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Resumo

Cálculos e resultados recentes apresentam fortes evidências de que a matriz CKM não é unitária,

contradizendo o MP e sugerindo a existência de Nova Fı́sica (NF). Nesta tese, propomos uma extensão

mı́nima do Modelo Padrão (MP) com um quark vector-like do tipo up, T , que fornece uma solução

simples para o problema da unitaridade da matriz CKM (CKM-UP). Adotamos a parametrização Botella-

Chau para a matriz de mistura 4 × 3, usando os três ângulos e fase habituais da matriz 3 × 3 do MP,

mais três ângulos extra s14, s24, s34 e duas novas fases δ14, δ24.

Para alcançar uma solução mı́nima para o CKM-UP, supõe-se que a mistura de T com os quarks do

MP é dominada por s14. São obtidas caracterı́sticas interessantes e um novo padrão de decaimentos do

T , predominantemente para a primeira geração. Averiguou-se também se os limites pelos Electroweak

Precision Measurements (EWPM) são excedidos.

Verifica-se que o parâmetro εK , sensı́vel à violação de CP, desempenha um papel crucial em re-

stringir este tipo de modelos. Impôs-se um limite (recentemente derivado) que restringe muito a NF

de εK , e descobriu-se, no limite de dominância exata onde s24, s34 = 0, que εNP
K é demasiado elevado.

No entanto, relaxando o limite de dominância exata, obtém-se uma região de parâmetro considerável,

onde εNP
K é compatı́vel com a experiência, e as caracterı́sticas do modelo previamente encontradas

são preservadas. Outras quantidades importantes associadas aos EWPM são também estudadas. Em

primeira aproximação, estes resultados são independentes de s34, permitindo soluções dependentes

apenas de três parâmetros de NF: s14, s24 e δ′ = δ24 − δ14.

Palavras-chave: Nova fı́sica, problema da unitariedade da matriz CKM, quarks vector-like,

correntes neutras de mudança de sabor, electroweak precision measurements.
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Abstract

Recent results and calculations provide strong evidence that the CKM matrix is not unitary, contra-

dicting the Standard Model (SM) and suggesting New Physics (NP). In this thesis, we propose a minimal

extension of the SM where an up-type vector-like quark isosinglet, denoted by T , is introduced, leading

to a simple solution to the CKM unitarity problem (CKM-UP).

We adopt the Botella-Chau parametrization for the 4 × 3 quark mixing-matrix, containing the usual

three angles and phase of the 3× 3 SM-mixing, plus three extra angles s14, s24, s34 and two phases δ14,

δ24. To fully achieve a minimal solution to the CKM-UP, we assume that the mixing of T with standard

quarks is dominated by s14. Interesting features and a novel pattern of T decays, predominantly to the

first generation, are obtained. However, one has to make sure that the limits of Electroweak Precision

Measurements (EWPM) from experiment, are not exceeded.

We have found that εK , sensitive to CP violation, plays a crucial role in constraining these type

of models. Imposing a (recently derived) restrictive upper-bound on NP to εK , we find, in the limit

of exact s14-dominance where s24, s34 = 0, that εNP
K is too large. If, however, one relaxes this exact

s14-dominance limit, a significantly large parameter region is obtained, where εNP
K is in agreement with

experiment, maintaining previously encountered features. Other important EWPM associated quantities

are also studied. To a good approximation, these results are independent of s34, allowing for solutions

solely using three NP parameters: s14,s24 and δ′ = δ24 − δ14.

Keywords: New physics, CKM unitarity problem, vector-like quarks, flavour changing neutral

currents, electroweak precision measurements.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is one of the most successful theories in all of physics as

it manages, to provide an internally consistent and minimal framework that describes three fundamental

interactions of Nature (electromagnetic, strong and weak interactions), unifying two of them (electroweak

interaction), while including all known elementary particles. Moreover, it has several times predicted the

existence of new particles and processes before they were eventually discovered.

However, it has become increasingly evident that the SM is incomplete and, thus, cannot be a final

theory. Perhaps the most salient shortcoming of the SM is the non-inclusion of a description of gravity

in the theory, but several other important examples exist, many of which resulting from direct incompat-

ibilities with experimental results. Most notably, neutrino oscillation experiments [1–3] have shown that

neutrinos are massive particles, which directly contradicts the underlying assumption present in the SM

that they are massless particles. Moreover, this theory does not provide a satisfying justification for the

observed matter-antimatter asymmetry in the universe, which leads to the currently open questions of

baryogenesis and leptogenesis, and is also unable to explain the existence of dark matter.

Furthermore, the SM does not possess the predictive power one would expect from a final theory

of particle physics, as it fails to make theoretical predictions for the coupling constants, masses and

mixings of particles that we measure or explain the mass hierarchy observed between the different

fermion generations. This is directly linked to the enormous amount of parameters that the theory

leaves arbitrary and unrelated. For instance, in the quark sector, the 18 complex Yukawa couplings are

arbitrary resulting in 36 free parameters which, as described by the SM, generate the 6 quark masses

and the quark mixings which are functions of only 4 mixing parameters. Hence, this huge discrepancy

between the number of free parameters and the number of observables, suggests that the SM has a

great degree of redundancy. In addition to this, the SM gives no prediction to the number of particles in

the theory or explain why there exist three sequential generations of fermions.

Despite all these issues, it is important to emphasise that the SM is indeed an extremely valuable

and powerful theory and it is reasonable to assume that any complete theory of particle physics must

stem from and be developed out of the SM framework. In fact, during the last decades, theoretical par-

ticle physicists have deeply invested their efforts on exploiting some of the unrestricted aspects of the
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SM in order to develop potential extensions to this theory that may be able to improve it, i.e. that might

circumvent some of its incompatibilities with experiments and increase its overall predictive power. For

instance, the fact that the SM leaves the Yukawa sector unconstrained provides one with the freedom

to propose flavour symmetries which, through the constraining of some of the free parameters of the

theory, may offer explanations to the mass hierarchy of fermions or alternative ways of generating the

lighter quark masses and mixings [4–7]. Also, the SM does not exclude the possibility of having new

types of fermions or even extra Higgs doublets. These extensions and extra fields all lead to very exciting

new results. Most prominently, the addition of Majorana neutrinos to the SM has provided a promising

framework able to generate neutrino masses and explain results coming from neutrino oscillation exper-

iments. These extensions with new fields enhance the charge conjugation parity (CP) violation of the

SM [8–10], and thus might provide interesting solutions to the problem of matter-antimatter imbalance.

