcome scalability limitations is to amortize the cost

of ensuring immediate durability across multiple transaction commits. When multiple transactions are

concurrently trying to commit, SPHT is able to ensure immediate durability for all of them through a

single update of the durable log commit marker by writing the timestamp of the most recent durable

transaction.

However, since SPHT allows threads to flush logs out of order, flushing the transaction log for a given

thread is not enough for that transaction to be considered durable. At that point, there may still exist

preceding transactions with lower timestamps that are not yet marked as durable, but whose changes

may already have been observed by other threads. In order to solve this issue, each thread shares

the timestamp of the most recent transaction along with whether the logs for that transaction have

been persisted. Once the logs have been flushed the transaction enters a phase in which it scans

the timestamps of the other threads and waits until all transactions with lower timestamps have been

persisted. Only once all transactions with lower timestamps have finished flushing their logs can it be
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Figure 3.4: Breakdown of committed (via the HTM and SGL paths) and aborted transactions for SPHT and
HTM+SGL with read-intensive access pattern

considered safe for a transaction to mark itself as durable.

It is also during this waiting phase that threads identify which transaction has the most recent times-

tamp and will be responsible for updating and flushing the log commit marker.

3.2.3 Flush Transaction Log

When flushing cached logs to persistent memory, SPHT needs to perform calculations to determine if

it is safe to flush the cache without the possibility of generating partial log writes to PM. If the full log

and commit marker fit in a single cache line, it is safe to flush that cache line. However, if they occupy

more than a single cache line, it is necessary for SPHT to flush the earlier cache lines and ensure the

consistency of cache pages before flushing the commit marker to persistent memory.

3.3 SPHT Simplified for eADR

The introduction of durable caches in eADR has significant implications for the durability of redo logs,

which was the primary motivator behind the previously described mechanisms. Since logs can now be

considered durable in cache, it is no longer necessary to ensure they have been flushed to persistent
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Algorithm 3 Original SPHT
Shared Volatile Variables

1: vts[N], vmarked[N], visUpd[N]

Persistent Variables
2: pwriteLog[N], pmarker

Thread Local Volatile Variables
3: vts′, vskipCAS

4: function BEGINTX
5: visUpd[myTid]← FALSE
6: vskipCAS ← FALSE
7: UNSETPERSBIT(vts[myTid]) ▷ Logs are not persistent
8: vts[myTid]← RDTSCP ▷ lower bound of final ts
9: HTM BEGIN ▷ begin hw tx

10: function WRITE(addr, val)
11: logWrite(addr, val) ▷ log to PM, no flush
12: ∗addr← val ▷ execute write
13: function COMMITTX
14: vts′ ← RDTSCP ▷ store physical clock to local var.
15: HTM COMMIT ▷ commit hw transaction
16: vts[myTid]← ts′ ▷ Externalize the final timestamp
17: if isReadOnly then ▷ Read-only txs...
18: SETPERSBIT(vts[myTid]) ▷ ...unblock the others
19: return ▷ ...and return immediately
20: visUpd[myTid]← TRUE ▷ Mark as update tx
21: logCommit(pwriteLog[myTid], ts′) ▷ Flush tx log.
22: SETPERSBIT(vts[myTid]) ▷ Signal logs are durable
23: WAITPRECEDINGTXS
24: UPDATEMARKER

25: function WAITPRECEDINGTXS
26: for t ∈ [0..N − 1] do
27: ▷ Wait until prec. txs have flushed their logs
28: while vts[t] < vts[myTid] ∧ ¬ISPERSBIT(vts[t]) wait
29: ▷ If any update tx with large ts exists...
30: if vts[t] > vts[myTid]∧ visUpd[t] then
31: vskipCAS ← TRUE ▷ this tx can skip the CAS
32: function UPDATEMARKER
33: ▷ Is it needed to and am I responsible for updating pmarker?
34: if pmarker < vts[myTid] ∧ ¬vskipCAS then
35: val← pmarker
36: while val < vts[myTid] do
37: val← CAS(pmarker, val, vts[myTid])
38: if (CAS was successful) then
39: flush(pmarker)
40: vmarked[myTid]← vts[myTid] ▷ Signals pmarker is flushed.
41: return
42: while TRUE do ▷ Wait till flush of pmarker
43: for t ∈ [0..N − 1] do ▷ ...is complete
44: if vmarked[t] ≥ vts[myTid] then return

memory before the transaction itself can be considered durable. The transaction can now be considered

durable as soon as it commits successfully, rendering the global log marker unnecessary.

