
Stochastic Models for Sparse Codes

Maria Urze Osório

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Andreas Miroslaus Wichert

Examination Committee

Chairperson: Prof. Pedro Tiago Gonçalves Monteiro
Supervisor: Prof. Andreas Miroslaus Wichert

Member of the Committee: Prof. Rui Miguel Carrasqueiro Henriques

February 2022

Acknowledgments

My deep gratitude goes to Professor Andreas Wichert and Luis Sá Couto for the insight, support and

sharing of knowledge that has made this thesis possible. I would also like to thank my parents Paula

and Luı́s for their unconditional support over all these years, for always being there for me through thick

and thin and without whom this thesis would not be possible. My grandmother, aunts, brothers and

sisters-in-law for their understanding and support throughout all these years. My boyfriend Miguel, for

the unconditional support through doubt and uncertainty. Last but not least, all my friends, specially

Carlota and Maria, that helped me grow as a person and were always there for me during the good and

bad times in my life. To each and every one of you – Thank you.

i

Abstract

There is a consensus about information in the brain being represented by using Sparse Distributed Rep-

resentations. These representations, however, are high-dimensional input vectors and consequently

they affect classification performance due to the notoriously complex problem known as “the curse of

dimensionality”. In tasks for which there is a vast amount of labeled data, Deep Learning seems to solve

this issue with many layers and a non-biologically plausible Backpropagation algorithm. The purpose

of this research is to find a way to learn from high-dimensional sparse data side stepping these limita-

tions and adopting a more biologically plausible approach. Actually, hidden units in Stochastic Models,

represent hidden correlations between present dimensions of sparse vectors. These models can map

a high-dimensional sparse vector into a hidden layer with few hidden units, while capturing the relevant

features. Motivated by these reasons, we implement several classifiers inspired by Stochastic Models.

In order to test them on a high-dimensional sparse data, we start by using the sparse codes generation

mechanism structured in [1]. The implemented Stochastic Models are tested on these codes and their

performance is compared with a simple Logistic Regression. Both the Stochastic Models and the Logis-

tic Regression achieve good results. However, these good results archived by the Logistic Regression

classifier led us to believe that the generated codes lie on a low-dimensional manifold embedded in a

higher-dimensional space, which suggests that the real dimensionality of the data is highly inferior to the

number of features. Afterwards, we propose a different way to generate sparse data, where each class

follows a multivariate normal distribution and the sparseness is controlled by randomly deleting values

in each sample. The experiments using this data confirm our initial intuition as the Restricted Boltzmann

Machine shows a good generalization performance, while the Logistic Regression overfits the training

iii

data.

Keywords

Stochastic Models; Restricted Boltzmann Machines; Sparse Distributed Representations; Learning.

iv

Resumo

Há um consenso em torno da ideia de que a informação no cérebro pode ser reproduzida através

de representações distribuı́das e esparsas. No entanto, estas representações constituem vetores de

alta dimensionalidade e, consequentemente, afetam o desempenho da classificação. Em tarefas para

as quais há uma grande quantidade de dados, os modelos de aprendizagem profunda resolvem esse

problema com diversas camadas e um algoritmo não biologicamente plausı́vel. O objetivo da presente

investigação é, justamente, procurar encontrar uma forma de classificar conjuntos de dados esparsos e

de alta dimensionalidade, superando as limitações anteriormente referidas e seguindo uma abordagem

biologicamente aceitável. Na verdade, os neurónios ocultos nos modelos estocásticos representam

correlações entre dimensões presentes de vetores esparsos. Esses modelos conseguem mapear ve-

tores esparsos e de alta dimensionalidade, numa camada oculta com poucos neurónios. Tendo por

base esta motivação, implementamos vários classificadores inspirados nos modelos estocásticos, no

propósito de os testar em dados esparsos e de alta dimensionalidade, começando por usar o mecan-

ismo de geração de dados esparsos estruturado no artigo [1]. Os modelos estocásticos implementados

são testados nestes códigos e seu desempenho é comparado com uma simples regressão logı́stica.

Tanto os modelos estocásticos como a regressão logı́stica apresentam boa performance. No entanto,

os bons resultados alcançados pela regressão logı́stica leva-nos a acreditar que a dimensionalidade

real dos dados gerados é bastante inferior ao número de caracterı́sticas. Em seguida, propomos uma

nova abordagem na geração de dados esparsos, em que cada classe segue uma distribuição normal

multivariada e a esparsidade é controlada pela exclusão aleatória de valores em cada amostra. As ex-

periências com esses dados confirmam a intuição inicial, na medida em que a Máquina de Boltzmann

Restrita demonstra um bom desempenho de generalização, enquanto a regressão logı́stica se adapta

v

demasiado aos dados de treino.

Palavras Chave

Modelos Estocásticos; Máquinas de Boltzmann Restritas; Representações Distribuı́das e Esparsas;

Aprendizagem.

vi

Contents

1 Introduction 1

1.1 Problem . 3

1.2 Motivation . 4

1.3 Thesis outline . 6

2 Background 9

2.1 Sparse Distributed Representations . 11

2.2 Associative Memories . 12

2.3 Markov Chain . 12

2.4 Markov Chain Monte Carlo . 13

2.4.1 Metropolis Algorithm . 13

2.4.2 Gibbs sampling . 15

2.5 Simulated Annealing . 15

2.6 Evaluation Measures . 16

2.6.1 Pseudo-likelihood . 16

2.6.2 Mean Squared Error . 17

2.6.3 Accuracy . 17

3 Stochastic Models 19

3.1 Hopfield Network . 21

3.1.1 Energy function . 23

3.2 Ising Model . 23

3.2.1 Spin glass . 24

3.2.2 Finite temperature dynamics . 24

3.2.3 Boltzmann-Gibbs distribution . 25

3.2.4 Stochastic dynamics . 26

3.2.5 How an Ising Model Generates Data . 27

3.3 Boltzmann Machine . 27

3.3.1 How a Boltzmann Machine Generates Data . 29

vii

3.3.2 Learning . 29

3.4 Restricted Boltzmann Machine . 30

3.4.1 Contrastive divergence . 33

3.4.2 Persistent Contrastive divergence . 34

3.4.3 Weight-decay . 34

3.4.4 Momentum . 35

3.4.5 Different types of units . 35

3.4.5.A Softmax visible units . 35

3.4.5.B Gaussian visible units . 36

3.4.6 Restricted Boltzmann Machine for classification . 36

3.4.7 Deal with missing data with RBMs . 37

3.4.7.A The model . 38

3.4.7.B Learning . 39

3.5 Deep Belief Networks . 39

4 Experiments 43

4.1 Datasets description . 45

4.1.1 MNIST . 45

4.1.2 Sparse MNIST generation . 46

4.2 Stochastic Models for image reconstruction . 47

4.3 Classification using Stochastic Models . 50

4.3.1 Restricted Boltzmann Machine . 50

4.3.2 Deep Belief Network . 55

4.3.3 Restricted Boltzmann Machine followed by Logistic Regression 57

4.3.4 Deep Belief Network followed by Logistic Regression 59

4.3.5 Restricted Boltzmann Machine with 3 state neurons 60

4.4 Models comparison . 63

4.5 Learn from a Sparse Normal Distributed Dataset . 64

4.5.1 Dataset generation . 65

4.5.2 Pipeline . 65

4.5.3 Experimental Analysis . 66

5 Conclusion 71

Bibliography 75

viii

List of Figures

1.1 Ten image sample of MNIST test set. The ten top images represents a binarized version

of an original MNIST sample, while the bottom images represent the same sample flipping

the bits. 5

3.1 MNIST handwritten digits storage and retrieval using Hopfield Model. 22

3.2 The energy surface where the valleys correspond to the attractors of the system. 23

3.3 Comparison between the architectures of the Hopfield Model, the Boltzmann Machine

(BM) and the Restricted Boltzmann Machine (RBM) . 31

3.4 Network graph of an RBM with n hidden units and m visible units 31

3.5 Contrastive Divergence (CD) with single-step reconstruction 34

3.6 RBM that models the joint probability distribution of input images and the corresponding

labels. 37

3.7 Adapted from [2], a RBM with binary hidden units and softmax visible units is represented.

For each dataset sample (user), the RBM only includes softmax units for the movies that

user has rated. In addition, to the symmetric weights between each hidden unit and each

of the K = 5 values of a softmax unit, there are 5 biases for each softmax unit and one for

each hidden unit. 38

3.8 Deep Belief Network . 40

4.1 Ten image sample of MNIST training set. 45

4.2 Adapted from [1], we have the overview of the strategy that transforms visual patterns of

digits into sparse and distributed codes. The first step is local feature extraction (Retino-

topic Step). Each feature is depicted as a window with an oriented line and each image

containing a number is parsed with a sliding window, finally each occurrence of each fea-

ture is signaled at the middle layer. The Object-Dependent Step maps these positions to

an object-dependent, radius one polar coordinate system. 46

4.3 Training patterns . 47

ix

4.4 Corrupted training patterns . 47

4.5 Energy evolution during pattern reconstruction with stochastic update implementation of

the Hopfield Network. 48

4.6 Mean pseudo-likelihood during training of RBM models with different learning rates 49

4.7 Pseudo-likelihood during training of RBM models with different number of hidden units . . 49

4.8 Ten image sample of MNIST test set. Corrupted images (top) are given to the network in

order to perform Gibbs sampling and then get the reconstructed images (bottom). 50

4.9 Train and test accuracies of RBM on the original MNIST given an increasing number of

hidden units. 52

4.10 Train and test accuracy varying numbers of neurons per class, namely N=1, N=2 and N=5 53

4.11 Train and test accuracy of Logistic Regression (LR) and RBM given sparse MNIST datasets

with increasing sparseness . 54

4.12 Deep Belief Network (DBN) with 2 layers that models the joint probability distribution of

hidden activations given the input images and the corresponding labels. 55

4.13 Train and test accuracies of sparse MNIST datasets given the increasing number of hid-

den units in the last layer of the DBN. 56

4.14 Scheme of baseline models. 57

4.15 Scheme of the classifier composed by a RBM followed by a LR 58

4.16 Train and test accuracies of original MNIST and sparse MNIST datasets given the increas-

ing number of hidden units. 59

4.17 Scheme of the classifier composed by a DBN followed by a LR. 60

4.18 Performance of the LR in a dense versus a high-dimensional sparse dataset. 67

4.19 Comparison between accuracies of LR and RBM classifiers with increasing percentage

of sparseness. 68

4.20 The left heatmap shows the difference between train accuracies of RBM and LR con-

sidering increasing dimensionality and sparseness. The right heatmap shows the differ-

ence between test accuracies of RBM and LR considering increasing dimensionality and

sparseness percentage. 69

x

List of Tables

1.1 Train and test mean accuracies of RBM when classifying a sample of the original binarized

MNIST and a flipped version of the same sample. 5

1.2 Train and test mean accuracies of LR when classifying a sample of the original binarized

MNIST and a flipped version of the same sample. 6

4.1 Train and test accuracy of RBM and LR given two different generated sparse datasets . . 54

4.2 Train and test accuracy of DBN with 2 layers, DBN with 3 layers and LR given the Sparse

datasets 2. 57

4.3 Train and test accuracy of LR and RBM followed by LR models considering the same

sparse dataset (Sparse dataset 2) . 59

4.4 Train and test accuracy of LR and DBN followed by LR models considering the same

sparse dataset (Sparse dataset 2) . 60

4.5 Train and test accuracy comparison between the original RBM implementation (2 state

neurons) and the 3 state neurons implementation given the same sparse dataset 63

4.6 Train and test accuracy of all the models implemented considering the same sparse

dataset (Sparse dataset 2) . 64

4.7 Train and test mean accuracies of Multi-Layer Perceptron (MLP) and RBM given the gen-

erated data. 70

xi

xii

Acronyms

BM Boltzmann Machine

CD Contrastive Divergence

DBN Deep Belief Network

DBM Deep Boltzmann Machine

LR Logistic Regression

MCMC Markov Chain Monte Carlo

MLP Multi-Layer Perceptron

MSE Mean Squared Error

PCD Persistent Contrastive divergence

RBM Restricted Boltzmann Machine

SDR Sparse Distributed Representation

xiii

xiv

1
Introduction

Contents

1.1 Problem . 3

1.2 Motivation . 4

1.3 Thesis outline . 6

1

2

Traditional computer data structures cannot represent efficiently all concepts, the relationships be-

tween them, and the exceptions that each concept definition may hold.

The human brain does not have this problem: in order to represent information, it shares neurons

between concepts, which means that a single neuron can be part of the representation of many different

concepts. Furthermore, empirical evidence demonstrates that every region of the neocortex represents

information by using sparse activity patterns [3]. When looking at any population of neurons in the

neocortex their activity will be sparse, whenever a low percentage of neurons are highly active and the

remaining neurons are inactive.

Sparse Distributed Representation (SDR) is the method used to implement computationally the way

information is represented in the brain [4]. An SDR is a binary vector composed of a large number of

bits where each bit represents a neuron in the neocortex.

Consider that one wants to recognize a particular activity pattern in a neuron. Then, one says that

a neuron forms synapses to the active cells in that pattern of activity. This way, a neuron only needs to

form a small number of synapses, to accurately recognize a sparse pattern in many cells. The formation

of new synapses is the pillar of all memory in the brain [5].

Memory in the brain is called Associative Memory, in which different SDRs (input patterns) become

associated with one another depending on the similarity between them [6]. This means, SDRs are

recalled through “association” with other SDRs. In Associative Memories, there is no centralized memory

and no random access [7]. Every neuron present in the brain is an integral part of each SDR, which

means each neuron participates in forming both SDRs and in learning the associations between them

[5].

1.1 Problem

As discussed previously, SDRs are binary vectors composed of many bits [8], which means we are deal-

ing with a high dimensional input. These sparse representations are known to work well with associative

memories but when we try to classify them, we must deal with some problems.

The main problem that brought us here is known as “the curse of dimensionality” caused by the high-

dimensionality of SDRs. Classic Machine Learning models, for example, Feed-Forward Networks, are

not good at dealing with high-dimensional sparse inputs given the vast number of parameters. [9], [10].

Many machine learning problems become exceedingly difficult when the number of dimensions in

the data is high. As discussed in [11] the number of possible distinct configurations of a set of variables

increases exponentially with the number of variables.

There is no universal answer for how data sparsity would affect learning convergence behaviour in

Machine Learning models [12]. Though, [10] discusses that most features in high-dimensional vectors

3

are usually non-informative or noisy and may decrease the model’s generalization performance.

In a Neural Network, the input, hidden, and output variables are represented by nodes, and the

weight parameters are represented by links between the nodes. Therefore, considering an SDR as an

input (high dimensionality vector), the number of weights from the input layer to the first hidden layer will

be the number of entries of the binary input vector multiplied by the number of hidden units in the first

hidden layer [11]. This way, the model will have a really large number of parameters making it prone to

overfitting.

The phenomenon of overfitting occurs when a network fits the training data more than it should.

When overfit happens, it captures noise from the training data. This leads to a model with weak gener-

alization capability, increasing the error when classifying new instances from the test set [13]. With the

intent of reducing overfitting, the necessity of generating large amounts of labelled data arises, which is

an expensive task.

1.2 Motivation

As argued in [9] and discussed in the former section, a well-known problem in Machine Learning is

sparse data, which alters the performance of Machine Learning algorithms and their ability to calculate

accurate predictions. A high-dimensional sparse input leads to the well-known problem denominated

“the curse of dimensionality”.

The purpose of this thesis is to show that it is possible to learn good and general classifiers from

high-dimensional sparse representations generated by biologically plausible models while, unlike the

deep learning approach, staying under the biological constraints.