Some of these proposals for new physics (NP) beyond the SM may in the future be corroborated by

the experimental detection of exotic particles or phenomena, while others will be excluded by stricter

restrictions emerging from improvements to experimental precision. Moreover, new experiments and

more refined theoretical calculations may identify anomalies, i.e. discrepancies between theoretical

predictions and experimental results, motivating other new extensions and proposals for NP beyond the

SM.

In this work, we explore an anomaly associated with the first row of the CKM matrix, the mixing matrix

of the quark sector. Using more precise experimental determinations for form factors and radioactive

corrections, recent new theoretical calculations seem to indicate that the 3 × 3 unitarity of this matrix in

the SM might be violated, given that the normalisation of the first row currently seems to indicate that

|Vud|2 + |Vus|2 + |Vub|2 < 1 [11–18]. If confirmed, this would be a major result, providing evidence for NP

beyond the SM. This problem is typically referred to as the CKM unitarity problem (CKM-UP), or Cabibbo

angle anomaly. Although this anomaly can be explained using models not necessarily relying on the

violation of CKM unitarity [19–23], some of the most elegant and simpler solutions rely on extensions

of the SM quark sector with the introduction of a new type of quarks, the vector-like quarks (VLQs),

which necessarily lead to deviations to CKM unitarity. Given that until now a unitary CKM has been

so very successful in explaining a wide variety of phenomena, these deviations should be sufficiently

suppressed. Conveniently, models with VLQs provide a natural mechanism for suppression of unwanted

deviations, while leading to a rich phenomenology due to the large enhancement of the parameter space

[24–27].

It has also been pointed out that one of the simplest extensions of the SM which can account for

this NP, consist of the addition of either one down-type [28] or one up-type [29, 30] vector-like quark

(VLQ) isosinglet. In both cases, the parameter space is very large, involving six mixing angles and three

CP violating phases. This is the type of extension we will be interested in exploring here, particularly

extensions with one up-type VLQ, which, as we shall demonstrate, appear to present a more natural

solution to the CKM-UP. More concretely, the ultimate goal of this thesis is to look for a minimal solution

to the CKM-UP i.e. a solution involving the least number of new fields and parameters added to the

SM . To do this, we work in the framework of the SM extended with one up-type VLQ isosinglet, in

2



a minimal mixing limit case, and which we refer to as the s14-dominance limit. This minimal solution

not only addresses the CKM anomaly and obeys the stringent constraints coming from experiment and

which arise from processes such as neutral meson mixings or kaon decays and others, but also, most

important, maintains the main predictions of SM.

This thesis is organised as follows. In the next chapter we briefly revisit the SM, introducing notation

and describing concepts directly related to the work: electroweak (EW) theory, interactions of quarks

with the gauge and Higgs bosons and the CKM matrix. In chapter 3, we describe how extensions of the

SM, implemented with the introduction of VLQs, may be able to successfully address the CKM unitarity

problem in an elegant and simple manner. In addition, we explore how these frameworks affect the

EW Lagrangian through the flavor changing neutral currents (FCNCs). We also verify how the modified

theory compares with the SM. Then, in chapter 4 and making use of the results of the previous chapter,

we explore how, within the framework of an extension of the SM with one up-type VLQ isosinglet, the

modified EW theory affects the predictions for experimentally detectable phenomena and measurable

physical quantities. Finally, in the last two chapters we introduce, within this context, a minimal solution

to the CKM-UP: the s14-dominance limit. We explore two versions of this limit and use the results from

chapter 4 to assess their safety, i.e. whether they conform to current experimental data or not.

3



Chapter 2

A brief review of the Standard Model

The SM is a quantum field theory that describes the interactions of known elementary particles.

Being a quantum field theory it combines a quantum description of Nature with a relativistic one, while

treating fields as its fundamental entities. Therefore, particles observed experimentally are identified

as being the excitations of these fields and all laws and physical quantities predicted by the theory are

Lorentz invariant.

The SM is also a gauge theory based on the local symmetry group SU(3)C × SU(2)L × U(1)Y , with

the subscripts representing the colour charge, left-handed (LH) chirality and hypercharge, respectively.

This group determines the possible interactions between particles and the number of gauge bosons. The

focus of this work will be the electroweak (EW) theory which is the theory based on the local symmetry

group SU(2)L × U(1)Y .

Throughout this chapter we will present some of the main and most relevant concepts and features

of the SM and its EW sector and we follow [31] and [32] closely.

2.1 Particle content of the Standard Model

The elementary particles included in the SM can be divided into fermion fields, gauge boson fields

and the Higgs field. The SM fermions fields, which are spinors in Dirac space, are spin 1/2 particles and

can be further divided into quark and lepton fields. The former are represented by

Q′
L =


Q′

1L

Q′
2L

Q′
3L

 , q′ = q′
L + q′

R =


q′1L

q′2L

q′3L

+


q′1R

q′2R

q′3R

 , (2.1)

with q′i = {u′i, d′i} and

Q′
iL =

u′iL
d′iL

 . (2.2)

There exist three copies of fields with essentially the same properties. Each copy, denoted by an
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index i = 1, 2, 3, is referred to as a family/generation and consists of a doublet of SU(2)L, QiL, and the

singlets uiR and diR, where u and d refer to the up and down-quark sectors, respectively. The quarks

belonging to the up-sector have electric charge Q = 2/3, whereas the quarks belonging to the down

sector have electric charge Q = −1/3. Note that the up-type (q = u) and down-type (q = d) left-handed

(LH) quark fields of a given generation i, form the doublet of SU(2)L. Currently, the three known families

of quarks each including two quarks, one from each sector, constitute six different quark flavours. The

indices L and R differentiate between the left and right-chiral components of these fields. In (2.1) we

introduce a compact notation where QL (in bold) is a vector in family space containing all three quark

doublets and similarly qL,R contains the LH or RH components of all the quarks of a given sector.

