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Abstract—Marine plastic pollution represents a maritime en-
vironmental emergency that needs to be addressed. Floating
plastic debris must be detected, captured, and removed from
the ocean, in order to preserve such a fragile ecosystem. In
this work, it is shown that floating plastic debris are not only
detectable but also distinguishable from other floating materials,
such as driftwood, seaweed, sea snot, sea foam, and pumice, in
optical data from the European Space Agency (ESA) Sentinel-
2 satellites, using a supervised learning method trained with
data compiled from published works and complemented by some
manual interpretation of satellite images. The proposed model,
an Extreme Gradient Boosting (XGBoost) trained with seven
spectral indices and two spectral bands, successfully classified
98% of the pixels that contained floating plastic debris in coastal
waters. Additionally, due to the need for more floating plastic data
in the training dataset, synthetic data were generated through
a Wasserstein Generative Adversarial Network (WGAN). A
supervised model trained only with synthetic data successfully
classified plastic pixels with an accuracy of 91%. Finally, to
build a system that provides reliable results when applied in real-
world conditions, an ensemble model that quantifies uncertainty
was created. This novel approach correctly classified 79% of
the plastic pixels. However, the number of misclassifications
decreased significantly compared to the model with the highest
accuracy, making it the best option to monitor the ocean.

Index Terms—Marine Pollution; Floating Plastic Debris;
Sentinel-2; Remote Sensing.

I. INTRODUCTION

GLOBAL plastic production has been steadily increasing,
reaching 380 million tonnes produced only in 2015,

which represents around 190 times the value in 1950 [1]. The
largest market sector for plastic resins is packaging [2], so
most of these products are designed for immediate disposal.
Thus, plastic makes up a significant percentage of all solid
waste generated and, since none of the commonly used plastics
are biodegradable and only a small portion may be recycled
or incinerated, they accumulate, rather than decompose, in
landfills or the natural environment [3]. Therefore, in countries
where waste management infrastructure is lacking, plastic
waste enters water bodies.

Approximately 65% of the synthetic polymers produced
have a lower density than seawater [1]. Hence, because of their
durability, these buoyant objects accumulate on the ocean’s
surface and travel worldwide through ocean currents. The
most well-known proof of substantial marine plastic accu-
mulations is in the North Pacific Gyre. The so-called Great
Pacific Garbage Patch is estimated to comprise almost 79000
tonnes of plastic [3], including not only macroplastics (plastic

particles > 5 mm), such as abandoned fishing nets, bottles, and
containers, but also microplastics (< 5 mm), which usually
result from the fragmentation of larger plastic items.

These debris affect marine ecosystems in multiple ways.
One of its most visible effects is the entanglement of or-
ganisms, such as birds, turtles, mammals, and fish, often
resulting in death by drowning, suffocation, or strangulation.
If not instantly fatal, it causes injuries and wounds, leading
the animal to starvation through reduced feeding efficiency
and making it difficult to escape predators [4]. Many marine
creatures mistake plastic for food and ingest it. Ingestion of
plastic can cause lacerations in the digestive system, and its
retention in the organism has potential negative consequences
for reproduction and growth [5]. Since animals carry these
debris in their bodies, plastic is already part of human’s
food chain, and it might affect human health. Finally, marine
plastics present a range of negative economic impacts. A study
estimated that the economic costs of marine plastic, as related
to marine natural capital, are conservatively conjectured at
between $3300 and $33,000 per tonne of marine plastic per
year, based on 2011 ecosystem service values and marine plas-
tic stocks [6]. For all these reasons, industries, governments
and communities, especially coastal communities, must take
immediate action to prevent plastic waste from entering the
hydrosphere. However, even if the world stopped generating
plastic waste, macroplastics would persist on the ocean’s
surface for many more years. Therefore, these plastics must
be detected, captured, and removed from the oceans.

Using earth observation data to detect marine plastic debris
accumulations is a recent area of research, but some early
studies show promising results [7], [8]. Satellites are a reliable
data source thanks to their efficiency in covering extensive
areas over time without human interaction and their cost-
effectiveness. This work investigates how satellite imagery can
be combined with machine learning to detect floating plastic
debris in coastal waters automatically. It differs from previous
studies since its primary goal is to differentiate floating plastic
debris from water and from debris that show similar spectral
reflectance, such as sea snot, sea foam, and pumice. It also
proposes a way to augment the training data available using
synthetic data created with deep generative models.

Section II introduces prior work on the detection of plastic
in satellite imagery. Section III describes the satellite used to
collect data. In section IV the steps taken to collect and pre-
process the data are described. Additionally, it is shown how
synthetic satellite pixels were generated. Section V introduces
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spectral indices and the classification algorithm used in this
work. Furthermore, it presents the uncertainty quantification
method proposed herein. Section VI shows the results of every
model tested, as well as some results in real-world conditions,
and describes the limitations of the best model. In section VII
conclusions are outlined besides potential research paths for
future work.