Likewise, it is now possible to consider preceding transactions with an earlier timestamp to be durable

without the need to share whether their logs have been flushed to persistent memory or not. Any

transaction with an earlier timestamp will have successfully committed and written their logs either to

persistent memory or to cache, which is now considered durable. This means it is no longer necessary

for transactions with an earlier timestamp to wait for any preceding transactions.

Additionally, the process of flushing logs to persistent memory, along with determining which cache

lines need to be flushed, is no longer necessary.

These changes allow the algorithm for SPHT-eADR to take advantage of the new possibilities intro-
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duced in eADR and to be significantly simplified in comparison to the original version of SPHT, as shown

in Algorithm 4.

Algorithm 4 SPHT-eADR

Persistent Variables
1: pwriteLog[N]

Thread Local Volatile Variables
2: visUpdate

3: function BEGINTX
4: HTM BEGIN ▷ Begin hw tx

5: function WRITE(addr, val)
6: visUpdate← true
7: logWrite(addr, val) ▷ Log to PM, no flush
8: ∗addr← val ▷ Execute write
9: function COMMITTX
10: if isUpdate then
11: logCommit(pwriteLog[myTid], RDTSCP) ▷ No flush required
12: HTM COMMIT ▷ SGL commit needs a memory barrier

3.3.1 Maintaining Flushes

Even though flush operations are no longer required to ensure the persistence in an eADR environment,

they may still be beneficial for performance by proactively removing cache lines containing data which

no longer has temporal locality [7], as is the case with log entries for transactions that have already been

committed. This is shown on Line 17 of Algorithm 5

Algorithm 5 SPHT-eADR with Flushes

Persistent Variables
1: pwriteLog[N]

Thread Local Volatile Variables
2: visUpdate, vtxLogStart, vtxLogEnd

3: function BEGINTX
4: vtxLogStart← logNextPos() ▷ Record starting log position
5: vtxLogEnd← txLogStart
6: HTM BEGIN ▷ Begin hw tx
7: ∗addr← val ▷ Execute write
8: function WRITE(addr, val)
9: visUpdate← true
10: logWrite(addr, val) ▷ Log to PM, no flush
11: vtxLogEnd← logNextPos() ▷ Update current log position
12: ∗addr← val ▷ Execute write
13: function COMMITTX
14: if isUpdate then
15: logCommit(pwriteLog[myTid], RDTSCP)
16: HTM COMMIT ▷ SGL commit needs a memory barrier
17: flushCache(txLogStart, txLogEnd) ▷ Flush cache for updated log section

Given that changes lingering in cache can be considered persistent and that the version of SPHT

optimized for eADR no longer needs to maintain a commit marker, it is possible to flush redo logs using

an out-of-order operation like CLWB or CLFLUSHOPT without the need to issue a memory fence and wait

for the flushes to finish.
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3.4 Implementation of SPHT-eADR

SPHT-eADR exposes PM to the application via a persistent heap created by memory-mapping the per-

sistent data stored in a PM-aware filesystem into the application address space [43] using the host

Operating System (OS). Being based on SPHT, SPHT-eADR follows the same architecture with two

main processes (Transaction Executers and Log Replayers) that were earlier described in Section 2.4.2.

The transaction executor process memory-maps a persistent heap into its address space using Copy-

on-Write provided by the OS which creates a shadow copy of the persistent heap. The process also

spawns multiple worker threads that share access to this shadow copy. Changes to the shadow copy

are not transmitted back to the persistent heap. Instead, worker threads track updates through private

redo logs, implemented with a circular buffer, which contains an ordered sequence of transactions and

timestamps. These logs can eventually be replayed in order to propagate changes back to the persistent

heap. Transactions in SPHT-eADR utilize the underlying support for HTM and switch to a fallback Sin-

gle Global Lock software-based commit mechanism when a transaction fails a pre-configured number of

times. When this fallback mode is activated, all concurrent hardware-based transactions are immediately

aborted.
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This chapter presents the results of an experimental evaluation of SPHT-eADR, a new solution based

on SPHT and optimized for an eADR environment (previously described in Section 3.3), and seeks to

answer the question of whether shadow paging and software instrumentation techniques used by state-

of-the-art solutions like SPHT can still be used to improve performance given the availability of eADR.