Using a similar notation, the lepton fields can be represented by

L′
L =


L′
1L

L′
2L

L′
3L

 , ℓ′ = ℓ′L + ℓ′R =


ℓ′1L

ℓ′2L

ℓ′3L

+


ℓ′1R

ℓ′2R

ℓ′3R

 , (2.3)

with

L′
jL =

ν′jL
ℓ′jL

 , (2.4)

where now one has the SU(2)L lepton doublets, LjL, formed by the LH components of the neutrino νj

and charged lepton ℓjL fields. The RH components of the charged lepton fields are singlets of SU(2)L

and there exists no RH component of the neutrino fields in the pure SM. For all of these fermion fields

there exists a corresponding antiparticle which has the same mass but opposite physical charges.

The gauge boson fields are introduced to the theory through the covariant derivative

Dµ = ∂µ − i
∑
G
gGA

G
µ·T

G , (2.5)

where the index G spans the gauge groups of the theory, T G = (T G
1 , ..., T

G
n ) correspond to the n genera-

tors of a given SU(n) gauge group G in the fundamental representation and AG
µ = (AG

1µ, ..., A
G
nµ) are the

n gauge boson fields associated with this group. In turn, the covariant derivative itself is introduced as a

modification to the ordinary derivative present in the Lagrangian containing the kinetic terms of a Dirac

field,

L kin = iψγµ∂µψ. (2.6)

This modification is crucial to make the overall Lagrangian of the theory invariant under local gauge

transformations, i.e. transformation such as

ψ → ψ̃ = U (θ(xµ))ψ, (2.7)

where
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U(θ(xµ)) = eiθ(x
µ)·T ∈ SU(n) (2.8)

are the unitary matrix representations of the gauge group SU(n) and θ(xµ) is an array of real parameters

that depend on the space-time coordinates xµ. Then, under these transformations, the gauge fields

transform in such a way that

Dµψ → D̃µψ̃ = U (θ(xµ))Dµψ, (2.9)

i.e. the covariant derivatives of the fields transform in the same way as the fields, such that

ψγµDµψ = ψ̃γµD̃µψ̃, (2.10)

and local gauge invariance is achieved. It is then evident that the presence of the covariant derivative in

the Lagrangian results in new interactions of the fermion fields, mediated by these gauge fields.

In the SM, with its SU(3)C × SU(2)L × U(1)Y gauge group, we have Bµ and W µ = (Wµ
1 ,W

µ
2 ,W

µ
3 )

as the gauge bosons associated with the U(1)Y and SU(2)L gauge groups, respectively, while the

gluon fields Gµ = (Gµ
1 , ..., G

µ
8 ) are associated with the SU(3)C gauge group. The Pauli matrices, τj/2

(j = 1, 2, 3), and the Gell-Mann matrices, λa/2 (a = 1, ..., 8), divided by a factor of 2, correspond to

the generators of SU(2)L and SU(3)C in the fundamental representation, respectively. The couplings to

Bµ,Wµ
j and Gµ

a are quantified by the coupling constants g, g′ and gs, respectively.

The scalar content of the SM is contained in a single isospin doublet, the so-called Higgs doublet

Φ =

ϕ+
ϕ0

 , (2.11)

where ϕ+ and ϕ0 are, respectively, charged and complex scalar fields. With the Higgs mechanism, this

doublet plays a central role in generating the masses of elementary particles. However, in this work we

will not look into the details associated with this mechanism. Nonetheless, it is important to keep in mind

that, for low energies, the ϕ0 acquires a non-vanishing vacuum expectation value (VEV) ⟨ϕ0⟩ = v where

v ≃ 246 GeV is the electroweak (EW) scale, leading to the vacuum sate

⟨Φ⟩ = 1√
2

0

v

 (2.12)

for the Higgs doublet, which then results in the spontaneous symmetry breaking (SSB) of the EW gauge

group, i.e.

SU(2)L × U(1)Y → U(1)Q, (2.13)

where U(1)Q is the unbroken gauge symmetry group of electromagnetic interactions, which conserves

the electric charge Q = I3 + Y/2, with the third component of weak isospin defined as I3 ≡ τ3/2. It is

nonetheless important to consider the excitations around the vacuum which can be parametrized as
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Φ =
1√
2

exp
(
i
φ · τ
2v

) 0

v + h

 , (2.14)

where h and φ = (φ1, φ2, φ3) are scalar fields with vanishing VEVs. The field h is the (neutral) physical

Higgs boson, while the φ are the unphysical Goldstone bosons, since they can be absorbed by an

appropriate SU(2)L gauge transformation. In the rest of this work we shall adopt the unitary gauge

where these unphysical fields disappear and the Lagrangian of the theory can be written solely in terms

of physical fields. Thus, we will shall work with

Φ =
1√
2

 0

v + h

 , (2.15)

instead.

To conclude we present the EW gauge charges of the fermions and Higgs fields in table 2.1.

I I3 Y Q = I3 + Y/2

LiL =

(
νiL
ℓiL

)
1/2

(
1/2
−1/2

)
−1

(
0
−1

)
ℓiR 0 0 −2 −1

QiL =

(
uiL
diL

)
1/2

(
1/2
−1/2

)
1/3

(
2/3
−1/3

)
uiR 0 0 4/3 2/3
diR 0 0 −2/3 −1/3

Φ =

(
ϕ+

ϕ0

)
1/2

(
1/2
−1/2

)
1

(
1
0

)
Table 2.1: Eigenvalues of the weak isospin I = τ/2, of its third component I3 = τ3/2, of the hypercharge
Y , and of the electric charge Q for the fermion doublets and singlets as well as the Higgs doublet.

2.2 The Electroweak Lagrangian

The gauge-invariant and renormalizable Lagrangian of the the SM describes all interactions involving

the known particles (with the exception of an eventually existing graviton and subsequent theory of

quantum-gravity which are not the subject of this work). The SM can be divided in an EW theory which

describes the electromagnetic and weak interactions of quarks, leptons, gauge bosons and the Higgs

boson, and the theory of quantum chromodynamics (QCD), which describes the strong interactions

involving quarks and gluons. As stated before, in this work we will focus primarily on the EW sector and

in this section we shall explore some aspects of the Lagrangian describing it.

This Lagrangian can be divided in the following way

LEW = Lg + Lf + LYuk + Lϕ, (2.16)

where Lg contains the kinetic and self-interaction terms of the gauge bosons, Lf contains the kinetic
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terms of the fermion fields and the their interactions with the gauge bosons, LYuk describes the Yukawa

interactions and Lϕ is the Higgs sector Lagrangian which describes the Higgs boson interactions with

itself and the gauge bosons.

