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Abstract

The model of the Quantum Pendulum is studied in the Wigner function representation and in the
Density Operator representation. Towards this end a completely solvable auxiliary model is introduced.
Several families of solutions of the stationarity equations are found and compared. The advantage of
using the Wigner function in the discovery of these solutions is made evident. A simpler approach to
the derivation of the evolution equations is developed. Links with Mathieu functions and the Helmholtz
equation of classical mathematical-physics are analized.
Keywords: Wigner function, density operator, quantum pendulum, Mathieu functions, Helmholtz
equation

1. Introduction

In the early years of quantum mechanics it was
already observed by Condon [1] that the time-
independent Schrödinger equation with the pendu-
lum’s potential corresponded to the Mathieu equa-
tion of classical mathematical physics [2, 3, 4], the
eigenfunctions of the quantum pendulum (QP) be-
ing the Mathieu functions of even order. In the the-
sis this problem is studied in the Wigner-function
representation and in the Density Operator repre-
sentation. Perhaps surprisingly, closed forms for
several families of stationary observables are pre-
sented.

The function carrying his name was initially de-
fined by Wigner [5] for position/momentum vari-
ables and was subsequently modified by Berry
[6] to accommodate angle/angular-momentum vari-
ables, a nontrivial problem even in the Schrödinger–
Heisenberg setting, as reviewed by Carruthers and
Nieto [7]. Later, Bizarro [8] found a modification
of Berry’s Wigner function that allowed the com-
putation of the Moyal bracket [9, 10, 11]. Unfortu-
nately, the general expressions derived by Bizarro
[8] are too intricate, even more than in the posi-
tion/momentum case, although the final equations
for specific Hamiltonians turn out to be much sim-
pler. It is shown, in Chapter 2, that the reason be-
hind this contrasting behaviour is the simple form
of the modified Wigner function when written in
terms of Fourier coefficients.

In Chapter 3, closed forms for several families of
stationary Wigner functions are presented that cor-

respond to Hermitian operators (hence to observ-
ables), the closed expressions for the Fourier coef-
ficients of the Wigner functions being then trans-
formed into closed forms for the matrix elements of
the corresponding observables in Chapter 4. Substi-
tuting the absolute value of the angular momentum
by a (nonphysical) linear dependence on the latter
in the Hamiltonian of a hindered rotator (HR) in-
troduced by Berry [6] and extensively studied by
Bizarro [8], an integrable model is obtained that
shall be called the simplified HR (SHR). The SHR
is such that the approximate formulas derived by
Bizarro [8] for the HR become exact for the SHR, so
the latter serves as a basis to study the QP since, to
go from one model to the other, one just transforms
a linear dependence on the angular momentum into
a quadratic dependence. Moreover, the computa-
tions involved in the SHR are entirely analogous to
the ones in the QP, but simpler, so, in Chapters 3
and 4, computations for the SHR model are always
presented before those for the QP.

In the last 150 years [12], no closed forms were ob-
tained for the Mathieu functions, even though they
are as natural to appear, when dealing with ellip-
tic coordinate problems [2, 3, 4, 13], as are Bessel
functions in cylindrical coordinates [13, 14, 15, 16].
Now, the problem of finding closed forms for the
Mathieu functions of even order, that is, closed
forms for the Fourier coefficients of these func-
tions (the so-called Mathieu coefficients), is actually
equivalent to the problem of finding closed forms for
the matrix elements of pure states, and in Chapter 4
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several ideas to try to tackle this problem are anal-
ized. Finally, Chapter 5 ends with a summary and
conclusions. The sections in this Extended Abstract
follow roughly the chapters in the thesis.

2. Background
2.1. Brief review of the Wigner transform
From the wave function |ψ⟩, Wigner [5] defined a
function W (x, p) in phase space that has the prop-
erty that the marginal probabilities are the quan-
tum probabilities:∫ +∞

−∞
dp W (x, p) = |⟨x|ψ⟩|2 = |ψ(x)|2 (1)

and ∫ +∞

−∞
dx W (x, p) = |⟨p|ψ⟩|2. (2)

There are an infinite number of functions with this
property, yet the one defined by Wigner, namely,

W (x, p) =
1

2πℏ

∫ +∞

−∞
dx′e

i
ℏpx′

⟨x− x′

2 |ψ⟩⟨ψ|x+ x′

2 ⟩

=
1

2πℏ

∫ +∞

−∞
dp′e

i
ℏp′x⟨p+ p′

2 |ψ⟩⟨ψ|p−
p′

2 ⟩.