The performance of SPHT-eADR was compared to the standard version of SPHT and an almost pure

HTM mechanism with a software fallback path to ensure progress, as well as different versions of SPHT-

eADR with preemptive flushing of logs with low temporal locality. These solutions were evaluated using

synthetic benchmarks with no contention, STAMP, and TPC-C. This section is structured as follows. Sec-

tion 4.1 describes the details about the testing platform and the benchmarks that were used. Section 4.2

tests two different approaches to flushing in SPHT-eADR. And finally, Section 4.3 presents and discusses

the gathered experimental results gathered through synthetic benchmarks, STAMP, and TPC-C.

4.1 Experimental Settings

All experiments were conducted in a dual-socket system using a single Intel Xeon Gold 5317 3.00 GHz

3rd Generation Intel Xeon Scalable processor with 12 cores and 24 hardware threads, equipped with

128 GB of DRAM (4x 32 GB) and 512 GB of Intel Optane DC PM 200 (4x 128 GB) with interleaved

access and configured in App Direct mode. These experiments evaluate the performance of:

• HTM+SGL: plain HTM with a software fallback using a single global lock;

• SPHT [5]: original version of SPHT developed for an ADR environment;

• SPHT-eADR: new solution based on SPHT and optimized for an eADR environment; see Sec-

tion 3.3;

• SPHT-eADR-Flush: a version of SPHT-eADR with logic to flush the redo log after a successful

commit; see Section 3.3.1.

All described solutions make use of HTM and fall back to SGL when a transaction fails after 10 retries.

All results are the average of 10 runs.

The synthetic benchmark is configured with a 1 GB heap space which is split into private memory

pools for each thread, ensuring that there are no conflicting transactions. Before beginning the execution

of the benchmark, memory pages are pre-touched in order to simulate a long-running process. Each

iteration of the test runs for 5 seconds and each transaction generates a pre-configured number of

read and write operations to random memory addresses within the memory pool for each thread. This

benchmark evaluates the performance of the various solutions in scenarios where every transaction

is able to be executed concurrently without incurring conflicts in order to evaluate the scalability and

possible bottlenecks for each solution.
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STAMP [8] is a benchmark suite designed for transactional memory systems and includes transac-

tional applications that, even though they were not originally designed with PM in mind, could still be

able to benefit from crash-tolerance in a PM system. STAMP was previously used to test SPHT, along

with several other related solutions [1,3,4,9] in the same field.

Although the STAMP benchmark suite includes 8 different benchmarks, this evaluation does not

consider the Bayes application, as it is known to provide unstable performance results [5,44].

TPC-C [9] is a well-known benchmark that is widely used to evaluate database and transactional

systems. The benchmark is composed of five transactions: three update transactions (New Order,

Payment, and Delivery), and two read-only transactions (Status Order and Stock Level). This evaluation

implemented three of these transactions, Payment, New Order, and Delivery. New Order and Delivery

are transactions that contain item accesses dependent on other previous accesses.

4.2 Flushing Approach
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Figure 4.1: Throughput for synthetic bench-
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ing CLFLUSHOPT
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Figure 4.2: Throughput for synthetic bench-
mark with 5 writes and 5 reads us-
ing CLWB

This synthetic benchmark experiment compares the throughput and breakdown of committed and

aborted transactions of the regular version of SPHT, SPHT-eADR without flushes, and SPHT-eADR with

flushes using a balanced workload in which each transaction performs 5 read and 5 write operations.