More concretely one has

Lg = −1

4
FµνF

µν − 1

4
W a

µνW
µν
a , (2.17)

with

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν ,

Fµν = ∂µBν − ∂νBµ.

(2.18)

For the fermion lagrangian one has

Lf = iQL /DQL + iuR /DuR + idR /DdR + iLL /DLL + iℓR /DℓR, (2.19)

where

/D ≡ γµD
µ = γµ

(
∂µ − i

g′

2
Y Bµ − i

g

2
τ · Wµ

)
, (2.20)

is the covariant derivative for the EW sector. Therefore, one can write

Lf = L kin
f + L int

f , (2.21)

where

L kin
f = iū/∂u+ id̄/∂d+ iℓ̄/∂ℓ+ iν̄ /∂ν, (2.22)

contains the kinetic terms of all SM fermions, while L int
f contains the interactions of these fermions with

the gauge bosons. To write the latter piece in terms of the observed gauge bosons, the photon Aµ and

the weak interaction neutral, Zµ, and charged, W±
µ , gauge bosons, we do a rotation of Weinberg angle

θW in the plane {Wµ
3 , B

µ},

Aµ

Zµ

 =

cW −sW
sW cW

Bµ

Wµ
3

 (2.23)

where

sW ≡ sin θW ≡ g′√
g2 + g′2

, cW ≡ cos θW ≡ g√
g2 + g′2

, (2.24)

and we define
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W±µ ≡ Wµ
1 ∓ iWµ

2

2
, (2.25)

so that the Lagrangian describing gauge interactions of quarks is

L int
f = −eAµJ

µ
em − g

2cW
(ū′

L
/Zu′

L − d̄′
L
/Zd′

L + ν′
L
/Zν′

L − ℓ
′
L
/Zℓ′L − 2s2WJµ

emZµ)

− g√
2
(ū′

L
/W

+
d′
L + d̄′

L
/W

−
u′
L + ν̄′

L
/W

+
ℓ′L + ℓ̄′L /W

−
ν′
L),

(2.26)

where we introduced the electromagnetic current

Jµ
em =

2

3
(ū′

Lγ
µu′

L + ū′
Rγ

µu′
R)− 1

3
(d̄′

Lγ
µd′

L + d̄′
Rγ

µd′
R)−

(
ℓ̄′Lγ

µℓ′L + ℓ̄′Rγ
µℓ′R

)
=

2

3
ū′γµu′ − 1

3
d̄′γµd′ − ℓ̄

′
γµℓ′,

(2.27)

and e ≡ g sin θW is the elementary electric charge, which ensures that the QED results are recovered.

Then, the first two terms of (2.26) correspond to electromagnetic and weak neutral current (NC)

Lagrangians, respectively, whereas the last corresponds to the charged current (CC) Lagrangian.

The Yukawa interactions are described by

− LYuk = L
′
LΦY

ℓℓ′R +Q
′
LΦ̃Y

uu′
R +Q

′
LΦY

dd′
R + h.c., (2.28)

where it should be noted that the Higgs doublet Φ and Φ̃ = iτ2Φ
∗ are treated as numbers in family space.

Also, Y ℓ,q are 3 × 3 matrices with its components being the Yukawa couplings which (in general) are

complex numbers. Unless there is no symmetry or mechanism which states otherwise, it is reasonable

to expect that |Y ℓ,q
ij | ∼ 1, although for the down quarks and the charged leptons, one has to change this

to around O(10−2) (which, in our view, should require some justification in any concrete model).

Finally, regarding the Higgs sector one has

LΦ = (DµΦ)
†(DµΦ)− µ2Φ†Φ− λ2

(
Φ†Φ

)2
, (2.29)

which will not play an active role throughout this work. It is however a very relevant part of the Lagrangian

responsible for the SSB in the EW sector which generates the masses of the fermions and gauge

bosons. In fact, the constant v introduced in (2.12) is obtained from the minimum of the potential part in

this expression, which yields v ≡
√
−µ2/λ.

In the next sections however, we will focus, more specifically, on the EW theory described by Lf in

(2.19) and LYuk in (2.28), in particular, on the quark sector.

2.3 Quark masses and mixings

After SSB and using (2.15), the Yukawa interactions in (2.28) can be written as
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LYuk = Lm + Lh, (2.30)

where Lm contains the mass terms of the SM fermions and Lh describes their interactions with the

Higgs boson. After SSB, we obtain the mass terms for quarks

L q
m = −u′

Lm
uu′

R − d
′
Lm

dd′
R + h.c, (2.31)

where mu and md are the up-quark and down-quark mass matrices, respectively, each one with entries

given by

mq
ij =

v√
2
Y q
ij , (2.32)

so that the EW scale imposes the mass scale for the SM quarks. In addition, the interactions with the

Higgs boson are described by

L q
h = −d

′
LY

d h√
2
d′
R − u′

LY
u h√

2
u′
R + h.c.

= −d
′
Lm

dh

v
d′
R − u′

Lm
uh

v
u′
R + h.c.

(2.33)

The fields with definite masses are those for which the mass matrices are diagonal, i.e. the mass

matrix eigenstates. Then, exclusively using unitary matrices, since only those keep the terms in (2.19)

invariant, one can relate the q′ fields with their corresponding mass eigenstates q, by q′
L,R = V q

L,RqL,R,

or in terms of the six observed quark flavours

u′
L,R =


u′1

u′2

u′3


L,R

= V u
L,R


u

c

t


L,R

= uL,R,

d′
L,R =


d′1

d′2

d′3


L,R

= V d
L,R


d

s

b


L,R

= dL,R.

(2.34)

and the mass terms can be written as

L q
m = −dLd

d
0 dR − uLd

u
0 uR + h.c, (2.35)

with dq0 = V q†
L mqV q

R being the diagonal matrices that contain the definite masses of the respective

sector’s quark fields, i.e.

du0 =


mu 0 0

0 mc 0

0 0 mt

 , dd0 =


md 0 0

0 ms 0

0 0 mb

 . (2.36)
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Similarly the Lagrangian (2.33) can now be written as

L q
h = −dL

h

v
dd0dR − uL

h

v
du0uR + h.c, (2.37)

so that the interactions of quarks with the Higgs boson are flavour diagonal.

The unitarity of the transformation ensures that the electromagnetic and weak NCs keep their form,

i.e.

