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Abstract

Drawing from memory the face of a friend you have not seen in years is a difficult task. However, if you happen to cross paths,
you would easily recognize each other. The biological memory is equipped with an impressive compression algorithm that can
store the essential, and then infer the details to match the perception. The Willshaw Network (WN), is a model that aims to mimic
these mechanisms of its biological counterpart. The usage of this model in practical applications is hindered by the so-called
Sparse Coding Problem. To advance, prescriptions that transform raw data into sparse distributed representations are required.
In this work, we use a recently proposed prescription [1] that maps visual patterns into binary feature maps. We analyze the
behavior of the WN on real-world data and gain key insights into the strengths and weaknesses of this model. To further enhance
the capabilities of the WN, we propose the Multi-Modal framework. In this new setting, the memory stores several modalities
(e.g., visual, or textual) simultaneously. After training, the model can be used to infer missing modalities when just a subset is
perceived, thus unlocking many practical applications. As a proof of concept, we perform experiments on the MNIST dataset. By
storing both the images and labels as modalities, we were able to successfully perform retrieval, classification, and generation with
a single model. Our results highlight the flexibility of the Multi-Modal framework to perform various classical Machine Learning
tasks with a single network and provide a big hint on how the field of Associative Memories can advance in practical settings.
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I. INTRODUCTION

TO create intelligent machines, understanding the human brain and its mechanisms is a fundamental step. For this reason,
the focus of this work was the field of AMs: a family of Biologically-Inspired Artificial Intelligence models that imitate

biological memories [2].
These models train by storing associations between pairs of patterns: Correlated features form synaptic connections between

the memory’s neurons. This way, a pattern is represented in the memory, by the activation of a population of neurons, and
each individual neuron can participate in many populations. A trained memory can then be queried with a pattern: the neurons
in the network will fire according to their learned connections, and the resulting population of active neurons will correspond
to the memory’s response to the query. This task is known as Retrieval, and the fact that both the query and the answer are
patterns means that the memory is employing Content-Addressability.

In this work, we focus on the WN memory. This model is a single-layered Neural Network that uses a local Hebbian training
rule [3] to store associations between pairs of binary vectors. Despite its simplicity, the model is extremely efficient in terms of
its storage capacity, being able to store large numbers of patterns with a fixed amount of neurons, and a small computational
effort.

Furthermore, we focus on the task of Auto-Association, i.e. we train the WN to associate patterns back to themselves
(similarly to an AutoEncoder). An Auto-Associative memory has great practical uses, such as removing noise from corrupted
patterns or reconstructing the whole pattern when only part of it is presented to the memory.

A. Problem
Our brains “(...) represent information using a method called SDRs” [4]. Neuroscience has shown that information in the

brain is represented by the sparse activation of groups of neurons in the cortex [5].
In computers, an SDR is a large binary vector, where only a select number of bits are active. When representing complex

real-world data, each active bit in the SDR must represent an important feature of the pattern. In a sense, SDRs are informative
compressions, and AMs benefits immensely from this property due to their content-addressable nature.

The biggest open question in the field of AMs, which often prevents these models from being used in practice, is the
so-called Sparse Coding Problem. In short, the memory’s performance can only be ensured if the patterns that it stores are
SDRs, and this type of representation rarely occur naturally.

To solve the Sparse Coding Problem and use the WN on practical settings, encoding prescriptions that transform real-world
data into SDRs are required.

In [1] Sá Couto and Wichert propose one of the first sparse encoding prescriptions that addresses this problem. In their work,
the “What-Where” (WW) Encoder is proposed: a biologically-inspired module that transforms visual patterns from the MNIST
dataset of hand-written digits [6] into binary SDRs. In the same paper, preliminary research showed that the codes produced
by the WW encoder could very efficiently be stored in auto-association on the WN. As a consequence, the opportunity to
study the WN in a practical real-world setting emerged.
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Fig. 1. Initial Research Goal. In [1] an Encoder that maps MNIST images into SDRs is proposed. These SDRs are stored in the Willshaw Network (1),
and retrieved (2, and 3). To complete the pipeline, a Decoder module that transforms the outputs of the memory back into images is required.

B. Research Goals

Our first Research Goal was to perform a thorough analysis of the storage and retrieval of MNIST images in a Willshaw
Network. This entailed building a decoder module that transformed SDRs back into images (Fig. 1). With an encoder and
decoder built, we would be able to study the behavior of the WN on real data and perform experiments such as: (a) Visualise
the quality of the memory’s reconstructions as the memory is filled up; and (b) Visually examine how the memory responds
to noisy cues. Additionally, a trained memory and the Decoding module could be used as a generative model: By querying
the memory with novel inputs, one might obtain novel responses from the memory. Decoding said responses back into images
might lead to original patterns. Essentially drawing from memory.

To build the decoder module, we tried using Feed-Forward Neural Networks (the MultiLayer Perceptron (MLP), and
Convolutional neural networks (CNNs)), and a simpler nativist approach (the What-Where (WW) Decoder). The latter achieved
the best results, and thus an extensive analysis of the WN model was made.

This analysis gave us key insights into the strengths, weaknesses, and possible applications of the WN in a practical scenario.
Motivated by the findings of the aforementioned analysis, the crux of this work emerges: The idea of the Multi-Modal

Willshaw Network (MMWN) is proposed. In short, the memory stores several modalities simultaneously. After training, the
model can be used to retrieve missing modalities when just a subset is shown, thus unlocking many practical applications.
Where a modality refers to a type of information, e.g. visual or textual.

While simple, this idea has the potential to serve as a flexible framework to solve various Artificial Intelligence Tasks with
Associative Memories. Demonstrating the feasibility of this idea became the main Research Goal of this work.

As a proof of concept for the idea of the MMWN, this model was evaluated on the MNIST dataset [6]. By storing both the
images and labels as modalities, we were able to perform retrieval, classification, and generation successfully.

