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2. Abstract 

Parkinson Disease is one of the most common neurodegenerative diseases in the world. The 

aggregation of proteins is one possible cause for that which needs to be studied in several aspects such 

as location and the interactions with the surroundings. The use of confocal and more recent Stimulated 

emission depletion (STED) microscopy has been one way to understand those mechanisms behind the 

aggregation. 

HEK-293T and H4 cells were used to mimic the responses and mechanisms involved. Several protein 

aggregation models were employed to create a detailed analysis method to use in the images taken 

from the confocal, STED and expansion microscopy. The method was developed to surpass the lack of 

the 3rd axis in the analysis, getting the volume of the aggregates and the spatial location of them. 

Our findings reveal a simple method to have the volume of protein aggregation in the models 

(Synphilin-1(Sph1) protein tagged with EGFP, fluorescent fragment of GFP - Sph1-GFP aggregation 

model - and α-Synuclein (⍺Syn) protein with EGFP truncated with just 83 amino acids) and Sph1 protein 

tagged with V5 - SynTWT+Sph1 aggregation model-). The findings reveal that there are some 

differences regarding the microscopy technique used in terms of volume and the number of aggregates 

per cell. In the SynTWT+Sph1 aggregation model, the colocalization between the proteins seems to be 

out of phase on the Z axis.  

 

Keywords: α-Synuclein, Synphilin-1, Super-Resolution Microscopy, Segmentation, Deep Learning, 

Volume 
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3. Resumo 

A doença de Parkinson é uma das mais comuns doenças neurodegenerativas no mundo. A agregação 

de proteínas é uma das possíveis causas que por essa razão leva o mesmo a ser estudado em diversos 

aspetos como a localização e interação com o meio que o rodeia. Usa-se a microscopia confocal e STED 

para que seja possível o estudo dos mecanismos que levam à doença. 

Neste trabalho, usámos células HEK-293T e H4 para reproduzir a resposta e os mecanismos envolvidos. 

Diversos agregados proteicos foram estudados para a criação de um detalhado método para uso nas 

diversas técnicas de microscopia. O método foi desenvolvido com vista a suplantar a falta do terceiro 

eixo, podendo assim obter o volume do agregado e a sua localização. 

Os resultados da análise revelam um método simples para a obtenção do volume de agregados 

proteicos nos modelos estudados (proteína Sinfilina-1(Sph1) marcada com EGFP, fragmento 

fluorescente de GFP – modelo de agregação Sph1GFP - a ⍺-sinucleína (⍺Syn com EPGFP fragmentado 

com apenas 83 aminoácidos) e proteína Sph1 marcada com o marcador V5 – modelo de agregação 

SynTWT+Sph1-). Existem ainda diferenças a serem notadas relativamente ao tipo de microscopia 

usado nomeadamente no volume dos agregados e número de agregados por célula. No modelo de 

agregação SynTWT+Sph1 parece demonstrar a colocalização entre as proteínas está desfasada no eixo 

Z. 

 

Palavras-chave: ⍺-sinucleína, Sinfilina-1, Microscopia de Super-Resolução, Segmentação, 

Aprendizagem Profunda, Volume 
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7. Introduction 

Parkinson’s disease 

Parkinson’s disease (PD) affects around 1%-1.5% of the total population (Vidyadhara et al., 2019). With 

the increase of the average age among the population, these age-dependent disorders are becoming 

a threat to human health (Gitler et al., 2017) and could achieve astonishing numbers by 2050. 

Parkinson’s disease was named by Jean-Martin Charcot after James Parkinson describe the features of 

six patients. This characterization is still in use up to date for diagnosis of PD. James Parkinson 

published his observations in 1817 in ‘An essay on the shaking palsy’(Parkinson, 2002). Then, Jean 

Charcot extends the initial description. Using these initial descriptions, the first hypothesis was relating 

the PD with epigenetics and environmental factors. 

The main protein linked to PD is αSyn (Goedert, 2001). The correlation between αSyn aggregation and 

conformational changes and PD have been studied for the past 20 years, describing this protein as 

having the central role in the development and progression of the disease (Goedert, 2001; Marvian et 

al., 2019). After gene sequencing of PD patients, some mutations in the gene encoding α-Synuclein 

(SNCA) have been found and some of those mutations were linked to the dominantly inherited forms 

of PD, the familiar form of PD, which only represents 5% (Bossy-Wetzel et al., 2004; Polymeropoulos 

et al., 1997). The dogma that is still being discovered is how sporadic PD occurs, which represents 

around 95% of the disease cases (Valente et al., 2012)(Figure 1). 

The symptoms of the disease are tremor, rigidity in the first steps of the disease (Huang et al., 2004; 

Lücking & Brice, 2000). These effects can be caused by environmental factors or genetic factors. 

Although many others can be associated, for example, depression or panic attacks. 

Figure 1. Predicted structure of α-Syn in physiological conditions. Adapted from (Lücking & Brice, 2000) 
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Therefore, the development of PD involves several factors. Studies suggest that polymorphisms in the 

genes that are responsible for dopamine metabolism and transport, iron homeostasis, inflammation, 

mitochondrial dysfunction and exogenous or endogenous toxin metabolism might play a role in 

individual predisposition to developing PD (Figure 2) (Huang et al., 2004). Affecting the presynaptic 

⍺Syn, these protein create micro aggregation which theme impaired neurotransmitter release leading 

to postsynaptic degeneration (Schulz-Schaeffer, 2015). Also, in its aggregation, it is created LB which 

is a way to classify PD. 

Aggregation Models 

Aggregation of αSyn is considered one of the crucial steps in PD and it is thought to precede via a 

seeding-nucleation mechanism. In vitro studies have revealed that αSyn aggregation is a nucleation-

dependent process that initiates with the progression of monomers to oligomers to fibrils (Danzer & 

Mclean, 2011). Recent studies support the hypothesis that pre-fibrillar intermediates (protofibrils) and 

not mature amyloid fibrils, may be the key toxic species in PD (Hartl & Hayer-Hartl, 2009; Taylor et al., 

2002). 

Figure 2. αSyn- encoding genes and their relationship with several factors. It is known that SNCA gene encodes the αSyn 
protein and then the evolution to possible PD stage. Adapted from (Schulz-Schaeffer, 2015) 
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α-Synuclein 

As explained above, αSyn has a major role in the development of PD but also has other roles in the 

system. αSyn is present in dopamine neurons, the neurons affected in PD, and its aggregation (Bousset 

et al., 2013) in Lewy bodies (LB) is a pathological hallmark in PD. (Figure 3).  

In the past years, the αSyn and the understanding about genetics has evolved tremendously and other 

mutations in the SNCA gene have been linked to familial forms of the disease (Appel-Cresswell et al., 

2013; Chartier-Harlin et al., 2004; Fares et al., 2014; Krüger et al., 1998; Lesage et al., 2013; Pasanen 

et al., 2014; Polymeropoulos et al., 1997; Proukakis et al., 2013; Singleton et al., 2003; Zarranz et al., 

2004). Due to the number of mutations and the role of this protein in the PD, the study of this protein 

increases and more recently, polymorphisms in the SNCA gene have been identified as risk factors for 

PD, in genome wide association studies (Blauwendraat et al., 2019; Genet, 2014). 

αSyn took a centre stage in the research in recent years and now presents a central role to achieve the 

knowledge of the disease (Outeiro & Mestre, 2019). In vitro studies using recombinant αSyn were 

instrumental to inform about the aggregation process that culminates with the formation of typical 

amyloid fibrils (Conway et al., 2000; Li et al., 2001). In vivo studies in human αSyn transgenic and in 

knockout mice provided insight into both its physiological function and into the mechanisms of toxicity 

(Abeliovich et al., 2000; Burré et al., 2010; Greten-Harrison et al., 2010). In vitro studies, using 

mammalian and yeast cell models, yielded important insight into the molecular underpinnings of αSyn 

aggregation, cytotoxicity, and physiological effects (Lázaro et al., 2014; McLean et al., 2000), and into 

the pathways involved in the production and clearance of the protein in the cell (Cuervo et al., 2004). 

The explosion in the field of proteostasis in the 2000s, brought about an important knowledge on how 

cells and organisms handle αSyn, attempting to refold or recycle the protein into its basic components 

(Cuervo et al., 2004). 

More recently, technological developments in biochemical, biophysical, proteomic, and imaging 

approaches, provided insight into the structure, chemical modifications (posttranslational 

modifications, PTMs), and subcellular distribution of αSyn (Gonçalves & Outeiro, 2013). 



4 
 

αSyn is a presynaptic protein enriched in the brain (Koprich et al., 2017; Maroteaux & Scheller, 1991). 

The pathways of the protein aggregation are shown in Figure 3. 

