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Abstract

Harmful algal blooms (HAB) create a natural contamination process of shellfish on production areas
resulting from the accumulation of biotoxins produced by the HABs presence in high concentrations.
Not only the public health problems have been the reason to develop predictive tools for this toxic
events, but also the economic losses that currently affect many producers because of the variability
of contamination on different shellfish species and harvesting areas. The goal was to find preliminary
relations between the time series of the biotoxins concentration in shellfish and phytoplankton cell
counts on water samples, between pairs of areas on a case study area in the south coast of Portugal,
using correlation methods. The areas used for the analysis, that were on a potential geographic location
to study the impact between each one, showed to have more informative time series in terms of its
frequency of high toxic levels and the amount of records. A graphical model, named dynamic Bayesian
network (DBN), was also built to extract the inter-timeslice dependencies, i.e. relation between the
toxins and phytoplankton concentration at an area on a week with the concentration in the next week
on its neighbor. The cross-correlation analysis showed that there is a higher positive relation from
West to East in terms of phytoplankton dispersion, which is what is expected, but there was not clear
evidence by analyzing the conditional probabilities, if there is an area that consistently explains what

happens in the next week on its neighbors.
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1. Introduction

Shellfish contamination generate negative im-
pacts such on public health and food production
sector economy, requiring monitoring programmes
to regulate the opening and closures of the har-
vesting activities, to mitigate the health issues in-
flicted on humans, and the economic losses on shell-
fish farmers, aquaculture production, harvesters,
and local businesses. There are different type of
poisoning, and the five most commonly recognized
are ciguatera fish poisoning (CFP), paralytic shell-
fish poisoning (PSP), neurotoxic shellfish poisoning
(NSP), amnesic shellfish poisoning (ASP) and diar-
rhetic shellfish poisoning (DSP) [15]. According to
the Portuguese monitoring program since 1985, the
most reported HABs species are Pseudo-nitzschia
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spp-, Dinophysis spp. and Gymnodinium spp.
among others, that respectively produce biotoxins
associated with ASP, DSP and PSP [8, 9].

An HAB and Shellfish harvesting warning bul-
letin was developed by IPMA to show current con-
dition and one-week forecast of which production
areas are open or close according to the biologi-
cal regulatory values, the empirical know-how, the
modelling of how sea surface temperature and tide
directions influence algal proliferation and its po-
sition estimation through extracted variables like
clorophyll-a [8]. In Ireland and Scotland were also
implemented monitoring programmes with forecast-
ing bulletins, that generate short-term predictions
on the probability of occurrence of a toxic event,
which can alert many aquaculture production areas



and other coastal natural harvesters [11]. This HAB
warning solutions already brings deliberative abili-
ties to manage opening and closures of harvesting
areas, but considering the different abiotic and bi-
otic factors that can be associated with HAB events,
predictions by empirical rule-based models can be
limited since it is normally underfitted to the spe-
cific areas and environmental conditions.

To complement the forecasting and to give more
statistical assurance of how the forecasting results
were the ones retrieved, a dependency modeling
of the contamination process was developed as the
main goal for this project. There are some works
that already have tried to use multivariate models
to forecast the toxin contamination event, some are
able to have good results for a one week prediction
[7, 11]. Another approach to this thesis was adopted
under the MATISSE scope, a research project “MA-
TISSE: A Machine Learning-Based Forecasting Sys-
tem for Shellfish Safety” (DSAIPA /DS/0026/2019),
funded by the Foundation for Science and Tech-
nology, to focus more on modeling the target vari-
ables, which led me to get a model that could bring
explainability to the event, by obtaining the de-
pendencies between them and be an information
and validation resource for multivariate forecasting
models of what could be the specific and more rele-
vant variables to help anticipate the contamination
problem on Portugal coastal areas. Other goal was
to model how the occurrence of DSP contamina-
tion at a shellfish production area could lead to the
increase in toxins level or the phytoplankton con-
centration on other neighbor production areas. But
what it was an additional and interesting analysis
at first, ended as the center topic of this thesis.

