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Abstract—There is a consensus about information in the brain
being represented by using Sparse Distributed Representations.
These representations, however, are high-dimensional and
consequently they affect classification performance due to
the notoriously complex problem known as “the curse of
dimensionality”. In tasks for which there is a vast amount
of labeled data, Deep Learning seems to solve this issue with
many layers and a non-biologically plausible Backpropagation
algorithm. The purpose of this research is to find a way to
learn from high-dimensional sparse data side stepping these
limitations and adopting a more biologically plausible approach.
Actually, hidden units in Stochastic Models, represent hidden
correlations between present dimensions of sparse vectors.
These models can map a high-dimensional sparse vector into
a hidden layer with few hidden units, while capturing the
relevant features. Motivated by this reasons, we implement
several classifiers inspired by Stochastic Models. In order to
test them on a high-dimensional sparse data, we start by
using the sparse codes generation mechanism structured in
[1]. The implemented Stochastic Models are tested on these
codes and their performance is compared with a simple Logistic
Regression. Both the Stochastic Models and the Logistic
Regression achieve good results. However, these good results
archived by the Logistic Regression classifier led us to believe
that the generated codes lie on a low-dimensional manifold
embedded in a higher-dimensional space, which suggests that the
real dimensionality of the data is highly inferior to the number
of features. Afterwards, we propose a different way to generate
sparse data, where each class follows a multivariate normal
distribution and the sparseness is controlled by randomly
deleting values in each sample. The experiments using these
codes confirm our initial intuition as the Restricted Boltzmann
Machine shows a good generalization performance, while the
Logistic Regression overfits the training data.

Index Terms—Stochastic Models, Restricted Boltzmann Ma-
chines, Sparse Distributed Representations, Learning

I. INTRODUCTION

Traditional computer data structures cannot represent effi-
ciently all concepts, the relationships between them, and the
exceptions that each concept definition may hold.

The human brain does not have this problem: in order to
represent information, it shares neurons between concepts,
which means that a single neuron can be part of the repre-
sentation of many different concepts. Furthermore, empirical
evidence demonstrates that every region of the neocortex
represents information by using sparse activity patterns [2].
When looking at any population of neurons in the neocortex
their activity will be sparse, whenever a low percentage of
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neurons are highly active and the remaining neurons are
inactive.

Sparse Distributed Representations (SDRs) is the method
used to implement computationally the way information is
represented in the brain [3]. An SDR is a binary vector
composed of a large number of bits where each bit represents
a neuron in the neocortex.

Consider that one wants to recognize a particular activity
pattern in a neuron. Then, one says that a neuron forms
synapses to the active cells in that pattern of activity [4]. This
way, a neuron only needs to form a small number of synapses,
to accurately recognize a sparse pattern in many cells. The
formation of new synapses is the pillar of all memory in the
brain [5] [6].

Memory in the brain is called Associative Memory, in
which different SDRs (input patterns) become associated with
one another depending on the similarity between them [7].
This means, SDRs are recalled through “association” with
other SDRs. In Associative Memories, there is no centralized
memory and no random access [8]. Every neuron present in
the brain is an integral part of each SDR, which means each
neuron participates in forming both SDRs and in learning the
associations between them [5] [9].

A. Problem

As discussed previously, SDRs are binary vectors composed
of many bits [10], which means we are dealing with a high
dimensional input. These sparse representations are known
to work well with associative memories but when we try to
classify them, we must deal with some problems.

The main problem that brought us here is known as “the
curse of dimensionality” caused by the high-dimensionality
of SDRs. Classic Machine Learning models, for example,
Feed-Forward Networks, are not good at dealing with high-
dimensional sparse inputs given the vast number of parameters.
[11], [12].

Many machine learning problems become exceedingly dif-
ficult when the number of dimensions in the data is high. As
discussed in [13] the number of possible distinct configurations
of a set of variables increases exponentially with the number
of variables.

There is no universal answer for how data sparsity would
affect learning convergence behaviour in Machine Learning
models [14]. Though, [12] discusses that most features in high-
dimensional vectors are usually non-informative or noisy and
may decrease the model’s generalization performance.



In a Neural Network, the input, hidden, and output variables
are represented by nodes, and the weight parameters are
represented by links between the nodes. Therefore, considering
an SDR as an input (high dimensionality vector), the number
of weights from the input layer to the first hidden layer will be
the number of entries of the binary input vector multiplied by
the number of hidden units in the first hidden layer [13]. This
way, the model will have a really large number of parameters
making it prone to overfitting.

The phenomenon of overfitting occurs when a network fits
the training data more than it should. When overfit happens,
it captures noise from the training data. This leads to a model
with weak generalization capability, increasing the error when
classifying new instances from the test set [15].

II. MOTIVATION

As argued in [11] and discussed in the former section,
a well-known problem in Machine Learning is sparse data,
which alters the performance of Machine Learning algorithms
and their ability to calculate accurate predictions. A high-
dimensional sparse input leads to the well-known problem
denominated “the curse of dimensionality”.

The purpose of this thesis is to show that it is possible
to learn good and general classifiers from high-dimensional
sparse representations generated by biologically plausible
models while, unlike the deep learning approach, staying under
the biological constraints.

With this idea in mind, we chose to investigate Stochastic
Models, i.e., Restricted Boltzmann Machine (RBM) and Deep
Belief Network (DBN), to classify high-dimensional sparse
data motivated on the following arguments:

• As proved in [1], Willshaw’s model of associative mem-
ory has been showed to work well with high-dimensional
sparse codes. Therefore, given the inspiration of Stochas-
tic Models on Associative Memories, they seem to be a
great candidate to perform well with those codes.

• Boltzmann Machines have local learning rules (Hebbian
rule), which are biologically plausible [16].