Synphilin-1 

The formation of aggregation found in Parkinson’s disease is not only composed of αSyn, some of them 

also composed by Sph1 (Figure 4) (Shirakashi et al., 2006). Sph1 is also a presynaptic with synaptic 

vesicles (Ribeiro et al., 2002) also present in LBs as well as αSyn, especially in the core region 

(Wakabayashi et al., 2001). Co-expression of αSyn and Sph1 in cellular models gives rise to eosinophilic 

cytoplasmic inclusions, and the overexpression of Sph1 alone can also produce inclusions in cultured 

cells. Additionally, Sph1 overexpression increases the vulnerability to the toxicity of proteasome 

inhibitors (Tanaka et al., 2004). 

Sph1 is composed of 919 amino acid residues and co-localizes with αSyn in LB, in brains of PD patients 

(Engelender et al., 1999). Association of Sph1 with αSyn has been described as essential for targeting 

LB-like protein aggregates in cell culture. Given the presynaptic location and its affinity for membranes 

and lipids (Swinnen et al., 2011) (more specifically, binding to lipid rafts), Sph1 also seems to be 

required for inclusion formation (Büttner et al., 2010) and might act as an adaptor protein, anchoring 

αSyn to other proteins (like proteins involved in vesicular transport or cytoskeletal function) (Lücking 

& Brice, 2000). The interaction between the αSyn and Sph1 occurs through the C-terminus of αSyn 

Figure 3. αSyn pathway and its aggregation into the pathological way. Adapted from (Koprich et al., 2017). 

Figure 4. Site of interaction between αSyn and synphilin-1. 
Schematic representation of the interaction between synphilin-1 
and αSyn. Adapted from (Xie et al., n.d.) 
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which is closely associated with the C-terminus of Sph1. A weak interaction occurs between the N-

terminus of αSyn and Sph1 (Kawamata et al., 2001). Thus, showing that these proteins can also interact 

and interfere in the progression of PD(Bonin et al., 2008). 

Recent studies show that synphilin-1 contains four ankyrin repeat domains and a coiled-coil domain in 

the central portion that specifically interacts/binds with αSyn, via the N-terminal residues of αSyn 

(Figure 4 and Figure 5) (Xie et al., 2010). This specific interaction significantly promotes formation and 

accumulation of cellular inclusions that are probably composed of αSyn (Xie et al., 2010). 

 

 

Cellular models of PD 

In vitro studies of the aggregation involved in several neurodegenerative diseases have to be 

performed using cellular models to mimic the effect that this aggregation can have in the human body. 

Several models can be studied involving several cell lines and proteins of interest.  

Given the importance of local structural effects on the aggregation of ⍺Syn, it will be crucial to 

elucidate how other alterations, such as those induced by ⍺Syn mutations, might modulate its 

aggregation. 

The use of Sph1-GFP aggregation model takes advantage of the reliability and simplicity of the cells 

involved. The kidney epithelial cells(HEK-293T) is a cell line very used in some models regarding the 

neurodegeneration (Varghese et al., 2006). This model is composed by a Sph1 protein tagged with 

EGFP, fluorescent fragment of GFP (Sph1-GFP aggregation model). 

Figure 5. Schematic representation of the synphilin-1 protein. Different structural features are highlighted. The R621C 
mutation is localized in a highly conserved region. Adapted from (Bonin et al., 2008) 
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The SynTWT+Sph1 aggregation model was performed in H4 cells due to being an alternative for 

primary neurons despite their immortal nature. Therefore, the model is composed of two independent 

proteins: SynT (⍺Syn with EPGFP truncated with just 83 amino acids) and Sph1 protein tagged with V5 

The V5 tag is used majority for ELISA, flow cytometry, immunofluorescence or to western blotting (V5 

Tab Properties, n.d.). 

Microscopy 

Microscopy has been one of the best sources of information in several areas like biomedical science or 

even materials science. Developing these techniques is mandatory to assist different areas of interest. 

The overcoming of the diffraction limit, the possibility of removing the out-of-focus light from the 

detector are some of the achievements that have been already done before, however, more challenges 

are existing to overcome for the field. 

Confocal Microscopy 

The concept of a confocal microscope was patented by Marvin Minsky in 1957. Then, M. David Egger 

and Paul Davidovits published two papers describing the first confocal laser scanning microscope in 

1969 and 1971 respectively (Davidovits & Egger, 1971; DAVIDOVITS, 1969) at Yale University. The 

development of confocal microscope has been done in parallel with advances in computers, lasers, 

digital imaging software. Firstly, the confocal microscope showed to have biological applications in 

mid-1980s until became commercially available in the late 1980s. Development in design, more 

stable and powerful lasers, more efficient mirrors, and lower noise photodetectors have led to an 

improvement of confocal microscopes during the years. The ability of using this technique in several 

applications from cell biology to optics and crystallography shown afterwards being an important 

feature in confocal microscopy.(Matsumoto, 2002) 

In light microscopy, illumination light is passed through the sample as uniformly as possible over the 

field of view. For teacher samples, where the objective lens does not have sufficient depth of focus, 

light from sample planes above and below the focal plane will also be detected. The out-of-focus light 

will add blur to the image reducing resolution (Elliott, 2020; Pawley, 2006). 

In fluorescence microscopy, any dye molecules in the field of view will be stimulated, including those 

in out-of-focus planes. Confocal microscopy provides a means of rejecting the out-of-focus light from 

the detector such that it does not contribute with blur to the image that is being collected. This 

technique allows for high resolution imaging in thick tissues (Elliott, 2020). 

One barrier achieved was the resolution limit (maximum resolution between 200-350nm) due to the 

wavelength of the light in the visible region as it is explained in the Abbe equation( 1 ). 
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𝑑 =
𝜆

2·𝑛·𝑠𝑖𝑛𝜎
=

𝜆

2·𝑁𝐴
 (Lipson et al., 1995) 

( 1 ) 

The portion of the denominator nsinθ is the numerical aperture (NA) and can reach about 1.4–1.6 in 

modern optics, hence the Abbe limit is d =λ/2.8 (Lipson et al., 1995). 

Considering green light around 500 nm and a NA of 1, the Abbe limit is roughly d =λ/2 = 250 nm 

(0.25μm), which is small compared to most biological cells (1μm to 100μm), but large compared to 

viruses (100 nm), proteins (10 nm) and less complex molecules (1 nm).  Therefore, the conventional 

microscopy needs to be updated or it is needed to find another way of analysing. 

The confocal microscopy increases the resolution compared with conventional optical microscopy due 

to the fact of having the Pinhole which leads to the exclusion of the light from the non-focal plane. To 

explain it in a better way. In Figure 6, using the conventional microscope the record in the focal plane 

will be the fluorescence of all samples instead, in the confocal microscopy, using the pinhole of the 

epifluorescence microscopy which is able to deny the fluorescence from the non-focal plane. 

 

Figure 6. View of Focal Plane. Principle of confocal microscopy and how to improve the resolution in x,y,z axis.  Adapted 
from (Pawley, 2006). 

STED 

The wavelength barrier of light microscopy led to the development of STED. STED was developed by 

Stefan W. Hell and Jan Wichmann in 1994 (Hell & Wichmann, 1994) resulting into a Nobel Prize in 2014. 

This discovery led to overcoming the diffraction limit reaching 35nm of resolution (Hell & Wichmann, 

1994). STED microscopy has been used in static conditions (D’Este et al., 2015) although it hs been 
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shown several advantageous in other areas like live cell imaging or in vivo imaging (Wegner, Ilgen, 

Gregor, van Dort, et al., 2017) or materials science. 

The STED microscopy is based on the confocal where it excites the sample with fluorescence particles 

and then a second laser bean where it is depleted of some of those fluorescence. Using this technique, 

the Abbe diffraction limit (Equation ( 1 ))  is overcome, and the wavelength barrier is broken. The layout 

of the STED microscope is present in Figure 7. In the Figure 7, it is seen that both beans are interacting. 

The excitation and STED beans are triggered at different times to get the better resolution. The 

difference between the resolution of confocal microscopy and STED is shown in Figure 7. The 

resolution of the STED microscope is a function of the spatial distribution and magnitude of the 

intensity of the depleting light, with no theoretical limit to the ultimate achievable value. Nonetheless, 

the nature and factual quality of the focal intensity patterns of the STED beam strongly impacts the 

resolution achieved by a particular configuration. Typically, a doughnut shaped distribution is targeted 

to obtain the most uniform resolution increase in the focal plane. 

Therefore, the function the describe the doughnut shape can be described as FWHM (Full width at half 

maximum) function and the resulting spot has been shown to depend on the inverse square root of 

the saturation factor. 

∆𝑥 ∝
𝜆

𝑛√𝜁
 (Harke et al., 2008) 

Figure 7. Layout of STED microscope. The layout of the STED microscope and also the number of laser beans need 
to have results applying this technique. Adapted from (Harke et al., 2008) (left). Confocal and STED example. Picture 
taken from the same sample a. confocal microscopy b. STED microscopy. Adapted from (Weber et al., 2021). 
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( 2 )  

Where λ is the inhibition wavelength, n is the refractive index and ζ denotes the saturation factor which 

is defined as: 

𝜁 =
𝐼𝑆𝑇𝐸𝐷

𝐼𝑆
 (Harke et al., 2008) 

( 3 ) 

ISTED is the maximum of the intensity distribution of the inhibition light and Is is the effective saturation 

intensity which can be defined as the intensity at which the probability of fluorescence emission is 

reduced by half. 