The data available to give as input to the model,
were collected and provided by IPMA (Portuguese
Institute of Sea and Atmosphere), like biotoxins,
phytoplankton and meteorological time series, by
MARETEC, a research center with its main activ-
ity focusing on water environment data extraction
and modeling, sea water hydrodynamic and nutri-
ents time series, plus the sea surface temperature
and clorophyll-a time series extracted from satellite
imagery from the Copernicus program [1]. The tar-
get variables are collected from the the main inshore
and offshore shellfish production and natural banks
areas that are monitored weekly by IPMA, divided
into 12 coastal areas, 7 estuaries, 3 lagoons and 16
rias, each one with different type of shellfish.

To model the dependency between the target
variables (biotoxins and phytoplankton), a proba-
bilistic graphical model named Dynamic Bayesian
Network (DBN), will be used.

2. Background
2.1. Time Series Analysis

In time series forecasting it is also important to
know the dependence between values of the series,
by estimating autocorrelations, and to do that with
precision, the series structure should be regular and
not changing at every time step. However some
models can model this components and get more
precise predictions.

Auto correlation is commonly used to choose the
important lag features on a variable’s series, that
on an auto regressive model could make a good
prediction of the current value y;. Lags are the
sequence of values k time steps before the current
time ¢t € T. Intuitively the autocorrelation, given
the Eq. 1, is nothing less than the correlation or the
degree of similarity between the current series and
other lagged, usually being the Pearson coefficient.
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Partial correlation also summarizes dependence
on past observations, but only takes into account
the direct effect or correlation of the chosen lag that
could help on the auto regressive model to predict
the series in current time step. It is calculated using
the following Eq. 2:
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In this research context there are multiple vari-
ables observed over time, to be considered to model
the biotoxins concentration and HAB events, and
since each one may depend not only on its past val-
ues but also on other variables, the dependence be-
tween each pair of time series is important, and to
calculate that, the cross-correlation is measured by
using the same method of lagging time series, but
now to calculate the correlation coefficient between
two different time series, one stays fixed in time,
and the second one is shifted backward or forward
in time, as it is illustrated in the table below.

Table 1: Two Different Time Series Lagged

t| A B|A B(ag-1) | A B(lag+1)
024 49 | 24 29 - -
1129 291 29 47 29 49
2132 47 | 32 31 32 29
3136 31| 36 30 36 47
4125 30| 25 23 25 31
5116 23 - - 16 30




The correlation must be measured after the de-
composition of deterministic time series compo-
nents. Because trend make it seem like lags are
very correlated. Detrended partial cross-correlation
analysis (DPCCA) is another method to calculate
cross-correlation, that also applies the partial cor-
relation, removing the influence of the other lags,
but it detrends both the time series when calcu-
lating their correlation. The correlation coefficient
is calculated for multiple sub-series through a slid-
ing window with a parameterized length s, which
is then normalized by the coefficient of each time
series. This correlation can characterize time de-
pendent relation on different time scales [13].

2.2. Dynamic Bayesian Networks

DBNs are an extension of Bayesian Networks
(BN), that can model both discrete and continu-
ous variables, whose values change over time, and
the network is able to propagate the probability dis-
tribution of the factors in the graph through time,
that now turn probabilities into trajectories (an as-
signment of a value to each variable X; at each time
t).