With this idea in mind, we chose to investigate Stochastic Models, i.e., Restricted Boltzmann Ma-

chine (RBM) and Deep Belief Network (DBN), to classify high-dimensional sparse data motivated on the

following arguments:

• As proved in [1], Willshaw’s model of associative memory has been showed to work well with high-

dimensional sparse codes. Therefore, given the inspiration of Stochastic Models on Associative

Memories, they seem to be a great candidate to perform well with those codes.

• Boltzmann Machines have local learning rules (Hebbian rule), which are biologically plausible [14].

• Hidden units in Stochastic Models represent hidden correlations between present dimensions of

sparse vectors. As these models only learn the correlation between active units, then stochastic

models can map a high-dimensional sparse vector into a hidden layer with few hidden units, while

capturing the relevant features.

4

The later argument represents the core motivation of using Stochastic Models to classify high-

dimensional sparse data. These models learn the correlations between active neurons, which means

the hidden units will exclusively change their state based on the input units that are different from zero.

This allows Stochastic Models to have a compact hidden layer that captures the information present on

the high-dimensional sparse data without falling into overfitting.

To deeply ground this motivation a trivial experiment was performed in which, a RBM was used to

classify a sample of the original binarized MNIST1 dataset and a flipped version of that same sample.

In Figure 1.1, the ten top images represent the binarized version of the original MNIST, in which the

bits representing each digit are set to 1 and the background information to 0. The ten bottom images

represent a flipped sample of the original binarized MNIST, where the bits representing each digit are

set to 0 and the background information to 1.

Figure 1.1: Ten image sample of MNIST test set. The ten top images represents a binarized version of an original
MNIST sample, while the bottom images represent the same sample flipping the bits.

We considered a RBM with the same architecture to classify both versions of the binarized MNIST,

the original and the flipped one. If our intuition points in the right direction, the model should be able to

accurately classify the original version in which the digits information are represented by 1s and fail on

the flipped version in which the digits are represented by 0s.

With a sample of 5000 training examples and 1000 test examples of both datasets, Table 1.1 shows

the results achieved by the RBM classifier.

Train accuracy Test accuracy
Original version 91.6% 86.2%
Flipped version 15.5% 13.8%

Table 1.1: Train and test mean accuracies of RBM when classifying a sample of the original binarized MNIST and
a flipped version of the same sample.

By analysing the results achieved by a RBM with 500 hidden units, one can conclude that in the

original version of the binarized MNIST, the model learns the correlations between active neurons, which
1http://yann.lecun.com/exdb/mnist/

5

represent the digits. As the active bits represent a relatively small percentage of each sample, the

model is able to capture the correlations between these active features and have a good generalization

performance.

In the flipped version of the binarized MNIST, the RBM fails completely. This is justified by the fact

that this model exclusively learns correlations between present dimensions and not between 0s. With a

hidden layer of 500 units, the RBM is unable to catch the correlations between all the active neurons that

represent the background, and consequently fails when classifying the flipped version of the MNIST.

This small experiment validates the strong potential of Stochastic Models to deal with high-dimensional

sparse inputs, as they can capture the correlation between present dimensions of the input data.

By performing the same experiment with the Logistic Regression (LR) classifier, and analysing the re-

sults on Table 1.2, one concludes that this model has similar performances when classifying the original

and the flipped version of the MNIST sample.

Train accuracy Test accuracy
Original version 99.6% 85.2%
Flipped version 99.7% 84.5%

Table 1.2: Train and test mean accuracies of LR when classifying a sample of the original binarized MNIST and a
flipped version of the same sample.

The similar accuracy results achieved by LR in both problems suggests that this model learns the

information given by 1s in the same way it does with 0s. This implies that, when LR is dealing with high-

dimensional sparse inputs, it learns all the dimensions of the sparse vector. Consequently, this model is

prone to fall into overfitting.

On the other hand, the RBM classifier learns exclusively the correlations between active neurons.

Given that high-dimensional sparse inputs have a low percentage of 1s, this model can map the high-

dimensional sparse vector into a hidden layer with few hidden units, while capturing the relevant features.

But does this really indicates that the RBM avoids the overfitting problem when classifying high-

dimensional sparse data? The purpose of this research work is to answer this question by investigating

the potentiality of the Stochastic Models to deal with high-dimensional sparse data.

1.3 Thesis outline

The thesis is structured into the following main sections:

1. Deepening the concepts of Sparse Distributed Representations and Associative Memories (section

2.1 and 2.2).

6

2. Describing algorithms and techniques which will be fundamental to understand the Stochastic

Methods (section 2.3, 2.4 and 2.5).

3. Describing the evaluation measures needed to ensure a trustful solution (section 2.6).

4. Studying different models from the Stochastic methods family, which will be the foundation of the

proposed solution (chapter 3).

5. Describe the implemented Stochastic Models used to perform the experiments and perform a

detailed analysis of those experiments (chapter 4).

6. Taking the final conclusions and remarks regarding the research performed (chapter 5).

7

8

2
Background

Contents

2.1 Sparse Distributed Representations . 11

2.2 Associative Memories . 12

2.3 Markov Chain . 12

2.4 Markov Chain Monte Carlo . 13

2.5 Simulated Annealing . 15

2.6 Evaluation Measures . 16

9

10

This section starts by explaining in detail the concepts of SDRs (section 2.1) and Associative Memory

(section 2.2), already addressed in the introduction. These two concepts are the basis for understanding

the inspiration of using stochastic models in this research process.

Then, we focused on the introduction of the following concepts: Markov Chain, Markov Chain Monte

Carlo, Gibbs sampling and Simulated Annealing, which are fundamental to understand the Stochastic

Models described in chapter 3.

Finally, in section 2.6, we describe the measures used to evaluate the implemented Stochastic Mod-

els, which are described in chapter 4.

2.1 Sparse Distributed Representations

Neuroscience has shown that information in the brain is represented by the sparse activation of clusters

of neurons in the neocortex [15]. With this idea in mind, we can state that SDR are biologically plausible

informative representations.

SDR is the method used to implement computationally the way information is represented in the

brain. An SDR is a binary vector composed of a large number of bits where each bit represents a

neuron in the neocortex.

As previously addressed, an SDR is a binary vector composed of a large number of bits where each

bit represents a neuron in the neocortex. As the brain activates just a few neurons at a time, in the

SDR, only a small percentage of bits are 1’s (active neurons), typically less than 2%, and the rest are

0’s (inactive neurons) [5].

Each bit of a SDR has a meaning associated. The set of active bits in the SDR encodes the set

of semantic attributes of what is being represented. Therefore, if we compare two SDRs and they

have active bits in the same index, we can conclude that those SDRs share the semantic attributes

represented by the common active bits.

In SDRs information is carried in the representation itself and not stored externally, which makes rep-

resentations of SDRs informative. Since Associative Memories (content-addressable memories) handle

inputs as content/information, then they benefit from this SDR property.

In an SDR, each neuron represents a property of a certain concept and then one can use the

same group of neurons, with different activation patterns to represent lots of different concepts. The

active neurons change over time, which means that the same set of neurons in a certain moment can

represent one thing and, in the next moment, represent another. Any two different Sparse Distributed

Representations that follow each other in time can associatively be linked, and this sequence of SDRs

can be learned [16].

11

2.2 Associative Memories

As discussed in [17] an association process starts when we try to find a specific piece of information in

our memory, and we are not capable of retrieving it immediately. This way, our brain starts a sequential

association process from one item to the next until it reaches the missing information. Once we retrieved

that piece of information, we immediately can recognize it since it fits perfectly into the context that

triggered our mental search. Therefore, we can conclude that our brain associates a new output to a

given input depending on contextual information [18].

The associative memory is composed of a cluster of units which represent a simplified model of

real neurons. It is based on associations with the memories it has stored. This type of memory is

designated content-addressable (CAM), which means a particular part of the memory is connected with

the rest. We can describe two different mechanisms that are core in the process of association: hetero-

association, which is the process of associating one pattern to the next, and auto-association described

as the association of a pattern to itself [7].

It is important to underline that Associative Memories are quite different from traditional artificial

memories, where an address is provided and its content is obtained back. Actually, Associative Mem-

ories do not employ addresses explicitly. A question content vector is provided and an answer content

vector is returned [19]. The goal of associative memories is to store a finite set of S of P associations or

pairs, (x, y), where x and y are the question vector and the answer vector respectively

S
.
= (xµ → yµ) : µ = 1, . . . , P. (2.1)

The Associative Memory establishes a mapping (xµ → yµ) which is denoted hetero-association

process. In the special case where x = y the memory is said to perform the auto-association process.

The combination of hetero-association and auto-association capabilities of Associative Memories allows

to naturally implement functions of biological memories [20].

2.3 Markov Chain

A Markov chain is a stochastic model describing a sequence of possible events in which the probability

of each event depends only on the state of the previous event [21].

Considering a sequence of random variables x1, x2, . . . , xn, we can affirm that xn+1 forms a Markov

chain, if the probability that the system is in state xn+1, given the sequence of past states it has gone

through, is exclusively determined by the state xn. Therefore, transition probabilities between states are

represented by conditional probabilities represented by

12

pij = P (Xn+1 = j|Xn = i). (2.2)

As part of the definition of a Markov chain, there is some probability distribution on the states at time

0. Each time step the distribution on states evolves, which means, some states may become more likely

then others and this is dictated by the transition matrix P . After a sufficiently long time the Markov chain

will eventually converge to its stationary distribution.

The stationary distribution of a Markov Chain with transition matrix P is some vector, π, such that

πP = π.

Markov processes are the basis for general stochastic simulation methods known as Markov chain

Monte Carlo, which are used for simulating sampling from complex probability distributions.

2.4 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) techniques are methods for sampling from probability distributions

using Markov chains.

An MCMC method for the simulation of a probability distribution π is any method that produces an

ergodic Markov chain (aperiodic, positive recurrent and irreducible) whose own stationary distribution

is the distribution π. The more steps that are included, the more closely the distribution of the sample

matches the actual desired distribution π.

Following this brief introduction we will explain two different MCMC methods: the Metropolis algorithm

and the Gibbs Sampling. These two methods are crucial to understand how data is generated in the

Stochastic models described in chapter 3.

2.4.1 Metropolis Algorithm

The Metropolis algorithm allows us to simulate the evolution of a physical system to thermal equilibrium

[22].

It was introduced in the early days of scientific computation for the stochastic simulation of a collection

of atoms in equilibrium at a given temperature. Metropolis proposed a stochastic matrix that is composed

of a set of transition probabilities denoted by Tij , which satisfy the following conditions:

Tij ≥ 0, Tij = Tji,
∑
j

Tij = 1. (2.3)

Let πi denote the steady-state probability that the Markov chain is in state xi, i = 1, 2, ...,K. Steady-

state probabilities are average, constant probabilities that the system will be in a certain state after a

13

large number of transition periods. We may then use Tij and the probability distribution ratio πi/πj , to

formulate the set of transition probabilities [23] as described below:

Pij =

{
Tij

πi
πj
≥ 1

Tij · (πiπj) πi
πj
< 1

(2.4)

The only outstanding requirement is determining how to choose the ratio πi/πj . In order to fulfill this

requirement, as this is a technique which will be applied in our stochastic models (described in chapter

3) and following [23], the probability distribution to which we want the Markov chain to converge to is a

Boltzmann-Gibbs distribution

πi =
1

Z
e(−β·Hi), (2.5)

with

β =
1

k · T
. (2.6)

The Boltzmann-Gibbs distribution gives the probability that a system will be in a certain state as a

function of that state’s energy Hi and a constant k · T of the distribution is the product of Boltzmann’s

constant k and thermodynamic temperature T . The distribution shows that states with lower energy will

always have a higher probability of being occupied than the states with higher energy.

The probability distribution ratio πi/πj is represented by

πi
πj

= e(−β·∆H), (2.7)

with

∆H = Hi −Hj . (2.8)

Using Equation (2.4) we get

Pij =

{
Tij e(−β·∆H) ≥ 1

Tij · e(−β·∆H) e(−β·∆H) < 1
(2.9)

A sufficient condition to ensure that the system is in thermal equilibrium is the principle of Detailed

Balance which states that the rate of occurrence of any transition equals the corresponding rate of

occurrence of the inverse transition [23], and this is shown by :

πi · Pij = πj · Pji. (2.10)

14

The Metropolis algorithm accepts a transition if the new configuration has a lower energy. Otherwise,

the algorithm accepts the change that increases the energy but only with probability e(−β·∆H). To verify

this condition, a random value ξ ∈ [0, 1] is generated and if ξ < e(−β·∆H) then the transition is accepted.

The acceptance depends on the temperature. With high temperature the probability of acceptance is

high, by lowering the temperature the probability of acceptance diminishes [24].

2.4.2 Gibbs sampling

Gibbs sampling that was introduced in the context of image processing by [25] is a simple MCMC algo-

rithm and a specialization of the previously discussed Metropolis algorithm [22] for producing samples

from the joint probability distribution of multiple random variables [21]. It is a special case of Metropolis

algorithm in which the newly proposed state is always accepted with probability one [26].

Suppose we want to sample from a distribution p (x) = p(x1, x2, . . . , xn) and that we have chosen

some initial state for the Markov chain. Then, each step of the Gibbs sampling algorithm consists of

replacing the value of one of the variables by a new value drawn from the distribution of that variable

conditioned on the values of the remaining variables. That is, generating a value for the conditional

distribution of each component of the random vector x, given the values of all other components of

x [24].

Gibbs Algorithm:

1. Initialize

{xi : i = 1, . . . ,M} .

2. For t = 1, . . . , T :

-Sample x(t+1)
1 and replace x(t)

1 by x(t+1)
1 v p(x1|x(t)

2 , x
(t)
3 , . . . , x

(t)
M).

-Sample x(t+1)
2 and replace x(t)

2 by x(t+1)
2 v p(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
M).

- ...

-Sample x(t+1)
M and replace x(t)

M by x(t+1)
M v p(xM |x(t+1)

1 , x
(t+1)
2 , . . . , x

(t−1)
M−1).

2.5 Simulated Annealing

At very low temperatures the convergence rate of the Markov chain of the Gibbs sampling or Metropolis

algorithm to thermal equilibrium is extremely slow. Thus, to improve computational efficiency, it is nec-

essary to operate the stochastic system at high temperature where convergence to equilibrium is fast

and then maintain the system in an equilibrium state as the temperature is slowly lowered [23].

Simulated annealing can be enhanced by the following characteristics:

15

• The algorithm does not need to get stuck in local minima because the transition out of a local

minimum is possible when the system operates at a non-zero temperature.

• The global features of the final state of the system are seen at higher temperatures, while the fine

details of the state appear at lower temperatures.

The probability of making a transition from the current state s to a candidate new state snew is specified

by an acceptance probability function, that depends on the energies of the two states, and on a global

time-varying parameter T called the temperature. States with a smaller energy are better than those

with a greater energy. The probability function must be positive even when the energy of snew is greater

than the energy of s. This feature allow us to explore the space, even the areas with lower probability

(high energy) which prevents the method from becoming stuck at a local minimum that is worse than the

global one, as we want the stochastic system to converge to the global minimum.

We start with a high temperature T and during the simulated annealing process T is slowly decreased

[27]. The initial value T0 of the temperature must be chosen to be sufficiently high in order to ensure that

all possible transitions are accepted by the simulated annealing algorithm with a certain probability.

Actually, one can define two distinct phases on decrementing the temperature in simulated annealing,

i.e., a fast decrease at the very high temperature T0 to a certain temperature in the first phase followed

by a very slow decrease in the second phase. At the final temperature TF , the system is fixed, and the

annealing process stops.

When the system is operating in a temperature T > 0 the transition out of a local minimum is possible,

therefore, the algorithm does not need to get stuck in local minima. For sufficiently small values of T ,

the system will then increasingly favor moves that go “downhill” (i.e., to lower energy values), and avoid

those that go “uphill”.