L q
NC = −eAµJ

µ
q,em − g

2cW

(
ūL /ZuL − d̄L /ZdL − 2s2WJµ

q,emZµ

)
, (2.38)

Jµ
q,em =

2

3
ūγµu− 1

3
d̄γµd, (2.39)

so that these transformations modify only the form of the charged currents into

L q
CC = − g√

2

(
ūL /W

+
VCKMdL + d̄L /W

−
V †

CKMuL

)
, (2.40)

where we find the Cabibbo-Kobayashi-Maskawa (CKM) matrix

VCKM ≡ V u†
L V d

L ≡


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (2.41)

i.e. the 3 × 3 (charged current) unitary matrix with elements corresponding to the mixings of different

quark flavours in the SM and in interactions mediated by the W bosons.

From (2.38-2.41) it is clear that, in the SM, (2.37), the electromagnetic as well as the weak NC are

flavour conserving, while the CC are flavour changing in general.

Note that the matrices V u,d
R do not contribute to the physical CKM matrix and therefore they are

physically meaningless, as the mixings and the masses correspond to all the information contained in

the Yukawa couplings and, thus, in the mass matrices. In the next section we will focus on the SM CKM

mixing matrix and its most important features.

2.4 The CKM matrix and CP violation

A general unitary matrix of dimension n can be parametrized by n(n − 1)/2 angles and n(n + 1)/2

phases. However, the CKM mixing matrix for n generations is parametrized by less phases [32]. In fact,

using 2n arbitrary phases to rephase every quark field as

uj → eiϕjuj , dk → eiϕkdk, (2.42)

with j = {u, c, t}, k = {d, s, b}, which simply corresponds to a physically inconsequential redefinition of

these fields, such that
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Vjk → Vjke
i(ϕk−ϕj), (2.43)

and the charged currents become

L q
CC →− g√

2

∑
j,k

(
ūjL /W

+
e−iϕjVjk e

iϕkdkL + h.c
)

=− g√
2
e−i(ϕu−ϕd)

∑
j,k

(
ūjL /W

+
e−i(ϕj−ϕu)Vjke

i(ϕk−ϕd)dkL + h.c
)
.

(2.44)

This way, by factorizing one phase e−i(ϕu−ϕd), it becomes clear that there are 2n − 1 independent

phases which can be used to eliminate some of the phases of VCKM. Therefore, there exist

n(n+ 1)

2
− (2n− 1) =

(n− 1)(n− 2)

2
(2.45)

phases that are not possible to eliminate. In combination with the n(n− 1)/2 mixing angles, these (n−

1)(n− 2)/2 physical phases are all the parameters that are needed to fully construct the mixing matrix.

In the n = 3 case of the SM, there are three mixing angles θ12, θ13 and θ23 and a single physical phase,

which in the standard Particle Data Group (PDG) parametrization is named δ [33]. This parametrization

of VCKM is given by

VPDG =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13



c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

(2.46)

where cij = cos θij , sij = sin θij and with θij ∈ [0, π/2], δ ∈ [0, 2π]. Other parametrizations of the SM

mixing matrix that make use of the three mixing angles and the single physical phase will differ from

this one by the placement of the phase, but all of them can be obtained from each other by rephasings

of the quark fields which, as stated previously, have no physical implications. However, although these

rephasings do not affect the magnitudes of the mixings, they can for sure modify their phases. Therefore,

for each individual entry of VCKM only their moduli |Vjk| are physically meaningful. Nonetheless, there

still exists physical meaning to be extracted from quantities associated with the physical phases of VCKM,

which are not modified with the rephasing of the quark fields, the so-called the rephasing invariants.

Unsurprisingly, the moduli |Vjk| are themselves rephasing invariant quantities, but less obvious examples

are, for instance. the quartets

Qαiβj ≡ VαiVβjV
∗
αjV

∗
βi, (2.47)
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with α ̸= β and i ̸= j. These quantities have the property

Qαiβj = Q∗
αjβi = Qβjαi = Q∗

βiαj (2.48)

and are clearly invariant under (2.42-2.43). Using these quantities one can relate the physical phase δ

with quantities measurable experimentally. Some relevant examples are the rephasing invariant phases

α ≡ arg (−Qtdub) = arg
(
− VtdV

∗
tb

VcdV ∗
cb

)
,

β ≡ arg (−Qcdtb) = arg
(
−VcdV

∗
cb

VtdV ∗
tb

)
,

γ ≡ arg (−Qudcb) = arg
(
−VudV

∗
ub

VcdV ∗
cb

)
,

χ ≡ arg (−Qcbts) = arg
(
−VcbV

∗
cs

VtbV ∗
ts

)
,

χ′ ≡ arg (−Quscd) = arg
(
−VusV

∗
ud

VcsV ∗
cd

)
.

(2.49)

In general all nine entries of VCKM can have phases which correspond to some function of the mixing

angles and the physical phase. However, given that one can perform (at most) 2n− 1 = 5 independent

rephasings of the quark fields, in the end only four of these phases are linearly independent. In fact,

through rephasings of the quark fields one can achieve the form [34]

arg (VCKM) =


0 χ′ −γ

π 0 0

−β π + χ 0

 , (2.50)

so that the rephasing invariant phases β, γ, χ and χ′ can together form a set of four linearly independent

phases. This is similar to the fact that, from unitarity conditions such as

|Vjd|2 + |Vjs|2 + |Vjt|2 = 1,

|Vuk|2 + |Vck|2 + |Vbk|2 = 1,

(2.51)

only four moduli |Vjk| are linearly independent. Hence, with these four phases and, for instance,

|Vus|, |Vcb|, |Vub| and |Vtd|, one can reconstruct the full CKM matrix solely in terms of rephasing invariants.