In recent years, the development of 3D images proved to be a challenge. To overcome that issue and 

create the same principle of depletion in the remaining axe. Described in (van Dort, 2018) and Figure 

8, the resolution in the axial axes improves in a way of getting the real excited area as a ball instead of 

a cylinder. 

 

Figure 8. Comparison between the PSF (Point Spread Function) of 2D STED or 3D STED. The PSF give the interference of the 
excitation in the sample, in other words, it is the noise produced by the excitation laser. Adapted from (van Dort, 2018) 

Expansion Microscopy 

Expansion microscopy (ExM) is a novel super-resolution microscopy technique that was developed 

with the intent of creating a technique that was not bound by the necessity of very expensive 

microscopy. The ability of using in any setup becomes of the most advantage of this method as all the 
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effects are done on the sample (Truckenbrodt et al., 2018). ExM, a technique introduced by the Boyden 

laboratory, is an important step in the direction of becoming the biological samples that had enough 

resolution without special equipment. 

 

Figure 9. Steps in the ExM protocol. First step is the staining the protein of interest, second step is connect and linkage the 
biological sample with the gel matrix, third step and fourth step is digest the sample to have a homogeneous expansion, 
finally, the last step is expansion and imaging the gel. Adapted from (Chozinski et al., 2016) 

Therefore, ExM is based on zooming out the sample to then being able to detect small distances in the 

sample (Chozinski et al., 2016). The normal microscopy is based on ways to zoom in into the sample 

and better detectors. Due to the function role of it, the only way to differentiate regions of interest is 

by detecting different information in various detector positions. 

ExM entails that the sample of interest is first fixed, permeabilized, and immunoassays and is then 

embedded in polyelectrolyte gels, which expand strongly when dialyzed in water as it is shown in the 

Figure 9. This technique can be used with different staining which means that we keep using the same 

type of staining that it has been used in the previous years 

In the Figure 10, the difference between the image taken before expansion (a) and after expansion (b). 

The ability to separate two fluorescence points makes it appealing to use in several applications. 
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Figure 10. Example of ExM without and with expansion. a. Representative image (top) of neuronal cell cultures stained for 
synaptophysin (green), a synaptic vesicle marker; Bassoon (magenta), an active zone protein; and Homer 1 (yellow), a 
postsynaptic density protein. The sample was imaged on a wide-field microscope without expansion. The boxed region with 
individual synapses is magnified in the bottom panel. Scale bars, top, 10 μm; bottom, 1μm. b. Exemplary images of synapses 
labelled as in a, but after X10 expansion. The overview image (top) is a maximum-intensity projection of a 77-slice z-stack 
spanning 15 μm (200-nm step size) in terms of physical size, or 1.5 μm (20-nm step size) downscaled to the sample’s size 
before expansion. The magnified view below shows a maximum-intensity projection of the three slices of best focus for the 
boxed region. Adapted from (Truckenbrodt et al., 2019) 

Computation methods in biological analysis 

Computational microscopy bioimage analysis has long been established as a tool for protein 

aggregation characterization. Since intensity or morphologic values can be assessed using 

computational analysis in a high-throughput manner. The general workflow involved in the 

computational processing of microscopy bioimages is described in Figure 11.  
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Figure 11. Workflow for the digital analysis of microscope images. Adapted from (Grys et al., 2017)  

The use of manual analysis has been the most used way to get information from the images (Patrick 

Weish, Diana F. Lázaro, Luís Palmares, Patrícia I. Santos, Christine Stadelmann, Günter U. Höglinger, 

Silvio O. Rizzoli, n.d.). The use of simple and reduce the effect of the user will be a good advantage to 

create a more homogeneous characterization.  

 As an alternative to manual analysis, it is less cumbersome, more objective, less biased, and large 

volumes of image data can be processed efficiently, possibly minimising erroneous conclusions 

stemming from outlier behaviour. Several possibilities could be used to solve the problem like a 

simples threshold (Perkins, 1980)  or Otsu threshold (Zhang & Hu, 2008) but the arise of machine 

learning came to revolute the way of segmentation (Schmidt et al., 2018; Weigert et al., 2020). 

Segmentation methods 

Once biological data is imaged, namely regarding monolayers of cells or tissues, segmentation and 

tracking of cells or structures the following step in the analysis. For segmentation, two main tasks are 

required – structure discrimination from the background and separation.  

These tasks will usually either require high levels of human input or high levels of configuration and 

customization for each individual experiment. This is antagonist to the development of high-

throughput methods of segmentation. Some of the most popular bioimage processing tools 

(Wiesmann et al., 2015) which help with automation include Fiji (Schindelin et al., 2012), CellProfiller 

(McQuin et al., 2018) and Icy (de Chaumont et al., 2012). 
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Two main approaches are used for segmentation. The edge-based approach locates discontinuities in 

the image, assumed to correspond to the border of the ROI; the region-based approach, alternatively, 

achieves segmentation by assuming homogeneity of the ROI (Preim & Bartz, 2007). Methods 

commonly used for segmentation of fluorescent microscopy image data include filtering (gaussian blur 

for smoothing, variance for edge enhancement), which is often a pre-processing stage along with 

techniques for Signal-to-Noise Ra- tio (SNR) enhancement; global or local adaptive thresholding (Otsu, 

1979); watershed (Vincent & Soille, 1991); or active contour (Kass et al., 1988) algorithms. While many 

tools are available, and even if image data collection is performed to the best of the available 

conditions, segmentation will usually involve manual adjustment of parameters, either according to 

the dataset or even within one dataset, due to heterogeneity of the samples or the occurrence of 

technical artifacts (Dima et al., 2011). 

Ideally, a segmentation should be able to properly segment the structure without the need for manual 

adjustment, regardless of the image type or experimental conditions - fully automated, generic and 

robust. Modern approaches to the segmentation problem often make use of machine learning 

strategies (Kan, 2017), or even deep learning (Ronneberger et al., 2015). While these models have 

been shown to perform better than other classical methods (Caicedo et al., 2019), annotation of 

datasets and training of the net is burdensome and technical variability in data collection continues to 

be a challenge due to overfitting 
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2. Materials and Methods 

The workflow can be divided in 4 steps: Cell culture, Transfection and Immunocytochemistry, 

Imaging and Digital Processing (Figure 12). 

 

Figure 12. Overview of the experimental workflow. 

The transfection was developed in several cell lines (HEK-Kidney epithelial cells- and H4- Human 

neuroglioma cells-). After transfection, immunocytochemistry was done to stain the proteins of 

interest. Then, imaging those cells using confocal, STED and Expansion microscopy to finally process 

those images digitally to obtain different variables. 

Preparation and acquisition of biological data 

The collection of the biological data can be divided into four main stages: Cell culture, cell transfection, 

immunocytochemistry, and imaging. Each of these sections will be described in detail in the sections 

below. 
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Cell Culture 

There were two types of cells to study the aggregation models. HEK were used to study the aggregation 

of Sph1-GFP while H4 were used to study the SynT WT with Sph1 aggregation model. 

HEK cells are cultured in DMEM medium®(Life Technologies) supplemented with 10% Fetal Bovine 

Serum and 1% Penicillin /Streptomycin.  The cells were grown at 37◦C in an atmosphere of 5%CO2. 

Human neuroglioma cells (H4) were maintained in OPTI-MEM®(Life Technologies) supplemented with 

10% Fetal Bovine Serum and 1% Penicillin/Streptomycin. The cells were grown at 37◦C in an 

atmosphere of 5%CO2. 

Transfection 

Metafectene Transfection 

This method of transfection was used exclusively in HEK cells. 1µg of DNA (Sph1 tagged with EGFP) and 

50µL of OPTIMEM® (Life Technologies) have been mixed. Meanwhile, in another Eppendorf, 2µg of 

Metafectene and 50µL of OPTIMEM have been mixed. After 5 minutes, both solutions are mixed and 

left to rest for 20min (Figure 13)(Biontex, n.d.). 

Finally, 100µL of the solution is mixed in a 12 well-plate for at least 24h. 24h later, the medium of the 

cells is changed to the cell culture medium. After 48h, the transfection is stopped by fixation with 4% 

paraformaldehyde (PFA). 
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Figure 13. Schematic representation of the steps involved in Metafectene transfection. In the first Eppendorf, the solution 
of DNA and Opti-mem are mixed with the solution of Metafectene and Opti-mem. 

Fugene Transfection 

This method was used for the H4 cells. As described by the manufacturer, 100uL of OPTIMEM®(Life 

Technologies) and 6uL of Fugene (Promega). After 5 min,1ug of DNA (SynT WT and Sph1) was added 

and left to rest for 30min and, finally, 100µL of the solution was mixed in a 12 well-plate for 48h 

(Figure 14). 

