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Abstract

Aerodynamic forces on a race car depend on its attitude, which changes along the track given
the accelerations they are subjected to. The main objective of this work is to understand how these
attitude changes affect the FST10e prototype aerodynamics. The car’s attitude was broken down into
five parameters of interest: front and rear ride heights, roll, steering and yaw angles, with the vehicle
behaviour being estimated by CFD simulations. The primary focus of CFD was cornering condition
simulation, with the corresponding numerical error estimated by performing a mesh convergence. The
influence of each of these parameters was evaluated individually, revealing some unexpected results,
with the most impactful sensitivity being the yaw angle with a 16% change in downforce across the
interval. An aerodynamic map was then created based on over 100 data points, which provided a
thorough understanding across the whole working envelope. The results can be promptly obtained by
using a surrogate model, which overcomes the slow CFD analyses. Lastly, an aerodynamic validation
component was also addressed to estimate downforce and drag coefficients with on-track testing. The
main challenge encountered was to estimate air speed during validation testing, which revealed to be a
great source of uncertainty to correlate CFD with track results.
Keywords: CFD, Formula Student, Aerodynamic mapping, On-track validation, Ride height, Vehicle
attitude

1. Introduction

The aim of race cars is ultimately to win races and
to do so, there are many areas where it is possi-
ble to reduce lap times and beat the competitors.
Aerodynamics plays an important role in the vehi-
cle’s stability and handling [1], helping the driver
to achieve consistent and quick lap times. As the
car is in constant motion due to the accelerations it
is subjected to (laterally when cornering and longi-
tudinally when accelerating/braking) vehicle’s atti-
tude varies a lot across the track. These changes in
the vehicle state directly affect the car aerodynamic
performance and this work intends to understand
how the aerodynamic forces and moments acting
on a race car vary over a range of attitudes.

The understanding of this behaviour helps to un-
derstand in which conditions the aerodynamic pack-
age can be improved in the future but is also advan-
tageous for vehicle dynamics understanding. It pro-
vides information to help identify zones of interest
to ride the car in and adjust the car setup to ride on
those conditions, reaching the full potential of the
prototype. It is also possible to draw conclusions
about the stability and ”feeling” of the car that can

help identify reasons for understeer or oversteer ex-
perienced by the driver. Aerodynamic forces are
generated from distributed loads in different com-
ponents across the car. In race cars, particularly
in formulas, some typical aerodynamic devices are
front and rear wing, sidepods and a floor/diffuser.
This work focus on FST10e prototype, the 10th pro-
totype made by FST Lisboa that is a Formula Stu-
dent [2] competing team from Instituto Superior
Técnico. Figure 1 describes the different compo-
nents of the aerodynamic package of FST10e pro-
totype.

Figure 1: FST10e components
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2. Background
2.1. Parameters of Interest
The car’s attitude is represented by five different
variables, each of them with a different impact on
the aerodynamic behaviour.

The first parameter of interest for this study is
ride height, which is divided into two ground clear-
ances, front and rear (FRH and RRH respectively).
As the prototype is close to the ground, ground ef-
fect is present and its impact changes depending on
the distance to the ground [3]. As the axis are in-
dependent, it is divided into front and rear which
also define the vehicle’s pitch angle θ. Roll angle
φ is the third variable taken into account and is
also associated with changing ground clearance dif-
ferentiating the distance from one side to another.
This angle is a result of the car’s lateral accelera-
tion. The steering angle δ is also a parameter of
interest since the wheel wake changes depending on
δ [4]. As FST10e is an open wheel prototype, this
wake affects upstream components. The steering
angle was coupled with the cornering radius. The
last variable considered for this study is yaw an-
gle ψ which changes based on side-slip angle β and
wind speed/angle. The ψ angle modifies the incom-
ing airflow direction therefore it was considered to
change the aerodynamic behaviour.