To represent these multiple variables trajectories
on a problem where the measurements are not in
real time, and there is some time granularity in
common, the timeline is discretized into time slices.
As for the variables available in this problem, each
time slice will correspond to 1 week. By consid-
ering the same conditional independence assump-
tions, but now within each time slice (intra-slice)
and between each time slice (inter-slice) variables
distributions, the probability of all random vari-
ables X along time T is:

P (X(O:T)) —-p (X(o)) TI:IIP (X(tJrl)’X(o;t))
t=0

3)
the P(X(9)) is the joint probability of the random
variables at time step t=0, the initial distribution
represented on a prior BN By, and the following
conditional probabilities by a set of transition BNs
B_,. It defines a dependency of the joint distribu-
tion of X at a time step ¢+ 1 on the joint probabil-
ity distribution of all variables’ trajectories, within
[0 : t], that is infeasible to calculate since it is
exponentially expensive to propagate such complex
structures through time.
So usually a first simplifying Markov assumption
is applied to only get conditional dependency on m
timesteps before ¢t. Simplifying eq:3:

P (X(O:T)> - p (X(O)) Tﬁlp (X(t+1) ‘X(t_m;t))

t=0
(4)

A second simplification can be made depending
on the problem in hands, i.e. having stationary
transition networks between time slices or not, i.e.
assuming time invariance if stationary implying the
same transition model P (X *+D|X®) for all ¢.

DBNs are complex models with different pos-
sible BNs configurations, and make assumptions
that may require appropriate model design, such as
Markov assumption and Time Invariance. There-
fore learning the structure and parameters of a DBN
is also complex, since there are now intra-slice and
inter slice dependencies to map. If the DBN follows
the second assumption of being stationary, both
structure and parameters are constant throughout
time slices, and the intra-slice dependencies are al-
ways the same, and only the inter-slices dependen-
cies must be learned. Still, if we want an optimal
problem representation, both dependencies must be
learned.

A fixed template transition model, based on the
stationary property, and given the initial distribu-
tion of all variables, let us unroll the network over
sequences of any length, i.e. it allow us to make
inferences in the long-term notice.

The structure learning algorithm starts by initial-
izing a complete directed graph, with bidirectional
dependencies between all variables at timestep t+1,
i.e. the intra-slice connectivity. Then rather than
using mutual information to calculate the score for
each edge, as in [2] where the edges are undirected
and the score from a node X;[t + 1] to X[t +
1] is equal in both directions, this adapted tree-
augmented DBN learning algorithm uses a score
that allows to learn intra and inter time-slice re-
lations between variables to guarantee an optimal
network, that expresses the gain in the total net-
work score by including an intra-slice parent in
X[t + 1] or only with parents from preceding time-
slices X[t 4 1]. But this does not restrict the com-
plexity yet on the number of parents from the previ-
ous time-slices X[t], which could also be connected,
so the maximum number of parents p from preced-
ing time-slices must be set as well. The weight for
each edge e;; is then assigned as

(5)
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with the s; being calculated as
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S; =
where ¢1 is the scoring function, and DEH is the

fully observed data concerning the time transition
t — t+ 1. So s;; is calculated as

s; = max  ¢i(X,[t]UX,[t+1],DiTY).  (7)
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Figure 1: Learned DBN.

The scoring function used can be log-likelihood
(LL) or the minimum description length (MDL),
where the first one is usually prone to overfit-
ting since its value increases proportionally to
the number of parents added, since the entropy
will never increase, so this score LL(G|D)

-N X ENTp(X:[1]|X2[0], X3[0], X2[1]) +
ENTp(X,[1]|X1[0]) +
ENTp(X3[1]]X35[0], X4[0], Xa[1]) +
ENTp(Xy[1]|X1[0], X4[0]) + ENTp(X:1[0]) +
ENTp(X2[0]) + ENTp(X3[0]) + ENTp(X4[0]),
will never decrease. And the second one
uses a penalty factor proportionally to
the number of parents added to the tree,
MDL(GID) = LL(GID) — Llog(||D|)).I|G]].

being the graph structure and D the dataset. The
maximum spanning tree algorithm is then used to
obtain the set of directed edges where the sum of
all the scores is maximum, also removing whatever
cyclical relations may exist, which defines the
final directed acyclical graph, i.e. the stationary
dynamic Bayesian network, such as in fig. 1.

