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Resumo

O olhar do médico durante uma consulta realiza um papel importante na satisfagao do paciente. Estu-
dos indicam uma correlagao positiva entre a satisfagao do paciente e o tempo que o médico passa a
olhar para o paciente. Adicionalmente, o efeito das videoconsultas no olhar do médico ainda nao foi es-
tudado. O objetivo deste estudo é de quantificar o impacto das videoconsultas no olhar do médico, com-
parando, entre consultas presenciais e videoconsultas, a quantidade de tempo que o doutor olha para
o paciente. A populacao do estudo consiste em 14 doutores divididos entre 4 especialidades médicas:
Ginecologia/Obstetricia (4), Neurologia (3), Endocrinologia (3) e Medicina Geral e Familiar (4). Uma
pipeline de estimagao de diregao do olhar foi implementada no ambiente clinico. Cada doutor gravou
20 consultas presenciais e 20 videoconsultas, processadas pela pipeline de forma a obter a percent-
agem de tempo da consulta em que o médico olhou para o paciente. O teste estatistico Mann-Whitney
U foi usado para comparar as duas distribuicoes de percentagens. No caso em que uma diferenca es-
tatisticamente significante (p < 0.05) existisse, 0 Cohen’s d foi usado para calcular o tamanho do efeito.
No geral, foi verificado que todos os doutores, com excecao de dois, apresentam diferencas estatistica-
mente significantes ou tendéncias para olhar mais para o paciente em videoconsultas. Em relagao as
especialidades médicas, apenas Ginecologia/Obstetricia ndo apresentou tendéncias para olhar mais
para o paciente em videoconsultas. Consequentemente, em trés das quatro especialidades estudadas,

foram identificadas tendéncias para os médicos olharem mais para o paciente em videoconsultas.

Palavras-chave: Estimacdo de direcdo do olhar, Direcdo do olhar do médico, Interacao

clinica, Analise de biomarcadores digitais, Relagao doutor-paciente
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Abstract

The gaze of the physician during consultations plays an important role in patient satisfaction, with studies
indicating the positive correlation between the time the physician spends looking at the patient and
patient satisfaction. Additionally, the effects of virtual consultations on the gaze behaviour of the doctor
have yet to be studied. Therefore, this study aims to assess the impact of virtual consultations by
comparing the amount of time the doctor spends looking at the patient between face-to-face and virtual
consultations. The study population consisted of 14 doctors divided between 4 medical specialties:
Gynaecology/Obstetrics (4), Neurology (3), Endocrinology (3) and General and Familiar Medicine (4).
An appearance-based gaze estimation pipeline was implemented in the clinical setup. Each doctor
recorded 20 face-to-face and 20 virtual consultations, which were processed by the pipeline to obtain
the percentage of time the doctor looked at the patient during the consultation. For each doctor, the
Mann-Whitney U test was used to compare the two distributions. If a statistically significant difference
(p < 0.05) existed, then the Cohen’s d was used to calculate size effect. Overall, we found that all
doctors, except for two, presented statistically significant differences or tendencies to look more at the
patient in virtual consultations. Within medical specialties, only one specialty, Gynaecology/Obstetrics,
presented doctors with no differences or tendencies between consultation environments, meaning that
three out of the four specialties involved presented clear tendencies to look more at the patient in virtual

consultations when compared to face-to-face consultations.

Keywords: Gaze estimation, Physician gaze, Automatic labelling, Clinical Interaction, Digital

Biomarker Analysis, Physician-patient relationship
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Chapter 1

Introduction

The physician-patient relationship is a crucial component of the effectiveness of any health care sys-
tem. Communication is one of the main components in a good physician-patient relationship where

communication during medical interviews plays one of the most prominent roles [18].