The relevance of the MMWN model can be summarized in the following arguments:
• The model has a simple Hebbian training rule that leans in a single pass over the training set and is highly efficient in

terms of its storage capacity.
• The model represents information in a distributed manner, thus circumventing the “grandmother cell” problem that is

often faced with Neural Networks.
• The model’s architecture is not constrained to a particular domain, and a model can hold information from multiple

domains (outside the scope of this work) simultaneously.
• The model solves several Machine Learning tasks (Retrieval, Classification, and Generation) in a single architecture, while

others such as (CNNs, Variational Autoencoders (VAEs), or Generative Adversarial Networks (GANs)) specialize in a
single task.

• The model unifies several ideas from biology: (a) It utilizes SDRs, the language of information in the neocortex;
(b) The WN uses a biologically plausible learning rule, and mimics the biological Associative Memory; and (c) The
new architecture exhibits the flexibility to perform several tasks that are deemed essential in Intelligent Systems.

With this work, we will demonstrate the potential of the Willshaw Network Model for practical applications. Furthermore,
we propose a novel framework that allows further research to be done in the field of AMs.

II. BACKGROUND

A. Associative Memory

Associative Memories (AMs) are a family of Artificial Neural Networks (ANNs) that store associations between pairs of
vectors. If we consider these vectors to be abstractions of concepts or objects, learning and storing said associations closely
resembles the way human memory operates. As Daniel Kahneham, Nobel prize winner puts it: “Psychologists think of ideas as
nodes in a vast network, called associative memory, in which each idea is linked to many others.” [2]. We can introspectively
realize that our memory works this way when we try to recall some piece of information and notice that to reach the answer we
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must traverse a chain of associations. In this way, AMs are biologically inspired computational models in the sense that they
try to incorporate these high-level functions of biological memories. Additionally, these models implement neuro-physiological
mechanisms of the brain such as the rule for synaptic plasticity proposed by Donald Hebb [3].

It is important to underline that AMs are quite different from traditional artificial memories, like those found in computer
disks. In a computer, a memory is a list of addressed information: we provide an address and obtain its content back, the
memory employs location addressing. AMs do not utilise addresses explicitly, we provide a question content vector and obtain
an answer content vector back. As explained by Palm [7], AMs are mapping memories and they support content addressability.

Formally, an AM stores a set S of M pairs (x, y), where x and y are the question vector and the answer vector respectively:

S = {(xµ, yµ) | µ = 1, . . . ,M} (1)

The AM establishes a mapping (xµ → yµ) which is denoted hetero-association. In the special case where x = y the memory
is said to perform auto-association. Mapping a vector to itself in auto-association has great practical uses. Namely, removing
noise from corrupted patterns or reconstructing the whole pattern when only part of it is presented to the memory. The pairs
of patterns are not stored explicitly in the memory, it is the correlations and anti-correlations between the pairs of patterns that
are learned. This key feature of AMs acts as a natural regularization mechanism and allows a trained network to generalize
for novel patterns that are not stored in memory. The combination of hetero and auto association capabilities of an AM allows
it to naturally implement functions of biological memories. The abilities of AMs have been studied for over fifty years now
by many authors such as Palm [8] and Kohonen [9]. In [10], Wichert summarizes the core abilities of AMs as follows:

• The ability to correct false information.
• The ability to complete information in case only part of it is known.
• The ability to interpolate information: When novel information is shown, the most similar stored sub-symbol is determined.
The two main steps involved in operating an AM are learning and retrieval. Learning is the step in which the set of

associations is stored and a mapping established. In the retrieval step, the mapping is used to perform association. Several
types of AMs implement these steps differently. Here we skip the details and focus on the overall idea of each step.

1) Learning: An AM is typically represented as a synaptic weight matrix W of real numbers. In a network with n neurons
each having m connections, W will represent the weights of the m×n connections between all neurons. Initially the memory
will be empty (Wij = 0 : i = 1, . . . ,m; j = 1, . . . , n). The learning process consists in presenting M pairs (xµ, yµ) to the
network, which can result in local updates to the synaptic weights of each individual neuron:

Wij =

M∑
µ=1

R
(
xµ
i , y

µ
j

)
(2)

Where R is the synaptic weight update expression, which takes as input the pre-synaptic and post-synaptic signals xi and yi,
respectively, and outputs the updated weight value Wij . An example of a synaptic weight update expression is the Hebbian
rule [3] for binary vectors:

R (xi, yj) = xi.yj (3)

The two major families of learning rules are additive and binary. In additive learning W is updated successively with Eq. (2).
In binary learning the weight matrix is clipped so that a simpler binary matrix is obtained at the cost of some information loss:

Wij =

m∑
µ=1

H
(
R
(
xµ
i , y

µ
j

))
(4)

where H is the Heaviside function defined as:
H(x) =

{
0, x < 0
1, x ≥ 0

(5)

In the AM that we will study, the Willshaw Network (WN), both the pairs (x, y) and the W matrix are binary. This means
that a binary learning rule is employed.

2) Retrieval: Associative retrieval is the process of showing a cue vector to the already-trained memory, letting the network
compute its final state, and obtaining the retrieved vector. Fig. 2 illustrates this process.

When the AM receives as input a cue vector x̃, each neuron of the network will compute its dendritic potential sj .

sj =

m∑
i=1

Wij x̃i (6)

Notice that this step can be parallelized since each neuron works independently of the others.
Next, each neuron computes its output ŷj by applying a transfer function f , with threshold θj , to its previously computed

dendritic potential.

ŷj = f (sj , θj) (7)
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(a) Stored Vector (b) Cue vector (c) Retrieved vector

Fig. 2. Example of associative retrieval. A memory that stores 160 different pictures of faces, when given a small snippet containing just the eyes, is able
to retrieve the original image. (a) One example out of the 160 images stored in the memory. (b) The cue vector that is used as input to the retrieval process.
(c) The retrieved vector that is obtained after the memory computes its final state. Adapted from [9], original study in [11].

