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We study the effects of quasi-disorder and random disorder in a model of a two dimensional topological
superconductor with an applied external magnetic field. The cases of a p-wave superconductor and a noncen-
trosymmetric superconductor with mixed p- and s-wave pairing and Rashba spin orbit coupling are studied. We
first review the topological properties of the clean system. The disordered system is then studied both in real
space and in a mixed space. When the applied magnetic field is parallel, we study both edge and bulk quasi-
disorder and random disorder and discuss their effects on a real space approach. Also on a real space approach
we show that, for a perpendicular magnetic field, the introduction of quasi-disorder leads to the appearance of
new topological phases, characterized by an integer value of the Chern number. In a mixed space approach we
identify new regimes with the appearance of new Majorana flat bands and also new unidirectional Majorana
edge states, as quasi-disorder is introduced. We show the Majorana flat bands have a quantized Berry phase of
π and identify this as a topological invariant. Two topological transitions are identified and the values of the
critical exponents z and ν are obtained. The fractal nature of the eigenstates is discussed both for Anderson
disorder and Aubry-André disorder.

I. INTRODUCTION

The search and study of topological properties of mat-
ter has proved fruitful in recent years in research in ma-
terials science and condensed matter physics. Supercon-
ductors with intrinsic topological properties, in particu-
lar, have recently attracted interest due to phenomena
associated with surface or edge Majorana modes, which
appear from an interplay between topology and bulk-
boundary correspondence [1–3].
In this work we will study a model of a two-dimensional

topological superconductor with spin triplet p-wave pair-
ing, or mixed p- and s-wave pairings with Rashba spin-
orbit coupling, in the presence of a magnetic field which
breaks time reversal symmetry. In the presence of s-wave
pairing and Rashba spin orbit coupling, the model de-
scribes a noncentrosymmetric superconductor. The clean
model has been studied and is known to possess diverse
topological properties, which depend on the direction of
the applied magnetic field with respect to the plane of
the superconductor [4, 5]. We are interested in studying
the effects of quasi-disorder in these regimes, on topo-
logical and localization properties. Besides Aubry-André
disorder [6], we will also consider Anderson disorder as a
comparison to the effects of quasi-periodicity.

II. MODEL HAMILTONIAN

In momentum space, the BdG Hamiltonian matrix is
written as

H(k) =

(
ξ(k) +B · σ ∆(k)

∆†(k) −ξT (−k)−B · σ∗

)
(1)

in a basis (c†k, c−k) = (c†k↑, c
†
k↓, c−k↑, c−k↓) with c†ks

(cks) the creation (annihilation) operator for an elec-
tron with momentum k = (kx, ky) and spin s. In
the BdG Hamiltonian, ξ(k) = ϵkσ0 + s · σ, where
ϵk = [−2t (cos kx + cos ky)− µ]σ0 is the kinetic term,
with t the nearest-neighbour hopping integral and µ the

chemical potential, s · σ = −α(− sin ky, sin kx, 0) · σ =
−α [− sin kyσx + sin kxσy] is the spin-orbit term with s
the spin-orbit vector. The term B · σ describes the Zee-
man coupling of the electrons with an external magnetic
field B and ∆̂(k) = [∆s + d(k) · σ] (iσy) is the supercon-
ducting gap function. The pairing vector is chosen as
d = d(− sin ky, sin kx, 0). The simultaneous existence of
s and p wave terms is possible with a nonzero spin-orbit
term, which breaks the parity symmetry.

The case of study is that of a system with periodic
boundary conditions along the x direction and open
boundary conditions in the y direction, such as in a cylin-
der geometry. Thus we can also write the Hamiltonian in
a mixed space (kx, y). In this case, for each value of kx the
Hamiltonian matrix has a dimension (4×Ny)× (4×Ny),
where Ny is the number of sites in y. It is also of interest
to write the Hamiltonian in real space. In this case the
Hamiltonian matrix has a dimension (4 × N) × (4 × N)
with N = Nx×Ny the total number of sites, and Nx, Ny

the number of sites in the x and y directions, respectively.

When B = 0, the system respects time-reversal sym-
metry and particle-hole symmetry and belongs to the DII
symmetry class. If |d| > |∆s| the system has a nontrivial
Z2 number, displaying gapless counterpropagating Majo-
rana edge states (MESs). [4, 5]. For B ̸= 0 the time-
reversal symmetry is broken. The system exhibits differ-
ent topological properties whether the applied magnetic
field is perpendicular or parallel to the plane of the sys-
tem, as will be now discussed.

