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Resumo

No último século, o consumo de energia decuplicou a nı́vel mundial. Apelos pela sustentabilidade

ambiental, acompanhados de aumentos no custo energético, levam empresas e indivı́duos a gerir os

seus consumos de energia de forma mais eficiente. Programas de Resposta Dinâmica de Consumos

(RDC) foram criados de modo a incentivar contributos individuais e coletivos para a eficiência da rede

energética. A presente dissertação explora diversos programas de RDC implementados por empresas

de distribuição de eletricidade, hábitos de consumo por parte de clientes residenciais e a dinâmica de

incentivos em edifı́cios e complexos residenciais multifamiliares. Nesta dissertação são também anal-

isados Sistemas de Gestão de Consumo Residencial (SGCR) relativamente à abordagem, poupanças

energéticas e flexibilidade para o utilizador. É proposto um SGCR focado na distribuição da energia de

pico. O sistema apresentado agenda a execução de eletrodomésticos à medida que o utilizador efetua

os pedidos, decidindo com base na informação presente. As decisões são baseadas no consumo de

energia e nas preferências do utilizador quanto à prioridade e agendamento dos dispositivos. Além

disso, são integrados sistemas de baterias e de auto-produção. Múltiplas instâncias do sistema podem

cooperar no sentido de equilibrar o consumo ao longo do tempo. Foram alcançadas reduções no con-

sumo de pico até 45%, quando comparado com casas sem sistema de gestão de energia, em ambiente

de simulação. Os testes efetuados revelam maior equilı́brio de consumo particularmente durante a

madrugada.

Palavras-chave: Redes Inteligentes, Gestão de Energia, Agendamento de Cargas, Re-

sposta Dinâmica de Consumos
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Abstract

In the last century, energy consumption has increased tenfold. Global calls for environmental sustain-

ability along with rising energy costs push companies and individuals to manage energy more efficiently.

Demand Response (DR) programs were developed to promote individual and collective contributions

to the efficiency of the grid. This dissertation reviews DR programs implemented by energy distribu-

tion companies, consumption habits from residential consumers and the incentive dynamic in shared

residential complexes. Existing Home Energy Management Systems (HEMS) are analysed regarding

approach, energy savings and flexibility. A HEMS focused on peak distribution is proposed. The system

is able to schedule the execution of appliances as they are requested, deciding with present information.

Scheduling decisions are based on energy consumption and user preferences in device priority and

schedulability. Moreover, battery and PV systems are integrated, and different instances of the server

application are able to cooperate towards load distribution. Peak reductions of up to 45% versus un-

managed households were achieved in testing simulations, with additional benefits to demand balance

in overnight periods.

Keywords: Smart Grid, Energy Management, Demand Response, Appliance Scheduling

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Household consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Factors for demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Consumption in shared residences . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Appliance information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Peak demand reduction terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Supply-side techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Monitoring services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Active energy management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Scheduling solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Architecture 15

3.1 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Application components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Appliances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Priority function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Interaction with devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Scheduling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.1 Battery Storage System handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



3.7 Execution life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Implementation 27

4.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Core application details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Technologies used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Django-admin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.2 Command line (CLI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Results 37

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Single-house mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Household 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Household 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.3 Household 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Multi-house mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Heterogeneous households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 Night distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusions 47

6.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49

A Database structure 53

B Sample consumption data plots 55

C Django-admin interface screenshots 59

xii



List of Tables

3.1 Base priority values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Priority values by category and remaining acceptable delay interval, in minutes. . . . . . . 20

5.1 Sample appliance schedule for household 1. Time format: hh:mm. . . . . . . . . . . . . . 39

5.2 Key Performance Indicators for household 1. . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Sample appliance schedule for household 2. Time format: hh:mm. . . . . . . . . . . . . . 40

5.4 Key Performance Indicators for household 2. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Sample appliance schedule for household 3. Time format: hh:mm. . . . . . . . . . . . . . 42

5.6 Key Performance Indicators for household 3. . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Key Performance Indicators for the heterogeneous simulations. . . . . . . . . . . . . . . . 43

5.8 Key Performance Indicators for the individual households, operating in multi-house mode. 44

5.9 Key Performance Indicators for the pattern-repeated simulations between 09:00 PM and

12:00 AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiii



xiv



List of Figures

1.1 Share of fuels in the final energy consumption in the residential sector by type of end-use,

EU, 2019. Source: Eurostat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Specific consumption of households by end-use. Source: Odysee. . . . . . . . . . . . . . 6

2.2 Portuguese low-tension energy consumption in four different days. Source: E-Redes. . . 7

2.3 Screenshots of the Sense application. Source: ZDNet. . . . . . . . . . . . . . . . . . . . . 11

3.1 System architecture diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Algorithm for scheduling appliances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Layered software architecture diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.1 Database representation of data structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.1 Comparison of consumption curves for household 1. . . . . . . . . . . . . . . . . . . . . . 56

B.2 Comparison of consumption curves for household 2. . . . . . . . . . . . . . . . . . . . . . 56

B.3 Comparison of consumption curves for household 3. . . . . . . . . . . . . . . . . . . . . . 57

B.4 Comparison of consumption curves for the heterogeneous simulation. . . . . . . . . . . . 57

B.5 Comparison of consumption curves for the pattern-repeated simulation at night. . . . . . . 58

C.1 Django-admin interface: creating a new execution. . . . . . . . . . . . . . . . . . . . . . . 60

C.2 Django-admin interface: displaying executions after scheduling. . . . . . . . . . . . . . . . 61

C.3 Django-admin interface: displaying energy profiles. . . . . . . . . . . . . . . . . . . . . . . 62

C.4 Django-admin interface: switching to multi-house mode. . . . . . . . . . . . . . . . . . . . 63

xv



xvi



Nomenclature

ADAWR Average Delay-to-Acceptable-Wait Ratio

BEV Battery Electric Vehicle

BSS Battery Storage System

CLI Command Line Interface

CP Common Property

CPP Critical Peak Pricing

DR Demand Response

DSM Demand-side Management

HEMS Home Energy Management System

HVAC Heating, Ventilation and Air Conditioning

KPI Key Performance Indicators

MQTT Message Queuing Telemetry Transport

ORM Object-Relational Mapping

PAR Peak-to-Average Ratio

PHEV Plug-in Hybrid Electric Vehicle

PLC Power Line Communication

RTP Real-Time Pricing

SDG Sustainable Development Goal

TOU Time-of-Use

xvii



xviii



Chapter 1

Introduction

Energy management solutions are increasingly necessary, amid disruptions in European energy

chains, soaring energy costs and growing environmental awareness. This dissertation provides an

overview on problems in energy management at household and distribution levels, along with existing

solutions. Literature on end-user consumption habits, appliance categorization and demand-side man-

agement techniques is reviewed. Moreover, an interactive, best-effort scheduling solution focused on

preventing consumption peaks is proposed. This chapter elaborates on the relevance of energy man-

agement, outlines the contents of each chapter and the goals to be achieved with the thesis.

1.1 Motivation

Energy harnessing has been a key factor for the development of humankind since the control of fire.

Nations and territories have been invaded and exploited for their resources. Industrialization accelerated

the correlation between energy consumption and economic development, still found to this day [1]. En-

ergy consumption grew exponentially during the last century, leading to concerns of resource exhaustion

and environmental damage [2]. From the late 1980s, climate awareness spread and paved the way to a

renewed notion of sustainable development.

In 2018, during the High-Level Political Forum on Sustainable Development, it was stated that “en-

ergy is central to nearly every major challenge and opportunity the world faces today, including poverty

eradication, gender equality, adaptation to climate change, food security, health, education, sustainable

cities, jobs and transport” [3]. The assertion was made regarding the 7th Global Goal of the 17 Sustain-

able Development Goals, a series of objectives set by the United Nations General Assembly in 2015 to

be achieved globally until 2030 [4]. In particular, SDG 7 aims to “ensure access to affordable, reliable,

sustainable and modern energy for all”, and is tracked by 5 targets and 6 indicators. Among the targets,

nations are called to double the global rate of improvement in energy efficiency, to promote access,

technology and investments in clean energy, and to increase the percentage of renewable energy in the

global energy mix.

Electricity is a secondary energy source. Despite not being extracted directly from nature, it quickly

1



Figure 1.1: Share of fuels in the final energy consumption in the residential sector by type of end-use,
EU, 2019. Source: Eurostat.

became an essential aspect of modern life. Developed countries have complex networks, able to provide

electricity to a large majority of residents. These electrical grids must maintain enough firm capacity to

match demand at all times. However, demand is variable: high-demand periods require higher capacity,

often met with expensive peaking plants or a higher base capacity. The fluctuation of demand over

time - i.e., the demand curve - forces energy companies to maintain a surplus of energy supply, create

consumption forecast models, and use additional infrastructure to sustain the grid [5]. The issue deepens

as mobility solutions powered by electricity become the norm. Battery Electric Vehicles (BEV) and

Plug-in Hybrid Electric Vehicles (PHEV) draw a significant amount of power and are often charged at

similar periods (e.g., at night or early morning). In a future where residential areas and building garages

include numerous charging stations, accommodating simultaneous charging of BEV will not only result

in additional imbalance of demand, but may even become unsustainable for the existing infrastructure.

Moreover, many regions have aging grid infrastructure that does not support bidirectional electrical

flow [6]. New homes are being built with solar panels and Battery Storage Systems (BSS) to improve

energy efficiency and utilize more renewable energy, yet, in a traditional grid, the energy produced locally

must be used for self-consumption. Overproduction cannot be returned to the network, leading to penal-

ties for end-users and waste of energy. Traditional grids are being modernized with bidirectional flow

of energy and communication signals, incorporating sensors and smart meters, thus becoming smarter

[7]. Smart grids enable consumers to participate in managing the grid, through Demand Response

programs and utilization of excess production.

From data on household consumption published by the Eurostat in 2019 [8] and shown in figure 1.1,

space heating represents 63.9% of energy end-uses, followed by 14.8% consumed in water heating,

14.1% in lighting and appliances and 6.1% in cooking. Slicing the household consumption by source

fuel, electricity represents 24.7% of the energy mix. Odysee, the European energy efficiency project,

shows the share of electricity is increasing rapidly, coming from 21% in 2000 [9]. When accounting

exclusively for electricity consumption, lighting and appliances represent most end-uses, as most of the

heating in the European Union uses gas and renewables.

The aforementioned factors - drive for energy efficiency, management of self-production, and rele-

vance of appliances in household consumption - expose the need for tools that optimize energy con-

sumption and coordinate demand from a bottom-up approach, compatible with traditional and modern

grids.

2



1.2 Objectives and Deliverables

The goal is to develop an Energy Management System able to improve demand inefficiencies, both

within residential households and local grids, with minimal impact to the consumer. The system is

a server application that can control the execution time of electrical appliances to perform at a more

adequate period, preventing switchboard trips and local shortages, meant to be installed in a computer

within the household. The system is interactive, receiving execution requests as they come and distribut-

ing them using present-time information. In shared residential spaces, such as an apartment building

or condominium, users are incentivized to distribute their energy loads not only to benefit from a lower

contracted power, but also to reduce shared electricity bills, as the electrical installation requires less

power.

The solution should account for most types of appliances, BEV, and include support for alternative

energy sources such as Photovoltaic Systems and Battery Storage Systems. User preferences must be

considered in order to reduce disruption. Energy loads require accurate parameterization for the system

to be as effective as possible. The system should be able to simulate the residential environment,

including characterization of devices, programs and executions.

To complement the program, a simple user interface is to be developed along with test consumption

scenarios. Results are produced from these scenarios and evaluated using consumption indicators such

as peak, peak-to-average ratio and total delay time, when compared against an unmanaged system.

1.3 Thesis Outline

The following chapter - Background - provides an overview on statistics, strategies and products that

can be used to shape demand and improve energy efficiency. Chapter 3 (Architecture) is focused on

the concepts behind the proposed solution, exploring the structure of the system and benefits to stake-

holders. Chapter 4 (Implementation) examines the technical aspects of the system, also elaborating

on development decisions and limitations. Testing data, simulations and results are exhibited and com-

mented on in chapter 5, Results. Finally, chapter 6 (Conclusions) closes the document with additional

remarks on the work accomplished, as well as improvements to be developed in future iterations.