Finally, with T = 0 the procedure reduces to the greedy algorithm, which makes only the downhill

transitions [28]. In this process, the global features of the final state of the system are seen at higher

temperatures, while the fine details of the state appear when the temperature is decreased [24].

2.6 Evaluation Measures

2.6.1 Pseudo-likelihood

The Pseudo-likelihood is introduced as a measure that helps tracing the quality of the training phase

of the stochastic models. To simplify the process instead of using the original measure we used an

approximation of the pseudo-likelihood. In order to obtain this approximation, one starts by computing a

16

quantity called the free energy, which is given by the following equation:

F (v) = − ln

(∑
h

e−E(v,h)

)
. (2.11)

The free energy is computed on the original data that the model receives and on a randomly corrupted

version of it. Then, the difference between these free energies is calculated and the approximation of

the pseudo-likelihood is computed by the log of the logistic function of the difference between both free

energies [29]. This measure is a proxy that indicates how likely the data is. Thus, during the training

process the training data becomes more likely and the pseudo-likelihood of the training data is expected

to increase .

2.6.2 Mean Squared Error

The Mean Squared Error (MSE) is a model evaluation metric. The mean squared error of a model with

respect to a train or test set is, respectively, the mean of the squared prediction errors over all instances

in the train or test set [11].

The prediction error, in the context of the Stochastic Models, is calculated with the difference between

the original pattern and the reconstruction pattern pixels.

MSE =
1

n

n∑
i=1

(yi − ỹi)2
. (2.12)

2.6.3 Accuracy

To correctly evaluate our models and fully understand its capabilities, it is crucial to define appropriate

performance measures. Most of the measures used in machine learning problems can be defined as a

combination of the following values:

1. True Positives (TP): Total number of instances that belong to class c and that are classified as c.

2. True Negatives (TN): Total number of instances that do not belong to class c and that are not

classified as c.

3. False Positives (FP): Total number of instances that do not belong to class c and that are classified

as c.

4. False Negatives (FN): Total number of instances that belong to class c and that are not classified

as c.

Accuracy is the most widely used metric, and denotes the percentage of correct predictions made. As

we have a Multi-class problem the accuracy of each class c can be defined as:

17

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.13)

The accuracy of each class can be important to evaluate the quality of each class predictions.

Though, the crucial evaluation measure is the total accuracy of all classes, which consists of all the

instances that the model classified correctly divided by the total of instances that the model classi-

fied [11].

18

3
Stochastic Models

Contents

3.1 Hopfield Network . 21

3.2 Ising Model . 23

3.3 Boltzmann Machine . 27

3.4 Restricted Boltzmann Machine . 30

3.5 Deep Belief Networks . 39

19

20

With the intent to propose a robust model that performs accurately when given a high-dimensional

sparse input, we describe a set of models which belong to the family of Stochastic methods and show a

great potential to solve the problem presented before (section 1.1).

The Hopfield Network and the Ising Model described in section 3.1 and 3.2 will not be used in the

proposed solution, however they comprise the basic concepts to fully understand the more complex

models of Boltzmann Machine (BM) (section 3.3), RBM (section 3.4) and DBN (section 3.5).

3.1 Hopfield Network

The Hopfield model consists of N binary threshold units where each neuron is binary, it is either active

(si = 1) or inactive (si = −1) [30]. In a Hopfield model, every pair of units i and j are connected by a

weight wij [31], [32]. Each neuron updates itself according to the rule:

si = sgn (neti) = sgn

 N∑
j=1

wij · sj

 . (3.1)

The dynamic update described in Equation (3.1) can be performed either synchronously, where at each

clock cycle all si are updated in a synchronous way according to Equation (3.1) or asynchronously,

where each si is updated independently. In what follows, we will consider the asynchronous update

rule, which seems biologically more plausible than the synchronous one [6]. The basic problem setup

is that we want to store a set of patterns ξµ where µ = 1, 2, ..., p in such a way that when the network

is initialized with a new pattern ζµ, it should eventually converge, through the update dynamics, to the

stored pattern that most closely resembles ζµ [33]. We start by considering the storage of a single

pattern ξ = [ξ1, ..., ξN] [34]. From Equation (3.1) we can conclude that the condition for the pattern ξ to

be stable is:

ξi = sgn

 N∑
j=1

wij · ξj

 , ∀i ∈ {1, ..., N} . (3.2)

So, to store a pattern ξ, we need to find a weight matrix w that satisfies Equation (3.2). This is guaran-

teed if

wij ∝ ξi · ξj . (3.3)

For convenience, we consider that the constant of proportionality is 1/N whereN represents the number

of units of the network, and so we can conclude that the rule to store a single pattern ξ is:

wij =
1

N
· ξi · ξj . (3.4)

21

When the network is initialized with a new pattern ζµ, and fewer than half of the bits are different from

the stored pattern ξ, then the network will converge to ξ, and therefore we can say that ξ is an attractor

of the system. If the starting configuration has more than half the bits different from ξ, it will end up in

the reversed state −ξ which is an attractor of the system as well [34], [6]. In the case “where” we have

a set of P binary patterns ξµ (µ = 1, 2, . . . , P) we use the Hebbian learning rule in order to store those µ

patterns:

wij =
1

N
·
p∑

µ=1

ξµi · ξ
µ
j , (3.5)

where wij = wji for all i, j and wii = 0 for all i [34].

Previously, we saw that given a new pattern ζµ, the network can converge either to ξ or to −ξ. How-

ever, those are not the only attractors of the system, sometimes the network can converge to spurious

states. These states are different from the training patterns, though if the network initial configuration is

close to a spurious state, the network can converge to it. This constitutes a problem as we do not want

the network to converge to spurious states [6].

Figure 3.1 illustrates the concepts of recalling a stored pattern (good minimum) or a spurious pattern

previously explained.

Hopfield Model

Traning pattern

store

Spurious
minimum

Good
minimum

Input

Figure 3.1: MNIST handwritten digits storage and retrieval using Hopfield Model.

The storage capacity of the Hopfield network tells us how many patterns can be stored in the model

while still being able to recall them. This amount is determined by the number of neurons within a

network given by n and can be shown [24] to be equal to C = 0.138 · n.

22

3.1.1 Energy function

One of the most important properties of the Hopfield model was the introduction of an energy function.

Each binary “configuration” of the whole network has an energy, which is given by the following equation:

H = −1

2
·
N∑
i=1

N∑
j=1

wij · si · sj . (3.6)

The global energy function of the system can be described as a landscape in which the valleys corre-

spond to the local minima of the energy surface where the attractors (memorized patterns) are [35]. The

main property of the energy function is that it always decreases (or remains constant) as the system

evolves according to its dynamic rule. The dynamics can be thought of as the motion of a particle on

the energy surface under the influence of gravity and friction. From any starting point, the particle slides

downhill until it reaches the lowest point of a valley (local minimum) — one of the attractors of the system

as shown in 3.2 [6], [36].

Figure 3.2: The energy surface where the valleys correspond to the attractors of the system.

3.2 Ising Model

The Ising model consists of discrete variables (si) that represent magnetic dipole moments of atomic

“spins” which can be oriented in one of two different ways, either “up” if si = +1 or “down” if si = −1 .

These spins are arranged in a lattice, allowing each spin to interact with its neighbors. We can relate the

Ising model to the Hopfield associative memory in which an active unit in the network corresponds to

“spin up” in the magnet and an inactive one to “spin down” . In a magnetic material each of the spins is

influenced by the magnetic field h, this magnetic field consists of an internal field produced by the other

23

spins plus an external field hext [37]. Thus, considering the contributions of all the neighboring spins we

have the following magnetic field for spin si

hi =

N∑
j=1

wij · sj + hext. (3.7)

The coefficients wij measure the strength of the influence of spin sj on the field at si. In a magnet these

interactions are necessarily symmetric, therefore we have that wij = wji [24]. Considering the system at

a low temperature, we can say that spin si tends to line up parallel to the local field hi. So, we have that,

at a low temperature the spin is updated by the following expression

si = sgn(hi) =

N∑
j=1

wij · sj + hext. (3.8)

The spin updates are taken to happen asynchronously in random order. Besides, we can specify the

Hamiltonian (energy function) corresponding to Equation (3.8) as

H = −1

2
·
N∑
i=1

N∑
j=1

wij · si · sj − hext
N∑
i=1

si. (3.9)

3.2.1 Spin glass

The Spin glass model is an Ising model without the influence of an external field; the only influence each

spin is subject to is the internal field produced by the other spins [24]. Therefore, we can represent the

energy function (Hamiltonian) of the system as

H = −1

2
·
N∑
i=1

N∑
j=1

wij · si · sj . (3.10)

3.2.2 Finite temperature dynamics

So far, we have seen the behavior of the system at low temperatures, where the spins are updated

deterministically following Equation (3.8). At high temperatures the thermal fluctuations tend to flip the

spins randomly from up to down or from down to up. In an Ising model, the thermal fluctuations can be

described by the Glauber dynamics that result in the following stochastic rule

si =

{
+1 with probability g(hi)

−1 with probability 1− g(hi)
(3.11)

This rule is applied whenever a spin si is updated, where the Glauber function g(hi) depends on the

temperature of the system and is a sigmoid-shaped function

24

g(h) =
1

1 + e(−2·β·h)
, (3.12)

where β is related to the absolute temperature of the system T by

β =
1

k · T
, (3.13)

with k being the Boltzmann’s constant. Note that

g(−h) = 1− g(h). (3.14)

So, we can write that the probability of each spin si being 1 or −1 as

p(±si) = g(±hi) =
1

1 + e(±2·β·hi)
. (3.15)

3.2.3 Boltzmann-Gibbs distribution

A Boltzmann-Gibbs distribution is a probability distribution that represents the probability (Pα) that a

system will be in a certain state α as a function of that state’s energy Hα and the temperature of the

system T . A fundamental result from physics tells us that in thermal equilibrium, the temperature

within the system is spatially uniform and temporally constant, each of the possible states α occurs with

probability

pα =
1

Z
· e(− Hα

K·T), (3.16)

where Z is a normalization constant called the sum over states, or the partition function, to allow the

total probability (probability of being in each one of the α possible states) to be 1. It is represented by

the symbol Z because the German name for this term is Zustadsumme.

So, we get

Z =
∑
α

e(− Hα
K·T). (3.17)

In neural networks, the temperature T of a stochastic network is not related to the physical tempera-

ture, it is used as a parameter to control the update rule. So, its scale is irrelevant, and we can choose

to measure it in units such that k = 1.

This way if we know the energy function Hα we can use Equation (3.16) in order to compute the

probability of finding the network in each one of its possible states α. Then we can compute the average

value 〈A〉 (thermal average) of any quantity A which has a particular value Aα in each possible state α,

25

through

〈A〉 =
∑
α

Aα · pα. (3.18)

3.2.4 Stochastic dynamics

We are interested in rewriting Equation (3.15) as a transition probability of flipping the spin from si to

−si. This can be represented by

W (si → −si) =
1

1 + e(β·∆Hi)
, (3.19)

where

∆Hi = H(s1, s2, . . . ,−si, . . . , sN)−H(s1, s2, . . . , si, . . . , sN) = 2 · hi · si. (3.20)

Equation (3.20) represents the energy change that occurs in the system when we have a spin si flipping.

In fact, the general case of a transition probability for all pairs of states α and α′ is represented byW (α→

α′). In equilibrium the probability pα of finding the system in state α is given by the Boltzmann-Gibbs

distribution. At thermal equilibrium, the rate of occurrence of any transition equals the corresponding

rate of occurrence of the inverse transition, as shown by

pαW (α→ α′) = p′αW (α′ → α) , (3.21)

and

W (α→ α′)

W (α′ → α)
=
p′α
pα

= e(−β·∆H), (3.22)

where pα represents the probability that the system is in state α and

∆H = Hα −Hα′ . (3.23)

This way we have the principle of detailed balance, and we can state that

W (α→ α′) =
1

1 + e(β·∆H)
, W (α′ → α) =

1

1 + e(−β·∆H)
, (3.24)

with Boltzmann-Gibbs distribution, we have that

pα =
1

Z
e(−β·Hα), p′α =

1

Z
e(−β·H′α), (3.25)

26

with that in mind, one could simulate the dynamics of such a stochastic system, using the Metropolis

algorithm as follows

W (α→ α′) =

{
1 if ∆H < 0

e(−β·Hα) otherwise
(3.26)

The stochastic dynamics are described by Monte Carlo methods. As described in Section 2.4 these

are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical

results.

3.2.5 How an Ising Model Generates Data

The stochastic dynamics of the Ising model can be described by Gibbs sampling [38]. Suppose the

system is in a state s and we have chosen an arbitrary coordinate i. We can then ignore the actual state

of the spin si and ask for the conditional probability that this spin points upwards (si = 1) given all other

spins.

hi =

N∑
j=1,j 6=i

wij · sj + hext, (3.27)

with

p(si = 1|{sj}j 6=i) =
1

1 + e(−2·β·hi)
, β =

1

k · T
. (3.28)

A single Gibbs sampling step now proceeds as follows:

1. Randomly pick a coordinate i.

2. Calculate the conditional probability p = p(si = 1|{sj}j 6=i).

3. Draw a real number ξ ∈ [0, 1] from the uniform distribution.

4. If ξ is at most equal to p, set spin i to +1, otherwise set it to −1.

3.3 Boltzmann Machine

We introduce the BM in order to have hidden units that can help capturing relations between visible

units. This model has a more expressive power then the previously addressed ones.

The BM can be seen as a stochastic Hopfield network with hidden units. It is a network of symmet-

rically connected units that makes stochastic decisions about whether to be active (si = 1) or inactive

(si = 0). These units are divided into hidden units and visible units [39].

27

Visible neurons provide an interface between the network and the environment in which it operates,

while hidden units have no connection with the environment [24].

Usually the units are updated asynchronously, which means that one unit is updated at a time. When

unit i is given the opportunity to update its binary state, it follows the update rule :

neti =

N∑
j=1,j 6=i

wij · sj + bi, (3.29)

with bi being the bias. As previously referred, in this model the units have a stochastic behavior, therefore

we say that unit i becomes active with a probability given by:

p(si = 1|s1, ...si−1, si+1, sN) =
1

1 + e(−β·neti)
, β =

1

T
. (3.30)

For a particular set of parameters wij and bi, the BM defines a probability distribution over various

state configurations [40], [24]. The energy of a particular configuration s is denoted by:

H(s) = −
N∑
i=1

N∑
j=1

wij · si · sj −
N∑
i=1

bi · si. (3.31)

However, these configurations are only probabilistically known in the case of the BM. The condi-

tional distribution of Equation (3.30) follows from a more fundamental definition, previously presented in

Equation (3.16), of the unconditional probability P (s) of a particular configuration s:

P (s) =
1

Z
e(−H(s)). (3.32)

We define Z as:

Z =
∑
s

e(−H(s)). (3.33)

If the weights on the connections are chosen so that the energies of state vectors represent the cost

of those state vectors, then the stochastic dynamics of a BM can be viewed as a way of escaping from

poor local optima while searching for good (low-cost) solutions. The total input to unit i (neti) represents

the difference in energy depending on whether that unit is active (si = 1) or inactive (si = 0) , and the fact

that unit i occasionally becomes active even if neti is negative means that the energy can occasionally

increase during the search, which allows the search to jump over energy barriers.

The search can be improved by using simulated annealing (described in section 2.5). This scales

down all of the weights and energies by a factor which is analogous to the temperature of a physical

system, T . If we apply simulated annealing, we can start from a large initial value of T and decrease it

to a small final value [41].

28

3.3.1 How a Boltzmann Machine Generates Data

In a BM, the dynamics of the data generation is complicated as there are dependencies between states.

Therefore, we need an iterative process to generate sample data points from the BM so that Equation

(3.30) is satisfied for all states [42].