II. RELATED WORK

In the past few years, research on floating plastic debris
detection and monitoring using data from ship-based visual
surveys [9], unmanned aerial vehicles (UAVs) [10], numerical
models [11], and cameras deployed at beaches [12] have
revealed promising results. Despite the relative success of
these methods, they do not provide an option for monitoring
larger spatial scales [13]. Therefore, the use of satellites is the
method with the most potential in this area, even though being
affected by some physical and technical limitations, namely
cloud interference, atmospheric and sea-surface effects, and
the instrument’s spatial resolution.

In 2018, Topouzelis et al. [14] created the Plastic Litter
Project (PLP) to explore the feasibility of detecting man-
made plastic targets in the aquatic environment using data
from UAVs and from the Copernicus Sentinel-2 satellites.
Direct comparison of the UAV data with the Sentinel-2 satellite
image led to the conclusion that spectral reflectance of floating
plastic positively correlates with the percentage pixel coverage
of each target. The following year, in the PLP 2019 [15],
it was concluded that marine litter can be detected with at
least 25% of the Sentinel-2 pixel covered in plastic. The
potential causes for misidentification of plastic pixels were
also identified: clouds, shadows, vessels, fumes, sun glint and
bottom reflectance on the coastline. In the PLP 2020, the same
research group created large reference plastic targets. In 2021,
during the PLP 2021, those targets were deployed in Gera
Gulf, Greece, and, despite no studies published yet related to
these last two PLPs, all information is available online [16].
These studies represent a substantial source of marine plastic
debris data.

Similarly to the PLPs, Themistocleous et al. [17] investi-
gated the detection of floating plastic litter using a Sentinel-2
image and UAV data of a three-by-ten-meter artificial target
made of water bottles placed in the sea near in Limassol,
Cyprus. Seven spectral indices were examined and two new
were developed: the Plastic Index (PI) and the Reversed Nor-
malised Difference Water Index (RNDVI). The study found
that the target was easier to detect in the Near-infrared (NIR)
wavelengths, and the PI was the most effective index in
identifying plastic. However, when the PI was applied to the
coast of Limassol, several misclassifications were reported,
mainly related to boats with plastic surfaces.

Kikaki et al. [18] investigated the capability of satellite
sensors in detecting marine plastic debris over the Bay Islands
and Gulf of Honduras between 2014 and 2019. In situ data
were collected through vessels and diving expeditions. The
detection of plastic litter was performed manually by compar-
ing the spectral signatures of the pixels with the ones reported

in the literature. It is not possible to assess the accuracy of
this method. However, it provides data that future studies can
use and validate. The study highlights the need for automated
methods capable of detecting marine plastic pollution.

Biermann et al. [7] assessed the capability to distinguish
plastic from other floating debris, such as timber and seaweed,
using Sentinel-2 imagery. Two spectral indices were used:
the Normalised Difference Vegetation Index (NDVI) and the
newly developed Floating Debris Index (FDI). When FDI
and NDVI were examined together, all the floating materials
studied (i.e., seawater, seaweed, timber, plastic, sea foam
and pumice) showed distinct clustering. Then, they tested a
Naı̈ve Bayes classifier (trained with 53 pixels of plastic, 48
of seaweed, 60 of timber, 17 of spume, and 20 of seawater)
with data from PLP 2018 [14] and PLP 2019 [15], and it
correctly classified plastic with an accuracy of 86%, whereas
3% of plastic pixels were classified as seawater and 11% as sea
foam. This study shows that the spatial and spectral resolution
of Sentinel-2 is sufficient for macroplastics accumulations to
be distinguishable from water and other floating debris.

The previous study boosted floating plastic debris research.
Multiple scientific reports published afterwards use machine
learning algorithms along with the NDVI and the FDI. For
example, Basu et al. [8] used two supervised and two unsu-
pervised classification algorithms to detect floating plastic in
coastal waters. Five Sentinel-2 images from previous studies
[14], [15], [17] were considered to build a dataset, which
resulted in 59 pixels with floating plastics. Then, a combi-
nation of six spectral bands, the NDVI, and the FDI, were
selected to develop the models. The supervised classification
outperformed the unsupervised clustering algorithms. The best
model had an accuracy of 96,7%.

Despite the differences, every study highlights the need for
more plastic data collected globally. The models that showed
the best results rely on supervised classification methods,
which are highly dependent on the supplied training samples.

III. SATELLITE

TABLE I
SENTINEL-2 SPECTRAL BANDS, THEIR CENTRAL WAVELENGTHS AND

SPATIAL RESOLUTIONS.

Sentinel-2A Sentinel-2BSpectral Band

Central wavelength, λ (nm) Central wavelength, λ (nm)

Spatial Resolution (m)

B1 442,7 442,2 60

B2 492,4 492,1 10

B3 559,8 559,0 10

B4 664,6 664,9 10

B5 704,1 703,8 20

B6 740,5 739,1 20

Visible

B7 782,8 779,7 20

B8 832,8 832,9 10

B8A 864,7 864,0 20

B9 945,1 943,2 60

NIR

B10 1373,5 1376,9 60

B11 1613,7 1610,4 20

B12 2202,4 2185,7 20

SWIR
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Just like the studies mentioned in section II, this work uses
freely available satellite data products from the Sentinel-2
mission, which comprises a constellation of two identical satel-
lites, Sentinel-2A and Sentinel-2B, developed and operated
by the European Space Agency (ESA) under the Copernicus
Programme. It provides systematic coverage (5 days at the
equator and 2 to 3 days at mid-latitudes) over all coastal
waters up to 20 km from the shore. Each satellite has a multi-
spectral instrument (MSI) aboard that works passively, and
their optical data is of high spatial resolution (10 m, 20 m, or
60 m, depending on the spectral band), as shown in Table I.
Each MSI has 13 spectral bands that range from the visible and
NIR to the Short-wave infrared (SWIR), allowing for a 12-bit
radiometric resolution and enabling the image to be acquired
over a range of 0 to 4095 potential light intensity values [19].
All these features make Sentinel-2 a preferential option for
acquiring multi-spectral floating plastic data.

