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Abstract

Harmful algal blooms (HAB) create a natural contamination process of shellfish on production areas resulting

from the accumulation of biotoxins produced by the HABs presence in high concentrations. Not only the public

health problems have been the reason to develop predictive tools for this toxic events, but also the economic losses

that currently affect many producers because of the variability of contamination on different shellfish species and

harvesting areas. The goal was to find preliminary relations between the time series of the biotoxins concentration

in shellfish and phytoplankton cell counts on water samples, between pairs of areas on a case study area in the

south coast of Portugal, using correlation methods. The areas used for the analysis, that were on a potential

geographic location to study the impact between each one, showed to have more informative time series in terms of

its frequency of high toxic levels and the amount of records. A graphical model, named dynamic Bayesian network

(DBN), was built to extract the inter-timeslice dependencies, i.e. relation between the toxins and phytoplankton

concentration at an area on a week with the concentration in the next week on its neighbor. The cross-correlation

analysis showed that there is a higher positive relation from West to East in terms of phytoplankton dispersion,

which is what is expected, but there was not clear evidence by analyzing the conditional probabilities, if there is

an area that consistently explains what happens in the next week on its neighbors.
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Resumo

As aglomerações de algas nocivas, criam um processo natural de contaminação de mariscos nas áreas de produção,

resultado da acumulação das biotoxinas produzidas pelas altas concentrações de algas nocivas. Não só os proble-

mas de saúde pública, vieram trazer a necessidade de se criarem ferramentas preditivas para estes eventos tóxicos,

mas também os problemas e perdas económicos que atualmente afetam os demais produtores por causa da vari-

abilidade da contaminação, nas diferentes espécies e nas diferentes áreas de apanha de marisco. O objetivo era

encontrar relações preliminares entre as séries temporais das concentrações das toxinas e phytoplankton, entre os

pares de áreas dentro da área de estudo do sul da costa Portuguesa, usando métodos de correlação. As áreas usadas

para a análise, que estão numa localização geográfica potencial para serem estudadas, mostraram ser das mais in-

formativas em termos de frequência de nı́veis de toxicidade altos e da quantidade de registos. Um modelo de grafos,

chamado de rede Bayesiana dinâmica, foi também desenvolvido para extrair as dependências inter-temporais, isto

é a relação entre concentração das toxinas e phytoplankton de uma área numa semana, e a concentração na semana

seguinte de uma área vizinha. A análise da correlação cruzada mostrou que existe uma alta relação positiva de

Oeste para Este em termos de dispersão de phytoplankton, o que é o esperado, mas não houve evidências claras

ao analisar as probabilidades condicionadas, que haja uma área que de forma consistente possa explicar, o que

acontece na semana seguinte nas áreas vizinhas.

Palavras Chave

Contaminação de Marisco, Biotoxinas, Aglomerações de Algas Nocivas, Séries Temporais, Correlação, Redes

Bayesianas Dinâmicas

v





Contents

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Main Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work and Concepts 7

2.1 Background Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Time Series and its Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Dynamic Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3.A Learning a Stationary Model Structure and Parameters . . . . . . . . . . . . . . 12

2.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Bayesian Statistical Models on Shellfish Contamination . . . . . . . . . . . . . . . . . . 14

2.2.2 Shellfish Contamination Biological Theory . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Proposed Solution and Methodology 17

3.1 Data Collection and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 IPMA In-situ and Meteorological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Copernicus Remote Sensing Data and MARETEC Data from MOHID Model . . . . . . . 18

3.1.3 Merge Multivariate Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 The case study area and specie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1.A Production Area Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1.B Specie and Toxin Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Cross-Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Data Pre-Processing and Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Best Period Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



3.3.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Experimental Results and Discussion 27

4.1 Cross-Correlation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Dynamic Bayesian Models Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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4.15 OLH2-L9 DBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.16 Two sub-CPTs of DSP toxins at Fortaleza (a) and at Monte Gordo (b) in OLH2-L9 DBN . . . . . 41

4.17 TAV-L9 DBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.18 One sub-CPT of DSP toxins at Monte Gordo (a) and the sub-CPT of DSP phyto at Quatro Águas
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Chapter 1

Introduction

1.1 Problem Statement

Shellfish contamination is a great risk to public health, given shellfish is a human food source and its demand

is rising [1], requiring more production and harvesting regulations and monitoring systems regarding consumer

protection. Public authorities have implemented management plans with periodic measurements on contamination

of shellfish by different biotoxins produced by harmful microalgae, bacteria, e.g. Escherichia coli (E.coli), and

others, that within acceptable threshold values according to the species, will allow the opening of harvesting or its

closure otherwise [2].

Harmful algal blooms (HAB) are a natural part of the seasonal cycle of photosynthetic organisms in marine

ecosystems, resulting on fast proliferation of toxic phytoplankton. There has been many studies on how much the

uprising consequences of global warming and eutrophication are directly and undirectly related with this HAB

events [3–5]. For the time these events occur, shellfish may accumulate or eliminate biotoxins contamination,

depending on each species metabolic capabilities, and still remain contaminated and unsafe for human consump-

tion [6].

Water eutrophication, an increase in the rate of supply of organic matter to an ecosystem [7], results in excessive

phytoplankton growth, low dissolved oxygen, degeneration of submerged macrophytes, and increased frequency

algae blooms on coastal waters [8]. Normally it begins when there is an unbalanced and exceeded presence of

nutrients like nitrogen and phosphorus, since phytoplankton feeds from them, and consequently helps to proliferate

algal blooms [9]. And this nutrients’ condition variation is related with many different factors, such as the use of

sewage or waste water treatment technologies, on fertilizer application, on precipitation patterns, and on fresh-

water discharge [5].

Global Warming have shown evidence of temperature rising in the last decades. The effect of temperature on

phytoplankton physiology and metabolic processes is well known. First, under light-saturated conditions, higher

temperature increases specific phytoplankton productivity by acting on photosynthetic carbon assimilation. In
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addition, under non-limiting nutrient conditions, an increase in water temperature increases phytoplankton nutrient

uptake and consequently its growth and cell multiplication. [10]. In Portugal the period in which high levels of

toxins start to occur more frequently is around June and August, and generally around Europe, in the autumn and

winter season there is a tendency of registering higher toxin accumulation in shellfish due to lower elimination, i.e.

shellfish turn out to get a slower metabolism [11, 12].

Not all microalgae species are harmful, and its majority contribute to shellfish own nourishment and in some

cases there is a beneficial presence because it can significantly reduce faecal contamination [13]. E. coli is a

bacterium that when present indicates a faecal microbiological contamination, since it is most abundant on human

intestinal microflora, and overall is widely distributed in the intestine of warmblooded animals. Depending on the

strain it can cause gastrointestinal, urinary or nervous diseases, mainly when the fish or shellfish are not properly

cooked [14].

Thus it seems that a balance in the presence of many abiotic (non-living components in an ecosystem like

physical conditions) and biotic (living beings present in an ecosystem) factors are essential to bring some ecolog-

ical equilibrium. Nonetheless, phytoplankton species that are capable of producing marine biotoxins, are still a

serious public health hazard and the main challenge is identifying harmful phytoplankton, originated in different

climate conditions and from different geographic origins, in order to anticipate a biotoxin contamination on such

different coastal locations, like estuarines, lagoons and even more offshore areas with different oceanographic

characteristics, with the year to year variability of seasonal toxic peaks.

1.2 Motivation

Contamination by biotoxins can generate innumerous health issues through food intoxication with different type of

poisoning, and the five most commonly recognized are ciguatera fish poisoning (CFP), paralytic shellfish poisoning

(PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP) and diarrhetic shellfish poisoning

(DSP) [15]. According to the Portuguese monitoring program since 1985, the most reported HABs species are

Pseudo-nitzschia spp., Dinophysis spp. and Gymnodinium spp. among others, that respectively produce toxins

associated with ASP, DSP and PSP [12, 16].

There are already reactive measures to control the shellfish that goes into the public market or not, and the

harvesting closure moment, based on legal thresholds for biotoxins and E. coli concentrations established by Euro-

pean Regulations [17,18], adapted and monitored by the Portuguese Institute for the Sea and Atmosphere (IPMA),

as showned in Fig. 1.1. But apart from possible errors on measurements and classification, it would be highly de-

sirable to deliberately make the decision of not harvesting with anticipation, in order to prevent losses on shellfish

farmers from aquaculture production, harvesters and consequently the economy in the affected regions. And even

a higher entity such as maritime police, should have tools to apply jurisdiction measures on fishing practices on a

early basis warnings.
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Figure 1.1: Legal thresholds of main biotic factors on shellfish contamination. Adapted and translated from IPMA; Source:
http://www.ipma.pt/pt/shellfish/docs/index.jsp

In Portugal, the shellfish harvesting business just in Ria de Aveiro had a profit around C6 million, in 2021,

and since its an area with set of lagoons there is natural accumulation of phytoplankton. The shellfish production

areas have regional variability in terms of shellfish species, but some species dominate the production markets,

such as mussels and oysters. Only in 2020 the Irish shellfish production industry has an estimated profit total

of C51 million from around 24,000 tons [19], which show the big dimension of this activity. The main inshore

and offshore shellfish production and natural banks areas that are monitored weekly by IPMA are divided into 12

coastal areas, 7 estuaries, 3 lagoons and 16 rias, each one with different type of shellfish, represented in fig. 1.2.