III. CLEAN SYSTEM

A. Perpendicular magnetic field

Let us first consider the case in which the external
magnetic field is perpendicular to the plane of the sys-
tem, B = (0, 0, Bz). We have a gap closing if one of the
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equations is satisfied:

(−4t− µ)2 +∆2
s =B2

z , (4t− µ)2 +∆2
s = B2

z ,

µ2 +∆2
s = B2

z

(2)

Equations 2 define the boundaries between regions in
which the system has different topological properties,
characterized by the Chern number. The phase diagram
of the system indexed by the Chern number is presented
in figure 1 a) for ∆s = 0.
The regimes with a Chern number of zero and Bz < 2,

|µ| < 4t exhibit edge states, besides having C = 0. This
can be explained by one additional topological invariant.
It can be defined noting that the Hamiltonian obeys a
particle hole symmetry P = (σx ⊗ σ0) with

PH(k)P† = −H∗(−k). (3)

For the values ky = 0 and ky = π, the Hamiltonian
obeys H∗(−k) = H(k) and thus anticommutes with P,
{H(k),P} = 0. Therefore the basis which diagonalizes
P anti-diagonalizes the Hamiltonian. A winding number
I(ky) can then be defined as [7]

I (ky) =
1

4πi

∫ π

−π

dkx tr
[
q−1(kx)∂kx

q(kx)−

q†−1(kx)∂kx
q†(kx)

]
, ky = 0, π,

(4)

where q(kx) is the anti-diagonal block of the Hamiltonian
written in the new basis. The values of I(0) and I(π)
inside each phase are represented in figure 1 b).
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Figure 1. Phase diagram for a) the Chern number and b) the
winding numbers I(ky = 0, π) as a function of µ and Bz, with
t = 1 and ∆s = 0 and for d > 0.

The invariant I(ky) loses its meaning if any magnetic
field By is applied. However, we found that this is not
true for the Chern number. Figure 2 shows the phase
diagram for the Chern number as a function of Bz and
By at three different values of µ. In this case the Chern

number depends only on the value of
√
B2

y +B2
z . Also

note that the diagram only concerns values of Bz > 0,
excluding the points where Bz = 0 and By ̸= 0.
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Figure 2. Phase diagram for (Bz > 0, By) for the Chern
number obtained numerically at a) µ = 0, b) µ = 1 and c)
µ = −3.5 for ∆s = 0.

B. Parallel magnetic field

Now let us consider the case in which the external
magnetic field applied is parallel to the system, B =
(Bx, By, 0). Taking the s-wave term ∆s and the spin-
orbit term α to be zero, the eigenvalues of the Hamilto-
nian are given by

E(k) = ±
√
z1 ± 2

√
z2. (5)

with

z1 = d · d+ ϵ2k +B ·B, z2 = ϵ2k(B ·B) + (B · d)2.
(6)

The gap closing points are solutions of the equation
z1 = 2z2, which is equivalent to the two equations being
simultaneously satisfied:

d · d+ ϵ2k = B ·B, (B ·B)(d · d) = (B · d)2. (7)

Equations 7 simplify if we consider the magnetic field
aligned with one of the axes. Let us take the magnetic
field aligned with the y−direction, B = (0, By, 0). In
this case, the second equation simplifies to sin ky = 0
which implies the bulk gap will close at ky,0 = nπ, n ∈ Z,
provided there are values of kx that satisfy the equations

d2 sin2 kx + (−2t(cos kx ± 1)− µ)2 = B2
y . (8)

When the p-wave superconductor is in a gapless phase,
and for a certain range of magnetic field, Majorana flat
bands (MFBs) will appear in the system. This will be
discussed next. Also, when finite spin-orbit α or s-wave
pairing ∆s terms are introduced, the flat bands will ac-
quire a slope and give origin to unidirectional Majorana
edge states (MESs).
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1. Flat bands: winding number and Berry phase
quantization

Let us consider a generic parallel magnetic field of the
form B = (Bx, By, 0). In this case the system no longer
respects time-reversal symmetry. We can, however, take
kx as a fixed parameter of the Hamiltonian and find a set
of symmetries that are only satisfied in the y-direction.
It is found that the Hamiltonian respects the symmetries

T −1
ky

H(kx, ky)Tky
= H(kx,−ky),

P−1
ky

H(kx, ky)Pky = −H(kx,−ky)
(9)

where Tky = (σz ⊗ σz)K and Pky = (σy ⊗ σy)K are,
respectively, defined as a ”time-reversal-like” symmetry
and a ”particle-hole-like” symmetry [5] with T 2

ky
= P2

ky
=

1. From these we can define a third chiral-like symmetry
Sky = TkyPky :

S−1
ky

H(kx, ky)Sky
= −H(kx, ky). (10)

Since we have that T 2
ky

= P2
ky

= 1, the Hamiltonian be-

longs to the BDI symmetry class and, since the problem
is effectively reduced to one dimension, the system can be
characterized by an integer topological invariant. We can
then write the Hamiltonian in the basis where Sky is di-
agonal, in which the Hamiltonian takes an anti-diagonal
form. From here it is possible to obtain the winding num-
ber W. It can be shown [5] that the winding number is
calculated as

W =
i

π

[
log

(
sgn(M(ky = 0))

sgn(M(ky = π))

)]
(11)

with

M (kx, ky) =

[µ+ 2t (cos kx + cos ky)]
2
+ d2 sin2 kx −B2

y +B2
x.