IV. DATA

A. Data Pre-processing

Unlike UAVs data, where the atmospheric effects are not
considered because of the negligible path from the sensor to
the observation sensor, satellite images require a correction
method to remove the contribution of the atmosphere from the
MSI measurements. Satellite data of coastal waters are also
challenged by continental aerosols, bottom reflectance, and
adjacency of land [20], which raises the water’s reflectance.
Therefore, land masking is necessary in maritime satellite
studies since it removes unnecessary pixels that could be
mistaken for floating materials and reduces the computational
power needed to process the image.

This work uses the Dark Spectrum Fitting algorithm (DSF)
from the Atmospheric Correction for OLI ’lite’ (ACOLITE)
v.20210802.0 software [21] to perform the atmospheric cor-
rection process. This method assumes that the atmosphere is
homogeneous, and that the scene contains pixels with zero or
very close to zero surface reflectance in at least one of the
sensor bands (i.e., dark pixels). The spectral signature of the
dark pixels, or dark spectrum, is then used to determine the
best fitting combination of the spectral band and aerosol model
for the atmospheric correction. With the most appropriate
combination selected, the parameters required for the ”path-
corrected” reflectance computation are then chosen from a
look-up table. Due to low atmospheric transmittance, band 9
(B9) and band 10 (B10) are excluded from the outputs.

In this study, the land masks were created using the spectral
index proposed by McFeeters [22]. The Normalised Difference
Water Index (NDWI) is a mathematical formula that combines
the third and eighth Sentinel-2 spectral bands to delineate open
water features and enhance their presence in remotely sensed
digital imagery. It varies between -1 and 1, depending on the
quantity of water in the pixel. Therefore, setting a threshold
(usually 0) allows the differentiation of water bodies from land
and vessels. However, sometimes, it identifies floating natural
debris as a non-water body and, although the same did not
happen with plastic pixels, it is something to watch out for.

Satellite images were visualized using the ESA open-source
SNAP 8.0 software [23].

B. Data Acquisition

In contrast with most previous studies that focus on differen-
tiating plastic from water, this work focuses on distinguishing

TABLE II
ALL DATA COLLECTED TO TRAIN AND TEST THE MACHINE LEARNING MODELS PROPOSED IN THIS WORK.

Number of pixels

Type Source Date
(dd/mm/yyyy) Location Sentinel Water Plastic Wood Seaweed Pumice Sea snot Sea foam

[17] 15/12/2018 Limassol, Cyprus 2A 0 4 0 0 0 0 0
[14] 07/06/2018 2A 0 1 0 0 0 0 0

18/042019 2B 0 3 0 0 0 0 0[15] 18/05/2019
Tsamakia beach, Greece

2B 0 2 0 0 0 0 0
11/06/2021 2A 10 9 0 0 0 0 0
21/06/2021 2A 8 9 6 0 0 0 0
26/06/2021 2B 8 9 9 0 0 0 0
01/07/2021 2A 4 4 4 0 0 0 0
06/07/2021 2B 4 4 3 0 0 0 0
11/07/2021 2A 4 4 4 0 0 0 0
16/07/2021 2B 4 4 4 0 0 0 0
21/07/2021 2A 4 5 4 0 0 0 0
26/07/2021 2B 3 3 2 0 0 0 0
31/07/2021 2A 5 4 6 0 0 0 0
05/08/2021 2B 4 4 4 0 0 0 0
10/08/2021 2A 6 6 6 0 0 0 0
25/08/2021 2B 6 6 6 0 0 0 0

Artificial

[16]

30/08/2021

Gulf of Gera, Greece

2A 5 7 4 0 0 0 0
24/04/2019 Durban, South Africa 2B 0 72 0 0 0 0 0[7] 31/10/2018 Accra, Ghana 2B 0 0 0 150 0 0 0

[18] 09/10/2017 Caribbean Sea, Honduras 2A 0 49 0 0 0 0 0
[18] 03/11/2016 Caribbean Sea, Honduras 2A 75 0 0 0 0 0 0

News/Social Media 26/10/2021 Okinawa, Japan 2A 0 0 0 0 31098 0 0
News/Social Media 06/06/2021 Marmara Sea, Turkey 2B 0 0 0 0 0 26403 0

Real

Observation 20/09/2016 Vigo, Spain 2A 0 0 0 0 0 0 2735
Total 150 209 62 150 31098 26403 2735

Training set 98 156 39 97 105 114 105
Testing set 52 53 23 53 30993 26289 2630

Training set for the model deployed in real-world conditions 150 209 62 150 150 150 150
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floating plastic debris from other floating materials with sim-
ilar spectral signatures. Thus, data from seven classes were
collected and confirmed by scientific reports, news articles,
or social media posts (in situ data), followed by a manual
inspection of the spectral responses (Table II). The data are
freely available through the Copernicus Open Access Hub
[24] and the datasets used in this study are available at
https://github.com/miguelmendesduarte/EO data.