Figure 14. Schematic representation of the Fugene Transfection. It is mixed the Opti-mem and the Fugene. After 
5min, the DNA is added. 
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Immunocytochemistry 

After the transfection and the fixation of the cells with PFA 4%, were washed three times with PBS1x 

around 5min in the shaker. Then, it is incubated with Tritton-1x in PBS, shaking. 

After 10min, a blocking solution (3% BSA in PBS 1x) was added and left it at Room Temperature (RT) 

on the shaker. In that hour, the solution with the first antibody is prepared where depending on the 

type of microscopy used the concentration can change (1:1000 in Confocal and STED Microscopy and 

1:100 in Expansion Microscopy), the solution is prepared in the blocking solution previously prepared. 

After the incubation overnight of the primary antibody (concentrations and markers are shown in 

Table 1), the cells are washed with PBS1X three times around 5 min each wash. 

Table 1. Antibodies used in immunocytochemistry protocol. 

  Aggregation model 

Type of 

Microscopy 

 Sph1 SynTWT+Sph1  

Confocal 1º AB --- 1:1000 Anti αSyn Mouse (BD, USA) + 1:1000 Anti V5 

Rabbit (Abcam, UK) 

2º AB --- 1:1000 Alexa Fluor 488 donkey anti-mouse IgG (Thermo 

Fisher Scientific, USA) +  1:1000 Alexa Flour 555 goat anti-

rabbit IgG (Invitrogan, USA) 

STED 1º AB --- 1:1000 Anti αSyn Mouse Mouse (BD, USA) + 1:1000 Anti 

V5 Rabbit (Abcam, UK) + 1:1000 Anti α-tubulin Rat (SySy, 

Germany) 

2º AB --- 1:1000 Alexa Fluor 594 goat anti-rabbit IgG (Thermo 

Fisher Scientific, USA) + 1:1000 Abberior Star 635P goat 

anti-mouse IgG (Abberior, Germany) + 1:1000 Alexa Fluor 

488 donkey anti-rat IgG (Thermo Fisher Scientific, USA) 

Expansion 1º AB 1:100 Anti 

GFP Mouse 

(Roche, 

Switzerland) 

1:100 Anti αSyn Mouse Mouse (BD, USA) + 1:100 Anti V5 

Rabbit (Abcam, UK) 

2º AB 1:100 Alexa 

Fluor 488 

donkey anti-

mouse IgG 

1:100 Alexa Fluor 488 donkey anti-mouse IgG (Thermo 

Fisher Scientific, USA) + 1:100 Alexa Flour 555 goat anti-

rabbit IgG (Invitrogan, USA) 
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(Thermo 

Fisher 

Scientific, 

USA) 

 

Meanwhile, the secondary antibody solution (Concentrations and markers are shown in Table 1) is 

prepared with the blocking solution with different concentrations of antibody (1:1000 in Confocal and 

STED microscopy and 1:100 in Expansion Microscopy). The cells were incubated for 1h at RT on the 

shaker and then, the cells were washed again with PBS 1x three times around 5min each wash. The 

entire scheme of the antibodies can be seen in Table 1 and Figure 15.  

 

Figure 15. Graphic display of the antibodies used in immunocytochemistry. 

As the nucleus is one region of interest, after the final step, the DAPI solution (1:1000) was added for 

5 min and then washed again with PBS1x. 

Mowiol is used to mount the slides and, finally, the slides are left to dry at RT covered from the light. 



19 
 

Confocal Microscopy 

Imaging was conducted on a ZEISS LSM 800 using 100X and 1NA objective. Each collected image 

represents a range of z-slides (32 slices in Sph1-GFP and 24 slices in SynTWT+Sph1aggregation model) 

with the information of the entire cell. The dimensions of each image are 2048x2048 px (30,1 nm in 

Sph1-GFP aggregation model and 41,2 nm in SynTWT+Sph1 aggregation model). 

Each aggregation model was imaged in different experimental groups. 

There are 3 experimental groups to consider for the Sph1-GFP aggregation model: 

• Negative Control, without any transfection, just adding DAPI for imaging the nuclei. 

• Positive Control, which was performed with transfection of the PeGFP plasmid. Nuclei were 

stained with DAPI. 

• Experimental groups (n=3 – 50 cells per n), which were transfected with Sph1-GFP using the 

Metafectene method. Nuclei were stained with DAPI. 

There are 7 experimental groups for the SynTWT+Sph1 aggregation model: 

• Negative Control without any transfection. Nuclei were stained with DAPI. 

• Positive Control, with transfection of pcDNA to evaluate the transfection process. 

• The antibodies were also tested during the protocol: 

o Group 1 with just the Primary antibody and the group 2 with only secondary antibody 

o Two different imaging were performed to have both antibodies separated. Using just 

the Primary antibody and secondary to SynT WT (group 3) and another group to 

evaluate the Sph1 (group 4). 

STED Microscopy 

The imaging of each model was conducted in a different setup due to physical limitations of the lasers 

and the goal of resolution in z axis. 

Imaging the Sph1-GFP aggregation model was conducted on a Custom setup described in (Willig et al., 

2014) using 100X and 1 NA objective. This setup was based on (Wegner, Ilgen, Gregor, Van Dort, et al., 

2017). The dimensions of each image are different for each cell (20nm/px). Each image collected 

represents a range of z-slides (200 nm/px) to have information of the entire cell. 

Imaging the SynTWT+Sph1 aggregation model was conducted on a Custom setup (Wegner, Ilgen, 

Gregor, Van Dort, et al., 2017)(van Dort, 2018)) using 100X and 1.4 NA objective (HCX PL APO 100x/1.40 

OIL STED, Leica Microsystems, Wetzlar, Germany). Each image collected represents a range of z-slides 

(100nm/px) to have information of the entire cell. The dimensions of each image are different for each 
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cell (40nm/px). This model had the advantage of using a 3D STED which helps in the resolution in the 

z direction. 

Expansion Microscopy 

The expansion protocol was performed as described in (Truckenbrodt et al., 2019). After 

immunocytochemistry, the samples were incubated overnight with 500µl of Anchoring buffer (1x PBS 

+ 0.1mg/ml Acryloyl-X (Life Technologies, Carlsbad, CA, USA)) at RT. 

The day after, the samples were washed with 1x PBS three times for 5 min, and the polymerization 

solution was applied. For the X10 gelling solution, 33% (w/w) of high purity sodium acrylate (SA) and 

N,N‐dimethylacrylamide acid (DMAA) monomers solution was dissolved at a molar ratio of 4:1 

(DMAA:SA) in ddH2O. The polymerization solution was bubbled with nitrogen gas for   4̴0 min at RT. In 

a separated tube, potassium persulfate (KPS) (0.036 g/ml stock of KPS) was prepared at 0.4 molar% 

relative to the monomer concentration and mixed with the DMAA+SA solution. Another 20 min of 

bubbling with nitrogen gas was performed in a mix of ice + water to keep the temperature 

homogeneous and closer to 0ºC as possible. For 1ml of gelling solution, 4µl of N,N,N′,N′‐tetramethyl‐

ethane‐1,2‐diamine (TEMED) was added. Then, 60µl of the solution was applied into the chamber 

prepared previously according to (Truckenbrodt et al., 2019). The polymerization took between 1-3 

days, after that period. 

Then, the gel from the polymerization was incubated overnight in a humid chamber with digestion 

buffer (50mM of TRIS + 800 mM guanidine HCL + 1mM EDTA + 0.5% (vol/vol) Triton X-100) and 

Proteinase K in a concentration of 1:100. 

Imaging was performed on a Zeiss Axio Observer (ZEISS, Germany) with an Air 20X objective and 0.25 

NA. The estimation of the Expansion Factor was done using the expression (Equation ( 4 )), which was 

calculated using 50 nuclei of pre-expansion cells and 50 nuclei of post-expansion cells. 

𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =  
√∑ 𝐴𝑟𝑒𝑎𝑃𝑜𝑠𝑡

√∑ 𝐴𝑟𝑒𝑎𝑃𝑟𝑒
  (Truckenbrodt et al., 2019) 

( 4 ) 

Digital Processing 

The Processing of the data can be divided in four steps (Figure 16Figure 16):   creation of 3D matrix to 

each channel of interest; the 2D segmentation using the Stardist Network (Schmidt et al., 2018; 

Weigert et al., 2020) were done for each slice , then a relationship between the segmented areas was 

created to configure the object- aggregate- and finally the statistical analysis taking the number of the 
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aggregates per cell and the volume of each aggregate. In SynTWT+Sph1 aggregation model, the 

colocalization was a variable to analyse. 