(3)

has a certain number of extra properties that make
it unique [17, 18].
Trying to define an analogue of the Wigner func-

tion to deal with angle/angular-momentum vari-
ables, we have to deal with a new phenomenon,
that of the quantization of the angular momentum,
that is, the values of the angular momentum l no
longer form a continuum, as in the standard posi-
tion/momentum case, but have only allowed values
l = mℏ, withm an integer. Therefore, the quantum
phase space is no longer R2 as in the standard case,
but the angle/angular-momentum pairs (θ, l) now
live in S1 × ℏZ. Mathematically, this corresponds
to the fact that the dual group of R is R, but the
dual group of S1 is Z (implying, reciprocally, that
the dual group of Z is S1). For convenience, we
will work with the phase space S1 × Z instead of
S1 × ℏZ, and with pairs (θ,m) instead of (θ, l).
To deal with the rotational spectrum, Berry [6]

defined the Wigner function

W (θ,m) =
1

2π

∫ +π

−π

dθ′eimθ′
⟨θ − θ′

2 |ψ⟩⟨ψ|θ +
θ′

2 ⟩,

(4)
which can also be found in Mukunda [19] and in
Berman and Kolovsky [20]. With this expression
one obtains the right marginals:

+∞∑
m=−∞

W (θ,m) = |⟨θ|ψ⟩|2 (5)

and ∫ +π

−π

dθ W (θ,m) = |⟨m|ψ⟩|2. (6)

The Wigner transform can be seen as a linear
map from operators Â to phase-space functions
A(θ,m), with the Wigner function W (θ,m) corre-
sponding to the density operator ρ̂ = |ψ⟩⟨ψ|:

A(θ,m) =
1

2π

∫ +π

−π

dθ′eimθ′
⟨θ − θ′

2 |Â|θ +
θ′

2 ⟩. (7)

This leads immediately to the question of defining
the correspondent of operator products Â · B̂ in
terms of phase-space functions, the so-called Moyal
product A★B, and the correspondent of the Lie
bracket [Â, B̂] for phase-space functions, called the
Moyal bracket [A,B]★, the final expression for the
Moyal bracket in the standard position/momentum
case turning out to be actually simpler than the ex-
pression for the Moyal product, due to cancelling of
terms [9, 10].

In the case of angle/angular-momentum variables
no such formula is known, which led Bizarro [8] to
define a newWigner function for these variables in a
manner such that the Moyal bracket could be com-
puted, a modification that is best set down in the
angular momentum basis and involves a doubling
of points:

w(θ,m) =
1

2π

∑
m′ same

parity as m

eiθm
′
⟨m+m′

2 |ψ⟩⟨ψ|m−m′

2 ⟩.

(8)
This transform was first defined by Chan [21] in the
context of signal processing, when looking for alias-
free time-frequency representations of discrete-time
signals [22]. Here we find preferable to work with
even and odd integers, rather than with integer and
semi-integers [8], so the points with physical mean-
ing are those (θ,m) with m even, which correspond
to the actual physical points (θ,m/2).
The marginal probabilities are given by:

+∞∑
m=−∞

w(θ,m) = |⟨θ|ψ⟩|2 (9)

and∫ +π

−π

dθ w(θ,m) =

{
|⟨m2 |ψ⟩|

2 if m even

0 if m odd
(10)

and, in the case of even angular momenta, there is a
simple relation between the two Wigner functions:

w(θ, 2m) =
W (θ,m) +W (θ + π,m)

2
. (11)

The modified Wigner transform (8) is immedi-
ately generalized to operators:

a(θ,m) =
1

2π

∑
m′ same

parity as m

eiθm
′
⟨m+m′

2 |Â|m−m′

2 ⟩ (12)
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and, while trying to obtain the evolution equa-
tion for the Wigner function, it was this modified
Wigner transform that was used by Bizarro [8] to
implicitly achieve formulas for the Moyal bracket.
Alas, the formulas obtained in terms of operators
acting on the coordinates θ and m are too compli-
cated, which contrasts with the fact that the final
results become quite simple when applied to spe-
cific phase space functions (check Eqs. (4.26) and
(4.27) in [8] and compare with Eqs. (4.36) and
(4.37) therein), the explanation for this residing
in the simple form of the modified Wigner trans-
form in the angular momentum basis. This is why
we always work with the angular-momentum basis
from now on, that is, the vectors |m⟩ are the func-
tions 1√

2π
eimθ, with m an integer, and they satisfy

l̂|m⟩ = ℏm|m⟩, where the angular-momentum op-

erator l̂ is given by l̂ = −iℏ∂/∂θ.
For future reference we give the formula for the

integral form of the Moyal product of modified
Wigner transforms

a★b(θ,m) =
1

2π

∫ 2π

0

dθ′
∫ 2π

0

dθ′′
∑

m′,m′′:
m′+m′′ same
parity as m

a(θ + θ′,m+m′)b(θ + θ′′,m+m′′)

× ei(θ
′m′′−θ′′m′).

(13)
This formula is new.