• Hidden units in Stochastic Models represent hidden cor-
relations between present dimensions of sparse vectors.
As these models only learn the correlation between active
units, then stochastic models can map a high-dimensional
sparse vector into a hidden layer with few hidden units,
while capturing the relevant features.

The later argument represents the core motivation of using
Stochastic Models to classify high-dimensional sparse data.
These models learn the correlations between active neurons,
which means the hidden units will exclusively change their
state based on the input units that are different from zero.
This allow Stochastic Models to have a compact hidden layer
that captures the information present on the high-dimensional
sparse data without falling into overfitting.

To deeply ground this motivation a trivial experiment was
performed in which, a RBM was used to classify a sample of
the original binarized MNIST dataset and a flipped version of
that same sample. In Figure 1, the ten top images represent

the binarized version of the original MNIST, in which the bits
representing each digit are set to 1 and the background infor-
mation to 0. The ten bottom images represent a flipped sample
of the original binarized MNIST, where the bits representing
each digit are set to 0 and the background information to 1.

Fig. 1. Ten image sample of MNIST test set. The ten top images represents
a binarized version of an original MNIST sample, while the bottom images
represent the same sample flipping the bits.

We considered a RBM with the same architecture to classify
both versions of the binarized MNIST, the original and the
flipped one. If our intuition points in the right direction, the
model should be able to accurately classify the original version
in which the digits information are represented by 1s and fail
on the flipped version in which the digits are represented by
0s.

With a sample of 5000 training examples and 1000 test
examples of both datasets, in the experiment with the original
dataset an accuracy of 91.6% was achieved in the train and
86.2% in the test set. In the flipped version of the data the
train and test accuracies were, respectively, 15.5% and 13.8%.

By analysing the results achieved by a RBM with 500 hid-
den units, one can conclude that in the original version of the
binarized MNIST, the model learns the correlations between
active neurons, which represent the digits. As the active bits
represent a relatively small percentage of each sample, the
model is able to capture the correlations between these active
features and have a good generalization performance.

In the flipped version of the binarized MNIST, the RBM
fails completely. This is justified by the fact that this model
exclusively learns correlations between present dimensions
and not between 0s. With a hidden layer of 500 units, the
RBM is unable to catch the correlations between all the active
neurons that represent the background, and consequently fails
when classifying the flipped version of the MNIST.

This small experiment validates the strong potential of
Stochastic Models to deal with high-dimensional sparse inputs,
as they can capture the correlation between present dimensions
of the input data.

By performing the same experiment with the Logistic
Regression (LR) classifier, we achieve similar results when
classifying the original and the flipped version of the MNIST
sample.

The similar accuracy results achieved by LR in both prob-
lems suggests that this model learns the information given by
1s in the same way it does with 0s. This implies that, when
LR is dealing with high-dimensional sparse inputs, it learns all
the dimensions of the sparse vector. Consequently, this model
is prone to fall into overfitting.



On the other hand, the RBM classifier learns exclusively
the correlations between active neurons. Given that high-
dimensional sparse inputs have a low percentage of 1s, this
model can map the high-dimensional sparse vector into a
hidden layer with few hidden units, while capturing the
relevant features.

But does this really indicates that the RBM avoids the
overfitting problem when classifying high-dimensional sparse
data? The purpose of this research work is to answer this
question by investigating the potentiality of the Stochastic
Models to deal with high-dimensional sparse data.

III. STOCHASTIC MODELS

Stochastic Models show a great potential to solve the
presented problem, before diving into the experiments we need
a theoretical overview on them.

A. Restricted Boltzmann Machine

Restricted Boltzmann Machines were initially invented un-
der the name Harmonium [17]. They are a variant of Boltz-
mann machines, with the restriction that there is a single layer
of m visible units v = (v1, v2, ..., vm) and a single layer of
n hidden units h = (h1, h2, ..., hn) with no visible-visible or
hidden-hidden connections.

The energy function of a restricted Boltzmann machine can
be written as

H(v, h) = −
n∑

i=1

m∑
j=1

wijhivj −
m∑
j=1

bjvj −
n∑

i=1

cihi. (1)

For all i ∈ 1, ..., n and j ∈ 1, ...,m, wij is a real valued
weight associated with the edge between the units vj and hi,
and bj and ci are real valued bias terms associated with unit j
of the visible layer and unit i of the hidden layer, respectively.

c1 c2 c3 cn...

b1 b2 b3 bm...

Wnm

h1 h2 h3 hn

v1 v2 v3 vm

Fig. 2. Network graph of an RBM with n hidden units and m visible units

The graph of an RBM has no connections between two
variables of the same layer, as we can observe in Figure 2. In
terms of probability, this means that the visible variables are
independent given the state of the hidden variables and vice
versa:

p(h|v) =
n∏

i=1

p(hi|v), (2)

and

p(v|h) =
m∏
j=1

p(vj |h). (3)

The conditional independence between the variables in the
same layer makes Gibbs sampling an easy task. Instead of
sampling new values for all variables subsequently, the states
of all variables in each layer can be sampled jointly. Thus,
Gibbs sampling can be performed sampling a new state h for
the hidden neurons based on p(h|v) and sampling a state v for
the visible layer based on p(v|h). This process is also referred
to as block Gibbs sampling [18] and it represents the main
advantage in using Restricted Boltzmann Machines instead of
Boltzmann Machines as the Negative phase of the learning
process (unlearning phase) becomes considerably simplified
[19].

The weights update of the RBM is computed using a type of
learning rule similar to the one used in Boltzmann machines.
In particular, it is possible to create an efficient algorithm
based on mini-batches. The weights wij are initialized to small
values, and for the current set of weights wij , they are updated
as follows:

1) Positive phase: Visible units are clamped and the hidden
units are randomly chosen (0 or 1). The algorithm uses
a mini-batch of training instances, and computes the
probability of the state of each hidden unit in exactly
one step. Then a single sample of the state of each
hidden unit is generated from this probability. This
process is repeated for each element in a mini-batch
of training instances. The correlation between these
different training instances of vi and generated instances
of hj is computed; it is denoted by ⟨vihj⟩data. This
correlation is essentially the average product between
each such pair of visible and hidden units [20].

