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Resumo

Nos últimos anos, a procura de energia eólica tem aumentado com a crescente geração de energia

sustentável, o que levou ao desenvolvimento de geradores cada vez mais potentes, com turbinas de

maior dimensão. Pretendendo atingir uma maior eficiência no estudo desses modelos, uma interface

entre modelos de viga e malhas do fluído é desenvolvida, expandindo a compatibilidade de um mó-

dulo de interação fluído-estrutura (IFE), já existente, para elementos de viga. Visando a independência

desse módulo relativamente à obtenção dos dados estruturais do modelo de viga, é criado um mod-

elo computacional responsável pela sua geração, com base no Método de Elementos Finitos. Esta

nova funcionalidade é validada com sucesso num problema bidimensional de referência num contexto

IFE, assim como o acoplamento de interface implementado. Os desvios obtidos nos resultados foram

atribuídos à falta de refinamento da malha estrutural exterior que interage com o fluído. Foram também

identificadas limitações neste acoplamento, em que se inferiu que a falta de refinamento da malha da

viga em comparação com a malha estrutural externa pode criar superfícies irregulares no corpo, levando

a divergência do código. Tendo em vista a simulação do rotor DTU 10MW, são executadas simulações

rígidas com Malhas Deslizantes e com o Método de Formulação Absoluta, tendo a primeira abordagem

obtido resultados mais fiáveis. Os dados estruturais de entrada do módulo IFE para uma pá do rotor

são também formulados com sucesso, utilizando o módulo de viga desenvolvido. A combinação destes

avanços deverá levar a simulações futuras bem sucedidas desse mesmo rotor.

Palavras-chave: Aeroelasticidade, Interação fluído-estrutura, Acoplamento de interface, MFC
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Abstract

In the past several years, the demand for wind energy has increased with the rising need for sus-

tainable energy generation, which led to the escalation of power and size of the wind turbines. Aiming

to study these new prototypes at realistic full-scale with efficiency, an interface is developed between a

beam structural representation of the body and the fluid mesh, expanding the compatibility of an already

existent Fluid-Structure Interaction (FSI) module to beam elements. Aiming to remove the dependency

on other software, a solver responsible for generating the input data regarding the beam models is cre-

ated, based on the Finite Element Method. This new structural solver is then successfully validated in a

FSI context with a 2D benchmark, as well as the implemented interface coupling. Obtained deviations

of the results were attributed to the lack of refinement of the outer mesh that interacts with the fluid.

Limitations in this coupling were also identified, as it was founded that a lack of refinement from the

beam grid in comparison with the outer mesh creates irregular surfaces in the body, possibly leading to

divergence. Planning to simulate the DTU 10MW rotor, rigid simulations are executed with Sliding Grids

and Absolute Formulation Method approaches, with the former presenting more reliable results. The

structural input data of the FSI module for a blade of the rotor is also formulated successfully with the

developed beam solver and the combination of these advancements should lead to successful future

simulations of the turbine, with a parallelized code.

Keywords: Aeroelasticity, Fluid Structure Interaction, Interface coupling, CFD
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Chapter 1

Introduction

Firstly, a context of the current status and trend of the offshore wind power is established, propelling

the study that follows. Afterwards, a literature review on studies of wind turbines is introduced, with an

assessment of knowledge gaps to be addressed by this thesis. The introduction ends with the objectives

and scope of the present work.

1.1 Motivation

Nowadays, there is a remarkable development of the wind power technology in Europe, in alignment

with the rising awareness of the need for sustainability in electrical power generation. This presents a

reality for both onshore and offshore environments, with the latter being one of the focal points of this

study.

As it can be noted in Table 1.1, the total installed capacity in Europe of offshore wind turbines in-

creased approximately from 2 to 25 GW, from 2009 to 2020, exhibiting a clear tendency to keep ex-

panding its implementation in the future. This growth can be attributed to the highly competitive costs of

this technology in comparison to other renewable sources of energy [1], as well as to the possibility of

using more powerful generators offshore than on the onshore environment. The offshore wind turbines

originate from the lack of obstacles at the sea, where the access to exceptional quality of wind resources

leads to the exploitation of strong and undisturbed wind flows.

It is worth noting that, according to a report from the National Renewable Energy Laboratory (NREL)

[2], the COVID-19 pandemic didn’t hinder significantly the installation of this technology and its rising

trend, as most countries consider the energy sector an essential service and allowed on going construc-

tion activities to proceed, even in the presence of lockdowns.

Therefore, the continuing demand for turbines with bigger capacity and their installation further from

the shore, with exceptional quality of the wind resources, lead to the design of larger rotors and blade

sizes. The installation of these larger machines presents the best cost-effective energy production

means to increase the power supply and their conceptualization is paramount to achieve high efficiency

in the energy production of the wind turbine farms.
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Table 1.1: Growth of offshore wind turbines in Europe over the years [3], with updated values for 2020
from the annual report of NREL [2].

Current average Trends
Years 2009 2014 2019 2020 2025 2030

Number of Offshore Turbines 828 2488 5047 5402 11126 16850

Installed Capacity [GW] 2.06 8.05 22.07 25.1 47.4 76

Average Power [MW] 2.9 3.7 7.2 8.2

In that sense, computational aeroelastic tests, combining the structural and fluid domains, can pro-

vide efficient and accurate methods that allow the optimization of these new devices, promoting thus a

safe development and installation of more offshore wind turbines, with higher energy yield per unit of

installation area.

1.2 Topic overview

1.2.1 Blade Element Momentum theory

An industry standard for the aeroelastic simulations of Horizontal Axis Wind Turbines (HAWT) and

their design is based on the Blade Element Momentum (BEM) theory, which has been proven to have

achieved good computational efficiency and an adequate flow response in multiple works [1]. Its formu-

lation, introduced by Glauert [4], corresponds to a combination of the momentum theory and the blade

element theory. While the former theory refers to a control volume analysis with conservation of mo-

mentum, the latter concerns a force analysis of a discretized blade in function of the incoming flow and

the blade geometry [5]. This method’s base formulation has been continuously improved through the

introduction of new sub-models, aiming to keep up with the evolution of the design and testing of wind

turbines [1].

For example, aiming to expand its applicability to the study of Floating Offshore Wind Turbines

(FOWTs), in 2007, Jonkman and Junior [6] modeled fully coupled aero-hydro-servo-elastic responses

from those machines, with the BEM theory as a foundation for their aerodynamics model. Heege et al.

[7], rooted in that same theory as well, elaborated a pitch control strategy that compensated the hydro-

dynamically induced rotor plane speed variations of the OWTs. These and other advancements strongly

contributed for the existence of current robust tools that tackle their simulations of HAWTs recurring to

the BEM theory, namely HAWC2 [8], from Technical University of Denmark (DTU), and OpenFAST [9],

from NREL. These software have been extensively researched and validated, serving as references

and/or tools for several works in the wind energy domain [10] [11].

Alternatives to the BEM theory were also added to the code of OpenFAST. For instance, Shaler et

al. [12] implemented the Free-Vortex Method (FVM) on that software, aiming to study the aero-elastic

performance of the NREL UAE Phase IV turbine. A further development on this method was performed

by Dong et al. [13], where a Simplified Free Wake Vortex Ring Method (SFWVRM) was deployed and

tested on the NREL 5MW wind turbine, both on fixed and floating support structures. The obtained
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results were proven to be more accurate but computed less efficiently than the ones originated from the

BEM theory, with the latter presenting unreliability for small angles of attack in the region of low wind

speeds and for high wind speeds with blade pitch motions.

Limitations of this nature are common in simplified models from aero-hydro coupled analysis tools,

as many of their assumptions don’t necessarily hold up when working with complex aerodynamic flow

states [14]. The BEM method has been proven to be unsuitable when the rotor interacts with its own

wake [1] [13], while Vortex Methods may lack, for example, on their portrayal of dynamic stall [15] and

on the simulation of wind turbines when varying circulation occurs along the blade [16]. These are

problems that can be addressed with the application of correction models but the highly skewed flows

and heavy detachments typical of FOWTs are still a major obstacle to be surpassed by these tools [1].

Unlike onshore machines, the FOWTs are simultaneously subjected to wind and wave loads, creating

translational and gyroscopic motions that are solely constrained by mooring cables. These floating

dynamics lead to the operation of these turbines in various complex aerodynamic flow states that can

be better tackled with more sophisticated Computational Fluid Dynamics (CFD) techniques, even if at a

price of higher computational costs.

1.2.2 CFD simulations of floating offshore wind turbines

Traditional CFD approaches to the simulations of wind turbines are usually considering them as rigid

models, that is, with their rotor not presenting any flexibility. Yet, as mentioned in Chapter 1.1, with the

upscaling of the modern FOWTs, the study of aeroelastic effects has to come into play, since blade

deflections may have an appreciable impact on the turbine performance, as well as their interactions

with the tower [1].

In an FSI context, a simulation with the flexible rotor requires its structural model, in addition to the

CFD grid with which it will interact. Considering the lack of publicly available studies on industrial con-

figurations, most of the literature review of this thesis, concerning this matter, revolves around reference

designs, in which the structural properties of the body are well documented and accessible. Since their

inception, Reference Wind Turbines (RWTs) have been used to reflect the current wind energy technol-

ogy, allowing the galvanization of innovative methods in its design and evaluation. Within this group of

machines, the NREL 5MW and the DTU 10 MW tend to stand out with numerous studies focused around

them.

In regards to the NREL 5MW RWT, Hsu and Bazilevs [17] and Yu and Kwon [18] studied its behavior,

assuming the flexibility of its rotor’s blades. While the former made use of a coupling between a low-order

Arbitrary Lagrangian–Eulerian Variational Multi-Scale (ALE-VMS) flow solver and a Non-Uniform Ratio-

nal Basis Spline (NURBS) based structural solver, the latter solved the incompressible Navier–Stokes

equations of an unstructured grid for the blade forces and a beam model was used for the computation of

the deformations. Both works initially focused on the Rotor-Nacelle Assembly (RNA) of the turbine and,

based on its simulations, it was found in the Yu and Kwon’s study [18] that the blade aerodynamic loads

were significantly reduced by the nose-down torsion resultant of the elastic deformation. Therefore, it
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was concluded that the flexibility of the blades should be an important factor to be taken into account

when one intends to properly predict the wind turbine aerodynamic performances.

However, simulations with only the RNA omit an important source of unsteadiness: the tower geom-

etry. Both aforementioned works later considered rotor-tower interactions, in order to close in on this

gap. Now simulating with the whole machine, Bazilev et al. [19] concluded that the tower produced a

significant drop in the aerodynamic torque, which generated additional cyclic loading on the blades. Yu

and Kwon [18], also in the presence of the tower interference, identified oscillatory behaviors of the blade

aerodynamic loads and the aeroelastic deformation, particularly in what concerned the tangential force

and the flapwise bending deflection. These alterations not only affect the performance of the machine

but should also be considered in fatigue-life analysis of the turbines.

As for the DTU 10MW turbine, RNA simulations were developed by Horcas el al. [1] [20], where

the computed blade tip deformation associated to the rated wind speed corresponded to 8 meters,

respecting the designed tower clearance of the model. Nevertheless, this deflection led to a 1.4%

decrease of the power production of the machine, which corroborates what was already concluded for

the NREL 5MW RWT: the blade flexibility is a crucial factor to consider in the estimation of the final rotor

performance.

Rotor-tower interactions of this RWT were also explored by Horcas el al. [20], using the Non-linear

Harmonic (NLH) approach, presented by Vilmin et al. [21]. However, this approach made use of rigid

blades instead of flexible ones, only meshing a single blade passage due to rotational periodic nature

of the problem, where the incoming wind was assumed to be aligned with rotor axis. Considering these

assumptions, the presence of the tower still presented a strong influence on the rotor performance, with

the computation of an around 5% decrease of time-averaged rotor thrust and 8% of power. Sayer [22]

performed a study with identical goals, also for the DTU 10 MW RWT, though this time with flexible

blades. Recurring to Reynolds Averaged Navier Stokes (RANS) equations for the CFD solver and a

Finite Element Method (FEM) software to compute the structural deformations of a beam model, it was

possible to observe that, similarly to the NREL 5MW turbine, the deformations in all directions were

reduced after the blade passed by the tower, due to an abrupt decrease of the aerodynamic loads

resultant of the tower-rotor interactions.

Hence, as it will be presented in Chapter 1.3, this work intends not only to perform similar flexible

simulations to the ones conducted in this literature review, but also set the stage for future works, where,

for example, rotor-tower interactions may be studied.

1.2.3 Structural representation of the rotor

As stated in Otero et al. [23], the wind turbine industry aims to implement structural models in-

creasingly capable of capturing the complex features of new blade prototypes, simulated at realistic

full-scale conditions with reasonable computational costs. Considering this goal, different approaches

can be taken with the structural representation of an offshore wind turbine. The Finite Element Method,

explained on Chapter 2, offers an extensive selection of elements to approximate any body and, for
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the present case, there are several works approaching its aeroelastic studies through beam and shell

elements. This approach doesn’t require as much computational costs as three-dimensional (3D) tetra-

hedral or hexahedral elements and it doesn’t necessarily lose accuracy in process of the simplification

of the computations.

In the work of Júnior et al. [24], a comparison is established between the behavior of these two

types of elements, regarding the modelling of a wind turbine blade. According to its results, while

the beam models do not convey local buckling phenomenons and detailed information on the stress

distribution of the blades, they present themselves as reliable choices to an overall study and design of

a wind turbine system, with fast and accurate results for static and dynamic simulations. These results

presented a good agreement with the ones obtained for shell models, even for high levels of induced

bending and torsion. Other studies corroborate this accuracy, such as Sharma et al. [25], where static

simulations of a beam representing the NREL S818 blade were validated, and Tüfecki et al. [26], where

the dynamic analysis of a blade from the DTU 10 MW RWT was also successfully validated with a beam

model. This type of elements are also adopted to approximate the entire body of the wind turbines in

the aforementioned software HAWC2 and OpenFAST.

Beam elements have also been largely used in an FSI context. Yu and Kwon [18] investigated

the aeroelastic response of the NREL 5MW RWT employing as a structural solver a nonlinear Euler-

Bernoulli beam undergoing spanwise, torsional and lead-lag and flap bending deformations. Sayed et

al. [22] accomplished a similar goal, by developing an FSI coupling between a CFD solver and the

software Caratt++, responsible for calculating the elastic deformations, also based on non-linear Timo-

shenko beam elements. This coupling was then successfully tested on the DTU 10 MW turbine, after

the coupling and aeroelastic verification was performed with simpler benchmarks. The used mechanism

is portrayed in Figure 1.1, where the properties of the rotor’s blade are carried by the beam model (black

grid), with all the rigidity of the body concentrated on itself.

Similarly, Almeida [27] developed a coupling between beam models and the surrounding CFD grid,

in this case to perform aeroelastic studies on wings. The FSI module was tested on a rectangular wing

with a NACA0015 airfoil and the computed results were compatible with theoretical expectations, making

it an appropriate wing aeroelastic performance predictor for early stages of aircraft design.

Figure 1.1: Representation of sectional area used to calculate the aerodynamic loads and Computational
Structural Dynamics (CSD) mesh, which corresponds to the black dotted line, of a blade from the DTU
10MW RWT (from Sayed [22]).
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Concerning the use of shell models in CFD simulations, Bazilevs et al. [19] conducted their RNA and

full machine simulations with the structural model of the composite blades defined by the Kirchhoff–Love

shell formulation [28], in conjunction with the bending strip method [29]. The resulting aerodynamic

parameters and blade tip deflections had a good agreement with the documentation of the turbine at

study, from which it its possible to infer that these elements should be reliable to represent the rotor of a

FOWT.

1.3 Objectives and deliverables

The fluid solver employed in this work corresponds to ReFRESCO, a multi-phase viscous flow solver

where a FSI module has already been implemented by Jongsma and Windt [30].

While 3D elements, such as solids, have already been successfully tested with this module on the

work of Bronswijk [31], with the intent of representing a marine propeller, it is clearly necessary to obtain

less complex computations and mathematical simplicity in the simulations of a body like the blade of a

wind turbine. Stemming from the literature review previously stated, one intends to formulate a beam

model representing that body and then test it in the FSI module. This possible simplification of the

simulations arises nonetheless the need for compatibility of ReFRESCO with beam elements, which is

not yet implemented and constitutes a main goal in this thesis.

In addition to this problematic, currently the FSI module is reliant on outsourcing the generation of the

structural data of the model to external commercial software, namely ANSYS© Mechanical. Aiming to

remove this dependency of ReFRESCO, the objective of creating a computational structural dynamics

model is set. The already existent documentation on beam solvers and the complexity associated to the

formulation of shell models makes the first type of elements preferable to the latter. An adjunct module

is thus coded to work linked to ReFRESCO, providing it the structural data of any beam model at hand.

After applying these elements on simpler models and developing more efficient solvers, one may

obtain a better understanding of the influence of these elements on the performance of the simulations,

while also being able to decrease the computational load associated to wind turbine calculations, aiding

on a focal point of this thesis: the aeroelastic study of a DTU 10MW RWT.