The conditional entropy, assuming the set of dis-
crete values n for the node X;[t+ 1] and the set ¢ of
the values combinations from the preceding times-
lice parents X, [t] is given by

ENTp(Xi[t + 11| X,[) = X7, hrn
(8)
The DBN parameters, which are the conditional
probabilities of each node, are calculated in a
straightforward frequency calculation of events with

each particular combination of values for each sub-

j=1 P(ni, q5)log 55,550

DAG.

2.3. State of the Art

There has been studies focused on DBN frame-
work to model different type of problems like for
water eutrophication factors causality and inference
[12, 3], and others for emerging HABs risk or biotox-
ins concentration like [4]. A non fully observed BN
framework with an Hidden Markov Model struc-
ture, with water eutrophication level as the hidden
variable, where each state affects the observed ob-
servation patterns composed by clorophyll-a con-
centration and a set of principal components re-
sulting from a feature selection of abiotic variables
like temperature, wind and others, has been used to
forecast following values of a biotoxin [4]. It could
be relevant as well, to map the causality and inter-
relations between contiguous areas, by applying an
hierarquical BN representation [4], of coastal areas
with multiple sampling points like estuaries or la-
goons, and even between some of the bigger areas.

3. Implementation

The type of project requires an whole process of
getting to know the data beforehand, understand
each data source to then integrate it on a stan-
dard format to then apply multivariate analysis and
modeling. To perform the analysis proposed every
time series, collected from or provided by IPMA,
MARETEC and Copernicus satellite programme,
went through a process of data cleaning and inte-
gration.

3.1. Data Cleaning and Integration

IPMA’s biological time series, such as the biotox-
ins collected in-situ from shellfish tissue samples
and the phytoplankton cells count within water
samples, needed a lot of records values cleaning and
replacement, in terms of some specific indicative
sampling results, like non-detectable (ND), non-
quantifiable (NQ) or even not registered (NR), that
were replaced by the toxin quantification detectable
limit, like 36 ng/kg for DSP toxins, 1.8 ng/kg for
ASP, and 71 pg/kg for PSP, and the “NR” values
were replaced by “n/a”. Also for some typos and
mislabelled production areas, sampling stations and
species names that needed to be standardized, in or-
der to select the time series individually. The phy-
toplankton time series records for each production
area, went through the same process of names ty-
pos correction and the not numerical interpretative
values, like “LD”, now representing samples with
cell counts too low to be detected, were replaced
by the a detectable limit value of 20 cel/L provided
by IPMA. The same process for IPMA’s meteoro-
logical time series were applied, only with different
values to be replaced.

For the data provided by MARETEC and ex-



tracted from Copernicus satellite products, the
main task was to integrate and merge with the
other time series, according to the coarser granu-
larity of the biological data. So given an expected
weekly frequency, the IPMA biological data went
also through a process of reindexing the records to
a precise weekly granularity, where a new weekly
frequency index is created for both time series, from
2015/01/01 to the 2020/12/31 (the data available
period), where the weekly record value will now be
the rolling mean of the 7 days around the new index
date in the center, so it aggregates the time series
values from 3 days before to 3 days after and apply
the average value, because there clearly some peri-
ods where some records were taken on more sparse
periods of time, and others on a more rigid sched-
uled regime. Consequently the meteorological data
from IPMA, the oceanographic and water nutrients
data from MARETEC, and the sea surface tem-
perature and clorophyll-a from Copernicus remote
imagery data, followed this record frequency, pass-
ing to a daily or even hourly frequency to a weekly
one, which required an aggregation for the finest
granularity, and a simpler merging approach of the
closest day given the day of the week of the bio-
logical records, to give a more realistic information
since this are not time series in real time.