Multiple sampling stations and environmental stations, extract data in-situ, such as toxins and faecal indicator

concentration on shellfish and phytoplankton cells density, temperature, wind and rainfall levels. The information

available is significantly enriched, including remote sensing data, such as sea surface temperature and clorophyll-

a concentration from satellite images taken of Copernicus program [20], and hydrodynamic and water nutrients

generated by the operational oceonographical model MOHID that simulate the transport of HABs alongshore

[21]. An HAB and Shellfish harvesting warning bulletin was developed by IPMA to show current condition and

one-week forecast of which production areas are open or close according to the biological regulatory values, the

empirical know-how, the modelling of how sea surface temperature and tide directions influence algal proliferation

and its position estimation through extracted variables like clorophyll-a [16].

3



Figure 1.2: Shellfish production areas across Portuguese coast as defined by IPMA (adapted for
IPMAhttps://www.ipma.pt/pt/bivalves/index.jsp)

In Ireland and Scotland were also implemented monitoring programmes with forecasting bulletins, that gen-

erate short-term predictions on the probability of occurrence of a toxic event, which can alert many aquaculture

production areas and other coastal natural harvesters [22]. This HAB warning solutions already brings delibera-

tive abilities to manage opening and closures of harvesting areas, but considering the different abiotic and biotic

factors that can be associated with HAB events, predictions by empirical rule-based models can be limited since

it is normally underfitted to the specific areas and environmental conditions. Machine learning (ML) models can

handle complex correlation between such time-dependent variables, generalize the model as much as possible by

continuously retraining, to predict shellfish contamination with robust learning from historical data or even model

the phenomenon causality.

1.3 Main Goals

This thesis was developed under the scope of research project “MATISSE: A Machine Learning-Based Forecasting

System for Shellfish Safety” (DSAIPA/DS/0026/2019), funded by the Foundation for Science and Technology,

which aims to mitigate economic losses on this sector, by anticipating the closure and opening periods.

4
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To complement the forecasting and to give more statistical assurance of how the forecasting results were the

ones retrieved, a dependency modeling of the contamination process was developed as the main goal for this

project. There are some works that already have tried to use multivariate models to forecast the toxin contamination

event that is ultimately what want to forecast, some are able to have good results for a one week prediction [22,23].

Another approach to this thesis was adopted under the MATISSE scope, to focus more on modeling the target

variables, which led me to get a model that could bring explainability to the event, by modeling the dependencies

between them and inform multivariate forecasting models of what could be the specific target for the contamination

problem on Portugal coastal areas. Other goal was to model how the occurrence of DSP contamination at a shellfish

production area could lead to the increase in toxins level or the phytoplankton concentration on other neighbor

production areas. But what it was an additional and interesting analysis at first, ended as the center topic of this

thesis.

As any other machine learning project, it can be divided into multiple different tasks. The first task and maybe

the most important one is gather the data from the different sources, format the data on a way that it’s easier to

integrate with all the other time series (Data Collection and Integration). Then from a exploratory data analysis

step, it’s possible to get to know better the data and get some patterns and insights from it. This way an experiment

can be designed and the data pre-processed, as each time series was collected in different ways, either in terms of

record frequency, the nature of the sampling procedure, the precision of the measurement, or even the sensor or

human error when recording the data, which will be more explained on chapter 3, to finally be given as input to

model the toxin contamination event.

1.4 Contributions

This thesis contributed to the construction of a data pre-processing pipeline, and with the integration of the mul-

tiple time series collected from multiple sources, namely IPMA and Copernicus satellite program. MARETEC, a

research center with its main activity focusing on water environment data extraction and modeling, also helped in

providing data on water nutrients and hydrodynamic variables. Finally to get a model to identify the conditional

dependencies between different variables, a Bayesian approach was adopted, and a framework already imple-

mented for training the Dynamic Bayesian Network models was used, called MAESTRO, and it can be accessed

in https://vascocandeias.github.io/maestro/.
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Chapter 2

Related Work and Concepts

This chapter will be divided into two sections. A more theoretical one describing the background of the solution

concepts on time series analysis and Bayesian networks parameters and structure learning. And a second one

which brings the state of the art on the usage of Bayesian statistical models that already tried to solve this problem,

by modeling the causality and even predicting the contamination event.

2.1 Background Concepts

2.1.1 Time Series and its Analysis

The source of information gathered to solve the shellfish contamination problem, is constituted by observed data

collected in-situ from shellfish and water samples, by meteorological sensors or generated by theoretical models

throughout time, named time series, which can record past patterns and information that can be used to forecast

future behaviors or even find relation between other variables from an independent collection process.

Time series is a sequence of values of a random variable, measured along time, with equally time spaced inter-

vals. Many exploratory tasks can extract information, and some indicative behavior from history including seasonal

and trend behaviours, stationarity, correlation between time periods and variables, and forecasting. Seasonality is

a component in which data patterns have stable frequency, i.e., recur over a fixed period, such as temperature mea-

surements on summer periods. Identifying and interpreting this behavior can be important on this specific project,

since variables like temperature and rainfall can show seasonal variations that could lead to phytoplankton growth

and E.coli spread, and may be considered when modeling the time series. Trend is a component that shows an

increasing or decreasing value in time series, extracted using a moving average on a window defined by the finer

period identified.

An important concept on a time series analysis and modeling is stationarity, since the accuracy of a model will

vary over time, i.e. sometimes could be right and some times do not. A time series is said to be stationary when
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the mean and variance are constant along time, so the variable distribution doesn’t change with time. Seasonal

behavior on time series is the antithesis of stationarity because it can result in a changing of variance over time,

and trends can result in a varying mean over time [24]. In time series forecasting it is also important to know the

dependence between values of the series, by estimating autocorrelations, and to do that with precision, the series

structure should be regular and not changing at every time step. However some models can model this components

and get more precise predictions.

Auto correlation is commonly used to choose the important lag features on a variable’s series, that on an auto

regressive model could make a good prediction of the current value yt. Lags are the sequence of values k time steps

before the current time t ∈ T . Intuitively the autocorrelation, given the Eq. 2.1, is nothing less than the correlation

or the degree of similarity between the current series and other lagged, usually being the Pearson coefficient.

rk =

∑T
t=k+1 (yt − y) (yt−k − y)∑T

t=1 (yt − y)
2 . (2.1)

Partial correlation also summarizes dependence on past observations, but only takes into account the direct

effect or correlation of the chosen lag that could help on the auto regressive model to predict the series in current

time step. It is calculated using the following Eq. 2.2:

rk =

∑T
t=k+1 (yt − y) (yt−k − y)∑T

t=k+1 (yt − y)
2∑T

t=k+1 (yt−k − y)
2 . (2.2)

In this research context there are multiple variables observed over time, to be considered to predict future

values of biotoxins concentration and HAB events, since each one may depend not only on its past values but also

on other variable, defining what is a MTS. For MTS forecasting the dependence knowledge between each variables

time series is important, and to calculate that the cross-correlation is measured between a pair of series.

The same method of lagging time series to calculate the correlation coefficient between two different time

series, where one stays fixed in time, and the second one is shifted backward or forward in time, as it is illustrated

in the table below.

Table 2.1: Two Different Time Series Lagged

Timestep A B A B (lag -1) A B (lag +1)
0 24 49 24 29 - -
1 29 29 29 47 29 49
2 32 47 32 31 32 29
3 36 31 36 30 36 47
4 25 30 25 23 25 31
5 16 23 - - 16 30

But the correlation must be measured after the decomposition of deterministic time series components. Because

trend make it seem like lags are very correlated. Detrended partial cross-correlation analysis (DPCCA) is another
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method to calculate cross-correlation, that also applies the partial correlation, removing the influence of the other

lags, but it detrends both the time series when calculating their correlation. The correlation coefficient is calculated

for multiple sub-series through a sliding window with a parameterized length s, which is then normalized by

the coefficient of each time series. This correlation can characterize time dependent relation on different time

scales [25].

2.1.2 Bayesian Networks

Biological processes such as Eutrophication, specifically algal proliferation, and consequently shellfish contami-

nation are complex and stochastic, so the probability representation seems appropriate given the uncertainty of the

abiotic and biotic factors evolution.

Bayesian networks are a family of graphical representations of distributions, that uses a directed acyclic graph

to map dependencies and independencies between multiple random variables, by setting one-way edges from the

source to the target variable. These models are useful because both the structure and the parameters provide a

natural representation for many types of real-world domains [26].

Figure 2.1: A directed acyclic graph of a set of random variables X = X1, X2, X3, X4, X5.

This dependency graph allows to break a high dimensional distribution, into small factors and the factorization

used on a Graphical Model such as a Bayesian Network (BN) already constrains all the possible probabilities over

a set X = {X1, . . . , XN}, which reduces the inference time complexity.