(12)

In the regimes with |W| = 1 the system has a topolog-
ical nature and Majorana flat bands appear. These are
protected by the chiral symmetry as defined in equation
10. We have found that in the regimes with |W| = 1, the
Berry phase is also quantized to a value of π.

2. Domain of flatband existence

From equation 11 it is found that |W| = 1 in the
regimes where M (kx, ky = 0) and M (kx, ky = π) have
opposite signs, M (kx, ky = 0)M (kx, ky = π) < 0. This
allows us to derive the regions in which the supercon-
ductor possesses flat band, which can be summarized in
(with B̃2 = B2

y −B2
x and |By| > |Bx|):

• (1) µ ≥ 2t

D+ > B̃2 > D− (13)

• (2) µ ≤ −2t

D− > B̃2 > D+ (14)

• (3) −2t < µ < 2t

(D+ > B̃2 > D−) ∨ (D− > B̃2 > D+) (15)

with

D± = [µ+ 2t (cos kx ± 1)]
2
+ d2 sin2 kx. (16)

Equations 13, 14 and 15 define the regions where the
superconductor is in a nontrivial regime with |W| = 1
(which coincide with the regions where the bulk is gap-
less).

a) b)

Figure 3. a) Domain of existence of Majorana flat bands
(shaded region) for By vs. kx for the parameters t = 1,
d = t/6, µ = −3.5. b) Closeup of a) in the region By ∈
[−1, 1] and kx ∈ [−1.5, 1.5].

IV. QUASI-DISORDER AND ANDERSON
DISORDER EFFECTS IN REAL SPACE

We now consider the case in which disorder is added
to the model. A system with 41 × 41 = 1681 sites (with
Nx = Ny) is studied, and we consider periodic boundary
conditions along x and open boundary conditions along y.
We add a new term to the real space Hamiltonian with a
disorder term Λ(r), and we consider disorder of two types:
Anderson disorder, where the disorder is random at each
site and the random values vary between an interval,

Λ(r) ∈ [−λ, λ], (17)

and Aubry-André disorder, where the disorder term is a
quasi-periodic potential of the form:

Λ(r) = λ cos(2παf(r) + ϕ) (18)

with f(r) a function of the lattice sites, α =
√
5−1
2 the

inverse golden ratio, and ϕ a phase between 0 and 2π. To
quantify the effects of disorder we use the inverse partic-
ipation ratio, IPR, defined as

IPRm =
∑
i

|ψm
i |4 . (19)

For perfectly localized states we have that IPRm ∼ 1
and for delocalized states IPRm ∼ 1/N .
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Figure 4. First column: IPR averaged over the lowest 10
positive energy states and highest 10 negative energy states,
vs. a) Anderson edge disorder strength or c) Aubry-André
edge disorder strength. Second column: IPR averaged over
the remaining states vs. b) Anderson edge disorder strength
or b) Aubry-André edge disorder strength.

A. Edge disorder with a parallel magnetic field

We first consider Anderson disorder and Aubry-André
disorder, localized at y = 0 and y = Ny and varying
along the x direction. Here we limit ourselves to the cases
where the magnetic field B is aligned in the y direction
and consider either p-wave pairing symmetry or combined
s and p-wave pairings when the spin-orbit term is finite.
We take the fixed values t = 1, d = t/6, µ = 3d − 4t,
and consider three cases in detail: the case in which a
magnetic field By = 0.5d is added (phase with a gapped
bulk but gapless edge states); an added magnetic field of
By = 3.5d (phase with a gapless bulk and in in the MFB
regime); and the noncentrosymmetric case with By = 4d
and added s−wave pairing and spin-orbit terms, ∆s =
0.3d and α = 0.2d (phase with a gapless bulk and MESs).

In figure 4 we show the IPR for the lower energy states
in a) and c), for Anderson edge disorder and Aubry-André
disorder, respectively, and the averaged IPR of the re-
maining bulk states, in b) for Anderson edge disorder and
in d) for Aubry-André edge disorder. From b) and d) we
see that the bulk states are almost unaffected by the in-
troduced edge disorder. There is only a slight increase in
the IPR, which is larger in the Anderson disorder case.
The localization happens mostly on lower energy states,
which is seen in figures a) and c). In a) we see that there
is a continuous increase of the IPR. In c) we see a dif-
ferent behaviour - the lowest energy states seem mostly
unaffected (with constant IPR) until a certain threshold
value of disorder. Also, in both a) and c), for the sys-
tem with By = 0.5d the low energy states become more
localized with increased disorder in relation to the states
in the MFB and MESs regimes, which appear to be more
robust at higher values of disorder.