2.2. The Evolution Equations
The two models that will be studied are the Sim-
plified Hindered Rotator (SHR)

Ĥ = ωl̂ − λ cos(θ̂) (14)

and the Quantum Pendulum (QP)

Ĥ =
l̂

2I
− λ cos(θ̂). (15)

From the equation giving the evolution of the den-
sity operator

iℏ
d

dt
ρ̂(t) = [Ĥ, ρ̂(t)], (16)

which, in terms of the matrix elements Âr,s =

⟨r|Â|s⟩, reads

iℏ
dρ̂r,s
dt

= [Ĥ, ρ̂]r,s, (17)

one obtains the equations for the evolution of the
matrix elements. These are

iℏ
dρ̂r,s
dt

= ℏω(r − s)ρ̂r,s

− λ

2
(ρ̂r−1,s + ρ̂r+1,s − ρ̂r,s+1 − ρ̂r,s−1)

(18)

for the SHR model and

iℏ
dρ̂r,s
dt

=
ℏ2

2I
(r2 − s2)ρ̂r,s

− λ

2
(ρ̂r−1,s + ρ̂r+1,s − ρ̂r,s+1 − ρ̂r,s−1)

(19)

for the QP model, respectively. Expanding the
modified Wigner transform into a Fourier series

w(θ,m, t) =
1

2π

∑
n same

parity as m

am,n(t)e
inθ, (20)

it is evident from (8) that the Fourier coefficients
am,n for m and n of the same parity are given by

am,n(t) = ⟨m+n
2 |ρ̂(t)|m−n

2 ⟩. (21)

This allows an easier derivation of the evolu-
tion equation for the modified Wigner transforms.
These read

ℏ
∂w

∂t
(θ,m, t) =− ℏω

∂w

∂θ
(θ,m, t)− λ sin(θ)

× [w(θ,m− 1, t)− w(θ,m+ 1, t)]
(22)

in the case of the SHR model and

ℏ
∂w

∂t
(θ,m, t) =− ℏ2

2I
m
∂w

∂θ
(θ,m, t)− λ sin(θ)

× [w(θ,m− 1, t)− w(θ,m+ 1, t)]
(23)

in the QP case. These equations can also be ob-
tained from the integral form for the Moyal product
(13) in a manner that is much easier than the use
of the differential form of the Moyal bracket as was
done in [8].

2.3. Mathieu functions and the Helmholtz equation
The eigenfunctions of the SHR model have the form
of Frequency-Modulated signals

ψ(θ) =
1√
2π
ei

E
ℏω θei

λ
ℏω sin(θ) (24)

and we see that E/ℏω must be an integer for the
solution to have period 2π. Notice that the energies
E = ℏωd do not depend on the potential-energy
strength λ, only the eigenfunctions do.

In the QP case, the eigenfunctions satisfy the
equation

−ℏ2

2I

d2ψ

dθ2
(θ)− λ cos(θ)ψ(θ) = Eψ(θ), (25)

which is a particular case of the Mathieu equation
whose standard form reads [1, 2, 3, 4, 23, 24]:

d2f

dz2
(z) + [a− 2q cos(2z)]f(z) = 0. (26)
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For every q there is a discrete set of values for a
(the so-called characteristic values) for which this
equation has periodic solutions, either with period
π or with period 2π. The former are called the
Mathieu functions of even order, usually denoted
by ce2n(z, q) and se2n+2(z, q), and are the solutions
that interest us, since we are going to look for solu-
tions of period 2π (in θ) after making the change of
variables θ = 2z and ψ(θ) = f(θ/2). The Mathieu
equation then becomes

4
d2ψ

dθ2
(θ) + [a− 2q cos(θ)]ψ(θ) = 0 (27)

and, comparing with (25), we see that E = ℏ2a/8I
and q = −4λI/ℏ2, the QP problem having been
thus reduced to the study of the Mathieu functions
of even order. Unfortunately, for 150 years of re-
search no closed forms have yet been reached for
the Mathieu functions of even order, so in what fol-
lows we discuss how to tackle this problem.

The Mathieu equation first appeared in the con-
text of the Helmholtz equation in 2 dimensions

∂2u

∂x2
+
∂2u

∂y2
+Ω2u = 0. (28)

When one looks for stationary solutions to the evo-
lution equation for the QP model (19) it will be
found that the integral kernel of a stationary oper-
ator satisfies

∂2K

∂θ21
− ∂2K

∂θ22
+

2λI

ℏ2
[cos(θ1)− cos(θ2)]K = 0.

(29)

Comparing this eq. with Helmholtz’ equation in
modified elliptic coordinates

∂2u

∂z21
− ∂2u

∂z22
− Ω2

2
[cos(2z1)− cos(2z2)]u = 0 (30)

ones finds that they are equivalent if z1 = θ1/2,
z2 = θ2/2, and Ω2 = −16λI/ℏ2.