The importance of non-verbal communication has gathered more and more attention from research
studies that analyze the relationship between patient satisfaction and physician behaviour. A general
practitioner can conduct between 120,000 and 160,000 interviews during a 40-year career [5]. Good
communication skills are essential to reach improved management of chronic diseases like diabetes,
hypertension, and others. In addition, patients are more adherent to medical recommendations and
healthy behavioural changes when they are more informed and involved in the decision-making. Sev-
eral studies indicate that the non-verbal cues of the physician are one of the most critical aspects of
physician-patient communication [19, 38, 20, 37, 32].

Communication in the physician-patient relationship is divided into verbal and non-verbal communi-
cation. Verbal communication is defined as communication behaviour with linguistic content [38]. This
is classified according to the model described by Bird and Cohen-Cole model [6]. According to this
model, we can classify verbal interactions into three key functions: data gathering to understand the
patient (gathering information), development of a rapport and responding to the patient’'s emotions (de-
veloping therapeutic relationship), and patient education and behavioural management (decision making
and management). Non-Verbal communication can be defined as communication behaviour without lin-
guistic content and is typically distinguished by which part of the body is being used to express the
behaviour. Face non-verbal behaviours include smiling, gazing, frowning, eyebrow-raising, and facial
expressivity. Body non-verbal behaviour is expressed through posture or gestures. Vocal non-verbal
behaviour includes loudness, voice pitch, monotony, and speech rate.

Among the non-verbal behaviour, the gaze direction is one of the most important cues to analyze in
non-verbal communication. Studies have concluded that there is a positive correlation between patient
satisfaction and the amount of eye contact between the physician and the patient [37]. The amount
of time the physician is gazing at the patient and not at the patient’s health records on the screen can

improve the patient’s perception and cognitive functioning [48].



The majority of the works on this topic use manual annotation systems to quantify non-verbal be-
haviours. This process is costly and laborious, which is not convenient or scalable. Recently, some
methods for automated annotation systems have been proposed [17, 48]. However, they were designed
for a very constrained environment which would not translate well to other consultation offices/setups,
since these methods don’t allow to change the camera position inside the consultation office needed
when operating in multiple consultation offices. Nonetheless, they provide the first approaches to auto-
matic classification of physician’s gaze during medical appointments.

This introductory chapter starts by placing the thesis in the context of this research topic. Followed
by a topic overview and the objectives, where the intent of the thesis is clarified. The chapter ends with

an outline of the thesis.

1.1 Problem Statement

The amount of studies published concerning the impact of non-verbal communication in the physician-
patient relationship [19, 38, 20, 37, 32] has been increasing in recent years, which shows the importance
non-verbal behaviours have in patient satisfaction. In this work we will focus on the automated analysis
of the gaze direction of the physician during the medical interview, classifying it according to whether the
physician is looking at the patient or not. It will aim to support the automated analysis of primary care
visits focusing on effective communication in the physician-patient relationship.

Additionally, the rise in the use of virtual consultations due to the COVID-19 pandemic provided an
entirely different environment for the physician-patient relationship. lts impact in the physician-patient
relationship is yet to be fully understood. A preliminary observation made by the Luz Saude group
during 2019 (in the pre-pandemic era) perceived a rise in the eye contact between the patient and the
physician during video consultations compared to the face-to-face consultations. This perception needs

to be quantified and objectified clearly and scientifically.

1.2 Objectives

The primary objectives are (i) to quantify doctor’s gaze behaviour during the consultation, (ii) to evaluate
the impact of the virtual consultations in doctor’s gaze behaviour and (iii) to evaluate how the change in
environment affects different medical specialities.

The main performance indicator used to achieve our objectives will be derived from the quantification
of the physician’s gaze during a consultation (face-to-face or video consultation). Physician’s gaze will
be classified according to whether the physician is looking at the patient or at the screen / other areas
of the room. After classifying all the samples in a consultation, we will calculate the percentage of time
the physician spent looking at each of the possible areas. The main metric we are going to be analyzing
and comparing will be the percentage of consultation time spent looking at the patient, which we will

denominate as Patient Percentage (Patient%).