The test was repeated using both CLWB and CLFLUSHOPT operations in order to implement the log

flushing phase taking place after transaction commit in these solutions. The CLFLUSHOPT instruction

flushes data out of the CPU cache and invalidates it whereas CLWB flushes the data without invalidating

the cache lines. This allows for evaluating not just the impact of preemptively flushing logs to PM but

also determining whether cache invalidation has any negative effect. Figure 4.1 and Figure 4.2 show

the throughput of the 3 solutions using CLFLUSHOPT and CLWB, respectively. SPHT-eADR and SPHT-

eADR with flushes have similar throughput curves, scaling well up to the number of physical cores.

Once Hyper-Threading is used, the curve flattens and throughput stays almost constant. The version

with flushes performs noticeably better than the version without flushes, indicating that preemptively
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flushing data with low temporal locality does provide a performance boost. We argue that this increases

the effectiveness of the caching layer by asking the hardware to flush log data that is unlikely to be

reaccessed shortly thereafter. The original version of SPHT scales more linearly up to 24 threads

but at much lower throughput levels. The results of the tests with CLWB and CLFLUSHOPT are similar,

indicating that invalidating the cache lines for the redo logs, which have low temporal locality, does not

have a negative effect on performance.
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Figure 4.4: Breakdown of committed (via the
HTM and SGL paths) and aborted
transactions for synthetic bench-
mark with 5 writes and 5 reads us-
ing CLWB

Figure 4.3 and Figure 4.4 show the breakdown of committed and aborted transactions for the solu-

tions, with committed transactions being split into HTM or SGL commit mechanisms. With this workload,

the abort rate is very low, only growing a bit at higher thread counts. However, it is worth noting that

even though the throughput of the original version of SPHT is lower, it does have a lower abort rate than

SPHT-eADR and SPHT-eADR with flushes. The higher throughput of SPHT-eADR means that more

write requests reach the write-pending queue of the PM module, generating more aborts.

4.3 Evaluating SPHT-eADR

4.3.1 Synthetic Benchmark

This experiment includes 6 variations of the synthetic (no contention) benchmark, covering a variety of

scenarios encompassing all combinations of small or large transactions (10 or 50 memory accesses)

with read-intensive, write-intensive, or mixed access patterns. The lack of conflicts in this case also

allows for the evaluation of scalability and identification of possible bottlenecks for each solution.

SPHT-eADR has the best performance in read-intensive applications (see Figure 4.5 and Figure 4.6),

reaching 2–3x the throughput performance of SPHT and 4x the throughput of HTM+SGL. SPHT-eADR

with flush operations performs very close to SPHT-eADR, but flushing does not present an advantage

in these applications. All versions of SPHT only generate log entries for write operations. As such,
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Figure 4.8: Breakdown of committed (via the
HTM and SGL paths) and aborted
transactions for synthetic bench-
mark with 5 writes and 45 reads

it is expectable for flushing the logs to have a small impact here given the small amount of memory

generated by logs in cache.
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Figure 4.10: Throughput for synthetic bench-
mark with 25 writes and 25
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With a mixed access pattern (see Figure 4.9 and Figure 4.10) applications start to give SPHT-eADR

with flushing an advantage, performing better than all other solutions. Write operations are noticeably

slower though, causing the throughput for each application to reduce significantly compared to the read-

intensive application performing the same number of operations. Again, SPHT-eADR and SPHT-eADR

with flushes reach roughly 2x the performance of SPHT and 3–4x that of HTM+SGL.
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thetic benchmark with 25 writes
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Figure 4.13: Throughput for synthetic bench-
mark with 9 writes and 1 read
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Figure 4.14: Throughput for synthetic bench-
mark with 45 writes and 5 reads
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Figure 4.15: Breakdown of committed (via
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thetic benchmark with 9 writes
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Figure 4.16: Breakdown of committed (via
the HTM and SGL paths) and
aborted transactions for syn-
thetic benchmark with 45 writes
and 5 reads

In contrast with read-intensive applications, write-intensive applications give SPHT-eADR with flushes

a significant advantage in performance, albeit mostly at lower thread counts. Throughput for SPHT-eADR

peaks at 8–12 threads, and declines noticeably after that, particularly in applications with a combination

of large transactions and write-intensive access patterns.

The original version of SPHT has lower peak throughput but does not suffer from degraded perfor-

mance with a high number of threads due to the waiting mechanism used in the commit phase which
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helps maintain a lower number of aborted transactions at higher thread counts.