Furthermore, the phases α, β and γ correspond to the internal angles of the unitarity triangle defined

by the unitarity relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (2.52)

which can be written in a more illustrative way as

1 =

∣∣∣∣VudV ∗
ub

VcdV ∗
cb

∣∣∣∣ eiγ +

∣∣∣∣ VtdV ∗
tb

VcdV ∗
cb

∣∣∣∣ e−iβ , (2.53)
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Figure 2.1: The ”normalized” unitarity triangle obtained from (2.52) by dividing every side by |VcdV ∗
cb|.

as represented in figure 2.1. Therefore, one has

α+ β + γ = π + mod(2π), (2.54)

so that α can, in the SM, be given in terms of β and γ. The area of this triangle is given by

A∆ =
|VcdV ∗

cb|h
2

=
|VcdV ∗

cbVudV
∗
ub| sin γ

2
=

|Qudcb| sin γ
2

=
|Im (Qudcb)|

2
, (2.55)

where we not only used h = |VudV ∗
ub| sin γ for the height of the unitarity triangle, but also used the

relations in (2.48), as well as

−Qudcb = |−Qudcb| eiγ = |Qudcb| (cos γ + i sin γ) (2.56)

which comes directly from the definition of γ in (2.49). The relation in (2.55) is usually written as

A∆ =
J

2
, (2.57)

where we introduced another important example of a rephasing invariant, the CP invariant quantity,

defined as

J ≡ |Im (Qαiβj)| . (2.58)

This CP invariant quantity is not only rephasing invariant, but is also a quantity that is the same for

all quartets in the SM. To understand this, we exploit once more the unitarity of VCKM,

VαiV
∗
αj + VβiV

∗
βj + VγiV

∗
γj = 0

=⇒ Qαiβj + |Vβi|2|Vβj |2 = −Qγkβj

=⇒ Im (Qαiβj) = −Im (Qγkβj) ,

(2.59)

with i ̸= j. This result, along with the property in (2.48) leads to the conclusion that the imaginary parts

of all nine SM quartets are the same up to a signal and therefore J is unique and all possible unitarity
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quarks have the same area.

Now, using the parametrization in (2.46), one can show that

J = c12s12c23s23c
2
13s13 sin δ, (2.60)

which relates rephasing invariant quantities directly with the physical phase of VCKM. In fact from this

relation one can conclude that the CP invariant quantity J quantifies the violation of charge conjugation

parity (CP) symmetry in the quark sector, which has to do with the way the charged-currents transform

under these types of transformations. For instance, using the CP transformations of the fields [31]

(CP) q̄jL(x
µ) (CP)

†
= −e−iϕjqTα (x̃

µ)C−1γ0,

(CP) qkL(x
µ) (CP)

†
= eiϕkγ0Cq̄TkL(x̃

µ),

(CP)W±µ(xµ) (CP)
†
= −eiϕWW∓

µ (x̃µ),

(2.61)

where C is the charge conjugation operator, x̃µ ≡ (t,−x⃗) and ϕj , ϕk and ϕW are arbitrary phases, one

can show that (omitting the references to space-time coordinates)

(CP)L q
CC (CP)

†
=

∑
j,k

(CP)
(
ūjLVjk /W

+
dkL + d̄kLV

∗
jk /W

−
ujL

)
(CP)

†

=
∑
j,k

(
d̄kLVjk /W

−
ujLe

−i(ϕW+ϕj−ϕk) + ūjLV
∗
jk /W

+
dkLe

i(ϕW+ϕj−ϕk)
)
,

(2.62)

so that CP can only be a symmetry of the theory if

Vjk = V ∗
jke

i(ϕW+ϕj−ϕk). (2.63)

By making the choice ϕW = 0, the condition (2.63) can be written in matricial form as

VCKM = KuV
∗

CKMK
−1
d , (2.64)

where Ku,d are diagonal matrices containing the phases associated with the CP transformations of up-

type and down-type quark fields. This condition can only be fulfilled if the mixing matrix can be written

as [32]

VCKM = K
1
2
u OK− 1

2

d , (2.65)

where O = O∗ =
(
OT

)−1 is a real orthonormal matrix. From the parametrization presented in (2.46)

and the discussion that precedes it, it is clear that the SM mixing matrix cannot in general take this form,

as there exists a single physical phase that cannot be factorised to achieve a parametrization with a

single real orthonormal matrix depending on all mixing angles. Therefore, for CP to be a symmetry of

the SM Lagrangian, one must have δ = 0, or from (2.60) one must have J = 0. However, this is not the
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case, as this invariant has been measured to be [33]

J = (3.18± 0.15)× 10−5 (2.66)

and CP is indeed violated in the quark sector.

To conclude, we introduce an alternative but no less useful parametrization of the SM mixing matrix,

the Wolfenstein parametrization [35] where the mixings are expanded in terms of the parameter λ ≃

|Vus|:

VWolf =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 +O(λ4) (2.67)

By comparing (2.46) with (2.67) one can easily check that

s12 ≃ λ, s13 ∼ λ3, s23 ∼ λ2, (2.68)

which are relations which will be important in the final chapters of this work.

In the next chapter we will explore the modifications to the EW sector in extensions with VLQs and

will introduce one of the main topics of this thesis the CKM unitarity problem.
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Chapter 3

Extensions with VLQ isosinglets and

the CKM unitarity problem

One of the most exciting developments in the current search for the new physics beyond the SM, is

the possibility of adding vector-like fermions (VLFs) to the SM. VLFs and in particular vector-like quarks

(VLQs) constitute one of the simplest additions to the SM, which consists of quark fields where the LH

and RH chiral components transform in the same manner under the SM gauge group, i.e. contrary to

what happens with SM fermions they are not chiral.

These types of extensions are also motivated by the fact that experimental data [36, 37] excludes the

existence of a fourth chiral fermion family and they even appear naturally in some grand unified theories

(GUTs), models with extra dimensions and others. The introduction of VLQs may also provide a solution

to other important issues, such as the unification of the coupling constants as in the case of SUSY [38–

40]. Another strong motivation for the study of VLQs is the fact that they provide the simplest solution of

the strong CP problem without axions, as suggested by Barr and Nelson [41, 42].

In this work we will restrict our focus on the study of extensions of the SM with isosinglet VLQs, i.e.

VLQs whose RH and LH chiral components are weak isospin singlets. The addition of these particles to

the theory has very interesting phenomenological implications, such as the introduction of new sources

of CP violation and the violation of CKM unitarity.

Another important aspect is the current search of the LHC for new heavy fermions, such as quarks

with masses beyond the top quark and all sorts of decays as e.g. T → d W+ , where T is a new up-type

VLQ, the heavy-top.

In this chapter we show how the loss of CKM unitarity, inherent to VLQ extensions, is compatible

with recent results for unitarity deviations of the SM mixing matrix, which represents another strong

motivation for considering this type of extensions. Moreover, we shall explore how the introduction of

VLQ isosinglets affects the EW theory studied before, in particular we show how this unitarity violation

leads to the weak neutral currents no longer being flavor-diagonal, allowing for new types of interactions.