The factors ϕ = {φ1 (X1) , φ2 (X2) , φ3 (X1, X2, X3) , φ4 (X3, X4) , φ5 (X3, X5)} in the Fig. 2.1, define all

conditional dependencies and independencies, where each node Xi is associated with a conditional probability

distribution (CPD), that turns into a marginal distribution on nodes with no parents like X1 and X2. A joint

distribution of an event with evidence from variables Xi is then calculated applying a chain rule, that is a factor

product of ϕ probabilities:
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P (X1, X2, X3, X4, X5) = P (X1) · P (X2) · P (X3|X1, X2) · P (X4|X3) · P (X5|X3) . (2.3)

Which can be defined in a more generalized way, considering B the BN, and pa the node’s parents:

PB(X1, . . . , Xn) =

n∏
i=1

PB(Xi|pa(Xi)). (2.4)

There are two ways of getting a BN to model a problem, by empirically setting the structure G and the proba-

bilities or parameters θ with expert knowledge, or by learning G as an optimization of θ.

θijk = PB(Xi = xik|pa(Xi) = wij), (2.5)

Where i is the index for all possible random variables on vector X , k ∈ {1, . . . , ri} is the index for possible

values or states ri of a continuous or discrete variable Xi, respectively, j ∈ {1, . . . , qi} is the index for possible

combinations of values or states rl on vector qi =
∏

Xl ∈ pa(Xi)
rl of the continuous or discrete parents’ variables l

of node Xi, respectively and θijk is the parameter or the probability for a certain node Xi to take its configuration

xik, given that its parents take their configuration wij .

On a collection or dataset D of records or instances with n random variables, a set of BNs Bn with different

combinations of n variables is the search space to find which one maximizes the likelihood of the parameters θBn
.

The heuristic used for this optimization problem its a commonly used scoring function, log-likelihood [27], and

the search algorithm can be a simple hill-climbing. There are other approaches to get a better graph structure to

represent D and at the same time a more generalized one, able to estimate a good approximation of the posterior

of unobserved evidence.

After finding the optimal G, for modelling the dependencies of multiple time series variables, this framework

can provide inferences of posterior probabilities, i.e. a conditional probability of given a set of observed evidence

E, that are values from Xi variables, what is the most probable value of a time series variable Xi, P (Xi =

xik|Xj = ei), ei ∈ E. The inference is given by:

P (Xi = xik|Ei = ei) =
P (Xi = xik, Ei = ei)

P (Xj = ei)
. (2.6)

A structure restriction algorithm such as Belief Propagation, is usually used to perform an exact inference,

since the joint probability calculated with factorization using Eq. 2.4 can be a complex task, thus tree networks are

adopted or even approximation inferences in clustered graphs.

It has already been showed that the biomass of an harmful algae named Microcystis were mainly explained by

a combination of abiotic factors like water temperature and total nitrogen, within others [28]. But regarding the

cyanobacteria process of releasing the toxin microcystin (lysis), it isn’t an immediate outcome, i.e. the presence

algae bloom predicted, may not mean that in that same time instance there will be high concentration of biotoxins,
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so the abiotic and biotic factors should not be modelled as synchronized variables but modelled with different

time-dependence. And such framework is built with Dynamic Bayesian Networks (DBNs) [28].

2.1.3 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN) are an extension of BNs, that can model both discrete and continuous vari-

ables, whose values change over time, and the network is able to propagate the probability distribution of the

factors in the graph through time, that now turn probabilities into trajectories (an assignment of a value to each

variable Xi at each time t).

To represent these multiple variables trajectories on a problem where the measurements are not in real time,

and there is some time granularity in common, the timeline is discretized into time slices. As for the variables

available in this problem, each time slice will correspond to 1 week. By considering the same conditional indepen-

dence assumptions, but now within each time slice (intra-slice) and between each time slice (inter-slice) variables

distributions, the probability of all random variables X along time T is:

P
(
X(0:T )

)
= P

(
X(0)

) T−1∏
t=0

P
(
X(t+1)

∣∣∣X(0:t)
)

(2.7)

the P (X(0)) is the joint probability of the random variables at time step t=0, the initial distribution represented

on a prior BN B0, and the following conditional probabilities by a set of transition BNs B→. It defines a de-

pendency of the joint distribution of X at a time step t + 1 on the joint probability distribution of all variables’

trajectories, within [0 : t], that is infeasible to calculate since it is exponentially expensive to propagate such

complex structures through time.

So usually a first simplifying Markov assumption is applied to only get conditional dependency on m timesteps

before t. Simplifying eq. (2.7):

P
(
X(0:T )

)
= P

(
X(0)

) T−1∏
t=0

P
(
X(t+1)

∣∣∣X(t−m:t)
)

(2.8)

A second simplification can be made depending on the problem in hands, i.e. having stationary transition

networks between time slices or not, i.e. assuming time invariance if stationary implying the same transition

model P
(
X(t+1)

∣∣X(t)
)

for all t.

DBNs are complex models with different possible BNs configurations, and make assumptions that may require

appropriate model design, such as Markov assumption and Time Invariance. Therefore learning the structure and

parameters of a DBN is also complex, since there are now intra-slice and inter slice dependencies to map. If the

DBN follows the second assumption of being stationary, both structure and parameters are constant throughout

time slices, and the intra-slice dependencies are always the same, and only the inter-slices dependencies must be

learned. Still, if we want an optimal problem representation, both dependencies must be learned.
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Figure 2.2: DBN unrolled for 3 time steps.

A fixed template transition model such as in fig. 2.2, based on the stationary property, and given the initial

distribution of all variables, let us unroll the network over sequences of any length, i.e. it allow us to make

inferences in the long-term notice.

Inference in DBNs estimates values of unobserved variables, at a given time step, using algorithms like

forward-backward or particle filtering. If the goal is predicting the value in the past, it is known as Smoothing. If it

is for predicting the values of variables with no evidence at the current time, it is known as Filtering and in future

time slices is considered Prediction.

2.1.3.A Learning a Stationary Model Structure and Parameters

The structure learning algorithm starts by initializing a complete directed graph, with bidirectional dependencies

between all variables at timestep t+1, i.e. the intra-slice connectivity, as in fig. 2.3. Then rather than using mutual

information to calculate the score for each edge, as in [29] where the edges are undirected and the score from a

node Xi[t+ 1] to Xj [t+ 1] is equal in both directions, this adapted tree-augmented DBN learning algorithm uses

a score that allows to learn intra and inter time-slice relations between variables to guarantee an optimal network,

that expresses the gain in the total network score by including an intra-slice parent in X[t+1] or only with parents

from preceding time-slices X[t + 1]. But this does not restrict the complexity yet on the number of parents from

the previous time-slices X[t], which could also be connected, so the maximum number of parents p from preceding

time-slices must be set as well. The weight for each edge eij is then assigned as

eij = sij − si, (2.9)
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Figure 2.3: Complete DAG with all the possible connections.

with the si being calculated as

si = max
Xp[t]ϵX[t]

ϕi(Xp[t], D
t+1
t ), (2.10)

where ϕi is the scoring function, and Dt+1
t is the fully observed data concerning the time transition t −→ t+1.

So sij is calculated as

sij = max
Xp[t]ϵX[t]

ϕi(Xp[t] ∪Xj [t+ 1], Dt+1
t ). (2.11)

The scoring function used can be log-likelihood (LL) or the minimum description length (MDL), where the

first one is usually prone to overfitting since its value increases proportionally to the number of parents added,

since the entropy will never increase, so this score LL(G|D) = −N × ENTD(X1[1]|X2[0], X3[0], X2[1]) +

ENTD(X2[1]|X1[0]) + ENTD(X3[1]|X3[0], X4[0], X4[1]) + ENTD(X4[1]|X1[0], X4[0]) + ENTD(X1[0]) +

ENTD(X2[0])+ENTD(X3[0])+ENTD(X4[0]), will never decrease. And the second one uses a penalty factor

proportionally to the number of parents added to the tree, MDL(G|D) = LL(G|D) − 1
2 log(||D||).||G||. The

maximum spanning tree algorithm is then used to obtain the set of directed edges where the sum of all the scores

is maximum, also removing whatever cyclical relations may exist, which defines the final directed acyclical graph,

i.e. the stationary dynamic Bayesian network, such as in fig. 2.4.

The ENTD(Xi[t+ 1]|Xp[t]), assuming the set of discrete values n for the node Xi[t+ 1] and the set q of the

values combinations from the preceding timeslice parents Xp[t] is given by
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Figure 2.4: Learned DBN.

ENTD(Xi[t+ 1]|Xp[t]) =

n∑
i=1

q∑
j=1

P (ni, qj)log
P (ni, qj)

P (ni)P (qj)
. (2.12)

The DBN parameters, which are the conditional probabilities of each node, are calculated in a straightforward

frequency calculation of events with each particular combination of values for each sub-DAG.

The next section will revise the state of the art of Bayesian statistical models for shellfish contamination phe-

nomenon explanation but mostly for forecasting.

2.2 State of the Art

2.2.1 Bayesian Statistical Models on Shellfish Contamination

There has been studies focused on DBN framework to model different type of problems like for water eutrophica-

tion factors causality and inference [8,30], and others for emerging HABs risk or biotoxins concentration like [31].