We can use Gibbs sampling to describe the stochastic dynamics of a BM. Consider that the system

is in a state s and we have chosen a random coordinate i. In order to compute the probability of unit si

being active, we can ignore the actual state of unit si and ask for the conditional probability

p(si = 1|{sj}j 6=i) =
1

1 + e(−β·neti)
. (3.34)

A single Gibbs sampling step now proceeds as follows:

1. Randomly pick a coordinate i.

2. Calculate the conditional probability p = p(si = 1|{sj}j 6=i).

3. Draw a real number ξ ∈ [0, 1] from the uniform distribution.

4. If ξ is at most equal to p, set unit i to +1, otherwise set it to 0.

Provided that the stochastic simulation is performed long enough, the network will reach thermal equi-

librium at temperature T . The search can be improved by using simulated annealing, as this process

reduces the time the network takes to reach thermal equilibrium [24].

3.3.2 Learning

Given a training set of binary state vectors (training data), learning consists of finding weights and

biases (network parameters) that define a Boltzmann distribution in which the training vectors have high

probability. This means maximizing the log-likelihood of the specific training data set [43]. The probability

associated with finding the network in a particular global state depends on the energy function. The

log-likelihoods of individual states are computed by using the logarithm of the probabilities [44]. By

differentiating Equation (3.31) and using the fact that ∂H
∂wij

= −sisj , it can be shown that by taking the

logarithm of Equation (3.32), we obtain the following:

∑
s∈data

∂log[P (s)]

∂wij
= 〈sisj〉data − 〈sisj〉model . (3.35)

We have that 〈sisj〉data represents the averaged value of sisj at thermal equilibrium when the visible

states are clamped to attribute values in a training point. While 〈sisj〉model represents the averaged value

of sisj at thermal equilibrium without fixing visible states to training points (with no external interference)

[14], [45].

29

During the network training, there are two phases:

• In the positive phase, the weights are raised in proportion to the correlations between the states of

nodes i and j, when the visible vectors are clamped to a vector in the training data and the hidden

states are randomly chosen to be 0 or 1. Gibbs sampling is performed until we reach thermal

equilibrium. In this phase the network learns the good minima (attractors of the system). Though,

the network can learn as well unwanted minima called spurious minima, for that reason we need

the negative phase (unlearning phase)

〈sisj〉data =

N∑
k=1

∑
h

P (vk, h)· si· sj . (3.36)

• In the negative phase, the network is allowed to run freely, and therefore with no external input

where states of the units are determined randomly (0 or 1). In this phase the weights are reduced

in proportion to how often those two units are active together when sampling from the model’s

distribution. Gibbs sampling is performed in this phase until we reach thermal equilibrium. During

this phase the network unlearns the spurious minima, as these are minima that the network should

not converge to.

〈sisj〉model =

N∑
k=1

∑
s

P (s)· si· sj . (3.37)

After performing the positive and negative phases of the learning process we can perform the gradi-

ent ascent and adapt the weights as follows:

wij = η· (〈sisj〉data − 〈sisj〉model). (3.38)

3.4 Restricted Boltzmann Machine

The negative phase of learning process (Equation (3.37)) in BM model is slow and expensive, particularly

when the number of hidden neurons used in the machine is large. The reason for this undesirable

behavior is that the BM takes a long time to reach an equilibrium distribution, thereby limiting its practical

usefulness. Given these limitations we introduce the so-called RBM as discussed in [46] and [2].

RBM were initially invented under the name Harmonium [14]. They are a variant of BMs, with the

restriction that there is a single layer of m visible units v = (v1, v2, ..., vm) and a single layer of n hidden

units h = (h1, h2, ..., hn) with no visible-visible or hidden-hidden connections.

With Figure 3.3 it is easier to understand the main differences in the architectures of the Hopfield

model, BM, and the RBM.

30

Hopfield Network

Hidden Layer

Visible Layer

Boltzmann Machine Restricted Boltzmann Machine

Figure 3.3: Comparison between the architectures of the Hopfield Model, the BM and the RBM

The energy function of an RBM can be written as

H(v, h) = −
n∑
i=1

m∑
j=1

wij · hi · vj −
m∑
j=1

bj · vj −
n∑
i=1

ci · hi. (3.39)

For all i ∈ 1, ..., n and j ∈ 1, ...,m, wij is a real valued weight associated with the edge between the

units vj and hi, and bj and ci are real valued bias terms associated with unit j of the visible layer and

unit i of the hidden layer, respectively.

c1 c2 c3 cn...

b1 b2 b3 bm...

Wnm

h1 h2 h3 hn

v1 v2 v3 vm

Figure 3.4: Network graph of an RBM with n hidden units and m visible units

The graph of an RBM has no connections between two variables of the same layer, as we can

observe in Figure 3.4. In terms of probability, this means that the visible variables are independent given

the state of the hidden variables and vice versa:

31

p(h|v) =

n∏
i=1

p(hi|v), (3.40)

and

p(v|h) =

m∏
j=1

p(vj |h). (3.41)

The conditional independence between the variables in the same layer makes Gibbs sampling an

easy task. Instead of sampling new values for all variables subsequently, the states of all variables in

each layer can be sampled jointly. Thus, Gibbs sampling can be performed sampling a new state h

for the hidden neurons based on p(h|v) and sampling a state v for the visible layer based on p(v|h).

This process is also referred to as block Gibbs sampling [21] and it represents the main advantage in

using RBM instead of BM as the Negative phase of the learning process (unlearning phase) becomes

considerably simplified.

The weights update of the RBM is computed using a type of learning rule similar to the one used in

BM. In particular, it is possible to create an efficient algorithm based on mini-batches. The weights wij

are initialized to small values, and for the current set of weights wij , they are updated as follows:

1. Positive phase: Visible units are clamped and the hidden units are randomly chosen (0 or 1).

The algorithm uses a mini-batch of training instances, and computes the probability of the state

of each hidden unit in exactly one step. Then a single sample of the state of each hidden unit

is generated from this probability. This process is repeated for each element in a mini-batch of

training instances. The correlation between these different training instances of vi and generated

instances of hj is computed; it is denoted by 〈vihj〉data. This correlation is essentially the average

product between each such pair of visible and hidden units [42].

2. Negative phase: Visible and hidden units are chosen randomly (0 or 1). The algorithm starts with

a mini-batch of training instances and then for each training instance, it goes through a phase of

Gibbs sampling after starting with randomly initialized states. This is achieved by using Equations

(3.40) and (3.41) to compute the probabilities of the visible and hidden units, and using these

probabilities to draw samples. The values of vi and hj at thermal equilibrium are used to compute

〈vihj〉model in the same way as the positive phase [42].

We can write our update rule as in BM:

∆wij = η · (〈vihj〉data − 〈vihj〉model). (3.42)

After training the model we clamp the visible units with some configuration squery. The network will

converge to an attractor (stored pattern) after performing several steps using the update rule [39].

32

3.4.1 Contrastive divergence

Obtaining unbiased estimates of the log-likelihood gradient using MCMC methods typically requires

many sampling steps. However, it has been shown that estimates obtained after running the chain for

just a few steps can be sufficient for model training [21].

Contrastive Divergence (CD) speeds up the computing time of 〈vihj〉model as it does not use Gibbs

sampling to reach thermal equilibrium. In this algorithm, the training phase starts by clamping the visible

units with v0 and the hidden layer units h0 can be computed by

p(hi = 1|v) =
1

1 + e−(
∑n
j=1 wij ·vj+ci)

= σ

 n∑
j=1

wij · vj + ci

 , (3.43)

that define

〈vihj〉0data . (3.44)

As we saw previously there are no visible-visible or hidden-hidden connections. For that reason

each unit hi is independent of the other hidden units. Therefore, h0 can be computed in parallel as each

hidden unit only depends on the visible units connected to it [47].

The second step consists in updating all the visible units in parallel to get a “reconstruction” v1, which

can be computed by

p(vi = 1|h) =
1

1 + e−(
∑n
j=1 wij ·hj+bi)

= σ

 n∑
j=1

wij · hj + bi

 , (3.45)

that define

〈vihj〉1recon . (3.46)

The visible units are now clamped with v1 and the hidden layer units h1 are computed in parallel

using Equation (3.43).

The reconstruction algorithm can be computed τ times or until convergence is reached. Sometimes

CD may take many iterations (1 � τ) to converge. When τ = 1 we are computing a single-step

reconstruction [24].

The weights update computed for τ steps of the reconstruction algorithm is given by

∆wij = η · (〈vihj〉0data − 〈vihj〉
τ
recon). (3.47)

33

j j

i i

<vihj>
0 <vihj>

1

t = 0
data

t = 1
reconstruction

Figure 3.5: CD with single-step reconstruction

3.4.2 Persistent Contrastive divergence

A different strategy that resolves many of the problems with CD is to initialize the Markov chains at each

gradient step with their states from the previous gradient step. This approach was first discovered under

the name Stochastic Maximum Likelihood in the applied mathematics and statistics community and later

independently rediscovered under the name Persistent Contrastive divergence (PCD) [48].

The idea behind this approach is that, as long as the steps taken by the stochastic gradient algorithm

are small, the model from the previous step will be similar to the current model. It follows that the

samples from the previous model’s distribution will be very close to being fair samples from the current

model’s distribution.

As each Markov chain is continually updated throughout the learning process, rather than restarted

at each gradient step, the chains are free to wander far enough to find all the model’s minima. PCD is

thus considerably more resistant to forming models with spurious minima than the original CD algorithm

is [49].

3.4.3 Weight-decay

There are a number of regularization techniques that are widely used. One of this technique is weight-

decay regularization which adds an extra term to the normal gradient. In fact, this extra term is the

derivative of a function that penalizes large weights and is given by the term:

L(w) =
λ

2

M∑
i=1

w2
ij . (3.48)

There are diverse reasons to use regularization with RBMs. The first one is to reduce overfitting,

i.e. improve generalization to new data. Additionally, the use of regularization makes the hidden units

receptive fields smoother and more interpretable by shrinking useless weights [50].

34

3.4.4 Momentum

Momentum is a simple method that helps increase the speed of learning. When the objective function

contains long, narrow and straight ravines with a gentle but consistent gradient along the floor of the

ravine and much steeper gradients up the sides of the ravine. The momentum method simulates a

heavy ball rolling down a surface. The ball builds up velocity along the floor of the ravine, but not across

it because the opposing gradients on opposite sides of the ravine cancel each other out over time [50].

Instead of using exclusively the estimated gradient times the learning rate to increment the values

of the parameters, the momentum method uses α to increment the velocity, v, of the parameters. The

velocity of the ball is assumed to decay with time, though the momentum parameter α is the fraction of

the previous velocity that remains after computing the gradient on a new mini-batch:

vi(t) = αvi(t− 1)− η · dE
dwi

(t). (3.49)

The temporal smoothing in the momentum method avoids the oscillations across the ravine that

would be caused by simply increasing the learning rate. After applying the momentum method we can

write our weights update rule as following:

∆wi = vi(t). (3.50)

3.4.5 Different types of units

In the previous sections we have been describing the Bernoulli-Bernoulli RBM, which uses binary visible

and hidden units. However, many other types of unit can also be used.

3.4.5.A Softmax visible units

The softmax unit is the appropriate way to deal with a quantity that has K alternative values which are

not ordered in any way. A softmax can be viewed as a set of binary units whose states are mutually

constrained so that exactly one of the K states has value 1 and the remaining have value 0 [51]. With

softmax visible units, the learning rule is identical to the rule for standard binary units. So, the CD

(section 3.4.1) and PCD (section 3.4.2) can still be applied in the same way [50].

Actually, the only difference is in the way the probabilities of the visible states are computed. The

probability of the visible units given the activation of the hidden units is described by the following equa-

tion:

p (vi = 1 | h) =
exp

(
bi +

∑F
j=1 hjwij

)
∑K
l=1 exp

(
bli +

∑F
j=1 hjw

l
ij

) . (3.51)

35

3.4.5.B Gaussian visible units

The Gaussian-Bernoulli RBM has visible units with real-value vm and binary hidden units hn. The

conditional probabilities for visible and hidden units are described by the following equations:

p (vi = v | h) = N

v | bi +
∑
j

hjwij , σ
2
i

 , (3.52)

p (hj = 1 | v) = f

(
cj +

∑
i

wij
vi
σ2
i

)
, (3.53)

where N(µ, σ2) denotes the Gaussian probability density function with mean µ and standard devia-

tion σ2 [51].

In the parameter updating process, the CD learning is highly successful and is becoming the standard

learning method to train the Bernoulli-Bernoulli RBM parameters [52]. However, when using CD with

Gaussian visible units, it is difficult to learn the variance of the noise for each visible unit [50]. With

Gaussian-Bernoulli RBM the update rule for the weights is defined by the following equation:

∇wij =<
1

σ2
i

vihj >data − <
1

σ2
i

vihj >model . (3.54)

3.4.6 Restricted Boltzmann Machine for classification

Until now we have described RBM as a generative model, where given a corrupted pattern we can

reconstruct the original pattern. Actually, this section describes how RBM model can also be used as a

classifier.

First we have the training phase, where the RBM learns to model the joint probability distribution of

input data (explanatory variables) and the corresponding labels (output variables), both represented by

the visible units of the model as shown in Figure 3.6. The RBM is trained with one of the previously

described algorithm: either CD (described in 3.4.1) or PCD (described in 3.4.2).

Following the training phase, we have the sampling where the label corresponding to an input ex-

ample can be obtained by fixing the visible variables that correspond to the data and then sampling

the remaining visible variables allocated to the labels from the joined probability distribution of data and

labels modeled by the RBM. Hence, a new input example can be clamped to the corresponding visible

neurons and the label can be predicted by sampling [21].

36

... ...

label neurons data neurons

visible layer

... hidden layer

Figure 3.6: RBM that models the joint probability distribution of input images and the corresponding labels.

3.4.7 Deal with missing data with RBMs

The paper “Restricted Boltzmann Machines for Collaborative Filtering” [2] shows how a class of two-layer

undirected graphical models, called RBM, can be used to model tabular data, such as user’s ratings of

movies.

Considering a dataset with M movies, N users, and integer rating values from 1 to K. A highly rel-

evant problem when applying the RBM model to movie ratings is efficiently dealing with missing ratings.

Ideally all the N users would have rated the same set of M movies, and each user could be treated as

a single training case for an RBM which had M softmax visible units symmetrically connected to a set

of binary hidden units.

However, when dealing with missing ratings, a different RBM is used for each user. Every “single user

RBM” has the same number of hidden units, but each RBM only has visible softmax units for the movies

rated by that user. So, if a user rated few movies, then the corresponding RBM has few connections.

Even though each “single user RBM” only has a single training case, all the corresponding weights and

biases are tied together.

So, if two users have rated the same movie, both RBMs must use the same weights between the

softmax visible unit for that movie and the hidden units. The binary states of the hidden units, how-

ever, can be quite different for different users, given that the hidden units’ activation is calculated with

respect to each single user RBM visible units. Finally, the full gradients with respect to the shared weight

parameters can then be obtained by averaging over all N users.

37

Figure 3.7: Adapted from [2], a RBM with binary hidden units and softmax visible units is represented. For each
dataset sample (user), the RBM only includes softmax units for the movies that user has rated. In
addition, to the symmetric weights between each hidden unit and each of the K = 5 values of a softmax
unit, there are 5 biases for each softmax unit and one for each hidden unit.

Suppose a user rated M movies. Let V be a K ×M observed binary indicator matrix with vki = 1 if

the user rated movie i as k and 0 otherwise. We also let hj, j = 1, ..., F , be the binary values of hidden

variables, that can be thought of as representing stochastic binary features that have different values for

different users.