In addition to the testing of the new interface with beam elements and the developed solver on a two

dimensional (2D) benchmark, a RWT is also considered as an object of study for this work. Based on the

literature review previously stated, the concept description of a 10 MW wind turbine, that was proposed

by the DTU in 2013, corresponds to an adequate choice for this thesis. As mentioned before, the DTU

10MW RWT has significant research interest from the wind energy domain and it is chosen due to the

public availability of its documented geometry, as well as due to the existence of all the aforementioned

studies encompassing it. Therefore, it is established that an approximation of the DTU 10 MW RWT

rotor is to be executed with three dimensional beam elements, on a full scale.

Having all the aforementioned problematics in mind, one aims to:

1. Develop an interface between beam elements and the fluid grid on the FSI module of ReFRESCO;

6



2. Expand on the features of the FSI module by creating a beam solver, which provides structural

data to the simulation;

3. Validate the interface and the developed beam module with a benchmark from available literature;

4. Test the beam solver on a full scale turbine, the DTU 10 MW RWT.

To sum up, for a better understanding of the knowledge gaps to be addressed in this thesis and of

the planned deliverables, refer to the flowchart from Figure 1.2.

Figure 1.2: Knowledge gaps and research plan of the thesis.

1.4 Thesis outline

Before the actual study is started, in Chapter 2, some theoretical background is covered in regards

to the solving numerical methods of fluid and structure.

In Chapter 3, the functioning of the FSI module of ReFRESCO is covered, as well as the implemen-

tation carried out in its code, with the objective of making it compatible with beam elements.

Afterwards, in Chapter 4, the theoretical formulation of the beam elements from the new developed

solver is explained with the finite element method as a through line. Moreover, the practical development

of the program is addressed, where the data input of the solver is specified and each step is covered.

This Chapter ends with the validation and verification of the solver, through static and dynamic analysis,

with ANSYS© results as a reference.

In Chapter 5, numerical simulations are executed on a reference case in order to validate the com-

putational structural dynamics model on a FSI context. Considering as reference the results of a flexible

model with solid elements, the beam interface with the flow is evaluated on a simulation where the data

is generated by ANSYS©. This process is followed by the validation of the beam solver, where the sup-

plied structural data to the FSI simulation is originated from it. Furthermore, performance and sensitivity

studies of the solver are conducted.
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Finally, Chapter 6 deals with the simulations concerning the DTU 10 MW RWT, recurring to the

developed beam solver. It covers the formulation of a rigid and a flexible model for the rotor of said

turbine. These simulations and the one performed on Chapter 5 are made clear in the flowchart of

Figure 1.3.

The thesis is concluded with a summary of the accomplished achievements and suggestions for

future work in Chapter 7.

Figure 1.3: Simulations performed on the present work.
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Chapter 2

Numerical methods

The current Chapter covers key concepts related to the fluid and structure problems. Background

knowledge on the RANS equations is introduced, as well as the most relevant methods and settings of

the solver ReFRESCO. Furthermore, important parameters associated to the grid quality and accuracy

of the generated fluid meshes are presented.

In regards to the structural portion of the problem, the Finite Element Method and the effects of

viscous damping in a body with free vibration are introduced. These aspects will be heavily referenced

in the following Chapters 3 and 4.

2.1 Fluid problem

2.1.1 Governing equations

When studying fluid motion, it is essential to state the fundamental governing equations that describe

the evolution of the fluid flow. This goal can be achieved mathematically through conservation laws,

obtained by considering a control mass CM and its extensive properties, such as mass, momentum and

energy. However, in fluid flows, it is difficult to deal with a parcel of matter, being more convenient to work

within a control volume CV [32]. From this volume approach comes the general conservation equation:

d

dt

∫
VCM

ρψ dV =
d

dt

∫
VCV

ρψ dV +

∫
SCV

ρψ(v − vb) · n dS, (2.1)

where VCV and VCM are the CV and CM volumes, SCV constitutes the surface enclosing CV and n the

unit normal vector to that surface. The parameters v and vb represent the velocity of the fluid and of the

CV surface, respectively, while ψ is any conserved intensive property.

From Equation 2.1, one can obtain the conservation equations of mass, momentum or of any con-

served scalar quantity [32]. As in this study the fluid is assumed to be isothermal in all simulations,

the equations of Navier Stokes (NS) represent two physical conservation laws: the mass conservation

Equation 2.2a, for ψ = 1, and the momentum conservation Equation 2.2b, for ψ = v.
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d

dt

∫
V

ρ dV +

∫
S

(ρv) · n dS = 0 (2.2a)

d

dt

∫
V

ρvi dV +

∫
S

ρviv · n dS =

∫
S

T · n dS +

∫
V

ρfi dV (2.2b)

with fi as the body forces per unit of mass and T as the stress tensor.

One can then make a statistical approach to the problem at hand by averaging these flow equa-

tions, while reattaining the most relevant terms and modelling the turbulence effects with additional

turbulence models [33]. This process leads to the Reynolds-Averaged Navier-Stokes equations used in

ReFRESCO.

2.1.2 ReFRESCO

As stated in Chapter 1, this work aims to expand on the functionalities of the CFD code ReFRESCO,

specifically its 2.7.0 version, in order to test it on a wind turbine model. This software solves multiphase

incompressible viscous flows through the Navier-Stokes equations stated in Chapter 2.1.1, which is

conveyed by the name it stands for: Reliable & Fast RANS Equations (solver for) Ships, Cavitation and

Offshore [34].

Due to the complexity of these equations, a numerical approach is needed through the discretiza-

tion of the domain with the Finite Volume Method, using cell centred collocated variables, i.e. flow

properties whose values are stored at the cell’s center [35]. This algorithm requires multiple itera-

tive processes, accounting for the equations of momentum, mass/pressure, volume fraction, turbulence

and other transport equations. One of those iterative processes corresponds to the velocity-pressure

coupling, which is achieved with the aid of a pressure-weighted interpolation method, combined with a

segregated pressure-correction algorithm (the Semi-Implicit Method for Pressure Linked Equations, also

known as SIMPLE, whose procedure is presented in Figure 2.1). All the iterative processes associated

to other transport equations are treated in a segregated mode as well, where the equations for a certain

variable are solved for all cells [33].

Time iterations are performed implicitly through first or second-order backward schemes [36], with

a typical solving process in ReFRESCO containing three iteration loops, denoted as the time loop,

the outer loop and the inner loop (refer to Figure 2.1). At each time loop, the outer-loops account for

non-linearity and deferred corrections, containing within them the inner loops, where the momentum,

pressure correction, velocity and turbulence model equations are solved using the parallelized-solvers

library PETSc [33]. The process comes to an end and exits the loops when the suitable convergence

criteria or the maximum number of outer loops are met.

ReFRESCO also features deforming, moving and sliding grids. The deforming grids are inherently

associated to FSI simulations and are used in any case with flexible bodies in this thesis. The moving

grids are used particularly in the DTU 10MW RWT model, with the intent of simulating the wind turbine’s

rotation. In that regard, two distinct CFD grids are pondered for the simulation of that model.
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Figure 2.1: Schematic overview of the SIMPLE algorithm in ReFRESCO (adapted from Wieleman [37]).

The first is the Absolute Formulation Method (AFM), in which, according to Make and Vaz [38],

"the RANS equations are solved in the moving reference frame but using variables written in terms of

absolute or inertial reference frame quantities".

According to the theory manual of ReFRESCO [33], with this formulation, the previous RANS equa-

tions can be rewritten as follows in Equations 2.3a and 2.3b.

d

dt

∫
V

ρ dV +

∫
S

(ρ(v − vb)) · n dS = 0, (2.3a)

d

dt

∫
V

ρvi dV +

∫
S

ρvi(v − vb) · n dS =

∫
S

(µ+ µt)[∇v +∇vT ] · n dS

+

∫
V

[
∇

(
p+

2

3
ρk

)
− ρ(Ω× v) + ρB

]
dV, (2.3b)

where p is the fluid pressure and µ and µt are the fluid dynamic viscosity and turbulent viscosity. The

parameter Ω corresponds to the imposed angular velocity, while k and B constitute the kinetic turbu-

lence energy and an external force, respectively. For the evaluation of µt, an additional transport model

concerning the turbulence of the flow is required.

This formulation implies that the rotor geometry remains thus static, which facilitates the FSI process

and its interface coupling. The AFM formulation has been successfully applied at full scale to the NREL

5MW rotor by Vaz et al. [38], with the simulations yielding a good quality agreement of the thrust and

torque with the full-scale BEM theory based results, made available by NREL. Nevertheless, it should

be noted that this method is quite limited with the types of motion it can represent and may struggle to
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capture the unsteadiness of the flow [35].

Secondly, considering the state-of-the-art from Chapter 1.2, the AFM approach is not expandable to

other more complex test cases, where, for example, rotor-tower interactions are computed. Therefore,

Sliding Grids (SG) are also considered for the turbine study, which should not compromise too much

the computational cost of the simulations. This method has already been successfully employed in a

FSI context with RWTs: Hsu and Bazilevs [19] simulated the NREL 5MW wind turbine using SG, which

presented a good conjunction of accuracy and efficiency portraying the motion of the flexible rotor blades

and the rotor-tower interactions and; in Leble [39], simulations with SG applied to the DTU 10 MW model

successfully depicted the aero-elastic behavior of the rotor undergoing a prescribed motion in yaw and

pitch.

Using the SG technique, distinct CFD grids are constructed in order to fit into one another, sharing

a common interface [35]. According to Bazilevs et al. [17], this approach applied to wind turbines

allows that, "rather than rotating the entire computational domain, only the inner cylindrical subdomain

that encloses the rotor undergoes a spinning motion inside the cylindrical cutout of the outer stationary

domain" [40]. These two subdomains do not overlap each other and are in relative motion, creating

a sliding cylindrical interface, as depicted in Figure 2.2. A numerical procedure is then responsible

for imposing a continuity of kinematics at the interface between the exterior and the interior rotating

subdomain, even though the interface discretizations are incompatible between both sub-grids [19].

Figure 2.2: SG setup for the simulation of a full wind turbine machine (on the left), with inner subdomain
(on the right) [19]

Additionally, ReFRESCO offers the possibility of complementing its simulations with turbulence

models to account for turbulence fluctuations, presenting a variety of RANS options. While the k-ω

SST 2003 model is initially considered for the turbine simulations in Chapter 6, due to its usual imple-

mentation in turbine simulations [1] [41], the k −
√
kL (KSKL) option is the chosen one to employ in

this thesis. It corresponds to a two-equation turbulence model, considering a transport equation for the

turbulent kinetic energy k and for
√
kL, where L constitutes an integral length scale [35]. This latter

parameter leads to scale-adaptive simulations (SAS), which present the ability to adjust the local flow
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scales [33], with proper RANS performance in stable flow regions and adequate adaptation to large tur-

bulent structures in unstable flow regimes [42]. This model thus yields simulations that are quite stable

in comparison with the k-ω SST 2003 model, without necessarily losing its accuracy.

It is also worth of mention that the code is parallelised using Message Passing Interface (MPI),

where the structural and fluid grids suffer a subdomain decomposition, in which different portions are

solved in the distinct processors and then the solution is reassembled. However, the present work

involves fundamental changes to the structural portion of the simulations, which makes the altered code

only executable with one processor.

2.1.3 Grid quality

The grid quality of the fluid mesh supplied to ReFRESCO is essential to ensure the accuracy of the

computed solution. Aiming at ascertaining the reliability of those grids before the simulation, two key

parameters are evaluated when generating the CFD meshes: non-orthogonality and skewness. After

the simulation is computed, discretization errors can also be adressed, to ensure the grid’s accuracy.

Non-orthogonality and skewness

The non-orthogonality corresponds to the value of the angle ϕ between the unit vector joining cen-

troids of two contiguous elements and the unit vector normal to the face shared by both elements [43].

Ideally, this deviation, represented in Figure 2.3, would be null for all the cells of the grid, with both

vectors being collinear, as significant non-orthogonality increases the diffusion term in the conservation

equation and diminishes the robustness of the discretization method.

The skewness or eccentricity concept is expressed by Figure 2.4, where the line connecting two cell

centers doesn’t pass through the face’s centroid f but through f ′ instead. Having in account that all face

integrations take place at the centroid point f , this deviation of the aforementioned line from that point

decreases the second order accuracy of the discretization method [43]. Therefore, optimal fluid grids

aim for reduced deviation from the centroid, i.e. reduced skewness.

Figure 2.3: Non-orthogonal element (adapted from
Moukalled et al. [43]).

Figure 2.4: Non-conjunctional elements
[43]).

Even though these are guiding parameters when developing the CFD grids, it is important to note

that ReFRESCO also accounts for the existence of these phenomena, attenuating them through em-

bedded corrections in its non-linear iterations [33].
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When already working with the simulations, a new variable is evaluated to assess the fluid grid

accuracy: the y+. It corresponds to the dimensionless nominal distance from the wall to the first layer

of cells, indicating the grid spacing adjacent to that wall [35]. Ideally, this parameter should take values

close to 1 for low and medium Reynolds numbers, in order to properly resolve the sub-viscous boundary

layer (BL) near the wall [44]. For higher Reynolds numbers, it can take higher values and it is used to

define the range of applicability of wall functions.

Discretization errors

The discretization errors of the generated grids are obtained based on the work and tools devel-

oped by Eça and Hoekstra [45]. An error estimator is initially calculated from Richardson extrapolation,

through Equation 2.4.

ψi − ψo = αhpi , (2.4)

where ψi corresponds to the numerical solution of any local scalar quantity on the grid, ψo is the esti-

mated continuous solution (i.e., solution with infinity refinement), α is a constant and p and hi are the

order of accuracy and the reference grid cell size, respectively [45].

This estimator is then inserted inserted into Equation 2.5, where a least squares fit of the data takes

place.

S(ψo, α, p) =

√∑
i=1

(ϕi − (ϕo + αhpi ))
2 (2.5)

The parameters ψo, α and p can then be obtained from the minimization of the function S and a

numerical uncertainty equation associated to the data can be written, based on the discretization errors.

2.2 Structural problem

2.2.1 Finite Element Method

The study of the structural behavior of a wind blade requires the idealization of a discrete-element

mathematical representation of its continuous structure, with the intent of simplifying the analysis of the

model at hand.

With this in mind, relying on its elastic and inertial properties expressed in the matrix form, the

approach taken in the present work corresponds to the Finite Element Method, where the geometric do-

main of a structure is divided in multiple subdomains, called finite elements, and each of these divisions

are associated to an approximation function [46]. These functions depend not only on the geometry of

the structure, but also on the number and location of points that each element connects, called nodes. At

each of these connections, one can establish an algebraic equation that links the physical quantities at

study and, after assembling these equations based on continuity, a system can be solved with solutions
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for each node. A detailed algorithm of this method is presented bellow, whose reasoning will be closely

followed in Chapter 4.

1. Discretization: one establishes the division of the spatial domain in finite elements, whose en-

semble is called mesh.

2. Strong and weak formulation: the governing equations of the problem are enunciated.

3. Shape Functions: define an approximation to the solution of the problem as a linear combination

of nodal values and approximation functions.

4. Determination of elementary matrices: compute element matrices by applying the shape func-

tions to the aforementioned formulation over the element at hand.

5. Assembly: inter-element continuity is established by connecting element nodes on their local

referential to the nodes on the global coordinate system.

6. Imposition of boundary conditions (BC): the global degrees of freedom of the problem are

identified and applied to the assembled equations.

7. Solving system of linear equations.

2.2.2 Free vibration with viscous damping

A phenomenon that will be observed in the benchmark simulations, represented in Figure 2.5,

corresponds to the viscous damping. This mechanism consists on the dissipation of vibrational energy

of the moving body due to the resistance offered by the surrounding fluid [47] and it can be characterized

through parameters such as the logarithmic decrement δ and the damping ratio ζ.

Figure 2.5: Damped vibration (adapted from S. Rao [47]).

The logarithmic decrement, defined in Equation 2.6, is defined as the natural logarithm of the ratio

between same phase amplitudes of the free damped motion, representing the rate at which the ampli-

tude of the vibration decreases [47].

δ =
1

m
ln

x(t)

x(t+mτd)
, (2.6)
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where x(t) and x(t+mτd) denote the amplitudes (displacements) measured m cycles apart and τd is the

period of the damped vibration. The damping ratio can be easily obtained from this parameter through

Equation 2.7.

ζ =
δ√

(2π)2 + δ2
, (2.7)
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Chapter 3

Fluid Structure Interaction

The current Chapter focuses on an essential aspect to perform aeroelastic calculations, where a

coupling between the structural model of a body and the surrounding fluid must be achieved, in order to

solve the equations of motion of the body: the fluid structure interactions problematic.

This class of problems presents a mutual dependence between the structural model and the fluid

behavior: the flow properties depend on the shape of the structure and its motion, while the motion and

deformation of the structure depend on the fluid loads that are acting on the structural model [48]. This

symbiosis between the two domains can be described generally by the Equation of motion 3.1, whose

solutions correspond to the focus of any FSI simulation.

[M ]ẍ+ [C]ẋ+ [K]x = F , (3.1)

where [M], [C] and [K] correspond to the mass, damping and stiffness matrices of the body, respectively.

The array x represents the nodal displacements and rotations, while F is an array for the nodal applied

forces that come from the fluid.

A FSI module was implemented on ReFRESCO by Jongsma and Windt [30] and this thesis has the

goal to expand on its features, concerning the types of element it supports. In order to get a clear view

of its original functioning, a brief characterization of the algorithm of this module is stated on the current

Chapter, as well as a description of the implementation executed on the internal code of ReFRESCO for

the purposes of this work.