• Water
Fifteen satellite images were used to collect 150 pixels of
ocean water in two distinct areas: the Caribbean Sea and the
Gulf of Gera. From the 150 pixels, 121 are from the Sentinel-
2A and the remaining from the Sentinel-2B. Also, 25% of
the water data are from shallower waters where the bottom
of the ocean is visible, resulting in brighter pixels. However,
the reflectance of shallower waters is not so different from
the deeper waters’ reflectance. Therefore, there is no need to
create two distinct categories, and all the data are grouped into
a single class.

• Plastic
Floating plastic data are scarce. This work gathered 206
pixels of plastic that are confirmed by scientific reports,
news articles or pictures on social media posts. Every pixel’s
spectral response was manually inspected and compared to
the expected spectral signature in the literature [7], [25], and
the ones that did not meet the requirements were rejected.
From the 206 pixels, 102 were taken from Sentinel-2A images
and 107 from Sentinel-2B imagery. Around 42% of the data,
corresponding to 88 pixels, are from artificial plastic targets
deployed in the ocean in the Gulf of Gera [16], Tsamakia
beach [14], [15], and Limassol [17]. The remaining 58% result
from observations and reports of plastic floating in the marine
environment. On the 23rd of April 2019, substantial quantities
of plastic covered the Durban harbour, in South Africa, after
a flood event [26]. The debris eventually washed out to the
sea, and a Sentinel-2 image from the following day allowed
the detection of 72 pixels with spectral reflectance similar to
plastic. The remaining pixels result from the work of Kikaki et
al. [18] and their observations over the Bay Islands and Gulf
of Honduras. Plastic has two reflectance peaks, one centred at
B3 and the other at B8, and one absorption peak centred at the
fifth Sentinel-2 spectral band (B5). It is also clear that plastic
has higher reflectance values in all spectral bands compared
to the water spectral signature (Figure 1).

• Driftwood
Driftwood is wood that has been washed into the ocean
through the action of natural occurrences such as winds or
flooding, or because of logging. However, it is challenging
to find these pixels in Sentinel-2 images since significant
accumulations of driftwood are not common. PLP 2021 [16]
allowed the collection of 62 pixels of driftwood on thirteen
different days since they deployed an artificial wooden target.
Around 55% of these pixels were taken from Sentinel-2A
images and the remaining from Sentinel-2B. Driftwood shows
substantially more reflectance when compared to water or
plastic (Figure 1), and it has two reflectance peaks at B4 and
B8.

• Seaweed
Seaweed is the common name for countless species of marine
plants and algae that grow in the ocean [27]. Its presence in
the ocean is essential since it provides nutrients and shelter
for many marine organisms. Nevertheless, too much seaweed
can be harmful, since it may block sunlight, preventing the
seagrass below from growing and, when decomposing, its
organic matter removes oxygen from the water. This work does
not focus on differentiating the distinct species of seaweed, as
considerable variations in the various seaweed reflectance are
not expected. One Sentinel-2B image from October 2018 was
used to collect 150 pixels of seaweed in the coastal waters
of Accra, Ghana. The seaweed’s spectral signature presents
a sharp increase in reflectance in B4 (Figure 1), followed by
a fall in the band 8A, being very distinct from the spectral
responses of water, plastic and driftwood.

• Pumice
Pumice is a light-coloured volcanic rock with a foamy appear-
ance. It is formed when super-heated and highly pressurized
molten rock, magma, is powerfully ejected from a volcano
and rapidly cools down. In October 2021, a large underwater
volcanic eruption spewed massive amounts of floating pumice
stones that littered coastlines in Okinawa, Japan, damaging
dozens of fishing vessels and forcing a large percentage to
remain stuck at ports. A Sentinel-2A image from 26 October
2021 reveals thousands of bright pixels containing floating
pumice stone and was used to collect 31098 pixels of this
floating material. Pumice’s reflectance values (Figure 1) are
close to the plastic mean spectral signature. However, plastic
presents an absorption peak in B5, which does not happen
with pumice.

• Sea snot
Marine mucilage, also known as sea snot, is a thick slimy
organic substance that floats on the ocean. It forms when algae
are overloaded with nutrients because of global warming and
water pollution that results from industrial waste dumped into
the seas. Warmer and slower-moving waters also increase the
production of sea snot and allow its accumulation. Marine
mucilage surge poses severe threats to public health since it
contains bacteria, transports diseases, and has adverse eco-
nomic and environmental consequences. There are several
reports of sea snot outbreaks in the last few years, however,
none of them in the level of the one in the Marmara Sea in
2021. One Sentinel-2B image from the Marmara Sea, on the
6th of June 2021, showed thousands of pixels containing sea
snot. From those, 26403 pixels were selected. By examining
Figure 1, it is understandable why Hu et al. [28] concluded
that remote differentiation of sea snots and marine debris using
multi-band sensors is problematic. The two classes only differ
in B8, where plastics have a reflectance peak.