3.4.7.A The model

To model each column of the observed visible binary rating matrix V , a conditional multinomial distribu-

tion (softmax) is used. So, the probability of the k softmax visible units given the activation of the hidden

units is given by the following equation:

p
(
vki = 1 | h

)
=

exp
(
bki +

∑F
j=1 hjW

k
ij

)
∑K
l=1 exp

(
bli +

∑F
j=1 hjW

l
ij

) . (3.55)

The hidden units follow a conditional Bernoulli distribution, and the probability of each hidden unit

given the visible layer is given by the following equation:

p (hj = 1 | V) = σ

(
bj +

m∑
i=1

K∑
k=1

vkiW
k
ij

)
, (3.56)

where σ is the logistic function, W k
ij is a symmetric interaction parameter between feature j and

rating k of movie i, bki is the bias of rating k for movie i, and bj is the bias of feature j.

Moreover, the marginal distribution over all the visible ratings V is given by the following equation:

38

p(V) =
∑
h

exp(−E(V,h))∑
V′,h′ exp (−E (V′,h′))

. (3.57)

Each binary “configuration” of the whole network, visible and hidden units, has an energy, which is

given by the following equation:

E(V,h) =−
m∑
i=1

F∑
j=1

K∑
k=1

W k
ijhjv

k
i +

m∑
i=1

logZi −
m∑
i=1

K∑
k=1

vki b
k
i −

F∑
j=1

hjbj , (3.58)

where Zi =
∑K
l=1 exp

(
bli +

∑
j hjW

l
ij

)
. The movies with missing ratings do not make any contribu-

tion to the energy function.

3.4.7.B Learning

In order to update the required parameters during learning process and reviewing what we studied in

section 3.3.2, to perform gradient ascent, i.e. maximizing the log-likelihood of the specific training data

set, we have the following equation:

∆W k
ij = η · ∂ log p(V)

∂W k
ij

= η ·
(
< vki hj >data − < vki hj >model

)
, (3.59)

where η is the learning rate. The expectation
〈
vki hj

〉
data

defines the frequency with which movie i

with rating k and feature j are on together when the features are being driven by the observed user-

rating data from the training set using Equation 3.56, while
〈
vki hj

〉
model

is an expectation with respect

to the distribution defined by the model. This expectation cannot be computed analytically in less than

exponential time. So, as we previously discussed, an approximation to the gradient is followed, which is

called Constrastive Divergence.

Recalling the Equation 3.47 previously defined, the expectation 〈vihj〉τrecon represents a distribution

of samples from running the Gibbs sampler, initialized at the data, for τ full steps. τ is typically set to

one at the beginning of learning and increased as the learning converges.

However, by increasing τ to a sufficiently large value, it is possible to approximate maximum likelihood

learning arbitrarily well [53], but large values of τ are seldom needed in practice. When running the

Gibbs sampler, the distribution over the non-missing ratings are the only reconstructed. Considering

that each user N has a respective RBM, the approximate gradients of CD with respect to the shared

weight parameters can be then averaged over all N users.

3.5 Deep Belief Networks

A DBN is a powerful generative model that uses a deep architecture of multiple stacks of RBM .

39

DBNs were one of the first non-convolutional models to successfully admit training of deep archi-

tectures [54], [55]. Deep belief networks are generative models composed of several layers of latent

variables (hidden units) with connections between adjacent layers but not between units within each

layer [56], [11]. Deep belief networks capture the higher-level representations of input features [24].

There is an efficient, layer-by-layer procedure for learning the top-down, generative weights that

determine how the variables in one layer depend on the variables in the layer above, and is composed

by the following steps:

1. An RBM, as discussed in the section above, is trained directly on the input data, therefore the

stochastic units in the hidden layer of the RBM are able to capture the important features that

characterize the input data.

2. The activations of the trained features are then treated as input data which are used to train a

second RBM. In effect, we can learn the features of features in a second hidden layer.

3. The process of learning the features of features is continued until the number n of hidden layers is

reached, which is the same of saying until n RBMs have been trained.

The main idea is to apply DBNs in order to transform a Sparse Distributed Representation into a compact

representation given the dimensionality reduction from layer to layer [57]. The compact representation

generated by this model will then be used for classification [58].

...

...

...

v

h1

h2

...

... hN

Figure 3.8: Deep Belief Network

40

Deep Boltzmann Machine (DBM) is another kind of deep generative model. Most of the power of

conventional neural architectures arises from having multiple layers of units [59]. Even though DBMs

are an interesting model to write about, they are out of the scope of the thesis.

41

42

4
Experiments

Contents

4.1 Datasets description . 45

4.2 Stochastic Models for image reconstruction . 47

4.3 Classification using Stochastic Models . 50

4.4 Models comparison . 63

4.5 Learn from a Sparse Normal Distributed Dataset . 64

43

44

This section starts describing the first used datasets and briefly introduce the generation process of

the sparse data.

Next, the first set of performed experiments are described in order to understand the potential of

the previously described Stochastic Models. By baring in mind that a reliable model is crucial, some

baseline experiments were carried out and their complexity was incrementally increased until reaching

a set of suitable models, inspired in Stochastic Models and capable of performing classification.

To understand whether or not stochastic models have a better generalization performance than clas-

sic Machine Learning models when dealing with high-dimensional sparse data, a comparison was made

between the implemented models and a LR. The good test accuracy achieved by the LR when classi-

fying the generated high-dimensional sparse data, led to the suspicion that these generated datasets

were “living” in a lower dimensional space.

Subsequently, a different way to generate high-dimensional sparse data was proposed, where each

class follows a multivariate normal distribution and the sparseness of the data is controlled by deleting

the values of random features in each sample. By investigating the RBM and the LR performance with

this sparse data, we were able to conclude that the RBM shows a good generalization performance,

while LR falls into overfitting.

4.1 Datasets description

Before diving into the experiments it is important to describe the datasets used in the research process.

The first dataset we briefly describe is the MNIST, which was the starting point for our experimental

analysis. Then, the encoding process that provided the MNIST sparse representations was described

and used for the core experiments.

4.1.1 MNIST

The MNIST dataset1, created by Yann Le Cun, contains 60,000 digits in the range 0 to 9 for training

image recognition models, and another 10,000 digits as test data. Each digit is normalized and centered

in a gray-level image with size 28×28, or with 784 pixel in total. Image 4.1 shows a set of ten training

images of the MNIST dataset.

Figure 4.1: Ten image sample of MNIST training set.

1http://yann.lecun.com/exdb/mnist/

45

4.1.2 Sparse MNIST generation

The strategy used to generate the sparse codes is structured in [1]. In this paper, Sa-Couto & Wichert

propose an encoding function that maps visual patterns into informative binary sparse vectors. This

encoding requires the following two steps:

1. The Retinotopic Step: This first layer performs a local feature extraction which is organized in K

planes of I x J feature extraction units. Each image is parsed with K sliding windows, with size f

x f, to extract the K most relevant visual features of the images. The occurrence of the extracted

features is then signalled at the middle layer. These features are determined beforehand using

the unsupervised K-means algorithm. This layer performs information compression by establish-

ing a many-to-one relationship between groups of pixels and receptive units. Thereby, this step

transforms the dense representation presented in the input layer into a sparse representation.

2. The Object-Dependent Step: The fixed coordinate system where the features occurrences are

signalled is turned into an object-dependent, radius one polar coordinate system. In this step, the

mapping of the previously extracted features for each plane K to the new coordinate system is

performed by a Q x Q units plane. This operation provides invariance to size and position, and

makes the resulting representations well-distributed since the features detected in the previous

step will be mapped quasi-uniformly into all the dimensions of the object space.

Figure 4.2: Adapted from [1], we have the overview of the strategy that transforms visual patterns of digits into
sparse and distributed codes. The first step is local feature extraction (Retinotopic Step). Each feature
is depicted as a window with an oriented line and each image containing a number is parsed with a
sliding window, finally each occurrence of each feature is signaled at the middle layer. The Object-
Dependent Step maps these positions to an object-dependent, radius one polar coordinate system.

46

The encoding function proposed in [1] and shown in Figure 4.2 requires as input the following pa-

rameters: K specifies the number of features we want to be extracted, f x f specifies the window size

that will be parsed trough the image to extract the K most relevant features, Q represents the size of

the new coordinate system plane and, finally, T what that controls the percentage of similarity needed

to recognize a feature in an image.

Thus, in order to generate the sparse representations of the MNIST dataset we provide the encoder

with the train and test of the MNIST handwritten digits as well as the defined parameters, and the

encoder function returns a train and a test sets with 3 dimensions. These returned sets represent

a sparse binary MNIST encoding with the following shape: (N, QxQ, K), where N is the number of

samples we encoded, Q and K are the parameters described above.

4.2 Stochastic Models for image reconstruction

Before progressing to the implementation of classifiers using stochastic models, Hopfield Model was ex-

plored by performing various experiments. We started by this model as it comprises the basic concepts

to fully understand the Boltzmann Machine, RBM and DBN.

Due to the pattern storage capacity of the Hopfield Model a simple dataset was used. The dataset

contains only four training patterns with size 5×5, or with 25 pixels in total, as we can observe in Figure

4.3.

Figure 4.3: Training patterns

To test the Hopfield Network the four training patterns presented in Figure 4.3 were corrupted. In this

way it was possible to check if, during the test phase, the original patterns were recovered.

Figure 4.4: Corrupted training patterns

In this experiment, during the training phase the network weights for the training patterns were calcu-

lated following Equation 3.5. After the training patterns were stored, we tried to visually understand if the

47

model was able to retrieve the original patterns. This experiment was carried out for both a deterministic

and a stochastic implementation of the Hopfield Network. In the stochastic version of the model, the

synchronous (Figure 4.5(a)) and asynchronous (Figure 4.5(b)) update versions were implemented. In

both implementations the original patterns were fully recovered.

For each experiment, the energy of the network configuration after each bit update was updated

following equation 3.6. When the energy of the neurons configuration remains the same after a full

epoch, we achieve the network convergence. Each graphic in Figure 4.5 shows, for each corrupted

pattern, the evolution of the energy during successive updates of the network neurons.

(a) Synchronous update (b) Asynchronous update

Figure 4.5: Energy evolution during pattern reconstruction with stochastic update implementation of the Hopfield
Network.

Although the Hopfield Network fully recovered the original patterns, we were working with a trivial

dataset and due to the storage capacity, this model cannot accurately deal with complex datasets. Thus,

to have a model with more expressiveness power and hidden units that can capture relations between

visible units, we progressed to the study of the well-known BM model. Given the drawbacks of the

negative phase of learning process in Boltzmann Machines, we decided to move forward to the imple-

mentation of the RBM model [14]. To train the RBM two different algorithms were implemented: the CD

(explained in section 3.4.1) and PCD (explained in section 3.4.2).

As a starting point, the dataset previously described was used with the main objective of checking

the quality of the reconstruction given the corrupted patterns in Figure 4.4.

As the RBM model perfectly reconstructed the original patterns in Figure 4.3 given the simplicity of

the data, we progressed to experiments with the MNIST dataset.

First, several experiments were performed aimed at finding which architecture would better recon-

struct the patterns. In this primary stage, the measures used to evaluate the model’s learning during

training were the reconstruction error allied with the pseudo-likelihood.

48

Figure 4.6: Mean pseudo-likelihood during training of RBM models with different learning rates

Figure 4.6 shows the mean value of pseudo-likelihood for all the experiments that were performed

with each value for the learning rate that we decided to analyse. The results plotted in this graphic led to

the conclusion that the model’s architecture, which achieved a higher pseudo-likelihood was trained with

learning rate of 0.05. To find the best number of hidden units we have fixed the remaining parameters

guided by the best model in Figure 4.6 and plotted the pseudo-likelihood during the training stage, with

different number of hidden units.

Figure 4.7: Pseudo-likelihood during training of RBM models with different number of hidden units

Figure 4.7 shows that models with fewer hidden units have a lower pseudo-likelihood, which let us

conclude that more hidden units increase the expressiveness power of the model. As the pseudo-

likelihood of the models with 2000 and 1000 hidden units converges to a similar value and as the com-

putational cost scales with the number of hidden units as well as the risk of overfitting, we decided to

show the reconstruction for the RBM with 1000 hidden units.

49

The sampling phase took place after the model’s training. Here, we provide corrupted patterns to

the model and perform Gibbs sampling in order to obtain a reconstruction of these patterns. With the

purpose of evaluating the reconstruction quality of the chosen model’s architecture, we corrupted ten

test set MNIST images, flipping the value of twenty random bits in each image, as can be observed

in the top images of Figure 4.8. The bottom images correspond to the reconstruction of the corrupted

images, which are returned by the model after performing Gibbs sampling.

Figure 4.8: Ten image sample of MNIST test set. Corrupted images (top) are given to the network in order to
perform Gibbs sampling and then get the reconstructed images (bottom).

To assess the quality of the reconstructed images, the MSE, briefly explained in section 2.6.2, was

used. First, the MSE between the original test patterns and the randomly corrupted ones was calcu-

lated, which reached approximately 2.35%. Then, the MSE between the original test patterns and the

reconstruction was calculated, which gave approximately 1.59%. Despite the absence of a perfect re-

construction of the original patterns, the MSE between the original patterns and the reconstruction is

smaller than between the randomly corrupted patterns and the original test patterns.

With the results of the experiments we performed until now we can trust our implementation of the

RBM and start to add the remaining pieces. The final goal is to have a set of models capable of solving

the presented problem. In the next sections, the already implemented and tested model was adapted to

perform classification.

4.3 Classification using Stochastic Models

Until now we have performed some basic experiments to test the reliability of the model we built from

scratch. In this second phase, we started by adapting the RBM model to be able to perform classification,

given that the main goal of this thesis is to explore the potentiality of stochastic models to deal with high

dimensional sparse inputs.

4.3.1 Restricted Boltzmann Machine

To use the RBM model to perform classification, we followed the architecture described in section 3.4.6.

50

In this set of experiments, we started by training the model in labelled data, MNIST images combined

with ten binary indicator variables, one of which is set to 1, indicating that the image shows a particular

digit while the others are set to 0, this process being also known as one hot encoding representation.

In order to fully profit from the model’s capacities a parameter tuning during training was performed, i.e.

adjusting the learning rate, momentum and weight-decay. Choosing the best parameters combination

is not an easy task, but by following a practical guide to train Restricted Boltzmann Machines [50], and

with some experimental analysis we managed to significantly reduce the reconstruction error.

In the prediction phase two different approaches were implemented and tested. In the first approach,

an image was given to the model and the label corresponding to that input image could be obtained by

fixing the image neurons and performing N steps of Gibbs Sampling until a reconstruction of the ten

visible units corresponding to the class is obtained. The alternative approach consists of calculating the

probability of activation for the ten visible units corresponding to the class. To calculate this probability,

one needs to multiply the hidden units’ probabilities by the weights entries that correspond to the label

units and sum the bias of the visible units corresponding to the label. We apply the softmax function to

this vector and the label corresponding to that input image is the index of the maximum probability value.

Starting by the experiments with the original MNIST dataset and performing the appropriate train

parameter tuning, we concluded that performing more than one step in the negative phase of the training

algorithm significantly increases the computation time needed to train the model and does not produce

a significant accuracy improvement. Besides, the PCD algorithm, explained in section 3.4.2, showed to

perform slightly better than the CD algorithm. Consequently, in the remaining experiments, the algorithm

used to train the implemented Stochastic Models is the PCD.

Afterwards, we proceeded to the prediction phase in which experiments with both approaches de-

scribed above were performed. By using the same model to directly compare both approaches, one can

conclude that the second approach showed an accuracy increase of approximately 2%. After multiple

insightful experiments, the Figure 4.9 illustrates the best train and test accuracy of the RBM models

given an increasing number of hidden units for the original MNIST dataset.