3.1 FSI in ReFRESCO

Aiming a minimal intervention on the existing solution algorithms for the flow equations, the FSI

module of ReFRESCO takes a partitioned approach to solve its problems. A description of this method

and the alternative monolithic approach is stated on Table 3.1.
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Table 3.1: Numerical solution methods for FSI simulations, concerning solvers.
Partitioned approach Monolithic approach

It utilizes already available fluid and structural

solvers in each domain separately and, through

an iterative method, satisfies interface conditions,

enabling the use of different discretisation for

the fluid and structural grids [49].

Equations for structural and fluid domains

are solved simultaneously using an

unified solver with a single coupled

system of equations [30].

In what concerns the monolithic method, its simultaneous nature with the solving of the fluid and

structure equations increases the stability of the simulations, as their mutual influence is evaluated

directly [50]. However, it is computationally challenging and mathematically suboptimal in most cases

[51], which, combined with the use of existing and optimized software for the fluid and structural problems

on the partitioned approach, motivates the choice to utilize the latter method on ReFRESCO.

The partitioned approach also comprises the important feature of allowing different discretisation

for the fluid and structural parts of the domain, as the structure typically requires a less refined mesh

than the fluid [30]. Nonetheless, one must consider that, in this method, no changes occur to the flow

simultaneously to the computation of the structural response, which introduces an additional numerical

error to the simulations [31]. Therefore, a coupling mechanism is essential to achieve a robust algorithm

with the interaction of the two solvers. In that sense, a dichotomy arises on the partitioned approach:

weak and strong coupling, described on Table 3.2.

Table 3.2: Coupling methods for FSI simulations.
Weak coupling Strong coupling

Coupling of the incompressible flow

and structural solvers is performed only

once per time step [30].

The solutions from both solvers are

exchanged multiple times per time step,

until convergence is achieved [30].

While the weak coupling is more appealing in terms of efficiency, the strongly-coupled approach is

the adopted one by ReFRESCO [30], due to the existence of stability issues associated to the weak

coupling when working with incompressible flows [52]. The overall algorithm of FSI simulations in Re-

FRESCO is further developed in Chapter 3.1.2, where these approaches become more evident.

3.1.1 Data input

Before analysing the functioning of the FSI simulations step by step, it is essential to understand

the fluid and structural data that ReFRESCO requires as input, aiming to solve the equations of motion

of the body and determine the flow behavior.

In relation to the structural data, the structural grid with the nodes’ coordinates of the model is

required, as well as its mass and stiffness matrices. These matrices are crucial to solve the Equation

3.1 and they can be read through two possible formats of input: ANSYS© and Harwell-Boeing (HB)

format.
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The first case demands input files specific to the ANSYS© software, only supported by ReFRESCO

if generated by a version up to the 19.3 R1 one of ANSYS©. As the current release of ANSYS© sur-

passes that version, this option is not considered in this work.

The second type of input comprises files that can also be created by ANSYS© but are not reliant on

the version of the software and can be read outside of it: the Harwell-Boeing format. This type of file is

responsible for storing information concerning sparse matrices and includes an header that supplies a

variety of information concerning the matrix at hand, such as its type, dimensions, number of non zero

entries, format descriptors for its values, among other aspects [53]. This header is then followed by a

list of the numerical entries of the matrix that respect the format assigned previously. Other information

regarding the mesh mapping with the equations of the matrices is covered by additional files.

All the structural input files associated to the HB format are listed hereinafter with respective func-

tions:

1. .intnodes: listing of the coordinates of the nodes from the structural model;

2. .massmatrix.mapping and .stiffmatrix.mapping: these files ensure the mapping of each line of the

mass and stiffness matrices with the correspondent degree of freedom of each node;

3. massmatrix.txt and stiffmatrix.txt : each file contains the mass and stiffness matrices in HB format,

respectively.

In what concerns the fluid data, its grid is created using the program HEXPRESS©, an automatic un-

structured mesh generator of hexahedral elements [54], and a file with extension .grid must be provided

to the ReFRESCO simulation.

Additionally, the presence of a basic input file is also mandatory: the controls.xml. It contains tags

in a tree like structure, listing relevant parameters to define the simulation, namely the input format of

the structural data, reference values, convergence and divergence tolerances and information on what

transport equations to consider and which approach to take to solve them [55].

3.1.2 FSI algorithm

With the input data covered, the algorithm of the FSI simulations can be outlined, based on the work

of Jongsma and Windt [30].

As evidenced in Figure 3.1, the loads F acting on the object are initially computed, based on

external forces and the loads exerted by the flow through pressure and shear stress. This is executed

through interface coupling of non-identical structural and fluid grids, a subject that will be covered in

Chapter 3.1.3.

Following this task, the equations of motion of the deformable model are solved. Having in con-

sideration that the FSI module of ReFRESCO neglects the damping of the structure, one obtains from

Equation 3.1:

[M ]ẍ+ [K]x = F , (3.2)
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Figure 3.1: Flow chart representing one time step of a FSI simulation, from Jongsma [30].

In order to obtain the solutions of a set of these differential equations, the equation of motion 3.2

can be redefined as [31]:

dQ

dt
+ [A]Q =

 F

0

 , with Q =

 Mẋ

x

 and [A] =

 0 K

−M−1 0

 (3.3)

With these Equations 3.3 established, one aims to solve them numerically in time and ReFRESCO

offers three distinct solution schemes to do so: the Newmark time integration, Crank-Nicholson and

the three time level scheme with second order backward-difference [31]. The three level scheme is

the selected method for the FSI simulations in this case, as it generally presents better accuracy in

comparison to the other available methods for computing flow behavior [56] and it has been used on

other simulations similar to the ones approached on this work, such as Bronswijk [31] and Wood [57].

Considering f(Q, t) =

 F

0

−AQ, that scheme is defined by [31]:

3Qn+1 − 4Qn +Qn−1

2∆t
= f(Qn+1, tn+1) (3.4)

Subsequently, through this method, one obtains the solutions from the equations of motion and they

are used to update the vertices of the CFD mesh through, once again, fluid-structure interface coupling.

Following this process, a grid deform method is applied on the field grid of the flow domain with an

identical interpolation to one used on the interface. This has the intent to propagate the displacements

of the interface through the fluid grid.

At last, an update for the flow solution is computed and the whole procedure is repeated until the

convergence criteria defined for the flow method solution on the controls file has been met [30]. When

the criteria is achieved, the process can advance to next time step, as shown on the flowchart from
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Figure 3.1.

3.1.3 Interface coupling

Regarding the interface between the two domains, the coupling of fluid and structure equations is

usually defined by kinematic and dynamic boundary conditions [58], given in Equations 3.5a and 3.5b.

uf = us on Γ (3.5a)

Tsns = Tfnf on Γ, (3.5b)

with u representing the displacements, T the stress tensor and n the outward normal of the continuous

interface Γ between the structural and fluid grids. The first condition conveys equal displacements on

the fluid and structure grids at Γ, while the second expresses that, on that same interface, the pressure

on the fluid mesh is in equilibrium with the structural one.

In order to achieve accurate results, another condition can be added to this group: conservation

of global energy over the interface. This conservative coupling approach can be written as seen on

Equation 3.6.

∫
Γf

uf · Tfnf ds =

∫
Γs

us · Tsns ds (3.6)

In ReFRESCO, two approaches for interface coupling are presented that respect the Equations 3.5a

and 3.5b: Radial Basis Function (RBF) Interpolation and Point Matching. While the RBF interpolation

was implemented as conservative and respects the condition of Equation 3.6, the same cannot be stated

for the Point Matching method, where energy in significant amounts is lost during the simulation [58],

which is detrimental to the accuracy of the results of that method.

Radial Basis Function interpolation

The Radial Basis Function Interpolation transfers the quantity of a mesh A to another grid B recur-

ring to a global interpolation function, which results from the sum of basis functions [58], as shown in

Equation 3.7.

fi(x) =

Nc∑
j=1

αjψ(∥x− xAj∥) + p(x), i = A,B, (3.7)

where to every known data point of mesh A (xA) corresponds a distinct radial basis function in the form

of ψ(∥x− xjc∥) and fi(x) is the interpolation function that results from their linear combination, for a set

of Nc points. Additionally, p(x) is a polynomial whose minimal degree is dependent on the chosen RBF

function ψ [59].

In ReFRESCO, the function ψ corresponds to the C2 function stated in Equation 3.8 [31]. It presents

compact support, in which only mesh nodes inside a sphere with a defined radius r around a centre xj

21



are influenced by the movement of that centre [59]. The larger r is, the more accurate the solutions will

be yielded but with more dense matrix systems to solve.

ψ(ξ) = (1− ξ)4(4ξ + 1), (3.8)

with ξ = x/r. Having defined the ψ function, the RBF interpolation can then be performed in two distinct

steps, according to Jongsma [30]. Firstly, the coefficients αj are determined by evaluating the condition

on Equation 3.9 for all data points and by ensuring that the resulting system of linear equations presents

positive definiteness, through Equation 3.10.

fA(xAj) = FAj , j = 1, ..., Nc, (3.9)

with FAj as the discrete values of fA at the interface of mesh A.

Nc∑
j=1

αjP (xAj) = 0, (3.10)

where P is a polynomial with a degree less or equal than that of polynomial p [59].

The second step constitutes writing the previously stated conditions as presented on Equation 3.11

[58].

 FA

0

 =

ΦAA QA

QT
A 0


−1  α

β

 , (3.11)

where ΦAA is a square matrix containing the evaluation of the basis function ψ(∥xAi−xAj∥). α contains

the coefficients αj and β the coefficients of the polynomial p, while QA is a matrix where each row j has

the form [ 1 xAj,Bj yAj,Bj zAj,Bj ] [59].

Finally, solving this system and evaluating the matrix vector product presented in Equation 3.12, the

values on mesh B (FB) are obtained.

FB =
[
ΦBA QB

] α

β

 , (3.12)

where QB takes the same form as QA and ΦBA contains the evaluation of the basis function ψ(∥xAi −

xBj∥).

After obtaining the properties of the receiver mesh, in what concerns the update of the interface

position, the RBF method is also assisted by the Aitken under-relaxation, with the intent of ensuring

stability of the coupled system. Through this procedure, a relaxation factor is applied to the interface

positions on an iterative process inside each time-step, based on the computed shape and the one from

the previous and present iterations [30].

Additionally, a greedy method is applied in order to tackle computation challenges and update the

interpolation. This type of algorithm makes an optimal choice for the correction of any node involved in
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the RBF interpolation by targeting only the largest error of an active list of points, without considering

any consequences that might outcome from that choice. The cells with higher error are then included in

the next interpolation, forcing that error to zero [60].

Point matching

An alternative functionality to the RBF interpolation corresponds to Point Matching. This coupling

does a Nearest Neighbour Interpolation (NNI), where the data from one mesh is directly assigned to

another, depending on the distance between the donor and receiver nodes. In what concerns dis-

placements, the value computed on the donor mesh (structural) is attributed to the closer nodes on the

receiver (fluid), with the possibility of defining an interpolation factor. Regarding the loads, the reasoning

is identical but the donor is the CFD grid and the receiver is the structural mesh, with the interpolation

coefficient being defined based on the number of vertices connected to each cell of the interface.

3.2 FSI implementation with beam models

While the solid elements are already successfully tested on the work of Bronswijk [31] with the just

described FSI algorithm, one can aim to obtain less complex computations and more mathematical sim-

plicity on the simulations of a body like a blade of a wind turbine. In that sense, beam elements present

themselves as good candidates to approximate the behavior of a model like that, as they can encom-

pass important phenomenons that the blades may suffer and they have been used for that same goal on

multiple works [23] [24] and tools, namely HAWC2 [8] and OpenFAST [9]. This possible simplification of

the simulations arises nonetheless the need for compatibility of ReFRESCO with this type of elements.

When simulating the behavior of a body through a beam, the mesh of those elements corresponds

to a line along which its nodes are distributed, with defined cross-sections that emulate the body’s

geometry. However, in order to establish the interaction between the structural and fluid grids with the

RBF interpolation method, ReFRESCO uses the interface nodes on the outer surfaces of the structural

mesh to transfer the displacements and loads, which poses a challenge when considering a structural

grid that is situated internally to the actual body.

Therefore, when working with this type of elements, it is mandatory to mitigate this problematic, in

order to achieve a proper interface coupling, whether with the Point Matching or the RBF interpolation

method.

It is important to refer that, throughout this implementation, the original functioning of ReFRESCO is

ensured by the creation of new variables and conditions that are not activated unless the structural model

of the simulation corresponds to a beam model. Additionally, after the implementation is completed,

different validation suites are tested in order to verify the correct functioning of the altered code of

ReFRESCO.
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3.2.1 Interface coupling

On one hand, the Point Matching method can be considered a good candidate to perform the

transfer of displacements and loads directly between the beam structural mesh and the CFD grid. This

coupling currently doesn’t function with HB files as input and presents poor performance with ANSYS©

files, having difficulty to match all the structural vertices with the CFD ones.

On the other hand, the RBF interpolation is currently the main coupling method used in ReFRESCO

and it’s compatible with HB input files, with validated results on numerous benchmarks. Having this in

mind, if one intends to keep using this method with the beam models, it is necessary to fill in the missing

nodes that establish the contact with the fluid and build a new auxiliary structural grid representing the

outer surfaces of the body, as seen in Figure 3.2. The construction of this outer structural mesh is the

approach taken in this work.

Figure 3.2: Scheme of fluid and structural grids considered to represent an example body.

3.2.2 Data input

The creation of a new outer mesh that interacts with the CFD grid requires the files already stated on

Chapter 3.1.1 for the beam data, with the addition of a new structural file with the extension .outernodes.

This file contains the number of nodes on the outer mesh, boundary conditions and a listing of the

coordinates of all those points, while the file .intnodes, on this context, consists on a listing of the

coordinates of the nodes from the beam model. A function with the goal of reading this information,

concerning the outer mesh, is added to the main code of ReFRESCO and changes are made to the

function that reads FEM data, in order to allocate properly the new variables of the outer mesh.

Considering that this approach requires a different functioning from ReFRESCO when dealing with

its structural meshes, a new tag with logical value is also added to the listing of the controls.xml file:
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<beamModel>. This parameter is set by default as false but, if activated, it informs ReFRESCO that

the structure at hand corresponds to a beam and the simulation runs the code with the implemented

changes that will be stated hereinafter.

3.2.3 FSI algorithm with beam models

Loads

The implementation of the outer mesh essentially requires further development of the structural por-

tion of the FSI module. Similarly to the rationale stated in Chapter 3.1.2, the computed fluid mechanics

forces are transferred to the structural model so they can be considered when solving the equations of

motion of the body. However, in the present case, these forces are interpolated in the outer structural

mesh through RBF interpolation and, afterwards, the load applied to each node of that mesh is trans-

ferred to the closest node of the beam grid. This transfer has to be implemented in ReFRESCO through

changes of the main code, namely the creation of different arrays to carry the load values and the cal-

culation of the forces applied on the beam grid. Such modifications are made on the already existent

RBF interpolation function dedicated to loads transfer, as well as on the one responsible for computing

the loads contribution of the fluid.

After the beam nodes receive the loads from the outer mesh, the equations of motion of the beam

model can then be solved.

Degrees of freedom of rotation

As it will be further developed in Chapter 4, a beam model may include degrees of freedom of

rotation on its nodes. This constitutes a challenge to overcome in the FSI module, as ReFRESCO only

considers models with translational degrees of freedom, for example bodies with solid elements. Having

this in mind, the option of rotations is incorporated on the HB interface function of the main code, with the

possibility to include those degrees of freedom on the structural mapping files. This addition allows the

linear system to compute not only displacements, but also the rotations of the nodes. However, initially,

the latter results are not taken into account on the update of the geometry of the beam because only

translations were considered on the original module.

Taking into account that the objects of study are linear structural models, the displacements of the

nodes are specified with respect to the initial geometry of the model [30]. In order to tackle the issue

of the rotations, the same train of thought is applied here, where, for each update of the geometry, the

initial coordinate system is rotated with the computed angles of the previous iteration and the current

displacements are applied to the new rotated system.

The values of the calculated angles from previous (θp) and present (θc) outer iterations are saved

on distinct arrays and the coordinate system of each node is rotated with the matrix [Rθ] present on

Equation 3.13. This matrix is directly applied to the entries of translational displacements r̃i, obtaining

its values ri on the rotated coordinate system, as seen in Equation 3.14.
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[Rθ] =


cos θpy cos θpz sin θpx sin θpy cos θpz − cos θpx sin θpz cos θpx sin θpy cos θpz + sin θpx sin θpz

cos θpy sin θpz sin θpx sin θpy sin θpz + cos θpx cos θpz cos θpx sin θpy sin θpz − sin θpx cos θpz

− sin θpy sin θpx cos θpy cos θpx cos θpy


(3.13)

ri = [Rθ]r̃
i, (3.14)

All this process can be better understood through the flow chart in Figure 3.3, where the procedure

for a single outer iteration is depicted.

Figure 3.3: Flow chart of the process for the computed rotations at each outer iteration.

Deformation

After applying the newly computed displacements to the beam geometry, the outer structural mesh

also needs to deform, as the discretised flow domain will aim to match the shape of the surface of the

object. Therefore, each node of the outer mesh receives the same displacement as the one computed

for the closest beam node.