One then has that solutions of the Helmholtz
equation in a given coordinate system when
translated into modified elliptic coordinates (that
is, substitute x by cos(θ1/2) cos(θ2/2), y by
i sin(θ1/2) sin(θ2/2) and see if the result has period
2π in θ1 and θ2) give stationary solutions to the
evolution equation for the QP model. The solutions
that will be analized are: the simplest solution in
cartesian coordinates K(θ1, θ2) = cos(Ωx); and the
family of solutions in polar coordinates

K(θ1, θ2) = J2p(Ωr)e
±i2pϕ, (31)

where p is a natural number.

3. Stationary solutions - Wigner function
Making the right-hand side of (22) equal to 0, after
replacing w(θ,m) with a(θ,m), we have

∂a

∂θ
(θ,m) = − λ

ℏω
sin(θ)[a(θ,m− 1)− a(θ,m+ 1)],

(32)
and so, defining as in Bizarro [8] y = 2(λ/ℏω) cos(θ)
and Z(y,m) = a(θ,m), we get

2
∂Z

∂y
(y,m) = Z(y,m− 1)− Z(y,m+ 1) (33)

for the SHR. In the case of the QP, the right-hand
side of (23) gives

m
∂a

∂θ
(θ,m) = −2

λI

ℏ2
sin(θ)[a(θ,m−1)−a(θ,m+1)],

(34)
whence, putting y = −2(λI/ℏ2) cos(θ) and
Z(y,m) = w(θ,m),

m
∂Z

∂y
(y,m) = Z(y,m+ 1)− Z(y,m− 1). (35)

3.1. Simplest solutions - continuous family
If we make the simple hypothesis that Z(y,m) is of
the form

Z(y,m) = eyf(m), (36)

where f(m) is some function to be determined,
then, factoring out ey, we obtain an equation for
f(m) only. For our purposes, we can add an extra
parameter to the expression for Z(y,m):

Z(y,m) = eαyf(m). (37)

The equations for the SHR and QP models become
respectively:

α2f(m) = f(m− 1)− f(m+ 1) (38)

and
αmf(m) = f(m+ 1)− f(m− 1). (39)

In the first case we have a second order difference
equation with constant coefficients. In the second
case we must solve a second order difference equa-
tion with variable coefficents. There are standard
methods for solving them [25]. We get in the first
case

f(m) = (−α±
√
α2 + 1)m, (40)

and in the second case

f(m) = imJm

(
2i

α

)
. (41)

The corresponding families of Wigner functions are
given by linear combinations of solutions. Not all
these solutions are Wigner transforms of operators.
From the definition (12) it is seen that if m is even
then a(θ,m) has only even Fourier coefficients and
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if m is odd then a(θ,m) has only odd coefficients.
Only the linear combinations that satisfy this con-
dition are allowed. Hence, the family of stationary
Wigner functions for the Simplified Hindered Rota-
tor is given by

aα(θ,m) =e2α(λ/ℏω) cos(θ)(−α±
√
α2 + 1)m

+ e−2α(λ/ℏω) cos(θ)(+α∓
√
α2 + 1)m,

(42)
and for the Quantum Pendulum by

aα(θ,m) =e−2α(λI/ℏ2) cos(θ)imJm

(
2i

α

)
+ e2α(λI/ℏ

2) cos(θ)imJm

(
2i

−α

)
.

(43)

3.2. Two discrete variables
In solving (33), and despite the fact that Bizarro
[8] already noticed that Bessel functions provide a
solution for it, it will be instructive to rederive this
result without prior knowledge of the properties of
Bessel functions. We start by writing Z(y,m) as a
power series:

Z(y,m) =

∞∑
j=−∞

X(m, j)yj (44)

and, equating terms in (33), we get an equation for
X(m, j):

2(j + 1)X(m, j + 1) = X(m− 1, j)−X(m+ 1, j).
(45)

Coming now to the main trick to solve this type of
equation, which is separation of variables [25], we
assume that

X(m, j) = f(j −m)g(j +m) (46)

and get

2(j + 1)f(j + 1−m)g(j + 1 +m)

= f(j −m+ 1)g(j +m− 1)

− f(j −m− 1)g(j +m+ 1).
(47)

Subsequently defining n = j − m and k = j + m,
we have j = (n+ k)/2 and m = (k − n)/2, whence

(n+ k + 2)f(n+ 1)g(k + 1) = f(n+ 1)g(k − 1)

− f(n− 1)g(k + 1)
(48)

and, dividing throughout by f(n + 1)g(k + 1) and
rearranging,

n+ 1 +
f(n− 1)

f(n+ 1)
= −k − 1 +

g(k − 1)

g(k + 1)
. (49)