The transfer function f usually takes the form of a step function, like the Heaviside function described in Eq. (5). The choice
of the threshold parameter θ, which controls the sensitivity of activation, is of extreme importance: an appropriate rule can
greatly enhance the memory’s performance, allowing for the storage of more vectors with no penalty on the retrieval quality.
If θ is set too high, very few neurons will activate, even with strong dendritic potential. On the other hand, if θ is set too
low, many neurons will activate in a “false-positive” manner. A well-suited value for θ will ensure that the correct amount of
correlations between neurons and the cue vector are detected, resulting in an error-free retrieval.

Some rules define a global threshold θj = θglobal | j = 1, . . . , n shared by all neurons, others rely on each neuron to store
its activation threshold locally.

After all the neurons have computed their state yj , the state of the whole network represents the retrieved vector y. When
the retrieval process ends here, it is called one-step retrieval which occurs on feed-forward AMs. However, certain AMs, like
the Hopfield Network [12], employ recurrent architectures. In such cases, the state y computed in the first step of retrieval is
fed back into the network as input, and the retrieval process is repeated until convergence. This method is known as iterative
retrieval.

3) Performance Assessment: The performance metric of associative memories is its storage capacity. After all, a memory
system is as good as the number of different memories it can hold. Any associative memory can hold a small number of
vectors and retrieve them perfectly, but as more vectors are stored, the memory starts to fill up and retrieval becomes imperfect
(see Fig. 3 for an illustration). If too many vectors are added to the memory it can become saturated and rendered useless, not
even able to retrieve the first learned vectors.

(a) Stored Vector (b) Retrieved: memory with 160 vectors (c) Retrieved: memory with 500 vectors

Fig. 3. Effect of the number of stored vectors on retrieval quality. In this experiment, similarly to Fig. 2, a small part of the image is used as the cue
vector for retrieval. (a) The original vector that is stored in memory. (b) The retrieved vector obtained when the memory is filled with 160 vectors. We can
notice some small imperfections in the retrieved image. (c) The retrieved vector obtained when the memory is filled with 500 vectors. The high number of
stored vectors is causing a large retrieval error, the retrieved image has noticeable artifacts. Adapted from [9], original study in [11].
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(a) Willshaw Network schematic. (b) Biological vs Artificial neu-
ron.

Fig. 4. Neurons of the Willshaw Network. (a) A schematic representation of a Willshaw Nework. Composed of a set of n vertical units which represent
a simple model of a real biological neuron. Each neuron has m weights, which correspond to the synapses and dendrites in the real neuron. In this Figure
they are described by wij ∈ {0, 1} where 1 ≤ i ≤ m and 1 ≤ j ≤ n. θj is the threshold of each neuron j. (b) A side-by-side comparison of a biological
neuron (left) and a Willshaw Netork’s unit (right). Adapted from [10].

Formally, the storage capacity L, admitting an error factor ϵ of an AM with n neurons, is the total number of pairs (x, y)
that can be stored in memory without experiencing a retrieval error greater than ϵ. Typically described as a function of the
size n (number of neurons) of the network.

For example, the Linear Associator (studied independently by [13], [14], [15], or [16]), a very simple AM, had a storage
capacity of L = n when storing orthogonal vectors. Another example is the original version of the Hopfield Network, which
had a capacity of L = 0.14n for uncorrelated vectors. Notice that these theoretical values for the storage capacities of AMs
are often studied under ideal scenarios, such as storing uncorrelated or orthogonal vectors. As it turns out, vectors with certain
properties are very well suited for storage in AMs, resulting in great storage capacities. However, real-world data typically
lacks those properties, which is the main cause for the shortcomings of AMs in practical applications. Finding mechanisms to
transform real-world data into “AM-suitable” vectors is the key to unlocking the full potential of AMs.

B. Willshaw network

The Willshaw Network (WN) [17] is a shallow, feed-forward ANN that performs auto and hetero-association of binary
vectors.

Originally named Lernmatrix by its creator Karl Steinbuch in the 1950s [18], the biologically-inspired model was one of the
pioneer implementations of ANNs. The Lernmatrix became more popular in the following decade when it was studied through
a mathematical/biological lens by D. Willshaw [17]. Thus becoming known as the Willshaw Network. Despite its simplicity,
both in its binary nature and in its learning/retrieval rules, the WN is a great artificial memory, capable of storing large numbers
of vectors.

1) Architecture: The WN is composed of n units, also referred to as neurons. Each neuron is connected to the input layer
through m binary connections. Neurons are not interconnected. A schematic view of the network can be seen in Fig. 4(a).

The network is represented as a binary matrix W :

Wij ∈ {0, 1} : i = 1, . . . ,m; j = 1, . . . , n (8)

The dimensions m and n are given by the fixed sizes of the question and answer vectors, respectively. Notice that, in an
auto-association task, W will be a square matrix of size (n × n). This matrix defines the absence/presence of connections
between neurons. A connection between two neurons i and j is formed during training when a local Hebbian rule detects a
correlation between the positions i of a question vector, and the position j of an answer vector.

Additionally, each neuron has a local threshold Tn, used in the last step of retrieval as the parameter of the transfer function.
2) Biological plausibility: The human brain is the most intelligent system that we know of. Understanding the brain and

implementing its mechanisms is the ultimate goal of Biologically inspired models. AMs are examples of such models as they
try to imitate the associative capabilities of the brain.

The Lernmatrix/Willshaw Network’s development has always been guided by biology and neuroscience. The original purpose
of the model was to study psychological conditioning [18], [19]. The model was later analyzed by Palm [20] on its ability to
implement assemblies of cells under the Hebbian framework [3]. Furthermore, the network’s units are artificial neurons [21]
modeled after their biological counterparts (see Fig. 4(b)). Finally, the neural energy efficiency of the model has been analyzed
[22], [23].