While this transfer between the beam and outer structural grids is equivalent to the NNI approach

used in the Point Matching coupling, it is implemented entirely inside the update interface function of

the module, without resorting to that already existing coupling functionality. This decision is attributed

to the intention of ensuring that all nodes are taken in account on the transfer between the structural

grids, while implementing minimal changes to the overall code, as the Point Matching functions would

also require extensive modification to encompass this simple transfer between structural grids.

It is also worthy mentioning that, similarly to the beam mesh, the outer grid has imposed boundary

conditions stated on its input file. When implementing the current algorithm, these points with fixed

degrees of freedom are taken into account by imposing null values to its displacements and loads across

the entire simulation, in spite of any interaction the flow may produce.

Following this transfer between structural meshes, once again through RBF interpolation, the CFD

grid is updated in the interface with the displacements from the new shape of the outer surface of the

body. This process raises the need for changes on the mapping of the nodes on many functions of

the main code, as this RBF transfer does not involve the grid associated to the equations of motion

but an additional outer structural mesh. With the interpolation concluded, the field grid of the flow is
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updated and a new flow solution is finally computed. All this process, represented on the flow chart of

the Figure 3.4, repeats itself until the imposed convergence criteria or the limit number of iterations is

reached. Changes are also applied to the time step function of ReFRESCO, with the intent of updating

the interface position used on RBF interpolations for the next time step.

Figure 3.4: Flow chart representing one time step of an FSI simulation with a beam model.
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Chapter 4

Computational Structural Beam

Module

With the problematic of the beam interface introduced in the previous Chapter, the present one con-

veys the theoretical reasoning behind structural models with such type of elements, while also covering

the implementation of a module capable of simulating the behavior of a beam, whether connected to

ReFRESCO or not.

Additionally, a study on the accuracy of the developed solver is presented at the end of this Chapter,

recurring to a benchmark with documented results as reference.

4.1 Beam model formulation

4.1.1 Conceptualization of the problem

As it was stated in Chapter 3, in order to solve the equations of motion, ReFRESCO receives all the

structural data from ANSYS©, with the exception of the files in Harwell-Boeing format, which don’t need

to be provided necessarily by that software. Aiming to remove in its entirety the dependency on FEM

data originated from that software, a beam solver feature can be added to complement ReFRESCO.

Having the development of this new module in mind, ANSYS© presents itself a reliable source for

the formulation of the beam elements, as the module is supposed to mimic its functioning in tandem

with ReFRESCO. Comprising important phenomenons when studying a blade of a wind turbine, such

as axial, bending and torsion deformations, the BEAM4 corresponds to an adequate candidate to solve

the problem at hand.

Taking an identical reasoning to Reddy [46], BEAM4 can be decoupled in 4 distinct models: a bar

with only axial displacements, one torsion element with rotation around the x axis and two Timoshenko

beam elements for the xy and xz planes. In what concerns the latter, the beam plane sections remain

plane after bending, but not necessarily normal to the longitudinal axis, as transverse shear is taken into

consideration [46].
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From this superposition of elements, one obtains a three dimensional beam element with two nodes

and six degrees of freedom on each end: three translational and three rotational, as depicted in Figure

4.1.

Figure 4.1: Adopted beam element in local coordinate system.

After choosing this element as reference, similarly to the work of Almeida [27], one can achieve a

better understanding of the creation of the beam solver through its theoretical formulation. Therefore,

with that same goal, the through-line of that formulation will hereinafter follow loosely the steps of the

finite element method, already introduced in Chapter 2.

4.1.2 Strong formulation

Axial deformation

For a uniform beam with length L undergoing an axial force p(x), the governing Equation is:

d

dx

(
EA

dux
dx

)
+ p(x) = 0,∀x ∈ [0, L], (4.1)

where E is the Young’s modulus of the material, A is the cross section and ux is the displacement along

the x axis [46]. This second order differential equation requires two boundary conditions in order to be

solved, where displacement and load impositions can be acceptable examples: for instance, a fixed end

of the beam ux(x1) = 0 and a force applied on the free end EAdux

dx (x2) = P .

The strong formulation of the problem at hand comprises the collection of these three equations just

stated.

Bending deformation

The deflection z of a Timoshenko beam suffering a distributed transverse load q(x), for example on

the plane xz, is governed by the following second order differential equations:

− d

dx

[
GAKsh

(
θy +

duz
dx

)]
+ q(x) = 0,∀x ∈ [0, L] (4.2a)

− d

dx

(
EIyy

dθy
dx

)
+GAKsh

(
θy +

duz
dx

)
= 0,∀x ∈ [0, L], (4.2b)
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where Iyy denotes the area moment about the y axis of the beam, E is the Young’s modulus of the

material, G the shear modulus, θy(x) is the rotation around the y axis and Ksh corresponds to shear

correction coefficient [46]. For a bending deformation on the plane xy, Iyy, θy and uz turn into Izz, θz

and uy, respectively.

The combination of these two second order differential equations demands four boundary conditions

to solve a posed problem and, similarly to the axial deformation, some examples of those conditions may

be fixed supports (uz and rotations are zero) or simple ones (moments and uz are null).

Torsion deformation

When a twisting load is applied to the beam, its free torsion behavior can be described by Equa-

tion 4.3, where J is the torsional moment of inertia, θx the torsion angle around the x axis and mx

corresponds to the distributed torsion load [27]:

d

dx

(
GJ

dθx
dx

)
+mx = 0,∀x ∈ [0, L], (4.3)

Applying the same reasoning as before, the equation requires two boundary conditions, for example

θ(0) = θ1 and the moment of torsion T (L) = TL.

4.1.3 Weak formulation

After establishing the strong formulation, the residual (Equations 4.1, 4.2a and 4.2b or 4.3, depend-

ing on the type of deformation) is multiplied with an arbitrary continuous function v, integrating then this

product over the length of the beam. Applying this logic to all the aforementioned deformations, one

obtains the Table 4.1 with respective weak formulations [46][27].

Table 4.1: Weak formulation for deformations on the chosen beam element.

Deformation Weak formulation

Axial
[
EA

dux
dx

· v
]L
0

−
∫ L

0

[
EA

dux
dx

· dv
dx

− p(x) · v
]
dx = 0 (4.4)

Bending

−
[
GAKsh

(
θy +

duz
dx

· v1
)]L

0

+

∫ L

0

[
dv1
dx

·GAKsh

(
θy +

duz
dx

· v1
)
+ v1q

]
dx = 0

(4.5a)

−
[
EI

θy
dx

· v2
]L
0

+

∫ L

0

[
dv2
dx

· EI dθy
dx

+ v2GAKsh

(
θy +

duz
dx

)]
dx = 0 (4.5b)

Torsion

[
GJ

dθx
dx

· v
]L
0

−
∫ L

0

[
dv

dx
·GJ dθx

dx
− vmx

]
dx = 0 (4.6)
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4.1.4 Shape functions

Following the enunciation of the deformations the beam element suffers, one must define its shape

functions, in order relate nodal and global values of the element concerning primary variables. This

process, based on the documentation of ANSYS© APDL [61], is covered in Appendix A.

4.1.5 Determination of elementary matrices

Aiming to obtain the elementary matrices, the interpolation functions stated in Appendix A must be

inserted into the weak formulation of the beam element, by replacing the weight functions v and the

variables whose degree of freedom is at study, u or θ, depending on the type of deformation [46].

On the matrix form, the stiffness matrix of the beam element of the solver in development is pre-

sented on Equation 4.7, according to the documentation of ANSYS© [61].

[Ki] =



EA
L

0 az

0 0 ay

0 0 0 GJ
L Sym

0 0 −by 0 cy

0 bz 0 0 0 cz

−EA
L 0 0 0 0 0 EA

L

0 −az 0 0 0 −bz 0 az

0 0 −ay 0 by 0 0 0 ay

0 0 0 −GJ
L 0 0 0 0 0 GJ

L

0 0 −by 0 dy 0 0 0 by 0 cy

0 bz 0 0 0 dz 0 −bz 0 0 0 cz



(4.7)

with

ay =
12EIy

L3(1 + Φz)
, az =

12EIz
L3(1 + Φy)

, by =
6EIy

L2(1 + Φz)
, bz =

6EIz
L2(1 + Φy)

,

cy =
(4 + Φz)EIy
L(1 + Φz)

, cz =
(4 + Φy)EIz
L(1 + Φy)

, dy =
(2− Φz)EIy
L(1 + Φz)

, dz =
(2− Φy)EIz
L(1 + Φy)

,

where the shear parameters are as follows

Φy =
12EIz
GAshL2

, Φz =
4EIy

GAshL2
, Ash =

A

Ksh

The variable Ash represents the beam cross-sectional area effective in shear, where Ksh, already

defined in Chapter 4.1.2, is obtained depending on the shape of the cross section at study.
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In what concerns the mass matrix, using the same shape functions that originated the stiffness

matrix, one obtains the consistent matrix from Equation 4.8 [61]:

[M i] = ρAL



1
3

0 az

0 0 ay

0 0 0 Jx

3A Sym

0 0 −cy 0 ey

0 cz 0 0 0 ez

1
6 0 0 0 0 0 1

3

0 bz 0 0 0 dz 0 az

0 0 by 0 −dy 0 0 0 ay

0 0 0 Jx

6A 0 0 0 0 0 Jx

3A

0 0 dy 0 fy 0 0 0 cy 0 ey

0 −dz 0 0 0 fz 0 −cz 0 0 0 ez



(4.8)

with each parameter presented in Table 4.2.

Table 4.2: Mass matrix parameters of the beam solver.

ay =
13
35 + 7

10Φz +
Φ2

z

3 +
6Iy

5AL2

(1 + Φz)2
az =

13
35 + 7

10Φy +
Φ2

y

3 + 6Iz
5AL2

(1 + Φy)2
by =

9
70 + 3

10Φz +
Φ2

z

6 − 6Iy
5AL2

(1 + Φz)2

bz =
9
70 + 3

10Φy +
Φ2

y

6 − 6Iz
5AL2

(1 + Φy)2
cy =

( 11
210 + 11

120Φz +
Φ2

z

24 + ( 1
10 − Φz

2 )
Iy

AL2 )L

(1 + Φz)2

cz =
( 11
210 + 11

120Φy +
Φ2

y

24 + ( 1
10 − Φy

2 ) Iz
AL2 )L

(1 + Φy)2
dy =

( 13
420 + 3

40Φz +
Φ2

z

24 − ( 1
10 − Φz

2 )
Iy

AL2 )L

(1 + Φz)2

dz =
( 13
420 + 3

40Φy +
Φ2

y

24 − ( 1
10 − Φy

2 ) Iz
AL2 )L

(1 + Φy)2
ey =

( 1
105 + 1

60Φz +
Φ2

z

120 + ( 2
15 + Φz

6 +
Φ2

z

3 )
Iy

AL2 )L
2

(1 + Φz)2

ez =
( 1
105 + 1

60Φy +
Φ2

y

120 + ( 2
15 +

Φy

6 +
Φ2

y

3 ) Iz
AL2 )L

2

(1 + Φy)2
fy =

( 1
140 + 1

60Φz +
Φ2

z

120 + ( 1
30 + Φz

6 − Φ2
z

6 )
Iy

AL2 )L
2

(1 + Φz)2

fy =
( 1
140 + 1

60Φz +
Φ2

z

120 + ( 1
30 + Φz

6 − Φ2
z

6 )
Iy

AL2 )L
2

(1 + Φz)2
fz =

( 1
140 + 1

60Φy +
Φ2

y

120 + ( 1
30 +

Φy

6 − Φ2
y

6 ) Iz
AL2 )L

2

(1 + Φy)2

The shear deformation parameters Φy and Φz take the same expressions presented for the stiffness

matrix.

Assembly

Finally, based on the matrices computed for each element, it is possible to assemble the global

stiffness and mass matrices of the model, while ensuring the interelement continuity of the variables at

study. Additionally, the imposed boundary conditions must be taken into account when building these
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matrices, as those degrees of freedom won’t factor in on the solving of the linear equations system.

4.2 Implementation of the beam solver

With the intent of performing minimal changes to the internal code of ReFRESCO on this matter,

the implemented beam solver is developed as a separate entity, through a user-coding module that,

if desired, can then be interlinked with the main code when running the simulation at hand. With the

premise behind its algorithm already covered, the implementation of the solver becomes the focus of

this study, followed by its validation and verification.

With the beam solver development, the main goal is to remove ReFRESCO’s dependency on

ANSYS©. This could be achieved by supplying directly the structural deformation of the beam to Re-

FRESCO but it would entail further extensive modifications of the main code. Having this into account,

an alternative is set: the development of a separated module from the main code, in Fortran 2005 lan-

guage, where the beam solver supplies all the files that ANSYS© would for the HB input option. This

reasoning is made clear by Figure 4.2, where one can assert the original functioning of ReFRESCO with

ANSYS© files as input, and by Figure 4.3, where the beam solver module is implemented and raises the

need for a unique file to be provided in order to run the structural portion of the FSI simulation.

Figure 4.2: ReFRESCO functioning with structural data from a beam generated by ANSYS© as input
(HB format).

Figure 4.3: ReFRESCO functioning with structural data provided by the beam solver module as input.
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4.2.1 Beam solver input data

In what concerns the aforementioned input file, it is supplied to the module through a file edited by

the user, with a filename extension beam. Considering the HAWC2 input files as a reference and the

necessary variables to solve the linear system, the input parameters for the beam solver are defined

with the construction of the stiffness and mass matrices as its primal goal. Therefore, the beam element

data and its geometric and material properties are required for the solver’s calculations and posterior

creation of the files whose functions were already mentioned in Chapter 3.1.1. The input .beam also

comprises outernodes mesh data, which is provided exclusively to create the file .outernodes. All the

input parameters of the file .beam are presented in Table 4.3.

Table 4.3: Parameters of the input file .beam.
Beam Element Data

Number of elements Coordinates of nodes
for each element [m]

Orientation of local y axis
in global coordinates [m]

Degrees of freedom
of each node

Material Geometric - cross section

Density ρ [kg/m3] Area moment of inertia about y axis Iyy [m4]
Young’s modulus E [N/m2] Area moment of inertia about z axis Izz [m4]
Shear modulus G [N/m2] Torsional moment of inertia Jx [m4]

Poisson factor v Cross section area A [m2]
Shear correction coefficient Ksh

Outernodes Mesh Data

Number of outernodes Number of imposed outernodes
and respective ID Coordinates of outernodes [m]

It is also worth mentioning that the tag <beamModel> on the controls.xml file must be activated on

this context, as we are dealing with a beam model, which requires a different functioning when dealing

with its interface coupling.

4.2.2 Model geometrical properties and limitations

When working with models of symmetrical uniform cross sections, the location of the shear cen-

tres, centroid and centre of mass are coincident and the beam model intersects these points for each

considered cross section, making the computation of the geometric parameters from Table 4.3 a simple

process. This is the case with the benchmark from Chapter 5.

However, when dealing with non symmetrical cross sections, the aforementioned points are not

coincident. In this case, as it was approached by Almeida [27] and Tüfecki et al. [26], the beam should

be placed inside the body it represents, aligned with its elastic axis, with all the model’s rigidity concen-

trated along its length. According to Stodieck et al. [62], this constitutes a common reference axis in

conventional engineering beam models, where all the loads that are applied to it produce only bending

and no torsion at any station along its span. The torsion of the model is thus by the bending-torsion

coupling associated to the Timoshenko element [62].

Another important aspect to consider when developing a framework with the developed module is

that the formulation it is based on is only valid for beam elements with constant cross section properties.
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Having in consideration the fact that the module is set to be used with a wind turbine blade where these

parameters are highly variable, approximations have to be adopted to account for the non-constant

spanwise properties.

Once again turning to ANSYS© documentation [61], in order to address this issue, the mass and

stiffness matrices remain intact but averaged values of the two nodes composing the element are con-

sidered for its element properties, as seen in the following Equations 4.9a and 4.9b.

Aav =
A1 +

√
A1A2 +A2

3
(4.9a)

Iav =
I1 +

4
√
I31I2 +

√
I1I2 +

4
√
I1I32 + I2

5
(4.9b)

The same reasoning is applied to the mass, Young’s and shear modules of each element but with a

simple arithmetic mean between the values from both nodes.

4.2.3 Elementary stiffness and mass matrices computation

Having constructed a proper .beam input file, its data is then assimilated by the user code module

when the controls of the simulation are being read on ReFRESCO, so that the entire process can take

place before the structural files are demanded. The solver asserts all the elements with a length different

than zero that constitute the model at hand and identifies the nodes that belong to more than one

element, as repeated nodes on the listing of the mesh represent the same degrees of freedom on the

matrices. With that goal in mind, a connectivity table is created, keeping track of coincident degrees of

freedom from different elements and imposed boundary conditions.

The module then builds the stiffness and mass matrices for each element with the information that

was previously extracted from the input file and based on the matrices that are presented in Chapter

4.1.5. Taking into account that those matrices are defined for a local coordinate system, they will need

to be transformed to approach a global one, depending on the orientation of the element at study.

4.2.4 Transformation of coordinate system

It is essential when assembling the global matrix of the model to have a cohesive approach in what

concerns the chosen coordinate system. Therefore, all elementary matrices, with respective displace-

ments and forces, should refer to the same referential: the global one, as presented in Figure 4.4.