For (49) to be verified, both its sides must equal
some constant D so that, from D = n+ 1 + f(n−
1)/f(n+ 1), we get

f(n+ 2) =
−1

(n+ 2)−D
f(n), (50)

of which a solution is

f(n) =
(−1)

n
2

2
n
2

(
n
2 − d

)
!
, (51)

when n is even and f(n) = 0, otherwise. Similarly,
from the right-hand side of (49) being equal to the
same constant D, we get

g(k + 2) =
1

k + 2 +D
g(k), (52)

and the same reasoning gives us

g(k) =
1

2
k
2

(
k
2 + d

)
!
, (53)

for k even and g(k) = 0, otherwise. Substituting in
(44), yields

Z(y,m) =
∑

j same
parity as m

(−1)
j−m

2

2j
(
j−m
2 − d

)
!
(
j+m
2 + d

)
!
yj ,

(54)
so that we are now close to the form of a Bessel
function. Recalling the relation between factorials
and Euler’s gamma function to make the conven-
tion that (−n)! = Γ(−n − 1) = ∞ for n a positive
integer, then 1/(−n)! = 0 and we see that the only
nonvanishing terms in the series (54) are those with
j± (m+2d) ≥ 0, that is, j = |m+2d|+2k with k a
nonnegative integer. Therefore, modulo a constant
multiplier,

Z(y,m) = Jm+2d(y) (55)

is a solution to (33), something that is well known
[14, 15, 16]. Finally, we have the following family of
solutions to the stationarity equation for the SHR
model:

a2d(θ,m) = Jm+2d

(
2λ

ℏω
cos(θ)

)
. (56)

Modulo a 2π factor and changing d to −d, this is
the Wigner transform of (24).

This was for the SHRmodel, in the case of the QP
model this time X(m, j) must satisfy the equation

m(j + 1)X(m, j + 1) = X(m+ 1, j)−X(m− 1, j).
(57)

The solution is again obtained by separation of vari-
ables, but we now suppose the form

X(m, j) = f(j −m)g(j +m)h(j) (58)
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and, by making two different hypothesis about h(j),
we arrive at two different families of solutions. The
first is

Z(y,m) = (−1)my|m|+2d

×
∞∑
k=0

1

k!(k + |m|)!(2k + |m|+ 2d)!
y2k,

(59)

and the second

Z(y,m) = (−1)my|m|+|2d|
∞∑
k=0

1

k!(k + |2d|)!

× 1

(k + |m|)!(k + |m|+ |2d|)!
y2k. (60)

3.3. Three discrete variables
Instead of trying to solve equations (32) and (34) as
in the previous section, we work here directly with
the Fourier coefficients of the Wigner transforms
and equate the right-hand sides of (22) and (23) to
0. More precisely, we try to solve

ℏωnam,n =
λ

2
(am−1,n−1 + am+1,n+1 − am+1,n−1

− am−1,n+1) (61)

or, defining the adimensional constant c = −λ/2ℏω,

nam,n =− c(am−1,n−1 + am+1,n+1 − am+1,n−1

− am−1,n+1). (62)

for the SHR, whereas for the QP we try to solve

ℏ2

2I
mnam,n =

λ

2
(am−1,n−1 + am+1,n+1 − am+1,n−1

− am−1,n+1), (63)

or

mnam,n =− c(am−1,n−1 + am+1,n+1 − am+1,n−1

− am−1,n+1), (64)

if we define c = −λI/ℏ2. As in the previous section,
we expand the Fourier coefficients in a power series,
but use the constants c instead of y:

am,n =

∞∑
j=0

Y (m,n, j)cj , (65)

so that, from (62), the equation for Y (m,n, j) be-
comes

nY (m,n, j) =− Y (m− 1, n− 1, j − 1)

− Y (m+ 1, n+ 1, j − 1)

+ Y (m+ 1, n− 1, j − 1)

+ Y (m− 1, n+ 1, j − 1). (66)

For the QP, the only difference from (66) will be
that we now have mn on the left-hand side instead
of n. Again as in the previous section, we now at-
tempt to do separation of variables and assume that

Y (m,n, j) = h(j +m)r(j −m)s(j + n)t(j − n)u(j).
(67)

We also define the variables k = j +m, l = j −m,
p = j + n, and q = j − n, which can be inverted to
give j = (k + l)/2 = (p + q)/2, m = (k − l)/2, and
n = (p− q)/2 so we can now write (66) as

nh(k)r(l)s(p)t(q)u(j)

=− h(k − 2)r(l)s(p− 2)t(q)u(j − 1)

− h(k)r(l − 2)s(p)t(q − 2)u(j − 1)

+ h(k)r(l − 2)s(p− 2)t(q)u(j − 1)

+ h(k − 2)r(l)s(p)t(q − 2)u(j − 1).
(68)

Dividing by h(k)r(l)s(p)t(q), we have

nu(j) =−
[
h(k − 2)s(p− 2)

h(k)s(p)
+
r(l − 2)t(q − 2)

r(l)t(q)

− r(l − 2)s(p− 2)

r(l)s(p)
− h(k − 2)t(q − 2)

h(k)t(q)

]
× u(j − 1). (69)

In the QP case we get the same but for mnu(j)
on the left hand side. Making different hypothesis
about u(j) and substituting j by different combina-
tions of k, l or p, q we get four families of solutions
that depend on three parameters. In the QP case
the first family is

Y 1
j0,d1,d2

(m,n, j) =
(−1)j+j0(

j+j0+m+d1

2

)
!
(
j+j0−m+d1

2

)
!