2.2. Variables of Interest
To study the effects of aerodynamics in vehicle dy-
namics, six variables were studied. Three force
components are evaluated (x, y, z) and also the mo-
ments in all three directions. Forces are represented
in a coefficient form by

Ci =
Fi

1
2ρAV∞

2 with i = x, y, z , (1)

where F represents Force, A reference area, ρ air
density and V∞ freestream air velocity. Cx is the
drag component, Cy is the sideforce and Cz is the
downforce (negative lift). Moments are expressed
differently for a clearer understanding of the results
obtained. Pitching moment is translated into a per-
centage of front axle downforce versus total down-
force. This balance is associated with stability once
the magnitude of front wheel downforce can trans-
late into understeer or oversteer. By performing a
moment balance around the front wheels (origin),
My0 , gives rise to the front wheels ratio of down-
force,

Front [%] = 100 +
My0

WB ×DF
× 100 , (2)

with WB being the wheelbase of the car (distance
between the front and rear wheels) and DF the to-
tal downforce. The rolling moment can also be ex-

pressed as the proportion of load in the outer wheels
when compared to the total downforce, by

Outer [%] =
Mx0

(T ×DF ) + 0.5
× 100 , (3)

being Mx0 the roll moment around the car centre
and T the track width. The last variable in study
is the yawing moment coefficient, that is calculated
with

CMz =
Mz

1
2ρAbV∞

2 , (4)

where Mz is the yaw moment. These dimensionless
coefficients are also displayed multiplied by the ref-
erence dimensions in a way that does not mislead
conclusions and forces/moments can be easily ob-
tained when multiplying by the dynamic pressure.
For example CL.A and CMz

.A.b where A and b are
reference area and length respectively.

3. Implementation

Two models were implemented: CFD simulations
were performed to estimate the variables of interest
for a particular attitude and a surrogate model as an
approximate model that reproduces the behaviour
of the simulation model. In this Section, both of
these models are described.

3.1. CFD

CFD simulations were more focused on cornering
condition because it is the most frequent situa-
tion of a Formula Student car. This enabled to
gather more information about this type of simu-
lation and it was also chosen to estimate the nu-
merical error associated with it. The software used
to perform these simulations was Simcenter Star-
CCM+®. The geometry in study was prepared to
get a clean and simplified geometry for mesh gen-
eration and with the intention to parameterize and
speed up the interaction between CAD and CFD.
Suspension motion and tire shape were taken into
account to better replicate the car motion with at-
titude change.

3.1.1 Cornering Simulation

In a steady-state corner, the vehicle is turning with
a constant radius. To model this situation in a CFD
simulation, it is imposed an angular velocity to the
air and in order to align with free-stream orienta-
tion, the domain takes a shape of a partial hollow
cylinder (or a donut sector) illustrated in Figure 2
together with the boundary conditions used.
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Figure 2: Boundary conditions - corner condition

The geometry was cleaned up using a feature
called Surface Wrapper and then a Polyhedral
Mesher was used to get a discretized representation.
Polyhedral mesh increases the number of surface
cells for each volume cell increasing the number of
neighbour cells, allowing gradients to be more accu-
rately calculated. To refine areas of interest, some
boxes were created to efficiently control the cell size.
These areas of interest are mainly to capture the car
wake and the developed flow structures. The three
wake region refinement boxes are displayed in Fig-
ure 3 but there are two additional boxes closer to
the car, to capture the flow around the front wing
and downstream of it, around the lateral diffuser.

Figure 3: Refinement boxes - In farfield region

A steady-state and incompressible fluid was as-
sumed and the Reynolds-averaged Navier–Stokes
equations were solved using a k − ω SST two-
equation, eddy-viscosity turbulence model [5] us-
ing a segregated flow solver. The use of a tran-
sition model was considered, but it was observed
that forces and moments did not show any signif-
icant change that justified the increased computa-
tional time associated. In the car’s frame of ref-
erence, while driving steadily in a constant radius
turn, both air and ground travel in a rotating mo-
tion. To mimic this effect, the whole domain was
set into a rotating motion by adding a rotating ref-
erence frame. This technique enables the possibility
of simulating constant motion with a steady-state
model without moving the mesh (stationary mesh).
In this work, a reference frame is applied to the
whole region of study to simulate corner condition.