In order to change the coordinate system of an element, similarly to the reasoning presented in

Chapter 3.2.3, one must apply a transformation matrix [Γi], as it can be easily perceived in Equation

4.10.

vi = [Γi]ṽi, (4.10)

where vi corresponds to an array of displacements and/or rotations of an element i on the global

Cartesian coordinates system and ṽi on the local element one, respectively. Considering the problem

at hand, the mass and stiffness need to be transformed accordingly to the global referential, which is
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obtained through the Equations 4.11 and 4.12.

[Ki] = [Γi]T [K̃i][Γi], (4.11)

[M i] = [Γi]T [M̃ i][Γi], (4.12)

Figure 4.4: Global and local coordinates system for beam element with 12 degrees of freedom [63].

The rotation matrix [Γi] can be defined by [63]:

[Γi] =


γ 0 0 0

0 γ 0 0

0 0 γ 0

0 0 0 γ

 (4.13)

with:

[γ] =


cosxX cosxY cosxZ

cos yX cos yY cos yZ

cos zX cos zY cos zZ

 , (4.14)

where the cosines refer to angles between the direction of axes from the global and local coordinates

system, presented on Figure 4.4. In the developed module, knowing the coordinates of the vectors

associated to the axis at hand, these transformation matrices can be obtained through the definition of

the scalar product, from which one obtains for any cosine:

cos aA =
a ·A

∥a∥∥A∥
, (4.15)

where ∥a∥ and ∥A∥ are the norms of the vectors a and A.

4.2.5 Assembly of global matrix and boundary conditions imposition

After applying the transformation of the coordinate system to each elementary matrix, one can

finally assemble them into the global matrices of the model. Yet, the user has the ability to define

primary boundary conditions, by stating fixed nodes through the input file .beam, and these must be
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considered on the final assembly of the linear systems.

Currently, the solver only supports fixed nodes with all of their 6 degrees of freedom nullified, as it

is deemed sufficient to simulate a clamped plate or blade on one end. Therefore, when a node is fixed,

the rows and columns of the matrices associated to its 6 degrees of freedom are removed from the

final assembled matrix. This is achieved thanks to the aforementioned connectivity table and an array

responsible for the mapping of the unconstrained degrees of freedom of each node with the final global

matrix, where only entries of free nodes are concerned.

Additionally, aiming to validate this solver, static and dynamic problems require not only these pri-

mary boundary conditions but also secondary: the loads applied on each node. While on ReFRESCO

they are supplied by the fluid interaction, for solely structural simulations they need to be provided to

each element through an array as the one presented in Equation 4.16.

F i =
[
Fx1 Fy1 Fz1 Mx1 My1 Mz1 Fx2 Fy2 Fz2 Mx2 My2 Mz2

]T
(4.16)

Each node thus endures three components of a force F and three components of a moment M

on the global coordinate system and, if constrained, those entries can be removed through the already

mentioned mapping array.

It is also worthy of mention that, as presented in Table 4.3, the input file includes a list of the

constrained beam and outer nodes. While the first is relevant to the solver and the mapping array, the

latter serves only to inform ReFRESCO that the displacements and loads of those outer nodes must

remain null during the entire simulation, as it was previously established in Chapter 3.2.3.

For a better understanding of the functioning procedure of the developed beam module, refer to the

flowchart from Figure 4.5.

Figure 4.5: Basic steps of the beam module.

4.3 Validation and verification of beam solver

For the validation of the beam solver, De Nayer’s benchmark [64] is chosen to test the module, as it

has already been extensively studied on multiple works, namely from Bronswijk [31] and Lesmana [65].

It corresponds to an isotropic plate with quadrangular cross section, fixed on one end, as seen on Figure

4.6. This model is one of the focal points of this work and will be further discussed in Chapter 5, in an

FSI context. For the current problematic at hand, it can serve as a reliable way of validating the beam

solver, since its results can be compared with the ones from Bronswijk [31] and from ANSYS© APDL.
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4.3.1 Linear static analysis

The static analysis of a beam element can be executed resorting to Equation 4.17.

[K]x = F (4.17)

While on a FSI context the forces F come from the fluid, in the present case they are attributed by

the user solely to validate the solver. For this task, a distributed load q=50 N/m is applied to the beam

as represented in Figure 4.6 and the plate’s properties are stated in Table 4.6. Having in account that

the plate is quadrangular, the shear correction factor used on the stiffness matrix is calculated through

the expression α = 12+11v
10(1+v) , where v is the Poisson factor [66].

Figure 4.6: Benchmark for static analysis
[65].

Table 4.4: Geometric and material properties of
benchmark for static analysis.

Density, ρ [kg/m3] 1200
Poisson ratio, υ 0.32

Young modulus, E [GPa] 3.5
Area, A [m2] 10−4

Moment of inertia, Iyy [m4] 8.3 · 10−10

Moment of inertia, Izz [m4] 8.3 · 10−10

Applying this distributed load, a convergence study can be conducted through a diverse discretiza-

tion of the plate, with different sizes of beam elements composing it. From Table 4.5, it is possible to

infer that, even with the change of number of elements and their aspect ratio, the beam solver is quite

accurate at calculating the deformation when compared with the results from ANSYS© APDL, where

the BEAM4 element was used. This is agreeable with the facts that the beam solver formulation is

predominately based on the documentation of this same element.

Additionally, in Figure 4.8, one can see the deformed shape of the beam with 200 elements, where

the plot generated by the beam module perfectly matches the one from ANSYS©.

Table 4.5: Convergence study of the x maximum displacement of the beam from De Nayer benchmark.
Element size y [m] 0.1 0.04 0.02 0.01 0.005 0.001

Number of elements 10 25 50 100 200 1000

Aspect ratio 10.0 4.0 2.0 1.0 0.5 0.1

ANSYS© BEAM4 [m] 0.021517 0.021517 0.021517 0.021517 0.021517 0.021517

Beam solver [m] 0.021589 0.021528 0.021520 0.021517 0.021517 0.021517
% Relative difference 0.334619 0.051122 0.013943 0.000000 0.000000 0.000000

It is also worthy of note that these values are compatible with the analytical solution calculated in

Bronswijk’s work [31] for a Euler-Bernoulli beam as an approximation of the plate, with no difference

in regards to the maximum deflection of its tip either. Having in consideration that the solver uses the
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Timoshenko model, these low deviations can be attributed to the fact that the shear deformation is

negligible for the aspect ratio that the beam at study presents.

A verification study is also conducted for this analysis, recurring to the tools mentioned in Chapter

2.1.3. Through the data associated to the previously stated grids, one obtains Figure 4.7, where an es-

timated uncertainty of the computed values results in 0.03%. This value can be deemed quite accurate,

as the fit through the data is of second order.

Aiming a thorough validation of the module, other loads are applied to the tip of the plate (y=1m),

with the different testing cases listed in Table 4.6.

Figure 4.7: Numerical uncertainty of tip displacements in static analysis, obtained with tools developed
by Eça and Hoekstra [67].

As it can be evidenced on Table 4.7, the beam solver developed for ReFRESCO once again

presents highly accurate results when compared to the ones from ANSYS©, exhibiting deformations

on other degrees of freedom that resulted from the different types of loads applied to the plate.

Figure 4.8: Beam horizontal deformation with 200 elements, with ANSYS© and beam solver plots.
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Table 4.6: Load cases on linear static analysis of De Nayer benchmark.

Case
Load type applied

at the tip of the plate (y=1m)
Value

1 Fy 10000 N
2 Fz 5 N
3 Mx 5 N/m
4 My 5 N/m
5 Mz 5 N/m

Table 4.7: Linear static analysis validation with 200 elements, considering ANSYS© beam elements as
reference.

Displacements and rotations ux [m] uy [m] uz [m] θx [rad] θy [rad] θz [rad]

Case 1
ANSYS© BEAM4 0.00000 0.028571 0.00000 0.00000 0.00000 0.00000
Developed beam solver 0.00000 0.028571 0.00000 0.00000 0.00000 0.00000
% Relative difference 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Case 2
ANSYS© BEAM4 0.00000 0.00000 0.57377 0.00000 0.00000 0.00000
Developed beam solver 0.00000 0.00000 0.57377 0.00000 0.00000 0.00000
% Relative difference 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Case 3
ANSYS© BEAM4 0.00000 0.00000 0.86059 1.72117 0.00000 0.00000
Developed beam solver 0.00000 0.00000 0.86059 1.72117 0.00000 0.00000
% Relative difference 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Case 4
ANSYS© BEAM4 0.00000 0.00000 0.00000 0.00000 2.27194 0.00000
Developed beam solver 0.00000 0.00000 0.00000 0.00000 2.27194 0.00000
% Relative difference 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Case 5
ANSYS© BEAM4 -0.86059 0.00000 0.00000 0.00000 0.00000 1.72117
Developed beam solver -0.86059 0.00000 0.00000 0.00000 0.00000 1.72117
% Relative difference 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

4.3.2 Modal linear analysis

Considering only undamped free vibrations of the body, by setting the damping and force values to

zero, its equation of motion becomes:

[M ]ẍ+ [K]x = 0 (4.18)

Assuming a simple harmonic motion x = Xeωit and replacing it on Equation 4.18, one obtains an

eigenvalue and eigenvector problem, as presented in Equation 4.19.

(
[K]− ω2[M ]

)
X = 0 (4.19)

A modal analysis can thus be performed and the undamped natural frequencies of a structure can be

extracted from the De Nayer benchmark [64].

As one can conclude from Table 4.8, the obtained natural frequencies by the beam module are

very close to the ones from ANSYS©, never surpassing an relative difference of 1%, which verifies the

reliability of this solver to represent the behavior of free vibrations for beam elements.
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Table 4.8: Modal analysis of plate with 200 beam elements.
Mode ANSYS© BEAM4 [Hz] Developed beam solver [Hz] % Relative difference
1st 2.7527 2.7531 0.0145
2nd 17.232 17.245 0.0753
3rd 48.172 48.250 0.162
4th 94.199 94.446 0.262
5th 155.37 155.90 0.340

An uncertainty analysis is performed once again, this time with the results of the modal analysis.

Testing the same grids used in the convergence study of Table 4.5, the maximal uncertainty among their

first modes corresponds to 0.19%, which proves a good precision of these computed results, using the

different aforementioned beam mesh discretizations. The plots obtained from the uncertainty analysis,

for the first three modes, are presented in Figure 4.9.

Figure 4.9: Numerical uncertainty of natural frequencies for the first (on the left), second (on the center)
and third (on the right) modes, obtained with tools developed by Eça and Hoekstra [67].

42



Chapter 5

Benchmark case

In chapter 4, the De Nayer benchmark [64] was used with the intent of validating exclusively the

implemented beam solver. In the present one, the next crucial step is taken: the validation of the

interaction of beam models with a fluid grid on a FSI domain, with the structural files originated either

from ANSYS© or the developed beam solver. Having this goal in mind, the current Chapter covers the

steps leading up to the simulation of the De Nayer benchmark in ReFRESCO and its results, as well as

some performance and sensitivity studies regarding the beam solver in a FSI context.

5.1 Case description

The benchmark case in analysis corresponds to a thin flexible plate clamped at the bottom wall

boundary and located downstream of an incompressible fluid flow, with uniform inflow velocity parallel to

the bottom wall.

Originally, this model corresponds to a two dimensional (2D) case but, according to Bronswijk [31],

in order to simulate it with the FSI module in ReFRESCO, a depth has to be attributed to the benchmark,

making it 3D. The results of this adapted model are nonetheless valid to associate to the 2D original

benchmark, as the flow maintains a symmetry relative to the plane xy (refer to Figure 5.1). Therefore,

considering the added depth of 0.01 meters to the De Nayer model [64], conducted in the thesis of

Bronswijk [31], the plate has a quadrangular cross section with a thickness of 0.01 meters. Other

dimensions concerning the domain of the simulation are presented in Figure 5.1, with the respective

coordinate system.

In what concerns the fluid, it has an inlet velocity of 10 m/s, which, combined with the reference

length of 1 meter and with the properties stated on Table 5.1, results in a flow with a Reynold’s number of

50 and hence without significant turbulent effects [31] [64] [65] (turbulence models are not approached

for the current benchmark).

The flow is associated to an open domain with a no slip boundary condition imposed on the plate

body [64] and its boundary conditions are defined in Figure 5.1 and in more detail in Table 5.3. The

properties of both plate and fluid domains are presented on Table 5.1.
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Figure 5.1: Benchmark simulation setup for clamped vertical plate [65].

Table 5.1: Properties of the plate and of the fluid domain [65].
Fluid Plate

Density, ρ [kg/m3] 1 1200
Poisson ratio, υ - 0.32

Young modulus, E [GPa] - 3.5
Dynamic viscosity, µ [Pa · s] 0.2 -

Moment of inertia, I [m4] - 8.3E-10

5.2 Structural models

Three distinct structural models representing the plate from the benchmark are simulated, as it was

already referred in Chapter 1.4:

1. Solid Model (SM): a reference case where the plate is represented through SOLID186 elements

from the Finite Elements package ANSYS© Mechanical APDL, similarly to what was studied and

validated by Bronswijk [31].

2. Beam ANSYS© Model (BAM): a flexible plate with BEAM4 elements, where the structural data is

originated from ANSYS© as well.

3. Beam Solver Model (BSM): a flexible representation of the plate with beam elements generated

by the beam solver, using a .beam file as input.

5.2.1 SM and BAM cases

The development of these structural models is performed in the module ANSYS© Mechanical APDL,

with an output that is compatible with the RANS solver ReFRESCO. The FEM grid consists uniquely on

the plate, with the clamped boundary condition on its base and with its top end free.

Considering that this structural grid is coupled in the FSI simulation with a 3D finite volume method,

it must be constituted by elements that also present a three dimensional nature, in order to portray the

added depth of the current benchmark. Therefore, the SM case makes use of a similar approach to the

one from Bronswijk [31], where the solid elements constituted the structural model in study.

For the current model, the SOLID186 is selected to represent the plate, as it presents better results

on the convergence studies [31], without compromising significantly the performance of the simulation
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(Bronswijk [31] used SOLID185 ones). Each of these elements contains twenty nodes and three trans-

lational degrees of freedom in each of those nodes, presenting a capability for plasticity, large deflection

and large strain scenarios [68].

In order to study a proper configuration of the elements in the model, a convergence study is exe-

cuted in the same conditions as the one from Table 4.5, recurring to the tip displacements and natural

frequencies of the plate as parameters. According to Reddy [46], a beam with constant flexural rigidity

EI presents exact values of displacements on its nodes, for any transverse load. Therefore, for the

conditions of this benchmark, the BEAM4 element constitutes an appropriate reference for the current

convergence study, as it also takes into consideration shear effects and bending deformations, with the

latter being a dominant phenomenon in this analysis. However, in a FSI context, the SM case is the one

that will provide reference results, as a model with a similar FEM mesh has already been validated by

Bronswijk [31].

Table 5.2: Convergence study of SM case, with SOLID186 elements (blue marked on the chosen dis-
cretization for the model). Reference values of BAM are concerning a model of 200 BEAM4 elements.

Element size x [m] 0.005 0.005 0.005 0.0025 0.0025
Number of elements in x 2 2 2 4 4
Element size y [m] 0.04 0.01 0.005 0.0025 0.005
Number of elements in y 25 100 200 400 200
Element size z [m] 0.005 0.005 0.005 0.0025 0.0025
Number of elements in z 2 2 2 4 4
Total number of elements 100 2000 4000 64000 16000
SM tip displacement [m] 0.021362 0.021395 0.021401 0.021406 0.021405
% Relative difference to BAM -0.7204 -0.6181 -0.5391 -0.5159 -0.5205
SM natural frequency [Hz] 2.76308 2.76097 2.7606 2.76023 2.76031
% Relative difference to BAM 0.3771 0.2859 0.2724 0.2590 0.2619

From the convergence study presented in Table 5.2, one can conclude that the SOLID186 element

does not require much refinement on the discretization of its models, as there are no deviations from

the reference values superior to 1%, either regarding the displacements or the natural frequencies.

Testing different mesh topologies, one concludes that the elements with an aspect ratio of 1 present the

best results but do require more computational costs in an FSI context, due to their superior number of

elements. For this case, aiming at achieving efficient simulations, the blue marked dimensions on Table

5.2 are chosen for the grid representing the plate in the SM case. This configuration, shown in Figure

5.2, should not compromise the accuracy of the results since its deviations on the convergence study

are quite negligible.

In what concerns the BAM case, the reference beam elements from the SM case are adopted: the

BEAM4. They are suitable to represent slender to moderately thick beam structures, presenting tension,

compression, torsion and bending capabilities, while taking in consideration shear deformations [68]. Its

formulation has already been extensively covered in Chapter 4, as well a study on the discretization of

the plate model of the present benchmark with BEAM4 elements (refer to Chapter 4.3).

Finally, with the created models, the respective matrix files are created by ANSYS© APDL, as well
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as a list with the nodes of the FEM grid. For the SM case, only the surface points that will be in contact

with the fluid are extracted to the .intnodes file. These nodes belong to the faces intercepted by the

midplane z = 0.05m, as shown in red in Figure 5.5.

For the BAM case, the .intnodes file provides the coordinates of the beam nodes, while the extracted

points from the SM case are used for the outer structural mesh of the model in the FSI simulations.