In figure 5 we show some edge states at different values

of a) Anderson edge disorder and b) Aubry-André edge
disorder. In the Anderson disorder case in a), for λ = 0.5
we see that the state already lost its periodic modula-
tion along the edges. For λ = 1.0 we see an intermediate
state, and for λ = 2.7 the state is already mostly local-
ized on the edge at y = 40. We found that initially the
edge states follow a similar behaviour in both edges. At
higher values of disorder the states become significantly
more localized in only one edge (which one depends on
the random disorder configuration). For Aubry-André
edge disorder, at λ = 0.5 the state as a whole is mostly
unaffected, and the effect of the quasi-periodic disorder
is seen on the edge layers. In b), for a higher value of
disorder of λ = 1.0 the state becomes more localized,
both along the edges and along the y direction. In c) for
λ = 2.7 the state localizes at several values of x along the
edges, and also appears to localize along y. In this case
the same value of ϕ was considered at both edges, and,
accordingly, the behaviour is mirrored, with the states
staying localized at both edges for high disorder values.
For both Anderson edge disorder and Aubry-André

edge disorder, we have also seen that the bulk layers are
also affected by the edge disorder, and that the contri-
bution of the wavefunctions can increase for some of the
subsequent y layers.

B. Bulk disorder with a parallel magnetic field

b)a)

c)

Figure 6. Average IPR of the whole system for a) Anderson
disorder, b) Anderson disorder with x periodicity, c) Aubry-
André disorder. In a) fits are done to functions of the form
y = C1 expC2x in the range λ ∈ [1.5, 3]. In b) fits are done to
functions of the form y = C1x+ C2 in the range λ ∈ [0.5, 3].

We now consider bulk disorder of three types: Ander-
son disorder; Anderson disorder uniform in x; Aubry-
André disorder modulated in y and uniform in x. We
study the same parameter cases as in subsection IVA.
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λ = 0.5 λ = 1.2 λ = 2.8b)λ = 0.5 λ = 1.0 λ = 2.7a)

Figure 5. Disordered edge states for t = 1, d = t/6, µ = −3.5, By = 4d, α = 0.2d and ∆s = 0.3d, subject to a) Anderson edge
disorder and b) Aubry-André edge disorder. In a) the wavefunctions have energies E = 8× 10−4 (left), E = 8× 10−4 (middle)
and E = 9× 10−4 (right). In b) the wavefunctions have energies E = 8× 10−4 (left), E = 8× 10−4 (middle) and E = 9× 10−4

(right).

Anderson Anderson 

(x periodicity) Aubry-André Anderson Anderson 


(x periodicity) Aubry-Andréa) b)

Figure 7. Total density of states of the system, for the energy range E ∈ [−0.5, 0.5], obtained with the Recursive Green’s
Function method for several values of λ. Obtained for Anderson disorder, Anderson disorder uniform in x and Aubry-André
disorder, and for the parameter values a) By = 0.5d, b) By = 4d, α = 0.2d,∆s = 0.3d. The DOS is obtained for an average of
20 initial random states and disorder configurations.

The values of the averaged IPR are shown respectively
in a), b) and c). For Anderson disorder, the IPR follows
an exponential behaviour for λ > 1.5. We show of a func-
tion of the type y = C1 expC2x with C1, C2 constants,
for the interval [1.5, 3.0]. In b), the IPR follows a nearly
linear behaviour for λ > 0.5 and we show a fit to function
of the form y = C1x + C2 which is done to the interval
[0.5, 3.0]. In c), we see a threshold behaviour around
λ = 2.0 and with two different regimes: in the first there
is a slow increase of the IPR, and then it greatly increases.
For λ < 2.0 we observed that some bulk wavefunctions
acquire a critical-like behaviour along the y direction.

In figure 7 we show the DOS for E ∈ [−0.5, 0.5], for a)
By = 0.5d and for b) the noncentrosymmetric case with
By = 4d, α = 0.2d,∆s = 0.3d. In a) the gap of the clean
system, which is located around E ∈ [−0.044, 0.044], is
highlighted. The results are presented for several val-
ues of λ and for all the disorder cases considered. For
Anderson disorder, we see that the increase of λ leads
to a monotonic increase of the DOS at zero energy in
both cases a) and b). With Anderson disorder uniform
in x, in a) there is first an increase and then a decrease
of the DOS at zero energy (in relation to the clean sys-
tem). In b) the DOS around zero energy increases and
then slightly decreases (as seen for λ = 2.5). The right
panels concern the case of Aubry-André disorder. In b)
the DOS around zero energy first decreases and then in-
creases with disorder. In a), we see first that the DOS
increases slightly around zero energy. For λ = 1.5 there
is a further increase and for λ = 2.5 the value decreases,

with the system being actually gapped (this is not seen
in the figure since the curve is smoothed for visualization
purposes).