• Sea foam
The model from Biermann et al. [7] showed some difficulties
in distinguishing plastic from sea foam, bubbles, and froth, so
this group of substances was included in this study. A Sentinel-
2A image from Vigo Ria, Spain, was used to gather 2735
pixels of it. Sea foam presents a small reflectance peak in the
early spectral bands and another one in B8, just like the plastic

https://github.com/miguelmendesduarte/EO_data
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mean spectral signature (Figure 1). These features, adding to
its relatively high standard deviation, suggest that sea foam
might be confused with plastic.

The process described in this section allowed the collection
of 60807 pixels in total. However, around 98% of these pixels
are from pumice (51%), sea snot (43%), and sea foam (5%),
meaning that the dataset is unbalanced. Consequently, there
is a need to balance the training dataset. Undersampling,
which is probably the most direct strategy, was used. This
method selects only some data from the majority classes, using
close to as many pixels as the minority classes have, but
maintaining the classes’ probability distributions. The training
set distribution can be seen in Table II. To maintain each class
characteristics, the training set includes 156 plastic pixels,
corresponding to around 22% of the data. Both pumice and
sea foam classes have 105 pixels (14,7%), sea snot has 114
pixels (16%), driftwood has 39 pixels (5,5%), seaweed has
97 pixels (13,6%) and, finally, water corresponds to 13,7%
of the training data, with 98 pixels. The remaining pixels are
grouped in the testing set and are used to evaluate the machine
learning models’ results. Table II also shows the dataset used
to train the model that will perform predictions in real-world
conditions.

Fig. 1. Spectral signatures derived from the mean reflectance of all data after
the atmospheric correction process. Despite the Sentinel-2 satellites’ spectral
bands having slightly different central wavelengths (Table I), this figure uses
the same central wavelengths to facilitate interpretation. B9 (945 nm) and B10
(1375 nm) were removed in the atmospheric correction process.

C. Synthetic Data

Data augmentation methods enable the models to learn
from a variety of data that could not be gathered in the data
acquisition step, making them more robust, and reducing the
time-consuming process of collecting and labelling data. In
this work, making minor changes in the original data, such
as rotating, cropping, zooming or grayscaling is not possible,
and slightly changing the values of the spectral bands may
create spectral responses that do not represent any floating
class. Therefore, Generative Adversarial Networks (GANs)
[29] were used to generate synthetic pixels that replicate
patterns and features of the actual data, and to assess if
artificial datasets are a solution for the lack of floating plastic
data. A GAN comprises two simultaneously trained models:

the Generator and the Discriminator. The Generator’s goal is
to create samples that are indistinguishable from the training
data. On the other hand, the Discriminator tries to distinguish
authentic data from the data generated by the first model.

In total, 2000 pixels from each class were generated using
a GAN. If the class had training data from both Sentinel-
2 satellites (water, plastic, and driftwood), 1000 pixels were
generated from each satellite. All the generated pixels showed
low standard deviations, which reveals one common problem
when using GANs: mode collapse. Mode collapse happens
when the Generator only produces a single type of output,
usually close to the mean of the original data, since that
type of data can ”fool” the Discriminator. Other problem that
arises during the training of the GAN is the slow speed of
convergence. To avoid these cases, it was used a Wasserstein
Generative Adversarial Network (WGAN). The WGAN [30]
uses an alternative way of training the Generator network to
better approximate the generated data distribution to the train-
ing dataset and offers higher stability in the training process.
Instead of using a Discriminator to predict the probability
of the input being real or fake, it uses a Critic that scores
the “realness” or “fakeness” of the data, which, by using an
improved loss function, provides a clearer stopping criteria. In
total, 280000 pixels were generated, equally distributed. If the
class had training data from both Sentinel-2 satellites (water,
plastic, and driftwood), 20000 pixels were generated from each
satellite.

V. METHODOLOGY

A. Spectral Indices

As Biermann et al. [7] demonstrated, using the NDVI
together with the FDI allows a distinct clustering of water,
plastic, driftwood, and seaweed (Figure 2). Nevertheless, using
exclusively these indices does not enable a clear distinction
between sea snot, sea foam, pumice, and plastic. This conclu-
sion emphasizes the need for spectral indices that maximize
the differences between these four classes.

Fig. 2. Combination of the NDVI and the FDI of all real data.