2) Negative phase: Visible and hidden units are chosen
randomly (0 or 1). The algorithm starts with a mini-
batch of training instances and then for each training
instance, it goes through a phase of Gibbs sampling
after starting with randomly initialized states. This is
achieved by using Equations (2) and (3) to compute
the probabilities of the visible and hidden units, and
using these probabilities to draw samples. The values
of vi and hj at thermal equilibrium are used to compute
⟨vihj⟩model in the same way as the positive phase [20].

We can write our update rule as in Boltzmann Machines:

∆wij = η · (⟨vihj⟩data − ⟨vihj⟩model). (4)

After training the model we clamp the visible units with
some configuration squery. The network will converge to an
attractor (stored pattern) after performing several steps using
the update rule [21].



1) Contrastive divergence: Obtaining unbiased estimates of
the log-likelihood gradient using Markov Chain Monte Carlo
(MCMC) methods typically requires many sampling steps.
However, it has been shown that estimates obtained after
running the chain for just a few steps can be sufficient for
model training [18] [22].

Contrastive divergence (CD) speeds up the computing time
of ⟨vihj⟩model as it does not use Gibbs sampling to reach
thermal equilibrium. In this algorithm, the training phase starts
by clamping the visible units with v0 and the hidden layer units
h0 can be computed by

p(hi = 1|v) = σ

 n∑
j=1

wij · vj + ci

 , (5)

that define

⟨vihj⟩0data . (6)

As we saw previously there are no visible-visible or hidden-
hidden connections. For that reason each unit hi is independent
of the other hidden units. Therefore, h0 can be computed in
parallel as each hidden unit only depends on the visible units
connected to it [23].

The second step consists in updating all the visible units in
parallel to get a “reconstruction” v1, which can be computed
by

p(vi = 1|h) = σ

 n∑
j=1

wij · hj + bi

 , (7)

that define

⟨vihj⟩1recon . (8)

The visible units are now clamped with v1 and the hidden
layer units h1 are computed in parallel using Equation (5).

The reconstruction algorithm can be computed τ times or
until convergence is reached. Sometimes CD may take many
iterations (1 ≪ τ) to converge. When τ = 1 we are computing
a single-step reconstruction [24] [7].

The weights update computed for τ steps of the reconstruc-
tion algorithm is given by

∆wij = η · (⟨vihj⟩0data − ⟨vihj⟩τrecon). (9)

j j

i i

<vihj>
0 <vihj>

1

t = 0
data

t = 1
reconstruction

Fig. 3. Contrastive divergence with single-step reconstruction

2) Persistent Contrastive divergence: A different strategy
that resolves many of the problems with CD is to initialize
the Markov chains at each gradient step with their states
from the previous gradient step. This approach was first
discovered under the name stochastic maximum likelihood
(SML) in the applied mathematics and statistics community
and later independently rediscovered under the name persistent
contrastive divergence (PCD) [25].

The idea behind this approach is that, as long as the steps
taken by the stochastic gradient algorithm are small, the model
from the previous step will be similar to the current model. It
follows that the samples from the previous model’s distribution
will be very close to being fair samples from the current
model’s distribution.

As each Markov chain is continually updated throughout the
learning process, rather than restarted at each gradient step, the
chains are free to wander far enough to find all the model’s
minima. PCD is thus considerably more resistant to forming
models with spurious minima than the original CD algorithm
is [26].

B. RBM for classification

Until now we have described RBM as a generative model,
where given a corrupted pattern we can reconstruct the original
pattern. Actually, this section describes how RBM model can
also be used as a classifier.

First we have the training phase, where the RBM learns to
model the joint probability distribution of input data (explana-
tory variables) and the corresponding labels (output variables),
both represented by the visible units of the model as shown
in Figure 4. The RBM is trained with one of the previously
described algorithm: either CD (described in III-A1) or PCD
(described in III-A2).

Following the training phase, we have the sampling where
the label corresponding to an input example can be obtained
by fixing the visible variables that correspond to the data
and then sampling the remaining visible variables allocated
to the labels from the joined probability distribution of data
and labels modeled by the RBM. Hence, a new input example
can be clamped to the corresponding visible neurons and the
label can be predicted by sampling [18] [27].

... ...

label neurons data neurons

visible layer

... hidden layer

Fig. 4. Restricted Boltzmann Machine (RBM) that models the joint proba-
bility distribution of input images and the corresponding labels.



C. Deep Belief Nets

A Deep Belief Network (DBN) is a powerful generative
model that uses a deep architecture of multiple stacks of RBM
.

DBNs were one of the first non-convolutional models to
successfully admit training of deep architectures [28], [29].
Deep belief networks are generative models composed of sev-
eral layers of latent variables (hidden units) with connections
between adjacent layers but not between units within each
layer [30], [13]. Deep belief networks capture the higher-level
representations of input features [24].

There is an efficient, layer-by-layer procedure for learning
the top-down, generative weights that determine how the
variables in one layer depend on the variables in the layer
above, and is composed by the following steps:

1) An RBM, as discussed in the section above, is trained
directly on the input data, therefore the stochastic units
in the hidden layer of the RBM are able to capture the
important features that characterize the input data.

2) The activations of the trained features are then treated
as input data which are used to train a second RBM. In
effect, we can learn the features of features in a second
hidden layer.

3) The process of learning the features of features is
continued until the number n of hidden layers is reached,
which is the same of saying until n RBMs have been
trained.