1.3 Contributions

The addition of technology to the clinical setting provides its own set of challenges that are independent
of the accuracy of the technology by itself in normal conditions. There are several variables at play
during a consultation that will affect the implemented technology performance, which, in some cases,
can lead to it being unusable in the clinical setting. One of the major difficulties was due to the pandemic,
which made mandatory the use of masks during consultations. Since the current automatic classification
approaches were not tailored for masked users, doctors were given specific masks that were transparent
in the mouth and nose regions of the face.

Therefore in this work, we implement a gaze estimation pipeline capable of estimating and classi-
fying the doctor’s gaze during face-to-face and virtual consultations. The pipeline is able to be applied
to several consultation offices, only needing a mirror-based extrinsic camera calibration routine to be

performed.

1.4 Thesis Outline

Chapter 2 begins with an explanation on how neural networks work and how to estimate their param-
eters. With the concept of neural networks introduced, we explain two particular types of neural net-
works used in state-of-the-art gaze estimation methods, the Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN). Then we introduce the concepts of camera intrinsic and extrinsic
parameters needed to perform the gaze estimation task. In the end, we move on to gaze estimation
methods. First, we explain the different types of gaze estimation tasks. After this, we introduce the
different approaches made to solve these gaze estimation tasks. Then we compare the performance of
the different approaches.

Chapter 3 contains a description the experimental design and protocol used in the study. First, it
explains the characteristics of the statistical study. Then it explains the procedure used for data acquisi-
tion, explaining the different consultation environments and the recording interface given to the doctors
to record consultations. It also explains the gaze estimation pipeline used to extract doctor’s gaze direc-
tion during a consultation. In the end, it explains how the doctor’s gaze direction was classified and what
were the statistical tests used to compare the distributions from the virtual and face-to-face consultations.

Chapter 4 presents all the results obtained divided in medical specialties. The results of each indi-
vidual doctor are analyzed in order to assess the impact of the virtual consultation environment. In the
end, it provides a discussion about the conclusions and insights taken from the overall results and study
contributions.

Chapter 5 provides the final conclusions of the study along with the future works to support the study.



Chapter 2

Background and State of the art

This section provides an overview the different techniques previously used in human gaze estimation
tasks. We start with a theoretical background on neural networks and camera intrinsic and extrinsic
parameters used in state-of-the-art gaze estimation. Then we explain the different types of existing gaze

estimation methods.

2.1 Neural Networks

A Neural Network, also called Artificial Neural Network, is a computing system loosely based on the
structure of animals brains. A Neural Network can be defined as a conjunction of connected nodes,
each node is called a neuron or perceptron and each connection between nodes is called an edge,

each edge is weighted by a weight.

Neuron

The fundamental building block of a Neural Network is called a neuron. A single neuron possesses a set
of minputs, z1, zo, ..., z,, and an output §. Each input z; is weighted by its corresponding weight w;. An
additional input 2o = 1 is sometimes added to the neuron and it is denominated of bias or threshold. A
neuron converts the set of inputs x4, z2, ..., z.,, into output ¢ by applying the propagation function, which
consists of two sequential operations. First, it performs the weighted sum of the all the inputs. Then, a
non-linear activation function f is applied to the result of the sum. The output 7 is the result of these two

operations done sequentially and is given as:

g:prwixi + wp) (2.1)

Essentially, propagating data forward through the network is just applying sequentially linear transfor-
mations (weighted sums) and non-linear transformations (activation functions) on the data. Connecting
multiple neurons in layers enables the network to perform complex operations and, consequently, gain
the ability to learn very complex relationships between the inputs. The process of feeding the input data

and propagating it through the network is called forward propagation.
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Figure 2.1: Diagram for a single neuron. '

Neurons give the ability to neural networks of performing two types of tasks: regression and clas-
sification. In neural networks, a regression task implies that the output of the network is a continuous
value. It comes directly as the output of a neuron or set of neurons (depending on how many output
variables there are). For example, a regression task can be estimating the gaze direction of a human.
On the other hand, a classification task implies that the neural network classifies the input into a set of
output classes. An example of a classification task would be the classification of a person on whether

she is happy or sad according to its facial image, where happy and sad are both output classes.