3.2. Experiment Definition and Design

To reduce the analysis and modeling complexity
of the number of production areas, sampling points
and different species, a ranking method, was imple-
mented to empirically select the most informative
entities (composed as production area — sampling
point — specie), in terms of the time series with
higher records frequency with high toxicity, higher
phytoplankton agglomeration and lower percentage
of missing values. First of all, a filtering threshold
was applied to select only the entities with time se-
ries that had at least 5% as minimum percentage
of high toxicity events, which means that at least
five times out of 100 toxin records the concentra-
tion would surpass the respective toxin limit (160
ng/kg for DSP, 20 ng/kg for ASP, 800 ng/kg for
PSP), a percentage of phytoplankton concentration
higher than 5%, which means getting more than
200 cel/L, and also less than 20% missing values,
to diminish the amount of synthetic data added in
the imputation process. However to get the analy-
sis between each entity another threshold was im-
plemented in order to get at least 104 records, i.e.
2 years, with the previous settled conditions. In
the end, 20 entities were considered the relevant
ones, from which 1 test scenario was chosen to ex-
plore the hypothetical predictive linkage of an area
with its neighbors. Vale da Lama (LAG), Fortaleza
(OLH2), Quatro Aguas (TAV) and Monte Gordo
(L9) from the south coast of Continental Portugal,

did fill the preliminary requirements, but also add
an extra aspect of geographical proximity, and mar-
itime conditions, since there is evidence of the di-
rection of the sea surface current at south coast of
Continental Portugal being broadly originated from
the Azores current extended to the Gulf of Cadiz,
thus having a eastward direction, i.e. from West to
East [5].
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Figure 2: Toxins Time series of Ria de Aveiro, Pis-
cicultura

After this first entities selection there was also a
defined focus in terms of the specie and biotoxin
analysis scope. Mussels were considered to be the
ones that got more records over all entities, and as
the specie is considered to be the most indicatory
of a contamination event, regarding its capacity of
accumulating biotoxin easily and faster comparing
to the elimination process [9, 10], it. DSP biotoxins
also revealed to be the more dominant one, gener-
ally, as it is represented in fig. 2 in Ria de Aveiro
(RIAV1), as an example, but also supported by this
study [6], as the toxin most common in the Por-
tuguese maritime coast.

From this point, it was designed a case study to
analyze the impact that each area, DSP toxins con-
centration on shellfish and phytoplankton on water,
has in the following weeks on the concentrations of
its neighbors, by calculating the cross-correlation



coefficient within the range of a lagged time-window
settled between -8 and +8 lags, identify the higher
peak and the direction of that lag, and find prelim-
inary relations between the time series of each pair
of areas, through distinct methods, known as Pear-
son correlation and DPCCA, already explained in
section 2.

Since a higher correlation doesn’t mean a certain
dependency relation between both random wvari-
ables, a model to explain the multivariate inter-
timeslice dependencies was required. The graph-
ical model web tool used to built the DBNs
to model this contamination dependency scenar-
ios and compress the knowledge on a graph
was MAESTRO, and it can be accessed in
https://vascocandeias.github.io/maestro/.

3.3. Data Pre-Processing

To find model parameters and Bayesian network
structure, and train it, some data requirements al-
ready described in section 2 must be fulfilled. Al-
though the ability of Bayesian models to manage a
good model fit to data even with missing records,
this specific Bayesian architecture has a learning al-
gorithm that requires full observability, which asks
for a filling or replacement strategy of missing val-
ues. But at the same time it is common to reduce
as much as possible the bias added to the depen-
dency interpretation that may explain the contam-
ination phenomenon by toxic algae between neigh-
boring areas, on the imputation process of an un-
necessary amount of synthetic data, so that’s why
it is important to study time series completeness of
the relevant areas and its neighbors. The second
requirement is limiting the continuous values to a
number of pre-defined values, through the time se-
ries discretization.

First and foremost a best time period in common
for each pair was selected, fulfilling the same re-
quirements of an entity considered informative, to
reduce the bias that will come from filling missing
values with synthetic data, and also give richer time
series to better model the dependencies, since the
toxic contamination events are extremely rare.