C. Quasi-disorder induced topology with a
perpendicular magnetic field: Chern number

We now want to investigate the effects of quasi-disorder
on the system when in the presence of an applied mag-
netic field in the perpendicular direction, B = (0, 0, Bz).
To classify the topological nature of the system the Chern
number is calculated in real space [8]. Figure 8 shows six
phase diagrams for three different values of µ and d (with
t = 1 in all cases) obtained for a system with size 20×20,
for Anderson disorder (first row) and Aubry-André dis-
order (second row), both uniform in the x direction.
When Anderson disorder is introduced (first row) in

the system the topological regimes are destroyed as the
disorder strength is increased. We see that some values
of Bz are more robust than others, particularly the val-
ues which are halfway inside the topological phases of
the clean system. Unexpectedly, at low values of mag-
netic field, we see some small traces of topology appear
as disorder is increased for values of Bz where the Chern
number was previously zero.
In the case of Aubry-André disorder (second row) we

obtain phase diagrams with reentrant topological regions.
Different types of transitions are illustrated. In the dia-
gram for µ = 0 and d = 0.6 (left) we see the appearance
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Figure 8. Phase diagrams of a system with 20x20 sites indexed by the Chern number C, for several values of disorder strength
λ and perpendicular magnetic field Bz, obtained for the average over 10 disorder configurations. The first row concerns the
case of Anderson disorder and the second row concerns Aubry-André disorder. The values of the parameters are t = 1, d = 0.6
and µ = 0 (left), d = 0.6 and µ = 1 (middle), d = 1/6 and µ = 3d− 4t = −3.5 (right).

of a small region characterized by C = 2. For µ = 1
and d = 0.6 (middle), we see the appearance of two small
regions with C = 1, that however seem to be averaged
out. In the approximate range of Bz ∈ [0.3, 1.3] there is
also a reentrant topological region with C = −1. Inside
this range, for Bz < 1, we have topological transitions
C = 0 → C = −1 with increasing λ. For Bz ∈ [1, 1.3],
there is a transition C = −2 → C = −1. At µ = −3.5,
d = 1/6 (right) a new region with C = −1 emerges for
Bz ∈ [0.1, 0.9]. Inside this range, for Bz < 0.5 a transi-
tion C = 0 → C = −1 happens with increasing λ. For
Bz ≥ 0.5 there is a previous transition from C = 1 to
C = 0. Transitions from C = 0 to a finite value of C
also happen at higher values of the magnetic field. This
is evident in the case of µ = 0 for Bz > 4 and in the case
µ = 1 for Bz > 5. For a small region of Bz, with the in-
crease of λ we see a reentrant topological phase in a new
region. Also, we note that the topological phases show
an interesting response to the increase of quasi-disorder,
with a clear difference in robustness for different values
of Bz as quasi-disorder is increased.

We note that the induced topological regions at low
magnetic field come from phases with C = 0 that however
were not trivial at λ = 0 due to a finite value of I(ky)
(except in the case of µ = 0). This could possibly explain
some of the topological transitions at small values of Bz

as quasi-disorder is introduced, in regimes in which the
Chern number was previously zero.

To see how the different critical values of quasi-periodic
disorder λ scale with the system size, three transitions at
fixed values of Bz and µ were considered. The results are
presented in figure 9 for the system sizes 20× 20, 30× 30
and 41×41. The results show that within the considered
system size range, the critical values show little variation,
thus suggesting that the obtained phase diagrams in 10
should apply to larger systems.

μ = 0, Bz = 4 μ = 1, Bz = 1.1 μ = − 3.5, Bz = 0.3a) b) c)

Figure 9. Values of the Chern number C vs. disorder strength
λ for the system sizes 20× 20, 30× 30 and 41× 41 and for a)
t = 1, µ = 0, d = 0.6, Bz = 0.4, b) µ = 1, d = 0.6, Bz = 1.1,
c) µ = −3.5, d = 1/6, Bz = 0.3. The results were averaged
over 10 disorder configurations (10 random values of ϕ in the
quasi-periodic potential).

V. QUASI-DISORDER AND ANDERSON
DISORDER EFFECTS IN MIXED (kx, y) SPACE

In a mixed (kx, y) space, Λ(y) is the disorder term
which can be of the form of either Equation 17 (Anderson
disorder) or Equation 18 (Aubry-André disorder). The
disorder potential can only vary in the y direction and is
the same for all kx.

A. Energy spectra evolution and density of states

In figure 10 we present the energy spectra for some
values of Anderson disorder (first row) and Aubry-André
disorder (second row), for t = 1, d = t/6, µ = −3.5, and
By = 0.5d in a) and c) and By = 4d, α = 0.2d, ∆s = 0.3d
in b) and d). We also show the DOS, obtained from exact
diagonalization of the system, for several values of λ.
First we look at the Anderson disorder case, panels a)

and b). In a) the system has gapless edge states and a
bulk gap. We find that, as disorder is increased, the edge
states lose their structure and the bulk gap is closed. Ac-
cordingly, there is an increase in the DOS at zero energy.
In cases where the bulk is already gapless and Majorana
flat bands are present in the clean system (not shown
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Figure 10. Top: evolution of energy spectra and density of states for Anderson disorder for a) By = 0.5d, and b) By = 4d,
α = 0.2d, ∆s = 0.3d. Bottom: evolution of energy spectra and density of states for Aubry-André disorder, for c) By = 0.5d
and d) By = 4d, α = 0.2d, ∆s = 0.3d.