All in all, the WN, while far from a replica of the brain, is heavily biologically inspired. Consequently, its application in
practical scenarios is significant, since it might give us interesting insights into our still limited understanding of the brain.
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3) Learning and Retrieval rules: The WN is completely binary: its inputs x, outputs y, and weight matrix W are binary.
Consequently, its learning and retrieval rules are simple.

For the next equations, let us use the following convention:
• The n neurons of the network are referenced with the index j.
• The m connections of each neuron are referenced with the index i.
• The weight matrix W has m rows and n columns (see Fig. 4(a)), and it is indexed as Wij .
The learning rule is directly derived from Eq. (4). It uses the Hebbian rule (Eq. (3)) as its synaptic weight update expression.

Given a set of M pairs (x, y), the weight matrix W is computed with the following binary learning rule:

Wij =

m∑
µ=1

H
(
xµ
i y

µ
j

)
= min

(
1,

M∑
µ=1

xµ
i y

µ
j

)
(9)

notice that the Heaviside function H(x) (Eq. (5)) is equivalent to min(1, x) due to the binary nature of the model.

The retrieval of a cue vector x̃ is performed in two steps. First the dendritic potential s is computed in each neuron:

sj =

m∑
i=1

Wij x̃i (10)

Secondly, the retrieved vector ŷ is computed for all neurons:

θj = max
1≤i≤n

si (11a)

ŷj = H (sj − θj) (11b)

Eq. (11a) is known as soft thresholding. It defines a global strategy for the transfer function’s activation threshold θ. This
strategy was used by Palm et al., Schwenker, Sommer, and Strey in [24], [25]. Soft thresholding is the best performing strategy
for the WN. Alternatively, one could use a simpler strategy, such as hard thresholding, where θ is set globally to the number
of ones in the cue vector: (θj =

∑m
i=1 x̃i | j = 1, . . . , n). In Eq. (11b), H refers to the Heaviside step function described in

Eq. (5).
Eqs. (9) to (11) fully specify the computations required to operate a WN.

C. Multi-Modal Willshaw Network

The WN makes no assumption about the data that it stores. Each bit of a pattern that is stored in a WN is interpreted as an
informative feature. The position of a particular feature within the pattern, and its meaning/interpretation are irrelevant to the
memory. As a result, we can fill the memory with heterogeneous patterns; i.e., patterns containing multiple modalities/types
of information, as seen in Fig. 5. In such cases, we are building a Multi-Modal Associative Memory (MMWN).

Fig. 5. Multiple vs Single modality memory. In this example, we are storing digits in both memories. If we consider a single type of information about the
digit, then we require a Single Modality AM(top ). If we consider multiple types of information about each pattern, we use a Multiple Modality AM(bottom).

One of the main strengths of the WN is the ability to complete missing information. A MMWN benefits immensely from
this property: During training, the memory will learn how all the different features, from all modalities, are correlated. On
retrieval, all the different modalities contribute to the memory’s response. If the information from one of the modalities is
missing in the retrieval cue, the memory can complete it using the remaining modalities.
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D. Sparse Encoding Prescriptions

Strategies that transform natural data into SDRs are required to solve the sparse coding problem. Here, we refer to such
strategies as encoding functions or prescriptions. The desired properties of an encoding function are [4]:

• Semantically similar data should result in SDRs with overlapping active bits.
• The same input should always produce the same SDR as output.
• The output should have the same dimensionality (total number of bits) for all inputs.
• The output should have similar sparsity for all inputs and have enough one-bits to handle noise and subsampling.
An important aspect of Artificial Intelligence (AI) models is their amount of predefined structure. AI models can be

broadly divided into two categories: those that use “a priori” knowledge in their structure (Nativism), and those that don’t
(Connectionism). The first is a traditional approach [26], where the knowledge about the domain of the problem is used to
design comprehensible solutions. The second is focused on building general algorithms (usually Neural Networks) that can
learn with minimal assumptions/biases about the problem. Due to the huge diversity of available AI techniques, there isn’t
a binary way to classify models in terms of their structure, instead, there is a wide spectrum. In the Nativism end of the
spectrum, we have techniques such as first-order logic models [27] where the model’s structure is strictly predefined. On the
other end, we have Connectionism techniques, such as the multi-layered perceptron (MLP) [28], where the structure is not
imposed beforehand, but learned through the weights of the model. In between these two extremes, there is a large diversity
of models that have both Nativism and Connectionism aspects. From Deep Blue [29], the chess machine that beat the world
champion with an efficient tree search, to a deep reinforcement learning model that learns to play different video games using
only the raw pixels as input [30].

E. What-Where Encoder

“Vision allows humans to perceive and understand the world surrounding them, while computer vision aims to duplicate
the effect of human vision by electronically perceiving and understanding an image.” [31] The field of Computer Vision has
been highly connected to biology [32] since the 1980s. The field’s Holy Grail is to build a model that performs as well as
the human brain. For this reason, many Nativism models, that implement our biological knowledge of vision, arise in image
processing tasks.

In [1], Sa-Couto & Witchert propose an encoding function that maps visual patterns into informative binary vectors. The
Nativist model is biologically inspired, using similar ideas to those of the Neocognitron [33]. The Neocognitron is a direct
implementation of Hubel & Weisel’s Nobel-Prize-winning theory of the mammalian visual cortex [34], and it is the precursor
of the widely popular Convolutional Neural Networks (CNNs) [35].

The goal of the authors was to implement a sparse encoding function for visual patterns that could be used to pre-process
data in classification tasks. The resulting representations were SDRs, so the authors experimented on the Willshaw Network
(WN): This Associative memory will have a better storage capacity if the representations it receives are informative. Knowing
this, we can evaluate the quality of the encoding prescription as a whole by monitoring the retrieval score of a WN that stores
the representations.