A non fully observed BN framework with an Hidden Markov Model structure, with water eutrophication level

as the hidden variable, where each state affects the observed observation patterns composed by clorophyll-a con-

centration and a set of principal components resulting from a feature selection of abiotic variables like temperature,

wind and others, has been used to forecast following values of a biotoxin [31].

There is also a study that take the advantage of modelling multivariate time series with a DBN, and from the

transition networks on intra and inter time-slices it can extract outliers, i.e. a set of observed evidence with low

probability, and can be used to help identifying anomalous combination of values on the biotic and abiotic factors
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of the MTS available, that could mean a contamination moment on this particular problem [32].

It could be relevant as well, to map the causality and inter-relations between contiguous areas, by applying an

hierarquical BN representation [31], of coastal areas with multiple sampling points like estuaries or lagoons, and

even between some of the bigger areas.

2.2.2 Shellfish Contamination Biological Theory

Normally marine biotoxins concentration are extracted from shellfish tissue samples, since it is the most direct

method of monitoring shellfish contamination, which can be a process that differs from species to species, since

the accumulated amount of toxins within the tissues of filter feeding shellfish, may not be that evidential since

each specie has a proper accumulation and elimination process. The phytoplankton concentration is measured on

a specific instance in time, and the biotoxins concentration at toxic levels may only be expressed some days after

an HAB event, which may vary again because of the different species metabolism. The increase on proliferation

and density of phytoplankton is studied along many studies, that try to prove which are the most indicative abiotic

factors that contribute to this phenomenon [33].
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Chapter 3

Proposed Solution and Methodology

3.1 Data Collection and Integration

3.1.1 IPMA In-situ and Meteorological Data

IPMA’s biological time series, of DSP, ASP and PSP both toxins and phytoplankton concentration was collected

from IPMA’s website monthly report. The toxins records are ordered by date on a table that registers its concen-

tration on each sampling station, but apart from having to correct some production areas, sampling stations and

species names, some sampling tests values that are indicative of some thresholds like the value being above 2400

µg/kg, or non-detectable (ND), non-quantifiable (NQ) or even not registered (NR), were replaced by the threshold

values or missing value respectively. For example the values registered as “>2400” were replaced by 2400, the

“ND” or “NQ” values were replaced by the toxin quantification detectable limit, as being 36 µg/kg for DSP toxins,

1.8 µg/kg for ASP, and 71 µg/kg for PSP, and the “NR” values were replaced by “n/a”. The phytoplankton time

series records for each production area, went through the same process of names typos correction and the not

numerical interpretative values, like “LD”, now representing samples with cell counts too low to be detected, were

replaced by the a detectable limit value of 20 cel/L provided by IPMA.

The environmental factors collected daily by meteorological stations, were provided by IPMA from a set of

20 stations with time series of air temperature, wind intensity and direction, and precipitation as daily averages

values from 2015-2020. These time series records only had a value of -990 each time there were a missing value,

that were replaced by “n/a” for a posterior analysis. From 2021 the data was provided with a hourly granularity,

which needs to be aggregated by day, but before replace the -990 value, representing the missing value for “n/a”,

and then an average aggregation function can be applied by day except for wind direction that a mode function is

preferable. Then to integrate with the sampling point granularity, the meteorological and sampling stations were

merged by the closest locations, originating a meteorological dataset for each sampling point.
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3.1.2 Copernicus Remote Sensing Data and MARETEC Data from MOHID Model

Through Copernicus satellite remote imagery of Atlantic Ocean regions it was collected scientific photography of

the nearshore points closest to IPMA’s sampling points. This satellite images get information through recording

the electromagnetic spectrum wavelengths on each pixel, of sea surface temperature (SST) and clorophyll-a (CHL-

A). Each product receives as input a set of geographic coordinates within an area covering a sampling station

geolocalization, and then it outputs a multidimensional array with indices composed by time instance, latitude and

longitude and the respective value. So as the multidimensional arrays varied in terms of granularity, the indexing

passed through a process of finding the best latitude and longitude values around the sampling stations coordinates,

by visualizing on a map like the one in fig. 3.1 for each production area.

(a) Analyzed SST at L1. (b) Analyzed CHL-A at L1.

Figure 3.1: Copernicus Data Points around the sampling stattion of L1

Finally the MARETEC estimated water property and hydrodynamic variables from MOHID model, for some

production areas, and the original files on an ets format were transformed to a csv format.

3.1.3 Merge Multivariate Time Series

There are 38 production areas across the Portuguese coast, some having more than one sampling station, totalling

60 sampling points, where each one could have different species, which results on a set of 263 entities with the

respective key as (Production Area — Sampling Point — Specie). From these 263 entities a preliminary selection

was applied to only filter in entities with at least 156 records of biotoxins concentration, i.e. 3 years of weekly

records of the variables of interest, resulting on only 33 entities, almost one per production area, from what could
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be the most relevant specie within each production area.

Now from these preliminary entities IPMA’s biological and meteorological data is merged. IPMA’s biological

data is collected in-situ, the biological properties on water samples, like toxic phytoplankton for each production

area and the biotoxins concentration from shellfish tissue samples on the respective sampling point of that produc-

tion area. Both sets of IPMA’s biological records have a weekly granularity, but they don’t match neither on the day

of the week nor the weekly frequency, since there are some missing records during some periods, and also some

sampling analysis can get repeated on the same day or happen two times a week on different days. So a new weekly

frequency index is created for both time series, from 2015/01/01 to the 2020/12/31, where the weekly record value

will now be the rolling mean of the 7 days around the new index date in the center, so it aggregates the time series

values from 3 days before to 3 days after and apply the average value. In case it hasn’t any record on that week

period, it means that no sample record where registered around that time, so it is a real weekly missing record.

Since IPMA’s meteorological data has a daily granularity, to merge it is only necessary to get the day closest to

the day of the new index, except for wind direction that will use a rolling mode to get the weekly predominant

direction, then it is a basic merge by date.

To merge the previous multivariate time series with the Copernicus remote sensing imagery data of clorophyll-

a, sea surface temperature, and the MARETEC data, both were merged by getting the record on the day closest to

the day of the new index.

3.2 Exploratory Data Analysis

The data analysis allows to extract data patterns and get insights from what variables could trigger the natural chain

of biological effects and generate a contamination process on shellfish. One approach is to get evidence of some

relation between variables, like analyzing two time series against each other throughout the years and with the time

series lineplots try to identify same trends with consistent positive or negative relations. After that confirm through

correlation and cross-correlation if that trend direction in fact results on a high correlation, and finally prove it by

getting an inter or intra slice relation within the Bayesian network.

The study started by finding the main affected areas, that on a more deep analysis could be labeled as the

toxic contamination events main area indicators and/or the more proliferating ones. After that the study cases were

defined within different coastal zones, to investigate a possible dependency chain between the concentration of

phytoplankton and biotoxins of a relevant area and the concentration of its neighboring areas. This case studies

definition required as well the same process of finding a common period with the minimal requirements of getting

at least a time series with length of 104 records (2 years), both having less than 20% missing values but now at

least one of the entities should have 5% of high toxin concentration and at least one entity should have 5% of high

phytoplankton concentration. If there isn’t a common period that respect this requirements, that pair of areas or set

of areas are no longer considered for analysis.
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That investigation began with a bivariate analysis between time series of toxins on an area against toxins on

a contiguous area, between the phytoplankton time series, by calculating the cross-correlation between each pair

of areas within each coastal zone case study, with the purpose of getting a preliminary notion of inter and intra-

timeslice relations I could expect. The stronger and more direct relations can easily be revealed from this analysis,

paying more attention to correlations on when the time series are lagged by 1 or 2 time steps, as expected in theory.

But some relations may need other complementary variables to explain the toxic phenomenon, which may be found

when modeling the data with the dynamic Bayesian networks.

3.2.1 The case study area and specie

Since there are 33 sampling stations, the problem scope is too much complex to study all the relations between all

the variables and all areas. So an experiment must be designed to reduce this complexity and get multiple simpler

contamination events to solve and explain the causality in the beginning.

3.2.1.A Production Area Analysis

To help on reducing the problem scope a method of ranking the entities by its time series high toxicity and com-

pleteness was designed. First of all iterate over all 33 entities and rank every possible period of each entity from

the biggest one starting on the first possible date and ending in the last record date to the smallest one possible

with a minimum of 104 records, i.e. 2 years of records, by iterating the starting date and then iterate over all dates

until the last record date to define the final date of the period. The entity period scoring function takes into account

the percentage of high toxicity events, the percentage of missing values of both toxins and phytoplankton, the

number of weekly records and also the percentage of high phytoplankton concentration (perc high dsp toxin,

dsp toxins % na, period week length and perc high dsp phyto, respectively, at the table in fig. 3.2). The

number of weekly records, and both percentages of high toxicity and phytoplankton concentration are converted to

a range of values between 0 and 1, where the closer to 1 the bigger the number of records or percentage, whereas

with missing values percentage it’s the other way around with the same range from 0 to 1 but now the closer to 1

the smaller the percentage, which is what is desired, and in the end all is summed up as a final score. The idea is

to get for each area the biggest and most complete time series period in terms of the primary variables of interest

(biotoxins and phytoplankton), with less than 20% of missing values, but also with a minimum percentage of high

toxicity events of 5%, which means that at least five times out of 100 toxin records the concentration would sur-

pass the respective toxin limit (160 µg/kg for DSP, 20 µg/kg for ASP, 800 µg/kg for PSP) since this is the event

of main interest on this study. Additionally even if there aren’t periods on an entity that fills the high toxicity

percentage conditions, there is still the possibility of being relevant to model the causality of a contamination event

on its neighboring areas and be a potential contamination dispersion point, if it gets a percentage of phytoplankton

concentration higher than 5%, which means getting more than 200 cel/L. In the case when the entity gets a period

with the minimum considered high toxicity events and phytoplankton concentration it means that most probably
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is a type of production area prone to proliferate HAB blooms and the shellfish metabolic capacity of accumulat-

ing biotoxins is higher than the elimination. When it only registers more than 5% of high toxicity events but not

high phytoplankton concentration, could mean that is a type of production area that doesn’t retains so much toxic

phytoplankton but it is sufficient to contaminate the shellfish with toxins.