here) we found that the bulk remains gapless, and that
the Majorana flat bands are not lifted to finite energies.
In b) the system describes a noncentrosymmetric super-
conductor with mixed s and p-wave pairings. The sys-
tem is in the regime where unidirectional MESs appear.
These are robust to small values of disorder strength, but
as disorder increases the structure of the band is lost, and
bulk states collapse to lower energy values.
Panels c) and d) portrait the same parameter values

as a) and b) respectively but with added Aubry-André
disorder. In c), around λ = 1.2 the bulk gap is closed
and a new flat band appears, which leads to an increase
of the DOS at zero energy. The flat band then splits
in two and disappears as a gap opens in the system for
around λ = 1.8. This reopening of the bulk gap contrasts
with what is found for Anderson disorder in a), where
the bulk remains gapless as disorder is increased. When
quasi-disorder is introduced in gapless regimes, we found
that it will also introduce new regions with flat bands.
We also found that quasi-disorder induces new unidi-

rectional edge states in the noncentrosymmetric super-
conductor. In d), when a certain value of disorder is
reached, ”flipped” unidirectional states appear in the sys-
tem. This can be seen for the value of λ = 1.2, as a
band with negative slope appears for values of kx around
kx = 0. At this disorder value there is a coexistence
of unidirectional ”flipped” left-moving edge modes (with
negative slope) around kx = 0 and right-moving edge
modes (with positive slope) for higher (absolute) values
of kx. A backflow current that balances the current on
the edges is created on the bulk: extra right or left mov-
ing modes will appear depending on the net current on
the edges. For λ > 1.2 the structure of the right-moving
unidirectional states starts to be lost.

B. Quasi-disorder induced Majorana Flat Bands

We want to investigate if the quasi-disorder induced
flat bands have a topological nature. Since the Berry
phase was found to be quantized to a value of π in the
clean system in the region of MFBs, we calculate it here
for the disordered case. The Berry phase is obtained in

real space using twisted boundary conditions. Consider-
ing a twisted boundary phase θy we have:

γ = i

∫ 2π

0

⟨Ψ(θy) |
∂

∂θy
Ψ(θy)⟩ (20)

where Ψ denotes the ground-state many body wavefunc-
tion, which can be represented by an M ×N matrix Ψθy

where N is the number of sites in y andM is the number
of occupied states. The twist variable is discretized into
L points between 0 and 2π. A link variable can then be
defined as U(θy,n) = det

[
Ψ†

θy,n
Ψθy,n+1

]
, and the Berry

phase is obtained as

γ = −i

L∑
n=1

logU(θy,n). (21)

We obtained the result that the quasi-disorder induced
MFBs have a quantized Berry phase of π, as it can be
seen in figure 11.

a) b)

Figure 11. Energy spectrum and Berry phase normalized by
2π, as a function of kx. The values of the parameters are
t = 1, d = t/6, µ = 3d − 4t and a) By = 0.5d, λ = 1.4 b)
By = d, λ = 1.6.

To quantify the induced bands at zero energy and study
the transition to a π-quantized Berry phase, we use the
concept of Majorana pair density [9]:

ργ =
Nγ

Nk
, (22)
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where Nk is the number of discrete points of kx taken
inside the interval [−π, π] and Nγ is the number of such
points which support MFBs at the edges. A transition
from ργ = 0 to ργ ̸= 0 signals a transition from a trivial
to a topological regime (π-quantized Berry phase). Fig-
ure 12 a) shows the evolution of ργ as a function of the
quasi-disorder strength λ for the case t = 1, d = t/6,
µ = 3d − 4t and By = 0.5d for the range λ ∈ [1, 2]. A
transition ργ = 0 → ργ ̸= 0 occurs between λ = 1.22 and
λ = 1.23 at a certain critical value λC,1. A second transi-
tion occurs between 1.79 and 1.8, at a critical value λC,2,
where ργ becomes zero. In Figure 12 b) the normalized
density of states at zero energy ρ(E = 0) is shown, for
the same parameters and system size as in Figure 12 a),
along with the corresponding contribution for the zero
energy DOS which comes from the MFB, ρ(E = 0)γ . In-
side the topological phase we can see that the finite value
of ρ(E = 0) observed for the system with OBC comes
almost entirely from the presence of flat bands.

Table I shows the values of λC,1 and λC,2 for several
system sizes. It is found that the values of the critical
points show little variation with the system size.

Ny λC,1 λC,2

76 1.225± 0.005 1.800± 0.005
100 1.215± 0.005 1.775± 0.005
175 1.230± 0.005 1.805± 0.005
200 1.220± 0.005 1.800± 0.005
400 1.230± 0.005 1.805± 0.005
800 1.225± 0.005 1.805± 0.005

Table I. Values of the critical exponents λC,1 and λC,2 for the
system sizes {76, 100, 175, 200, 400, 800}.

a)

b)

Figure 12. a) Values of ργ for the case t = 1, d = t/6, µ =
3d−4t and By = 0.5d vs. quasi-disorder strength λ. Obtained
for a system with 76 sites in y. b) Value of the DOS at E = 0
for the same parameter values as in a), vs. quasi-disorder
strength λ, and the contribution for ρ(E = 0) which comes
from the Majorana flat bands in the corresponding regime.