3.1.2 Adaptive Mesh Refinement

In an attempt to reduce simulation time by allocat-
ing better the mesh refinements, an Adaptive Mesh
Refinement strategy was tried. Adaptive Mesh Re-
finement is a method to adjust mesh size (refine or
coarsen) based on a chosen criterion from the so-
lution. This means the refinement occurs during
the simulation, updating the mesh depending on
the current solution. In this case, the chosen mesh
refinement criterion for each volume cell is

S(r, θ, z) = | ∇ · ∇
(
pt − pref
1
2ρ(ωr)2

)
︸ ︷︷ ︸

CpT

| × (ACS)2, (5)

where pt is the total pressure, pref reference pres-
sure, ω angular velocity of simulation, r cell cen-
troid radius (distance to rotation axis), CpT total
pressure coefficient and ACS is the adaption cell
size in volume mesh. In this study, the objective
was to focus cell allocation to high values of the
Laplacian of total pressure coefficient. It was opted
to use the divergence of a gradient instead of a gra-
dient alone to prevent cells from being allocated in
areas with constant/high gradient values that can
be easily modelled with fewer cells. This Laplacian
value is then multiplied by the cell size to get an
influence on the current size and the power of two
is a tweaked value to find a good ratio between the
Laplacian value and cell size. The total pressure co-
efficient is calculated with a different dynamic pres-
sure because the freestream velocity is not constant
throughout the domain. The better way found to
fix this problem was to express linear velocity as a
function of angular velocity and corresponding ra-
dius with: V = ωr . In Figure 4 it is presented a
plane section view at a coordinate X = 475mm (in-
tersecting the front wing), displaying the total pres-
sure coefficient where the cell refinement around the
vortices structures is visible.

Figure 4: Adaptive mesh refinement CpT

This strategy was applied to a high-speed cor-
ner attitude yielding similar results but still with
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an increased computational time due to the addi-
tional calculations and mesh division during solver.
It was then tried in a low-speed corner attitude, but
it was not successful. Mesh size increased and fully
converged simulation could not be achieved. It was
found the best option to discard adaptive mesh re-
finement and carry the work with the traditional
refinement boxes approach.

3.1.3 Tools

Cornering type simulation was analysed in more de-
tail but more types of simulations were performed in
this work, namely straight line symmetrical and side
wind simulations. These simulations were particu-
larly helpful for parametric studies where each pa-
rameter of study was isolated. There is a case where
a symmetric condition can be assumed. When the
turning radius (R), φ, ψ, δi and δo are null, it is
expected that the solution is approximately sym-
metric from one side of the vehicle to the other.
Taking advantage of this condition, the domain of
study can be cut in half, reducing the computa-
tional time by only studying half of the car. There
are other attitudes corresponding to a straight line
case (R = 0) that are not symmetric. These condi-
tions will be addressed in this Section. In a straight
line scenario, if either roll or yaw angles are different
from zero, then a full car simulation must be done.
Although roll angle is not usually associated with
straight line cases, it was useful to include for para-
metric studies. These two straight line scenarios
have a similar implementation with a rectangular
shape domain in CFD and reference frame approach
does not apply.

The final step of a CFD simulation workflow post-
processing provides tools to analyse and understand
the causes of the obtained results. Several pre-
checks and monitors were exported during simula-
tion to verify if the setup is correct and to track con-
vergence. Post-processing images included a legend
to provide additional information about the simu-
lation setup as displayed in Figure 5.

Figure 5: Legend structure of exported images

The CFD simulation workflow was automated to
avoid a large amount of repetitive tasks, that are
prompt to user error and are time consuming. A
macro was created using Java programming lan-
guage that included all three types of simulation

from pre-processing up to exporting the results in a
CSV format file and post-processing data. An addi-
tional macro was also written to gather all the data
resulting from CFD in one organized Excel sheet for
easy access when needed.

3.2. Surrogate Model
This work aims to evaluate the aerodynamic perfor-
mance of a prototype as a function of five variables.
As the response is found over time-consuming CFD
simulations, it was opted to build a surrogate model
that reproduces the behaviour of the simulation
model. This enables a better understanding of the
response over the gaps left from the finite number
of simulations in a more rapid and effective man-
ner. Constructing an approximate model requires
three steps: design of experiments, construction of
the model itself and its validation.