Besides the spectral bands, 24 indices were compared to
verify which ones allow a distinct clustering of all the classes
gathered in the data acquisition process: Floating Debris Index
(FDI), Plastic Index (PI), Normalised Difference Vegetation
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Index (NDVI), Reversed Normalised Difference Vegetation
Index (RNDVI), Green Normalised Difference Vegetation
Index (GNDVI), Pan Normalised Difference Vegetation In-
dex (PNDVI), Normalised Difference Water Index (NDWI),
Modified Normalised Difference Water Index (MNDWI), Nor-
malised Difference Moisture Index (NDMI), Normalised Dif-
ference Snow Index (NDSI), Water Ratio Index (WRI), Nor-
malised Burn Ratio (NBR), Automated Water Extraction Index
(AWEI), Simple Ratio (SR), also known as Ratio Vegetation
Index, Anthocyanin Reflectance Index (ARI), Modified An-
thocyanin Reflectance Index (MARI), Chlorophyll Red-Edge
Index (CHL Red-Edge), Red Edge Position Index (REPI),
Enhanced Vegetation Index (EVI), Enhanced Vegetation Index
2 (EVI2), Modified Chlorophyll Absorption Reflectance Index
(MCARI), Moisture Index (MI), Soil-Adjusted Vegetation
Index (SAVI), and Oil Spill Index (OSI). The equations of the
most relevant indices in this study are shown below (Equations
(1)-(7)). In each equation, BX represents the reflectance value
for the Sentinel-2 spectral band X, and, in Equation (1), λBY

represents the central wavelength of the Sentinel-2 spectral
band Y.

FDI = B8− (B6 + (B11−B6) · λB8 − λB4

λB11 − λB4
· 10) (1)

NDWI =
B3−B8

B3 +B8
(2)

MNDWI =
B3−B12

B4 +B12
(3)

NDSI =
B3−B11

B3 +B11
(4)

WRI =
B3 +B4

B8 +B12
(5)

MARI =
1

B3
− 1

B5
·B7 (6)

OSI =
B3 +B4

B2
(7)

B. Extreme Gradient Boosting Classifier

Extreme Gradient Boosting, also known as XGBoost [31], is
a tree-based ensemble machine learning algorithm and was the
chosen method for developing the detection model. XGBoost
is trained using the Boosting technique, which is an additive
and sequential learning method where trees are grown sequen-
tially, so that each new tree corrects the errors of the previous
one in each iteration. Each new tree’s parameters, or weights,
are established by the gradient descent algorithm, whose goal
is to minimize the loss function of the ensemble model.
Extreme Gradient Boosting is a specific implementation of
the Gradient Boosting method. Two of the most important
differences are that it computes the second-order gradients of
the loss function, which provides more information on how
to reach the minimum of the loss function and uses both L1
and L2 regularization to penalize the models. Both features

prevent the models from overfitting. XGBoost has become
widely used in classification tasks and is popular in machine
learning competitions due to its highly accurate results.

C. Uncertainty Quantification

While machine learning grew into an essential part of
multiple real-world applications, the predictions made by these
models are uncertain. Uncertainty can be caused by the data
(aleatoric uncertainty) and the model (epistemic uncertainty).
The chosen strategy to quantify uncertainty in this work
is through Ensemble Methods. Ensemble Methods measure
uncertainty based on the predictions of multiple models (en-
semble members), that are trained independently from each
other using different techniques to increase their variety. The
mean, variance, and standard deviation of their predictions are
computed to estimate the uncertainty. This approach has a high
computational cost. However, ensemble methods were proven
to be more reliable and applicable to real-world applications
than the alternative methods [32].

To bring variety into the ensembles and generate more reli-
able results, the models (XGBoost) have random initialization,
are trained with different data sizes (mini batches), and the
training data are randomly selected. Then, if a prediction’s
mean for a pixel is below 90% or its standard deviation above
20, the pixel’s classification is considered uncertain (thresholds
selected based on the results of the ensemble model, after some
tests).

D. Outline

Fig. 3. Flowchart with the steps adopted to detect plastic and other floating
debris on the ocean using satellite imagery.

The flowchart in Figure 3 summarizes the steps needed to
create a model that can detect and distinguish floating plastic
from the other classes studied. The first task is to collect in situ
data. Secondly, the satellite images need to be pre-processed to



7

remove the contribution of the atmosphere from the reflectance
measured by the multi-spectral instrument, and a land mask
needs to be applied to remove pixels that are not relevant for
the study. The next step is to ensure that the data used to
train the classification models is balanced. This can be done
by undersampling the most represented classes in the training
set or by generating synthetic data. Then, spectral indices may
help in separating the different floating classes. Classification
models will use these features in the training process and,
after tuning the hyperparameters and testing the models, the
one with the best results can be applied to the real world.
Finally, an uncertainty quantification method should be used
to improve the information given by the model, helping the
decision-making process.

VI. RESULTS

A. Classification with Spectral Bands and Spectral Indices

In order to find the spectral indices that boost the differences
between the classes’ reflectance, the XGBoost was trained with
all spectral bands and all spectral indices described in section
V-A. The training and testing datasets are shown in Table II.

The model achieved high accuracies (> 90%) in every
class except sea foam. However, this experience’s goal was
to determine how each feature affects the overall accuracy of
the model. This was done through the permutation importance
concept. Permutation importance focuses on answering one
question: if one column of the testing set corresponding to
one feature (in this case, a spectral band or a spectral index)
is randomly shuffled while all the other columns stay intact,
how would that affect the overall accuracy of the predictions?
Therefore, the importance of each feature is measured by how
much the loss function is affected by shuffling that feature’s
column. The results are shown in Figure 4.

Fig. 4. Permutation importance of each feature in the XGBoost model trained
with all spectral bands and every spectral index described in V-A.