The missing values from phytoplankton and
mostly toxins may come from the fact that there
are no need for sampling in-situ during the period
that the area is closed, since there are some rules
of thumb for how much weeks it should be closed.
So two methods were used consecutively to fill the
values with information aggregated from a rolling
average from 3 weeks before to 3 weeks after the
date of the missing record, and then the ones that
did happen on a bigger period with no weekly sam-
pling were filled on a more conservative way, i.e. by
their default value of detectable limit.

Then the DSP toxin time series is divided in three

levels, the first level between 0 and 10% below the
DSP limit value ([0-144]), the second level around
the limit, between 10% below the DSP limit value
and 10% above the DSP limit value ([144-176]) and
the third level between 176 and the maximum value,
being represented by 0, 144 and 176 as the respec-
tive labels for each interval. And the DSP phy-
toplankton also was discretized into three levels, a
small concentration of phytoplankton cells per liter
between the phytoplankton detectable limit of 20
and the toxic threshold of 200, excluding 200, a
medium concentration level between 200 and 2000,
and a higher concentration from 2000 to the maxi-
mum value, represented by 20, 200 and 2000 as the
respective interval labels.

3.4. Model Training

As the data already had been pre-processed, the
MAESTRO tool will only need to configure the
learning or training process of the DBN. There
is the option of learning a stationary or a non-
stationary DBN network, but since the time se-
ries have more than 300 time-slices or recording
events, the stationary network is more appropri-
ate to model this empirical data distribution. To
learn the stationary Bayesian structure, some pa-
rameters must be set, like the number of markov
lags, which empirically and for simpler experiment
purposes can be defined by 1 or 2 markov lags, 1 or
2 weeks respectively, in this case study 1 week be-
tween areas was assumed. The scoring function can
vary between the log-likelihood (LL) or the mini-
mum description length (MDL), where the LL score
is preferred over the MDL, because the way MDL
penalizes the structure learning process in terms of
adding parents, it forces the network to have only
one parent per node, and as it will be found on
cross-correlation analysis that one variable may not
be able to fully explain the variation of another
one, and the LL scoring function limited by the
maximum number of parents from preceding time-
slice(s) may show what other variables could help
to get more explainability. The maximum number
of parents were defined as 2 for preceding time-slice
parents, to help optimize the structure but mainly
to focus on the more informative interdependencies.
Finally the inter-slice relations between the same
variable has been forbidden by passing a comma
separated values file with this format example per
variable (1,dsp toxin Vale da Lama,dsp toxin Vale
da Lama,-1), allowing for other relations to stand
out, since from some experiments this were the most
returned, but assuming this is an empirical filter
this must be optimized in future work.



4. Results
4.1. Cross-Correlation Results

The correlation analysis showed that there are
statistical evidence that for almost every pair of ar-
eas the correlation peaks are around the same times-
lice, i.e. lag 0, or within the range of -2 and 2 weekly
lags, which is important to notice that exist some
relation between what happens a week before on
an area and a week after on a contiguous or more
distant area. Every time series pair phytoplankton-
phytoplankton between LAG and the other areas
are presented with a high positive coefficient on the
lag -1, meaning that in general the phytoplankton
at all the case study areas have a directly propor-
tional growth relatively to the phytoplankton at
Vale da Lama on the previous week, as it can be
observed in fig. 3.

(b)
Figure 3: South Case Study Phyto-Phyto Pearson
Correlations (a), and DPCCA Correlations (b).

By analysing the DSP toxins the correlation be-
tween DSP toxins at Quatro Aguas and Fortaleza
DSP toxins apart from having a lower Pearson cor-
relation of around 0.4 on both lag -1 and +1, was
the highest one among all pairs, but generally there
were higher correlations on lag +1 which can be

kind of counter intuitive, since the proliferation of
HAB and its dispersion should be gradual, and one
area could be impacted first, meaning that the toxin
concentration on shellfish on both production areas
gets high at the same time and there is no sequence
of toxin effect.