Figure 5.2: Example of a BAM case with 18 elements (on the left) and the final SM mesh (on the right).

5.2.2 BSM case

The BSM case relies on the creation of an input file .beam with the properties of the beam mesh

and the outer structural grid that interacts with the fluid.

In what concerns the beam model itself, it doesn’t require any additional calculations to obtain the

properties of each element, as the plate presents no variation of its cross section properties along its

length. Therefore, one only needs to apply the properties enunciated in Table 5.1 to the FEM grid. A

convergence study of the resulting beam has already been carried out in Chapter 4.

Similarly to the followed proceedings in the BAM case, for the outer structural mesh, the interface

nodes from the SM are used to establish the coupling between the beam and CFD grids.

5.3 Fluid model

In what concerns the fluid model, as stated in Chapter 3, its mesh is created with the program

HEXPRESS©, through a script in Python language.

The dimensions of the computational domain are identical to the ones presented in Figure 5.1, with

the dimension in the z direction equal to the thickness of the plate, as explained in Chapter 5.1.

When working with this benchmark, De Nayer [64] used a structured grid of 30000 cells, while

Lesmana [65] and Bronswijk [31] both used an unstructured mesh consisting of approximately 16000

cells. Stemming from the grids of the latter works, a similar mesh is thus constructed in this thesis, where

multiple refinement boxes are set around the plate in study, in order to reduce discretization errors of the
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mesh. The final obtained grid of this work, after testing different refinements, consists on an unstructured

full hexahedral mesh with 11204 cells and it is represented in Figure 5.3.

Figure 5.3: Developed benchmark grid based on the one developed in Lesmana [65] and Bronswijk [31],
with multiple refinement boxes.

Its boundary conditions, defined in the settings of the simulation, are stated in Table 5.3, respecting

the ones already presented in Figure 5.1.

Table 5.3: Boundary conditions of the benchmark simulation [31].

Domain Face Boundary condition

Inlet Inlet velocity of 10 m/s
Outlet Null pressure at the boundary
Plate Null velocity at the plate surface

Front (z = 0.01m) Normal component of velocity is null on the wall and free tangential velocity
Back (z = 0.00m) Mirror boundary condition of the Front

Top Null pressure at the boundary
Bottom Null velocity at the wall (no slip)

As mentioned in Chapter 2, the grid quality is evaluated through the non-orthogonality and eccen-

tricity of its cells, prior to the simulation. After the completion of such simulation, the y+ values are

monitored, aiming at ensuring that the viscosity-affected region close the plate is well resolved. Addi-

tionally, a discretization error is determined for this grid in an FSI context, using the numerical uncertainty

method of Eça and Hoekstra [67], mentioned in Chapter 2. The SM is used here, in order to confirm

that the generated CFD grid is reliable with the already validated interface coupling and thus ensure that

the beam interface coupling results are not symptomatic of the CFD mesh and the RBF interpolation

uncertainties. Three identical grids with distinct cell density are then created, through changes in the

Python script. Grid C1 corresponds to the original grid of 11204 cells, while C2 and C3 results from the

refinement of C1 once and twice respectively. The number of elements from each grid is presented in

Table 5.4, alongside the results of the discretization study in Figure 5.4.

On the x axis of Figure 5.4, the relative step sizes are presented, where 3 corresponds to the

unrefined grid C1 and 2 and 1 are the meshes C2 and C3, respectively. On the y axis, the forces applied

on the plate in the x coordinate are presented. These values are extracted in an equilibrium position

of the plate, at t=6.0 seconds, where the results can already be approached as steady (this behavior

of the plate will be further explained in this Chapter). The estimated uncertainty for the coarsest grid
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corresponds to 0.08%, approximated to 0.1% in Figure 5.4, from which one can conclude that it is quite

accurate. Considering this result and the increased computational costs associated to the finer grids C2

and C3, the grid C1 is the chosen one for the simulations of the benchmark.

Table 5.4: Different grids used on the nu-
merical uncertainty study.

Grid name Total number of cells

C1 11204
C2 76570
C3 245987

Figure 5.4: Numerical uncertainty of FSI simulation,
obtained with tools developed by Eça and Hoekstra
[67].

5.4 Simulation settings

As stated in Chapters 3 and 4, ReFRESCO requires for its FSI simulations the fluid and structural

data of the problem at hand. Concerning the SM and BAM cases and respective structural input, one

needs to provide the HB files generated by ANSYS© and the .outernodes file, while in the BSM case

user coding is used with the .beam, which carries the beam properties and the beam and outer structural

mesh coordinates. The tag <beamModel> is activated for both BAM and BSM cases.

Aiming the proper functioning of the RANS-FEM coupling in the simulation, one has to evaluate if

there is a good agreement between the outer grid and the CFD mesh, as well as if the beam is aligned

with the elastic axis of the body, which, in this case, corresponds to the center line of the plate. For

a better understanding of the structural grids involved in the simulation, refer to Figure 5.5, where a

scheme of the model is presented in its undeformed state.

Figure 5.5: Scheme of the models from BAM and BSM simulations, with the beam grid (blue) and the
outer surface mesh (red).
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The FSI module has been developed for unsteady FSI problems, since the grid deform method has

to solve the deformation of the fluid grid that results from the updates of the deformation of the structure,

for each time step (refer to Chapter 3). Therefore, if one desires to solve steady problems, unsteady

simulations have to be performed until the equilibrium is obtained. This is the case for the current

benchmark, as the plate is expected to reach an equilibrium after some time, with a steady outcome [31]

[64] [65].

In those unsteady computations, time discretization is executed by subdividing the simulation into

a discrete number of time steps and solving it through an implicit three time level scheme. While the

choice of a large time step may not capture accurately the response of the system, by "omitting" portions

of the deformation in the timeline, an excessively small time step can create inaccuracy and instability of

the solver. This fine balance was studied for the conditions of the current benchmark by Bronswijk [31],

where the optimal chosen time step is the same as in De Nayer’s [64] and Lesmana’s [65] simulations:

∆t = 0.01 seconds. Hence, the simulations in this work present that same time step, since it properly

portrays the deformation of the plate and it’s not too small of an interval, which doesn’t create extreme

fluctuations of pressure and, consequently, of the response forces.

For each of those time steps, the deflection of the plate will be simulated in response to the airflow

of 10 m/s that is applied instantly, without a ramp function, and forces and displacements are monitored.

The forces applied on the plate are calculated based on the integral of the pressure over the area of the

exposed surface of the model, while the x displacement of the tip of the body is directly stored in an

output file, allowing further studies on the vibrations of the plate.

Moreover, based on the parameters of Bronswijk’s simulations [31], a convergence tolerance for the

outer loops is set to 1.0E-5. The grid deform method uses RBF interpolation with a support radius of 0.8

meters and convergence tolerance of 1.0E-4. As developed in Chapter 3, the transfer of displacements

and loads across the interface is also performed with the RBF interpolation, now with a lower support

radius of 0.4 meters and a convergence tolerance of 1.0E-9.

In regards to the velocity-pressure coupling, it is achieved through a segregated mass momentum

solver. For the convective flux discretization, a QUICK scheme of second order accuracy is adopted,

which means the discretization error decreases four times when the grid is refined twice [31]. A QUICK

scheme is also applied to the momentum solver.

5.5 Results

5.5.1 Comparison between BAM, BSM and SM cases

Tip displacements

Initially, the simulations are computed with 200 beam elements, with each element presenting a

size of 0.005m along the y axis, and 421 outer structural nodes, with the dimensions of each element

marked as blue on Table 5.2.

Recurring to the settings stated in Chapter 5.4, the body’s movement is simulated during 10 sec-
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onds, at the end of which the plate has a well defined stabilized deflection, according to the previous

works on the benchmark. This is achieved thanks to the viscous damping of the motion, resultant of the

interaction of the plate with the surrounding air flow. Following the tip displacements of the body, one

can observe that same phenomenon, previously explored in Chapter 2, and obtain an identical plot to

the one in Figure 2.5.

Having already validated the beam solver working independently from ReFRESCO, it is now es-

sential to ascertain if the beam interface is working and if that developed beam module has a good

agreement with the ANSYS© results, in a transient mode. Both evaluations are ensured by this first

stage of the simulations, where the displacements of the tip of the plate are monitored, plotted and anal-

ysed for the SM, BAM and BSM cases. Those results are presented in Figure 5.6, as well as relevant

points (with green squares) that are then depicted in Figure 5.7.

Figure 5.6: Tip displacement obtained from different models of the plate.

In what concerns the validation of the beam module in a transient context, the results of the beam

solver present an excellent agreement with the ones coming from the ANSYS© generated data, as their

plots in Figure 5.6 are coincident.

However, both models have slight variations from the SM reference case, that stabilizes at x= 0.0243

m, like in the other studies of the benchmark [31] [64] [65]. Comparing both beam cases with the solid

one, the deviation starts in the initial instant, with a superior amplitude of the tip displacement than the

one from the SM case.

It was inferred from the convergence study of Table 5.2 that the beam and solid models behave

similarly when subjected to the same loads. Therefore, having into account that, initially, the mesh

of the SM and the outer grid of the beam cases present the same loads on each of their nodes, the

resulting difference in amplitudes between both may be attributed to the fact that the implemented beam-

fluid coupling requires a better discretization from its structural grids, since its NNI method lacks in
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robustness. This deviation is then propagated until the equilibrium position x= 0.0223 m is reached, with

an approximate deviation of -7.1% from the reference model result.

The evolution of the plate is depicted in Figure 5.7, representing the deformation of the BSM model

at distinct time steps. Firstly, at t=0.03 s, it is possible to identify a large pressure in the frontal area,

where the inlet flow first collides with the body at study, and a lower pressure zone close to the other side

of the plate, where a separated region of the flow appears, due to the forcing of the fluid into the corner of

the body, where a singularity of the NS equations occurs [69]. This region increases its dimension, while

the center of the generated vortex moves away from the plate, at t=0.13 s. Eventually, the properties of

the structure and the flow become independent from time, around t=6.00 s, which yields approximately

steady results.

Figure 5.7: Plate response at relevant time steps, for the BSM simulation.

Response frequency and viscous damping

The plate vibrates most significantly within the first 5 seconds of the simulation, making it suitable

to apply to the BSM’s tip displacements a Fast Fourier Transform (FFT), with the intent of obtaining the

response frequency of the body. This development is coded in Matlab© with a Hanning window, as it

contains good frequency resolution and allows to perform an FFT over a non integer number of cycles

[70]. Considering a time step of 0.01 seconds, the plot in Figure 5.8 is obtained, where the response

frequency extracted from the marked peak corresponds to 2.73438 Hz. The SM and BAM responses
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have resulted in this same frequency as well, which also matches the one obtained in Bronswijk [31].

Figure 5.8: Single sided amplitude spectrum with a time step of 0.01 seconds.

Additionally, the logarithmic decrement and damping ratio are calculated in order to compare them in

between the simulated models and with the ones obtained by Bronswijk [31]. The equations associated

to these parameters are presented in Chapter 2 and through them it is possible to obtain Table 5.5.

Table 5.5: Logarithmic decrement and damping ratio of the response from the different models.

Logarithmic decrement
δ

Damping ratio
ζ

SM case 0.125757 0.02011
BAM case 0.125887 0.02003
BSM case 0.126502 0.02013

The three models present quite similar damping ratios, which, combined with the equal response

frequencies, makes clear that, in this case, the beam interface doesn’t significantly affect the frequency

and the damping response to the interactions with the fluid. The results’ accuracy is corroborated by the

identical computed values in Bronswijk’s work [31], where the obtained damping ratio constitutes 0.021

(deviations from it are smaller than 5% for all the tested cases).

Performance

ReFRESCO generates multiple output files with information on the simulation process that takes

place. From that data, it is possible to extract the number of outer iterations that are computed in the

entire simulation, as shown in Table 5.6.

Evaluating the number of outer iterations, one concludes that the beam models are not presenting

more efficiency then the SM case. In what concerns the equations of motion, the SM case has 2250

degrees of freedom (3 for each node) to solve, while the BSM and BAM cases have 1200 (6 for each
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node). Considering that the solid model has to solve a higher number of equations and its stiffness and

mass matrices present denser distribution in their main diagonal (see Figure 5.9), the lack of perfor-

mance from the beam models should not be attributed to the solving of such equations, but to the RBF

interpolation coupling between the outer mesh and the CFD grid and/or deformation of the fluid mesh

after being updated in the interface with the body. As it will be inferred in the following studies, the beam

interface can reach quite irregular shapes due to the NNI approach, increasing the computational costs

of the simulation when compared with the solid models.

Table 5.6: Number of outer iterations for simulations of 1000 timesteps of 0.01 seconds, for the different

model cases.

Number of outer iterations

SM case 153254
BAM case 309054
BSM case 309440

Figure 5.9: Amplified main diagonal color map of the entries distribution for stiffness matrices of the plate
model, with SOLID186 (on the left) and BEAM4 elements (on the right). The mass matrices present a
similar pattern. Plots obtained with altered code from MATLAB© Central File Exchange [71].

5.5.2 Rotation degrees of freedom

In order to appraise the effect of the implemented rotation degrees of freedom in the update of

the interface between the body and the fluid, the initial simulation is executed without those computed

rotations entering to play on the FSI coupling, for comparison purposes. The unsteady evolution of

the plate is practically coincident with or without those rotations, reaching equilibrium positions with

0.3% deviations from one another. Therefore, it can be concluded that the rotation degrees of freedom

are negligible for the interface update in the current benchmark and future works may focus on the

reassessment of their utility for the interface update with other set ups.
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5.5.3 Parametric study on structural grids discretization

From now on, the focus of this study involves solely the BSM case, as the main goal of this work is

to perform the simulations without recurring to ANSYS©. A parametric study is thus performed for that

test case, in order to assess how the discretization of the different meshes involved in the simulation

affects the computed results. This framework also creates a precedent on how to handle the generation

of the structural grids of the blades from wind turbine models.

Beam and outer grids discretization

While initially a parametric study on the beam and outer grids is executed separately, quickly it is

possible to infer that the conjunction of both meshes is the preponderant factor for an accurate and

efficient performance of the simulations. Having this in mind, the new generated structural grids are

presented firstly, followed by an analysis on the impact of those grids on the computed results.

Starting with the beam grid, its discretization is varied, resulting on distinct models with 10, 50, 100

and 500 elements, listed in Table 5.7.

Table 5.7: Generated beam grids, with different discretization.

Beam grid Number of beam elements Element size y [m]

B1 50 0.020
B2 100 0.010
B3 200 0.005
B4 500 0.002

Following this process, with the intent of developing a study on the effects of the refinement of the

outer mesh, new grids are created with different element dimensions, obtaining the distinct configura-

tions presented in Table 5.8.

Table 5.8: Different outer structural grids used in this portion of the study.

Outer grid Element size x [m] Element size y [m] Element size z [m] Number of nodes

O1 0.005 0.02 0.005 257
O2 0.0025 0.02 0.0025 421
O3 0.0025 0.01 0.0025 1465
O4 0.0025 0.005 0.0025 1620

Testing the beam grids B with the different outer grids O, one obtains the Table 5.9, concerning the

computed equilibrium displacements of the plate and its deviations from the reference value of the SM

case. Damping ratios and response frequencies were also calculated for each test case but showed no

significant changes with the alteration of the discretization of either mesh. The simulated time span for

all computed simulations is 6 seconds, where equilibrium is already reached by the plate, and all the

other settings remained unaltered from the initial test case.

For the same outer mesh, it is possible to verify that the increase of the refinement on the beam grid
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doesn’t create significant variations on the computed equilibrium displacement, without even contributing

necessarily to the better accuracy of the simulations at hand.

However, these conclusions don’t apply to the effects of the outer mesh discretization, as it be-

comes clear that this factor has a preponderant part in the accuracy of the computed solutions of the

simulations. By increasing those grids’ refinement, a convergence towards the reference value is ob-

served for any selected beam mesh. This evolution culminates with the computation of an equilibrium

displacement with solely 1% deviation from the reference value, achieved by the combination of the B4

and O4 grids.

Table 5.9: Displacement results of the test cases, regarding the parametric study of the beam and outer

grids discretization. Marked with a cross mark are the simulations that diverged.
Outer mesh

O1
(257 nodes)

O2
(421 nodes)

O3
(1465 nodes)

O4
(1620 nodes)

Beam
mesh

B1 (50 elements) [m] 0.031117 0.021831
Deviation from SM 28.93% -9.54%

B2 (100 elements) [m] 0.031174 0.022550
Deviation from SM 29.17% -6.56%

B3 (200 elements) [m] 0.031136 0.022253 0.025065
Deviation from SM 29.01% -7.797% 3.86%

B4 (500 elements) [m] 0.031099 0.022078 0.025217 0.02386231
Deviation from SM 28.86% -8.52% 4.49% -1.13%

Nonetheless, both grids refinement must be taken into account when setting up a simulation, as

they are deeply interlinked by the NNI approach taken in this work, which is why certain simulations

diverged in this study. Having in consideration that the main deformation in this benchmark is due to

bending, the spanwise refinement is essential to portray correctly that movement. Therefore, aiming

at obtaining a better understanding of the instability in some of the computed cases, the ratio between

the y dimensions of the beam and outer elements for each combination of grids is presented in Table

5.10. A pattern can thus be identified: test cases where the outer mesh is equally or more refined than

the beam model (ratio equal or superior to one), in what concerns its y coordinate, tend to eventually

diverge. The problem in those simulations may be attributed to the fact that the lack of discretization of

the beam model in comparison with the outer one can lead to "jumps" of displacements in the interface

of the body with the fluid, which creates negative volume cells in the CFD grid (refer to Figure B.1, from

Appendix B). This limitation can be tackled by developing a more robust mapping system between the

aforementioned meshes.