C. Scaling of the density of states: critical
exponents

Around a critical point, the density of states ρ(E) fol-
lows [10]

ρ(E) = δ(d−z)νf(|E|δ−zν), (23)

with d the dimension of the system, δ = |λ−λC |
λC

the nor-
malized distance to the critical point λC , and f a scaling
function. Right at the critical point, when δ = 0, the
DOS behaves as

ρ(E) ∼ |E| dz−1. (24)

From the behaviour of the density of states near the phase
transition and using equations 23 and 24 it is possible to
obtain the values of the critical exponents numerically.

We first studied a transition in the clean case, in a
system with Ny = 400 sites in y. At the usual values
t = 1, d = t/6, µ = −3.5, there is a transition from a
trivial to a topological regime at a critical value of the
magnetic field By,C ≈ 0.1097. From a numerical analysis
in which we obtained the DOS at the critical point and
close to the critical point for By > By,C (gapless phase),
we obtained the values z = 1.08±0.07 and ν = 0.95±0.05.
The values of z and ν were also obtained analytically for
the same transition in the clean case, and we obtained
the values z = 1 and ν = 1. Thus the numerical and
analytical results are in good agreement.
We now study a system with Ny = 800 sites and

consider the obtained critical values λC,1 = 1.225 and
λC,2 = 1.805 as shown in table I for this system size. A
fit of the form of equation 24 for the density of states at
the critical points, done in the interval E ∈ [0.005, 0.025],
gives the values of the critical exponents z = 1.27± 0.04
for the first transition and z = 1.23± 0.03 for the second
transition. To determine the value of ν we take values of
λ inside the topological (gapless) phase, λ > 1.225 and
λ < 1.805, and obtain the density of states close to zero
energy. For small values of δ and close to zero energy
a collapse of the scaled values of the density of states
according to equation 23 is expected.
In figure 13 we show the results for scaled the density

of states for: a) values close to the first transition at
λ = 1.225, and b) values close to the second transition
at λ = 1.805. The density of states shows a collapse for
a) z = 1.27 and ν = 0.95 and b) z = 1.23 and ν = 1.00.
These results deviate from the known universality classes,
thus suggesting that the transitions belong to a novel
universality class.

D. Fractal analysis

The emergence of multifractality is characterized by
fluctuations of eigenstates. These fluctuactions are man-
ifested in the generalized inverse participation ratio, de-
fined as

IPRm(q) =
∑
i

|ψm
i |2q , (25)
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b)a)

Figure 13. Density of states for E ∈ [0.005, 0.025] and several
values of λ close to the critical values, a) λC,1 = 1.225 and b)
λC,2 = 1.805, scaled according to Equation 23 for a) z = 1.27
and ν = 0.95 and b) z = 1.23 and ν = 1.00.

which, at criticality, behaves as [11]

IPR(q) ∼ Lτ(q) (26)

where L is the system size and the exponent τ(q) is
defined in terms of a generalized dimension D(q) as
τ(q) = D(q)(q−1). In a metallic phase, D(q) = d and for
an insulating phase D(q) = 0. Wavefunction multifrac-
tality is characterized by a q dependent value of D(q),
and the cases of a constant D(q) are single fractals [12].
Here kx is taken at a fixed values, such that system

is reduced to an effective one dimension. The IPR as a
function of q is calculated and averaged within the energy
range E ∈ [0.05, 1]. We fix the parameters t = 1, d = t/6,
µ = 3d − 4t and By = 0.5d and consider both the cases
of Aubry-André disorder and Anderson disorder.
The following values of L are considered, to which

a fit of an equation of the form of 26 is done: L1

= {75, 100, 150, 175, 200, 255, 275, 400, 475, 600, 675, 800}.
We also consider the intervals L2, L3 and L4, which are
subintervals of L1 starting at 150, 200 and 275, respec-
tively, to study the behaviour of τ(q) as L tends to infin-
ity. The obtained results are presented in figure 14.

1. Anderson disorder

Figure 14 a) shows the values of τ(q) for kx = 0.02π
and kx = 0.2π, for several values of λ and considering the
system size interval L1. For λ = 0, τ(q) closely follows
the line τ(q) = (q − 1), indicating that D(q) is equal to
1. For higher values of disorder, τ(q) approaches the line
τ(q) = 0, where D(q) = 0, suggesting the states are local-
ized and possess a single-fractal nature. For other values
of disorder strength τ(q) does not follow a behaviour char-
acteristic either of D(q) = 1 or D(q) = 0. It is necessary
to evaluate τ(q) as the system size tends to infinity. In b)
several values of τ(q) are presented, for different values of
λ, obtained with fits of the IPR for the size intervals L1,
L2, L3 and L4. For λ = 0 the values of τ(q) follow the
values of q − 1 for any interval of L. On the other hand,
for finite values of disorder strength, τ(q) tends to higher

values if q < 1 and for lower values if q > 1 as the system
size is increased, which is consistent with a single-fractal
behaviour.