With this information, the irrelevant features in the model
(nil or negative permutation importance) can be removed from
the training process. The goal is to assess which combination
of the remaining features maximizes the overall accuracy
and minimizes the number of false plastic positives. Training
the XGBoost using only the nine features with the most
permutation importance was the combination that achieved

the best results in the testing phase (B1, B8A, the NDSI,
the MNDWI, the NDWI, the OSI, the FDI, the WRI, and
the MARI). Figure 5 shows the normalised confusion matrix
of this model, with all the numbers rounded to two decimal
points. That’s the cause for the sum of all values in the last line
of the matrix (sea foam) being only 99%. The model shows an
accuracy above 95% for each class except for sea foam. Water
pixels are perfectly classified and none of the other classes’
pixels is classified as water. All the driftwood pixels are also
correctly classified, but there are false positives. Around 13%
of sea foam pixels are incorrectly labelled: 6% are predicted
to be plastic and 5% pumice. The model accurately predicts
98% of plastic pixels.

Overall, these results indicate that this model is ready to be
applied in real-world conditions. However, when analysing the
results, one must acknowledge that some seaweed, pumice, sea
snot and mainly sea foam pixels will be inaccurately labelled
as plastic.

Fig. 5. Normalised confusion matrix of the XGBoost model trained with
the 9 features with most permutation importance: B1, B8A, the NDSI, the
MNDWI, the NDWI, the OSI, the FDI, the WRI, and the MARI. All the
numbers are rounded to two decimal points.

B. Classification with Uncertainty Estimation

Despite the overall good results of the previous model,
two aspects must be considered. Firstly, the number of pixels
wrongly classified as plastic. Although looking like a small
number, a Sentinel-2 image is composed of millions of pix-
els, so the model may wrongly predict thousands of pixels.
Therefore, efforts should be made to minimize the number
of false positives of plastic, knowing that it is impossible to
achieve a 100% accuracy in any classification problem. Sec-
ondly, predictions where the model showed little confidence
due to data uncertainty or epistemic uncertainty should be
classified as another class - uncertain. This change may reduce
the number of misclassified pixels and create more reliable
results. However, it is also expected that implementing this
modification decreases the number of pixels correctly labelled.

To quantify uncertainty in the predictions and reach an
equilibrium where the model has high accuracy in each class
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and a low number of false positives, an ensemble model
composed of twenty XGBoost models trained with different
subsets of the training set was created. For each input, the
mean prediction’s probability from all ensemble members and
the standard deviation are computed. If the predictions’ mean
probability is below 90% or it has a standard deviation above
20, it is classified as uncertain. The results of the ensemble
model are shown in Figure 6. As expected, the number of
pixels correctly labelled decreased, comparing to the previous
model in every class except in seaweed, which is probably
related to its singular spectral signature. Around 21% of plastic
pixels were labelled uncertain, as well as 16% of pumice and
30% of sea foam. Oppositely, few pixels of water, driftwood,
seaweed, and sea snot were classified as uncertain, meaning
that the features used to train the ensemble members allow a
clear distinction between these classes. The number of pixels
incorrectly classified also decreased. Now, only 2% of sea
foam pixels were predicted to be plastic, representing a 4%
drop from the previous results.

Fig. 6. Normalised confusion matrix of the ensemble model built with 20
XGBoost models trained with different data and different data sizes, using the
9 features with the most permutation importance (Figure 4). Predictions whose
mean was below 90% or had a standard deviation above 20 were considered
uncertain.

The best way to compare the results of both models, apart
from the confusion matrix, is to use them in real-world con-
ditions. For this purpose, a Sentinel-2A multi-spectral image
from the 31st of July 2021 in the Gulf of Gera, Greece, was
used. On this day, the Marine Remote Sensing Group from the
University of the Aegean performed another experience for the
PLP 2021 [16]. They deployed two large artificial targets, one
made of wood, and one composed of plastic, on the ocean.

Both models were trained with a balanced dataset and the
pixels from this Sentinel-2 image were removed from the
training dataset, so this is the first time both models are seeing
these data.

Results from Figure 7 reveal that the first model is able to
correctly classify most of the pixels. Both targets are detected
and labelled with the right class. However, the targets’ borders
show some misclassifications. Some pixels around the wooden

target are labelled as plastic and others as seaweed, and some
pixels around the plastic target are labelled as sea foam.

Fig. 7. Predictions from the model that does not quantify uncertainty. The
original data are from a Sentinel-2A image from the 31st of July 2021 in the
Gulf of Gera, Greece.

The ensemble model’s results are shown in Figure 8. The
model correctly predicted most of the pixels and labelled the
borders of both targets as uncertain, except for one pixel
that is still classified as seaweed. These results show that the
ensemble model is the best option to deploy in the real world
and the fact that it classifies some pixels as uncertain instead of
labelling them incorrectly constitutes a significant advantage
compared with the previous model.

Fig. 8. Ensemble model’s predictions. The original data are from a Sentinel-
2A image from the 31st of July 2021 in the Gulf of Gera, Greece.