The main idea is to apply DBNs in order to transform a Sparse
Distributed Representation into a compact representation given
the dimensionality reduction from layer to layer. The compact
representation generated by this model will then be used for
classification.

IV. EXPERIMENTS

This section starts describing the first used datasets and
briefly introduce the generation process of the sparse data.

Next, the first set of performed experiments are described in
order to understand the potential of the previously described
Stochastic Models. By baring in mind that a reliable model is
crucial, some baseline experiments were carried out and their
complexity was incrementally increased until reaching a set
of suitable models, inspired in Stochastic Models and capable
of performing classification.

To understand whether or not stochastic models have a
better generalization performance than classic Machine Learn-
ing models when dealing with high-dimensional sparse data,
a comparison was made between the implemented models
and a LR. The good test accuracy achieved by the LR when
classifying the generated high-dimensional sparse data, led to
the suspicion that these generated datasets were “living” in a
lower dimensional space.

Subsequently, a different way to generate high-dimensional
sparse data was proposed, where each class follows a multi-
variate normal distribution and the sparseness of the data is
controlled by deleting the values of random features in each

sample. By investigating the RBM and the LR performance
with this sparse data, we were able to conclude that the RBM
shows a good generalization performance, while LR falls into
overfitting.

A. Datasets description

Before diving into the experiments it is important to describe
the datasets used in the research process. The first dataset we
briefly describe is the MNIST, which was the starting point
for our experimental analysis. Then, the encoding process that
provided the MNIST sparse representations was described and
used for the core experiments.

1) MNIST: The MNIST dataset1, created by Yann Le Cun,
contains 60,000 digits in the range 0 to 9 for training image
recognition models, and another 10,000 digits as test data.
Each digit is normalized and centered in a gray-level image
with size 28×28, or with 784 pixel in total.

2) Sparse MNIST generation: The strategy used to generate
the sparse codes is structured in [1]. In this paper, Sa-Couto
& Wichert propose an encoding function that maps visual
patterns into informative binary sparse vectors. This encoding
requires the following two steps:

1) The Retinotopic Step: This first layer performs a local
feature extraction which is organized in K planes of
I x J feature extraction units. Each image is parsed
with K sliding windows, with size f x f, to extract
the K most relevant visual features of the images. The
occurrence of the extracted features is then signalled at
the middle layer. These features are determined before-
hand using the unsupervised K-means algorithm. This
layer performs information compression by establishing
a many-to-one relationship between groups of pixels and
receptive units. Thereby, this step transforms the dense
representation presented in the input layer into a sparse
representation.

2) The Object-Dependent Step: The fixed coordinate sys-
tem where the features occurrences are signalled is
turned into an object-dependent, radius one polar co-
ordinate system. In this step, the mapping of the pre-
viously extracted features for each plane K to the new
coordinate system is performed by a Q x Q units plane.
This operation provides invariance to size and position,
and makes the resulting representations well-distributed
since the features detected in the previous step will be
mapped quasi-uniformly into all the dimensions of the
object space.

The encoding function proposed in [1] requires as input the
following parameters: K specifies the number of features we
want to be extracted, f x f specifies the window size that will
be parsed trough the image to extract the K most relevant
features, Q represents the size of the new coordinate system
plane and, finally, T what that controls the percentage of
similarity needed to recognize a feature in an image.

1http://yann.lecun.com/exdb/mnist/



Thus, in order to generate the sparse representations of the
MNIST dataset we provide the encoder with the train and
test of the MNIST handwritten digits as well as the defined
parameters, and the encoder function returns a train and a test
sets with 3 dimensions. These returned sets represent a sparse
binary MNIST encoding with the following shape: (N, QxQ,
K), where N is the number of samples we encoded, Q and K
are the parameters described above.

B. Classification using Stochastic Models

In this section, experiments with classifiers inspired in
stochastic models were performed, given that the main goal of
this thesis is to explore the potentiality of stochastic models
to deal with high dimensional sparse inputs.

1) Restricted Boltzmann Machine: In order to use the RBM
model to perform classification, we followed the architecture
described in section III-B. In this set of experiments we
started by training the model on labeled data, MNIST images
combined with ten binary indicator variables, one of which
is set to 1 indicating that the image shows a particular digit
while the others are set to 0, this is also known as one hot
encoding representation. In order to take the most of our
model capacities we are required to perform parameter tuning
during training, i.e. adjusting the learning rate, momentum and
weight-decay during learning. Choosing the best parameters
combination is not an easy task, so guided by [31], a practical
guide to train Restricted Boltzmann Machines, and with some
experimental analysis we managed to reduce significantly the
reconstruction error.

In the prediction phase two different approaches were
implemented and tested. In the first approach, an image was
given to the model and the label corresponding to that input
image could be obtained by fixing the image neurons and
performing N steps of Gibbs Sampling until a reconstruction
of the ten visible units corresponding to the class is obtained.
The alternative approach consists of calculating the probability
of activation for the ten visible units corresponding to the class.
To calculate this probability, one needs to multiply the hidden
units’ probabilities by the weights entries that correspond
to the label units and sum the bias of the visible units
corresponding to the label. We apply the softmax function to
this vector and the label corresponding to that input image is
the index of the maximum probability value.

If the aim is to show that it is possible to produce a good
and general classifier from Stochastic Models, particularly
RBM and DBN, first one needs to understand how these
models deal with high-dimensional sparse data. Thus, before
exploring deeper models we performed an experiment where
we compared the performance of a LR and a RBM. The main
purpose of this set of experiments was to analyse the behavior
of these two models given sparse MNIST datasets generated
with increasing sparseness.