3.2.1 Design of Experiments

The surrogate model used in this work is based
on design space approximation in which the in-
terest is only in the overall behaviour of the sys-
tem throughout the design space [6]. A surrogate

model f̂ attempts to mimic the response of the ”ex-
act” model f , focusing on understanding the input-
output behaviour. To cover the entire design space
with discrete points, it requires choosing a sam-
pling plan

{
x(1),x(2), . . . ,x(n)

}
that establishes an

efficient spatial arrangement between samples for
evaluation through CFD simulations. Finding the
input variables at each point in the input space [7] is
the first step of the surrogate model, called design
of experiments (DOE). The interest while choos-
ing a sampling plan is to minimize the bias error.
This error quantifies the extent to which the surro-
gate model outputs f̂(x) differ from the true values
f(x) calculated as an average over all possible data
sets D. Each data set D corresponds to a random
sample of the function of interest [7]. Besides the
bias error, the empirical error also includes a vari-
ance component that measures the extent to which
the surrogate model f̂(x) is sensitive to a particu-
lar data set D. Assuming that the data set includes
some type of noise or random element for an average
error with a quadratic loss function, the expected
error for bias and variance can be expressed as

Ebias2(x) =
{
EADS[f̂(x)]− f(x)

}2

, (6)

Evar(x) = EADS

[
f̂(x)− EADS[f̂(x)]

]2
, (7)

where EADS is the expected value considering all
possible data sets. In this work it was implemented
a Latin Hypercube sampling (LHS) [8] strategy that
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decreases both error components. Latin Hypercube
sampling is a stratified sampling approach with the
restriction of each input variable (xk) having all
portions of its distribution represented by input val-
ues [7]. Sampling is done by dividing the range
of each design variable xk into Ns (sample size)
strata of equal marginal probability 1/Ns, and sam-
ple once from each stratum.

3.2.2 Construction of Model

The surrogate model was constructed using a Poly-
nomial Regression Model (PRG) [9] to capture the
global behaviour between input and output and
due to its simple implementation. PRG is a tech-
nique that implements a regression analysis (ence
its name) to obtain an estimated value for the func-
tion of interest f , based on NPRG number of basis
functions zj , with their respective coefficients β.
This approximation of the function is essentially a
Taylor series expansion and different values for the
order of the polynomial m were tested. For exam-
ple, considering m = 1, this method expresses the
linear equation for each sample i and basis function
j

fi(z) =

NPRG∑
j=1

βjz
(i)
j +εi , E (εi) = 0 , V (εi) = σ2 ,

(8)
where the error εi is assumed to be independent of
the sample number with the expected value to be
null and variance being σ2. Representing the first
part in matricial form we obtain

f = Xβ + ε . (9)

The vector β̂ containing the unknown parameters
can be estimated by

β̂ =
(
XTX

)−1
XT f , (10)

and the surrogate model approximated output can
be found by resolving

f̂ = Xβ̂ . (11)

3.2.3 Validation of Model

The third step of making a surrogate model is val-
idation, necessary to assess the approximate model
quality. This evaluation is possible by estimating
generalization error, providing information to make
a decision about the best model choice and it was
used a Cross-Validation (CV) [7] approach to esti-
mate it. The data is split into a training set that is
used to construct the surrogate model and a testing
set used to compute the generalization error from

the model. CV enables the use of the majority of
the data as training set. The data is split into k-
subsets meaning that a surrogate is built k times,
each excluding one of the subsets from the training
data and using it as testing, to validate the model.
The surrogate generalization error is then estimated
based on the error from each of the subsets surro-
gate models.

The strategy chosen to select the data subsets was
the leave-one out cross-validation method, where k
is equal to the number of samples Ns. A surrogate
is built Ns + 1 times, Ns times to get all subsets
into testing once, and one additional surrogate that
uses all the data as training. To estimate the gener-
alization error using a mean square error (GMSE)
we obtain

GMSE =
1

k

k∑
i=1

(
fi − f̂ (−i)i

)2
, (12)

that represents the variation between the function
of interest at the test point fi and the estimated
value from the surrogate model that does not in-

clude i as training data f̂
(−i)
i . This generalization

error was calculated for each function of interest
and for all orders of the polynomials to provide in-
formation to make a founded conclusion on which
order suits the problem best.