3
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Chapter 2

Background

Chapter 2 covers literature regarding previous work on energy management, including consumption

behaviors, energy management techniques, smart grid features and previous approaches to improve

energy efficiency. Processes for shaping the energy consumption are explained in section 2.2 and

revisited in later chapters, as they are integrated in energy management solutions both from demand

and supply sides.

2.1 Household consumption

Domestic consumption data is crucial for identifying patterns in demand, as well as paths to optimize

distribution. As mentioned in chapter 1, electrical consumption in households is dominated by lighting

and appliances (57%) which do not fit in other categories such as space heating (14%), water heating

(12%) and cooking (12%) [8]. This section covers more energy consumption data, influential factors and

profiling of appliances.

2.1.1 Factors for demand

Space heating is used to maintain indoor temperatures at acceptable levels for human thermal com-

fort. Naturally, more energy is required to do so when outside temperature is lower. Geographic location

affects solar irradiance and plays a major role, both in heating necessities and broader lifestyle choices

that end up shaping consumption. Figure 2.1 compares household consumption by end-use between

EU countries. Countries from southern Europe and the Mediterranean sea, where the climate is more

moderate, such as Malta, Portugal and Cyprus, not only display a lower percentage of energy used in

space heating, but also rank among the countries with lower overall household energy consumption.

Other factors include the number of residents in the household, seasonality, intraday temperature

fluctuation and periods of absence. In the northern hemisphere, average temperatures are higher in

spring and summer, and lower in autumn and winter. In cold weather, less heat generation is required

during direct sunlight hours, contrasting with periods at night and early morning, where demand in-

creases. Outside temperature affects other forms of heating as well, as more energy is required to

5



Figure 2.1: Specific consumption of households by end-use. Source: Odysee.

achieve certain temperatures, meaning that over 38% of energy consumption has a seasonal variation.

Concerning the intraday variation on energy consumption, temperature is only one of the many fac-

tors that influence expenditure [10]. A significant portion of home owners leave for work in the morning

and come back at late afternoon. Cooking is prevailing before launch and dinner time. Lighting is more

necessary at night. Additionally, workers commonly use their free time at early night for leisure activities

or house chores. These behavior patterns are associated with the use of specific appliances: meal

preparation may require the oven, toaster, stove or microwave, house chores include the iron, dish-

washer and washing machine. Most of these are large appliances that consume a significant amount of

energy. Intraday variation, when plotted in a graph, is called the demand curve.

In Portugal, electricity is the main energy source for households [11]. Heating is predominantly elec-

tric and activated during winter season. Air conditioners are utilized in the summer to combat the warmer

temperatures. Figure 2.2 shows four different demand curves, representative of each of the seasons.

It can be observed that consumption is heavier in winter and peaks at early night, when temperatures

drop. A lower high can be observed in late morning, especially in spring and autumn, matching with

launch preparation time. In the summer, air conditioners are used during the afternoon, smoothing the

transition to night-time activities. Thus, the night peak is less evident than in other seasons.

2.1.2 Consumption in shared residences

In 2014, multi-family dwellings represented 49.5% of all housing in the European Union [12]. In

a shared residential building, consumption is an aggregation of the values in its housing units plus

common property (CP): garages, parking lots, service rooms, pools, etc. This infrastructure may in-
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Figure 2.2: Portuguese low-tension energy consumption in four different days. Source: E-Redes.

clude energy-intensive services, such as BEV/PHEV charging in garages, laundry appliances in shared

laundry rooms, and vertical transportation to different floors. Energy production and storage may also

happen at building level. Single housing units in shared residences often do not have the space or ca-

pacity to install these systems. Installing PV systems in shared rooftops and parks is a more efficient

alternative, able to accumulate much more energy and serve multiple properties.

The portion of total energy spent in common property also depends on the shape, thermal isolation,

surface and rooftop areas of the building, as much is utilized in pumps and HVAC. Japanese high-rise

buildings reportedly consume 10% of the total load in CP, while in Australia results ranged from 36% to

57% [13, 14]. Studies have shown that demand aggregation in common property can benefit consumers

tremendously, with the potential to reduce the contracted power of the dwelling and satisfy the common

demand with clean energy [15].

2.1.3 Appliance information

Appliances come with information regarding power ratings, energy efficiency and capacity (if any).

Rated power is the power needed for execution, even if the consumption is not constant; it represents

the maximum power draw of the device. As such, it can be used as an upper bound to represent the

consumption of a machine, e.g., in estimating the ideal capacity for a PV system installation. Some

appliances have different consumption profiles, depending on the task. The potency of a microwave

is adjustable, between maximum power for fast heating or the lowest mode for defrosting. Even when

turned off, many appliances enter a ”standby” mode, reducing consumption to a minimum to power digital

clocks, smart hub connection, etc. Different modes often have a different rated power. The energy

7



efficiency label, enforced by EU regulation since 1992, offers a more accurate comparison between

machines of the same type. Appliances are labeled from A to G, where A is the highest efficiency class

and G the lowest. Consumers should pursue machines with higher efficiency in order to save on energy

consumption.

Appliances are generally categorized regarding their mobility and size. Non-portable or semi-portable

appliances are called large appliances, such as the fridge and the washing machine, while lightweight

appliances that generally rest on table or counter-tops (e.g., toaster, coffee maker) are designated small

appliances. Large appliances usually consume more energy and, until the last decade, represented

most of consumption in households [9].

A more interesting categorization from an energy management standpoint is according to the load

profile. Resistance-based appliances use resistors to turn electricity into heat. Toasters, heaters, ovens,

and other devices focused on producing heat work this way. Incandescent light bulbs also use resistors,

heating a filament until it produces light. These appliances use constant power: the consumption curve

of these devices is steady until interrupted by a timer or the user. As such, the rated power is an

adequate estimate of real consumption. Motor-based appliances such as fans also fit this category.

Some appliances have simple ON/OFF self-regulation, like the fridge and some heaters. Self-

regulating heaters, despite also being resistance-based, have a thermostat to stop producing heat until

temperature falls again below a threshold. The fridge alternates between ON and OFF on a time basis,

with additional power used when the door is opened or during defrost cycles. Air conditioners and water

heaters also activate periodically, in order to retain temperature. The fan of an air conditioner operates

in separate from the cooling mechanism. Consumption of these devices can be estimated adequately

using equation models that parameterize internal and external factors [16].

Other appliances, such as the washing machine, dishwasher and clothes washing, have more com-

plex self-regulating mechanisms, with the power consumption varying according to the operating cycle

[17]. A full cycle of the dishwasher includes washing, rinsing and drying. A heating element is used

at the beginning of the washing and rinsing phases to heat the water to a set temperature, then the

consumption lowers until the end of the stage. The washing phase has many interruptions, and may be

preceded by a pre-washing routine. Stages of the washing cycle are hard to identify without a power

meter, and vary according to brand and model. Thus, accurate modelling of the consumption curve of

these appliances requires specific data from the machine, not accessible to the average consumer.

2.2 Peak demand reduction terminology

The following processes shape the demand curve with focus on reduction of peaks. They are used

and often combined in energy management solutions, or encouraged by energy suppliers through vari-

able pricing.

Load Distribution is a strategy focused on evenly distributing energy loads across time, without

affecting the overall energy consumed. The amplitude of the demand curve is reduced, as valleys are

filled with loads from peaks. This strategy can be applied by shifting energy loads from peak to off-peak
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periods. In some literature, it is decomposed into peak shifting and valley filling.

Peak Shaving is the elimination of consumption peaks whenever they would be formed. It en-

compasses load denying - rejecting new loads after a certain consumption threshold - and the use of

secondary energy sources during peak demand, such as solar panels or batteries. The consumption

peaks become plateaus with lower maximum value.

Load Reduction consists in reducing the overall consumption. The shape of the demand curve

remains similar to the original, but with lower values. Utilizing more energy-efficient appliances falls into

this category.

2.3 Supply-side techniques

Energy suppliers already implement a range of techniques to shape the demand curve of consumers,

both in traditional and smart grids. The most basic control of demand comes from the maximum avail-

able capacity chosen by the consumer - the contracted power. Consumers cannot exceed this value; if

the instant consumption exceeds the contracted power, the switchboard will trip. The capacity is mea-

sured in kVA, and a higher contracted power results in higher energy cost per kWh. Consumers are

encouraged to contract power above their average consumption, in order to remain below the threshold

during periods of higher activity.

Through financial incentives, contracts may also motivate consumers to adapt their consumption

behavior to a more favorable pattern for energy distribution. This is called demand-side management

(DSM). Customers can enroll in static or dynamic rates. Static pricing is the most common practice.

Consumers with static pricing contracts can opt between flat and Time-of-Use (TOU) models. The flat

rate can be considered the baseline for comparison with all other pricing models: electricity costs the

same regardless of time of day, meaning that there are no incentives to consume more or less energy

in certain periods. In TOU, the cost depends on the month and period of the day. These models break

the day in time periods, according to expected demand. The cost is static and respective for each of the

periods, established in the contract.

In Portugal, TOU offerings consist of bi-hourly and tri-hourly tariffs. A bi-hourly contract partitions the

day in blocks of empty and non-empty hours. Empty hours are periods where the average consumption

is low for the time of the year, with non-empty hours composing the rest of the timetable. Thus, energy

is made available at cheaper prices during empty hours. The tri-hourly tariff adds a third category, peak

hours, for short periods where the grid needs to provide full capacity. Empty hours in the latter two

models are evidently cheaper than the flat rate, but non-empty hours are often more expensive than

the baseline, encouraging consumers to perform selective load distribution if they actually want to save

on costs, rather than simply getting a discount in low demand hours. Peak hours are a deterrent to

consumption during those times, effectively acting as a peak shrinking mechanism.

Through new grid monitoring practices available in smart grids, distributors can measure consump-

tion more accurately and within smaller timeframes. Consumers report their consumption to the dis-

tribution company automatically and in short intervals, with the aid of smart meters installed in their
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households. Active monitoring creates an opportunity to predict consumption with tighter ranges and

create price models more adjusted to real demand - paving the way for dynamic pricing. Through dy-

namic pricing, the cost passed down to the consumer reflects the production and distribution costs more

closely, with some added volatility when compared to static models.

Consumers can enroll in Demand Response programs and actively contribute to the stability to the

grid. Real-Time Pricing is a model where the electricity cost fluctuates over short intervals, and the

consumer is charged with varying prices depending on the time period. The cost may vary according to

current demand, or from day-ahead market prices; in the latter case, households may know the costs

in advance and plan their consumption accordingly. Critical Peak Pricing compliments flat and TOU

models by significantly increasing the cost of electricity during select critical peak events, announced

to consumers a day ahead. In exchange, the rate for other time periods is slightly discounted. Other

models based on rebates or coupons also reward consumers for reducing consumption during peak

hours.

2.4 Monitoring services

Energy distribution companies are promoting the installation of smart meters in consumer house-

holds, creating a communication interface between home and energy provider that opens the door for

more efficient grid management. However, most smart meters installed by companies do not disclose

real-time data to the user, serving exclusively as a secure platform to communicate readings. In Portu-

gal, clients with smart meters only get access to the delayed consumption history for the last 30 days,

with no possibility to deconstruct the data. To obtain plug or whole-house energy monitoring, other

commercial or do-it-yourself solutions must be installed.

Advanced monitoring solutions frequently provide real-time consumption data for the entire house-

hold, including separation by divisions or specific appliances, accessible to the user through web and

mobile applications. As an example, Sense [18] uses clamp-on current sensors to collect consumption

and production data. Devices are identified by their energy usage signature, so that the periods of use

and power consumption can be monitored individually. A mobile application displays the total consump-

tion of the household, consumption of identified devices in a timeline, which devices are on, and the

predicted energy cost for the month using a flat rate. Users can also set consumption goals and receive

notifications for abnormal consumption of specific devices. The hardware costs 349$ and installation by

an electrician is recommended. It does not support variable-rate energy plans, and device identification

is dependent on correct energy signature recognition.