Using an AM to store such a large collection of natural data is traditionally a very hard task for these models, and as
expected, retrieval was imperfect. For this reason, the authors proposed a novel error measure that utilized the labels of the
patterns. The results show that the codes produced by this strategy are effectively compressing the information in the patterns,
so much so that a very simple 1 nearest-neighbor classifier can perform classification when trained on the outputs of a WN
that stores the compressions in auto-association.

The strategy has two main steps:
The retinotopic Step: A convolution-like layer [36] of units that act as receptive fields are locally connected to the input

layer. These receptive fields detect and extract the most relevant visual features of the patterns. These features are determined
beforehand with the unsupervised K-means algorithm [37], [38]. This layer performs information compression by establishing
a many-to-one relationship between groups of pixels and receptive units. In this way, it transforms the dense representation
presented in the input layer into a sparse representation.

The Object-Dependent Step: The fixed coordinate system of the representations is turned into an object-dependent, radius
one polar coordinate system. This object-oriented transformation is known to occur in mammalian brains [39]. For this step,
only the radius and center of each object need to be measured, no learning is required. This operation provides invariance
to size and position, and in turn, also makes the resulting representations well-distributed since the features detected in the
previous step will be mapped quasi-uniformly into all the dimensions of the object space.

The encoding process can be controlled with the following set of parameters: K specifies the number of visual features that
will be extracted with the K-means algorithm, the Field size (Fs) specifies the “radius” of the visual features (which are square
windows of side 2Fs + 1), Q represents the size of the new coordinate system plane and, finally, the threshold Tw controls
the level of similarity needed to signal the presence of a feature in an image. The former can be used to tune the sparsity of
the codes.
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The encoder receives the raw MNIST dataset with dimensions (N , 28, 28), where N is the number of patterns. The resulting
sparse codes are binary vectors with dimensions (N , Q×Q, K), i.e., each one of the N patterns is represented as a set of K
features maps of size Q×Q.

F. The What-Where Decoder

The What-Where (WW) Decoder implements the inverse function of the WW encoder. The decoder transforms the sparse
code set of shape (N,Q×Q,K) back into the original MNIST shape (N, 28, 28), where N is the number of patterns in the
dataset, Q is the size of the polar coordinate system, K is the number of visual features learned with the K-means algorithm,
and 28 is the original size of the MNIST images. The decoding strategy has three steps:

The Object dependent Inverse step: The object-dependent, radius one polar, Q×Q coordinate system is converted back
into the Cartesian, 28 × 28 coordinate system. To do so, the radius and center of the object (which were measured in the
encoding process) are used. If the radius and center of the patterns were not saved, the default values of c = (0, 0) and r = 1
are used. This step changes the dimensions of the codes from (N,Q×Q,K) into (N, 28× 28,K), where K is the number
of visual features.

The Retinotopic Inverse Step: The outputs of the last step are a set of K binary feature maps that signal the presence of
visual features. In this step, we transform these bits into the actual visual features by performing a “transposed convolution”
where the convolution kernels are the ones learned with the K-means algorithm before the encoding process. Since the WW
encoder uses a stride of 1, same-padding, and square kernels with odd sizes, this step is straightforward: an active bit on plane
k and position (i, j) will result in the visual feature k being drawn with its center on position (i, j) of the MNIST images
space. The output of this layer has the same dimensions as the original MNIST images.

Normalization Step: The former step can produce images where the value of a particular pixel is greater than 1 (recall
that we represent the MNIST images as arrays of pixels valued between 0 and 1). This occurs when two or more features
are detected in close proximity, resulting in some pixels being drawn by multiple sources. To circumvent this issue, we count
how many visual features participate in the drawing of each pixel of the image, and then divide the value of the pixel by the
number of features that contribute to it.

G. The biology of Encoding Functions

One might ask: “If Associative memories are biologically plausible, why is their performance on raw data poor? The brain
handles raw data just fine.” This is a valid comment, and in this section, I will give a hint on the motivation behind encoding
prescriptions.

Representing human knowledge on a computer has proven to be a difficult task. The problem stems from the fact that
our knowledge of the world is not well-organized. Every rule has exceptions and every fact links to numerous others. This
level of complexity is not well-suited for traditional computer data structures. In contrast, our brains seem to deal with this
complicated knowledge with ease. Our brains do not use dense representations like those used in computers. Instead, they
represent knowledge with the sparse activation of its billions of neurons. The brain uses SDRs to encode knowledge [4]. This
might sound contradicting. After all, if real-world data, such as images, is dense, how can the brain use SDRs? Indeed, sensory
data is not naturally found in the form of SDRs. But we know that our brain has lower functional regions that process the
inputs from the senses and generate sparse and distributed activation of neurons in the neocortex [5]. For instance, the visual
area of the brain is divided into several hierarchical regions: V1, V2, V4, and IT. The V1 area of the brain is responsible for
detecting low-level visual features such as edges, and basic color [40]. The detection of such features results in the activation
of a collection of neurons that forms a signal. This signal is passed onto the V2 area which will apply a similar process. After
passing through all the regions, the final result will be an SDR that represents what we are sensing [41]. Another example is
auditory perception. The sounds that we hear are captured in the cochlea. The cochlea is an organ that has several receptors
for different frequencies. A particular sound will result in the sparse activation of the receptors which will result in an SDR.

All-in-all there is a biological analogy between SDR encoders used for Associative memories and biological organs that
transform sensory data into sparse neuron activity in biological memories.

III. RESULTS

In this section, we will demonstrate that the MMWN can work in practice, on real data. To do so, we will use the well-known
MNIST dataset of hand-written digits [6] to train a MMWN with two modalities and use it for practical applications.