Figure 3.2: Entities Scoring and Statistics Table

A ranking table with all the top entities was ordered by the score. By looking at the table in fig. 3.2 and ac-

cording to the previous knowledge on shellfish market predominant production areas, 3 different testing scenarios,

with the potential combinations of areas around the top entities in different zones, as the Ria de Aveiro (RIAV1),

Lagoa de Albufeira (LAL) and Quatro Águas at Ria Formosa (TAV), could be set. By defining 3 scenarios with

closer neighboring entities, I could model the probable contamination chain around the top area, which can be the

most affected by toxin contamination by the surrounding areas and/or gather good oceonographic conditions to

hold and proliferate phytoplankton in a way that is the responsible for contamination events on its neighbors. As it

was expected more to the North, Ria de Aveiro (RIAV1), more precisely at Piscicultura, is one of the areas that got

the most informative length of records within the minimum requisites of relevancy defined previously, and showed

that is both informative on toxicity and phytoplankton agglomeration. I would expect that by the proximity be-

tween the areas to model the contamination causality the neighbors would be LOB and L2, but unfortunately there

weren’t considered relevant in terms of toxicity and completeness. More to the center the selected top area was

Lagoa de Albufeira (LAL), Jangada as the sampling point, since its a lagoon and it shows the same conditions of

phytoplankton retention as RIAV1 which can be confirmed by looking at the graphs on Figure 3.3 of the frequency

of high toxicity on shellfish and high HAB toxic events among the different type of regions, that lagoons and rias

are most likely to register high toxic phytoplankton than high toxicity on shellfish. And LAL potential neighbors

are Trafaria (ETJ1) and Caparica (L5b) by proximity, which also are among the relevant areas. At the South coast

closer to the windward side the LAG as the top area, and more to the leeward side TAV seems to be a top area,
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i.e. the most affected area on that side, where the neighbors can be LAG and other top areas around as well, like

Fortaleza (OLH2) and Monte Gordo (L9).

(a) High toxicity frequency distribution over the years. (b) High HAB frequency distribution over the years.

Figure 3.3: Frequency of Toxic events per type of region over the years.

When assuming that my areas relations are only pairs, maybe I’m loosing some relevant information since the

phytoplankton can go two different ways. So the preliminary models, when I had no idea of the contamination

impact between areas, I can have 2 neighbors from both sides of the local top area. In the end to keep the model

simpler with less complex structures and parameters, at least the first ones, it’s easier and feasible to do it in pairs

around the top area.

On a forecasting perspective the selection of the best period as being the part of the time series with more events

of interest, could be seen as a biased selection, by getting the model to overfit on a specific time period and most

certainly getting worse results when a new year records with less events of interest is inserted in the model. But on

a dependency study point of view, mainly when using Bayesian models, if the prior knowledge on the phenomenon

is richer it converges easily to a better dependency structure.

3.2.1.B Specie and Toxin Analysis

Regarding the different species and toxins present on different sampling points, this project focused on the toxin

that showed more frequency on values above the regulatory limit, as the DSP dominance is apparent on the time

series plots in Figure 3.4, being these toxins the most common in the Portuguese coast [34].

And the mussels as the specie that were considered the most indicative of a contamination event on the produc-

tion area, since is the reference specie to alert a high toxicity levels of this toxin type, because they have the better

biotoxin accumulation capacity than elimination [12, 35].
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(a) DSP toxins time series (b) ASP toxins time series

(c) PSP toxins time series

Figure 3.4: Toxins Time series of Ria de Aveiro, Piscicultura

3.2.2 Cross-Correlation Analysis

The cross-correlation analysis were done using both Pearson, to find linear relations between variables, and the

DPCCA already explained in the previous chapter 2, for all the areas identified as relevant. By only looking at the

cross-correlation plots, if the correlation with lag 1 or 2 are not yet 0, there is already some indication that the past

observations may help to predict the present value so it is an important indicator of some relation between time

series.

3.3 Data Pre-Processing and Feature Selection

To find model parameters and Bayesian network structure, and train it, some data requirements already described

on chapter 2 must be fulfilled. Although the ability of Bayesian models to manage a good model fit to data even

with missing records, this specific Bayesian architecture has a learning algorithm that requires full observability,

which asks for a filling or replacement strategy of missing values. But at the same time it is common to reduce as

much as possible the bias added to the dependency interpretation that may explain the contamination phenomenon

by toxic algae between neighboring areas, on the imputation process of an unnecessary amount of synthetic data,

so that’s why it is important to study time series completeness of the relevant areas and its neighbors. The second

requirement is limiting the continuous values to a number of pre-defined values, through the time series discretiza-

tion.
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For simplification purposes, but maintaining the main goal of modeling the contamination impact between

different production areas, the time series that will be used from each area are only the DSP toxins and DSP

phytoplankton.

3.3.1 Best Period Selection

The best period selection assures that I can reduce the bias that will come from filling missing values with synthetic

data. The process is the same as the one that ranks each single area in terms of time series completeness and high

toxicity frequency, but now the period interval iterated is applied to both areas of each pair, as well as the conditions

to be considered a common good period. The best one is chosen by looking at the one that got the best score among

all, which reduce the number of records of both areas time series. The idea behind obtaining the best period, is

also to obtain richer time series with the purpose to provide more toxic events to the DBN models to better model

the dependencies.

3.3.2 Imputation

The missing values from phytoplankton and mostly toxins may come from the fact that there are no need for

sampling in-situ during the period that the area is closed, since there are some rules of thumb for how much weeks

it should be closed. After the record selection a filling strategy was divided in two methods. The first one being the

moving average, which only completes the time series records that have at least two complete records values on a

window with a length of 7 records, where the one in the center is the missing record, so it looks for the average

value from 3 weeks before to 3 weeks after. But this method cannot fill all missing records so a more conservative

is then used to fully fill the DSP toxin and phytoplankton time series, with their default value of detectable limit.

3.3.3 Discretization

A first reduction on the levels of discretization per variable could be the most coarser one, with two levels of

discretization for both toxins and phytoplankton time series, which would be below the toxic threshold and above,

but the the main adapted one was chosen manually with some theoretical intuition, and by following a study that got

better Bayesian model results when having more than just two levels, but less than five [36]. The DSP toxin time

serie is divided in three levels, the first level between 0 and 10% below the DSP limit value ([0-144]), the second

level around the limit, between 10% below the DSP limit value and 10% above the DSP limit value ([144-176])

and the third level between 176 and the maximum value, being represented by 0, 144 and 176 as the respective

labels for each interval. The DSP phytoplankton also was discretized into three levels, a small concentration of

phytoplankton cells per liter between the phytoplankton detectable limit of 20 and the toxic threshold of 200,

excluding 200, a medium concentration level between 200 and 2000, and a higher concentration from 2000 to the

maximum value, represented by 20, 200 and 2000 as the respective interval labels.
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3.4 Model Training

The idea is to study the impact each area has on other areas when its phytoplankton and toxin concentration

are at their highest levels or near the limit a week or two weeks before their neighbors also observes that toxic

proliferation increase. The graphical model web tool used to obtain the dynamic bayesian network to model this

contamination dependency scenarios was MAESTRO, see fig. 3.5. MAESTRO includes data pre-processing tools

with imputation and discretization methods to prepare any dataset variable to be a valid input to train a DBN model,

but as I wanted to make a more specific data treatment to this particular time series, the data was already prepared

before being loaded to the MAESTRO platform. Since all the time series were already processed, a DBN model

configuration page appears automatically with multiple ways to choose the model learning process parameters.