× 1(
j+j0+n+d2

2

)
!
(
j+j0−n+d2

2

)
!
,

(70)

with j of the same parity as j0 +m + d1 and j0 +
n+ d2. The other families are

Y 2
j0,d1,d2

(m,n, j) =
(−1)j+j0(

j+j0+m+d1

2

)
!
(
j+j0+m−d1

2

)
!

× (j + j0)!(
j+j0−m+d1

2

)
!
(
j+j0−m−d1

2

)
!

× 1(
j+j0+n+d2

2

)
!
(
j+j0−n+d2

2

)
!
,

(71)
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with j of the same parity as j0 +m + d1 and j0 +
n+ d2;

Y 3
j0,d1,d2

(m,n, j) =
(−1)j+j0(

j+j0+m+d1

2

)
!
(
j+j0−m+d1

2

)
!

× (j + j0)!(
j+j0+n+d2

2

)
!
(
j+j0+n−d2

2

)
!

× 1(
j+j0−n+d2

2

)
!
(
j+j0−n−d2

2

)
!
,

(72)

if j is of the same parity as j0+m+d1 and j0+n+d2;
and

Y 4
j0,d1,d2

(m,n, j) =
(−1)j+j0(

j+j0+m+d1

2

)
!
(
j+j0+m−d1

2

)
!

× (j + j0)!(
j+j0−m+d1

2

)
!
(
j+j0−m−d1

2

)
!

× (j + j0)!(
j+j0+n+d2

2

)
!
(
j+j0+n−d2

2

)
!

× 1(
j+j0−n+d2

2

)
!
(
j+j0−n−d2

2

)
!
,

(73)

with j of the same parity as j0 +m + d1 and j0 +
n+ d2.

3.4. Comparisons
To compare solutions obtained via the two ap-
proaches detailed in the previous two sections, we
only have to calculate the Fourier coefficients for
the solutions derived using the y = 2λ/ℏω cos(θ)
and y = −2λI/ℏ2 cos(θ) variables and subsequently
write them as power series in the parameters c =
−λ/2ℏω, for the SHR model, or c = −λI/ℏ2, for
the QP model. In the SHR case we get that the
solutions in (56) are a subfamily of the third fam-
ily of solutions with three discrete variables with
parameters j0 = d2 = 0 and d1 = 2d. In the QP
case the family (59) corresponds to first family (70)
with parameters j0 = d2 = 0 e d1 = −2d. The fam-
ily (60) corresponds to the second family (71) with
parameters j0 = d2 = 0 and d1 = 2d.

3.5. Wigner transforms of Helmholtz solutions
The Wigner transform of K(θ1, θ2) = u(x, y) =
cos(Ωx) gives

a(θ,m) =
1

2

[
imJm

(
Ω

2

)
ei

Ω
2 cos(θ)

+ imJm

(
−Ω

2

)
e−iΩ

2 cos(θ)

]
.

(74)

Recalling that Ω2 = −16λI/ℏ2 we recognize in the
expression inside square brackets the solution (43)
with α = i4/Ω.

The Wigner transform of the simplest solution in
polar coordinates K(θ1, θ2) = u(r, ϕ) = J0(Ωr) is

a(θ,m) =
(
−Ω2

8 cos(θ)
)|m| ∞∑

k=0

(−Ω2

8 )2k cos2k(θ)

k!(k + |m|)!

× 1

(2k + |m|)!
.

(75)
This is (59) with d = 0. For the more general
cases of K(θ1, θ2) = u(r, ϕ) = J2p(Ωr) cos(2pϕ) and
K(θ1, θ2) = u(r, ϕ) = J2p(Ωr) sin(2pϕ) one can use
identities involving Chebyshev polynomials to ar-
rive at the result that the Wigner transforms of
these Helmholtz solutions are linear combinations
of the solutions in (59) with d = p and d = −p. This
will then imply that modulo a constant K(θ1, θ2) =
u(r, ϕ) = J2p(Ωr)e

i2pϕ corresponds to (59) with
d = p and K(θ1, θ2) = u(r, ϕ) = J2p(Ωr)e

−i2pϕ to
(59) with d = −p.