To generate the sparse codes for these experiments, we
used the strategy described in section IV-A2. The encoder
parameters were defined as K = 7, which means we consider
the seven most significant features, each defined as a 5x5

window. Parameter Q was defined as Q = 12, which means
that for each K there is a new coordinate system plane with
size Q x Q. Additionally, given the high computational time
of these experiments, we started by using a sample of the
sparse datasets, 5000 training samples and 1000 test samples.
By considering the above information, one has a training set
with shape (5000, 144, 7) and a test set with shape (1000,
144, 7). The generated data was reshaped to a two-dimensional
array before serving as input to the RBM model, so the final
dimensionality of the data was given by Q x Q x K, which in
this case was 1018. Thereby, the dimensionality of the data
indicates the number of visible units of the model.

As discussed above, in section IV-A2, parameter T what
defines the level of similarity that is needed for a feature
in the image to be considered, which means that a higher
T what requires a higher similarity for the feature to be
recognized and, consequently, the sparseness of the generated
codes increases. Therefore, for these set of experiments we
have fixed the remaining parameters and increased T what,
which indirectly means that the sparseness of the data was
increased.

In Figure 5 the T what parameter was set to each x-
axis value, so that the behaviour of the RBM and LR can
be compared when increasing the sparsity of the data, i.e.
increasing the level of similarity needed to consider a feature
in the image.

Fig. 5. Train and test accuracy of LR and RBM given sparse MNIST datasets
with increasing sparseness

By analysing the plot in Figure 5 one can observe that the
RBM shows a smaller gap between train and test accuracies,
so it seems to be generalizing the training set better than the
LR.

Moreover, as mentioned above, the experiments plotted
in Figure 5 consider just a sample of the generated sparse
datasets. Thus, to understand the behavior of the RBM model
and its potentiality to learn a good and general classifier,
the dataset with T what = 0.85 was chosen and the same
experiment with all the dataset performed. In Table I, in
the columns referring to Sparse dataset 1, one has the best
accuracy of the RBM and LR, both with this dataset.

In fact, the sparse codes we generated for the experiments
plotted in Figure 5 had all the same dimensionality. To



conclude the experiments that compare these two classifiers,
a much higher dimensional and sparser dataset was generated
and the same experiments repeated. The encoder parameters
were defined as K = 30, which means that the thirty most
significant features were considered and Q = 18, which
means that for each K there is a new coordinate system
plane with size Q x Q. By considering these parameters, the
dimensionality of the generated sparse dataset is 9720 and the
best accuracy results are in Table I, in the columns referring
to Sparse dataset 2.

Once again the best results of the RBM model were with
500 hidden units for both datasets. Concerning the remaining
parameters, the learning rate was initialized to 0.01 and
decreased during training until reaching 0.001, the momentum
used was 0.5 to start the learning process and then increased
to 0.9. In these experiments we did not need to use any
regularization (Weight-Decay).

By analysing the results in Table I, one can conclude that LR
has a slightly higher accuracy than the RBM. By observing the
difference between train and test accuracies in Sparse dataset
2, the RBM seems to be better generalizing the rules learned
during training than LR. Guided by this conclusion, the Sparse
dataset 2 was selected to continue our research described in
the following sections.

In what follows, we will introduce the DBN architecture
used for classification with the intent to explore whether this
model is able to overtake the accuracy reached in Sparse
dataset 2 by the models described above.

2) Deep Belief Network: To implement the DBN, the archi-
tecture presented in Figure 6 inspired by the paper “Learning
multiple layers of representation” [28] was used. Instead of
having one RBM, this model consists of two stacked RBMs,
which is called a DBN. The first RBM will be trained just
on the image neurons which are the high dimensional part of
our dataset. Then, the activation of the trained features in the
first RBM combined with ten binary indicator variables which
represent the class, are treated as input data to train the second
RBM. In effect, the features of features can be learned in the
second hidden layer.

Afterwards, like in the RBM model, one has the prediction
phase where the label corresponding to an input image is
obtained by the index of the maximum probability value.

class neurons 

Image neurons

RBM 

RBM 

Fig. 6. DBN with 2 layers that models the joint probability distribution of
hidden activations given the input images and the corresponding labels.

The number of hidden units in each layer corresponds to

the features of the input images stored in the model. So, it is
crucial to find the adequate number of hidden units as well as
hidden layers, since models with too few or too many hidden
units can result in slow learning and poor performance.

The DBN layers were trained with an initial learning rate of
0.01 and an initial momentum of 0.5, which were decreased
and increased, respectively, during the learning process.

By considering the training parameterization described
above to train the Sparse dataset 2, a comparison between a 2
layered DBN and a 3 layered DBN was made. Both models
start with a first layer of 500 hidden units, then the DBN with
3 layers has another 500 hidden units layer preceding the last
layer. Increasing number of hidden units were tested in the
last layer of both models, considering this is the layer that
receives the label neurons as input in both DBNs.

The maximum accuracy with this architecture was achieved
by the DBN with 2 layers, with 2000 hidden units in the
second layer. In fact, this model surpasses the test accuracy
achieved by the LR with a train and test accuracy of 98.09%
and 97.94%, respectively. Besides having a better accuracy, we
continue to have close train and test accuracies which indicates
that it has a high generalization power, which means that the
rules learned during training are equally valid to the test set.

3) Restricted Boltzmann Machine followed by Logistic Re-
gression: In a second stage of experiments, we tried a different
approach. Instead of using a RBM or a DBN to model the joint
probability distribution of input images and the corresponding
labels, we used them to model the input images into activation
of the hidden units. In this new approach the classification is
not performed by the Stochastic Models. They have the role
of providing the classifier, which in this case is a LR, with a
compact representation of the input.

The main idea behind the approach is to give the images
as input to the RBM. Then, after the model is trained, it
computes the activations of the hidden units, which give a
compact representation of the input. That compact generated
representation is then used as input to the LR. In this way,
instead of giving a high-dimensional sparse vector to the LR,
a compact representation generated by the hidden units of the
RBM is provided.