Multilayer Perceptron

One of the simplest forms of Neural Networks are Multilayer Perceptrons (MLPs). In MLPs, the neurons
are structured in layers where the input of neuron’s in one layer is the output of neurons in the previous
layer.

The first layer is called the input layer. Each neuron of the input layer has one input. The inputs of
the neurons correspond to the input data for that task and vary from task to task. The middle layers are
called the hidden layers and propagate the data forward through the network. The last layer is the output

layer and each neuron in the output layer corresponds to one of the task’s outputs.
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2.1.1 Supervised Learning

Learning is the process of adapting the neural network to better handle the task at hand. Neural net-
works adapt to different tasks by changing the weights of the connections between their neurons. There
are several learning paradigms that alter the way the network is trained. In other words, the process with
which the weights in the network are changed. From the several paradigms: supervised learning, un-
supervised learning, reinforcement learning and self-learning, we are going to focus on the supervised
learning paradigm since it is the one used for training the majority of gaze estimation methods.

The supervised learning task is to teach a model how to yield the correct output from a certain input
by using input-output pairs. This set of input-output pairs is the training dataset of the algorithm, where
each training example consists of the input labelled with the desired output. This training dataset enables
the model to learn over time how to perform a specific task correctly. The process of learning for a neural
network consists in measuring its performance with a function, the loss function, and altering its weights

so that the value of the loss function is minimized.

Loss function

The loss function measures the performance/accuracy of the model and it can be as simple as the mean
squared error (MSE). The loss function is parameterized by the parameters of the model being trained.
In the case of neural networks, the parameters of the loss function are the weights of the network. The
result of the loss function is calculated after the forward propagation of the training data through the

network.

Stochastic Gradient Descent

Essentially, the training of the model becomes an optimization problem of minimizing the loss function.
This minimization problem is typically solved by applying an iterative method like the Stochastic Gradient
Descent method. The Stochastic Gradient Descent (SGD) is an iterative method for minimization of an
objective function Q(w) where w are the parameters of the objective function. As the name indicates,
the SGD makes use of the gradient of the objective function at each iteration. It takes advantage of the
fact that the symmetric of the gradient of the function at any point always gives the steepest descent
in the function. At each iteration ¢t the parameters of the objective function are altered according to the

following rule, where 7 is the learning rate of the algorithm:

wy = wi—1 —NVQ(wi—1) (2.2)

At each iteration 7 we move the value of the parameters w; in the direction of the steepest descent,
given by the symmetric of the gradient of the function. This way we minimize the value of the objective
function in function of the parameters w.

The SGD method is used in Supervised Learning to minimize the loss function in function of the pa-

rameters of the model being trained. In neural networks, the objective function Q(w) is the loss function



chosen, and the parameters w are the weights of the neural network. The training of a neural network
involves applying the SGD to the loss function, obtained after the forward propagation of the training data
through the network. Consequently, computation of the gradient of the loss function in relation to each

weight of the network is needed. This computation is performed with the Backpropagation algorithm.

Backpropagation

In a neural network, to minimize the loss function, the network alters its weights. The alteration of the
weights is done according to the SGD algorithm, calculating the gradient of the loss function in relation
to the weights of the network and then updating the weights according to (2.2).