Studies in Korea and Australia show benefits of up to 10% in energy savings using in-house displays

[19, 20]. Householders were able to improve their consumption habits by being more conscious about

their energy waste and regulating the devices themselves, using information provided by an energy

monitoring system.
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Figure 2.3: Screenshots of the Sense application. Source: ZDNet.

2.5 Active energy management

Home Energy Management Systems (HEMS) provide additional control to consumers, offering re-

mote control over home appliances and automation to varying degrees. Smart plugs are used to control

the state of non-smart appliances, where as smart machines can communicate directly with a network.

Communication is standardized through protocols such as ZigBee and MQTT [21, 22]. Devices commu-

nicate with a coordinator to inform their status or receive new instructions. Depending on the appliance

and the level of control over its functionality, the status can range from ON/OFF to more fine-grained

information such as temperature, intensity and water usage. A web or mobile application can communi-

cate with the network to display the statuses and provide control to the user.

The Portuguese company EDP Comercial launched EDP Re:dy in 2014 [23], a hardware kit that

includes an array of smart plugs (for general purpose, controlling A/C or monitoring solar production),

switches for appliances that do not connect to plugs, a smart meter and a box that coordinates the

devices. The solution uses ZigBee and PLC as communication protocols. The hardware is comple-

mented with both a mobile application and a website. Re:dy promises savings on energy despite having

a monthly subscription price; besides monitoring and controlling devices, it also offers on/off schedul-

ing, keeps consumption statistics to inform of unexpected device activity, predicts monthly consumption

and recommends lowering the contracted power, according to peak consumption in the last months.
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The hardware kit cost ranges between 102C and 157C, depending on the plugs, and has a monthly

subscription price of 5C for households with less than four solar panels.

In some HEMS, light, temperature and movement sensors can be incorporated to trigger actions,

such as turning on a heating system or the lights in a corridor. Other conditions may also be set as

triggers. Time-based automation enables the scheduling of appliances to match user routines or occur

in absence of the user. It is possible to schedule tasks to off-peak hours, improving grid efficiency. In

particular, the American company DTE Energy launched the SmartCurrents program [24], attracting

consumers to a dynamic tariff and offering a smart thermostat. The thermostat is WiFi-enabled and

aware of demand periods. Thus, it is able to regulate the household temperature by operating at periods

where the energy costs are lower.

2.6 Scheduling solutions

At their core, the systems mentioned above are tools to reduce energy waste. In order to effectively

optimize the demand profile of a house, solutions require more control over consumption of appliances.

A system that can decide or recommend the time of execution for each appliance is called a scheduling

system. These solutions attempt to formulate consumption as a mathematical problem and develop

algorithms.

Mohsenian-Rad et al. (2010) [25] approach the issue by formulating two optimization problems:

peak-to-average ratio minimization and energy cost minimization. Appliances are categorized between

shiftable and non-shiftable. Shiftable loads have a time period limiting when they can be scheduled,

equal or greater than the desired time of consumption to fulfill its purpose, which is predetermined.

Households are aggregated and the scheduling follows a distributed algorithm, to maintain an equilib-

rium in demand between consumers powered by the same local energy network. While energy cost to

the consumer can be minimized at a household level in variable pricing programs, grid efficiency de-

pends directly on total consumption over time. Each household has a Energy Consumption Scheduler

that solves its own part of the algorithm, obfuscating the actual device scheduling to other households for

privacy reasons. This strategy, while theoretically effective and privacy-concerned, lacks flexibility due

to the assumption that appliances are used during a fixed amount of time every day, with no variation in

consumption. Device categorization disregards nuances in interruptible loads.

Chen et al. (2013) [26] consider uncertainty in household consumption, as a variable in the three-

stage proposed algorithm. A day-ahead pricing program is assumed for calculations on single house-

holds. Consumption of each device is defined probabilistically, following a Gaussian distribution. Self-

production is also accounted for in this solution: solar energy, although representing a small portion of

the energy consumed, should be prioritized over grid consumption. As a single-house solution, it may

fail to benefit the interests of energy distribution companies and the equilibrium between demand and

supply, as there is no communication between instances to coordinate the loads moved to empty hours.

In a grid where all nodes use this system, peaks would certainly form in lower priced hours. Besides,

the uncertainty considered in the algorithm is more geared towards the variation in consumption of a
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device, due to the duration of use or other usage factors, but does not account for utilization (or the lack

of it) outside the schedule prepared in advance. Thus, it fails to consider spontaneous changes in the

timing of household activities.

Ozturk et al. (2013) [27] propose a DR scheduling system for customers enrolled in TOU pricing pro-

grams. Using a learning algorithm, the solution can learn from usage patterns to offer load forecasting

and adapt the appliance scheduling to customer preferences. It has a peak shrinking component in ad-

dition, by managing heating, ventilation and air conditioning (HVAC) more efficiently and shifting heavier

loads to periods where solar power is available. The system can aggregate household consumption in

residential areas and provide data to energy companies, which in turn can better adjust the available

resources and update TOU prices. Appliance utilization is perceived as ”a list of tasks to be scheduled

at preferred time intervals”, once again focusing on user comfort. Consumers interact with the system by

manifesting their intention to use an appliance within a certain time period. The scheduler either turns

on the device or informs the user that delaying its activation will result in cost savings. The user is then

prompted to accept the recommendation or turn on the appliance immediately. Beyond the cost savings

and efficiency gains, consumers also benefit from more information and consumption awareness.

Zhou et al. (2016) [28] elaborate on device categorization. Shiftable appliances can be further

categorized between interruptible and non-interruptible. Interruptible loads offer the advantage of having

their activity split into different time intervals, which can improve scheduling strategies. HVAC and PHEV

are notable shiftable interruptible machines, able to run in periods of excessive supply and suspend

when other loads need to execute.

Chen et al. (2014) [29] introduce a two-layer control architecture. In the lower layer, an energy

management controller communicates with appliances at household level and locally schedules the

loads. The upper layer consists of communication between households to apply a distributed consensus

algorithm, in order to match the desired demand profile of energy distributors. The consensus decisions

from the upper layer define the load limit to the lower layer scheduler. The desired demand profile

is usually known in advance, allowing the upper layer to decide in advance how the consumption of

households can be shaped, while the local scheduler can act in real time with the limits already set.

Group optimization has been further explored in the context of shared apartment complexes or build-

ing districts. Pinto et al. (2022) [30] delivers a HEMS able to manage multiple buildings with heteroge-

neous consumption, equipped with thermal energy storage and PV systems. Two architecture models

- cooperative and coordinated - are compared in performance against uncoordinated rule-based con-

trollers, using Key Performance Indicators (KPI) such as the peak, peak-to-average ratio, self-sufficiency

and flexibility factor1. The results showed improvements across all KPI with both architectures, with the

coordinated approach - a centralized model similar to the proposed solution in this document - achieving

reductions of the consumption peak by 9.7% and the peak-to-average ratio by 7.7%.

1The flexibility factor is defined as the ratio between off-peak imported electricity consumption and total imported electricity
consumption. Not a metric of flexibility from the user perspective.
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2.7 Conclusion

Domotic systems offer a wide range of monitoring and actuation tools to consumers. Most of the

commercialized systems are focused on providing information and control to the user, with intricate

interfaces that detail consumption, generate statistics and present remote control. Solutions focused

on autonomous or semi-autonomous management of devices are mostly academic. Researchers have

developed algorithms that control the demand curve of households by scheduling the use of appliances

in advance, with varying degrees of device categorization. These systems typically offer benefits to

consumers enrolled in DR programs with TOU or dynamic rates. Due to the scheduling happening

in advance, these solutions face difficulties adjusting to impulsive or seasonal changes in consumer

behavior. Additionally, contracted power is a considerable factor in electricity prices regardless of the

rate model, and lacks representation in the aforementioned research.
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Chapter 3

Architecture

The proposed solution is an autonomous HEMS that schedules household appliances with a focus

on peak shifting. Peak shifting is accomplished by limiting consumption to a threshold defined by the

user. If the threshold is surpassed, energy loads are delayed or shifted to an available period. The

system is able to start, shift, delay and interrupt appliances interactively, using a priority system based

on user preference to decide as new scheduling requests are made. Scheduling in real time using dy-

namic priorities increases flexibility to the user, enabling sudden consumption changes from unexpected

behavior and quickly adapting to them. BSS and PV systems are integrated as peak shaving and val-

ley filling mechanisms. The solution incorporates a minimal interface and is able to coordinate loads

between residential units in shared dwelling complexes.

Chapter 3 discusses the stakeholders for the system, presenting the parties and discussing the

benefits and drawbacks for each. Moreover, defines the scope of appliances covered by the system, all

the system components and its interactions, both within the system and with the outside world.

3.1 Stakeholders

There are three stakeholders that theoretically stand to gain with such system: residential con-

sumers, property managers and energy providers. This section analyses the mission, behavior and

goals of each stakeholder, concluding with potential benefits from adopting a new solution.

The core business of energy providers is to buy energy in wholesale markets and resell it to retail

customers. They are responsible for maintaining the grid infrastructure operational and able to deliver

the energy to the end-user. In general, distribution companies profit from more demand, as there is a

profit margin taken from redistribution. However, as energy is purchased in advance, demand needs to

be predicted. Energy companies aim to buy enough energy to accommodate the demand of consumers,

with a surplus for unexpected peaks. A traditional grid does not store energy. Thus, energy that is not

consumed goes to waste, causing a loss for the company.

Peaking power plants, used to respond to demand when the supply from base stations is insufficient,

are more expensive to operate. The additional cost is transferred to the distribution companies. There-
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fore, companies would benefit from a more balanced demand, not only to prevent underutilization of the

grid during low demand periods, but also to avoid buying energy from more expensive sources.

Consumers are billed for their consumption, usually monthly. Pricing models per contracted power

and per kWh were discussed in section 2.3. Consumers benefit from reducing their contracted power

and overall consumption. Blackouts are a significant inconvenience for residents, especially in the night.

Property managers are responsible for maintaining the shared private infrastructure in condominiums

or apartment buildings. The entity may just exist implicitly, if there is infrastructure with expenses split

between residents. The property manager ensures the quality of shared space and charges a periodic

fee to cover costs. Depending on the services that are offered, energy costs may represent a significant

part of management expenses: the Association of Condominium Owners of Ontario claims that typical

condominium corporations spend 35–50% of their annual operating budget on utilities [31]. Managing

the consumption within shared spaces to flatten the demand curve may result in a cheaper electricity

plan. Additionally, the whole multi-family complex shares grid resources that deliver energy to each

residence. The energy provider is responsible for ensuring the grid structure is sufficient to power

the building or residential complex, but peak prevention at this level can create a new relationship of

incentives between company and residential entities, similar to buildings-to-grid relations present in the

commercial building sector.

In countries such as Japan, it is common for a closed multi-family building to have a single contract

with the energy provider. The power received at high voltage is then distributed locally to the apartment

units. These shared residential complexes stand to gain the most with a solution that distributes energy

loads in coordination with other individual dwellings, maximizing the potential reduction in contracted

power.

The scheduling system that is proposed can operate in single-house and multi-house modes. In

single-house mode, loads are distributed locally with focus on reducing delay inconveniences, preventing

energy shortages and respecting the consumption limit imposed by the user. This mode directly benefits

consumers. Energy companies benefit indirectly from a flatter curve in multiple households, although

there is no coordination between instances. The property manager can run its own unit to manage

machines in shared spaces, behaving as an individual consumer and reaping the same benefits.

In multi-house mode, consumers provide their total scheduled consumption to a central unit - rep-

resented by the property manager - that aggregates demand and provides scheduling recommenda-

tions to individual units, based on the loads already scheduled. Large appliances and EV charging are

scheduled with awareness of peaks forming in the complex grid, getting distributed more evenly across

time. For privacy reasons, aggregate data is stored pseudo-anonymously and temporarily. Moreover,

no individual device data is shared outside the local unit. Even so, the central unit could be accessed

maliciously and expose consumption of individuals, by gathering enough consumption data to match it

with the house. To the consumer, the multi-house mode adds a privacy risk. Executions may also be

further delayed to support the grid, although the delay can never surpass the limit set by the user.