C. Classification with Synthetic Data

Theoretically, training a model with a larger balanced
dataset with variability would make it more robust and less
sensitive to outliers and mislabelled training data. However,
the model trained with 280000 synthetic pixels generated from
a WGAN did not achieve good results, indicating that these
data have too much variability, so the model cannot find
patterns that allow the differentiation of the several classes.
To overcome this problem, the synthetic pixels were filtered
through the ensemble model. If a synthetic pixel was classified
as uncertain, the pixel was discarded. The pixel was also
rejected if the ensemble model misclassified it.



9

After this process, only 1434 pixels from each class were
chosen to create a balanced dataset. The confusion matrix of
an XGBoost model trained with these data and tested with
the testing dataset described in Table II is shown in Figure
9. The results prove that a model trained only with synthetic
data can achieve successful results. Plastic and sea foam are
still the classes with the highest number of false positives,
representing the biggest disadvantage compared to the model
trained exclusively with authentic data.

Fig. 9. Normalised confusion matrix of an XGBoost model trained with
1434 synthetic pixels from each class (10038 pixels in total) generated from
a WGAN and that passed the filtering process.

D. Monitoring the ocean

Here, the best model (ensemble model with 20 ensemble
members trained with different subsets of authentic data from
the ”training set for the model deployed in real-world condi-
tions” - Table II, with the 9 features with the most permutation
importance) is tested in real-world conditions, to assess its
feasibility (Figures 10 anf 11).

E. Limitations

Most misclassifications happen in pixels very close to the
shore, where reflectance is usually higher because of the
lower water depth, which indicates that the model produces
more reliable results in deeper waters. As expected, rough
waters cause uncertainty in the predictions, so sea conditions
should be considered when analysing the model’s predictions.
Another source of uncertainty is associated with the quantity of
material in a pixel. The model regularly classifies the borders
of the materials, where there is a less quantity of the floating
class, as uncertain. There is also a common challenge in every
study that uses satellite data: clouds. Clouds spoil the satellite
data even if they are not dense, since they reflect sunlight,
preventing the computation of predictions if above the area of
interest. Finally, sediments in suspension also have a negative
impact on the predictions. This usually happens in rivers, the
primary conduits for plastic waste to the sea.

Fig. 10. Model’s predictions from a Sentinel-2B image from the 4th of
September 2021, in the Gulf of Gera, Greece. On this day, the group from
the University of Aegean performed another experience for the PLP 2021 [16].
They removed the wooden target and deployed some of it under the plastic
target, simulating a mixed target which is closer to what is found in the ocean.
The model successfully detected the plastic target. However, some of its pixels
were considered uncertain, which is probably related to the presence of wood.
There are also some uncertain pixels in the open ocean that may be related
to sun glint or wave agitation.

Fig. 11. Model’s predictions based on a Sentinel-2B image from the 13th of
June 2021, on the coast of Istanbul, where sea snot aggregations with several
metres wide can be seen. There are also many pixels classified as uncertain
because of the different sea snot depths in each pixel and the rough water
conditions.

VII. CONCLUSION

A. Discussion

The study’s results constitute a breakthrough in this area
for multiple reasons. Firstly, the data acquisition process
allowed the collection of the largest dataset related to floating
plastics in satellite imagery that was ever published. Then, it
is also the first study that assesses and proves that plastic is
distinguishable from five other classes of floating debris and
water. The combination of features that proved most successful
was using B1, B8A, the NDSI, the MNDWI, the NDWI, the
OSI, the FDI, the WRI, and the MARI. An XGBoost model
trained with these features showed a high overall accuracy. All
the pixels of water and driftwood were classified correctly, as
well as 98% of plastic pixels, 96% of seaweed pixels, 95%
of pumice pixels, 97% of sea snot pixels, and 87% of sea
foam pixels. Despite the high accuracy values, for a model
to be deployed in real-world conditions and provide mean-
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ingful information for the decision-makers, the percentage of
misclassifications, in particular, the number of false positives
of plastic labels, must be minimized. The ensemble model
achieved lower percentages of correct classifications than the
previous model, but also, and most importantly, it decreased
the number of misclassifications. Deploying the model in
real-world conditions confirmed the good results and showed
some of its limitations: clouds, shallower waters, sediments in
suspension, and rough sea conditions. The study also proves
that training a model with synthetic data produces good results.
However, not as good as the model trained with authentic data.

B. Future Work

One of the main limitations regarding the detection of
floating plastic in satellite imagery is the lack of in situ data,
since the best detection methods rely on supervised learning
approaches. Therefore, there is a need for more plastic data to
be collected globally, whether via artificial targets or natural
occurrences.

Future research should also focus on maximizing the qual-
ities of this work’s model by creating parallel systems. For
example, numerical models could be used to indicate areas of
study. The same could be done by models that focus on the
spatial characteristics of floating materials through satellite im-
agery (e.g. Convolutional Neural Networks). Marine robots or
UAVs could also be deployed in those locations to confirm the
model’s classifications. Furthermore, it would be interesting
to compare how the different atmospheric correction methods
affect the detection of floating plastics. Finally, it would be
relevant to assess if Sentinel-2 imagery can detect floating
debris in rivers, since they are the main points of entry of
plastic in the ocean.
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