4. Results
4.1. Numerical Error
To draw more founded conclusions when analysing
the results and choose the best mesh size, the nu-
merical error derived from the models used to solve
this problem was estimated. The discretization er-
ror is typically the greatest source of error and
it is assumed to have a predominant effect [10]
over the others (round-off, discretization, statisti-
cal sampling and iterative errors [11]). The dis-
cretization error can be estimated based on a mesh
convergence study where results are obtained for
different values of mesh spacing parameter, h. This
study was performed in a low-speed corner attitude
(A1) and then repeated for high-speed corner (A2)
displayed in Table 1.

Table 1: Simulation attitudes

A1 A2
Fr-RH [mm] 38.0 38.0
Rr-RH [mm] 58.0 58.0
Yaw [º] 3.0 3.0
Roll [º] 1.0 1.0
Steer avg [º] 12.0 6.25
Turn Radii [m] 9.125 20.0

The approach used to estimate the error was

5



based on a power series expansion [12], with three
different mesh sizes for each attitude. In Fig.6 the
results obtained for each simulation are displayed,
together with the best fitting curve for the down-
force coefficient.

Figure 6: Numerical error estimate for low and
high-speed corner attitudes for CL.A

In Table 2 the respective error and uncertainty
for CL.A are summarized with φ0 being the guess
of exact solution, εφ the error for null cell size and
Uφ the uncertainty.

Table 2: Numerical error and uncertainty for
−CL.A

Error Uncertainty
φ0 εφ Uφ

A1 3.5317 0.22264 0.66791
A2 3.6282 0.26393 0.79178

Estimated uncertainty and error were proven to
have a considerable value due to non-monotonic be-
haviour and still significant result variation between
the different mesh sizes. As this work is mainly
based on trends, practically the same conclusions
can be drawn while using h = 1.4 with a cheaper
computational cost. The option chosen for this
work was to use h = 1.4 for the remaining work,
having in mind the respective error and uncertainty.

4.2. Parametric studies
A parametric analysis is performed to evaluate the
influence of each parameter of interest on the re-
sults. A baseline setup was chosen as a starting
point for comparison with Fr−RH = Rr−RH =
40mm, ψ = φ = δ = R = 0 and car velocity of
11.0m/s.

4.2.1 Ride Height

As front and rear ride heights are connected to each
other they are analysed together. A sample selec-
tion was needed to cover the entire envelope of ride

heights and spacing of ten millimetres was chosen
to evenly distribute the samples, totalling in thirty-
five simulations. All points correspond to symmet-
rical studies, speeding up this process. The results
obtained for −CL.A are shown in Fig. 7 The base-
line (FRH40-RRH40) is coloured in white and then
increase/decrease is represented in green or red.

Figure 7: CL.A Results for ride height parametric
analysis

There are two distinct areas, one around the bot-
tom left corner in red and at the top right corner
in green. Lower values of front and rear ground
clearance are associated with lower downforce num-
bers. Both front wing and lateral diffuser produce
less downforce with lower ride height. Front wing
footplate vortex does not form when closer to the
ground and the diffuser seems to reach the point
where downforce starts to decrease with lower dis-
tances to the ground [13]. The same overall trend
can be found in the CD due to the induced drag
generated by downforce. The aero balance response
was different. On the left side region in Fig. 8 the
balance shifts backwards, while on the right side has
more downforce on the front wheels.

Figure 8: Balance [%] − Front

4.2.2 Roll Angle

From this study is possible to conclude that CD.A
and CL.A have a downward trend with increasing
roll angle that is displayed in Fig. 9. An abrupt
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drop in front downforce is present when reaching
one degree and is caused once again by the footplate
vortex bursting on the outer side of the vehicle when
the front wing gets closer to the ground.

Figure 9: Roll angle parameter study

4.2.3 Steering Angle

The third variable was the steering angle and a bit
unexpectedly, it revealed minor changes in CL.A
and CD.A shown in Fig. 10. Nonetheless, there
were some other different important phenomena
captured: a substantial increase in side force, aero
balance shifting outwards by almost four percent-
age points. The major change was the rise in yaw
moment CMz showing a linear decreasing trend
throughout the entire steering range. This mo-
ment always increases in magnitude (with a neg-
ative sign) and, as z-axis points upwards, it induces
an understeer behaviour to the car.