However, the benefits to the grid should be much more significant. Evidently, the energy provider

is directly benefited by the system, as the aggregate demand curve is softened, and thus less reliant
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on energy from peaking power plants. In countries where shared energy contracts exist, property man-

ager and consumers gain from the system together, with an overall lower energy expense due to a

reduced contracted power. In shared European residences, the additional immediate reward in multi-

house mode is the prevention of energy outages due to excess consumption at building/condominium

level. Nonetheless, the increased stability provided to the grid has a positive environmental impact to all

stakeholders, which could be rewarded by the energy provider or state programs, in a similar manner to

existing financial incentives discussed in section 2.3.

3.2 Application components

The system has two application components, the Coordinator and the Aggregator. A high-level

representation of interactions between components, interfaces and external devices is represented in

figure 3.1.

Figure 3.1: System architecture diagram.

The Coordinator fully manages the production and consumption of an individual household when the

system is disconnected from an Aggregator - operating in single-house mode. All appliances, alternative

energy systems, executions and user parameters are stored in this component. It is expected to be

operating inside the household, communicating with a Smart Home hub to interact with the devices. The

Coordinator receives and handles requests from appliances to start or stop activity. Moreover, it is able

to connect to an Aggregator, provide the necessary data for the latter to store an aggregated demand
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curve and eventually request recommendations for execution times. If BSS exists in the household, the

Coordinator always manages the charge and discharge cycles locally, based on individual household

consumption.

The Aggregator receives connections from Coordinators that decide to operate in multi-house mode.

It stores pseudo-anonymous consumption data in bulk and responds to scheduling recommendation

requests. The Aggregator is to be installed outside of any housing unit, but represents the shared inter-

ests of the residential complex; as such, it can be maintained by the property manager. Data regarding

individual appliances is not disclosed to the Aggregator. Instead, the Aggregator is only informed of the

time and power needed for a new schedule.

3.3 Appliances

An appliance, by definition, is an instrument or device designed for a particular use or function.

When looking at appliances in a household, it may be intuitive that large devices such as the fridge,

washing machine or the oven are included, as residential appliances typically assist in cooking, cleaning

and food preservation. However, portable appliances and consumer electronics that may or may not

be used at home also affect residential consumption. Consumer electronics provide entertainment,

communications and recreational activities, influence the indoor and outdoor lives of consumers, and

mostly require electricity (directly or stored as chemical energy in batteries) for normal operations. BEVs

are one of the top energy consuming devices connected to the household, despite being used outside.

As such, the scope of appliances to be managed by the system includes all devices that are powered or

charged by a home electrical system, intended for personal use. Devices customarily charged at home

are included, regardless of usage location.

The system is able to stop and postpone the execution of devices, if a new execution request arrives

with a higher priority. However, not all appliances can be interrupted and resume their activity, either due

to loss of progress (e.g. in heating systems, as the heat dissipates) or inability to resume at the previous

state. As such, appliances are classified between interruptible and non-interruptible. An interruptible

machine can resume its progress after being interrupted by the system. Therefore, appliances of this

category add more flexibility to the scheduler, enabling more urgent requests to commence immediately,

favoring user satisfaction. A non-interruptible device will not be considered when looking at shiftable

appliances to accommodate new requests, as stopping it could cause unpredictable behavior.

3.4 Priority function

Under heavy loads, executions are started or delayed according to a monotonic priority function. The

function is used to attribute priority values to executions dynamically. As the scheduler receives a new

instruction to schedule or stop an appliance, priorities of devices are recalculated to ensure that the

most time-sensitive executions have the shortest delay. A higher priority will lead to a quicker start, if
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no energy is available to start immediately without stopping other appliances, and supplemental energy

sources are absent or unusable.

Part of the priority formula for an execution is based on the priority class defined for the energy profile

(or program) of the appliance. Users can set a class between urgent, normal and low-priority for each

different mode of operation of a machine:

• Urgent requests correspond to time-sensitive appliances, typically small appliances that require

human intervention to be used, such as the hair dryer, the coffee machine and the cake mixer.

These devices often operate in short spans. As such, this priority class can interrupt appliances

with lower priority, to be resumed shortly after. Urgent requests are scheduled locally, ignoring

load distribution-based preferences from the demand aggregating system component.

• Normal priority is given to appliances that provide benefits to the user during operation or require

some form of active monitoring, but can start safely without supervision (e.g., the oven). Enter-

tainment and recreation machines commonly fit the criteria. These devices are still time-sensitive,

but the acceptable delay is often more flexible than in urgent profiles. Normal requests are, too,

scheduled locally, with preference for the closest available time.

• Low priority is given to machines with little to no time restrictions, typically large appliances which

just need to finish operation before a longer deadline. These devices do not require supervision

and generally can operate overnight, such as the washing machine, the dishwasher, and the BEV

charger. Low-priority devices are prime candidates for a load distribution scheduling strategy. In

single-house mode, they will be allocated to periods with the lowest local consumption, while in

multi-house mode, the Aggregator decides on the period with lowest aggregate consumption.

The other factor for the priority formula is the time since request, compared against the maximum

acceptable delay, defined by the user. As the remaining acceptable delay approaches zero, the priority

of the execution increases at a faster rate, potentially gaining higher priority than other executions in

upper priority classes. This prevents new requests from further delaying an execution that is already

delayed to the limit of acceptableness. The formula is as follows:

delayrequest =

timecurrent − timerequest if execution is unscheduled,

timestart − timerequest otherwise.
(3.1a)

delayremaining = delaymaximum − delayrequest (3.1b)

f = prioritybase + floor(
60× α

delayremaining + 60
) (3.1c)

priority =

f for f ≤ 10,

10 for f > 10.

(3.1d)

Where delayremaining is the value, in minutes, of the remaining acceptable delay, prioritybase is one

of the values in table 3.1 and α is a constant used to modulate the steepness of the priority curve. By
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Priority class Base value
Urgent 7
Normal 4

Low-priority 1

Table 3.1: Base priority values.

Priority value Urgent Normal Low-priority
10 [0; 100] [0; 20]
9 ]100; 180] ]20; 36]
8 ]180; 420] ]36; 60] [0; 8]
7 ]420; ∞[ ]60; 100] ]8; 20]
6 ]100; 180] ]20; 36]
5 ]180; 420] ]36; 60]
4 ]420; ∞[ ]60; 100]
3 ]100; 180]
2 ]180; 420]
1 ]420; ∞[

Table 3.2: Priority values by category and remaining acceptable delay interval, in minutes.

flooring the fraction in equation 3.1c, priorities are discretized between 1 and 10. Discretization allows

for a more predictable and coherent behavior. The value of delayrequest is dynamic if the execution is

not yet scheduled, as the current time keeps changing. However, it becomes static once a start time

is attributed. Therefore, appliances do not change priority constantly and do not interrupt each other

consecutively when trying to regain execution.

When a new request arrives, if there is not enough power available below the threshold using other

procedures, the scheduler will compare the priority value of the new request with the static values of the

executions already scheduled. If an execution is stopped manually, the priority of all delayed executions

is recalculated in order to activate the appliances with highest priority at the moment of evaluation. The

scheduling logic is elaborated in section 3.6.

The values 6, 8 and 10 were experimentally tested for α. With a value of 8, the curves adjusted better

to round numbers that the user might input more often as maximum delay, such as twenty minutes

and one hour, while keeping an adequate differentiation of priority values for the three categories as

the acceptable delay approaches zero. For urgent energy loads, any delay of less than one hundred

minutes gets maximum priority (10). Urgent executions generally have short acceptable delay periods,

so a new urgent request will typically get maximum priority and start immediately, even without enough

energy available, as long as interruptible executions are found. Normal executions have a wider range

of priority values, starting from 4. This is the default priority. Appliances with normal priority and longer

acceptable delay may not start immediately under heavy load, but reach the higher echelons at one

hour remaining, and hit maximum priority at twenty minutes. Finally, low-priority devices are expected

to never hit maximum priority. The priority class is intended for devices that will run whenever energy

consumption is lower, filling valleys and possibly activating overnight. Table 3.2 shows the time intervals

at which the three priority categories reach each value.
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3.5 Interaction with devices

The system is able to simulate interactions with all the appliances within scope. It is assumed that, in

a real-life integration scenario, appliances have a way to communicate with the system so that pressing

the power button or changing the program during operation would send an execution request to the

Coordinator, rather than starting execution immediately. Smart devices with electrical controls could

be modified to operate within this logic, while mechanical appliances and plug-in chargers could be

controlled using smart plugs. As examples, the following usage scenarios were considered:

• A washing machine is loaded with clothing. The user turns on the machine, and the machine will

communicate with the Coordinator. As a low-priority device, it will be scheduled for a low-demand

period using a load balancing strategy, local or aggregated. It will operate during the night without

requiring further action from the user, and be finished by the morning.

• The household is warm on a sunny day. The resident wishes to use the air conditioner, a normal

priority device, whenever there is enough power available. A new execution request is created

with high priority, but not maximum. If enough energy is available, the air conditioner will start

operating. It can be interrupted if new, urgent requests are made and no energy is available, then

resume after the urgent execution finishes.

• The user wants to use the coffee machine. After turning on the device, it will ask the Coordinator for

immediate activation. If the ongoing consumption is below the limit, the request will be conceded.

If consumption is too close to the limit, an interruptible device will be stopped before activating

the coffee machine. In a situation where no device can be stopped, the machine cannot start

immediately and the user should consider increasing the limit.

Simulating a PV system in a scheduling system requires, at least, a day-ahead prediction of the

energy that is captured and transformed into current over time. This data is simulated using System

Advisor Model (SAM) [32], a free software developed by the U.S. Department of Energy to model solar

panel installations, in tandem with typical meteorological year data from the European Commission’s

Photovoltaic Geographical Information System (PVGIS) [33]. SAM generates averaged hourly energy

production estimates for each month of the year, imported to the scheduler database using a simple

script.

Battery Storage Systems are also supported and fully controlled by the scheduler. Discharges are

activated whenever consumption surpasses 70% of the threshold value, to soften the demand peak

or, eventually, to allow the user to activate more appliances within the time frame of heavy demand.

Charging is scheduled every night, broken in separate low-priority executions of one hour each. If the

household has both a BSS and a PV system, the BSS will preferentially charge during underutilized

solar hours. The system will attempt to prevent waste of solar energy, as long as the battery is not fully

charged. If solar production is insufficient or nonexistent, the battery will charge whenever consumption

is below 30%.
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3.6 Scheduling process

When a new scheduling request arrives, the scheduler will preliminarily select three possible start

times, according to the operations needed to find enough energy available. There are three possible

scheduling procedures:

1. Simple scheduling: there is enough available power to schedule at the suggested time (including

PV generation).

2. Battery-enabled scheduling: the BSS can provide complementary energy to enable the execution.

3. Priority scheduling: shiftable loads with lower priority can be interrupted to provide enough power

for execution.

The start time obtained in each of these scenarios, as well as the procedure used to satisfy the

request, are chosen based on the operation mode of the system and priority class of the appliance.

In households without a BSS, the scheduling decisions are simplified to deciding between procedure 1

and 3. Conversely, if the household has a storage system, the start time obtained from procedure 3 will

include available energy discharges, acting as a composite of procedures 2 and 3.

?
request�

�
�
�Calculate start time for procedure n, n ∈ {1, 2, 3}

?�
�

�
�f(start time1, start time2, start time3)

?

start time1

?
start time2

?
start time3�

�
�
�Activate BSS discharge at start timen

?

start time2

?
start time3�

�
�
�Shift appliances

?
start time3

Start execution at start timen

Figure 3.2: Algorithm for scheduling appliances.