Overall, taking these results as a whole, it is possible to see that HTM+SGL reaches a plateau early

on with just a few threads and does not scale further, being limited by the higher latency of PM when

compared to DRAM. The new versions of SPHT-eADR and SPHT-eADR with flushes scale better and

reach much higher peak throughput with a lower number of cores. However, performance degrades with

a higher number of threads, especially for large and write-intensive workloads.

4.3.2 STAMP Benchmark
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Figure 4.17: Throughput for GENOME
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Figure 4.18: Breakdown of committed (via
the HTM and SGL paths)
and aborted transactions for
GENOME benchmark

GENOME (see Figure 4.17) is a medium contention benchmark and not very favourable towards

scalability, given that there is a high likelihood of generating conflicts between transactions, as can be

seen on Figure 4.18 by the abort rate of over 80%. SPHT-eADR (with and without flushes) performed

the best in this benchmark and reached peak throughput at 12 threads. The results for all solutions are

quite closely correlated, which may be due to the high number of aborts causing most transactions to

be committed via the SGL.
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Figure 4.19: Throughput for INTRUDER
benchmark
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Figure 4.20: Breakdown of committed (via
the HTM and SGL paths) and
aborted transactions for IN-
TRUDER benchmark
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INTRUDER (see Figure 4.19) is also a contention-prone benchmark that is not favourable to scalabil-

ity. SPHT-eADR (with and without flushes) reaches 1.5–2x higher peak throughput than other solutions,

but degrades quickly as the number of threads increases due to a corresponding increase in the num-

ber of aborts, as can be seen on Figure 4.20. The original version of SPHT stays significantly lower in

terms of maximum throughput but scales more gracefully to a large number of threads without degrading

performance.
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Figure 4.21: Throughput for KMEANS LOW
benchmark
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Figure 4.22: Breakdown of committed (via
the HTM and SGL paths)
and aborted transactions for
KMEANS LOW benchmark
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Figure 4.23: Throughput for KMEANS VLOW
benchmark
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Figure 4.24: Breakdown of committed (via
the HTM and SGL paths)
and aborted transactions for
KMEANS VLOW benchmark

HTM+SGL performs very favourably with KMEANS LOW (see Figure 4.21) and KMEANS VLOW (see

Figure 4.23), both in terms of throughput and abort rate, achieving over 2x the throughput in KMEANS

LOW when compared to all the versions of SPHT and SPHT-eADR. This can be explained by the fact

that HTM+SGL has a much lower abort rate at lower thread counts and is able to commit via the HTM

path most of the times. In KMEANS VLOW the slowdown is not as large as in KMEANS LOW, with all

solutions reaching their peak throughput at 12 threads and stabilizing when additional HyperThreading

threads are added. Looking at the committed and aborted transaction breakdown in Figure 4.22 and
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Figure 4.24 it is possible to see that the number of aborted transactions increases with the number

of threads in KMEANS LOW and stays stable in KMEANS VLOW, with the exception of the original

version of SPHT that starts getting more aborted transactions at high thread counts. HTM+SGL is able

to maintain a much lower abort rate in this case.
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Figure 4.25: Throughput for LABYRINTH
benchmark
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Figure 4.26: Breakdown of committed (via
the HTM and SGL paths)
and aborted transactions for
LABYRINTH benchmark

LABYRINTH (see Figure 4.25) is a benchmark with large transaction sizes and medium contention,

making it a benchmark that is not very well suited for HTM. It is difficult to take significant conclusions

regarding the throughput of individual solutions from this benchmark given that there is very high vari-

ability in throughput over the 10 execution runs. However, Figure 4.26 does show that LABYRINTH has

an abort rate of over 80% with all solutions.
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Figure 4.27: Throughput for SSCA2 bench-
mark
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Figure 4.28: Breakdown of committed (via
the HTM and SGL paths) and
aborted transactions for SSCA2
benchmark

Both SSCA2 and VACATION LOW (see Figure 4.27 and Figure 4.29) are low-contention benchmarks

that are favourable to HTM. This can be seen on Figure 4.28 which shows that SSCA2 has a 100%

commit rate entirely through HTM, without falling back to SGL. All tested solutions scale smoothly up to