Regarding the experiments performed with the sparse
MNIST dataset, the difference between the train and test
accuracies slightly decreases compared with the LR applied
directly on the sparse dataset. The accuracy with a 5000 hidden
unit RBM followed by a LR is 100% on the training set and
97.98% on the test set.

In fact, one can conclude that the LR classifier does not
produce significantly better results when receiving a hidden
representation of the RBM instead of the sparse codes. In
addition, the large number of hidden units extremely increases
the time spent in the learning process and it does not reduce
significantly the difference between train and test accuracies.

The stochastic models that were used before as classifiers,
now have the role of reducing the input’s dimensionality.
Consequently, the LR, instead of receiving a high-dimensional
sparse input, it receives a compact representation given by the



TABLE I
TRAIN AND TEST ACCURACY OF RBM AND LR GIVEN TWO DIFFERENT GENERATED SPARSE DATASETS

Sparse dataset 1 Sparse dataset 2
Train accuracy Test accuracy Train accuracy Test accuracy

Restricted Boltzmann Machine 92.35% 92.02% 97.35% 96.98%
Logistic Regression 93.62% 92.77% 100% 97.64%

Stochastic Model’s hidden units. In this section, we concluded
that the RBM does not provide the gradual dimensionality
reduction we needed to decrease the difference between train
and test accuracies. Thus, in the following section, the use of
the DBN model to obtain a gradual dimensionality reduction
was explored.

4) Deep Belief Network followed by Logistic Regression:
Instead of having just one hidden layer to get the compact
hidden representation, one can have a gradual dimensionality
reduction. This is possible by stacking more than one RBM,
which is also known as a DBN.

Various experiments were carried out with this architecture
to understand if the dimensionality reduction from layer to
layer could increases even more the accuracy when classi-
fying the sparse codes. In fact, after analysing all the results
obtained, the best performance was achieved with a DBN with
3 layers, in which the first layer has 2000 hidden units, the sec-
ond 1000 and the last 500. The train and test accuracies with
this DBN architecture were 98.32% and 97.36%, respectively.

Despite the dimensionality reduction given by the decreas-
ing number of hidden units from one layer to the next, this
model was not the one that resulted in a better accuracy.

In fact, it is noteworthy that the difference between train
and test accuracies was reduced. By providing a compact
representation as input to the LR, the generalization capability
of the LR increased. However, the test accuracy slightly
decreased which means that the hidden compact representation
of the input does not perfectly represent the high-dimensional
sparse input.

C. Models comparison

Throughout the former sections, the implementation of
several Stochastic Models was described as well as the results
derived from the study of their behaviour when dealing with
the high-dimensional sparse dataset generated from MNIST.
To make the final remarks about the performance of these
models given the proposed dataset, in Table II the best
performance results of each studied model are presented.

All the models presented in the table show to perform
well given a high-dimensional sparse dataset generated from
MNIST. The model which showed a better test performance
was the RBM followed by a LR, however, the DBN with 2
hidden layers achieved almost the same accuracy.

One of the advantages of using the RBM and DBN is the
fact that besides classifiers, they are generative models. Con-
sequently, additionally to predicting the labels of the dataset,
they can perform image reconstruction, whereas, in the other
models the classification is done by a LR, which is exclusively

a classifier. Besides, these classifiers show a smaller difference
between train and test accuracies, which means that they
have a greater generalization performance when classifying the
high-dimensional sparse dataset generated from the original
MNIST.

Actually, the LR scores 100% on the training set, which
suggests that this model is highly adapted to the training
data and consequently more prone to overfitting. However,
the good results archived by the LR classifier in the test
set leave us wondering whether or not these generated codes
are high-dimensional and sparse. It is plausible to think that
the generated sparse data lies on a low-dimensional manifold
embedded in a higher-dimensional space. As a result, the
learning problem becomes too easy and the LR can accurately
classify the test set. To have a well-grounded research one
cannot be restricted to the generated MNIST sparse codes. In
the next section, a deeper research with a different way to
generate sparse data is presented.

D. Learn from a Sparse Normal Distributed Dataset

Revisiting the problem raised in the former section, it is
plausible to consider that the generated sparse MNIST data
lies on a low-dimensional manifold embedded in a higher-
dimensional space, which means that, although the data has
many features, it only has a few degrees of freedom.

With this idea in mind, and with the desire to understand if
the RBM model accurately classifies high-dimensional sparse
data while LR falls into overfitting, several experiments were
carried out in which both a LR and a RBM had to perform
the same classification task.

In fact, generating binary sparse data is not a trivial task
as it is hard to find a complexity balance in the learning
problem. Thus, instead of generating binary data, we decided
to generate a dataset where each class follows a multivariate
normal distribution.

The implementation of the RBM we used in the experiments
is modelled with Bernoulli visible and hidden units, which
means that this RBM is prepared to receive input data in
the range [0,1]. By considering that the generated data is
real-valued, some exploratory experiments with a Gaussian-
Bernoulli RBM were performed, but tuning the value of
the Standard Deviation parameter is a hard task, which can
produce an unstable learning process [31].

Since the expected results using Gaussian visible units were
not achieved, the Bernoulli-Bernoulli RBM was explored to
address this problem. In fact, the only difference between using
Bernoulli or Gaussian visible units occurs when sampling
the data visible units of the negative phase of the learning



TABLE II
TRAIN AND TEST ACCURACY OF ALL THE MODELS IMPLEMENTED CONSIDERING THE SAME SPARSE DATASET

Train accuracy Test accuracy
Logistic Regression 100% 97.64%

Restricted Boltzmann Machine (RBM) 97.35% 96.98%
Deep Belief Network (DBN) 98.09% 97.94%

RBM followed by Logistic Regression 100% 97.98%
DBN followed by Logistic Regression 98.32% 97.36%

algorithm. Constraining the values of the visible units to be
between 0 and 1 imparts a kind of regularization to the learning
process. In the sampling phase, the use of Bernoulli visible
units is necessary as the sampled label is binary.