17



3.1 The CKM Unitarity Problem (CKM-UP)

The charged currents are controlled by the CKM matrix, which in the case of the SM is strictly unitary.

Therefore, detection of deviations of unitarity should constitute compelling evidence of the existence of

New Physics (NP) beyond the Standard Model [18, 28, 30].

The SM predicts for the first row of the CKM matrix

|Vud|2 + |Vus|2 + |Vub|2 = 1, (3.1)

which considering that |Vub|2 ≃ 1.6× 10−5 can, to good approximation, be written as

|Vud|2 + |Vus|2 = 1. (3.2)

Given the current level of experimental precision and control of theoretical uncertainties, which has

allowed |Vud| and |Vus| to be determined with considerable precision, (3.2) has become the most promis-

ing test of CKM unitarity. It consists essentially in testing the Cabbibo mixing, i.e.

|Vus| = sin θc, |Vud| = cos θc, |Vus/Vud| = tan θc, (3.3)

where θc refers to the Cabibbo mixing angle.

At energies much smaller than MW , these two CKM matrix entries will enter the effective charged

current interaction (see Appendix B) in

Leff = −4GF√
2
uL (VudγµdL + VusγµsL) (eLγ

µνe + µLγ
µνµ) , (3.4)

which describes leptonic decays of hadrons involving the valence quarks u, d and s. In fact, |Vus| is

calculated from experimental data on kaon decays, whereas results regarding neutron decay are most

relevant for |Vud|. The ratio |Vus/Vud| can be independently determined by comparing radiative decay

rates of certain pion and kaon decays.

Using improved values for the form factors and radiative corrections associated to these processes

Belfatto, Beradze and Berezhiani [28] calculated very precise independent results for each of the three

quantities in (3.3),

|Vus| = 0.22333(60), |Vud| = 0.97370(14), |Vus/Vud| = 0.23130(50). (3.5)

These results deviate from the condition (3.2) by more than 4σ, disfavouring the CKM unitarity at a

99.998% CL. In fact, the values in (3.5) are much more compatible with

|Vud|2 + |Vus|2 = 1−∆2, (3.6)

where at a 95% confidence level, one has

18



∆ = 0.04± 0.01. (3.7)

This discrepancy between the SM and experimental data constitutes the CKM unitarity problem,

which resolution will necessitate the introduction of some NP that can accommodate these new results.

These considerations are further supported by recent results from FLAG [18].

The expression (3.6) suggests the need for an extra mixing, for instance a V14 with |V14| = ∆ which

in turn allows for a new unitarity condition

|Vud|2 + |Vus|2 + |Vub|2 + |V14|2 = 1. (3.8)

This can be achieved through the introduction of a new vector-like quark to the theory, which will in

turn lead to a larger mixing matrix with the 3 × 3 CKM matrix containing the mixings of the standard

quarks being a non-unitary submatrix.

3.2 Electroweak theory with SU(2) isosinglet quarks

Consider now the general case of the introduction to the theory of nu up-type VLQ isosinglets U ′
i =

U ′
iL + U ′

iR and nd down-type quark isosinglets D′
i = D′

iL + D′
iR. Each one of these will correspond in

flavour space to a component of one of the following vectors

U ′ =


U ′
1

U ′
2

...

U ′
nu

 , D′ =


D′

1

D′
2

...

D′
nd

 . (3.9)

In this type of extensions, the EW Lagrangian becomes

LEW = L SM
EW + L VLQ

f + L VLQ
Yuk + L VLQ

b , (3.10)

where L SM
EW now refers to (2.16) and

L VLQ
f = iU

′
/DU ′ + iD

′
/DD′, (3.11)

includes the kinetic terms of the VLQs and describes their interactions with the gauge bosons. These

interactions will be the focus of the next section. Note that, since these new fields are isosinglets, one

has

DµU
′ = ∂µU

′ − ig′BµQU ′ = ∂µU
′ − 2ig′

3 BµU
′,

DµD
′ = ∂µD

′ − ig′BµQD′ = ∂µD
′ + ig′

3 BµD
′,

(3.12)

for their EW covariant derivatives.
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The next term in (3.10),

− L VLQ
Yuk = Q

′
LΦY

DD′
R +Q

′
LΦ̃Y

UU ′
R + h.c, (3.13)

describes the Yukawa interactions involving these VLQs. Note that, in flavour space, Y D and Y U are

matrices of size 3 × nd and 3 × nu, respectively. Their entries correspond to extra Yukawa couplings

where, unless there exists some special mechanisms such as a symmetry, one expects that Y U,D
ij ∼ 1.

Also, after SSB, one can write

L VLQ
Yuk = L VLQ

m + L VLQ
h , (3.14)

where

− L VLQ
m = d

′
Lω

dD′
R + u′

Lω
uU ′

R + h.c, (3.15)

contains the mass terms arising from the Higgs mechanism that involve the new VLQ fields and the

matrices ωu and ωd, of sizes 3× nu and 3× nd, are given by

ωu,d =
v√
2
Y U,D. (3.16)

This piece is analogous to (2.31), but now the RH VLQs take the role of the RH components of the

SM quarks. The remaining piece in (3.14) describes the interactions of the Higgs field that involve the

VLQs fields and is given by

− L VLQ
h = d

′
LY

D h√
2
D′

R + u′
LY

U h√
2
U ′

R + h.c, (3.17)

being analogous to the SM piece in (2.33).

Finally, the last term in (3.10) arises as a direct consequence of having LH isosinglet fields and

therefore has no analogous in the SM. This piece contains the following bare mass terms

− L VLQ
b = D

′
LX

dd′
R +U

′
LX

uu′
R +D

′
LM

dD′
R +U

′
LM

uU ′
R + h.c, (3.18)

which are not generated from the Higgs mechanism. Here, Xd and Xu are nd × 3 and nu × 3 flavour

matrices, whereas Md and Mu are nd × nd and nu × nu, respectively.