Each pattern in the MNIST dataset has two attributes: the label represented by an integer; and a picture of the hand-written
digit represented as an array of pixels.

Our previous work [1] has shown that a normal WN can efficiently store and retrieve the images of the MNIST dataset. In
this work, we will use a MMWN that stores both the images and the labels of the MNIST dataset. If the MMWN manages to
store both modalities efficiently, we can leverage the information-completion properties of the memory for practical applications
such as the generation of new patterns and classification.
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A. Description modality
To use the label of the digit (which is an integer between 0 and 9) as a modality, we must first transform it into a binary

code. Furthermore, this binary code should be suitable for a WN; i.e., be an SDR. Next, we propose a stochastic encoding
strategy that transforms integers into SDRs that we refer to as descriptions.

1) Noisy X-Hot Encoder: Our proposed encoding strategy is the Noisy-X-Hot (NXH) encoding, which is a stochastic version
of the well-known X-Hot encoding. The main idea is that X bits in the code will randomly activate with high probability, while
the remaining bits will be active with low probability. The result is an X-Hot encoding with some added noise/randomness,
hence the name.

Formally, for a label l in the range {0, . . . , L− 1}, its Noisy-X-hot encoding e(l), with X bits per class, and probabilities
Pclass, and Prest, is a binary array of size L×X given by:

ei(l) =


1 with Pclass probability, if i ∈ {z ∈ Z | lX ≤ z < (l + 1)X}
1 with Prest probability, if i /∈ {z ∈ Z | lX ≤ z < (l + 1)X}
0 otherwise

(12)

The resulting code can be thought of as a collection of L populations of neurons of size X , one for each of the L integer
values we are encoding. For a given label l, its NXH code will have most of its activity on the lth interval. Furthermore, two
distinct patterns with identical labels (l1 = l2) will likely have different NXH encodings (e(l1) ̸= e(l2)) due to the stochastic
nature of the NXH. In this way, the NXH code is not only an encoding of the labels but also a description which allows us
to differentiate between different patterns with the same label.

2) Noisy X-Hot Decoder: For practical purposes, we must have a mechanism that maps the NXH codes back into the integer
value of the label. We can achieve this, by looking at the total activity of all the L intervals of the NXH code and picking the
interval with the most activity.
Formally, a NXH code e, can be mapped back into its corresponding label l with:

l = argmax
i

(i+1)X∑
n=iX

en

 (13)

B. Methodology
As we have seen in Section II-A, there are two key steps when operating an AM: the learning step and the retrieval step.

The same is true for a MMWN.
The learning step consist in: (1) encoding the labels and pixels into the descriptions and codes, respectively; (2) concatenating

the description and code into what we refer to as a desCode (DC) (short for description and code); and (3) storing the DC in
auto-association, as depicted in Fig. 6

Fig. 6. Training Step in a MMWN.

The Retrieval Step simply consists in showing a cue DC to the trained memory and obtaining a retrieved DC back. One
can, however, manipulate the cue in different ways to perform different tasks, as we will see in the upcoming sections.

C. Classification
One of the WN’s greatest strengths is to complete missing information from the cues. One can take a set of DCs X, set

all the bits in the description modality to zero to create noisy cues X̃, and obtain the memory’s response Y. The memory
will complete the missing information, which in this case is the description modality. In this setting, the memory works as a
classifier.

To test the MMWN’s performance when it comes to classification we defined three tasks of increasing complexity: Auto-
association, classification of stored patterns, and classification of unseen patterns (see Fig. 7). Results are reported in Fig. 8.
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Fig. 7. MMWN Classification methodology. To evaluate the MMWN’s ability to perform classification we define three distinct tasks of increasing difficulty:
(Top): Auto-Association, (Middle): Classification of stored patterns, and (Bottom): Classification of unseen patterns. In all cases, we compare the original
description of the pattern (before memory) with the description in the retrieved vector (after memory). For all three tasks, the accuracy score is determined
by comparing the integer value of the label before and after the memory which is achieved by decoding the description with Eq. (13).

Fig. 8. Auto-Association and Classification Results with the MMWN. Here we follow the methodology of Fig. 7 to report the scores of the three tasks
as the memory is filled with patterns. For the WW encoder, we used the parameters of the best performer in [1]. For the NXH encoder we used: X = 500,
Pclass = 0.5, and Prest = 0.0. (Green): Auto-Association score. Here we are simply measuring the memory’s ability to auto-associate the description of
DCs. The accuracy is perfect even when the memory is full, indicating that the descriptions are tolerant to the noise that the memory introduces. (Blue):
Classification of stored patterns. This score is high but decreases monotonically as the memory is filled up, which is expected since the memory gradually
loses the ability to perfectly retrieve the patterns that it stores. (Red): The classification accuracy for unseen patterns improves as the memory stores more
information because the memory naturally becomes better at generalizing as it stores more information (peeking at 84.04%). However, once the memory
becomes too full, this score gets worse.

D. Generation

Inversely to classification, generation with a MMWN is performed by creating a set of cues X̃ where the description modality
remains intact but the visual modality is set to zero. The memory’s response Y will complete the missing information in the
visual modality of the DC, essentially generating a pattern from a description.

Providing a trained MMWN with a DC where the visual modality has been completely set to zero yields the results in
Fig. 9(b). The description modality alone is not able to generate unique patterns that resemble examples from the original
dataset, such as those in Fig. 9(a). Instead, a “blob” (Fig. 9(b)), with no detail, which looks as prototype of each class is
obtained.

The amount of bits in a retrieved vector increases as we delete information from the retrieval cue (due to Eqs. (10), (11a)
and (11b)). The “blobs” of Fig. 9(b) are obtained from retrieval cues that have no active bits in the visual modality, i.e. cues
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(a) MNIST examples (b) Generated examples

Fig. 9. MNIST examples (a) and Drawings from memory (blobs) (b). The blogs are obtained when we provide a MMWN with cues that contain the
description, but are missing the visual modality.

where a lot of information has been deleted. Consequently, the memory’s response is overloaded with information, and the
reconstructions have too many pixels.