In the next steps, the dataset generation pipeline and the
experiments performed are explained, with the aim of reaching
meaningful conclusions on the behaviour of LR with sparse
data, compared with the Stochastic Models; in this case, only
the RBM model was addressed.

1) Dataset generation: To reach the desired results, we
start by explaining the dataset generation. Each dataset is
generated with two classes, in which each one follows a
Gaussian distribution. The first half of the samples belong to
class 0 and follow a Gaussian distribution with mean centered
in the origin, the other half corresponds to class 1 and follows
another Gaussian distribution with mean centered in five. The
covariance matrix for each class is defined as a diagonal
matrix, in which the diagonal values are set to the norm of the
difference between the mean vector of each class multiplied
by a small number as to reach a good balance in the problem
complexity.

Moreover, the number of features will be further defined for
each experiment. In the case the dataset to be is intended to
be dense, the number of features is set to a low value, whereas
in the case the dataset is intended to be high-dimensional, the
number of features is fixed to a high value.

2) Pipeline: With the objective of structuring the steps
performed by the experiments, a simple pipeline is described.
Thus, for each experiment, we started by setting the parameters
and then running 10 times the following pipeline:

1) Populating the dataset by sampling from the two mul-
tivariate normal distribution with the previously defined
parameters and associate each multivariate normal dis-
tribution to a class, either 0 or 1.

2) Centring the data, which consists in subtracting the mean
of each feature to every value of that feature.

3) Transforming the dataset into sparse data, which means
choosing a few random features to keep in each sample
and set the remaining features to zero.

4) Dividing the samples of the dataset into train and test.
For this step we use the function train test split()
from the sklearn library was used, in which the input
parameter test size was set to 20%.

5) Training a LR model with the generated train set.
6) Evaluating a LR model by computing and storing the

train and test accuracies.
7) Training the RBM with the generated train set using

PCD algorithm.
8) Evaluating the RBM by performing the Gibbs sampling

to get the reconstruction of the class unit for both train
and test sets (explained with more detail in section
III-B). After having all the reconstructions, the model’s
train and test accuracies can be computed and stored.

After running the described pipeline, four lists with 10
train and test accuracy values for both models were obtained.
Subsequently, the mean and the standard deviation for each
list was calculated. In the end, a single train accuracy for both
models and a single test accuracy for both models were stored,
as well as the respective standard deviations.

3) Experimental Analysis: This research was instigated
by the desire to understand if Stochastic Models perform
better than classic Machine Learning models, like LR, when
classifying high-dimensional sparse data. For that reason, and
with the aim of having a baseline experiment which guided the
next steps, a comparison was made with the LR performance
classifying a non-sparse dense dataset and a high-dimensional
sparse dataset.

Starting by the dense dataset, it was generated as described
in section IV-D1. For the dataset to be dense, the number of
features was fixed to 500 and all the values of the data were
kept. When generating the high-dimensional sparse dataset, the
methodology described in the section IV-D1 was also used. In
this case, the number of features was set to 5000. Furthermore,
the sparsity was fixed to 95%, which means that for each
sample 5% of the features were kept and the remaining values
set to 0.

In Figure 7, the results show that LR performs well when
the dataset is dense, with a mean train accuracy of 100% and
a mean test accuracy of 99.25%. However, when analysing its
performance on the high-dimensional sparse dataset a huge
overfitting is observed, with a mean train accuracy of 100%
and a mean test accuracy of 63.5%.

This first experiment provides a baseline to guide the next
steps. In what follows, the intend was to show that the
RBM performs accurately in a classification task with high-
dimensional sparse data. Before diving into the experiments,
the parameters must be defined. With these experiments, the
aim was to access the behaviour of a LR and a RBM with
increasing sparseness of the dataset. For this reason, the
remaining parameters of both models were fixed to the same



Fig. 7. Performance of the LR in a dense versus a high-dimensional sparse
dataset.

values, as to achieve a trustful comparison between models.
The number of samples was fixed to 2000 and the dimen-

sionality of the input to 5000. As far as the parameters of the
RBM architecture were concerned, the number of hidden units
was set to 500. Additionally, a batch size of 50 and a learning
rate of 0.1 was used.

With the final objective of taking meaningful conclusions
about both models when the dataset sparsity increases, i.e.,
the number of zero values increases, the pipeline described
in section IV-D2 was followed. To make an easier comparison
between models, the sparsity value was set to each x-axis value
and the mean accuracies of LR and RBM were plotted in
Figure 8.

Fig. 8. Comparison between LR and RBM classifiers with increasing
percentage of sparseness.

By analysing the results plotted in Figure 8, one can observe
that the LR classifier has an accuracy of 100% on the training
set, though it is not able to perform accurately on the test set,
which suggests that this model is learning the noise in the
training data. As the data gets sparser the learning problem
becomes harder and test set accuracy decreases. This means
LR can represent the training set of sparse data perfectly but
unable to generalize, which result in a poor performance in
the test set.

On the contrary, the RBM classifier can generalize the
learning problem. Although, with the increasing sparseness the
model’s performance decreases, it never falls into overfitting
as LR does. When the data is generated with 95% sparseness,
the LR has a mean test accuracy of 63.5%, while the RBM
shows a mean train and test accuracies of 75.67% and 73.15%,
respectively. So, comparing the test set performance, the RBM
is nearly 10% more accurate than LR.

The good results and generalization performance achieved
by the RBM classifier can be mainly justified by the fact that it
has a hidden layer that represents hidden correlations between
active features of sparse vectors. Therefore, this model can
map a high-dimensional sparse vector into a lower dimensional
hidden layer, which would catch the relevant features present
on the high-dimensional sparse vector.