 

Figure 16. Workflow of the digital processing. Firstly, the data of each channel is converted into a 3D matrix to then, be 
segmented with a custom trained model to the region of interest. After segmentation, a relationship between the segmented 
areas is created using the fact of continuity of the aggregates between the adjacent slices. Lastly, 3D projections and number 
of aggregates per cell, volume of each aggregate and colocalization (just for SynTWT+Sph1 aggregation model) are developed. 

   

Deep Learning Algorithm 

Model training was performed by recurring to pictures given by Liana Shvachiy of the same aggregation 

model used in the experimental data (150 for SynTWT+Sph1 aggregation model and 87 pictures to 

Sph1-GFP aggregation model). The channel of interest needs to be taken in consideration due to 

heterogeneity between the channels, in other words, for every channel a model must be created in 

separate. Then, the model was used to segment in 2D. 

Creation of the mask 

To have one cell per image, the pre-analysis was performed to create masks for each picture to make 

sure that just one cell was taken in consideration. 
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Relation of segmentation 

The 2D segmentation of each layer was related though masks with a previous list of objects already 

taken as possible aggregates. Then, the fact that each aggregate needed to be convex and continuous 

in the z axis was taken into consideration. In each layer, there are3 possibilities: the segmented area 

can intersect with just one possible aggregate; the segmented area can be alone and no interaction 

with any possible aggregates; or the segmented area can interact with more than one aggregate. In 

the first two options, the solution looks obvious, when there is an interception, a new possible 

aggregate is added to the list, when there is just one intersected aggregate, then the volume of that 

layer is added to that object with the replacement of the new mask. When there is more than one 

possible aggregate, the volume of all possible aggregates is added, and it is by replacing those possible 

aggregates by one with the merge of those aggregates. In the end of the process, the possible 

aggregate with just one layer was removed because of the low probability of having so small 

aggregates. 

Colocalization 

In the SynTWT+Sph1 aggregation model, an object-based colocalization was performed where it was 

analysed the intersection of the Sph1 over the SynTWT signal. This value was removed in each layer 

using the predicted from the model. Then, for each image (and cell) the average colocalization and the 

maximum was taken as results. 

Statistical Analysis 

The average and standard deviation of the volume of aggregates was calculated. The average and 

standard deviation of the number of aggregates per cell and average and standard deviation of volume 

of aggregates per cell. In SynTWT+Sph1 aggregation model, the average and standard deviation of 

mean colocalization and maximum colocalization was analysed.  
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Data collection 

Segmentation and analysis rendered a total of 363 cells. The distribution of cells per type of microscopy 

and aggregation model can be seen in Table 2. Collection of ExM was used simply to create the 

Maximum Intensity Projection through the phase cross correlation alignment. 

Table 2. Number of the images taken in each microscopy and aggregation model. The difference of the number of images 
taken is related with the time to record the images. 

Type of Microscopy Sph1-GFP Aggregation Model SynTWT+Sph1 Aggregation 

Model 

Confocal Microscopy 150 150 

STED 33 30 

ExM 150 75 

 

3. Results 

Qualitative analysis of Imaging in Sph1-GFP and SynT+Sph1 

aggregation models 

To evaluate the aspect of the image to ensure that the analysis is performed in a cell with aggregates, 

the maximum intensity projection (MIP) was created in each aggregation model and type of 

microscopy. Imaging from confocal and STED microscopy was done, obtaining representative MIP 

images from each aggregation model and type of microscopy (Figure 17 and Figure 18) 

In Figure 17a, MIP of confocal images of the Sph1-GFP aggregation model in HEK cells. In green, the 

signal from GFP is visible with the presence of aggregates. Images were taken at 100x magnification. 

Scale bar is 10µm. In Figure 17b, MIP of STED images of the Sph1-GFP aggregation model in HEK cells. 

In green, the signal from GFP is visible with the presence of aggregates. Images taken at 100x 

magnification. Scale bar 10µm. These were the images used for further analysis using computational 

tools. According to the Figure 17, it is expected to have similar results in both types of microscopies 

where large aggregates and low numbers of aggregates are expected. 

As for SynT WT + Sph aggregation model, different antibodies were used because of the technique 

applied. In confocal microscopy (Figure 18a), the αSyn signal was collected at 488nm, the Sph1 signal 

was collected at 555nm and DAPI at 405nm of wavelength. In STED microscopy (Figure 18b), the αSyn 
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signal was collected at 635nm, the Sph1 was collected at 594nm and DAPI at 488nm of wavelength. In 

Expansion microscopy, the collection of the signals was similar to the one used in confocal, however 

using 20x magnification in an epifluorescence microscope. 

As shown in the previous work from the group, in the SynTWT+Sph1 aggregation model (Figure 18) the 

cells display a different aggregation pattern. That would be the first impression to evaluate the 

difference between the Confocal and STED microscopy.  

In the Expansion Microscopy data, the full analysis was not complete due to time constraints. 

Meanwhile, the alignment of the images regarding the Z axis using phase cross correlation function 

was performed to get the better approach and create a similar 3D matrix as in the other types of 

microscopies. 

a) 

b) 

Figure 17. Representative MIP images from the SphGFP model. a) MIP taken in consideration as a standard image from 
confocal microscopy. Images taken at 100x magnification. Scale bar 10µm. b) MIP to taken in consideration as a standard 
image from STED microscopy. Images taken at 100x Scale bar 5µm. 
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a) 

c) 

b) 

Figure 18. Representative MIP images from SynTWT+Sph1 aggregation model. a) MIP taken in consideration as a standard 
image from confocal microscopy. Images taken at 100x magnification. Scale bar 10µm b) MIP taken in consideration as a 
standard image from STED microscopy. Images taken at 100x magnification. Scale bar 10µm c) MIP taken in consideration as 
a standard image from ExM images taken at 20x magnification. Scale bar 20µm. 
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2D segmentation in each slice of the image 

The following section gives an overview of the type of segmentation in each type of microscopy and 

model in question. The evaluation of the trained model was performed using the intersection over 

union parameter. The Sph1-GFP model had a precision of 86.67% in the validation images taken from 

the batch of trained data. The SynTWT+Sph1 has two models to be evaluated according to the signal, 

in the SynTWT (green channel), a precision of 76.92% was achieved and in the Sph-1 (red channel) a 

precision of 90.91% was obtained. 

The segmentation is an important part of the results since it has a direct factor in the volume of the 

aggregate due to the fact of summing each volume of the segmented area.  

Segmentation in Sph1-GFP aggregation model 

The number of z slices in each type of microscopy was different due to the resolution available to 

achieve and the setup used, but the segmented shape, as previously explained in the methods section, 

follows the convex-polygon shape (Figure 19 and Figure 20). 

The segmentation was done recurring to a custom trained model from images taken previously to give 

the label image and the raw channel. In Figure 19, the 2D segmentation of the Slices 9,14 and 27 are 

shown, respectively, from one image used in this work. If we compare the left (raw data) and right 

(segmentation), the segmentation data looks very promising in the central slice which then could be 

improved in the top and bottom slices. 

Using the same model trained for the confocal microscopy images, the segmentation from STED 

images looks similar with the previous one with circular shapes (Figure 20). The hypothesis of circular 

Figure 19. Raw image(left) and Segmented areas(right) in some slices from confocal images in Sph1-GFP aggregation model. The raw and 
segmented images from the slice 9(left),14(middle),17(right) in the MIP image presented before. 
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and round aggregates was tested as seen by the segmented areas that seem to be bigger in terms of 

the area in the most central slices of the image. 

Segmentation in SynTWT+Sph1 aggregation model 

To compare and create a volumed shape of the aggregate, the segmentation was an important step. 

Using a previously trained model for each channel of interest, the segmented areas are shown in Figure 

21(Confocal Microscopy) and Figure 22(STED Microscopy).  

Having the Figure 22(Slice 12,30,39) in mind from STED microscopy, it is clear that not all the possible 

aggregates were predicted. Although, the shapes of those areas are well defined. 

Figure 21. Raw images (top) and Segmented areas (down) in some slices from confocal images in SynTWT+Sph1 aggregation 
model. Each slice has two segmentations due to the fact of there are two channels of interest (SynT channel on the left and 
SphV5 on the right). The raw and segmented images from the slice 5 (left),9 (middle),17 (right) in the MIP image presented 
before. 

Figure 20. Raw image (left) and Segmented areas (right) in some slices from STED images in Sph1-GFP aggregation model. 
The raw and segmented images from the slice 13 (left),26 (middle),38 (right) in the MIP image presented before. 
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3D projection and Statistical Values 

This section takes in consideration some images of each model and type of microscopy as a 3D 

projection to have a better understanding of the spatial location of aggregates that are in interaction 

with each other. 

According to the literature, a small number of aggregates with a high volume is expected. In Figure 23, 

the 3D projections from the images segmented before (Figure 19) clearly provide the expected results 

regarding the number and size of the aggregates in Sph1-GFP aggregation model on confocal 

microscopy. 