Backpropagation refers specifically to the algorithm used to calculate the gradients of the loss func-
tion. Due to the way neural networks operate, the gradient of the loss function in relation to each weight
of the network needs to be calculated by propagating the loss backwards through the network with the
application of the chain rule. The chain rule is used to calculate the derivative of composite functions,
and it is given by:

0: _0f 0y

dr  0g Ox (2:3)

where z = f(g(x)). The output of the network g(z) can be seen as a composite function of the form:
g(w) = WE FWED - fw ) (2.4)

where L is the number of layers in the network
By propagating the gradient from layer i + 1 to the previous layer i, the backpropagation algorithm is
able to calculate the gradients in respect to every weight. The update of the weights is done according

to the SGD method using (2.2) in the following way:

7 % oC ,glxT
W =w -y w (2.5)

oW,
where t is the iteration number and i the layer number. Comparing with (2.2), the objective function Q(w)
corresponds to the loss function C(y, g(x)), where g(z) is dependent on the weights of the network like

in (2.4). The parameters w of the objective function correspond to the weights of the network W (®).

2.1.2 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a type of Neural Network. CNNs have been gaining popularity
in recent years for Computer Vision tasks [1, 43]. CNNs consist of a set of convolutional and pooling
layers followed by set of fully connected layers. There are various architectures of CNNs, some examples
are LeNet [31], ResNet [21], AlexNet [30], among others. A CNN can be seen as a conjunction of 2 steps:
Feature Extraction and Classification. The Feature Extraction step is performed by the convolution and

pooling layers. During this step, CNNs take an input image and extract various characteristics (features)



from the image. Features can range from something as simple as lines and edges in the picture to more
abstract (high-level) features that consist of combinations of simpler features. The Classification step is

performed by the Fully Connected Layers, which are, in essence, an MLP.
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Figure 2.3: Convolutional Neural Networks. 2

Convolutional Layer

The Convolutional layer gives the CNN the ability to capture spatial and temporal dependencies in the
image through filters and the convolution operation. The filter is a conjunction of kernels, with different
kernels being able to extract different features like edges or lines. The convolution operation extracts
features from the input image according to the kernel used. Typically the first convolutional layers in the
network extract low-level features such as edges, colour and gradient orientation. Using these features
as inputs of other Convolutional layers, the CNN can extract high-level features, combining the previously

obtained low-level features. The output of the Convolutional layers is sometimes called a feature map.

Pooling Layer

The Pooling layer is responsible for condensing the convoluted features returned by the Convolutional
layer. The main objective of this operation is to reduce the spatial size of the feature maps, leading to
the reduction of the computational power required in the processing of the data. Additionally, the pooling
operation also extracts dominant features, which are rotational and positional invariant. Pooling works
by passing the kernel through the image. There are two types of Pooling: Max Pooling and Average
Pooling. Max Pooling returns the maximum value from the portion of the image covered by the kernel.
On the other hand, Average Pooling returns the average of the values from the portion of the image
covered by the kernel. The Pooling layer is responsible for increasing the efficiency of the CNNs training

by reducing the dimensionality of the data and extracting the most dominant features simultaneously.

Fully Connected Layers

The Fully Connected Layers take the feature map returned by the convolutional and pooling layers and

output the classification of the input image. This section of the CNN is an MLP that learns how to perform
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the wanted task with the feature map as its input.

2.1.3 Recurrent Neural Networks (RNNs)

A Recurrent Neural Network (RNN) is also a type of Neural Network like the CNN. A RNN is a type
artificial neural network which deals with temporal/sequential data of variable length ¢, where input is
a sequence z = {1, 22, x3...,2;} and output is also a sequence y = {y1,y2,¥ys--., ¥+ }» the sequence is
typically a temporal sequence although any type of sequence works in a RNN. Due its ability to model
temporal dependencies, the RNN has been gaining popularity in the fields of natural language process-
ing (NPL), speech recognition and image captioning where the current output is highly dependent on
previous events and not just on the current input. To model time dependencies, RNNs are designed to
have loops in the network, which allow the information of prior inputs to persist, by passing information

from one step to the next, this is illustrated in Figure 2.4a

(a) RNN Diagram (b) Deconstructed RNN

Figure 2.4: RNN representations: The typical RNN can be represented as a single block with a loop or
a sequence of identical blocks connected in a chain, one for each input