Figure 3.5: MAESTRO configuration page for training a DBN

There is the option of learning a stationary or a non-stationary DBN network, but since the time series have

more than 300 time-slices or recording events, the stationary network is more appropriate to model this empirical

data distribution. To learn the stationary Bayesian structure, some parameters must be set, like the number of

markov lags, that empirically should be of 1 or 2 markov lags, 1 or 2 weeks respectively, since assuming there is

a phytoplankton dispersion period before the shellfish accumulating the toxins and then after another week period

there may be exist evidence of toxin contamination. The scoring function can vary between the log-likelihood

(LL) or the minimum description length (MDL), where the LL score is preferred over the MDL, because the

way MDL penalizes the structure learning process in terms of adding parents, it forces the network to have only

one parent per node, and as it will be found on cross-correlation analysis one variable may not be able to fully
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explain the behavior of another one, and the LL scoring function limited by the maximum number of parents

from preceding time-slice(s) may show what other variables could help to get more explainability. Intuitively the

more independent variables are modeled as parents of a possible toxin contamination, the more the conditional

probability of having a high dsp toxin concentration knowing the different combinations of that independent vari-

ables decreases. So the number of maximum parents must be limited. And to restrict the search space on the

optimization process of learning the best DBN structure forbidden inter-slice or intra-slice relations may be de-

fined to help focus on the more informative interdependencies. In this case, the inter-slice relations between the

same variable has been forbidden by passing a comma separated values file with this format example per variable

1,dsp toxin Vale da Lama,dsp toxin Vale da Lama,-1, allowing for other relations to stand out, but assuming this

is an empirical filter this must be optimized in future work.
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Chapter 4

Experimental Results and Discussion

In this chapter, the results obtained were focused on the coastal zone where there are more entities within the pre-

conditions tailored for this experiment, settled and explained in the previous Chapter, such as Vale da Lama (LAG),

Fortaleza (OLH2), Quatro Águas (TAV) and Monte Gordo (L9). This set of production areas are also promising to

show the hypothetical predictive linkage of an area with its neighbors because of its distance between each other

and the geographical and maritime conditions, since there is evidence of the direction of the sea surface current

at south coast of Continental Portugal being broadly originated from the Azores current extended to the Gulf of

Cadiz, thus having a eastward direction, i.e. from West to East [37].

4.1 Cross-Correlation Results

To calculate the correlation between entities DSP toxin and DSP phytoplankton time series, the cross-correlation

methods used were the traditional Pearson method and DPCCA, already presented, as another method more ap-

propriate to evaluate the correlation between time series without the influence of trend and other lags.
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Figure 4.1: Fortaleza (OLH2) and Vale da Lama (LAG) phytoplankton time series on a specific period

For every possible pair within the case study scenario, the correlation was calculated for all the multiple pairs

of time series, only considering the DSP toxin and phytoplankton time series for each entity. First of all there are

statistical evidence that for almost every pair of areas the correlation peaks are around the same timeslice, i.e. lag

0, or within the range of -2 and 2 weekly lags of the lagged time-window settled between -8 and 8, which is what

is more important for our study on the impact between entities on distant areas to have a predictive perspective for

a longer term notice.

Figure 4.2: South Case Study Toxins-Toxins Pearson Correlations
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Figure 4.3: South Case Study Toxins-Toxins DPCCA Correlations

Now analyzing the direction of the correlation in terms of time series lag for each pair, all the phytoplankton-

phytoplankton, in fig. 4.4 and fig. 4.5, correlations between LAG and the other areas are specially highly positive

on the lag -1. By looking at a specific period of both phytoplankton time series at Vale da Lama and Fortaleza in

the lineplot in fig. 4.1, some consecutive relation of high concentrations can be visualized, but there is not total

certainty of that dependency direction dominance. Also the correlation between DSP toxins at Quatro Águas and

Fortaleza DSP toxins apart from having a lower Pearson correlation on both lag -1 and 1, the DPCCA reveals

some relation for both lag direction, which means both areas could have a high positive relation between each

other in terms of toxins concentration, fig. 4.2 and fig. 4.3, on the same timeslice or on lag -1 where the DSP toxin

concentration at TAV is somehow indicative of the DSP toxin growth in OLH2, and the opposite on lag +1. This

can be kind of counter intuitive, since the proliferation of HAB and its dispersion should be gradual, and one area

could be impacted first, meaning that the toxin concentration on shellfish on both production areas gets high at

the same time and there is no sequence of toxin effect. Of course this assumption is being made not taking into

consideration, the different geographic and maritime conditions surrounding the areas.

Figure 4.4: South Case Study Phyto-Phyto Pearson Correlations
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Figure 4.5: South Case Study Phyto-Phyto DPCCA Correlations

There is a consistency in terms of lagged direction with the highest correlation between every time series pair

(phytoplankton-phytoplankton and toxins-toxins), which is from West to East for phytoplankton and the opposite

direction for toxin impact as it is observed in fig. 4.6.

A high correlation coefficient, on this case a correlation closer to 1 or -1, does not mean a certain dependency

relation between both random variables, and there is even less certainty if the correlation is around values that

merely indicate some degree of positive correlation like 0.4 or 0.3 as the most lags above get. So a way to

study a more multivariate dependency analysis is to model this pairs of variables for each entities pair with the

Bayesian models, and find which exogeneous variables, i.e. variables that are not explained by other variables

within a model, best help provide information, explain and predict each endogeneous variable, i.e. variables that

are explained by other variables within a model, in the next weekly timeslice.
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Figure 4.6: Map of South Areas and their interdependencies only based on cross-correlations

4.2 Dynamic Bayesian Models Results

Each pair of entities were modeled with the objective of finding the optimal structural graph with at least 1 Markov

lag until a maximum of 2 lags, since there is fewer data and since the higher peaks were around the lag 1 and 2,

not considering the lag 0. Also to control the model complexity, because the more parents each node has the more

the DBN structure is prone to overfitting, considering the amount of observed data we have and the two variables

per area to model. This common problem known as curse of dimensionality, has a scientific principle saying the

simplest model must be preferred, that is a problem-solving statement as know as Occam’s razor principle. So the

simplicity is assured by the parametrization of the DBN structure learning process defined in chapter 3, where each

node could only get two parents from preceding timeslices maximum.

Since in the exploratory data analysis it was already noticeable that the toxic contamination events were ex-

tremely rare by looking at the percentages of high values of DSP toxins and phytoplankton above the limit on the

more relevant entities, and even occurring more at the same time step on different production areas than within a

shifted time-window period of 1 to 2 weeks, as it can be observed in the cross-correlation graphs where the peaks

are all almost in the lag 0, the conditional probabilities are expected to be low for each possible variable state where

the DSP toxin or phytoplankton concentration are high, and only a few times higher than the lowest state on very
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specific conditions of its neighbors states.

After obtaining the indicative relations from the cross-correlation analysis, the idea was to extract from the

dynamic Bayesian networks what are the most probable conditions that helps the variable of interest to get higher,

i.e. an increase on toxin or phytoplankton concentration, depending on the time series relation. The main fo-

cus was to confirm the relations that the cross-correlation coefficients already pointed out to be high on 1 or 2

lagged time series, for example the phytoplankton in LAG and the phytoplankton in OLH2 in fig. 4.4, and the

minimum requirement is that at least that inter-timeslice dependency was learned by the DBN structure as one of

the variables that contribute to the explanation of the variation of the variable in the next timeslice. And if the

correlation coefficient of this relation was high as it shows to be in the LAG-OLH2 time series cross-correlation,

it means that the variable at lag -1 explains the other time series growth, i.e. the phytoplankton at OLH2 has a

predictive linkage on the phytoplankton at LAG in the previous week, thus the expected dependency being like

dsp phyto V ale da Lama[0] −→ dsp phyto Fortaleza[1], but not completely otherwise it would be a Pearson

coefficient equal to 1, so another variable could help explain its growth over time, and it can be discovered in

the Bayesian dependency model. If the relation had a lower coefficient, but indicative that would be dependent, it

could be noticed a higher number of dependencies on other inter-slice variables as well. Since none of the variables

were capable of having a correlation equal to 1, the DBN learned a sub-tree for each variable in the final state of

the static network, and these should have a maximum of 2 parents ideally from the inter-slices and 1 from the

intra-slice as default, by using the log-likelihood as the scoring function.

To analyze the probabilities and extract insights that could confirm the indicative predictive linkage from the

cross-correlation analysis, an interpretation model was designed, to confirm or not, that relation or dependency.

First and foremost I try to lock the variable in the same timeslice on a conditional probability table (CPT) of

a variable of interest like dsp phyto Fortaleza[1] and look for conditional probabilities of the higher toxins

levels (144 and 176) or phytoplankton (200 and 2000) concentrations, higher than the probability of the low level

concentration. On the sub-CPTs with high probabilities on the higher concentration states, it is also expected that

the conditional probability of toxin or phytoplankton concentration on an area would increase proportionally as its

parents states from the preceding time step gets higher as well, especially the one analyzed in cross-correlation,

proving that the preliminary positive correlation with the variable from the neighboring area did indicate some prior

degree of dependency, but for the other variables it may vary. So if the conditional probabilities were not as high as

it was expected, it is important to show signs of proportional growth with its parents from the preceding timeslices,

and preferentially by isolating the intra-slice parent, otherwise it is not an interesting dependency analysis for a

predictive tool based on past information. Meaning that the objetive is to find a possible impact of each area toxin

or phytoplankton concentration growth on the probability of occurring toxic events on their neighbors, may be

shown on the increase in the probability of having a higher toxin or phytoplankton concentration when it was high

on past weeks on its neighbors, and then conclude based on that conditional probability increase that a DSP toxin

or phytoplankton measurement on a certain area can potentially act as an early warning alert with some probability.
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To isolate the impact of the variable in the same time step as the target variable and focus on the probability

growth and only look at the change in states of the other variables from the preceding timeslices, I need to nullify

the other variable changing state, and to do that I can look to the CPT table as having sub-CPTs in it, and for each

set of state combinations between the other preceding variables, the variable to be blocked always have the same

value, i.e. it does not change its state. If there are some higher probabilities on higher toxin or phytoplankton

concentration when there is a lower concentration on the variable that was expected to have a higher positive

correlation, could mean the contrary which means that the correlation should be negative, since when one increases

the other decreases. But it can simply be the events that happen less frequently and don’t contribute for a higher

cross-correlation, so there is not a clear and enough evidence of a constant increase of toxins or phytoplankton

in that direction, for example OLH2 to LAG, meaning that other areas and environmental factors may help on

the proliferation and contamination as well. Also if the correlation analysis, showed considerably high positive

coefficients on both directions, for example by looking at the DPCCA coefficient of toxins relations of Quatro

Águas shifted 1 week backward (lag -1) from Fortaleza time series approximately 0.4, and the coefficient of

Quatro Águas shifted 1 week backward (lag +1) approximately 0.5, and the DBN analysis also confirms that are

events on both directions, there is not sufficient information to state that one area impacts more than the other with

statistical assurance.