51

Figure 4.9: Train and test accuracies of RBM on the original MNIST given an increasing number of hidden units.

By analysing the accuracy of the RBM (Figure 4.9), one can conclude that more than 500 hidden

units do not bring any advantage in terms of accuracy, and it bears the need for additional time in the

learning process. A RBM with 500 hidden units reached a train accuracy of 97.69% and a test accuracy

of 97.56%.

With the intent of trying to increase the accuracy, a small change in the previous model was imple-

mented. Before, there were ten binary indicator variables, one of which set to 1 indicating that the image

showed a particular digit while the others were set to 0. Now, instead of having ten fixed neurons, the

idea was to have a constant N which determines the number of neurons representing each class. With

this strategy outlined, first one trains the RBM to model the joint probability distribution of input images

and the corresponding labels, though instead of 1 neuron per class one has N as described above.

When it comes to the prediction phase, for each digit image, the class that has more active neurons

(neurons set to 1) in the reconstruction is the class predicted to label that input image.

Figure 4.10 shows the best accuracy of the performed experiments with each different values for

constant N. Although this idea seemed to have a great potential, the results show that, the higher the

number of neurons per class (constant N), the worse the accuracy gets.

52

Figure 4.10: Train and test accuracy varying numbers of neurons per class, namely N=1, N=2 and N=5

Guided by the results shown in Figure 4.10, in the following experiments with the RBM model, we

will use exclusively 1 neuron representing each class.

If the aim is to show that it is possible to produce a good and general classifier from Stochastic

Models, particularly RBM and DBN, first one needs to understand how these models deal with high-

dimensional sparse data. Thus, before exploring deeper models we performed an experiment where

we compared the performance of a LR and a RBM. The main purpose of this set of experiments was

to analyse the behavior of these two models given sparse MNIST datasets generated with increasing

sparseness.

To generate the sparse codes for these experiments, we used the strategy described in section 4.1.2.

The encoder parameters were defined as K = 7, which means we consider the seven most significant

features, each defined as a 5x5 window. Parameter Q was defined as Q = 12, which means that for each

K there is a new coordinate system plane with size Q x Q. Additionally, given the high computational

time of these experiments, we started by using a sample of the sparse datasets, 5000 training samples

and 1000 test samples. By considering the above information, one has a training set with shape (5000,

144, 7) and a test set with shape (1000, 144, 7).

The generated data was reshaped to a two-dimensional array before serving as input to the RBM

model, so the final dimensionality of the data was given by Q x Q x K, which in this case was 1018.

Thereby, the dimensionality of the data indicates the number of visible units of the model.

As discussed above, in section 4.1.2, parameter T what defines the level of similarity that is needed

for a feature in the image to be considered, which means that a higher T what requires a higher similarity

for the feature to be recognized and, consequently, the sparseness of the generated codes increases.

Therefore, for these set of experiments we have fixed the remaining parameters and increased T what,

which indirectly means that the sparseness of the data was increased.

53

In Figure 4.11 the T what parameter was set to each x-axis value, so that the behaviour of the RBM

and LR can be compared when increasing the sparsity of the data, i.e. increasing the level of similarity

needed to consider a feature in the image.

Figure 4.11: Train and test accuracy of LR and RBM given sparse MNIST datasets with increasing sparseness

By analysing the plot in Figure 4.11 one can observe that the RBM shows a smaller gap between

train and test accuracies, so it seems to be generalizing the training set better than the LR.

Moreover, as mentioned above, the experiments plotted in Figure 4.11 consider just a sample of the

generated sparse datasets. Thus, to understand the behavior of the RBM model and its potentiality

to learn a good and general classifier, the dataset with T what = 0.85 was chosen and the same

experiment with all the dataset performed. In Table 4.1, in the columns referring to Sparse dataset 1,

one has the best accuracy of the RBM and LR, both with this dataset.

In fact, the sparse codes we generated for the experiments plotted in Figure 4.11 had all the same

dimensionality. To conclude the experiments that compare these two classifiers, a much higher dimen-

sional and sparser dataset was generated and the same experiments repeated. The encoder param-

eters were defined as K = 30, which means that the thirty most significant features were considered

and Q = 18, which means that for each K there is a new coordinate system plane with size Q x Q. By

considering these parameters, the dimensionality of the generated sparse dataset is 9720 and the best

accuracy results are in Table 4.1, in the columns referring to Sparse dataset 2.

Sparse dataset 1 Sparse dataset 2
Train accuracy Test accuracy Train accuracy Test accuracy

Restricted Boltzmann Machine 92.35% 92.02% 97.35% 96.98%
Logistic Regression 93.62% 92.77% 100% 97.64%

Table 4.1: Train and test accuracy of RBM and LR given two different generated sparse datasets

54

Once again the best results of the RBM model were with 500 hidden units for both datasets. Con-

cerning the remaining parameters, the learning rate was initialized to 0.01 and decreased during training

until reaching 0.001, the momentum used was 0.5 to start the learning process and then increased to

0.9. In these experiments we did not need to use any regularization (Weight-Decay).

By analysing the results in Table 4.1, one can conclude that LR has a slightly higher accuracy than

the RBM. By observing the difference between train and test accuracies in Sparse dataset 2, the RBM

seems to be better generalizing the rules learned during training than LR. Guided by this conclusion,

the Sparse dataset 2 was selected to continue our research described in the following sections.

In what follows, we will introduce the DBN architecture used for classification with the intent to explore

whether this model is able to overtake the accuracy reached in Sparse dataset 2 by the models described

above.

4.3.2 Deep Belief Network

To implement the DBN, the architecture presented in Figure 4.12 inspired by the paper “Learning multiple

layers of representation” [54] was used. Instead of having one RBM, this model consists of two stacked

RBMs, which is called a DBN. The first RBM will be trained just on the image neurons which are the high

dimensional part of our dataset. Then, the activation of the trained features in the first RBM combined

with ten binary indicator variables which represent the class, are treated as input data to train the second

RBM. In effect, the features of features can be learned in the second hidden layer.

Afterwards, like in the RBM model, one has the prediction phase where the label corresponding to

an input image is obtained by the index of the maximum probability value.

class neurons

Image neurons

RBM

RBM

Figure 4.12: DBN with 2 layers that models the joint probability distribution of hidden activations given the input
images and the corresponding labels.

As in the experiments with the architecture outlined above, we started by exploring the model with

the original MNIST dataset before stepping into the sparse MNIST representations.

The number of hidden units in each layer corresponds to the features of the input images stored in

55

the model. Thus, it is crucial to find the adequate number of hidden units as well as hidden layers, since

models with too few or too many hidden units can result in slow learning and poor performance.

The architecture that resulted in a better accuracy with the MNIST dataset was a first layer RBM with

500 hidden units, a second RBM with 500 hidden units and the last layer with 2000 hidden units. The

later RBM receives as input the 500 hidden units that were computed by the second RBM plus the label

units. This described architecture was first proposed by Hinton in the previously referred paper [54].

The DBN layers were trained with an initial learning rate of 0.01 and an initial momentum of 0.5,

which were decreased and increased, respectively, during the learning process. The accuracy of this

model in the original MNIST dataset slightly increased from the simple RBM with an accuracy of 97.74%

on the training set and 97.63% on the test set.

The experiments with the original MNIST dataset worked as a baseline to guide the sparse generated

dataset experiments. Having in mind that Hinton’s architecture [54] performed well with the original

MNIST hints at the possibility that it can overpass the accuracy reached by the RBM in the sparse

codes.

By considering the same training parameterization used with the original MNIST dataset, a compar-

ison between a 2 layered DBN and a 3 layered DBN was made. Both models start with a first layer of

500 hidden units, then the DBN with 3 layers has another 500 hidden units layer preceding the last layer.

Figure 4.13 shows the accuracy of the sparse MNIST dataset with increasing hidden units in the last

layer of the models, which is the layer that receives the label neurons as input in both DBNs.

Figure 4.13: Train and test accuracies of sparse MNIST datasets given the increasing number of hidden units in
the last layer of the DBN.

By analysing the plot in Figure 4.13 one concludes that, for the sparse MNIST generated dataset,

having a DBN with 3 layers does not bring any performance advantage. The maximum accuracy with

this architecture was achieved by the DBN with 2 layers, with 2000 hidden units in the second layer.

56

By considering that we decided to continue our experiments with Sparse dataset 2, Table 4.2 re-

sumes the best accuracy results achieved by the architectures described in this section. In fact, a DBN

with 500 and 2000 hidden units in the first and second layers, respectively, surpasses the test accuracy

achieved by the LR with a train and test accuracy of 98.09% and 97.94%, respectively. Besides having

a better accuracy, we continue to have close train and test accuracies which indicates that it has a high

generalization power, which means that the rules learned during training are equally valid to the test set.

Train accuracy Test accuracy
Logistic Regression 100% 97.64%

Deep Belief Network with 2 layers 98.09% 97.94%
Deep Belief Network with 3 layers 97.62% 97.58%

Table 4.2: Train and test accuracy of DBN with 2 layers, DBN with 3 layers and LR given the Sparse datasets 2.

4.3.3 Restricted Boltzmann Machine followed by Logistic Regression

In a second stage of experiments, we tried a different approach. Instead of using a RBM or a DBN to

model the joint probability distribution of input images and the corresponding labels, we used them to

model the input images into activation of the hidden units. In this new approach the classification is not

performed by the Stochastic Models. They have the role of providing the classifier, which in this case is

a LR, with a compact representation of the input.

Prior to the implementation of this model, we went back to the baseline model, a LR trained on the

MNIST dataset (Figure 4.14(a)) and on the generated sparse codes of MNIST dataset (Figure 4.14(b)).

In these baseline experiments we concluded that the LR trained directly on the original MNIST dataset

(dense dataset) has a training accuracy of 93.9% and a test accuracy of 92.5%. When it comes to the

generated sparse codes (Sparse dataset 2) and as already presented in the previous sections, the LR

has a training accuracy of 100% and a test accuracy of 97,64%.

Logistic Regression

Output Label

Supervised
Learning

MNIST
Image

MNIST
Image

MNIST
Image

(a) Logistic regression applied to MNIST
dataset.

Encoder
SDR

Logistic Regression

Output Label

Unsupervised
Learning

Supervised
Learning

MNIST
Image Encoder

Unsupervised
Learning

MNIST
Image Encoder

MNIST
Image

(b) Logistic regression applied to sparse MNIST dataset.

Figure 4.14: Scheme of baseline models.

57

The main idea behind the approach represented in Figure 4.15 is to give the images as input to

the RBM. Then, after the model is trained, it computes the activations of the hidden units, which give a

compact representation of the input. That compact generated representation is then used as input to the

LR. In this way, instead of giving a high-dimensional sparse vector to the LR, a compact representation

generated by the hidden units of the RBM is provided.

Encoder
SDR

Restricted
Boltzmann

Machine

Output Label

Unsupervised
Learning

Unsupervised
Learning

Compact hidden
representation Logistic

Regression

Supervised
Learning

MNIST
Image

Figure 4.15: Scheme of the classifier composed by a RBM followed by a LR

By using the described pipeline to perform several experiments, we were able to take meaningful

conclusions about this approach. Once more, these experiments were performed with an increasing

number of hidden units of the RBM to explore the model architecture that could result in a higher accu-

racy.

By analysing the plot in Figure 4.16 one can conclude that the pipeline suggested in Figure 4.15 is

the model that better classifies the original MNIST dataset with a 99.64% accuracy on the training set

and 98.48% on the test set.

Regarding the sparse MNIST dataset, the difference between the train and test accuracy slightly

decreases compared with the LR applied directly on the sparse dataset. The accuracy with a 5000

hidden unit RBM followed by a LR is 100% on the training set and 97.98% on the test set.

58

Figure 4.16: Train and test accuracies of original MNIST and sparse MNIST datasets given the increasing number
of hidden units.

In fact, by observing the results in Table 4.3, one can conclude that the LR classifier does not produce

significantly better results when receiving a hidden representation of the RBM instead of the sparse

codes. In addition, the large number of hidden units extremely increases the time spent in the learning

process and it does not reduce significantly the difference between train and test accuracies.

Train accuracy Test accuracy
Logistic Regression 100% 97.64%

RBM followed by Logistic Regression 100% 97.98%

Table 4.3: Train and test accuracy of LR and RBM followed by LR models considering the same sparse dataset
(Sparse dataset 2)

The stochastic models that were used before as classifiers, now have the role of reducing the input’s

dimensionality. Consequently, the LR, instead of receiving a high-dimensional sparse input, it receives a

compact representation given by the Stochastic Model’s hidden units. In this section, we concluded that

the RBM does not provide the gradual dimensionality reduction we needed to decrease the difference

between train and test accuracies. Thus, in the following section, the use of the DBN model to obtain a

gradual dimensionality reduction was explored.

4.3.4 Deep Belief Network followed by Logistic Regression

Instead of having just one hidden layer to get the compact hidden representation, one can have a gradual

dimensionality reduction. This is possible by stacking more than one RBM, which is also known as a

DBN. For these experiments the pipeline shown in Figure 4.17 was used.

59

Encoder
SDR Deep Belief

Network

Output Label

Unsupervised
Learning

Unsupervised
Learning

Compact hidden
representation Logistic

Regression

Supervised
Learning

MNIST
Image

Figure 4.17: Scheme of the classifier composed by a DBN followed by a LR.

Various experiments were carried out with this architecture to understand if the dimensionality re-

duction from layer to layer could increases even more the accuracy when classifying the sparse codes.

In fact, after analysing all the results obtained, the best performance was achieved with a DBN with 3

layers, in which the first layer has 2000 hidden units, the second 1000 and the last 500. The train and

test accuracies with this DBN architecture were 98.32% and 97.36%, respectively, as shown in Table

4.4.

Train accuracy Test accuracy
Logistic Regression 100% 97.64%

DBN followed by Logistic Regression 98.32% 97.36%

Table 4.4: Train and test accuracy of LR and DBN followed by LR models considering the same sparse dataset
(Sparse dataset 2)

Despite the dimensionality reduction given by the decreasing number of hidden units from one layer

to the next, this model was not the one that resulted in a better accuracy.

In fact, it is noteworthy that the difference between train and test accuracies was reduced. By pro-

viding a compact representation as input to the LR, the generalization capability of the LR increased.

However, the test accuracy slightly decreased which means that the hidden compact representation of

the input does not perfectly represent the high-dimensional sparse input.

Nevertheless, before concluding the research on the classifiers inspired by Stochastic Models, in the

next section is suggested a variation of the RBM model, which seems to be more biologically plausible.

This variation of the RBM model is compared with the one described in section 4.3.1 and assessed if it

brings any advantage when classifying the generated MNIST sparse codes.

4.3.5 Restricted Boltzmann Machine with 3 state neurons

RBMs are biologically plausible models. Grounded by this premise, a new implementation of the RBM

based on the brain inspired idea of 3 state neurons RBM is suggested. This idea is described in section

60

3.4.7 and was first mentioned in the article “Restricted Boltzmann Machines for Collaborative Filtering”

[2].

Before diving into the model description, one needs to clarify the idea of 3 state neurons, according

to which each neuron can be in one of the following 3 states: the excitatory state which means that the

neurons are stimulated to be active, the inhibitory state, which correspond to neurons that are stimulated

to be inactive and the non-stimulated neurons, which are neither active nor inactive.

By considering once more the sparse codes, one has N samples, a new coordinate system plane of

QxQ and K features. Consequently, the dataset follows the shape: (N, QxQ, K).

In the previous implementation of the RBM model, these original dimensions were reshaped and

thereby the model received the data with shape (N, QxQxK). This means that for each example N we

had QxQxK visible units, which connected to H hidden units. The QxQxK visible units had two possible

states: they were either active or inactive, assuming the values 1 or 0, respectively.