For urgent and normal executions, the strategy is focused on peak shifting. The goal is to schedule

as soon as possible while respecting the threshold. As such, the three scenarios are evaluated to

find the simplest procedure that provides the soonest execution time. The suggested time for each

scheduling procedure is the soonest where the conditions apply. In low consumption periods, all three
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will propose the current time: the execution starts immediately, without requiring a battery discharge or

shifting appliances. During high consumption, the procedures may find different start times or even fail

to find a viable execution period. If requesting a battery discharge anticipates the execution time over the

simple scheduling option, or procedure 2 provides a viable execution time where as procedure 1 did not

return a start time, the battery will be activated and provide complementary power. If shifting appliances

provides an additional advantage in reducing the execution delay over procedure 2, or procedure 2 also

failed to find an execution time, the battery will provide as much power as possible and the remaining

power needed will be met by shifting appliances.

For low-priority executions, the scheduler aims to schedule to the period of lowest consumption, using

local or aggregate values - local if operating in single-house mode, aggregate if in multi-house mode.

These strategies are called, respectively, local load distribution and aggregated load distribution.

With both strategies, each procedure returns the start time for the period with the most energy available,

if any is found. However, where as in local load distribution this period is found by merely sorting the

available periods by available power, in aggregate load distribution all locally available periods are sent

to the Aggregator, which returns the start time with less aggregated load. For these requests, delay time

is not the decisive factor: instead, the scheduler will choose the first procedure that returns an available

execution time. As such, procedures 2 and 3 are only used if there is not enough power available along

the entire period of acceptable delay.

Considering the interactive nature of the scheduler, the algorithm adopts a best-effort approach. It will

always attempt to find a start time earlier than the maximum delay, regardless of schedule. Under heavy

consumption, the dynamic priorities explained in section 3.4 promote the shifting of executions with less

time-sensitivity to integrate more urgent appliances in the schedule. While the remaining acceptable

delay is not the only parameter in the formula, executions with a lower priority value are still more likely

to be reschedulable at a later period. Thus, the developed algorithm can be grouped within the dynamic

priority scheduling class.

PV energy generation is always treated as complementary energy to the grid, effectively raising the

threshold during solar hours. Figure 3.2 represents the scheduling process. For normal and urgent

requests, function f returns the minimum value, akin to a min() function. For low-priority requests, f

returns the first existing value.

3.6.1 Battery Storage System handling

Battery charges and discharges are treated as executions, although with special rules. BSS execu-

tions are created by the system when necessary, scheduled using a different logic. Discharges cannot

be interrupted and, as they do not require energy from the grid, are never delayed. Charges, on the

other hand, are low priority executions, meant for low demand or solar production periods. Charges

can only be interrupted if there are no scheduled discharges depending on the energy that would be

charged. Interrupted charges are not rescheduled. Instead, new charges are scheduled when the bat-

tery is depleted, or periodically every day.
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After a regular appliance is scheduled, the system checks if a consumption peak was formed. If

consumption is above 70% of the user-defined threshold and the BSS has enough power, a battery

discharge with the power difference between consumption and half of the threshold is scheduled for the

corresponding period. Discharges can be stacked, still enabling scheduling procedure 2, as long as

the battery can deliver enough continuous power. However, the system cannot charge and discharge

simultaneously, nor discharge below a maximum depth-of-discharge (depending on the model).

When a discharge finishes, the system checks if the battery is close to its maximum depth-of-

discharge. If it is, a battery charge is scheduled up to full power. Additionally, every midnight, the

system checks the battery status and schedules a recharge if it is not at full power. Battery charges

are broken in executions with duration up to an hour, to improve flexibility and match the hourly solar

production data. Scheduling a battery charge also follows one of two procedures:

1. Solar charge: charge during underutilized solar hours to prevent production waste.

2. Low-demand charge: charge during low consumption periods.

If the household has a PV system, the Coordinator will attempt to schedule based on the first proce-

dure. If there is not enough solar production to fully charge the battery, the system will test if the battery

could be fully charged using a combination of solar production and grid energy, still during solar hours.

This procedure will only fail if solar production if already fully utilized, or there are not enough solar hours

to satisfy the request. The second procedure will attempt to recharge the battery whenever consump-

tion is below 30% of the user-defined threshold, creating executions with the power difference between

30% of the threshold and scheduled consumption. The decision of charging without solar production is

justified by the usefulness of the BSS as a load balancing and peak shaving mechanism.

3.7 Execution life cycle

An execution is created with information regarding the appliance and energy profile it serves, as

well as a timestamp of the request time. By default, an execution is created as part of the scheduling

request handling process, immediately followed by the attribution of a start and finish time. In the default

scenario, the request time is the moment the execution is created. However, executions can be created

with request times in the future, if the user does not want to schedule immediately but rather at a later

time. The execution is in the Pending state until it starts.

Executions have four states: Pending, Started, Interrupted and Finished. Once the execution

starts, the scheduler updates the data object and, in a real household, would prompt the appliance to

start running. Energy profiles have a maximum execution time, which limits the duration of the execution

after it is started. The execution may end in one of three circumstances: the maximum execution time

is reached, the user manually terminates the execution, or the execution is stopped by the scheduler to

enable higher priority executions. The first two scenarios change the execution state to Finished, while

the latter signals the execution as Interrupted. Both state changes stop the appliance.
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If the execution is terminated manually, there may be opportunities to anticipate Pending executions:

the scheduler will automatically attempt to reschedule Pending executions if a nearer start time is found,

starting with the highest priority ones and down to the lowest. If the execution is Interrupted, the sched-

uler will create a new execution with the same parameters to follow it, and retake the Started state at a

later time.

3.8 Conclusion

After clarifying the scope of appliances to be managed by the system, scheduling rules and handling

of alternative energy systems, all the concepts necessary to understand the operation of the software are

presented. The next section - Implementation - focuses on a particular implementation of the system ac-

cording to the aforementioned features, while also including demonstrative user and testing interfaces.
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Chapter 4

Implementation

At its core, a scheduling solution is responsible for starting and stopping executions at the right

time. There must be a server to receive the scheduling requests and schedule accordingly, with an

asynchronous module to perform the necessary actions at the time of start and finish. The Aggregator,

being another system entity, must be a separate module, able to be deployed outside the household

and communicate through a common network with Coordinators. This chapter contains a more detailed

inspection of the inner workings of system components, data structures and technologies used.

4.1 Data models

It is essential for a scheduler to parameterize appliances, energy profiles, executions and production

data from alternative energy sources. The proposed solution attempts to be compatible with all common

appliances and include discretizable user preference attributes, to enable the priority algorithm. The

implementation of the scheduling logic discussed in section 3.6 is heavily dependent on the data rep-

resentation of executions and the timetable. The database model with application-relevant data types

is represented in figure A.1. This section will elaborate on the aforementioned types and discuss some

implementation decisions.

Home

The Home structure represents an individual household. Users must define the consumption thresh-

old, in watts (W), before starting the system, through the variable consumption_threshold. It is recom-

mended to start with a value based on the contracted power. Energy providers disclose the contracted

power in kilovolt-amperes (kVA), a unit used to measure apparent power, instead of watts or kilowatts

(kW), used for active power. Knowing the exact consumption limit from a given electrical installation

requires calculating its power factor, so it is often more practical to set an estimated value and tweak the

value experimentally. Most household equipment is already power factor corrected, resulting in around

80% to 90% of apparent power being usable as active power.
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Another crucial variable is accept_recommendations, a boolean that represents the operation mode

of the system. If accept_recommendations is True, the system communicates total consumption values

to the Aggregator and requests decisions on the running time of low-priority executions. outside_id is

the unique identifier of the Coordinator when communicating with the Aggregator.

A home is limited to one PV system and one BSS, both defined through a one-to-one relationship.

The scheduler is compatible with houses with or without these systems.

Appliance

Appliance represents a single machine or charger in the household. Its main purpose is to store a

name and maximum acceptable delay for energy loads belonging to this machine. The variable name

should unequivocally reference the machine, separating it from appliances of the same model in the

same or other rooms. maximum_delay defines how much time the user is willing to wait for the appliance

to activate after the request. An appliance may have multiple profiles.

Profile

A profile is the description of an energy load. It includes a name, schedulability and priority prefer-

ences, maximum duration of usage and rated power. schedulability stores whether the energy load

is interruptible or non-interruptible. priority accepts one of three values: low-priority, normal and im-

mediate. maximum_duration_of_usage is a duration field indicating the longest possible execution time.

It accepts null values, indicating that the appliance will run indefinitely (e.g., fridge). rated_power is the

maximum expected consumption, in watts, during a complete execution. If power is being injected to the

household, namely during a BSS discharge, the value of rated_power is negative. Finally, hidden is a

flag used to show or hide the profile from the Django-admin interface.

While it is intuitive that an Appliance may have multiple profiles, a Profile object may also corre-

spond to multiple appliances, in a many-to-many relationship. More than one appliance can have the

same energy profile and importance to the user. Schedulability and priority preferences are detailed in

sections 3.3 and 3.4, respectively. Maximum duration of usage is used to limit the duration of executions

as specified in section 3.7, so that the scheduler can ensure enough energy is available across the

specified time.

Execution

Execution is a data structure that represents each past, present or future running instance of an

appliance. It tracks all changes along the execution life cycle in a persistent manner. An Execution

object is created once the user inputs the request to run an appliance, registering the request_time,

home, appliance and profile. The scheduler decides when the device should execute, writing to the

start_time and end_time fields. The latter is calculated using the previously mentioned start_time

and maximum_duration_of_usage from Profile. The boolean variables is_started, is_interrupted

and is_finished are updated asynchronously by the scheduler, reflecting the status of the execution. If
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the execution was created after a previously interrupted execution, fields previous_progress_time and

previous_waiting_time are used to represent the time already spent awaiting execution or running.

BSS charges and discharges, being treated as special executions, follow the same data structure.

Profiles are generated by the system to enable charging and discharging with variable wattage, accord-

ing to the energy needed or available.

BatteryStorageSystem

As the name indicates, BatteryStorageSystem is a specialized data type that represents the BSS. It

stores model-specific information about the system, such as continuous_power, depth_of_discharge

and maximum_power_available. The former two variables refer to the maximum power that the battery

can discharge continuously and the maximum depth-of-discharge supported, respectively. A configu-

ration parameter last_full_charge_time is used to calibrate the charge/discharge cycles within the

scheduler, and can be adjusted in the web interface in case of desynchronization. When the BSS is reg-

istered in the system, an Appliance object associated to it is created and registered in the appliance

field.

PhotovoltaicSystem

PhotovoltaicSystem stores information pertaining to the PV installation of the household. The fields

latitude and longitude describe the geographic location of the solar panels, used to gather solar radi-

ation data from PVGIS. tilt describes the vertical inclination of the installation, and azimuth indicates

the horizontal orientation of the panels in relation to the equator. capacity is the system nameplate

capacity provided by the manufacturer, measured in WDC. tilt, azimuth and capacity are parameters

required by SAM to generate hourly energy production estimates.

ProductionData

Hourly energy production estimates from SAM are exported as .csv files, one for each month, con-

taining average production values for each hour of the day. ProductionData is the data type that stores

this data in the database, making it usable without external files. The structure stores the month, hour

and corresponding generated power in the month, hour and average_power_generated fields. To end,

system is a foreign key that identifies the PV system the data pertains to.

ConsumptionData

ConsumptionData is the only data structure belonging to the Aggregator. It merely registers the

power consumption of a connected household at a certain period. The period is defined using the fields

start_time and end_time, consumption is stored in power as a value in watts, and home_id corresponds

to the outside_id from Home.
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4.2 Program structure

The program is organized in three main components: the Coordinator and Aggregator Django ap-

plications mentioned in section 3.2, and a Processor module containing the scheduling logic. From the

project root folder, the three are accessible under the /coordinator/, /aggregator/ and /processor/

folders, respectively. From a layered architecture perspective, Django applications have multiple mod-

ules that represent the persistence, functionality and presentation layers, while the Processor represents

the core application layer. Figure 4.1 represents the interactions between system modules.

Figure 4.1: Layered software architecture diagram.