Figure 10: Steering angle parameter study

4.2.4 Yaw Angle

The yaw angle exhibited a large interval of results
that are displayed in Fig. 11, having the most im-
pact of all variables in drag and side force coeffi-
cient. CL.A consistently decreased within the in-
terval [−3.203,−2.674] presenting the largest delta
of sixteen percentage points, and reached the max-
imum value for outside load. The front wheel load
is the only parameter behaving in a non-monotonic
way, starting to drop down but, after ψ = 7.5◦, it
raises up.

Figure 11: Yaw angle parametric study

4.3. Surrogate Model
The surrogate model was implemented for m ∈ N,
m ∈ [1, 12] and computing the GMSE by cross val-
idation for each order. The results obtained from
the regression analysis were consistent throughout
all functions of interest having the polynomial of
order two the smallest GMSE in all cases meaning
that a polynomial expression was found for each
variable of interest with 21 coefficients. The GMSE
obtained for the best order is shown in Table 3.

Table 3: GMSE of surrogate model

GMSE
−CL.A 0.0131
CD.A 0.0006
CY .A 0.0011
[%]Out 0.6979
[%]Front 6.0992
CMz.A.b 1.10e-04

Overall the mean square error does not present
considerable high values. The front wheel balance
and downforce coefficient seem to be more difficult
to predict, which is also related to higher oscilla-
tions and non-monotonic behaviour noticed during
parametric studies.

Figure 12: Surrogate model results for Yaw angle ψ
parametric studies

In Fig. 13, it is possible to see some overall re-
semblance to Fig. 7, where warmer colours (higher
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values) are positioned at the top right corner and
cold (lower values) at the bottom left, meaning the
global ride height response seems to be similar. Re-
garding the other two variables, it is possible to
check the different behaviour of the roll and steer
based on the ride height in study, both in magnitude
and shape. The bottom left peak has an almost cir-
cular shape while the top right, the peak moves to
the left and resembles more like an ellipse.

Figure 13: Estimated −CL.A for ψ = 0.0◦

Looking at Fig. 14, it is noticeable that the re-
sponse to ride height looks completely different than
before. The model predicts higher values of down-
force at the bottom right area for a high value of
yaw angle.

Figure 14: Estimated −CL.A for ψ = 15.0◦

5. Validation

Aerodynamic validation was performed to find some
correlation between on-track testing and CFD re-
sults, allowing to obtain a comparison between the
two. The goal of these track tests is to primarily
focus on trends between different setups and not on
absolute values due to the uncertainties and limited
resources and conditions available to achieve it.

5.1. Constant Speed

A constant speed test was carried out in order to
estimate the downforce produced by measuring the

suspension deflection. The linear potentiometers lo-
cated at each spring on FST10e were used to mea-
sure the spring displacement due to the downforce
generated. By measuring suspension positioning
it was also possible to estimate the dynamic ride
height using a suspension kinematics and tyre mod-
els. It was assigned a number for each attitude, but
the numeration does not match the test sequence.
This order was chosen to separate the wind direc-
tion runs. From 1-3, the test has tailwind and 4-6
headwind. This mixing could mislead to wrong con-
clusions coming from the simplistic way that the
wind problem was solved, besides the fact wind is
gusty inducing even more error from this compo-
nent. The results are illustrated in Fig. 15 includ-
ing uncertainty bars. As the wind speed inaccuracy
exceeds greatly all other sources of error, the exper-
imental uncertainty was estimated by the change
in the downforce coefficient with and without a
wind component, being approximately 1.0 change
in CL.A.

Figure 15: −CL.A results from constant speed test

Overall, what stands out is the significant differ-
ence between experimental and numerical results
across all attitudes. The gap is smaller in the
first two attitudes but is still significant. The un-
certainty magnitudes have proven to be massive,
meaning that even if some trend seems to be cap-
tured it may be misleading. Analysing the first 3 at-
titudes (tailwind conditions), the decreasing trend
and magnitude change between 1 and 2 looks sim-
ilar in CFD and on-track but it does not apply to
attitude 3, diverging from one other. Looking at
the headwind conditions, a similar behaviour oc-
curs, with the decreasing tendency from 4 to 5
resembling the track results (even though with a
greater change) but then attitude 6 downforce re-
mains constant, while CFD results points to an in-
creased value. Attitudes 3 and 6 correspond to the
runs executed at the end of the day after a few
hours have passed and may have been submitted
to different conditions. As all the data is averaged
across the time interval with constant speed, there
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are some variations over this time, mainly related
to the car attitude due to bumps on the runway.
To better showcase the attitude change over this
interval, Fig. 16 displays the averaged standard de-
viation of ride height for each case.