4.2.1 Vale da Lama (LAG) - Quatro Águas (TAV)

The more expected inter-slice dependencies were from dsp phyto Vale da Lama[0] to dsp phyto Quatro Águas[1],

and from dsp toxins Quatro Águas[0] to dsp toxins Vale da Lama[1], and the DBN structure confirms that de-

pendencies, see fig. 4.7.

Figure 4.7: LAG-TAV DBN
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By analyzing the dsp toxins Vale da Lama[1] and the dsp toxins Quatro Águas[1] node sub-CPTs of the

CPTs in appendix A, the sub-CPT in fig. 4.8 where the isolated variable is in the lowest state, shows that the

probability of DSP toxin concentration at Quatro Águas (TAV) above 176 µg/kg increases upon the increase on

both DSP toxins and DSP phytoplankton concentration at Vale da Lama (LAG), on the week before (1 lag). And

on the opposite direction, the probability of DSP toxin concentration at Vale da Lama (LAG) between 144 µg/kg

and 176 µg/kg, i.e the discretized state equal to 144, there is also an increase upon the increase in both DSP toxins

and DSP phytoplankton concentration at Quatro Águas (TAV).

(a)

(b)

(c)

Figure 4.8: Two Sub-CPTs of DSP toxins at Quatro Águas (a) and at Vale da Lama (b), and the Sub-CPT of DSP phyto at
Quatro Águas (c) in LAG-TAV DBN

So it seems that the DBN for this areas pair suggests that there is no clear dominance in terms of impact on

either direction (LAG −→ TAV or (TAV −→ LAG). The dsp phyto Quatro Águas[1] already show a very high

correlation with dsp phyto Vale da Lama[0], but the dependence with dsp toxins Quatro Águas[0] is obviously

completing the explainability of the growth of phytoplankton at Quatro Águas, since on both states above the limit
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(200 and 2000), there is an increase in the conditional probability only by increasing the phytoplankton state at

Vale da Lama, and only when the toxins at Quatro Águas state in the next week is of 2000, getting a probability

equal to 1.

4.2.2 Vale da Lama (LAG) - Fortaleza (OLH2)

For the pair LAG-OLH2 the inter-slice dependencies more expected were from dsp phyto Vale da Lama[0] to

dsp phyto Fortaleza[1], and from dsp toxins Fortaleza[0] to dsp toxins Vale da Lama[1], and the DBN structure

in fig. 4.9 confirms that dependencies.

Figure 4.9: LAG-OLH2 DBN

First by analyzing the dsp toxins Vale da Lama[1] node sub-CPT of the CPT, there is a clear increase of the

probability on both intervals of high toxin concentration at LAG as the toxins concentration at OLH2 rises, but it

starts to be dependent of its own concentration of phytoplankton which could be normal since there should exist

some DSP phyto concentration on the area itself. The other toxin relation in the opposite direction shows that there

is a clear evidence that the DSP toxin concentration at OLH2 not only depends on the DSP toxin concentration at

LAG, but also on the increase of the phytoplankton concentration at LAG, but now the probability of the higher

value toxin concentration state, reaches 1 in two situations, without depending on the intra-slice variable, by

nullifying its variation at state 36. But there is also evidence of occurring at the same time without depending

only on the increase of the variables from preceding timeslices, with some specific conditions as it is shown

in fig. 4.10(b). The dependency between dsp phyto Vale da Lama[0] and dsp phyto Fortaleza[1] that has a 0.7

correlation coefficient only has a case where the conditional probability of the phytoplankton concentration state

2000 is higher than the probability of the state 20, that is when the dsp phyto Vale da Lama[0] is equal to 2000.
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(a)

(b)

(c)

Figure 4.10: Two Sub-CPTs of DSP toxins at Vale da Lama (a) and at Fortaleza (b), and the Sub-CPT of DSP phyto at Fortaleza
(c) in LAG-OLH2 DBN

4.2.3 Vale da Lama (LAG) - Monte Gordo (L9)

According to the cross-correlation analysis both from dsp toxins Monte Gordo[0] to dsp toxins Vale da Lama[1]

and from dsp toxins Vale da Lama[0] to dsp toxins Monte Gordo[1], and the positive peak at lag -1 on the relation

from dsp phyto Vale da Lama[0] to dsp phyto Monte Gordo[1], and the DBN structure analysis is focused on

finding this impacts, and try to find other variables that may help explain the positive correlations.

36



Figure 4.11: LAG-L9 DBN

First and foremost by looking at the CPTs in appendix A, there is clear evidence that the probability of DSP

phytoplankton at Monte Gordo being at the higher states (200 or 2000), are equal to one third (0.333) only when the

concentration of phytoplankton at Vale da Lama are at the highest concentration states (200 and 2000), apart from

not existing a set of states conditions from its parents nodes with a probability higher for the higher concentration

levels than the lowest level (20). The opposite direction of phytoplankton relation is not informative enough to be

modeled as a dependence in the DBN in fig. 4.11, which may suggest that the expected impact direction happens

more frequently indeed and with a positive correlation verified. The low correlation between toxins at L9 a week

before and LAG in the next week, which was the highest coefficient from both directions, is confirmed by the

lack of explainability of the DBN model when increasing only the variable dsp toxins Monte Gordo[0] in the

week before. And the two specific conditions where the toxin concentration in LAG is high with a conditional

probability equal to 1, assuring that this type of contamination levels are only expressed in LAG when there is also

a higher concentration of phytoplankton in LAG in the same timeslice. Also in the opposite direction, there is not

any dependence on the preceding timeslice, i.e. from dsp toxins Vale da Lama[0] to dsp toxins Monte Gordo[1].

4.2.4 Fortaleza (OLH2) - Quatro Águas (TAV)

Assuming that for both toxins and phyto time series, the correlations of lag +1 and lag -1, which is like saying

the correlations from dsp toxins Quatro Águas[0] to dsp toxins Fortaleza[1] and from dsp toxins Fortaleza[0]

to dsp toxins Quatro Águas[1], and the same for the phytoplankton, were more or less equally positive for both

influence directions and on both cross-correlation methods. So the dependency analysis was done to all DBN

nodes.

Looking at the toxin concentration at Fortaleza CPT in fig. 4.13(a), there is enough evidence to show that
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Figure 4.12: OLH2-TAV DBN

is highly probable to have high concentrations levels with a proportional increase of toxins in both toxins and

phytoplankton at Quatro Águas, suggesting a lagged predictive link from TAV to OLH2 direction. The toxin con-

centration at Quatro Águas, has a dependence with a variable from the same timeslice, and the CPT in fig. 4.13(b)

it shows more evidence on the toxin concentration state of 176 µg/kg at Quatro Águas. But by locking the vari-

able in the same timeslice, only on the sub-CPT with toxins at Fortaleza on state 36, it is observed a proportional

growth of the probability in state 176 at Quatro Águas when the toxins at Fortaleza in the week before rises. And

unlike the opposite toxin relation, that only has parents from the preceding timeslice and only from its neighbor,

the toxins in the next week at Quatro Águas still depend on its own state information, meaning Fortaleza has low

information on toxins at Quatro Águas as expected has it had the lower correlation comparing with both lags -1

and +1. I’ve also analyzed both directions for phytoplankton concentration impact on both areas, and as it was

expected both probabilities of high phytoplankton concentration levels (200 or 2000) increase proportionally with

the phytoplankton concentration at the respective neighbor in the sub-CPTs in fig. 4.14(a) and fig. 4.14(b), and

both have some cases of the probability being higher on the higher states than on the lowest state (20).
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(a)

(b)

Figure 4.13: Two Sub-CPTs of DSP toxins at Fortaleza (a) and at Quatro Águas (b) in OLH2-TAV DBN
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(a)

(b)

Figure 4.14: Two sub-CPTs of DSP phyto at Fortaleza (a) and at Quatro Águas (b) in OLH2-TAV DBN

4.2.5 Fortaleza (OLH2) - Monte Gordo (L9)

Assuming the highest correlations, the expected inter-slice dependencies were from dsp phyto Fortaleza[0] to

dsp phyto Monte Gordo[1], and from dsp toxins Monte Gordo[0] to dsp toxins Fortaleza[1], and the phytoplank-

ton dependency is the only one the DBN structure does not learn.