Figure 22. Raw images (top) and Segmented areas (down) in some slices from STED images in SynTWT+Sph1 aggregation 
model. Each slice has two segmentations due to the fact of there are two channels of interest (SynT channel on the left and 
Sph1 on the right). 
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Figure 23. Several views of the 3D projection from confocal microscopy in the Sph1-GFP aggregation model. These views 
are the analysis of the segmented areas and MIP image from confocal microscopy and Sph1-GFP aggregation model.  

3D projections from confocal images provide the large aggregates in most of the slices of the image 

and large volume as it can be confirmed by the x and y axis. Although, in Figure 23, two aggregates 

were segmented, one with a large volume and a smaller one on the top of the big one. 

The analysis from STED images provides similar results in terms of the number of aggregates (Figure 

24). As a result of this analysis, just one aggregate occupying the most of slices of the image is 

segmented. 
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These views are representative analysis from images from STED microscopy regarding the Sph1-GFP 

aggregation model. 

Both types of microscopies resulted in big aggregates with a convex and bull shape. The difference 

between both types of microscopies does not seem to be significant. 

In the SynTWT+Sph1 aggregation model, the 3D projection shows both segmented aggregates of 

SynTWT channel (green colormap) and the Sph1 (red colormap). 

As seen in the segmented slices previously, it is expected to have more aggregates than the Sph1-GFP 

with a smaller size. In Figure 25, the 3D projection from confocal microscopy in the previous MIP 

pictures and segmented slices show the results expected with higher quantity and lower size 

aggregates. 

Figure 24. Several views of the 3D projection from STED microscopy in the Sph1-GFP aggregation model. 
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Figure 25. Several views of the 3D projection from confocal microscopy in the SynTWT+Sph1 aggregation model. These 
views are the analysis of the segmented areas and MIP image from confocal microscopy and SynTWT+Sph1 aggregation 
model. 

After analysis of the STED images to the same aggregation model, where the green colormap represent 

the SynTWT signal and the red colormap represent the Sph1 signal, the results from 3D projections 

provide us the expected size of the aggregates (Figure 26). The higher number and small size of the 

aggregates looks similar with the results from confocal microscopy.  
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There are some differences regarding the shape of the aggregate comparing both microscopy 

techniques in the same aggregation model. The number of aggregates looks similar although with a 

different spatial localization of each protein aggregate. Analysing the possible interaction between the 

SynTWT and Sph1 proteins, both types of microscopies provide some evidence that there is 

colocalization between the proteins. 

To test the hypotheses and discuss some results, statistical analysis using several metrics was 

performed. For the Sph1-GFP aggregation model, a box plot of the results of 50 images (one N), the 

average and standard deviation of the aggregate volume per N and an average of the experiment were 

performed for each type of microscopy (Figure 27 correspond to confocal microscopy and Figure 28 

correspond to STED microscopy). 

Figure 26. Several views of the 3D projection from STED microscopy in the SynTWT+SphV5 aggregation model. These views 
are the analysis of the segmented areas and MIP image from confocal microscopy and SynTWT+SphV5 aggregation model. 
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Figure 27. Boxplot and the average volume of aggregates using confocal microscopy in the Sph1-GFP aggregation model. 
The boxplot represents the median and the range of values in each N (Left). The average and standard deviation volume of 
the aggregates was created in a bar plot (right). 

 

Figure 28. Boxplot and the average volume of aggregates using STED microscopy in the Sph1-GFP aggregation model. The 
boxplot represents the median and the range of values in each N (Left). The average and standard deviation volume of the 
aggregates was created in a bar plot (right). 

According to both figures above (Figure 27 and Figure 28), there are not significant difference in values 

in the second and third N but can be used all Ns due to the similar median. Comparing the results of 

the average volume of Sph1-GFP aggregates (Table 3), both average and standard deviation looks 

different according to the type of microscopy used. 
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Table 3. Values of average and standard deviation of Sph1-GFP aggregates. 

Type of Microscopy Average Volume of Sph1-GFP aggregates 

Confocal 32,36 ± 62,59 [µm3] 

STED 6,44 ± 27,39 [µm3] 

 

Having the difference in mind, the relation between the number of cells and volume with the number 

of aggregates per cell was created for both types of the microscopy in analysis. Meanwhile, the average 

and standard deviation value of the volume per N is also presented in Figure 29c and Figure 30c to 

represent the range of volume of aggregates that could occur in each N. 

 

Figure 29. Relation of number of cells and volume of aggregates with number of aggregates per cell. The average volume 
per N in confocal microscopy. a) Bar plot of number of cells vs the number of aggregates in the Sph1-GFP aggregation model 
using confocal microscopy. b) Bar plot of average volume of the aggregates in each number of aggregates per cell in Sph1-
GFP aggregation model using confocal microscopy. c) Bar plot with the average and standard deviation of the volume of 
aggregates per N. 
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Figure 30. Relation of number of cells and volume of aggregates with number of aggregates per cell. The average volume 
per N in STED microscopy. a) Bar plot of number of cells vs the number of aggregates in the Sph1-GFP aggregation model 
using STED microscopy. b) Bar plot of average volume of the aggregates in each number of aggregates per cell in Sph1-GFP 
aggregation model using STED microscopy. c) Bar plot with the average and standard deviation of the volume of aggregates 
per N. 

Therefore, the quantification of the previous graphs is presented in Table 4. 

Table 4. Values of average and standard deviation regarding the volume of aggregates, number of aggregates per cell and 
the average volume of aggregate per cell in Sph1-GFP aggregation model. 

Type of Microscopy Average Volume of 

aggregates [µm3] 

Average number of 

aggregates per cell 

[aggregates] 

Average Volume of 

aggregates per cell 

[µm3] 

Confocal 32,36 ± 62,59 3 ± 2 50,75 ± 55,77 

STED 6,44 ± 27,39 8 ± 13 24,57 ± 37,60 

 

For the SynTWT+Sph1 aggregation model, a box plot of the results of 50 images (one N) and the 

average and standard deviation of the aggregate volume per N and an average of the experiment were 

performed as well. Since one goal of the work is to consider the colocalization between the two signals 

of interest, a box plot of the average colocalization and max colocalization were performed. Then, an 

average and standard deviation for both variables were calculated. This process was the same in both 

microscopy types (Figure 31 and Figure 32 correspond to Confocal microscopy Figure 33 and Figure 34 

correspond to STED microscopy). 

To access the range of values achieved in terms of volume and colocalization in SynTWT+Sph1 

aggregation model,  a box plot for several variables was examined (Volume of the Aggregates in 
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SynTWT-Figure 31a and Figure 33a- and Sph1 channel- Figure 31c and Figure 33c) as well the average 

colocalization(Figure 31b and Figure 33b) and maximum colocalization (Figure 31d and Figure 33d). 

From SynTWT+Sph1 aggregation model and confocal microscopy, the difference from both volume of 

aggregate is not clear in confocal microscopy (Figure 31a and Figure 31c) although the difference in 

terms of median is around 1µm3.  

To evaluate the volume of aggregates in each channel and compare between them, in Figure 32a a bar 

plot was created to compare in which the difference is smaller than 1µm3. To evaluate the interaction, 

a bar plot was created to compare the average colocalization and the maximum colocalization in which 

the maximum colocalization has a big range of values while the average colocalization has a maximum 

around 0.3. 

 

Figure 31. Boxplot of the volume of aggregates of both channels (a and c) and the boxplot 
of average colocalization and maximum colocalization (b and d, respectively) using confocal 
microscopy in the SynTWT+SphV5 aggregation model. 
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Figure 32. Average volume of aggregates in both channels (a) and the average and standard deviation of variables average 
colocalization and maximum colocalization in SynTWT+Sph1 aggregation model using confocal microscopy (b). The values 
are shown in Table 5 and Table 7 as well. 

From the same aggregation model but from STED microscopy, the volume of the aggregates between 

the channel are slightly different (Figure 33a and Figure 33c). From STED microscopy, the evaluation 

of the colocalization was performed in the same way as confocal microscopy to evaluate in the same 

metric.  

To access the hypothesis of interaction between the proteins, the average colocalization and maximum 

colocalization box plot was created (Figure 33b and Figure 33d). 
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Figure 33. Boxplot of the volume of aggregates of both channels (a and c) and the boxplot of average colocalization and 
maximum colocalization (b and d, respectively) using STED microscopy in the SynTWT+Sph1 aggregation model. 

To evaluate the volume of aggregates in each channel and compare between them, in Figure 34a a bar 

plot was created to compare in which the difference is smaller than 1µm3. To evaluate the interaction, 

a bar plot was created to compare the average colocalization and the maximum colocalization in which 

the maximum colocalization has a big range of values while the average colocalization has a maximum 

around 0.2 which is 0.1 lower than using the confocal microscopy. 
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Figure 34. Average volume of aggregates in both channels (a) and the average and standard deviation of variables average 
colocalization and maximum colocalization in SynTWT+Sph1 aggregation model using STED microscopy(b). The values are 
shown in Table 5 and Table 7 as well. 