4.2. Dynamic Bayesian Models Results

After obtaining the indicative relations from the
cross-correlation analysis, the idea was to extract
from the dynamic Bayesian networks what are
the most probable conditions that helps the vari-
able of interest to get higher, i.e. an increase on
toxin or phytoplankton concentration, depending
on the time series relation. To confirm the rela-
tions that the cross-correlation coefficients already
pointed out to be high on 1 or 2 lagged time se-
ries, the minimum requirement is that at least that
inter-timeslice dependency was learned by the DBN
structure as one of the variables that contribute to
the explanation of the variation of the variable in
the next timeslice. If the correlation coefficient of
this relation was high as it shows to be in the LAG-
TAV time series cross-correlation, it means that
the variable at lag -1 explains the other time se-
ries growth, i.e. the phytoplankton at TAV has a
predictive linkage with the phytoplankton at LAG
in the previous week, thus the expected depen-
dency being like dsp_phyto_Vale_da_Lamal0] —
dsp,phyto,Quatm,Aguas[1], but not completely
otherwise it would be a Pearson coeflicient equal to
1, so another variable could help explain its growth
over time, and it can be discovered in the Bayesian
dependency model. If the relation had a lower co-
efficient, but indicative that would be dependent, it
is expected to be noticed a higher number of depen-
dencies on other inter-slice variables as well. Since
none of the variables were capable of having a cor-
relation equal to 1, the DBN learned a sub-tree for
each variable in the final state of the static network,
and these should have a maximum of 2 parents ide-
ally from the inter-slices and 1 from the intra-slice
as default, by using the log-likelihood as the scoring
function, as it is observed on the LAG-TAV DBN
in fig. 4.

dsp_toxins_Quatro_Aguas[0]
"‘
—
dsp_phyto_Quatro_Aguas[0] ﬁ
dsp_toxins_Vale_da_Lama[0] ‘ ' dsp_toxins_Quatro_Aguas|[1]
dsp_phyto_Vale_da_Lama[0] ‘ dsp_phyto_Quatro_Aguas[1]

Figure 4: LAG-TAV DBN

dsp_phyto_Vale_da_Lamal[1]
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0 1 176 2000 36
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Figure 5: Two Sub-CPTs of DSP toxins at Quatro Aguas (a) and at Vale da Lama (b), and the Sub-CPT
of DSP phyto at Quatro Aguas (¢) in LAG-TAV DBN

To analyze the probabilities and extract insights
that could confirm the indicative predictive linkage
from the cross-correlation analysis, an interpreta-
tion model was designed, to confirm or not, that
relation or dependency. First and foremost I try to
lock the variable in the same timeslice on a condi-
tional probability table (CPT) of a variable of in-
terest like dsp,phyto,Quatro,Aguas[1] and look for
conditional probabilities of the higher toxins levels
(144 and 176) or phytoplankton (200 and 2000) con-
centrations, higher than the probability of the low
level concentration. On the sub-CPTs with high
probabilities on the higher concentration states, it
is also expected that the conditional probability of
toxin or phytoplankton concentration on an area
would increase proportionally as its parents states
from the preceding time step gets higher as well, es-
pecially the one analyzed in cross-correlation, prov-
ing that the preliminary positive correlation with
the variable from the neighboring area did indicate
some prior degree of dependency, but for the other
variables it may vary. So if the conditional proba-
bilities were not as high as it was expected, it is im-
portant to show signs of proportional growth with

its parents from the preceding timeslices, and pref-
erentially by isolating the intra-slice parent, other-
wise it is not an interesting dependency analysis for
a predictive tool based on past information. Mean-
ing that the objetive is to find a possible impact
of each area toxin or phytoplankton concentration
growth on the probability of occurring toxic events
on their neighbors, may be shown on the increase
in the probability of having a higher toxin or phy-
toplankton concentration when it was high on past
weeks on its neighbors, and then conclude based
on that conditional probability increase that a DSP
toxin or phytoplankton measurement on a certain
area can potentially act as an early warning alert
with some probability.