Besides, the LR learns the conditional probability of the
class given the features, while the RBM learns the joint
probability of the features and class. The difference between
learning the conditional or the joint probability may be a
factor influencing the performance of each model. The LR
is learning a simpler problem than the RBM. Thus, given its
huge capacity, instead of learning just the training patterns,
the model is also learning the noise. Consequently, the LR
becomes too adapted to the training set, which leads to the
overfitting problem.

This justification seems to be well grounded, although one
may still wonder: Can the good performance of the RBM be
justified by the presence of hidden units, which makes it a
non-linear classifier?

To answer this question, a comparison was made between
the performances of the RBM and a MLP. To derive meaning-
ful conclusions, a RBM and a MLP with the same number of
hidden units were defined. Additionally, the MLP activation
function for the hidden layer units used was the logistic
sigmoid function.

More experiments were carried out, in which normally dis-
tributed datasets were created following the pipeline described
in section IV-D2. However, instead of comparing the RBM to a
LR, the comparison was made with a MLP. In this experiment,
the number of samples was fixed to 2000, the dimensionality
of the input to 5000 and the number of hidden units of the
RBM and the MLP is fixed to 500. With these parameters and
a sparsity of 95%, the results in Table III were obtained.

By analysing the results, the MLP classifier has an accuracy
of 100% on the training set, although it is not able to perform
accurately on the test set. This means that the model is
overfitting the training data, and so, it lacks generalization
capability.

As a matter of fact, the overfitting undergone by the MLP
model led to the conclusion that, the generalization capability
of the RBM is not a consequence of being a non-linear
classifier.

Consequently, the good generalization performance of the
RBM is justified by the hidden neurons that represent correla-
tions exclusively between active features of the sparse vectors.
The model receives a high-dimensional sparse vector and by



TABLE III
TRAIN AND TEST MEAN ACCURACIES OF MLP AND RBM GIVEN THE GENERATED DATA.

Mean train accuracy Mean test accuracy
Multi-Layer Perceptron (MLP) 100% 64.12%

Restricted Boltzmann Machine (RBM) 76.18% 73.98%

capturing the relevant features in a much lower dimensional
hidden layer can perform classification without falling into
overfitting.

After the research performed throughout this chapter, the
question raised in section II can, finally, be answered. Actually,
our intuition pointed in the right direction and, thus, one can
conclude that the main reason for the good generalization
performance of the RBM is the fact that hidden neurons learn
correlations between active features of the high-dimensional
sparse vectors.

V. CONCLUSION

SDRs are the fundamental form of representing information
in the brain. The activity of any population of neurons in
the neocortex is sparse, where a low percentage of neurons
are highly active, and the remaining neurons are inactive [5].
Previous research explored these representations with biolog-
ically plausible models to perform associative memory tasks.
To learn a good and general classifier without running into the
“curse of dimensionality” problem, however, is a hard task.
Deep learning models progressively reduce the dimensionality
of the SDR from layer to layer and have some success in tasks
in which there is a great amount of data with labels, although
they use a non-biologically plausible algorithm.

The present thesis explores the capabilities of classifiers
inspired in Stochastic Models to side step the limitations that
classic Machine Leaning models have, when classifying high
dimensional sparse data.

The main evidence that motivated the use of Stochastic
Models is the fact that hidden units in these models represent
hidden correlations between active neurons of sparse vectors.
As sparse vectors have few active neurons, then stochastic
models can map a high-dimensional sparse vector into a
hidden layer with few hidden units, which represents the
visible correlations between present dimensions of the high-
dimensional sparse vector [27].

In order to solve the problem that instigated this research
work, in section III we described in detail the main character-
istics of the Stochastic Methods. This chapter gathers all the
theoretical knowledge needed to understand each stochastic
model implemented to perform the experiments described in
section IV.

During the experimental analysis, we started by using the
strategy structured in [1] to generate the sparse codes. With
these codes, we tested the implemented classifiers inspired in
Stochastic Models and compared their accuracy results with a
simple Logistic Regression. Both the Stochastic Models and
the LR achieved good results when classifying these codes.
In fact, these good results archived by the LR classifier left

us wondering if the generated codes were effectively high-
dimensional and sparse. Actually, it is plausible to think that
the generated MNIST sparse data reside on a low-dimensional
manifold embedded in a higher-dimensional space. This sug-
gests that the real dimensionality of the data is highly inferior
to the defined number of features of the dataset, which can
justify the good performance of LR.

With the desire to study the performance of a RBM and
compare it with a LR in high-dimensional sparse data, we
defined a different dataset generation strategy, in which each
class followed a multivariate normal distribution. To control
the sparseness of the data a pre-defined number of features
were randomly deleted from each sample. We performed
several experiments using this high-dimensional sparse data,
in which datasets with varying dimensionalities and sparseness
were generated. The good generalization capability achieved
by RBM showed that this model can map a high-dimensional
sparse vector into a hidden layer, which catches the relevant
features present on the high-dimensional sparse vector, while
the LR, with the increasing dimensionality and sparseness,
becomes too adapted to the training set, which leads to the
overfitting problem.

To understand if the good generalization performance of
the RBM is really justified by its capability to map a high-
dimensional sparse vector into few hidden units, which capture
the relevant features present in the data, or if it results from
being a non-linear classifier, a comparison was made between
the RBM and the MLP with the same number of hidden units.
Considering the poor generalization performance obtained
by the MLP when classifying the high-dimensional sparse
data, one can conclude that the main reason for the good
performance of the RBM is the ability to capture correlations
between active features of the high-dimensional sparse vectors.

Thus, one can conclude that the motivation for this research
work pointed in the right direction. The results achieved
by the implemented Stochastic Models demonstrate that by
learning the correlations between active features of the sparse
input data, good results can be achieved by side stepping the
overfitting problem, which affects classic Machine Learning
models.
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