To sum up the different results collected from the SynTWt+Sp1 aggregation model, the results of the 

average and standard deviation volume of SynT and Sph1 aggregates are shown in the Table 5. Both 

average and standard deviation look different according to the type of microscopy used. 

Table 5. Average and standard deviation of the SynTWT and Sph1 aggregates volume in both types of microscopies. 

Type of Microscopy Average Volume of SynTWT 

aggregates [µm3] 

Average Volume of Sph1 

aggregates [µm3] 

Confocal 2,37 ± 3,61 2,77 ± 4,21 

STED 0,9 ± 1,70 1,70 ± 2,70 

 

Having the difference between microscopies in mind, the relationship between the number of cells 

and volume with the number of aggregates per cell was created for both types of the microscopy in 

analysis to access the distribution of the aggregates according to the cells. Meanwhile, the average 

value of the volume per N is also presented in Figure 35 and Figure 36. 
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Figure 35. Relation of number of cells and volume of aggregates with number of aggregates per cell. The average volume 
per N in confocal microscopy for each channel of interest (SynTWT-top and Sph1-bottom). a) Bar plot of number of cells vs 
the number of aggregates regarding the SynTWT channel in the SynTWT+Sph1 aggregation model using confocal microscopy. 
b) Bar plot of average volume of the aggregates in each number of aggregates per cell regarding SynTWT channel in 
SynTWT+Sph1 aggregation model using confocal microscopy. c) Bar plot with the average and standard deviation of the 
volume of aggregates per N regarding the SynTWT channel. d) Bar plot of number of cells vs the number of aggregates 
regarding the Sph1 channel in the SynTWT+Sph1 aggregation model using confocal microscopy. e) Bar plot of average volume 
of the aggregates in each number of aggregates per cell regarding Sph1 channel in SynTWT+Sph1 aggregation model using 
confocal microscopy. f) Bar plot with the average and standard deviation of the volume of aggregates per N regarding the 
Sph1 channel. 

In order to take the cell in account to evaluate the volume distribution of the aggregates in the cell, 

the relationship between the number of cells and the number of aggregates per cell was created that 

gives a range of number of aggregates per cell and the distribution of the number of aggregates 

across the experiments (Figure 35a,d and Figure 36a,d).  With the evidence that the number of 

aggregates per cell vary, the evaluation of the influence in the volume was done recurring to a bar 

plot (Figure 35 b, e and Figure 36b, d). Another metric was taken without the influence of the cell in 
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which a bar plot was created to conclude about the precision and the range of volume achieve in the 

aggregation process. 

 

Figure 36. Relationship between number of cells and volume of aggregates with number of aggregates per cell. The average 
volume per N in STED microscopy for each channel of interest (SynTWT-top and Sph1-bottom). a) Bar plot of number of 
cells vs the number of aggregates regarding the SynTWT channel in the SynTWT+Sph1 aggregation model using STED 
microscopy. b) Bar plot of average volume of the aggregates in each number of aggregates per cell regarding SynTWT channel 
in SynTWT+Sph1 aggregation model using STED microscopy. c) Bar plot with the average and standard deviation of the volume 
of aggregates per N regarding the SynTWT channel. d) Bar plot of number of cells vs the number of aggregates regarding the 
Sph1 channel in the SynTWT+Sph1 aggregation model using STED microscopy. e) Bar plot of average volume of the aggregates 
in each number of aggregates per cell regarding Sph1 channel in SynTWT+Sph1 aggregation model using STED microscopy. f) 
Bar plot with the average and standard deviation of the volume of aggregates per N regarding the Sph1 channel. 

Associating each type of microscopy (Figure 35 correspond to confocal microscopy and Figure 36 

correspond to STED microscopy), the distribution in terms of the number of cells and volume of the 

aggregates regarding the number of aggregates was similar although the average volume is slightly 

different. 
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To sum up the values and quantifications, in Table 6 was displayed the average volume of aggregate, 

the average number of aggregates per cell and the average volume of aggregates per cells. 

Table 6. Values of average and standard deviation regarding the volume of aggregates, number of aggregates per cell and 
the average volume of aggregates per cell in SynTWT+Sph1 aggregation model. 

Type of Microscopy 
Average Volume of 

Aggregate [µm 3] 

Average number 

of aggregates per 

cell [aggregates] 

Average Volume 

of Aggregates per 

cell [µm3] 

Confocal SynTWT 2,37 ± 3,61 14 ± 13 2,12 ± 1,83 

STED SynTWT 0,9 ± 1,51 18 ± 11 0,88 ± 0,6 

Confocal Sph1 2,77 ± 4,21 11 ± 10 3,17 ± 2,29 

STED Sph1 1,70 ± 2,70 14 ± 8 1,81 ± 1,30 

 

To access the colocalization between the proteins, it was calculated the mean of colocalization in each 

image and the maximum of colocalization in each image. Then, the average and standard deviation of 

each metric was calculated and presented in Table 7. 

Table 7. Average and standard deviation of mean colocalization and maximum colocalization between the Sph1 and 
SynTWT signal. 

Type of Microscopy Mean of colocalization Maximum Colocalization 

Confocal 13,61 ± 12,71 % 53,61 ± 37,89 % 

STED 15,46 ± 12,62 % 69.42 ± 36.35 % 

 

Both variables look similar without significant difference which helps the hypothesis given in the 3D 

projections. 
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4. Discussion 

The aggregation of αSyn is a central hallmark of several neurodegenerative diseases such as PD, 

however, the study of the biology and functions behind it remain poorly understood. Fluorescence 

microscopy has been a resourceful tool used in experiments in both cell and animal studies. Therefore, 

using fluorescence microscopy to analyse some of the aggregation model has been the major source 

of information. 

Most of the images so far have been analysed in Maximum Intensity Projection which led to results 

and characterization of 2D images and carrying the problem of the localization in space. Thus, focusing 

on understanding how these aggregates are located in space is the next step in both the field of 

microscopy and biology. On one hand, the progress to find better techniques of analysis and setups to 

have a better resolution in all possible axes has been the major focus of microscopy. On the other 

hand, the accuracy of images and data help the biology to get a better understanding of some 

neurodegenerative diseases. Thus, both fields of study need to be in parallel and complement each 

other for best results leading to progress.  

Analysing these images can use several protocols (Meijering et al., 2004; Puchkov, 2021; Rizk et al., 

2014), the most important factor is the segmentation of the regions of interest. Deconvolution of the 

images and the creation of PSF to deconvolute can be the most accurate way to analyse (Rizk et al., 

2014) although it is very bias to the interpretation of the user. Removing some noise using a given 

signal to noise ratio can improve the results as well. The protocol used in this study is very similar with 

(Rizk et al., 2014), although less features of the aggregate and less pre-processing of the image was 

done like the ones explained above. Therefore, this study can be used as a baseline to improve with 

more steps though the protocol to improve the accuracy of the protocols 

One of the goals of the work was to create a volumed analysis of some aggregate models, this goal was 

achieved using a deep learning algorithm (Stardist (Schmidt et al., 2018; Weigert et al., 2020)) to 

segment in several aggregates and the relationship between those predicted slices. This method can 

be used in convex-shape polygon aggregates in order to get a volume of aggregate instead of area. 

Another goal of the work was to compare different types of microscopy techniques to ensure what 

microscopy could be more suitable for the aggregation model in question. This goal was achieved using 

several techniques in different ranges of resolutions.  Using Confocal Microscopy, a minimal resolution 

of 140,85nm in Sph1-GFP aggregation model was achieved (Elliott, 2020) and using STED microscopy, 

a minimal resolution of 75 nm in SynTWT aggregation model was achieved (van Dort, 2018; Wegner, 
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Ilgen, Gregor, Van Dort, et al., 2017). The hypothesis of finding the most suitable technique depending 

on the aggregation model in this study marks an important step to the way of analysing the spatial 

location of protein aggregation in the cell and the interaction of several proteins combining a more 

cost-efficient way of imaging the protein aggregation model. Therefore, comparing the results 

gathered and the time taken to record the data in both models, probably using STED in the Sph1-GFP 

aggregation model does not make it profitable to use due to the time spent in the technique. Although, 

the SynTWT+Sph1 aggregation model can be advantageous due to the number of aggregates and the 

size of them. 

Sph1-GFP aggregation model 

Sph1 has been studied in terms of formation of inclusions (Büttner et al., 2010; Tanaka et al., 2004), 

colocalization with several proteins (Chung et al., 2001) and its role in the PD (Krüger, 2004) although 

the analysis of the fluorescence images has been done by the number of aggregates or the area of 

those aggregates or even colocalization to other proteins by MIP or just a slice of the entire image. 

Therefore, the use of the real appearance of the protein can give better clues in the previous described 

topics. 

According to the previous 3D projection of this aggregation model in confocal and STED microscopy, it 

seems that the size and shape are similar between them and round shape. Although when we 

statistically compare the results (Table 4), the average result is one order below in STED than in 

confocal. 