4. Stationary solutions - Density Operator
4.1. Matrix elements
Making use of the notation G(r, s, j) for the power-
series coefficients of the matrix elements ⟨r|Â|s⟩,
that is,

⟨r|Â|s⟩ =
∞∑

j=−∞
G(r, s, j)cj , (76)

and of equations (18) and (19) for the evolution
of the density operator (with their left-hand sides
set to zero), we obtain the following stationarity
equations for G(r, s, j):

(r − s)G(r, s, j)

=−G(r − 1, s, j − 1)−G(r + 1, s, j − 1)

+G(r, s+ 1, j − 1) +G(r, s− 1, j − 1).
(77)

and

(r2 − s2)G(r, s, j)

=−G(r − 1, s, j − 1)−G(r + 1, s, j − 1)

+G(r, s+ 1, j − 1) +G(r, s− 1, j − 1),
(78)

pertaining, respectively, to the SHR and QP mod-
els.

One could try to solve the above equations by
the procedure of section 3.3, by using separation of
variables as in (67) and changing variables accord-
ing to m = r + s and n = r − s. The computations
are exactly the same, and we will refrain from re-
peating them. In what follows only the relation
G(r, s, j) = Y (r + s, r − s, j) will be used, so we
only present the final results. The main point here
is that separation of variable turns out to be easier
when working with the Wigner transform.
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The translations in the parameter j0 correspond
to multiplying by an overall constant c−j0 so we can
forget about the dependence on j0 and from (70),
(71), (72), and (73), we have for the four families of
3.3 the corresponding families of stationary opera-
tors:

⟨r|Â1
d1,d2

|s⟩

=
∑

j same
parity as
r+s+d1

(−1)j(
j+r+s+d1

2

)
!
(
j−r−s+d1

2

)
!

× 1(
j+r−s+d2

2

)
!
(
j−r+s+d2

2

)
!
cj , (79)

⟨r|Â2
d1,d2

|s⟩

=
∑

j same
parity as
r+s+d1

(−1)j(
j+r+s+d1

2

)
!
(
j+r+s−d1

2

)
!

× j!(
j−r−s+d1

2

)
!
(
j−r−s−d1

2

)
!

× 1(
j+r−s+d2

2

)
!
(
j−r+s+d2

2

)
!
cj , (80)

⟨r|Â3
d1,d2

|s⟩

=
∑

j same
parity as
r+s+d1

(−1)j(
j+r+s+d1

2

)
!
(
j−r−s+d1

2

)
!

× j!(
j+r−s+d2

2

)
!
(
j+r−s−d2

2

)
!

× 1(
j−r+s+d2

2

)
!
(
j−r+s−d2

2

)
!
cj . (81)

and

⟨r|Â4
j0,d1,d2

|s⟩

=
∑

j same
parity as
r+s+d1

(−1)j(
j+r+s+d1

2

)
!
(
j+r+s−d1

2

)
!

× j!(
j−r−s+d1

2

)
!
(
j−r−s−d1

2

)
!

× j!(
j+r−s+d2

2

)
!
(
j+r−s−d2

2

)
!

× 1(
j−r+s+d2

2

)
!
(
j−r+s−d2

2

)
!
cj , (82)

with c = −λI/ℏ2 and d1 and d2 always of the same
parity in (79)–(82).

4.2. Pure states and Mathieu functions
Pure states are those states of the form ρ̂ = |ψ⟩⟨ψ|.
Stationary pure states are those pure states for

which |ψ⟩ is an eigenfunction of the Hamiltonian.
In the case of the QP model these are the Mathieu
functions ψ(θ) = ce2n(θ/2). Making use of the no-
tation F (2n)(r, s, j) for the power-series coefficients
of the matrix elements ⟨r|ce2n⟩⟨ce2n|s⟩, that is,

⟨r|ce2n⟩⟨ce2n|s⟩ =
∞∑

j=−∞
F (2n)(r, s, j)cj , (83)

one would like to know if any of the solutions al-
ready found corresponds to any F (2n). To do that
we must compare them with the Taylor coefficients,
as functions of the coupling constant, of the Fourier
coefficients of Mathieu functions. The Fourier co-
efficients of Mathieu functions are called Mathieu
coefficients. The first non-zero Taylor coefficients
of the Mathieu coefficients are known and they
translate into the following boundary condition for
F (2n)(r, s, j) when r, s ≥ n > 0:

F (2n)(r, s, r + s− 2n)

=
1

4
(−1)r+s−2n (2n)!(2n)!