24 threads, but these are the benchmarks where both versions of SPHT-eADR show the best scalability,
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Figure 4.29: Throughput for VACATION LOW
benchmark
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Figure 4.30: Breakdown of committed (via
the HTM and SGL paths) and
aborted transactions for VACA-
TION LOW benchmark

reaching 2x the peak throughput of HTM+SGL and 1.2x of SPHT without any degradation in performance

at higher thread counts.
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Figure 4.31: Throughput for YADA Bench-
mark
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Figure 4.32: Breakdown of committed (via
the HTM and SGL paths) and
aborted transactions for YADA
benchmark

YADA (see Figure 4.31) is another contention-prone benchmark that generates large transactions,

providing an unfavourable running environment for HTM with a high percentage of aborted transactions,

visible in Figure 4.32. Both versions of SPHT-eADR perform significantly better than SPHT, but peak

throughput is reached at around 8 threads and performance degrades significantly after that. This is to

be expected from a contention-prone benchmark like YADA.

4.3.3 TPC-C Benchmark

Figure 4.33 and Figure 4.34 show the results of TPC-C implemented with the three update transactions:

New Order, Payment, and Delivery and configured with 32 warehouses, 95% payment, 3% delivery,

and 2% new order transactions. Both versions of SPHT-eADR, with and without flushes, perform very
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similarly, scaling very well up to 12 threads with 1.5x the throughput of SPHT but degrading rapidly from

thread 13 on, once HyperThreading is in use. The original version of SPHT scales very favourably in

this test, however. It does not reach the same maximum throughput that SPHT-eADR is able to reach at

12 threads, but it continues scaling upwards even with HyperThreading due to the waiting mechanism

used in the commit phase. Figure 4.34 shows that the number of aborted transactions increases with the

number of threads for most solutions, with the exception of SPHT which generates a lower percentage

of aborted transactions with higher thread counts.
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Figure 4.33: Throughput for TPC-C
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Figure 4.34: Breakdown of committed (via
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aborted transactions for TPC-C
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5.1 Conclusions

The goal of this dissertation was to revisit state-of-the-art proposals for durable HTM based on DRAM

shadow paging techniques and look at them through the lens of eADR, a new persistence domain for

computer systems that offers the possibility of treating CPU caches as durable. Even though these

techniques are no longer required to ensure durability in this new environment, they can still provide

significant performance benefits.

Having revisited and studied these proposals, this dissertation introduced SPHT-eADR, a new so-

lution for durable HTM optimized for systems with durable caches that makes use of DRAM shadow

paging techniques.

This approach had not yet been studied in an eADR environment, but the experimental evaluation

of SPHT-eADR shows that it significantly improves on the performance of previous state-of-the-art solu-

tions by providing higher performance and fewer overheads, reaching 2–3x the throughput performance

of SPHT and 4x the throughput of HTM+SGL in synthetic (no contention) benchmarks and 1.5x the

throughput of SPHT and 2x the throughput of HTM+SGL at similar thread counts on TPC-C.

5.2 Future Work

One topic that was approached during the execution of this dissertation was the issue of support for

large heap allocation in systems that make use of DRAM shadow paging. Most state-of-the-art systems

are limited by the size of the DRAM pool available, causing them to either fail or drastically degrade

performance once that limit is reached due to the cost of the operating system swapping memory in and

out to disk. The main strategy that has been considered in the literature and is utilized by DudeTM [2]

consists of paying the cost for restoring the content on page-in, when a page fault occurs. However, there

are unexplored regions and alternative approaches that seem interesting and can potentially improve

performance, such as shifting the cost to the page-out event instead, avoiding overheads on page-in

events during execution.

Another future avenue of research would be the prevention of performance degradation of SPHT-

eADR at higher thread counts, which could be addressed with the introduction of rate-limiting or some

other form of back-off mechanism. There were preliminary experiments with the use of simple static

back-off mechanisms but the results were not conclusive. One interesting path would be how to auto-

matically determine the amount of rate-limiting or back-off time required to prevent performance degra-

dation at higher thread counts without hurting performance at lower thread counts, borrowing ideas from

previous literature in the area of self-tuning [45,46].
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