To move away from “blobs” and create more realistic generations, we cannot provide zero information in the visual modality.
Instead, we must “seed” the generation process by adding some visual information to the retrieval cue. We hypothesize that:
a small amount of visual information together with the description of the pattern will allow the memory to leverage its
information-completion capabilities, and generate more realistic patterns.

Next, we propose different ways to “seed” the generation process and report the resulting generations.
1) Naive Sampling-Based Generation: To test our hypothesis, we generate patterns using a naive sampling process: First,

we compute the probability distribution of the visual modality of each class by counting the relative amount of ones for each
position in the visual code. Then, we create an “artificial” code by independently sampling from the probability distribution.
Lastly, we present the sample and a description from the class to the Multi-Modal Memory and decode its response. Fig. 10
compares the results of this sampling-based generation with a Single-Modality WN (Fig. 10(a)), and a MMWN (Fig. 10(b))

(a) Baseline Generation with Single Modality WN (b) Sampling-based Generation with a MMWN

Fig. 10. Sampling-based Generation: Single vs Multiple Modality Memory. Here we are generating images by sampling from the class distribution,
retrieving the sample in a full memory, and reconstructing the memory’s output with the What-Where decoder. (a): The memory is a Single-Modality Willshaw
Network. (b): A Multi-Modal Willshaw Network (MMWN) that stores descriptions and visual codes is used. Please note that in both (a) and (b) we delete
bits from the sample (Pdel = 0.5). Using the new modality clearly improves the quality of the generations. However, the memory will, occasionally, corrupt
the sample.

The addition of the description modality improved the generation quality. However, the memory will occasionally corrupt
the sample by deleting most of the information in the pattern (for instance, the bottom-most 7 of Fig. 10(b)), or by adding
too much information (bottom-most 9 of Fig. 10(b)). Next, we propose a simple modification to the sampling-based algorithm
that circumvents this issue.

2) Trial-and-error Sampling-Based Generation: When the WN retrieves a cue, the number of bits in the retrieved vector is
indicative of its quality. If we analyze the number of bits across many retrievals (Fig. 11) we can see that the number of bits
in the retrieved vectors follows a normal-like distribution, where the tails of this distribution correspond to the cases where
the memory corrupted the patterns.

We can improve the generation quality by forcing the generations to have a “normal” amount of bits via trial-and-error: If
the generation created a pattern with a number of bits that falls into the tails of the distribution, we discard the generation and
try again. If the generation creates a pattern with a number of bits that falls into the acceptance interval we finish the process.
The effect of this simple modification on the generation quality can be seen in Fig. 12.

3) Iterative Generation approach: While the generation results from the previous strategies are promising, they rely on
the computation of the probability distribution of each class to “seed” the generation process. Here we propose a different
generation strategy that does not have this constraint.

The main idea is to seed the generation process using a sample from the “blobs” (Fig. 9(b)) instead of using a sample from
the probability distribution of the class. Recall that the blobs are generations that are obtained when we simply provide the
memory with a description and nothing else. By using the blob, the generation process is much more elegant, as it simply
requires a description.

The blobs are visual codes that contain a lot of active bits, and they appear to be a sort of average of many examples from
the class. If we delete most of the bits from a blob, we will be left with a small set of visual features that can be used as a
retrieval cue for generation. Let us denote this process of sampling from the memory’s output as sparsification.

Our final generation strategy is an iterative process that combines the idea of sparsification, with the idea of the trial-and-error
generation (Section III-D2).
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Fig. 11. Retrieval: Number of bits histogram. Here we used a trained memory to retrieve 30000 noisy cues. The number of bits in the cues, and retrieved
vectors is measured and plotted. We can see that both the cues (blue) and retrieved vectors (orange/green) appear to follow a normal distribution. The number
of bits in the retrieved vector can fall within a large range, depending on the quality of the cue. In the trial-and-error generation, we specify an acceptance
interval (green): if the number of bits in the memory’s output falls within the acceptance interval we keep the generation; if the number of bits ends up in
the tails of the distribution (orange), we discard the generation and try again with a new cue.

(a) Sampling-based Generation with a MMWN (b) Trial and error sampling-based Generation
with a MMWN

Fig. 12. Sampling-based Generation with a MMWN: Simple vs Trial-and-error approach. Here we are generating images with the MMWN. First, we
create a descriptor of the class and create an artificial code by sampling from the class distribution. Then we provide the artificial desCode to a full MMWN
and reconstruct the memory’s output with the What-Where decoder. (a): Simple generation, for each generation in this plot we used one sample and performed
retrieval once. (b): Trial and Error Generation. Here we monitor the sparsity of the generations: if the number of bits of the retrieved vector is not within a
predefined interval, we discard the generation and try again with a new sample. In this experiment, the generation process took an average of 4.63 attempts
per generation.

The general idea is to iteratively retrieve and sparsify the inputs and outputs of the retrieval process, respectively. In the
beginning, the visual modality of the generation cue is completely empty, but with each iteration, we provide the memory with
more information. This, way the memory will gradually get closer to a pattern similar to those that it stores. Recall that cues
with less active bits lead to retrieved vectors with more active bits. The process stops once the number of bits in the generation
is in the predefined acceptance interval.

An overview of the architecture of the iterative generation method can be seen in Fig. 13(a). Additionally, an illustrative
example is provided in Fig. 13(b). The first shows how the visual patterns evolve throughout the generation process, while the
second monitors the number of active bits throughout the generation process. The results of the iterative generation method
can be seen in Fig. 14.