Figure 16: Ride heights and respective standard de-
viation for constant speed

5.2. Coast Down

The most common way to estimate the drag force
is by conducting a coast down test, which consists
in accelerating the car up to a certain speed and
then coasting. The resistant force responsible for
decelerating the car is then determined and can be
broken down into several resistance forces compo-
nents, one of which is the aerodynamic drag. To
estimate the drag coefficient of a car, it is necessary
to obtain a quadratic function between acceleration
and speed during coast down [14]. An example of
this data is shown in Fig. 17, where the raw data
is shown against the parabolic curve with the best
fit.

Figure 17: Acceleration vs velocity

The data presents a high level of variation be-
tween the same setup runs. The experimental data
is presented in Fig. 18 including the results from
the surrogate model in the same attitude, uncer-
tainty and standard deviation. The experimental
bars represent the CD.A standard deviation from
the 3 sample points ran. The numerical uncertainty

represented is the one estimated from the mesh con-
vergence.

Figure 18: −CD.A results from coast down

Interestingly, there is one experimental point that
falls below the surrogate one (attitude 3) which goes
against the remaining trend. Usually, it is expected
to underestimate the drag due to all the simplifica-
tions made in the geometry and conditions of the
simulations. Once again, a major source of error
may come from the air speed estimation just like in
the case of the constant speed test that greatly in-
fluences the outcome of these results. It is possible
to notice that the change in CD.A is far greater in
experimental results than in numerical. It can be
seen that surrogate values barely shift between at-
titudes. Over this test, both ride heights vary sub-
stantially from the beginning to the end, due to the
loss of aerodynamic load compressing the suspen-
sion. The attitude changes over the course of coast
down are shown in Fig. 19. As the rear springs
are softer, one would expect the RRH to change
the most and that is what happens. In the head-
wind cases, both ride heights variations are higher
reaching a maximum value of 4 millimetres for the
standard deviation.

Figure 19: Ride heights and respective standard de-
viation for coast down
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6. Conclusions

During this work, it was possible to notice a change
in more than 35% in downforce that confirmed the
car behaviour dependence on the attitude and con-
dition proposition for this work. Roll angle revealed
to have a monotonic and rather independent be-
haviour. Ride height presented a significant change
in all response coefficients varying by 10% in CD.A
and 20% in CL.A between peak values, and it was
understood that contrary to what was expected,
FST10e best working range corresponded to higher
ride heights. The steering angle affects the most the
yawing moment of the car due to different incidence
angles across the car and the yaw angle presented
the highest sensitivity to side force coefficient and
also a substantial change in drag and downforce. It
was also noticed that the downforce coefficient was
linked between yaw angle and ride height, meaning
that the optimal ride height zone changed based on
yaw.

Among the multiple subjects covered in this
work, all of them present a large scope for future de-
velopment. Numerical error and uncertainty from
CFD results can be reduced to make more founded
conclusions. This can be achieved by increasing
cell count or even by further exploring the Adap-
tive Mesh Refinement methodology. The working
range for the parameters of interest can also be ex-
tended to incorporate a wider envelope. This ap-
plies mainly to yaw angle ψ, where only positive
values were taken into account. These are related to
oversteer scenarios but understeer conditions with
negative yaw angles should be considered in the
future. There are more complex approaches that
can be used to construct the surrogate model and
might find a better response. The surrogate model
can be integrated into future vehicle dynamics tran-
sient simulators within the team. On-track testing
validation is an area of focus that can be greatly ex-
ploited. With the possibility to implement further
instrumentation on the next prototype, correlation
between CFD and reality can be obtained using a
quantitative approach estimating the absolute er-
ror.
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