As a simplification, the RNN can be deconstructed into multiple copies of the same network, one for
each input in the sequence, like in Figure 2.4b. This way, it is much easier to visualize how RNNs are able
to create and model dependencies between sequential inputs making information about previous inputs
persist in the networks, while in a typical CNN or MLP sequences of inputs and outputs are independent
from each other. The "A” blocks in Figure 2.4 represent the architecture of the RNN. There are several
types of architectures of RNNs, however the most popular and widely used type is the Long-Short Term
Memory (LSTM) [22].

2.1.4 Long-Short Term Memory

The Long-Short Term Memory first proposed in [22] had the objective of dealing with the limitation of
conventional RNNs of not being able to model long-term dependencies. The key idea behind the LSTM

is the cell state s;, which keeps information about the previous events. The cell state value is controlled



through gates that control what information is added or removed from the cell state, as well as what
information is outputted from the cell. In essence, a LSTM is composed of a cell and 3 gates: forget

gate, input gate and output gate and it is illustrated in Figure 2.5.
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Figure 2.5: Long-Short Term Memory Module: The LSTM has 3 inputs (previous state, previous output
and current input) and 2 outputs (state and current output). The process of turning the inputs into the
outputs is carried out by the 3 gates and the 2 squashing operations performed on the data

The inputs of the LSTM are made up of the previous state s;_; and the concatenation of the previous
output h;_1 and the current input x;. A gate, illustrated in Figure 2.6, is a way to control how much
information is passed on to the next step. Each gate is composed of a neural network layer with a sigmoid

activation function, similar to a hidden layer from Figure 2.2, followed by a point-wise multiplication. The

A

Lo

Figure 2.6: LSTM Gate

neural network layer has a neuron for each value of the input [h;_1, ;] that works like the ones illustrated
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in Figure 2.1, therefore its output is always between 0 and 1 (due to the activation function being a o).
When the output is 1 the gate keeps all the information, when the output is 0 the gate blocks / "forgets”
the information. Each gate has a specific function in the LSTM, all related to controlling the information
on the state of the cell s;. the input gate controls what information from the inputs is stored in the state
and the output gate controls what information is outputted by the cell as h,. Alongside the gates, the
LSTM also performs a squashing operation on the input [h;_1, z;] and the state s;. The objective of the
squashing operation is to “squash” the values so that they are between -1 and 1, this helps to regulate
the LSTM by reducing the size of the absolute value of the inputs. This is accomplished by passing
the values through an activation function, normally the hyperbolic tangent tanh. There are two different
squashing operations: input squashing performed by the g layer and output squashing performed by the

h function.

Forget Gate

The forget gate, shaded in orange in Figure 2.5, controls what information is removed / "forgot” from
the previous state and it acts on the previous state s; ;. The gate generates the vector f; by passing
[h+—1, z¢] through the activation layer. Equation (2.6) which is very similar to (2.1), describes the network

layer operation, where W} is the weight matrix of the network and b, the bias.

fe=0W;y - [he—1,24] + by) (2.6)

The values of f; define how much information from the previous state is forgotten by the LSTM.

Input Gate

The input gate, shaded in blue in Figure 2.5, controls what information from the input [h;_1, x| is stored in
the state s;. The input gate vector i, is obtained in a similar fashion to the f; vector from the forget gate,
with (2.7). Additionally, before passing through the gate, the input is squashed to form the candidate

values Cy, see (2.8).

it = O'(Wi . [ht—17 ZCt] + bz) (27)

Ct = g(Wc . [ht—h ]}t] + bc) (28)

With the help of both the input gate and the forget gate, the state s;,_; can finally be updated through

(2.9) with a linear transformation, obtaining the current state s;.

st = fr - s—1 + i - Cy (2.9)

The gates control how much information from the previous state is kept and how much information from

the candidate values is added.
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Output Gate

After obtaining the current state s;, the output gate will decide how much information from the state

should be outputted as h;. For this, the gate generates vector o, like the previous 2 gates, see (2.10).
[ J(WO . [htfl,l't] + bo) (210)

Additionally, the state is squashed by passing it through the & function in the output squashing operation.