In a Django project, database models and web interface views and controllers are declared within its

respective applications. All data structures mentioned in the section above, except ConsumptionData,

are structured using Django models in the models.py file of the Coordinator folder, while the single data

model used by the Aggregator is listed in /aggregator/models.py. When installing the application,

Django migrates the instructions in models.py to the database. Files with object data can be preloaded

to the system as .json files, placed under /coordinator/fixtures/: the folder contains sample data

for the user to adapt to the context of the household, although appliances and profiles can be modified
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later in the web interface.

The web interface of the system, later expanded in subsection 4.4.1, also pertains to the Coordinator

application. Django-admin provides a default interface offering CRUD operations. The interface was

modified to reflect the context of the application and clickable actions (e.g., scheduling an execution

or switching to multi-house mode) were added under admin.py. Filters for executions, appliances and

profiles are included in filters.py. Furthermore, an extensive testing suite is present in tests.py. This

testing suite tests all the core functionality of the system present in the Processor component, including

communication with the Aggregator.

The Processor includes all the core application logic regarding scheduling, management of exe-

cutions and alternative energy sources, and client-server code for the interactions between Coordi-

nator and Aggregator. The scheduler itself is a function-based stateless module defined in core.py.

Being stateless, its functions can be called by any interface and the database is updated directly.

For code separation, scheduling functions related to solar and battery energy sources are placed in

external_energy.py. Further iterations of the system that implement communication with devices

could include a new module designed for connecting with a Smart Home hub. It would be a part of

the Coordinator logic, interacting with the core module at the start or end of scheduling operations.

Communication with the Aggregator follows a client-server architecture. The Aggregator is expected

to be operating in a different computer outside of the local network. As such, it needs a server constantly

listening and handling requests. The server code is present in /processor/aggregator/server.py

and can be activated in the Aggregator machine by running the shell command run_aggregator.py,

which will listen to connections and requests in an endless loop. A message queue ensures that

concurrent requests are handled sequentially and not lost. The client module is present in the same

/processor/aggregator/ folder. It should not be instantiated directly, instead being used by the core

module when the system is operating in multi-house mode.

Outside of the three components, the folder /solardata/ is the destination of solar production data

generated by SAM or produced manually, to be read by the system upon configuration. A script located

in /scripts/, load_solar_data.py, imports the .csv files. Each file should contain two columns, one

for the hour of the day and another for the production value, in kW. Lastly, a PowerShell script found in

/scripts/clean_setup.ps1 automates the entire installation process.

4.2.1 Core application details

Elaborating on the contents of the Processor modules, this subsection explores the scheduling logic

implementation of core.py and external_energy.py in detail. A scheduling request is originated by

creating an Execution and passing it to the schedule_execution function from the core module. As

explained in section 3.6, the algorithm calculates the more favorable start times for the characteristics

of the appliance and profile. This happens in propose_schedule_execution, first by finding all available

periods and then by choosing one to represent the procedure. The choice between available times is

performed in choose_execution_time, according to priority and operation mode.
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The scheduler does not implement an explicit timetable with fixed timeslots. Doing so would require

maintaining a state of the application, or creating infinite timeslot objects in the database with a rolling

window. The former option would affect the modularity of the Processor, while the latter would increase

the complexity of the system. More importantly, a timetable would require high granularity to prevent

the user from noticing additional execution delays. Instead, the scheduling core takes advantage of the

efficiency of the Django ORM to find reference times - moments where executions start and end - and

calculate the power consumption or production at each time. Available times for execution are found

using this logic. By finding the reference times of unfinished executions, calculating the available power

at each time and subtracting consumption, the scheduler can find periods where there is enough power

available to accommodate a new execution from its proposed start time along its maximum execution

time.

def choose execut ion t ime ( execut ion , a v a i l a b l e p e r i o d s ) :

chosen time = None

maximum delay = execut ion . appl iance . maximum delay

home = execut ion . home

i f maximum delay is not None :

a v a i l a b l e p e r i o d s = . . .

i f a v a i l a b l e p e r i o d s :

p r i o r i t y = execut ion . p r o f i l e . p r i o r i t y

i f p r i o r i t y is LOW PRIORITY and home . accept recommendations :

chosen index = i n t ( c l i . send choice request ( . . . ) )

s t a r t t i m e = l i s t ( a v a i l a b l e p e r i o d s . keys ( ) ) [ chosen index ] [ 0 ]

e l i f p r i o r i t y is LOW PRIORITY :

so r ted pe r i ods = {k : v for k , v in \

sorted ( a v a i l a b l e p e r i o d s . i tems ( ) , . . . ) }

s t a r t t i m e = next ( i t e r ( so r ted pe r i ods ) ) [ 0 ]

else :

s t a r t t i m e = next ( i t e r ( a v a i l a b l e p e r i o d s ) ) [ 0 ]

i f s t a r t t i m e != INF DATE :

chosen time = s t a r t t i m e

return chosen time

Listing 4.1: Code sample of function choose execution time.

Executions are linked to a single Appliance and Profile objects. The rated power of the execution

is statically defined in the profile. Therefore, consumption is constant across time within the duration of

an execution. This is a limitation of the system implementation: loads of machines that self-regulate their

consumption in different phases during the same execution are represented by an upper bound that may

be loosely adjusted to real consumption. This may lead to inefficiencies in scheduling. Regardless, the

upper bound provided by the rated power serves its purpose of preventing local energy shortages.
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Battery charges, being equally treated as executions, are scheduled in schedule_battery_charge

using the same principles. In this case, the goal of the scheduler is to find enough low demand periods

to fit the charge demand so it can be distributed as evenly as possible. Scheduling the battery on

solar periods uses the schedule_battery_charge_on_solar function. This method will first attempt to

schedule exclusively on solar production.

If production exceeds the capacity of the battery, the scheduler attempts to distribute the charging ex-

ecutions evenly. This policy evens the energy excess as much as possible, providing more opportunities

for the user to schedule appliances at a later time and prevent waste. While not enough energy is found,

the scheduler will gradually raise the threshold of grid energy that is to be subtracted or consumed along

with solar to satisfy the request. This parameter, threshold_multiplier, starts at -0.25 (production

exceeds capacity, charges are capped below solar production), then -0.1, then 0 (only power production

can be used). Moving into positive values, 0.1 is tried (10% of the consumption threshold of the resi-

dence can be used for charge), then 0.25. These values are subject to change, as there is a trade-off

between granularity and request handling runtime. If not enough energy is gathered, the scheduler will

simply schedule BSS charges to all periods found with consumption below 30%, regardless of solar

production.

Life cycle of executions is managed with asynchronous code running in the background. The back-

ground life cycle manager is declared in \processor\background.py. When an execution is scheduled,

but not started immediately, the scheduler creates a job (similar to Unix cron jobs) for starting and fin-

ishing execution at the selected times. The background manager contains a job store that is persisted

in the database. As such, it can enact jobs even if the process is terminated, as long as it restarts.

To maintain the interactive scheduling functionality, the background manager should be started in the

command line and kept running indefinitely, irregardless of the usage of the CLI as an interface for other

functionality.

4.3 Technologies used

The scheduling system was developed using Python as the primary language for implementing the

system logic. All data is stored in a SQLite database, accessed and manipulated through Django’s

Object-Relational Mapping (ORM) as an abstraction layer. Django doubles as a web framework, en-

abling interactions with the system using a browser interface.

Python [34] is a high-level, imperative, object-oriented programming language with great community

support and a large range of applications. The syntax simplicity, ease of integration with front-end

frameworks and databases make Python an ideal candidate for small, upscalable projects. Java and

C++ were also considered as alternative languages, offering similar feature sets with increased program

performance. However, the performance increase is negligible for the requirements of the proposed

solution, and Python has a wide support for lightweight development stacks.

SQLite [35] is a stable, open-source, object-relational database system, considered one of the most

robust and well-performing database options oriented for small data volumes. It is highly compatible
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with the aforementioned technologies and able to represent all the interactions and constraints of the

proposed solution. Persisted data is expected to range between kilobyte and megabyte orders of mag-

nitude, as a consequence of the executions being periodically cleaned - a small volume of data for a

modern database.

Django [36] is an open-source Python web framework based on the Model-View-Controller develop-

ment pattern. It provides a CRUD interface with automatically generated administrative models, which

can be used to easily manipulate program settings. Most security issues are handled out-of-the-box,

such as SQL injections and clickjacking.

Finally, ZeroMQ [37] and APScheduler [38] are relevant Python libraries that greatly enabled the im-

plementation. APScheduler enables code to be executed at specified times. It was chosen for its ability

to persist scheduling jobs in the database of the system, offering high integration with Django and SQLite

and the ability to recover system state. ZeroMQ is a networking module that facilitates both inter-process

and TCP communications. It is used as a messaging library for communication between Coordinator

and Aggregator. Due to the protocol implementing a level of abstraction over the transport layer, testing

can be performed in a single machine with an Aggregator and multiple Coordinator processes running,

executing the same exchange of messages that would happen between different machines.

4.4 Interfaces

4.4.1 Django-admin

The Django-admin interface provides limited, authenticated access to data stored in the Coordinator.

It is accessible through the browser and can be made available to other machines in public or private

networks, potentially offering remote access to the system.

The interface provides basic functionality through CRUD operations. Notably, appliances and profiles

can be created or modified and the consumption threshold can be adjusted. Besides CRUD operations,

critical scheduling operations are also made available. Users are able to create executions and prompt

the Coordinator to schedule them, or manually finish an execution before the maximum execution time is

reached. Communication with the Aggregator can also be activated and deactivated, to switch between

operation modes. Screenshots of the functionalities mentioned above can be found in appendix C.

Information regarding the PV system installation is visible, but not changeable. In fact, most informa-

tion within the Home, BatteryStorageSystem and PhotovoltaicSystem database objects is not modifi-

able, as it corresponds to fundamental configuration to be set up during installation. The web server can

be made accessible to external machines, potentially offering remote access to the Coordinator.

4.4.2 Command line (CLI)

The command line is the main interface for launching the web server, configuring the system and

preloading data. A clean installation uses Django command line instructions for creating the database,

loading sample data from fixtures and creating the user credentials for web access. Whether it is a new
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installation or the PV system suffers changes (a new model, different azimuth or inclination, etc.), new

solar production data must be generated, exported from SAM and imported to the system database. A

script load_solar_data.py is made available for this purpose.

Besides system configurations, the command line also provides full control over data in the system,

including the creation and scheduling of new executions, through the Python shell. Updates on the

life cycle of existing executions are printed to the console, and so are the scheduling decisions taken.

Request times can be manipulated in order to test the system with custom schedules.

4.5 Conclusion

The suggested implementation meets the system specifications discussed in chapter 3. Data struc-

tures include the necessary fields for representation of the household, external energy systems, appli-

ances, energy loads and respective executions. The service logic is separated from the persistence

and presentation layers, creating a reliable software architecture that follows modern engineering prac-

tices. Besides the core functionality, two interfaces were created to enable user interactions with the

Coordinator, along with scripts for configuring the system and importing solar data.
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Chapter 5

Results

Chapter 5 evaluates the performance of the system described in the previous chapters, using met-

rics to quantify the impact on user routines, peak reduction and potential savings against unmanaged

households and residential complexes. To conclude, the overall benefits and drawbacks of the system

are discussed.

5.1 Methodology

Measuring the performance of the proposed solution requires selecting representative consumption

data for different household profiles. However, research data on household consumption with daily gran-

ularity and segmentation by appliance is incredibly scarce. As such, it is necessary to create demand

scenarios based on aggregate consumption data and patterns identified in section 2.1.

Karananos et al. [10] collected data from Greek residential houses and compared the consumption

between users. The most significant differences in consumption came from the number of rooms in the

household and the existence of electrical HVAC systems. Based on the demand curves from individual

users presented in this study, three types of consumption profiles were created to represent households

with different energy dependencies, habits and sets of appliances:

• Household 1 represents a small residence with low overall dependency on electricity. Gas is used

for water and space heating in addition to the cooker, leaving the dishwasher, oven, microwave,

toaster and coffee machine as the only high consumption electrical kitchen appliances. A single

resident produces consumption. Additionally, the household has a vacuum cleaner, a small wash-

ing machine, a fridge and a hair dryer. The user is absent from the home during the morning and

afternoon.