Analysing the relation to the number of cells in function of the number of aggregates per cell and the 

average volume in function of the number of aggregates per cell, some hypothesis can be raised. 

Comparing the number of cells in function of the number of aggregates per cell in each microscopy 

technique (Figure 29a ,Figure 30a), the shape of the graphs look similar but one difference needs to be 

taken in consideration. The low number of cells in STED microscopy probably can explain this 

difference in values. This reason can be transported to the average volume in function of the number 

of aggregates per cell where a small number of pictures taken can be a problem. When the number of 

aggregates is low, the average volume of those aggregates is big, achieving almost 100 µm 3 in confocal 

microscopy and 50 µm 3 in STED microscopy. To corroborate this hypothesis even more, the average 

volume of the aggregates per N in both microscopies are significantly different (Figure 29 and Figure 

30). 

To understand the weight of each aggregate in the analysis and results, two different types of 

averaging were performed. (Volume of aggregates and volume of aggregates per cell). Between the 
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two variables, the difference is kept at the same level unless one difference can be taken. When all the 

aggregates have the same weight in the average, the result is lower which indicates that there are a 

lot of aggregates with a very small volume, but it is not dispersive through all cells. This might be due 

to the majority having large aggregates. The number of aggregates per cell corroborates the difference 

found between microscopy techniques, using STED, there are almost 3 times more aggregates per cell 

with a bigger range of values in contrast when compared in confocal microscopy (Figure 32 and Figure 

34). 

This lack of similarity between these two types of microscopes can have several reasons. One reason 

can be the Z resolution. It used a 2D STED which then, some light can be transferred from different 

slices, this problem can happen in Confocal Microscopy, in other words, the PSF for each type of 

microscopy would be different. Another reason that can explain by the images used in the training. 

The model was trained with confocal microscopy images and one possibility of overcoming the issues 

would be to use images from STED to train the model. Another reason can be the difference of number 

of images, increasing the number of cells analysed in STED microscopy can be a solution or a way to 

test this hypothesis. Finally, using the 3D STED setup can be a solution as well in order to increase the 

resolution in the Z axis.   

SynTWT+Sph1 aggregation model 

Both proteins have been studied in several ways using several techniques in most of them analyse 

microscopy images in terms of areas (Nath et al., 2011) or number (Lázaro et al., 2014) reaching very 

small size and high number aggregates but reaching the values in terms of volume gives a more 

accurate result to the real aspect of the aggregate. 

According to the previous 3D projection of this aggregation model in confocal and STED microscopy, it 

looks that the size and shape are similar in the essence with difference in the shape and space location. 

Although when we statistically compare the results (Table 5), the average result is quite similar 

between the two. 

In our study, we expected to have differences between the two types of microscopy techniques in 

terms of average aggregate volumes due to the small sizes, which could be facilitating the 

differentiation between the Confocal and STED microscopy in terms of principles but that did not 

happen. 

Comparing first between the channels in Confocal Microscopy in terms of number of cells in function 

of number of aggregates per cell, the shape looks a little different. In other words, in SynTWT channel 

(green), most aggregates per cell are larger than Sph1 channel (Figure 35). Most cells have below 20 
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aggregates per cell in both channels but more dispersed in the Sph1 channel. When comparing the 

Average Volume of Aggregate in function of number of aggregates per cell, the difference is quite clear 

in size of aggregate and shape of the graph. 

In the SynTWT channel, the shape of the graph almost looks like a Gaussian distribution where the 

bigger aggregates can be found between 10 and 30 aggregates per cell. In contrast, the Sph1 channel, 

the shape of the graph looks more constant in function of the number of aggregates per cell. Therefore, 

we can assume that the volume of the aggregate is influenced by the number of aggregates in the cell 

in the SynTWT channel while it is not influenced in the Sph1 channel. 

It is possible to discuss the size of the Aggregates in both channels, although the order of size is the 

same, the SynTWT aggregates are smaller than Sph1 aggregates. The standard deviation of SynTWT is 

also smaller than Sph1 aggregates which indicate the possibility of interaction between them as it has 

been published about αSyn inclusions in cultured cells (Liani et al., 2004; Luk et al., 2009). 

Comparing the different values for volume of aggregates and volume of aggregates per cell between 

channels and types of microscopies can lead to several hypotheses. Considering the SynTWT and Sph1 

marker images from Confocal Microscopy, the size of Sph1 aggregates is higher than SynTWT in both 

ways of calculating the average volume; that same relation is also applied in STED microscopy. The 

standard deviation of Sph1 aggregates is higher than SynTWT aggregates which can indicate a bigger 

range of values in terms of volume which can corroborate the idea of no interference of the number 

of aggregates per cell in contrast with the SynTWT aggregates (Luk et al., 2009). 

In the same type of aggregates, using STED microscopy, the number of aggregates is higher and 

therefore, the use of 3D STED can be useful to create a better understanding of the spatial distribution 

of aggregates in all axes. Using this setup can take us to consider and probably reduce the PSF in the 

setup. This function could be evaluated in order to prove this hypothesis, because comparing both, we 

can conclude about the distinction between each slice of the image. 

Although several proteins have been linked with aggregation of αSyn  (Büttner et al., 2010; Casadei et 

al., 2014; Chung et al., 2001; Engelender et al., 1999; Liani et al., 2004; Lücking & Brice, 2000; Ribeiro 

et al., 2002; Swinnen et al., 2011), the hypothesis of interaction and therefore colocalization has been 

tested using several techniques (Luk et al., 2009). This study described that there is possible the 

interaction between them due to the fact of there are some colocalization. If we compare the results 

given by an object-based colocalization, the interaction does not seem very high. Checking several 

positions in the 3D projections of those proteins, it seems that interaction is different in terms of the 

Z axis. In other words, the Sph1 protein looks translated in Z compared with SynTWT protein. From 

previous studies in which the electron microscopy was used (Luk et al., 2009), the position of the 
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aggregates closer and starting closer to the nucleus have been described. That statement cannot be 

verified since the segmentation of the nucleus was not done. Using 3D STED could improve that 

differentiation in the axis to improve the capability of getting more accurate volumes of the 

aggregates.  

These results can lead us to doubt about the real interaction between the aggregates and using 

different types of colocalization can be advantageous to classify that interaction. 

Expansion Microscopy 

Expansion Microscopy can lead us to several breakthroughs in terms of microscopy but still a lot to 

work on in terms of stability of the sample and viability of the protocols. The use of simple microscopes 

takes this technique to a very high ratio between results and feasibility. 

The stability of the sample was the most difficult aspect to deal with. The expansion factor achieved 

during the experiments was 5.15 which is below present in (Truckenbrodt et al., 2018, 2019). Although, 

this technique can be used to overcome the diffraction limit, combining with confocal or STED can 

even more improve the resolution than it was achieved before (Truckenbrodt et al., 2018; Zwettler et 

al., 2020) . In Figure 18c, the background of the images is much larger than another type of microscopy 

presented in this work due to the use of a gel instead of glass slide with a more dispersive light in the 

gel. Therefore, this microscopy will need several steps before taking the same type of analysis. The 

filtering of the microscope will need to be very accurate because of the extensive time of exposure 

and the possibility of having signals in channels that we didn’t desire. In order to remove some signal 

that can pass through to other channels, adaptative filters can be used (Peli & Lim, 1981).  

To sum up, this study provided a method to evaluate the volume of the aggregates from two aggregate 

models associated with PD and the comparison between different microscopy in order to understand 

what the advantages are of using each technique. We also used some computational analysis which 

removed some biases that happen in the manual analysis by the researchers performing the studies. 

This could be used for a better time and cost efficiency in the future studies using the same models of 

aggregation and testing some possible therapeutic approaches.   
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5. Conclusions and future perspectives 

Our work has provided a very simple but effective method to have a volume of protein aggregation in 

two models used in order to study the PD. The current work adds to our understanding and doubt the 

complex interaction between several proteins and the way to create the better technique for the 

model in question. 

In summary, the current work has shown the importance of having analyses in 3 axes instead of two 

to create a better spatial resolution and localization of the aggregations of interest. 

As future perspective, the results can be verified with more data from STED microscopy in order to 

create a better statistical analysis. Another work that can be done can be using the 3D segmentation 

instead of using 2D segmentation. The time to label the images will increase and the number of images 

for that will need to be higher as well. In contrast, the segmentation of the aggregates should be better, 

and the accuracy of the results will be higher to create an even more accurate spatial localization of 

each aggregate. 

To validate the shape of the aggregates (shown in several 3D projections), the image of beads to prove 

the right PSF of the setup could be done. The shape of the beads will be known and therefore, the 

alignment according to the z axes could be measured more accurately. 

The images used to train the models were from confocal microscopy. Changing these images to STED 

images or a model for each type of microscopy can be even better in order to create better results 

because each model is adapted to a specific type of microscopy. Labelling more images to add to the 

model can be a solution to create broader possibilities, especially in the SynT WT+Sph1 aggregation 

model in which the segmentation can be improved substantially. 
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