(r − n)!(r + n)!(s− n)!(s+ n)!
,

(84)

whereas
F (2n)(r, s, j) = 0 (85)

for j < r+s−2n. If n = 0, we have the same expres-
sion, but without the factor 1/4. Looking at the so-
lutions of the previous section and allowing transla-
tions in the parameter j0 we find that we can verify
the boundary conditions (84) and (85) with a mem-
ber of the third family, (2n)!2G3

2n,0,2n/4, this being
true for the case n > 0. For the case n = 0, the fac-
tor 1/4 doesn’t appear and we satisfy the boundary
condition with G3

0,0,0. This is for the case where r
and s are both greater than 0. If, for example, s < 0
and r > −s ≥ n > 0, we then substitute through-
out s by −s and the boundary condition is now at
points (r, s, r−s−2n), this new boundary condition
being now satisfied by (2n)!2G2

2n,2n,0/4 and, like-
wise, by G2

0,0,0 if n = 0. However, this should not
yet come as a showstopper, because linear combina-
tions of stationary solutions are again stationary, so
we may try to find linear combinations that satisfy
the boundary conditions. For example, given that
G3

2n,0,2n(r, s, r − s − 2n) = 0 for n > 0, and simi-
larly that G2

2n,2n,0(r, s, r+s−2n) = 0, we might try
the linear combination (2n)!2(G2

2n,2n,0+G
3
2n,0,2n)/4

for n > 0. What goes wrong with the latter be-
comes apparent when we try to apply it to the case
n > r, s ≥ 0. In the case n = 0, a linear combination
that works for all cases is G2

0,0,0+G
3
0,0,0−G1

0,0,0 and
so, it would seem that we have solved the problem
of finding the Mathieu coefficients of ce0. Yet, now
we face an even deeper problem, its having never
been proven that the boundary conditions are suf-
ficient to determine the behavior of F (2n)(r, s, j) in
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the whole of Z3, and such is indeed not the case. In
fact G4

0,0,0 also satisifies the boundary conditions.
Since the solutions of the Helmholtz equation

generate the space of functions generated by the
products of Mathieu functions ce2n(θ1/2)ce2n(θ2/2)
we have that it is necessarily the case that for each
pure state there are coefficients αn

d , with α
n
−d = αn

d ,
such that

|ce2n⟩⟨ce2n| =
∞∑

d=−∞

αn
d Â

1
−d,2d,0. (86)

If we now expand these coefficients into powers of
the coupling constant

αn
d =

∑
k

αn
d,kc

k, (87)

we obtain the following decomposition

F (2n) =

∞∑
d=−∞

∑
k

αn
d,k G

1
−k−d,2d,0. (88)

A closed form for the Mathieu functions would be
achieved if one could obtain a closed form for the
coefficients αn

d,k. For this we need linear equations.
Infinitely many of them, and, preferably, each linear
equation should have only a finite number of terms.
The boundary conditions of the previous page pro-
vide a first set of equations. Let us look at the case
n = 0. Here the boundary equations read∑

d,k

α0
d,k G

1
−k−d,2d,0(r, s, |r|+ |s|) = (−1)r+s

|r|!|r|!|s|!|s|!
,

(89)
for all r, s ∈ Z. An expression that works is

αd,d =
1

d!d!
. (90)

and αd,k = 0 when k < d. The result of summing
the right hand side of (88) with this expression for
the coefficients αd,k is

∞∑
d=−∞

αd,dG
1
−2d,2d,0 = G3

0,0,0+G
2
0,0,0−G1

0,0,0. (91)

We had already seen that this linear combination
satisfies the boundary conditions. To proceed fur-
ther one must try to obtain a linear combination
that satisfies the non-linear condition

ρ̂ · ρ̂ = ρ̂ (92)

an equation that is only satisfied by pure states.

5. Conclusions
In this thesis two models were studied, the first a
solvable model as a simplification of the main model

of interest, the Quantum Pendulum. Several fam-
ilies of solutions to the stationarity equations for
these models were obtained, both in the Wigner
function representation and in the Density Opera-
tor representation. In both cases the solutions were
given as power series in the coupling constant.

A new simplified derivation of the evolution equa-
tions was performed using the Density Operator
representation. Moreover, the integral form of the
Moyal bracket was also studied and used to derive
the evolution equations.

Finally, connections to the Helmholtz equation in
two dimensions in elliptic coordinates and to Math-
ieu functions were discussed.

The most immediate work to be done in the fu-
ture is to verify that the stationary pure state solu-
tions of the Simplified Hindered Rotator satisfy the
property ρ̂2 = ρ̂ or, equivalently, w★w = w. It may
be that this is yet again a field where the Wigner
function provides a simpler route to success. If this
is achieved the next step is to try to adapt the proof
to the case of the Quantum Pendulum, probably us-
ing the simplest basis of stationary solutions.

Another direction for future work is to start from
the integral form of the equation w★w = w and,
using the stationarity equation, try to develop an
integral form for the Taylor coefficients of the solu-
tion in the spirit of Feynman diagramms.
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