IV. CONCLUSION

In this final chapter, we will reiterate the motivation behind this work, and its main contributions and conclusions. Addi-
tionally, we reflect on the broader impact and future research ideas that this work enables.

The Willshaw Network (WN) [17] is a simple Biologically-Inspired Neural Network that utilizes a Hebbian Learning Rule
[3] to efficiently store large amounts of information. This model has not been used in practical applications since it requires its
inputs to be Binary Sparse Distributed Representations (SDRs) [4], which do not occur naturally. A recent paper by Sá Couto
and Wichert [1] proposed a prescription that transforms visual patterns into SDRs. This work opened up the opportunity for
this work, where we intend to test the WN in a practical setting.

First, we extended the work of [1], by doing a thorough analysis of the storage and retrieval processes of MNIST patterns
on the Willshaw Network. From this analysis, we noticed that the noise added by the memory on retrieval had some interesting
properties, and we hypothesized that this noise might be beneficial in practice.

We then built a decoding module that allowed us to visually inspect the contents of the memory and confirm our hypothesis
about the noise of retrieval. Experiments on noisy and noiseless cues were performed. Results showed that the memory exhibits
great information-completion capabilities, but struggles with cues that have an excess of information. Additionally, we tried to
use the memory and the decoder as a generative model but the results were not impressive.
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(a) Method overview

(b) Iterative generation Example: Images

(c) Iterative generation Example: Sparsity

Fig. 13. Iterative Generation: Three perspectives. A Multi-modal Willshaw network is used to generate patterns. A description and an empty code are
given to the memory as a retrieval cue. The memory returns a generation, and its sparsity is evaluated. If the sparsity of the generation is within a predefined
interval, then the generation process ends; otherwise, the generation is “sparsified” (i.e. we delete bits from it until a certain level of activity is reached). The
sparsified code is then fed back to the memory, and we repeat the process. (a): The process begins by providing the multi-modal memory with a desCode
(DC) where the description is a new noisy-X-Hot (NXH) encoding of the class we want to generate from, and the code is empty (all zeros). Then we take
the code from the retrieved desCode and evaluate its sparsity. If the sparsity is a “hit”, the process ends here. Otherwise, we “sparsify” the retrieved code,
join it with the original description, and repeat the process. (b): The patterns on the bottom row are retrieval cues that act as “samples” in the generation
process. The memory retrieves (green arrows) these samples and produces generations which are displayed on the top row. If the generation’s sparsity is
outside the acceptance interval, we randomly delete bits from the generated code (dashed red arrows) to obtain a new sample. (c): Here we plot the number
of bits throughout the iterative generation process. This graph corresponds to the same example as Fig. 13(b). The first sample has zero active bits since it
corresponds to an empty code. The sparsity of the encoding process will oscillate (blue line): When we “sparsify” we bring the number of bits down. On
retrieval, the memory will complete the missing information and add more bits. When the output of the memory falls within the acceptance interval (orange)
the generation process ends.

Finally, we proposed the Multi-Modal Willshaw Network: a new way to use the memory which serves as a framework for
practical applications. To test this framework, we experimented on the MNIST dataset. Not only did we improve the memory’s
retrieval performance, but we also successfully enabled new applications such as classification and generation.

Our results highlight the flexibility of the Multi-Modal framework to perform various tasks. Moving forward, here are some
recommendations for future work:

• While the retrieval, reconstruction, generation and classification results were good, there is still plenty of room for
improvement. A thorough analysis where multiple parameter configurations are tested will surely improve the results
reported here.

• The iterative retrieval method proposed here can be modified and applied to other tasks. Some suggested changes include:
(a) Sparsifying dense vectors with the memory itself; (b) monitoring the distribution as an acceptance measurement; and
(c) monitoring the properties of multiple modalities simultaneously to determine the end of the iterative process.

• With the addition of multiple modalities in the Willshaw Network, it might be useful to experiment with new retrieval
thresholding strategies: For instance, having one threshold for each modality.

• An analysis of the robustness of the model to demonstrate how this model does not suffer from the Grandmother cell
problem: perform tasks with the Willshaw Network where neurons randomly “die” (become permanently inactive).

• Demonstrate the ability of this model to work in different domains with the same architecture. For instance use both the
MNIST [6] and Fashion MNIST [42], or both CIFAR-10 and CIFAR-100 [43] simultaneously.

• While this work focuses on a Willshaw Network with two modalities, the idea of Multiple Modalities can be used in any
Associative Memory Model (such as the Hopfield Network [12] and the Restricted Boltzmann Machine [44]) with any
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Fig. 14. Iterative Generation with a MMWN: Generation Examples. The generation quality of this approach is better than all the other strategies presented
in this document. Almost all generations look like examples from the class that they belong to. Furthermore, there is some variance between generations of
the same class. These results were obtained with an acceptance interval of [400, 500] bits.

number of modalities. Building flexible software that allows us to continue testing this idea with a vast range of Models
and Domains is crucial.

• To use Multi-Modal associative memories, encoding and decoding prescriptions that satisfy the constraints of the model
are required. Building several of these modules is essential to test the idea of Multi-Modal Memories on a larger scale.

The biological memory is equipped with an impressive compression algorithm that can store the essential, and then infer
the details to match the perception. Associative Memories are artificial models that aim to mimic these mechanisms of their
biological counterpart. While grounded in biology and theoretically sound, these models have failed to deliver on practical
applications. In this work, we proposed the simple idea of Multiple Modalities and applied it to one of the simplest Associative
Memories. With the limited time available for a Master’s Degree project we were already able to successfully perform many
practical applications successfully. This work serves as a proof-of-concept for the idea of Multi-Modal Associative Memories
as a framework to solve Artificial Intelligence Tasks. With further research efforts, this idea can be experimented on different
models and modalities, and hopefully, get us closer to full-fill the long-standing promises of Associative Memories.
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