Aiming at the study of the discretization’s effect on the performance of the simulations, the Table

5.11 is generated.

No clear tendency is identified in these results but it is worth noting that the refinement increase

in both grids doesn’t necessarily lead to a higher number of outer iterations, as it is the case with the

conjunctions B4-O3 and B4-O4, in which the number of iterations are quite similar to the ones obtained

in combinations with coarser grids. This is most likely explained by the fact that more regular updated
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Table 5.10: Ratio between y dimensions of beam and of outer elements for the different test cases.
Outer mesh

O1 O2 O3 04

Beam mesh

B1 1.0 1.0 2.0 4.0
B2 0.5 0.5 1.0 8.0
B3 0.25 0.25 0.5 1.0
B4 0.25 0.25 0.20 0.40

interfaces between the outer and CFD mesh tend to form when the grids are better refined, saving thus

computation costs in the structural-fluid grids’ coupling (depicted in Figure B.2, from Appendix B, with a

comparison between models).

Table 5.11: Number of iterations for the different computed test cases, regarding the parametric study of
the beam and outer grids discretization. Marked with a cross mark are the simulations that diverged.

Outer mesh
O1

(257 nodes)
O2

(421 nodes)
O3

(1465 nodes)
O4

(1620 nodes)

Beam
mesh

B1 (50 elements) 250731 262747
B2 (100 elements) 241000 254956
B3 (200 elements) 238876 253089 246596
B4 (500 elements) 239455 309440 247417 263400

In conclusion, when working with a wind turbine in the following Chapter, the outer mesh should be

highly refined if accurate results are to be obtained but one must taken into account that the beam should

have a denser discretization than the outer grid, in order to avoid possible situations of divergence (the

problem with the y coordinate may also occur with a wind turbine model, as the body is quite slender and

bending is the expected main deformation as well [39]). This higher refinement of the meshes should

not have a great impact on the performance of the simulations, since the outer iterations for the different

combinations of grids were quite similar in this benchmark.
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Chapter 6

DTU 10MW Turbine

This Chapter is centered around two distinct simulations of the full-scale DTU 10MW RWT. The first

considers the rotor as a rigid body, without deformation, while the second focuses on a flexible blade,

where the FSI module of ReFRESCO is used in tandem with the developed beam solver.

6.1 Case description

The DTU 10MW RWT corresponds to a horizontal axis wind turbine, whose geometry and oper-

ational specifications are presented in Table 6.1. For the purposes of this work, following the same

methodology of Hsu and Bazilevs [17] and Yu and Kwon [18], solely the RNA of the turbine at full scale

is studied, as one only intends to verify the deformation of a blade of the rotor with the developed beam

solver and the beam interface coupling. Additional information on the aerodynamics properties of this

case are also stated in Table 6.1, where the chosen temperature of the air is 14°C, which is within the

usual operational range of temperatures of offshore wind turbines [72]. Regarding the calculation of the

Reynolds number, based on the methodology adopted in the work of Make and Vaz [38], it is obtained

at 70% of the blade span, using as a reference length the airfoil’s chord, c0.7, and as reference velocity

the relative velocity of the flow at that spatial point (vector sum of the inlet velocity and the rotation of the

blade).

Table 6.1: Case key parameters (geometry properties extracted from Ostachowicz et al. [1]).

Geometry Operation Conditions Aerodynamics properties

Number of blades 3 Rated power [MW ] 10 µ14°C,1atm [Pa · s] [73] 1.789E-5
Rotor Diameter [m] 178.3 Rated wind speed [m/s] 11.40 ρ14°C,1atm [kg/m3] [73] 1.225
Hub diameter [m] 5.6 Rated tip speed [m/s] 90 Reynolds number Rec0.7 1.832E7

Tip speed ratio TSR 7.50 c0.7 [m] 4.392
Angular speed ω [rads−1] 0.959
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6.2 Fluid model

In what concerns the fluid model, as stated in Chapter 2.1.2, two methods are tested in the ap-

proaching of the fluid domain. On one hand, Sliding Grids are considered, as they can set a basis for

future work with rotor-tower interactions. Having this in mind, two sub-domains are created: one of them

constitutes a cylinder encompassing the RNA, while the other is a cylinder with a hole where the first

sub-domain fits, as shown in Figure 6.2. On the other hand, the AFM approach has been taken in a mul-

titude of simulations of the rotor of FOWTs [38][74][75], creating an interesting opportunity to establish

comparisons with works involving the DTU 10 MW RWT and with the computed simulations using the

SG.

The geometry of the three blade RNA is generated in HEXPRESS©, from a supplied file by MARIN

that contained a unique blade and a hub. The generated domain dimensions are based on the method-

ology followed by Make [74] with the NREL 5MW model and later by Castro [75] with the DTU 10 MW

one, both using the AFM approach. Having this in mind, the domain presented in Figure 6.1 is created,

similarly to Castro’s [75] set up. Based on the work of Leble and Barakos [39], the chosen dimensions

for that grid should also be applicable to the SG, with the addition of the interface, represented by the

dotted lines in that same Figure.

The generated grids must have enough upstream length, in order to ensure that the numerical

perturbations from the inlet are able to dissipate before reaching the rotor, while also guaranteeing that

the rotor does not influence the inlet flow. Enough downstream length must also be set, so that the wake

is able to develop, reaching a near zero gradient flow at the outlet. Finally, the domain should also be

wide enough, in order to warrant the use of the approximation of undisturbed flow on the sides, with null

pressure. Regarding the BC in the interfaces of the SG, these are not too close to the RNA geometry in

order to achieve lower gradients, with which they perform better.

Figure 6.1: DTU 10MW RWT domain setup for the fluid grids (rotor not at scale). The AFM grid does
not have an interface between sub-domains, while the SG do, which is represented by the dotted lines.

In what concerns the imposed boundary conditions of the problem at hand, in both grids, a move-

ment of rotation without translation of the rotor is simulated. Regarding the SG, the body has a purely
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rotational motion, in tandem with the sub-domain that encompasses it, and establishes a sliding inter-

face with the external sub-domain. Considering the AFM approach, as stated in Chapter 2, the RNA is

static and its rotation is portrayed through additional Right-Hand Side (RHS) terms that are added to the

momentum equations.

For both grids, the blades and hub also present a no-slip boundary condition with zero velocity at

the wall. The pressure is set to zero on the sides of the domain and, in the outlet, a Neumann type BC

is established with the derivatives there set to zero. These boundary conditions are also presented in

Figure 6.1.

In regards to the meshes themselves, the SG is the first one to be generated. Initially, already

combining the two sub-domains, it is constructed with approximately 13 million cells. This mesh makes

use of an HEXPRESS© tool that defines the target y+ when introducing the viscous layer to the model,

providing an adequate chance of solving of the boundary layer. Nevertheless, the computational costs

associated to this grid are far too high for the testing of the flexible model with just one processor, since

the beam solver is not parallelised. Aiming at reducing the number of cells of the generated unstructured

mesh, wall functions are used to approximate the BL, instead of relying on the grid refinement near the

wall. This approach considerably decreases the total number of cells to approximately 3.1 million.

Finally, with the AFM approach, a specific refinement to the BL is also not carried out, which leads

to a mesh of approximately 3.1 million cells as well. The number of cells of each of these generated

domains is stated in Table 6.2, while in Figures 6.2 and 6.3 the SG with less refinement and the AFM

mesh are presented. For a more detailed view of the AFM mesh refer to the Appendix C.1.1

Table 6.2: Number of cells of the CFD grids used in the rigid simulations.
Fluid mesh Number of cells

SG
with refinement of the BL

Inner sub-domain 13 594 473
13 679 624

Sub-domain with hole 85 151
SG

without refinement of the BL
Inner sub-domain 3 107 814

3 192 965
Sub-domain with hole 85 151

AFM without refinement of the BL 3 185 555

6.3 Rigid blade

6.3.1 Simulation settings

The selected inlet velocity for all simulations corresponds to the rated wind speed of the turbine,

11.4 m/s. This parameter constitutes the wind speed at which the maximum output power of the turbine

is first reached [76]. In what concerns the rotation velocity of the rotor, the value of -0.959 rad/s, relative

to the x axis, is selected. This number fits in between the minimum and maximal rotor speeds, with a

TSR of 7.5, and provides reference results from Castro [75], since the same speed is used in his work.
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Figure 6.2: DTU 10 MW RWT Sliding Grids configuration without significant refinement of the BL: front
and side view. The outer sub-domain is represented in green color, while the inner is in black.

Figure 6.3: DTU 10 MW RWT grid, through the AFM approach.

Concerning the time discretization of the unsteady simulations, the implicit Euler scheme, of first

order accuracy, is selected for stability reasons. This leads to the choice of an appropriate time step,

which, in simulations with wind turbine models, is usually defined by evaluating the angular displacement

of the rotor per selected interval of time [35], considering the angular speed of the RNA constant. Based

on the literature review executed on this topic [35][40][75], simulations with wind turbines tend to use

time step values that cover a rotation bellow 10° per time step. Having in account the established

operation conditions for this test case in Table 6.1, specifically the angular speed of the rotor, a time step

of 0.145596 seconds is selected, since the RNA would rotate approximately 8° per time step.

Moreover, differently from the benchmark case, turbulence is accounted for the wind turbine study.

As already referenced in Chapter 5, the adopted turbulence model is the k−
√
kL one, which was found

to be more stable in comparison with other alternatives offered by ReFRESCO, when simulating wind

turbine models [35]. In regards to the discretization of the convective fluxes, the second order accuracy

scheme Limited QUICK is once again adopted. The same values for convergence tolerance from the

benchmark in the outer loops are selected here, as well as similar approaches on the mass-momentum

and the momentum solvers.

6.3.2 Results

Displaying the velocity field around the model with Tecplot©, the left plot of Figure 6.4 is obtained

from the rigid simulation recurring to SG with less refinement. This distribution of velocity is identical to

the one obtained by Castro [75], who simulated the same turbine at the exact same operating conditions.

As expected, there is a wind speed drop after the geometry, due to the extraction of the kinetic energy

of the flow by the rotor, making it expand. While on the pressure side of the blade there is no separation
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of the flow and no very significant 3D effects (refer to Appendix C.1.1), observing the friction streamlines

of the suction side, from the other plot of Figure 6.4, it is possible to identify small recirculations phe-

nomenons near the blade trailing edges at low span range, already identified in this model by Zahle et

al. [77] and Horcas et al. [1]. Some minor vorticity is also observed close to the tip of the blades and to

the hub itself, in the Figure presented on Appendix C.1.1.

Figure 6.4: Velocity field of the flow around the RNA model of DTU 10MW RWT (on the left) and friction
streamlines in the suction side of the blade, at rated speed (on the right).

Aiming at evaluating the discretization error introduced by the fluid grid without expensive Verifi-

cation and Validation studies that depend on further simulations with other grid refinements, relevant

parameters are produced in this Chapter and compared once again with the outcome of the simula-

tions of Castro [75], who tested the model with both ReFRESCO and OpenFAST [9], obtaining identical

results in both software.

Firstly, the thrust (Fx) and power (Mxω) in the axial direction, created by the pressure and friction

forces, are extracted from monitoring files of ReFRESCO, rendering the plots from Figure 6.5.

Figure 6.5: Thrust and power computed for the RNA model, with and without significant refinement of
the boundary layer.

Through the analysis of these results, the differences between the values originated from the SG

with and without refinement of the boundary layer are quite noticeable and the probable leading cause

of this constitutes the obtained high values of y+. As stated in Chapter 6.3.1, wall functions were

used to approximate the boundary layer with less refinement but the obtained average of y+=2228.279
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for that grid even exceeds the applicability limits of those functions [35], which most likely leads to a

deficient portrayal of the BL with that discretization. Yet, it is important to note that the average thrust

and power computed values with that model, 1.90 MN and 10.10 MW respectively, remain in good

agreement with ones obtained by Castro [75], where the results are approximately 1.80 MN and 10.0

MW (deviations do not exceed 6%). Therefore, one may conclude that the created set up for the SG,

with all its simplifications, doesn’t lead to too large differences from the expected results, considering

the purposes of these work. Concerning the AFM results, even though it also relies on wall functions to

model the BL, it was clearly the most unreliable method, with an averaged thrust of 1.97 MN and power

of 11.31 MW, which leads to deviations of 9.4% and 13.1% from the Castro’s [75] values, respectively.

Afterwards, the thrust CT and power CP coefficients are calculated, based on Equations 6.1a and

6.1b [38].

CT =
Fx

1/2ρv3wπR
2
, (6.1a)

CP =
Mxω

1/2ρv3wπR
2
, (6.1b)

with vw as the inlet wind speed and R as the turbine radius. The resulting plots are depicted in Figure

6.6.

Figure 6.6: CT and CP computed for the RNA model,with and without refinement near the wall to capture
the BL.

Observing both plots, the AFM simulation presents, as expected based on the aforementioned

results, the major deviations from Castro’s results (where CP =0.47 and CT =0.90, approximately). The

attained averages for those parameters in the aforementioned simulation are CP =0.499 and CT =0.991.

In the case of the SG, the lack of discretization near the wall doesn’t greatly affect these coefficients,

since they are quite similar to the ones from the mesh with better refinement close to the wall. Its values,

CP =0.446 and CT =0.955, don’t present large differences from Castro’s results [75] either, with deviations

not exceeding 7%.

In Lee et al. [78], studies were conducted concerning the effects of high y+ on the results of

torque and thrust of a wind turbine blade, simulated with SG. Facing a deficiently solved boundary layer,

turbulence models were deemed quite sensitive to grid changes, specially in regards to the computed

torques (CP and power). This fact may corroborate the oscillatory behavior that the results present for

both those parameters in the SG with less refinement.
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Table 6.3 lists the computed parameters of each simulation, once again with the results of Castro’s

study [75] as a reference.

Table 6.3: Key parameters computed in the rigid simulations.

Fluid mesh Thrust [MN]
Deviation
from [75]

CT
Deviation
from [75]

Power [MW]
Deviation
from [75]

CP
Deviation
from [75]

SG with
refinement of the BL

1.94 7.77% 0.977 8.56% 9.78 -2.20% 0.432 -8.09%

SG without
refinement of the BL

1.90 5.55% 0.955 6.11% 10.10 1.00% 0.446 -5.11%

AFM without
refinement of the BL

1.97 9.44% 0.991 10.11% 11.31 13.1% 0.499 6.17%

From this study, it is possible to conclude that the three grids can be used in a flexible simulation,

depending on the intended goal. If one intends higher accuracy but also high computational costs,

the SG with more refinement in the BL should be selected. If the opposite is desired, with preference

for efficiency over accuracy without compromising too much the results, then the SG with less refine-

ment should be adopted, as the AFM unsteady simulations yielded more significant errors for a similar

discretization.

6.4 Flexible blade

In what concerns the flexible simulation, the fluid grid developed for the rigid model is the same.

What differs however is the presence of a structural body, vulnerable to deformation. Therefore, a

structural model has to be developed, in order to account for the geometry’s deflections and rotations,

as proceeded in Chapter 5.

6.4.1 Structural model

Beam grid

Following the Hsu and Bazilevs’ approach [17], only one of the blades of the RNA is deemed flexible,

with the other two remaining rigid. While the results of the flow interaction with the rotor may not be as

accurate as in the case in which the three blades are passive of deformation, computational costs are

smaller and it would be enough to evaluate the developed tools when working with flexible blades.

The DTU 10 MW RWT has its geometry well documented and publicly available1. Based on the

aeroelastic data provided by an input file for HAWC2 [8], it is possible to extract the material and geo-

metrical properties of a blade from its rotor, in 50 different cross sections. Stemming from the work of

Tüfecki et al. [26], these discrete properties are made continuous through a curve-fitting of the data in

Matlab©. The functions used in this process can be consulted in Appendix C.1.2.

1https://rwt.windenergy.dtu.dk/dtu10mw/dtu-10mw-rw
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From those functions, it is now possible to extract material and geometric properties for any cross

section across the blade’s length, allowing a better refinement of the structure.

However, some caution is necessary when approaching this data, as its parameters must match

the .beam file’s requirements. The moments of inertia from the aeroelastic documentation are relative to

the principal bending axes of each cross section, with their origin in a point where radial forces (in the z

direction) do not contribute to the bending around the x or y directions [79]. Therefore, the orientation of

those axes has to be supplied to the developed beam module through the input of the orientation of the

local y axis for each element. Additionally, these moments of inertia need to be transferred to the shear

center, where the beam nodes are located in each defined cross section. This is performed through the

parallel-axis theorem, stated in Equations 6.2a and 6.2b.

Iscx = IH2
x −A · ξy, (6.2a)

Iscy = IH2
y −A · ξx, (6.2b)

where IH2 is the inertia moment extracted from the HAWC2 file, Isc is the inertia moment relative to a

parallel axis passing in the shear center and ξ corresponds to the perpendicular distance between the

axes from the different coordinate systems. Having in account that the cross sections of a blade and its

properties are non constant, the nodal values also need to be averaged as stated in Chapter 4.2.2, in

order to introduce in the beam solver the properties concerning the elements, not the nodes.