To isolate the impact of the variable in the same
time step as the target variable and focus on the
probability growth and only look at the change
in states of the other variables from the preceding
timeslices, I need to nullify the other variable chang-
ing state, and to do that I can look to the CPT
table as having sub-CPTs in it, and for each set
of state combinations between the other preceding
variables, the variable to be blocked always have the



same value, i.e. it does not change its state. If there
are some higher probabilities on higher toxin or
phytoplankton concentration when there is a lower
concentration on the variable that was expected to
have a higher positive correlation, could mean the
contrary which means that the correlation should
be negative, since when one increases the other de-
creases. But it can simply be the events that hap-
pen less frequently and don’t contribute for a higher
cross-correlation, so there is not a clear and enough
evidence of a constant increase of toxins or phy-
toplankton in that direction, meaning that other
areas and environmental factors may help on the
proliferation and contamination as well.

In Vale da Lama (LAG) and Quatro Aguas
(TAV) DBN, the more expected inter-slice depen-
dencies were from dsp_phyto_Vale_da_Lamal0]

to dsp_phyto_Quatro_Aguas [1], and
from dsp_toxins_Quatro_Aguas|0] to
dsp_torins_Vale.da_Lama[l], and the DBN
structure confirms that dependencies. By ana-

lyzing the dsp_toxins_Vale.da_Lama[l] and the
dsp_toxins_Quatro_Aguas[l] node sub-CPTs of
the CPTs, the sub-CPT in fig. 5 where the isolated
variable is in the lowest state, shows that the
probability of DSP toxin concentration at Quatro
Aguas (TAV) above 176 pg/kg increases upon the
increase on both DSP toxins and DSP phytoplank-
ton concentration at Vale da Lama (LAG), on the
week before (1 lag). And on the opposite direction,
the probability of DSP toxin concentration at Vale
da Lama (LAG) between 144 ng/kg and 176 pg/kg,
i.e the discretized state equal to 144, there is also
an increase upon the increase in both DSP toxins
and DSP phytoplankton concentration at Quatro
Aguas (TAV).

So it seems that the DBN for this areas pair sug-
gests that there is no clear dominance in terms
of impact on either direction (LAG — TAV or
(TAV — LAG). The dsp,phyto,Quatro,Aguas[Z ]
already show a very high correlation with
dsp_phyto_Vale_da_Lama[0], but the dependence
with dsp_tozins_Quatro_Aguas[0] is obviously com-
pleting the explainability of the growth of phyto-
plankton at Quatro Aguas, since on both states
above the limit (200 and 2000), there is an increase
in the conditional probability only by increasing
the phytoplankton state at Vale da Lama, and only
when the toxins at Quatro Aguas state in the next
week is of 2000, getting a probability equal to 1.

The same analysis was performed for all the pairs,
and it was not possible to assume with high cer-
tainty the impact between the areas in the south
coast, but the expected sea current direction in
terms of phytoplankton dispersion was more or less
confirmed.

5. Conclusions

This project comes as a complement for regres-
sion predictive models, as a feature selection tool
for an inference model for some specific areas that
may need specific attributes given as input to learn
a regression model, a traditional or a deep learn-
ing one, and validate those models by giving an
interpretative perspective. The Dynamic Bayesian
networks built together with the cross-correlation
analysis, not only proves the degree of dependency
and correlation between the time series on different
areas, but also it translates what areas impact on
a toxic contamination occurrence more frequently
and could indicate with 1 week notice in what ar-
eas could happen as well with a probability associ-
ated. In conclusion this results can be further ex-
plored and improved, to provide a more informative
tool to solve the economic problem on all the chain
of shellfish harvesting activities, by including the
MARETEC phytoplankton from MOHID model or
the clorophyll-a from Copernicus data can have po-
tential to get more offshore information, and define
different intermediate locations that could influence
the more in-situ variables of IPMA such as phyto-
plankton and toxins.
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