2. Aubry-André disorder

Figure 14 c) shows the values of τ(q) for kx = 0.02π and
kx = 0.2π, for several values of quasi-disorder strength λ
for the size interval L1. Unlike the previous case with
Anderson disorder, we see that the results differ for each
kx, and that for some values of disorder strength τ(q)
follows the line q−1 closely until some value of q where the
behaviour suddenly changes. In 14 d) we show, as before,
values of τ(q) fitted for the considered size intervals L1,
L2, L3 and L4. For lower values of q, τ remains at the
values defined by the equation τ(q) = D(q)(q − 1) with
D(q) = 1. However, at higher values of q, this behaviour
changes. Contrary to the case in figure 14 b), there is no
clear tendency of τ(q) at increased system sizes, and the
behaviour also depends on the value of q. This deviation
from the D(q) = 1 line is verified as soon as disorder is
introduced, and suggests the system is in a multifractal
regime. From inspection of the values of τ(q) at larger
system sizes, we identify a transition to a single-fractal
phase around λ ∈ [2.0, 2, 1].

VI. CONCLUSIONS

In this work we studied a model of a two-dimensional
topological superconductor with a magnetic field, and in-
troduced disorder and quasi-disorder in the system.

The system was first studied on a real space approach,
and under a parallel magnetic field. We discussed the case
where either Anderson disorder or Aubry-André disorder
is added to the edges. While the IPR of the bulk states
remains nearly constant, the edge states significantly lo-
calize, although with a different behaviour for Anderson
or Aubry-André disorder: in the first case, the IPR grows
continuously and in the second it shows a threshold be-
haviour.

We then studied the cases of bulk disorder, with three
different spatial configurations: Anderson disorder, An-
derson disorder uniform in x and Aubry-André disorder,
modulated in the y direction uniform in x. The response
of the system to the types of disorder is qualitatively dif-
ferent. We observed an exponential-like behaviour of the
IPR for Anderson disorder, a linear behaviour for Ander-
son disorder uniform in x, and a threshold behaviour for
Aubry-André disorder with two different regions, sepa-
rated at around λ = 2.

The real space system was also studied under a perpen-
dicular magnetic field with Anderson and Aubry-André
disorder uniform in the x direction. The response of the
topological phases of the system differ to the introduced
types of disorder, and quasi-disorder induces topological
phases in new regions of Bz, characterized by integer val-
ues of the Chern number C. From a scaling analysis of
the critical points we concluded that the obtained phase
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Figure 14. a) Results of τ vs. q, for several values of Anderson disorder strength, λ, for kx = 0.02π and kx = 0.2π. b) Values of τ
at different values of q and Anderson disorder strength λ, for kx = 0.02π and kx = 0.2π. c) Results of τ vs. q, for several values
of quasi-periodic disorder strength, λ, for kx = 0.02π and kx = 0.2π. d) Values of τ at different values of q and quasi-disorder
strength λ, for kx = 0.02π and kx = 0.2π In all cases, the IPR is averaged for the states within the energy range E ∈ [0.05, 1].

diagrams should apply to bigger systems. For some low
values of Bz we also found that x-periodic Anderson dis-
order induces some small regions of topology, in a region
of magnetic field for which, in the clean system, C = 0
and I(ky) ̸= 0. In the same regions, new topological re-
gions appear for added quasi-disorder. These observed
phenomena were hypothesized to be related to the in-
variant I(ky).
We also studied the system in a mixed (kx, y) space

with an applied parallel magnetic field. We obtained that
the flat bands are characterized by a π-quantized Berry
phase in the clean system. From the definition of wind-
ing number W we also obtained the expressions for the
topological gapless regions of the superconductor.

The introduction of quasi-disorder was shown to in-
duce gapless phases. For the p-wave system this leads
to new regimes with Majorana flat bands. We then con-

cluded that the quasi-disorder induced MFBs also have a
quantized Berry phase of π. For the noncentrosymmetric
superconductor with added s-wave superconducting pair-
ing and spin-orbit coupling, we found that new regimes
with unidirectional Majorana edge states appear.
We identified and studied two topological transitions.

The values of the dynamical critical exponents and cor-
relation length critical exponents were obtained from a
scaling analysis of the density of states, and our results
put the transitions in a novel universality class.
Finally, we investigated the fractal nature of the wave-

functions. From the behaviour of τ(q) as the thermody-
namic limit is approached, we concluded that the intro-
duction of quasi-disorder induces multifractality in the
system, and that Anderson disorder will drive the system
to a localized, single-fractal phase (in the thermodynamic
limit).
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