Grounded on the conclusions reached in the previous Chapter, a highly refined mesh is thus con-

structed with 800 elements, each with a dimension of 0.111 meters approximately. A modal analysis is

then conducted with this new model, in order to compare the computed frequencies with the results from

the reference aeroelastic tool HAWC2, which carries in its installation folder the reference geometry of

the DTU 10 MW RWT blade.

The computed results, presented in Table 6.4, have a reasonable agreement with the values cal-

culated in HAWC2, presenting more significant deviations for the second and third flapwise bending

modes. A possible explanation for the computed errors is a deficient calculation of the shear center co-

ordinates of the cross sections associated to each node, since that data was provided in function of the

location of the center line, that is, a straight line that unites points at the half chord of each considered

cross-section. The lack of discretization of these center lines, in comparison with the 50 available cross

sections of the blade, may have led to errors in the computation of the variables that are dependent on it.

Nevertheless, this model should still be able to portray fairly well the behavior of the DTU 10 MW RWT

blade in an FSI simulation.

The positioning of the beam grid inside the blade’s geometry is performed by making the tips of

both models coincide and verifying if the areas of the geometry’s cross sections and the area values that

formulated the beam model are similar, for xy planes intercepting the beam nodes. Having ensured this

condition, the beam should be able to properly represent the body of the blade, in the coordinate system

shown in Figure 6.7, which is consistent with one used in the rigid body simulations.
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Table 6.4: Modal analysis of blade model of DTU 10 MW RWT, using the developed beam solver, with
HAWC2 results as reference.

Mode
Developed Beam

Solver [Hz]
HAWC2 [Hz]

Relative
difference

Mode type

1st 0.6286 0.613 2.55%
Flapwise
bending

2nd 0.9128 0.932 -2.06
Edgewise
bending

3rd 1.6003 1.741 -8.08%
Flapwise
bending

4th 2.9090 2.763 5.28%
Edgewise
bending

5th 3.2277 3.575 -9.71%
Flapwise
bending

6th 5.656 5.696 -0.70%
Coupled flapwise-edgewise

bending

7th 6.1808 6.115 1.08% Torsional

Outer grid

The outer structural mesh is created based on the geometry provided by MARIN, from which it is

possible to extract multiple cross sections and its points’ coordinates through Rhinoceros3D©. These

cross sections are chosen to be adopted as the outer mesh of the model, based on other works with

flexible blades, in which the exchange of displacements and loads is performed between the beam and

defined cross sections’ points [18] [22]. In Figure 6.7, both final structural grids are depicted, with the

beam mesh presenting a better refinement than the outer mesh in the spanwise direction.

6.4.2 Simulation settings

In regards to the simulation itself, the same settings as the ones from the rigid cases are adopted,

with the addition of parameters concerning the methods associated to the FSI module. The convergence

criterion is also generally broadened, aiming to reduce the number of total outer iterations, which is

a critical factor for the computing of relevant results at a faster time. For that effect, a convergence

tolerance for the outer loops is set to 1.0E-4 for all variables. The RBF interpolation in the grid deform

method adopts a support radius of 0.5 meters and a convergence tolerance of 1.0E-4. The transfer of

displacements and loads across the outer mesh-fluid interface is performed with a support radius of 0.4

meters and a convergence tolerance of 1.0E-6 in its RBF interpolation. Although these tolerance values

are superior to the ones set in the benchmark simulation, the maximum iterations of these processes

also have to be increased, in order to ensure that the coupling between the structural and fluid grids

is allowed to converge. The number of outer loops is limited to 1500, while the number of deformation

iterations is limited to 10 000 with a convergence tolerance of 1.0E-6.
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Figure 6.7: Beam grid (in yellow) and outer mesh (white dots) used for the conception of the structural
model of the rotor’s blade of the DTU 10 MW. Images extracted with Rhinoceros3D©.

Additionally, in an attempt to reduce the number of time steps to reach an approximately steady

motion of the rotor, the rigid simulation of the SG grid is ran and its resulting data is then used with the

restart functionality of ReFRESCO, where the flexible simulation takes off from the final time step of the

rigid one.

Even with the adopted simplifications regarding the fluid grids and these simulation settings, the

results of this test case were not computed in time of the completion of this thesis. In order to make

the simulation feasible in a reasonable amount of time, it is suggested that future works parallelise the

altered code, so it can run on multiple processors and thus distribute the computational costs among

them.
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Chapter 7

Conclusions

7.1 Achievements

Having reached the completion of this thesis, the following achievements are identified, encompass-

ing most of the goals set out in the Chapter 1.

Implementation of an interface between beam models and CFD grids

Similarly to the main CFD code, which has an extensive research behind it and a continuing ex-

pansion on its capabilities looking forward, the FSI module presents considerable potential to achieve

more efficient simulations with simpler structural models, reducing its computational costs. Having this

in mind, a coupling interface was established between the CFD grid and models constituted by beam

elements.

Aiming to avoid extensive modifications of the main code of ReFRESCO, an already existent cou-

pling method of the software was used for this new scenario: the RBF interpolation. However, because

this method is implemented to work in the outer surfaces of the body, the loads and displacements trans-

fer had to be performed with a beam grid and an outer structural mesh, that establishes that coupling

with the fluid domain through the RBF interpolation. Through the interchange of displacements and

loads of the three grids, the deformation of the body and the surrounding fluid was achieved. This im-

plementation mostly involved changes in functions responsible for the allocation of the input data, RBF

interpolation and for updating the structural interface.

The update of the interface was also expanded to degrees of freedom of rotation, in which the node’s

coordinate system is rotated at each outer iteration, based on the angle computed in the previous one.

Creation of a Computational Structural Dynamics Model with beam elements

The creation of the interface coupling led to another challenge: establishing a user friendly way of

setting up the structural model in the FSI simulations, without the need to recur to external commercial

software. In order to tackle this problematic, the current work has provided a new tool to represent

slender bodies, like the blades of wind turbines, through beam elements: a Computational Structural

Dynamics Model with said elements, adjunct to the main code of the CFD solver through user coding in
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Fortran 2005.

Aiming for simplicity in its input, this new module only requires one file with an extension .beam from

the user, containing the properties and grid data of the beam model that represents the body, as well

as information concerning the aforementioned outer mesh that establishes the interface with the fluid

domain. This new complementary code then generates the necessary mass and stiffness matrices that

are provided to run the FSI simulation with ReFRESCO.

After its implementation, the solver was then verified, still working independently from ReFRESCO,

with a static and modal analysis. Both studies yielded an exceptional agreement with the reference

cases constituted by BEAM4 elements, from ANSYS© APDL.

Validation of the new interface coupling and of the developed beam module

Having achieved both aforementioned objectives, the new interface coupling and the developed

beam model were validated with a 2D benchmark of a clamped plate, using as reference a solid model

that was already validated by Bronswijk [31].

Regarding the evaluation of the former goal, two test cases for the beam models were tested in

an FSI context, for the same conditions and with the same settings. Assessing the tip displacement

of the plate and its response frequency to the flow, those models presented an identical behavior in

comparison to each other and with small deviations from the results of the validated solid elements test

case. From these simulations, it was possible to infer that, in an FSI context, the developed beam solver

performs with equal accuracy to simulations with ANSYS© generated data and that the beam interface is

portraying properly the benchmark behavior, even if with limitations. Those limitations are resultant of the

lack of robustness of the employed algorithm to transfer displacements and loads between the structural

grids, which may also be in the root of the low efficiency of the beam simulations when compared with

the solid elements. Using an Nearest Neighbor Interpolation between the structural meshes, the outer

grid can create quite irregular shapes after its displacements update, hindering the convergence of the

code and, in some cases, leading to divergence.

A study on the effect of the refinement of the structural meshes was then conducted, in order to

assess its effects on the accuracy and performance of the beam simulations. Combining different levels

of refinement from both beam and outer grids, the results were the most accurate, as one would expect,

for high refinement from both. It was found that the outer mesh has a predominant impact on the

accuracy of the simulations, with limitations nonetheless when working with much coarser beam grids

in the spanwise direction. This allowed to be set a precedent on how to handle the wind turbine blade

of the DTU, in which the beam should present a dense refinement in comparison with the outer mesh,

in order to avoid divergence situations where negative volume cells are reached, due to the irregularity

of the updated outer mesh. This refinement should not have much consequences in the performance of

the simulations, as the number of outer iterations didn’t vary much with the various tested grids.

Moreover, the beam test case with the developed beam solver was simulated with and without

considering the implemented rotation degrees of freedom but the results yielded negligible differences,

from which one can infer that this feature is not impactful in the interface update of the benchmark. The
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importance of this functionality should be reassessed in future works through its testing with set ups that

involve more 3D motion of the model at study.

Establishment of the fluid and structural grids to simulate the DTU 10MW RWT

Having the goal of simulating a Rotor-Nacelle Assembly with a flexible blade, multiple rigid models

were constructed, recurring to an Absolute Formulation Method approach and to Sliding Grids. Aiming

to reduce computational costs, these meshes were tested with lesser refinement than usual in their BL.

Both methods appeared to provide reasonable results for the intended purposes of this work: testing

the new FSI implementation quickly, with large simplifications, specially the modeling of the BL with wall

functions. Nevertheless, SG are the most versatile ones, since they can be used in real life configurations

with bodies that are moving and others that are static. In the case of AFM, one is limited to use them with

geometries that move all at the same speed, which precludes the inclusion of tower-rotor interactions,

for example.

Furthermore, the structural model was also created, based on the documentation of the wind tur-

bine. In this case, rooted in the conclusions that resulted from the benchmark simulations, a dense

refinement was applied to the beam model, in order to avoid possible phenomenons of divergence.

Having constructed the model, its modal analysis led to agreeable results with the ones from the refer-

ence tool HAWC2 [8].

Yet, it must be recognized that the results of the simulation of the DTU 10MW RWT flexible rotor

were not obtained by the date of the conclusion of this thesis, due to the non-parallelisation of the

code, imposed by the new interface coupling. Only running on one processor, this condition hindered

drastically the calculations of the simulation.

7.2 Future work

From the developed work in this thesis, multiple prospects for future research arise, regarding the

improvement of the performance of the simulations and the removal of some of their current limitations,

concerning the beam solver and the beam-fluid interface.

Focusing on the beam solver, the basis of the formulation of its beam elements is the BEAM4, a

legacy element. This type of element has meanwhile been removed from ANSYS© documentation due

to issues with consistency and redundancy. Therefore, other beam elements with different degrees of

freedom and/or shape functions can be tested with the developed solver in future works, by changing

the stiffness and mass matrices formulation.

Furthermore, considering that one of the main goals of this thesis was to remove the dependency of

ReFRESCO on external software to generate the structural data of its FSI simulations, another tool that

could prove to be useful in further studies would be a cross section analysis software for beam models,

similar to one developed by DTU, BECAS© [80]. This tool would be able to generate essential properties

of a blade turbine and provide them to the developed beam solver, galvanizing the conception of more

complex structural models with different cross sections across their length.
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In what concerns the implementation of the interface between the beam models and the fluid grid, it

is important to note that the work of this thesis was developed on the 2.7.0 version of ReFRESCO, with

the limitation of only running simulations with one processor. It is essential in further studies that this

process is adapted to more recent versions of the software, such as 2.8.0., and that this functionality is

expanded to simulations on multiple processors, with the parallelization of the altered code.

Additionally, the mapping of forces and displacements between the outer and the beam structural

grids has space for improvement, as a nearest neighbour interpolation was employed in this thesis.

The low accuracy of this method greatly influences the shape of the outer mesh and, consequently, the

stabilization of the FSI coupling and the performance of the simulation. A possible approach to be made

would be to compute a linear extrapolation procedure for the outer mesh, based on the interpolation

of the displacements and rotations of the beam nodes, with an adequate level of discretization for both

grids (refer to Kamakoti and Shyy [81] and Sayed et al. [22]).
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Appendix A

Beam element shape functions

Aiming to interpolate a continuous solution between the discrete values at the mesh nodes, it is

crucial to define shape functions for the beam element in the developed solver.

Figure A.1: 3D line element, with local and global coordinate system (adapted from ANSYS manual
[61]).

On figure A.1, the three dimensional beam element at study, with nodes I and J , is represented

with the respective local coordinate system. Its local coordinate s can be written in function of the global

coordinate x through equation A.1 [27], with L as the length of the element at hand.

s =
2x− L

L
(A.1)

Considering that the developed beam solver is based on the formulation of BEAM4, one can obtain

its shape functions from ANSYS documentation [68]. These functions can be written in the matrix form

as seen on equation A.2, where v is the array of displacements and rotations along the element andN(s)

contains the shape functions’ coefficients. The array vn encompasses the nodal values correspondent

to the 12 degrees of freedom per element that system must compute.

v = [N ]vn (A.2)

Finally, the system of equations can be written as presented on equations A.3a and A.3b [27] [61],

where u and θ correspond to displacements and rotations on the global coordinate system and the

subscripts I and J inform on the node whose solution is being computed.
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ux(x)

uy(x)

uz(x)

θx


=



N1ux
0 0 0 0 0 N2ux

0 0 0 0 0

0 N1uy
0 0 0 N3uy

0 N2uy
0 0 0 N4uy

0 0 N1uz
0 N3uz

0 0 0 N2uz
0 N4uz

0

0 0 0 N1θ 0 0 0 0 0 N2θ 0 0





ux,I

uy,I

uz,I

θx,I

θy,I

θz,I

ux,J

uy,J

uz,J

θx,J

θy,J

θz,J


(A.3a)

 θy(x)

θz(x)

 =

 duz

dx

duy

dx

 (A.3b)

Table A.1: Basic shape function components [27].

N1ux
= 1

2 (1− s) N1uy
= 1

2 (1−
s
2 (3− s2)) N1uz

= 1
2 (1−

s
2 (3− s2)) N1θ = 1

2 (1− s)

N2ux
= 1

2 (1 + s) N2uy
= 1

2 (1 +
s
2 (3− s2)) N2uz

= 1
2 (1 +

s
2 (3− s2)) N2θ = 1

2 (1 + s)

N3uy
= L

8 (1− s2)(1− s) N3uz
= L

8 (1− s2)(1− s)

N4uy = −L
8 (1− s2)(1 + s) N4uz = −L

8 (1− s2)(1 + s)
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Appendix B

BSM Interfaces from benchmark study

In this Appendix, some examples of interfaces created by the the beam-CFD coupling are pre-

sented.

B.1 Divergence

Figure B.1: Time step preceding phenomenon of divergence due to negative volume cells, in combina-
tion B1-O4.
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B.2 Update interface

Figure B.2: Amplified interface between outer mesh and CFD grid, for t=6.0 seconds, for a 10 elements
beam model (on the left) and a 500 elements one (on the right).
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Appendix C

Full-Scale DTU 10MW RWT

simulations

The current Appendix focuses on the pre-processing meshing with the AFM approach of the domain

with 3.1 million cells, which is quite similar to the SG with less refinement of the BL. This images are

followed up by the computed fit curves of the input properties of the beam module, for a blade from the

DTU 10 MW RWT. Post-processing figures of the rigid simulation with SG are also presented.

C.1 Pre-processing

C.1.1 Fluid domain

Figure C.1: Amplified side (on the left) and front (on the right) views of the DTU 10 MW RWT grid.
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Figure C.2: Amplified view of the refinement around the edge and the tip of the blade for the DTU 10MW

RWT.

C.1.2 Structural domain

Aiming to obtain continuous properties of the blade across its length, the presented curve-fitting

functions in Equations C.1a-C.1f are used for the plots that follow.

{A, Jp, Ix, Iy} = a1e
−
(

z−b1
c1

)2

+ a2e
−
(

z−b2
c2

)2

(C.1a)

{µ,G} = e
−
(

z−b1
c1

)2

+ a2e
−
(

z−b2
c2

)2

+ a3e
−
(

z−b3
c3

)2

(C.1b)

kx = a0 + a1cos(zw) + b1sin(zw) + a2cos(2zw) + b2sin(2zw) + a3cos(3zw) (C.1c)

b3sin(3zw) + a4cos(4zw) + b4sin(4zw) + a5cos(5zw)

b5sin(5zw) + a6cos(6zw) + b6sin(6zw)

ky = a0 + a1cos(zw) + b1sin(zw) + a2cos(2zw) + b2sin(2zw) + a3cos(3zw) (C.1d)

b3sin(3zw) + a4cos(4zw) + b4sin(4zw)

xsh =a1sin(b1z + c1) + a2sin(b2z + c2) + a3sin(b3z + c3) (C.1e)

{ysh, E} =a1sin(b1z + c1) + a2sin(b2z + c2) + a3sin(b3z + c3) (C.1f)

+ a4sin(b4z + c4) + a5sin(b5z + c5)
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Figure C.3: Variation of the shear correction factors and coordinates of the shear centre of the blade,

across its length.

Figure C.4: Variation of the area and moments of inertia properties of the blade, across its length.

85



Figure C.5: Variation of the material properties of the blade, across its length.

C.2 Post-processing

Figure C.6: Vorticity field of the flow around the AFM model of the DTU 10MW RWT’s rotor (on the left)

and friction streamlines on the pressure side of the blade (on the right).
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