• Household 2 is home to two residents. In addition to the household appliances present in house-

hold 1, the second residence includes an air conditioner, a water heater and an induction cooker.

Users have separate morning routines and meal preparations using different appliances.

• Household 3 is a larger house, with a diverse set of electrical appliances, belonging to a family of

37



four elements. At least one family member is always in the house. There is a gaming computer,

a cake mixer, three televisions and a soundbar system. Moreover, the family has a PHEV that

charges in the garage with energy from the household installation.

The developed system is also used as the testing environment, as the implementation allows accepts

the insertion of custom request times through internal testing functions. These scenarios are to be

simulated using fabricated daily routines to generate the demand curve over a day. To represent an

unmanaged system that will constitute the baseline for comparison, the consumption threshold is set to

infinite and all appliances have the same priority class and value. Then, the same demand simulation is

repeated using standard contracted power values (3.45, 4.6, 5.75, 6.9 or 10.35 kVA) as the consumption

threshold and the default appliance categorization. As the power factor of modern installations is around

90%, the contracted power values are translated to an active power threshold mirroring that difference.

To test the system in multi-house mode, the scenarios will be combined to generate aggregate demand.

The chosen Key Performance Indicators for evaluating the system are Peak, Peak-to-Average ratio

(PAR) and Average Delay-to-Acceptable-Wait ratio (ADAWR). Peak is the maximum instantaneous net

consumption reached, in watts. Net consumption corresponds to the power drawn from the grid, ob-

tained by subtracting production from solar panels and BSS discharges from the total consumption. A

lower Peak can promote savings to the consumer by reduction of the contracted power. Peak-to-Average

ratio is a measurement of load balance, indicating how far the peak was from the average net power con-

sumption. It is obtained by dividing the Peak by the average value. A value of 1 indicates perfect load

distribution, although values between 2 and 5 are considered acceptable. Lastly, ADAWR computes the

average delay verified between request and start times of all executions divided by the maximum_delay

parameter set for each appliance. It is a value between 0 and 1. Values closer to zero are desired.

While Peak and PAR are natural choices for measuring benefits to the user and grid (assuming

no preference for certain time periods), ADAWR is a custom measurement chosen to evaluate user

forfeiture of control. It is a simple metric to produce and compare, although weighted averages of delays

could also have been used. A flat average of delay times would reflect the impact on the user poorly,

due to the different priorities for each execution. E.g., a low-priority device is expected to execute with

delays, without adverse effects on the user routine. Considering the maximum delay of an appliance is

the time after which the user expects to have the machine running in the worst case scenario, regardless

of priority, it was chosen instead to provide a more objective parameter for analysis.

5.2 Single-house mode

The household profiles in this chapter are expanded to create the ensuing timetables with execution

request times, to be loaded to the scheduler in order to perform the necessary simulations. The details

of each simulation set are succeeded by the respective KPI table and discussion of results.
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5.2.1 Household 1

Household 1 follows the schedule in table 5.1. The user wakes up at 07:45 AM, takes a shower,

prepares breakfast and leaves to work. Comes back at noon for a quick lunch, then leaves again until

05:30 PM. The evening is spent watching television, cleaning the house and preparing dinner. The

dishwasher and washing machine are activated at night, before going to bed.

Appliance Power (W) Start time (unmanaged) Start time (managed) Duration
Fridge 150 00:00 00:00 24:00

Hair dryer 1875 08:05 08:05 00:05
Coffee machine 800 08:22 08:22 00:10

Toaster 1500 08:24 08:24 00:10
Microwave 800 13:10 13:10 00:06
Television 150 17:30 17:30 04:00

Vacuum cleaner 1500 17:50 17:50 00:30
Oven 2500 18:00 18:20 01:00

Dishwasher 1200 22:20 22:20 03:00
Washing machine 1800 22:23 01:20 01:00

Table 5.1: Sample appliance schedule for household 1. Time format: hh:mm.

Figure B.1 illustrates the consumption curves produced from the schedule, with and without inter-

ference from the system. As expected, peaks are formed in the evening and night, since the morning

routine mostly uses urgent appliances sequentially and in short periods, and the house is vacant during

the morning and afternoon. The water heater is not electric and thus does not integrate the list. To per-

form this routine without a peak prevention system, the user needs an energy contract with a contracted

power value of 4.6 kVA.

In a managed scenario, the scheduler delays two executions. The oven starts at 06:20 PM, after

the vacuum cleaner finishes. The oven is defined in the system as a normal-priority appliance with an

acceptable delay of 40 minutes: as such, the delay proposed by the system comes within the acceptable

range. The second delay is applied to the washing machine. The dishwasher and washing machine are

low-priority executions that can execute autonomously, as long as they are loaded with the necessary

items (in the case of the washing machine, it should be loaded with laundry and detergent). Household

1 would now be able to lower its contracted power to 3.45 kVA.

KPI Value (unmanaged) Value (managed)
Peak 4300 W 2800 W
PAR 7.66 4.99

ADAWR 0.00 0.07

Table 5.2: Key Performance Indicators for household 1.

Analyzing the KPI, Peak and PAR are reduced by approximately 35%. It is a very significant re-

duction. The PAR values are relatively high, in consequence of the data representing a single user:

consumption is residual during most of the day, when the house is vacant or the user is asleep. An

ADAWR of 0.07 is caused by the delay in starting the oven. It is a mild inconvenience to the user, who

turned on the oven to preheat while finishing household chores; however, the oven is one of the less
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time-sensitive appliances in the kitchen, as it can preheat or start baking unattended.

5.2.2 Household 2

In household 2, residents start their routine at 07:00 AM and 07:30 AM. Both take showers in the

morning, separately, using the water heater at two times. While the second is still in the shower, the

first prepares breakfast, creating an overlap. The washing machine is used during the morning so that

clothes can naturally dry outside, during the afternoon. One of the users prepares lunch at 12:15 PM.

Outside temperature peaks during the afternoon; to maintain the household at a pleasant temperature,

the air conditioner is activated. Vacuum cleaning is done during this period. Finally, dinner is prepared

using both the induction burner and the oven, and the dishwasher is activated afterwards. The schedule

can be found in table 5.3.

Appliance Power (W) Start time (unmanaged) Start time (managed) Duration
Fridge 150 00:00 00:00 24:00

Water heater 1500 07:10 07:10 00:20
Coffee machine 800 07:34 07:34 00:10

Microwave 800 07:37 07:37 00:06
Water heater 1500 07:40 07:40 00:20

Hair dryer 975 08:00 08:00 00:10
Television 150 08:15 08:15 02:00

Coffee machine 800 08:22 08:22 00:10
Washing machine 2000 09:00 10:15 01:00
Induction cooker 2000 12:15 12:15 00:20
Air conditioner 2000 14:00 14:00 04:00

Vacuum cleaner 1500 15:50 15:50 00:30
Oven 2500 19:10 19:10 01:00

Induction cooker 1500 19:55 19:55 00:30
Dishwasher 1200 22:00 22:00 03:00

Table 5.3: Sample appliance schedule for household 2. Time format: hh:mm.

The immediate observation from table 5.3 and figure B.2 is that the scheduling system is unable to

improve most of the unmanaged appliance utilization. This is correct: as the oven is a non-interruptible

execution, it cannot be interrupted to accommodate the induction cooker, an immediate execution with

maximum delay of five minutes. Unfortunately, the two executions together form the peak of consumption

in this scenario. It could be reasoned that the user could manually start the induction cooker after the

oven is finished, or schedule it before the oven. However, when preparing meals simultaneously, the

goal is often to finish cooking all components or dishes at the same time and eat together. As such,

household 2 cannot reduce the contracted power below 4.6 kVA (with a threshold of 4150 W), unless it

installs a Battery Storage System.

Notably, without the oven and the induction cooker limiting the possible threshold reduction, there is

always enough available power to activate the vacuum cleaner while the air conditioner is active. With

a threshold below 3650 W, the air conditioner would have been interrupted at the time of start of the

vacuum cleaner, and resume after the latter finishes. The only delay is verified in the washing machine,

which starts after the time limit of the television is reached. If the television were to be turned off earlier,
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the washing machine would be rescheduled to start at that moment.

KPI Value (unmanaged) Value (managed)
Peak 4150 W 4150 W
PAR 4.21 4.21

ADAWR 0.00 0.01

Table 5.4: Key Performance Indicators for household 2.

In terms of KPI (table 5.4), there is no difference in Peak and PAR. However, the PAR has an accept-

able value, indicating a busy schedule with relatively good distribution over the day. ADAWR indicates a

very low impact on the household routine, in part due to the limiting factors mentioned above.

5.2.3 Household 3

The third household has a complex schedule, with baths in the morning and evening, multiple cooking

appliances used for breakfast, lunch and dinner, a PHEV, a PV system and a BSS. The PV system

supplements the household with energy during solar hours. Its module has a nominal efficiency of

20.55% and a module area of 1.6m2, supplementing the household with energy during solar hours. The

Battery has an energy capacity of 18 kWh, while the PHEV requires 28.6 kWh to fully charge.

The laundry is done in the afternoon and dried (using a clothes dryer) at night. Entertainment de-

vices, such as the soundbar and the gaming computer, are used after dinner. The EV is slow-charged

after the owner gets home, at 06:00 PM, and must finish charging before 08:00 AM. It is assumed that

the BSS battery is empty at the start of the simulation and must charge during the day. The full schedule

is available in table 5.5.

In the baseline scenario, BSS is set to charge and discharge using static logic: the battery is charged

between 10:00 AM and 02:00 PM at 4500 W, during peak solar production. Discharges happen between

06:00 PM and 02:00 AM of the next day at 2250 W. This is an effective way to shift solar production from

the morning and afternoon to evening and night periods. The EV starts charging immediately when

its owner arrives at home, around 06:00 PM, coinciding with the BSS discharge and taking full use of

it. The baseline scenario is very optimistic regarding the charge and discharge cycle times, as there

is no battery energy wasted. For comparison, the same routine without the Battery Storage System

charge/discharge cycle was included in table 5.6 below, as well as in annexed figure B.3.

Using the proposed scheduling system, the Battery Storage System is set to recharge during solar

hours, adjusting to the PV energy production. As shown in figure B.3, the household can now operate

comfortably under a contracted power of 5.75 kVA.

The scheduling of the battery charge is done at midnight, before the routine of the users, thus being

unaware of future demand. As the production exceeds the capacity of the battery, the scheduler dis-

tributes BSS charges uniformly below production. At 7:45 AM, the system detects a consumption peak

after the start of the smaller induction cooker burner and interrupts charging until 8:00 AM. The induction

cooker is an urgent device with a maximum delay of just five minutes: however, when activating the sec-

ond burner, there are no interruptible devices running, not enough energy stored, and the consumption
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Appliance Power (W) Start time (unmanaged) Start time (managed) Duration
Fridge 150 00:00 00:00 24:00

Water heater 1500 07:00 07:00 00:40
Toaster 1500 07:36 07:36 00:10

Coffee machine 800 07:39 07:39 00:10
Hair dryer 975 07:43 07:43 00:10

Induction cooker 1500 07:45 07:45 00:08
Induction cooker 2000 07:45 07:49 00:08

Television 150 08:15 08:15 00:30
BSS (Charge) Variable 10:00 07:00 Variable

Vacuum cleaner 1500 10:00 10:00 00:30
Television 150 13:00 13:00 02:00
Microwave 800 13:10 13:10 00:20

Coffee machine 800 13:50 13:50 00:10
Dishwasher 1800 14:10 15:00 01:50

Washing machine 2400 14:20 16:50 01:20
Water heater 1500 17:15 17:15 00:20

Soundbar 600 17:40 17:40 01:30
Electric vehicle 3700 18:00 19:10 08:00

Cake mixer 800 18:07 18:07 00:30
Oven 2500 18:10 18:10 01:00

Induction cooker 2000 18:30 18:30 00:20
Water heater 1500 18:40 18:40 00:20
Microwave 800 18:55 18:55 00:06
Hair dryer 975 19:03 19:03 00:10

Gaming computer 500 21:28 21:28 04:00
Clothes dryer 2000 21:30 03:10 00:30

Table 5.5: Sample appliance schedule for household 3. Time format: hh:mm.

would exceed the consumption threshold of 4887 W set by the user (85% of the apparent power) plus

production. The execution is delayed by four minutes, starting after the toaster and the coffee machine

finish, reducing the peak.