After this, the squashed state is filtered by the output gate forming the output /., see (2.11).

ht = O¢ - h(St) (211)

2.2 Camera Parameters

A camera can be described by the pinhole camera model illustrated in Figure 2.7. The pinhole camera
model describes the mathematical relationship between the points in the world coordinate system and
their projection onto the camera image plane (Pixel Coordinate System). This mathematical relationship

is parameterized by the camera’s intrinsic and extrinsic parameters.

World Coordinate
System

[Rt] N .
Image Coordinate System
Y,
Xw . w
L X YZw)
v ;
Camera Ze u
Coordinate System ’! (0,0)
Xc
A
Y(v ‘ D

L (u,v)

Pixel Coordinate
System

Figure 2.7: Pinhole Camera Model.

The intrinsic parameters of the camera describe its internal characteristics such as focal length,
skew, distortion and image center. They are necessary to link the pixel coordinates of an image point
with the corresponding coordinates in the camera coordinate system. Essentially, they describe the
transformation of points in the Pixel Coordinate System to points in the Camera Coordinate System

(CCS) and vice-versa.
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The extrinsic parameters describe the camera’s position in relation to the world coordinate system,
defining the location and orientation of the camera reference frame in respect to the world reference
frame. The extrinsic parameters describe the transformation of points in the world coordinate system to
the camera coordinate system and vice-versa.

In gaze estimation for screen-based applications, the extrinsic parameters are used to convert 3D
gaze predictions (vectors in the Camera Coordinate System) into 2D gaze predictions as PoGs (points
of gaze) on a screen. The screen is described as a plane in the world coordinate system, typically
referred as the Screen Coordinate System (SCS). Using the camera’s extrinsic parameters, we can
convert from CCS coordinates to SCS coordinates enabling the computation of intersections between
3D gaze directions and 2D screen planes in the CCS.

Therefore, we need to know both the intrinsic and extrinsic parameters of the camera. For this, we
use two camera calibration routines. To find the intrinsic parameters of the camera, we use the routines
offered by the OpenCV [8, 57, 7] library. To find the extrinsic parameters of the camera, we use a

mirror-based calibration method from [47].

2.3 Gaze Estimation Methods

2.3.1 Gaze Estimation Methods Background

Gaze estimation objective is to estimate a subject’s gaze direction. The earliest attempts at gaze esti-
mation consisted in the detection of eye movement patterns like fixation, saccades and smooth pursuits
[52]. These early methods attached sensors around the eyes to detect the movement patterns men-
tioned before. However the evolution of computer vision technology enabled the creation of modern eye
tracking software devices, which captured eyes/face images of the subject from which gaze direction
was inferred. In Figure 2.8 the history of gaze estimation methods is illustrated.

Modern gaze estimation methods powered by computer vision can be divided into three categories:
2D eye feature regression methods, 3D eye model recovery methods and appearance-based methods.

The first two methods consist of detecting geometric features of eye appearance such as contours,
reflections and eye corners. 2D eye feature regression methods learn functions that map from geometric
features from human gaze [25, 39]. 3D eye model recovery methods build subject-specific 3D eye
models which are then fitted with the detected geometric features like infrared corneal reflections [15,
58], pupil center [50] and iris contours [2]. Both categories of methods need dedicated devices (infrared
cameras or RGBD cameras) to detect geometric features. Additionally, 3D eye model recovery methods
use subject-specific models, thus needing time consuming personal calibration sequences to estimate
the subject specific parameters of the model.

Appearance-based gaze estimation methods learn functions that map directly from images to gaze
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