Figure 4.15: OLH2-L9 DBN
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On the expected toxin impact direction with higher positive relation, in fig. 4.16(a), it seems to exist two set of

conditions where the probability of the DSP toxins concentration are higher than the probability of the lower state,

apart from the case when the probability equals to 1 on state 176 when the toxin concentration at Monte Gordo is

at state 36. The probability of getting high toxin concentration in L9, in fig. 4.16(b), also gets multiple cases of

existing high concentration of toxins at Monte Gordo when there was both low or high concentration of DSP toxins

at Fortaleza, but the probability of toxin concentration at Monte Gordo on state 144 increases proportionally to the

concentration in Fortaleza, needing also the increase of the second variable of the previous timeslice, going from

0.096, to 0.143, 0.333 and to 0.667, with the dependency of increasing the variable in the same timestep. These

analysis suggests that there is no clear evidence of a noticeable impact on a certain direction.

(a)

(b)

Figure 4.16: Two sub-CPTs of DSP toxins at Fortaleza (a) and at Monte Gordo (b) in OLH2-L9 DBN
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4.2.6 Quatro Águas (TAV) - Monte Gordo (L9)

The expected inter-slice dependencies were from dsp phyto Quatro Águas[0] to dsp phyto Monte Gordo[1], and

from dsp toxins Quatro Águas[0] to dsp toxins Monte Gordo[1] or from dsp toxins Monte Gordo[0] to dsp toxins Quatro Águas[1],

since the correlations on lag -1 and +1 are more or less equally correlated on both cross-correlation methods.

Figure 4.17: TAV-L9 DBN

For the expected toxins impact relations, both are only dependent on variables of the neighbor, and apart from

both having some high conditional probabilities of higher concentrations when its neighbors are on the lowest

concentration state, the probability of DSP toxins at Monte Gordo on state 176, shows some proportional growth

from 0.286, to 0.462 and finally to 1 with toxins above the limit at Quatro Águas and the phytoplankton as well,

as shown in fig. 4.18(a). The phytoplankton relation from TAV to L9 that had the highest correlation between lag

-1 and lag +1 on both correlation methods, have a stochastic conditional probabilities distribution since for almost

all the possible states the probability is 0.333 independently of its parents conditions, as observed in fig. 4.18(b),

except for one set of conditions, where the state of phytoplaknton was at 20 at Quatro Águas, where the probability

is higher than the other states.
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(a)

(b)

Figure 4.18: One sub-CPT of DSP toxins at Monte Gordo (a) and the sub-CPT of DSP phyto at Quatro Águas (b) in TAV-L9
DBN
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Chapter 5

Conclusion and Future Work

The necessity of anticipating the shellfish contamination event can be tackled from different ways, i.e. multiple

different solutions that complement each other in terms of modeling the phenomenon and get an theoretical ex-

planation as complete as possible. This project comes as a complement for regression predictive models, where

the level of the concentration is forecast from feeding an approximated function with multivariate time series. The

Dynamic Bayesian networks built together with the cross-correlation analysis, not only proves the degree of de-

pendency and correlation between the time series on different areas, but also it translates what areas impact on a

toxic contamination occurrence more frequently and could indicate with 1 week notice in what areas could happen

as well with a probability associated.

Apart from not being able to assume with high certainty the impact between the areas in the south coast, the

expected sea current direction in terms of phytoplankton dispersion was more or less confirmed, and the advantage

of creating this model is that it creates a compressed way of visualizing the conditional distributions and take

insights from which are the concentration of toxins and phytoplankton on a neighboring area that may translate on a

toxic event in the week after that. Which could be a predictive tool to estimate the probability of occurring biotoxin

contamination on shellfish and being continuously updating the likelihoods to get a more precise prediction, by

using the prediction feature of MAESTRO and training again the DBN model respectively. Also it can be used

as a feature selection tool for an inference model for some specific areas that may need specific attributes given

as input to learn a regression model, a traditional or a deep learning one, and validate those models by giving an

interpretative perspective.

To get more interesting inter-dependencies results, it can be added the already pre-processed and integrated

meteorological time series of IPMA, the oceanographic ones from MARETEC, and the imagery sensor variables

already extracted from Copericus products, which can be updated to have the latest data. And also the DBN

training process can have different configuration, as the markov lag being increased to 2 lags, studying a more

sparse effect throughout time, since other variables can be added to the network. As future work, the pipeline of

the data processing step is complete and available at my GitHub page, which I can give access by request, where all
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the exploratory data analysis and data preparation for MAESTRO format can be replicated and altered on the last

modified Jupyter notebook. A possible future hypothesis to be verified is knowing that if the wind and sea current

direction predominance coming from the North would potentiate phytoplankton blooms dispersion from Caparica

or Trafaria to Jangada, there were high conditional probabilities of having high concentration of toxins passing

two weeks on Jangada from the high concentration on Caparica or Trafaria. From the sea surface temperature I

would expect a intra-slice dependence between it and phytoplankton or maybe between that same phyto variable

but 1 week after getting high temperatures. If there isn’t that kind of results the justification could be that the

oceonographic behavior between coastal areas and lagoons is more complex, and this must be taking into account,

but also the lack of data and all the methods applied to data pre-processing, such as imputation, discretization

can influence the results. Furthermore the MARETEC phytoplankton from MOHID model or the clorophyll-

a from Copernicus data can have potential to get more offshore information, and define different intermediate

locations that could influence the more in-situ variables of IPMA such as phytoplankton and toxins. Both products

are sources of data that can be gathered on a more adequate way, to model the phytoplankton dispersion and

other environmental factors influence through other intermediary locations, mainly from more offshore data. This

intermediate points between potential pairs of areas could help to model the actual direction of phytoplankton

dispersion with more precision.

In conclusion this results can be further explored and improved, to provide a more informative tool to solve the

economic problem on all the chain of shellfish harvesting activities.
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Appendix A

Complete Conditional Probabilities Tables

A.1 LAG-OLH2 DBN

Figure A.1: CPT of DSP Toxins Concentration at LAG conditioned in timeslice 1, with pair OLH2
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Figure A.2: CPT of DSP Phyto Concentration at LAG conditioned in timeslice 1, with pair OLH2

Figure A.3: CPT of DSP Toxins Concentration at OLH2 conditioned in timeslice 1, with pair LAG
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Figure A.4: CPT of DSP Toxins Concentration at OLH2 conditioned in timeslice 1, with pair LAG
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A.2 LAG-TAV DBN

Figure A.5: CPT of DSP Toxins Concentration at LAG conditioned in timeslice 1, with pair TAV
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Figure A.6: CPT of DSP Phyto Concentration at LAG conditioned in timeslice 1, with pair TAV
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Figure A.7: CPT of DSP Toxins Concentration at TAV conditioned in timeslice 1, with pair LAG

Figure A.8: CPT of DSP Phyto Concentration at TAV conditioned in timeslice 1, with pair LAG
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A.3 LAG-L9 DBN

Figure A.9: CPT of DSP Toxins Concentration at L9 conditioned in timeslice 1, with pair LAG
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Figure A.10: CPT of DSP Phyto Concentration at L9 conditioned in timeslice 1, with pair LAG
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Figure A.11: CPT of DSP Toxins Concentration at LAG conditioned in timeslice 1, with pair L9

Figure A.12: CPT of DSP Phyto Concentration at LAG conditioned in timeslice 1, with pair L9

A.4 OLH2-TAV DBN
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Figure A.13: CPT of DSP Toxins Concentration at OLH2 conditioned in timeslice 1, with pair TAV

Figure A.14: CPT of DSP Phyto Concentration at OLH2 conditioned in timeslice 1, with pair TAV
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Figure A.15: CPT of DSP Toxins Concentration at TAV conditioned in timeslice 1, with pair OLH2
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Figure A.16: CPT of DSP Phyto Concentration at TAV conditioned in timeslice 1, with pair OLH2
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A.5 OLH2-L9 DBN

Figure A.17: CPT of DSP Toxins Concentration at OLH2 conditioned in timeslice 1, with pair L9

Figure A.18: CPT of DSP Phyto Concentration at OLH2 conditioned in timeslice 1, with pair L9
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Figure A.19: CPT of DSP Toxins Concentration at L9 conditioned in timeslice 1, with pair OLH2
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Figure A.20: CPT of DSP Phyto Concentration at L9 conditioned in timeslice 1, with pair OLH2
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A.6 TAV-L9 DBN

Figure A.21: CPT of DSP Toxins Concentration at TAV conditioned in timeslice 1, with pair L9

Figure A.22: CPT of DSP Phyto Concentration at TAV conditioned in timeslice 1, with pair L9
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Figure A.23: CPT of DSP Toxins Concentration at L9 conditioned in timeslice 1, with pair TAV
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Figure A.24: CPT of DSP Phyto Concentration at L9 conditioned in timeslice 1, with pair TAV
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