Battery discharges are used to mitigate the peak forming between 06:07 PM and 07:10 PM, mostly

caused by cooking and showers. The oven requires battery-enabled scheduling to activate. The PHEV,

arriving and the garage at 06:00 PM and needing to be fully charged before 08:00 AM, has a maximum

delay of six hours. When the car arrives, it is scheduled as a low priority request to execute after the

soundbar. The clothes dryer is expected to operate overnight and also has a maximum delay of six

hours. This delay is fully utilized to schedule after the car is fully charged.

Battery discharges are activated throughout the evening and night as a load balancing mechanism.

As a drawback of this dynamic model, the battery charge is not fully used: at the end of the time period,

the battery is at 22% charge. However, one of the goals of the battery energy cycle management logic

is to enable executions when there is not enough energy available. The remaining energy is available to

use if additional scheduling is requested.

KPI table 5.6 demonstrates the significant benefits offered by the system regarding peak reduction

and load balancing. Using the scheduler with a BSS offers improvements of 57% in these regards when

compared to an unmanaged household with no storage solution, and a 45% benefit over unmanaged

households with timetabled BSS systems. ADAWR remains at very low values, with the most delayed
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KPI Value (unmanaged, no BSS) Value (unmanaged, static BSS) Value (managed)
Peak 10303 W 8053 W 4435 W
PAR 10.85 8.48 3.97

ADAWR 0.00 0.00 0.07

Table 5.6: Key Performance Indicators for household 3.

appliances being the clothes dryer, a low-priority execution, and the induction cooker. Waiting four

minutes for an urgent execution may be unacceptable for some users. If the maximum delay were set

to one minute, the Peak would increase to 4935 W, as the appliance would still start after the coffee

machine. Thanks to the solar production of 1.05 kWh during that period, the demand would still fit within

the contracted power comfortably.

5.3 Multi-house mode

The operating mode is to be tested concerning the impact on peak consumption and added delays to

individual households, as well as its load balancing effect on the aggregate data. Data will be gathered

using two sets of simulations. First, an heterogeneous set of households and requests will reuse the

scenarios from the section above. The second will focus on the distribution of low-priority executions in

five households with similar routines to household 1.

Similarly to the testing performed in the previous section, an unmanaged scenario is used as a

baseline for comparison with the system results. The simulation is repeated with the three houses in

single-house mode, sending consumption data to the Aggregator but not accepting suggestions, and

lastly in multi-house mode.

5.3.1 Heterogeneous households

To test the multi-house mode in an heterogeneous environment, the three houses represented by

the household profiles created in this chapter were connected to the Aggregator and simulated together.

The requests from each residence remain the same as represented in tables 5.1, 5.3 and 5.5, although

the start times are expected to vary in multi-house mode. However, due to the complexity of the sched-

ules, discussion will be based on the KPI values, obtained for each household and conjoined. The net

consumption curves corresponding to the results for each simulation can be found in figure B.4.

KPI Value (unmanaged) Value (single-house) Value (multi-house)
Peak 11003 W 11651 W 8002 W
PAR 3.60 3.78 3.25

ADAWR 0.00 0.06 0.12

Table 5.7: Key Performance Indicators for the heterogeneous simulations.

Baseline results compound the unrestricted consumption of each house, leading to a high Peak.

Surprisingly, the KPI data for the cluster in table 5.7 shows that the Peak, when operating in single-house

mode, is even larger: each house, operating in its best interests without concerns about grid stability, will
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create a larger consumption peak at 10:20 PM. Using the communication with the Aggregator to improve

the distribution of low-priority appliances, Peak is reduced to 8002 W (formed in the late evening). In

this scenario, multi-house mode offers a 27% peak reduction in the network shared between the three

houses against the baseline, with slightly more disruption to the user than in single-house mode.

Despite not shown in the metrics, the system also accomplishes to prevent energy waste. In the

baseline simulation, energy consumption is negative at 09:00 AM and 02:00 PM for the entire complex.

This corresponds to excess production from household 3 that is not matched by the consumption of all

three residences. Depending on the ability to sell energy to the rest of the grid, this energy excess may

not be monetized or may even be charged by the energy company.

KPI Household 1 Household 2 Household 3
Peak 2800 W 4150 W 4926 W

ADAWR 0.24 0.06 0.07

Table 5.8: Key Performance Indicators for the individual households, operating in multi-house mode.

Table 5.8 shows the influence of the operation mode in the user-centered metrics. ADAWR is low

across the three houses, although the value in household 1 is larger than in single-house mode. The

Peak increases for household 3, forcing it to raise the consumption threshold to accommodate the exe-

cution of the oven at 06:00 PM. The issue arises from a decision made by the Aggregator hours before,

to schedule the washing machine for that same period. The washing machine, despite being an inter-

ruptible appliance, could not be delayed further due to the maximum delay of four hours set by the user.

As the components are unaware of future demand, when the oven request arrived, the two machines

had to execute simultaneously. The peak increase is still below the recommended threshold for house-

holds with a contracted power of 5.75 kVA. Thus, in this situation, the benefits provided to the user were

not affected.

5.3.2 Night distribution

The second multi-house scenario is exclusively dedicated to distributing low-priority appliances at

night. Household 1 represents a fraction of users that prefer to have large machines operating overnight.

As such, this simulation set uses five houses with the same schedule as household 1. The scheduling

request times for the dishwasher and washing machine are spread using pseudo-random values, taken

from a normal distribution with 0 mean and a standard deviation of 60, added to the original time of

request present in table 5.1.

KPI Value (unmanaged) Value (single-house) Value (multi-house)
Peak 15000 W 9000 W 3000 W
PAR 10.00 6.00 2.00

ADAWR 0.00 0.12 0.47

Table 5.9: Key Performance Indicators for the pattern-repeated simulations between 09:00 PM and 12:00
AM.

The benefits are overwhelmingly clear in this situation. Table 5.9 reveals that, in an unmanaged
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scenario, all machine requests would overlap and create a Peak of 15000 W. In single-house mode, the

dishwasher and washing machine are ensured to run at separate times within each household, but the

aggregate PAR is still excessive due to the lack of cooperation. Only in multi-house mode the loads are

distributed with consideration for the state of the network, reducing the peak to 3000 W and achieving

an acceptable PAR. On average, appliances started execution within less than half of their maximum

delay. Considering the executions under scrutiny have low priority, the increased delay time is still within

acceptable values, despite being the highest registered.

The concept is very effective in distributing energy loads with large maximum delays in low-demand

periods. In fact, this was the original idea behind multi-house mode. Loads that would otherwise start

when residents go to sleep are now distributed across the full night. Annexed figure B.5 exhibits the

consumption curves for the three simulations.

5.4 Conclusion

The results show the high effectiveness of the presented solution in most consumption scenarios. In

single-house mode, the system is able to reduce consumption peaks by up to 35% purely by scheduling

consumer appliances more efficiently. When used along with a PV system and a BSS, the scheduler is

able to shift the energy produced in excess to later periods of the day, and use the battery discharges

both as a peak shaving and a load balancing mechanism. Residents in households 1 and 3 were able

to reduce their contracted power, receiving an economic incentive.

In multi-house mode, the cooperative distribution of low-priority appliances reduced the aggregate

Peak by 27% in an heterogeneous environment, at the expense of limiting the ability to shift appliances

locally for higher priority requests. When used in households with more affinity to operating low-priority

appliances at night, the benefits can be much greater. Nonetheless, the results show there is margin for

algorithm improvements regarding the handling of low-priority executions in high demand periods.

Evidently, the energy distribution company stands to gain by having the same demand distributed

more evenly, requiring less resources to accommodate consumption peaks, and the benefits to individual

consumers are similar to single-house mode. In residential complexes with shared energy contracts,

property managers also benefit directly from a lower contracted power. The benefit to property managers

is more indirect outside of shared contracts. Nonetheless, either through new incentives promoted by

distribution companies or by running its own Coordinator to lower expenses in common property, there

is also potential for profits to this stakeholder.
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Chapter 6

Conclusions

As the world population grows and most energy generation is still dependent of finite resources,

optimizing energy consumption is paramount to a sustainable future, where dependency on peaking

plants can be reduced and shortages can be prevented. The system developed is an effective tool to

promote sustainability. Chapter 6 reiterates the scope and capabilities of the system, along with the

areas where it could be improved in future iterations.

6.1 Achievements

In this document, an interactive scheduler focused on peak control is proposed. It is a server appli-

cation able to start, delay, interrupt and resume appliances based on present demand, cooperate with

other instances, include power generation from alternative sources and utilize battery energy storage

systems as peak shaving and load balancing mechanisms.

Many scheduling solutions discussed share a common goal in maintaining demand equilibrium and

lowering energy costs for consumers; however, most are unpractical due to the necessity of scheduling

in advance. The proposed solution distinguishes itself by taking scheduling requests as they happen

in the consumer routine. Acceptable delays are defined by the user for each appliance, furthering

the adaptability of the system to the reality of consumers. Another differentiating factor is the multi-

house mode, which promotes cooperation between households sharing grid infrastructure. This can be

used to reduce shared expenses, prevent energy shortages and reduce demand imbalance during low-

activity periods, rewarding multiple stakeholders. The results, although not comprehensive, corroborate

the benefits to all parties, achieving reductions in contracted power for two out of the three individual

scenarios and better energy distribution in shared buildings.

6.2 Future Work

The proposed solution, in its current state, is a software system that lacks integration with physical

hardware of devices. The first step towards real-world application would be to integrate the system
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with a smart home hub. The hub would act as a gateway, able to send and receive communications

with the Coordinator through WiFi, and translate ZigBee (or other protocol) instructions to and from the

machines.

The system could be further iterated with improvements on the algorithm and energy estimation.

Regarding the former, the system showed limitations in fully utilizing the BSS charge/discharge cycle

due to the need to have energy available for future execution requests, even if they do not come to

exist. As such, the system could be improved by learning when the residents are absent or asleep, in

order to consume the remaining energy on the executions to be completed. Another limitation is in the

scheduling of interruptible low-priority appliances using aggregate consumption data: appliances may be

scheduled in periods close to the maximum delay from the beginning, leaving no room for interruptions

and removing flexibility to local, higher-priority schedules. A time limit for the first schedule relative

to the maximum delay could be implemented. Potentially, users could also parameterize the times at

which they want to let the Aggregator make decisions, or select which appliances are to be scheduled

cooperatively.

All appliance profiles are represented with a fixed power within the server application. This depiction

is accurate for resistance- and motor-based appliances. Appliances with different programs of opera-

tion set by the user are also covered adequately, as the user can select the profile when creating the

execution request. However, the rated power is often an upper bound that represents a small fraction

of the execution time in self-regulating appliances. The system lacks automated support for periodical

switching between profiles, which could be used to represent different phases of the operating cycle in

machines such as the dishwasher and air conditioner. Alternatively, dynamic consumption curves for

each model and operation mode could be implemented to improve the characterization of the energy

loads, at the expense of scalability.

In a more advanced solution, energy resources could be shared within the microgrid of the shared

residential space. Excess PV and BSS energy could be distributed and requested by other house-

holds creating a local energy market, or the resources could be pooled together to optimize aggregate

consumption.
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Database structure

53



Fi
gu

re
A

.1
:

D
at

ab
as

e
re

pr
es

en
ta

tio
n

of
da

ta
st

ru
ct

ur
es

.

54



Appendix B

Sample consumption data plots
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Figure B.1: Comparison of consumption curves for household 1.

Figure B.2: Comparison of consumption curves for household 2.
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Figure B.3: Comparison of consumption curves for household 3.

Figure B.4: Comparison of consumption curves for the heterogeneous simulation.
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Figure B.5: Comparison of consumption curves for the pattern-repeated simulation at night.
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Appendix C

Django-admin interface screenshots
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