With 3 state neurons, every RBM has the same number of hidden units, but a RBM only has visible

softmax units for the positions of the new coordinate system plane where one of the K features is

present. In each sample of the dataset, the number of QxQ positions that have a feature can vary,

which means there is no fixed number of visible units as in the previous models. Thus, a RBM has few

connections if that new coordinate system plane has few features. The RBM model, however, needs

a fixed number of visible and hidden units to be trained. The solution proposed towards this problem

is the implementation of a single example RBM. Each RBM only has a single training case, but all the

corresponding weights and biases are tied together. Then if two samples of the dataset have a feature

in the same position of the new coordinate system plane, their two RBMs must use the same weights

between the softmax visible unit and the hidden units.

Figure 3.7 in section 3.4.7 illustrates a prototype of the idea we just described. In this RBM there

is V visible connection that correspond to the QxQ positions in which a feature K is present. In the

case where there is no feature present, then, that input position is considered as no information and no

connection to the hidden units is established. In addition to the symmetric weights between each hidden

unit and each of the K values of a softmax unit, there are K biases for each softmax unit and one for

each hidden unit.

Revisiting the core idea, in this implementation the visible neurons can be described by having 3

states. In the positions in which a feature is present, there is a connection in the RBM (Figure 3.7). For

the k neurons associated with that connection, the unit corresponding to the presence of a feature is

set to 1, which can be linked with the excitatory state of a neuron. The remaining k-1 units are set to 0,

which is associated with the inhibitory state of the k-1 neurons. The positions that have the presence

of a feature can be associated with the winner-take-all computational principle. In each one of the QxQ

positions that has a feature, then the feature that is present wins the activation and the remaining k-1

61

features shut down. In the QxQ positions in which no feature is present, there are no connections with

the hidden units and therefore no weights are learned. The units that have no connections in the RBM

are treated as non stimulated neurons.

In order to perform experiments with the implementation of a 3 state neurons RBM, a sparse dataset

is needed. First, we started by using a sample of Sparse dataset 1 generated with the parameters

described in section 4.3.1. Recalling the used parameters, one has K = 7, which means that the seven

most significant features were considered and Q = 12, entailing a new coordinate system plane with size

12 x 12. Also, the features window size is 5 x 5. The final shape of the dataset is (N,144,7), in which N

describes the number of samples.

Actually, each single example RBM, between the 144 positions (Q x Q), only considers the connec-

tions with the positions that have a feature. Since this dataset is highly sparse, we will have few positions

with the presence of a feature, which results in N single example RBMs with few connections.

In fact, these N single example RBMs will contribute to a shared weight matrix and biases, in which

for each one of the N examples, the gradient will only update the indexes in which that specific example

has the presence of a feature. Additionally, all the class connections are present as in the previous

model.

The prediction phase consists in calculating the probability of activation for the ten visible units corre-

sponding to the label. To calculate this probability, one needs the hidden units’ probabilities, the weights,

and the bias of the visible units. The calculation of the hidden units’ probabilities in this network imple-

mentation is not trivial. Considering that each new instance has different number of features present

in different positions, first the positions where the new instance has a feature need to be found. Then,

the hidden units’ probabilities will exclusively consider the entries of weight matrix for those positions.

Finally, to calculate the net input vector for the label units one multiplies the hidden units’ probabilities

by the weights of the label units and sum the bias of the visible units corresponding to the label. To this

vector a softmax function is applied and the label corresponding to that input image is the index of the

maximum probability value.

By using a sample of the dataset described, with 5000 training examples and 1000 test examples,

we started by training the model with an initial learning rate of 0.01 and a momentum of 0.9. During

the learning process we decreased the learning rate to 0.005 and increased the weight decay from 0 to

0.001.

In the prediction phase, a training accuracy of 87.32% and a test accuracy of 80.07% were obtained.

By performing this same experiment with all the dataset and comparing with the first RBM implementa-

tion the results shown in Table 4.5 were achieved. These accuracies were reached after an exhaustive

parameter tuning, during which we concluded that the optimal number of hidden units for this sparse

dataset is 100.

62

Train accuracy Test accuracy
2 state neurons RBM 92.35% 92.02%
3 state neurons RBM 86.31% 85.475%

Table 4.5: Train and test accuracy comparison between the original RBM implementation (2 state neurons) and the
3 state neurons implementation given the same sparse dataset

By analysing the results presented in Table 4.5 one can conclude that, for the generated dataset,

the 2 state neurons RBM implementation described in section 4.3.1 has a better accuracy than the new

proposed implementation.

In fact, the idea behind the 3 state neurons RBM implementation, explained in 3.4.7, is suggested

by the article “Restricted Boltzmann Machines for Collaborative Filtering” [2] as a strategy to deal with

missing values, i.e. entries of the dataset where information is missing.

By applying this idea to the generated MNIST sparse codes, the QxQ positions where no feature was

present were treated as missing information by the model, i.e. no connection between those visible units

and the hidden units were considered. However, these positions do not represent missing information but

the absence of a feature in a certain position. Thus, the results of the experiments performed using the 3

state neurons RBM, let one concludes that considering exclusively the connections with the dimensions

in which a feature is present discards relevant information that the model needs to accurately learn the

sparse dataset.

For the RBM to represent the correlations between active features on the hidden units, the connec-

tions between inactive features have to be considered. Otherwise, the RBM exclusively receives as input

units where a feature is present and it is not capable of accurately learn the correlations between them.

By taking into consideration this conclusion, the 2 state neurons RBM classifier described in section

4.3.1 was used in the next sections.

4.4 Models comparison

Throughout the former sections, the implementation of several Stochastic Models was described as well

as the results derived from the study of their behaviour when dealing with the high-dimensional sparse

dataset generated from MNIST. To make the final remarks about the performance of these models given

the proposed dataset, in Table 4.6 the best performance results of each studied model are presented.

63

Train accuracy Test accuracy
Logistic Regression 100% 97.64%

Restricted Boltzmann Machine (RBM) 97.35% 96.98%
Deep Belief Network (DBN) 98.09% 97.94%

RBM followed by Logistic Regression 100% 97.98%
DBN followed by Logistic Regression 98.32% 97.36%

Table 4.6: Train and test accuracy of all the models implemented considering the same sparse dataset (Sparse
dataset 2)

All the models presented in the table show to perform well given a high-dimensional sparse dataset

generated from MNIST. The model which showed a better test performance was the RBM followed by a

LR, however, the DBN with 2 hidden layers achieved almost the same accuracy.

One of the advantages of using the RBM and DBN is the fact that besides classifiers, they are

generative models. Consequently, additionally to predicting the labels of the dataset, they can perform

image reconstruction as described in section 4.2, whereas, in the other models the classification is

done by a LR, which is exclusively a classifier. Besides, these classifiers show a smaller difference

between train and test accuracies, which means that they have a greater generalization performance

when classifying the high-dimensional sparse dataset generated from the original MNIST.

Actually, the LR scores 100% on the training set, which suggests that this model is highly adapted

to the training data and consequently more prone to overfitting. However, the good results archived by

the LR classifier in the test set leave us wondering whether or not these generated codes are high-

dimensional and sparse. It is plausible to think that the generated sparse data lies on a low-dimensional

manifold embedded in a higher-dimensional space. As a result, the learning problem becomes too

easy and the LR can accurately classify the test set. To have a well-grounded research one cannot

be restricted to the generated MNIST sparse codes. In the following section, a deeper research with a

different way to generate sparse data is presented.

4.5 Learn from a Sparse Normal Distributed Dataset

Revisiting the problem raised in the former section, it is plausible to consider that the generated sparse

MNIST data lies on a low-dimensional manifold embedded in a higher-dimensional space, which means

that, although the data has many features, it only has a few degrees of freedom.

With this idea in mind, and with the desire to understand if the RBM model accurately classifies high-

dimensional sparse data while LR falls into overfitting, several experiments were carried out in which

both a LR and a RBM had to perform the same classification task.

In fact, generating binary sparse data is not a trivial task as it is hard to find a complexity balance in

the learning problem. Thus, instead of generating binary data, we decided to generate a dataset where

64

each class follows a multivariate normal distribution.

The implementation of the RBM we used in the experiments is modelled with Bernoulli visible and

hidden units, which means that this RBM is prepared to receive input data in the range [0,1]. By consid-

ering that the generated data is real-valued, some exploratory experiments with a Gaussian-Bernoulli

RBM were performed, but tuning the value of the Standard Deviation parameter is a hard task, which

can produce an unstable learning process [50].

Since the expected results using Gaussian visible units were not achieved, the Bernoulli-Bernoulli

RBM was explored to address this problem. In fact, the only difference between using Bernoulli or Gaus-

sian visible units occurs when sampling the visible units of the negative phase of the learning algorithm.

Constraining the values of the visible units to be between 0 and 1 imparts a kind of regularization to the

learning process. In the sampling phase, the use of Bernoulli visible units is necessary as the sampled

label is binary.

In the next steps, the dataset generation pipeline and the experiments performed are explained, with

the aim of reaching meaningful conclusions on the behaviour of LR with sparse data, compared with the

Stochastic Models; in this case, only the RBM model was addressed.

4.5.1 Dataset generation

To reach the desired results, we start by explaining the dataset generation. Each dataset is generated

with two classes, in which each one follows a Gaussian distribution. The first half of the samples belong

to class 0 and follow a Gaussian distribution with mean centered in the origin, the other half corresponds

to class 1 and follows another Gaussian distribution with mean centered in five. The covariance matrix

for each class is defined as a diagonal matrix, in which the diagonal values are set to the norm of the

difference between the mean vector of each class multiplied by a small number as to reach a good

balance in the problem complexity.

Moreover, the number of features will be further defined for each experiment. In the case the dataset

to be is intended to be dense, the number of features is set to a low value, whereas in the case the

dataset is intended to be high-dimensional, the number of features is fixed to a high value.

4.5.2 Pipeline

With the objective of structuring the steps performed by the experiments, a simple pipeline is described.

Thus, for each experiment, we started by setting the parameters and then running 10 times the following

pipeline:

1. Populating the dataset by sampling from the two multivariate normal distribution with the previously

defined parameters and associate each multivariate normal distribution to a class, either 0 or 1.

65

2. Centring the data, which consists in subtracting the mean of each feature to every value of that

feature.

3. Transforming the dataset into sparse data, which means choosing a few random features to keep

in each sample and set the remaining features to zero.

4. Dividing the samples of the dataset into train and test. For this step the function train test split()

from the sklearn library was used, in which the input parameter test size was set to 20%.

5. Training a LR model with the generated train set.

6. Evaluating a LR model by computing and storing the train and test accuracies.

7. Training the RBM with the generated train set using PCD algorithm.

8. Evaluating the RBM by performing the Gibbs sampling to get the reconstruction of the class unit

for both train and test sets (explained with more detail in section 3.4.6). After having all the recon-

structions, the model’s train and test accuracies can be computed and stored.

After running the described pipeline, four lists with 10 train and test accuracy values for both models

were obtained. Subsequently, the mean and the standard deviation for each list was calculated. In the

end, a single train accuracy for both models and a single test accuracy for both models were stored, as

well as the respective standard deviations.

4.5.3 Experimental Analysis

This research was instigated by the desire to understand if Stochastic Models perform better than classic

Machine Learning models, like LR, when classifying high-dimensional sparse data. For that reason, and

with the aim of having a baseline experiment which guided the next steps, a comparison was made with

the LR performance classifying a non-sparse dense dataset and a high-dimensional sparse dataset.

Starting by the dense dataset, it was generated as described in section 4.5.1. For the dataset to

be dense, the number of features was fixed to 500 and all the values of the data were kept. When

generating the high-dimensional sparse dataset, the methodology described in the section 4.5.1 was

also used. In this case, the number of features was set to 5000. Furthermore, the sparsity was fixed to

95%, which means that for each sample 5% of the features were kept and the remaining values set to 0.

In Figure 4.18, the results show that LR performs well when the dataset is dense, with a mean train

accuracy of 100% and a mean test accuracy of 99.25%. However, when analysing its performance on

the high-dimensional sparse dataset a huge overfitting is observed, with a mean train accuracy of 100%

and a mean test accuracy of 63.5%.

66

Figure 4.18: Performance of the LR in a dense versus a high-dimensional sparse dataset.

This first experiment provides a baseline to guide the next steps. In what follows, the intend was

to show that the RBM performs accurately in a classification task with high-dimensional sparse data.

Before diving into the experiments, the parameters must be defined. With these experiments, the aim

was to access the behaviour of a LR and a RBM with increasing sparseness of the dataset. For this

reason, the remaining parameters of both models were fixed to the same values, as to achieve a trustful

comparison between models.

The number of samples was fixed to 2000 and the dimensionality of the input to 5000. As far as

the parameters of the RBM architecture were concerned, the number of hidden units was set to 500.

Additionally, a batch size of 50 and a learning rate of 0.1 was used.

With the final objective of taking meaningful conclusions about both models when the dataset sparsity

increases, i.e., the number of zero values increases, the pipeline described in section 4.5.2 was followed.

To make an easier comparison between models, the sparsity value was set to each x-axis value and the

mean accuracies of LR and RBM were plotted in Figure 4.19.

67

Figure 4.19: Comparison between accuracies of LR and RBM classifiers with increasing percentage of sparseness.

By analysing the results plotted in Figure 4.19, one can observe that the LR classifier has an accuracy

of 100% on the training set, though it is not able to perform accurately on the test set, which suggests

that this model is learning the noise in the training data. As the data gets sparser the learning problem

becomes harder and test set accuracy decreases. This means LR can represent the training set of

sparse data perfectly but unable to generalize, which results in a poor performance in the test set.

On the contrary, the RBM classifier can generalize the learning problem. Although, with the increas-

ing sparseness the model’s performance decreases, it never falls into overfitting as LR does. When the

data is generated with 95% sparseness, the LR has a mean test accuracy of 63.5%, while the RBM

shows a mean train and test accuracies of 75.67% and 73.15%, respectively. So, comparing the test set

performance, the RBM is nearly 10% more accurate than LR.

To understand how both models behave with different dimensionalities and sparseness, both models

varying these two parameters were run. The heatmap in Figure 4.20, shows the difference between

train and test accuracies of RBM and LR considering the y-axis as the dimensionality values and the

x-axis as the sparseness percentage used with each different dimensionality dataset. In the heatmap

on the right, one can observe that as the data gets sparser the difference between both test accuracies

increases and the RBM shows to perform better than the LR. With lower sparseness the RBM and the

LR have similar test results. The dimensionality behaves in the same way, which means that with higher

dimensional data it is easier to notice the better results achieved by the RBM. The heatmap on the left

shows the train accuracy difference, which is always lower than 0. The training accuracy of the LR is

always 100%, so darker colours means a higher difference between the training accuracies. With less

sparseness the train accuracy of the RBM increases as shown in Figure 4.19.

68

Figure 4.20: The left heatmap shows the difference between train accuracies of RBM and LR considering increas-
ing dimensionality and sparseness. The right heatmap shows the difference between test accuracies
of RBM and LR considering increasing dimensionality and sparseness percentage.

The good results and generalization performance achieved by the RBM classifier can be mainly jus-

tified by the fact that it has a hidden layer that represents hidden correlations between active features

of sparse vectors. Therefore, this model can map a high-dimensional sparse vector into a lower dimen-

sional hidden layer, which would catch the relevant features present on the high-dimensional sparse

vector.

Besides, the LR learns the conditional probability of the class given the features, while the RBM

learns the joint probability of the features and class. The difference between learning the conditional

or the joint probability may be a factor influencing the performance of each model. The LR is learning

a simpler problem than the RBM. Thus, given its huge capacity, instead of learning just the training

patterns, the model is also learning the noise. Consequently, the LR becomes too adapted to the

training set, which leads to the overfitting problem.

This justification seems to be well grounded, although one may still wonder: Can the good perfor-

mance of the RBM be justified by the presence of hidden units, which makes it a non-linear classifier?

To answer this question, a comparison was made between the performances of the RBM and a Multi-

Layer Perceptron (MLP). To derive meaningful conclusions, a RBM and a MLP with the same number of

hidden units were defined. Additionally, the MLP activation function for the hidden layer units used was

the logistic sigmoid function.

More experiments were carried out, in which normally distributed datasets were created following the

pipeline described in section 4.5.2. However, instead of comparing the RBM to a LR, the comparison

was made with a MLP. In this experiment, the number of samples was fixed to 2000, the dimensionality

of the input to 5000 and the number of hidden units of the RBM and the MLP is fixed to 500. With these

parameters and a sparsity of 95%, the results in Table 4.7 were obtained.

69

Mean train accuracy Mean test accuracy
Multi-Layer Perceptron (MLP) 100% 64.12%

Restricted Boltzmann Machine (RBM) 76.18% 73.98%

Table 4.7: Train and test mean accuracies of MLP and RBM given the generated data.

By analysing the results, the MLP classifier has an accuracy of 100% on the training set, although

it is not able to perform accurately on the test set. This means that the model is overfitting the training

data, and so, it lacks generalization capability.

As a matter of fact, the overfitting undergone by the MLP model led to the conclusion that, the

generalization capability of the RBM is not a consequence of being a non-linear classifier.

Consequently, the good generalization performance of the RBM is justified by the hidden neurons

that represent correlations exclusively between active features of the sparse vectors. The model receives

a high-dimensional sparse vector and, by capturing the relevant features in a much lower dimensional

hidden layer, it can perform classification without falling into overfitting.

After the research performed throughout this chapter, the question raised in section 1.2 can, finally,

be answered. Actually, our intuition pointed in the right direction and, thus, one can conclude that the

main reason for the good generalization performance of the RBM is the fact that hidden neurons learn

correlations between active features of the high-dimensional sparse vectors.

70

5
Conclusion

71

72

SDRs are the fundamental form of representing information in the brain. The activity of any popu-

lation of neurons in the neocortex is sparse, where a low percentage of neurons are highly active, and

the remaining neurons are inactive [5]. Previous research explored these representations with biolog-

ically plausible models to perform associative memory tasks. To learn a good and general classifier

without running into the “curse of dimensionality” problem, however, is a hard task. Deep learning mod-

els progressively reduce the dimensionality of the SDR from layer to layer and have some success in

tasks in which there is a great amount of data with labels, although they use a non-biologically plausible

algorithm.

The present thesis explores the capabilities of classifiers inspired in Stochastic Models to side step

the limitations that classic Machine Leaning models have, when classifying high dimensional sparse

data.

The main evidence that motivated the use of Stochastic Models is the fact that hidden units in these

models represent hidden correlations between active neurons of sparse vectors. As sparse vectors have

few active neurons, then stochastic models can map a high-dimensional sparse vector into a hidden

layer with few hidden units, which represents the visible correlations between present dimensions of the

high-dimensional sparse vector.

With this motivation in mind, we started by explaining the main concepts associated with SDRs,

Associative Memories, MCMC methods, namely Metropolis algorithm and Gibbs Sampling, which set

the ground to understand the Stochastic Models presented in chapter 3, and finally the optimization

algorithm called Simulated Annealing.

To solve the problem that instigated this research work, in chapter 3 we described in detail the main

characteristics of the Stochastic Methods. This chapter gathers all the theoretical knowledge needed to

understand the models implemented and tested in the experiments, described in chapter 4.

During the experimental analysis, we started by using the strategy structured in [1] to generate the

sparse codes. With these codes, we tested the implemented classifiers inspired in Stochastic Models

and compared their accuracy results with a simple Logistic Regression. Both the Stochastic Models

and the LR achieved good results when classifying these codes. In fact, these good results archived by

the LR classifier left us wondering if the generated codes were effectively high-dimensional and sparse.

Actually, it is plausible to think that the generated MNIST sparse data reside on a low-dimensional

manifold embedded in a higher-dimensional space. This suggests that the real dimensionality of the data

is highly inferior to the defined number of features of the dataset, which can justify the good performance

of LR.

With the desire to study the performance of a RBM and compare it with a LR in high-dimensional

sparse data, we defined a different dataset generation strategy, in which each class followed a multivari-

ate normal distribution. To control the sparseness of the data a pre-defined number of features were

73

randomly deleted from each sample. We performed several experiments using this high-dimensional

sparse data, in which datasets with varying dimensionalities and sparseness were generated. The good

generalization capability achieved by the RBM showed that this model can map a high-dimensional

sparse vector into a hidden layer, which catches the relevant features present on the high-dimensional

sparse vector, while the LR, with the increasing dimensionality and sparseness, becomes too adapted

to the training set, which leads to the overfitting problem.

To understand if the good generalization performance of the RBM is really justified by its capability to

map a high-dimensional sparse vector into few hidden units, which capture the relevant features present

in the data, or if it results from being a non-linear classifier, a comparison was made between the RBM

and the MLP with the same number of hidden units. Considering the poor generalization performance

obtained by the MLP when classifying the high-dimensional sparse data, one can conclude that the

main reason for the good performance of the RBM is the ability to capture correlations between active

features of the high-dimensional sparse vectors.

Thus, one can conclude that the motivation for this research work pointed in the right direction. The

results achieved by the implemented Stochastic Models demonstrate that by learning the correlations

between active features of the sparse input data, good results can be achieved by side stepping the

overfitting problem, which affects classic Machine Learning models.

74

Bibliography

[1] L. Sa-Couto and A. Wichert, “Storing object-dependent sparse codes in a willshaw associative

network,” Neural Computation, vol. 32, no. 1, pp. 136–152, 2020.

[2] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines for collaborative filter-

ing,” in Proceedings of the 24th international conference on Machine learning, 2007, pp. 791–798.

[3] S. Ahmad and J. Hawkins, “Properties of sparse distributed representations and their application to

hierarchical temporal memory,” arXiv preprint arXiv:1503.07469, 2015.

[4] G. E. Hinton, “Distributed representations,” 1984.

[5] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, “Biological and machine intelligence (bami),” 2016,

initial online release 0.4.

[6] J. A. Hertz, Introduction to the theory of neural computation. CRC Press, 2018.

[7] G. Palm, “Chapter xii how useful are associative memories?” in North-Holland Mathematics Stud-

ies. Elsevier, 1982, vol. 58, pp. 145–153.

[8] B. Ouyang, Y. Li, Y. Song, F. Wu, H. Yu, Y. Wang, M. Bauchy, and G. Sant, “Learning from sparse

datasets: Predicting concrete’s strength by machine learning,” arXiv preprint arXiv:2004.14407,

2020.

[9] J. Bissmark and O. Wärnling, “The sparse data problem within classification algorithms: The effect

of sparse data on the naı̈ve bayes algorithm,” 2017.

[10] M. Tan, L. Wang, and I. W. Tsang, “Learning sparse svm for feature selection on very high dimen-

sional datasets,” in ICML, 2010.

[11] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cambridge, 2016,

vol. 1, no. 2.

[12] X. Li, “Classification with large sparse datasets: Convergence analysis and scalable algorithms,”

2017.

75

[13] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data. AMLBook New York, NY,

USA:, 2012, vol. 4.

[14] G. E. Hinton, “Boltzmann machine,” Scholarpedia, vol. 2, no. 5, p. 1668, 2007.

[15] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a

sparse code for natural images,” Nature, vol. 381, no. 6583, pp. 607–609, 1996.

[16] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse representation: algorithms and

applications,” IEEE access, vol. 3, pp. 490–530, 2015.

[17] G. Palm, “Neural associative memories and sparse coding,” Neural Networks, vol. 37, pp. 165–171,

2013.

[18] G. A. Carpenter, “Neural network models for pattern recognition and associative memory,” Neural

networks, vol. 2, no. 4, pp. 243–257, 1989.

[19] G. Palm, “On associative memory,” Biological cybernetics, vol. 36, no. 1, pp. 19–31, 1980.

[20] T. Kohonen, Self-organization and associative memory. Springer Science & Business Media,

2012, vol. 8.

[21] A. Fischer and C. Igel, “Training restricted boltzmann machines: An introduction,” Pattern Recogni-

tion, vol. 47, no. 1, pp. 25–39, 2014.

[22] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,” The american statis-

tician, vol. 49, no. 4, pp. 327–335, 1995.

[23] S. S. Haykin et al., “Neural networks and learning machines/simon haykin.” 2009.

[24] A. M. Wichert, Principles Of Quantum Artificial Intelligence: Quantum Problem Solving And Ma-

chine Learning. World Scientific, 2020.

[25] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian restoration

of images,” IEEE Transactions on pattern analysis and machine intelligence, no. 6, pp. 721–741,

1984.

[26] C. M. Carlo, “Markov chain monte carlo and gibbs sampling,” Lecture notes for EEB, vol. 581, 2004.

[27] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” science, vol.

220, no. 4598, pp. 671–680, 1983.

[28] A. Das and B. K. Chakrabarti, Quantum annealing and related optimization methods. Springer

Science & Business Media, 2005, vol. 679.

76

[29] T. Tieleman, “Training restricted boltzmann machines using approximations to the likelihood gra-

dient,” in Proceedings of the 25th international conference on Machine learning, 2008, pp. 1064–

1071.

[30] J. J. Hopfield, “Neurons with graded response have collective computational properties like those

of two-state neurons,” Proceedings of the national academy of sciences, vol. 81, no. 10, pp. 3088–

3092, 1984.

[31] G. Joya, M. Atencia, and F. Sandoval, “Hopfield neural networks for optimization: study of the

different dynamics,” Neurocomputing, vol. 43, no. 1-4, pp. 219–237, 2002.

[32] J. Šı́ma and P. Orponen, “Continuous-time symmetric hopfield nets are computationally universal,”

Neural Computation, vol. 15, no. 3, pp. 693–733, 2003.

[33] S. Seung, “The hopfield model,” Introduction to Computational Neuroscience, pp. 1–6, 2004.

[34] E. Orhan, “The hopfield model,” Technical report, NYU, Tech. Rep., 2014.

[35] J. Milnor, “On the concept of attractor,” in The theory of chaotic attractors. Springer, 1985, pp.

243–264.

[36] H. S. Seung, “Continuous attractors and oculomotor control,” Neural Networks, vol. 11, no. 7-8, pp.

1253–1258, 1998.

[37] D. J. Amit, H. Gutfreund, and H. Sompolinsky, “Spin-glass models of neural networks,” Physical

Review A, vol. 32, no. 2, p. 1007, 1985.

[38] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[39] G. E. Hinton et al., “Boltzmann machines.” 2017.

[40] I. Stoianov, M. Zorzi, S. Becker, and C. Umilta, “Associative arithmetic with boltzmann machines:

The role of number representations,” in International Conference on Artificial Neural Networks.

Springer, 2002, pp. 277–283.

[41] T. J. Sejnowski, “Higher-order boltzmann machines,” in AIP Conference Proceedings, vol. 151,

no. 1. American Institute of Physics, 1986, pp. 398–403.

[42] C. C. Aggarwal et al., Neural networks and deep learning. Springer, 2018.

[43] J. J. DeStefano, “Logistic regression and the boltzmann machine,” in 1990 IJCNN International Joint

Conference on Neural Networks. IEEE, 1990, pp. 199–204.

[44] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for boltzmann machines,”

Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

77

[45] G. E. Hinton, T. J. Sejnowski et al., “Learning and relearning in boltzmann machines,” Parallel

distributed processing: Explorations in the microstructure of cognition, vol. 1, no. 282-317, p. 2,

1986.

[46] A. Meyder and C. Kiderlen, “Fundamental properties of hopfield networks and boltzmann machines

for associative memories,” Machine Learning, vt, 2008.

[47] G. E. Hinton, “Deep belief nets.” 2010.

[48] L. Younes, “Stochastic gradient estimation strategies for markov random fields,” in Bayesian infer-

ence for inverse problems, vol. 3459. International Society for Optics and Photonics, 1998, pp.

315–325.

[49] V. Mnih, H. Larochelle, and G. E. Hinton, “Conditional restricted boltzmann machines for structured

output prediction,” arXiv preprint arXiv:1202.3748, 2012.

[50] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in Neural networks:

Tricks of the trade. Springer, 2012, pp. 599–619.

[51] N. Srivastava, R. Salakhutdinov et al., “Multimodal learning with deep boltzmann machines.” in

NIPS, vol. 1. Citeseer, 2012, p. 2.

[52] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural computa-

tion, vol. 14, no. 8, pp. 1771–1800, 2002.

[53] M. A. Carreira-Perpinan and G. Hinton, “On contrastive divergence learning,” in International work-

shop on artificial intelligence and statistics. PMLR, 2005, pp. 33–40.

[54] G. E. Hinton, “Learning multiple layers of representation,” Trends in cognitive sciences, vol. 11,

no. 10, pp. 428–434, 2007.

[55] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural

computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[56] A.-r. Mohamed, G. Dahl, G. Hinton et al., “Deep belief networks for phone recognition,” in Nips work-

shop on deep learning for speech recognition and related applications, vol. 1, no. 9. Vancouver,

Canada, 2009, p. 39.

[57] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”

science, vol. 313, no. 5786, pp. 504–507, 2006.

[58] R. Sarikaya, G. E. Hinton, and A. Deoras, “Application of deep belief networks for natural language

understanding,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22,

no. 4, pp. 778–784, 2014.

78

[59] R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in Artificial intelligence and statistics,

2009, pp. 448–455.

79

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Problem
	1.2 Motivation
	1.3 Thesis outline

	2 Background
	2.1 Sparse Distributed Representations
	2.2 Associative Memories
	2.3 Markov Chain
	2.4 Markov Chain Monte Carlo
	2.4.1 Metropolis Algorithm
	2.4.2 Gibbs sampling

	2.5 Simulated Annealing
	2.6 Evaluation Measures
	2.6.1 Pseudo-likelihood
	2.6.2 Mean Squared Error
	2.6.3 Accuracy

	3 Stochastic Models
	3.1 Hopfield Network
	3.1.1 Energy function

	3.2 Ising Model
	3.2.1 Spin glass
	3.2.2 Finite temperature dynamics
	3.2.3 Boltzmann-Gibbs distribution
	3.2.4 Stochastic dynamics
	3.2.5 How an Ising Model Generates Data

	3.3 Boltzmann Machine
	3.3.1 How a Boltzmann Machine Generates Data
	3.3.2 Learning

	3.4 Restricted Boltzmann Machine
	3.4.1 Contrastive divergence
	3.4.2 Persistent Contrastive divergence
	3.4.3 Weight-decay
	3.4.4 Momentum
	3.4.5 Different types of units
	3.4.5.A Softmax visible units
	3.4.5.B Gaussian visible units

	3.4.6 Restricted Boltzmann Machine for classification
	3.4.7 Deal with missing data with RBMs
	3.4.7.A The model
	3.4.7.B Learning

	3.5 Deep Belief Networks

	4 Experiments
	4.1 Datasets description
	4.1.1 MNIST
	4.1.2 Sparse MNIST generation

	4.2 Stochastic Models for image reconstruction
	4.3 Classification using Stochastic Models
	4.3.1 Restricted Boltzmann Machine
	4.3.2 Deep Belief Network
	4.3.3 Restricted Boltzmann Machine followed by Logistic Regression
	4.3.4 Deep Belief Network followed by Logistic Regression
	4.3.5 Restricted Boltzmann Machine with 3 state neurons

	4.4 Models comparison
	4.5 Learn from a Sparse Normal Distributed Dataset
	4.5.1 Dataset generation
	4.5.2 Pipeline
	4.5.3 Experimental Analysis

	5 Conclusion
	Bibliography
	Bibliography