3.2.1 The emergence of FCNCs at tree-level

From the Lagrangian describing the interactions of quarks with gauge bosons we derive the elec-

tromagnetic current involving all quarks, which from (3.11) and (3.12) now gets a contribution from the

VLQs, modifying (2.39) to

Jµ
q,em =

2

3

(
u′γµu′ +U

′
γµU ′

)
− 1

3

(
d
′
γµd′ +D

′
γµD′

)
. (3.19)
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This form motivates the introduction of the following vectors

U ′ ≡

u′

U ′

 , D′ ≡

d′

D′

 , (3.20)

respectively of dimension (3 + nu) and (3 + nd), and for (3.21) we obtain

Jµ
q,em =

2

3
U ′γµU ′ − 1

3
D′
γµD′, (3.21)

analogous to the SM form in (2.39).

Considering the mass terms in (2.31) and (3.15) and the bare mass terms in (3.18), one may write

all mass terms of the theory as

− L q
M = U ′

LM
uU ′

R +D′
LM

dD′
R + h.c, (3.22)

where the two new quark mass matrices

Mu,d =

 mu,d ωu,d

Xu,d Mu,d

 , (3.23)

represented here in block form, are matrices of size (3+nu)×(3+nu) and (3+nd)×(3+nd), respectively.

One can relate the mass eigenstates with the fields in (3.20) through

U ′
L,R = Vu

L,RUL,R ≡

 Au
L,R

Bu
L,R

uL,R

UL,R

 ,

D′
L,R = Vd

L,RDL,R ≡

 Ad
L,R

Bd
L,R

dL,R

DL,R

 ,

(3.24)

so that (3.22) is transformed into

− L q
M = ULDuUR +DLDdDR + h.c, (3.25)

where the diagonal matrices Du,d, generically given by

D = V†
LMVR, (3.26)

contain the masses of all the 3 + nu,d quarks of each sector. The matrices Vu
L,R and Vd

L,R of size

(3 + nu)× (3 + nu) and (3 + nd)× (3 + nd), respectively, are unitary in order to keep the kinetic terms of

quarks invariant, i.e.

L kin
q = iu′ /∂u′ + iU

′
/∂U ′ + id

′
/∂d′ + iD

′
/∂D′

= iU ′
/∂U ′ + iD′

/∂D′ = iU /∂U + iD/∂D.

(3.27)
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The blocks Au,d
L,R correspond to the first three rows of Vu,d

L,R, whereas Bu,d
L,R correspond to the last nu,d

rows. These blocks are not unitary, in fact the unitarity of Vu
L,R and Vd

L,R leads to

V†V = A†A+B†B = 1(3+n),

VV† =

 AA† AB†

BA† BB†

 =

 13 03×n

0n×3 1n

 ,

(3.28)

where the indices u, d and L,R are omitted for simplicity.

Using these relations, the analogous to the CCs in (2.40) can be written in terms of the mass eigen-

states as

L q
CC = − g√

2

(
u′

L /W
+
d′
L + h.c.

)
= − g√

2

(
UL /W

+
(Au†

L A
d
L)DL +DL /W

−
µ (A

d†
L A

u
L)UL

)
, (3.29)

so that the new mixing matrix of this model with VLQs is now

VCKM ≡ Au†
L A

d
L = Vu†

L K0Vd
L, K0 =

 13 03×nd

0nu×3 0nu×nd

 , (3.30)

which is a (3 + nu)× (3 + nd) matrix and no longer unitary.

The electromagnetic current remains invariant, i.e.

Jµ
q,em =

2

3
U ′
γµU ′ − 1

3
D′
γµD′ =

2

3
UγµU − 1

3
DγµD, (3.31)

and therefore, no new exotic process in QED involving VLQs and SM quarks are present. On the other

hand, the neutral current Lagrangian in (2.38) gets modified to

L q
NC = −eAµJ

µ
q,em − g

2cW

(
UL /Z(A

u†
L A

u
L)UL −DL /Z(A

d†
L A

d
L)DL − 2s2WJµ

q,emZµ

)
. (3.32)

so that the weak NC are no longer diagonal in flavour space, but instead are in general controlled by

non-diagonal and non-unitary matrices

Fu = Au†
L A

u
L = Au†

L A
d
LA

d†
L A

u
L = VCKMV†

CKM,

F d = Ad†
L A

d
L = Ad†

L A
u
LA

u†
L A

d
L = V†

CKMVCKM.

(3.33)

Collecting all these expressions, the full Lagrangian describing the interactions of gauge-bosons with

all quarks in the EW sector can now be expressed as

L int
q = −eAµJ

µ− g

2cW

(
UL /ZF

uUL −DL /ZF
dDL − 2s2WJµ

emZµ

)
− g√

2

(
UL /W

+VCKMDL + h.c
)
. (3.34)

Note that since VCKM is now a larger matrix with extra mixings, new vertices involving the W-boson are
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introduced in the theory. However, the quintessential implication of introducing VLQs is the emergence

of flavour changing neutral currents (FCNCs) at tree-level.

In the SM, processes involving FCNCs are allowed but only at loop-level and are highly suppressed

by the entries of the CKM matrix and the GIM mechanism. In extensions with VLQs, the FCNCs me-

diated by the Z-boson are now controlled by the non-diagonal matrices Fu,d, so that, for example, the

coupling of the up and charm quarks to the Z-boson will be non-vanishing, which means that a vertex

such as the one in figure 3.1 is now allowed.

u

Z

c

Figure 3.1: One of the new vertices associated to the Z-mediated FCNCs that emerge in extensions
with VLQs.

Tree-level FCNCs can also arise in interactions of quarks with the Higgs field. Using (2.33) and

(3.17), one has

− L q
h = u′

L

h√
2
YuU ′

R + d
′
L

h√
2
YdD′

R + h.c, (3.35)

where we have defined the matrix Yu,d ≡
(
Y u,d, Y U,D

)
. In terms of the mass eigenstates, one has

− L q
h = UL

h√
2

(
Au†

L YuVu
R

)
UR +DL

h√
2

(
Ad†

L YdVd
R

)
DR + h.c, (3.36)

so that these couplings are no longer flavour diagonal. In fact, from the diagonalisation of the mass

matrix for each sector, one has

M =

 v√
2
Y

B

 = VLDV†
R =

AL

BL

DV†
R =⇒ Y =

√
2

v
ALDV†

R (3.37)

where Bu,d ≡
(
Xu,d, Mu,d

)
contains the couplings coming from bare mass terms. Thus,

− L q
h = UL

h

v
FuDuUR +DL

h

v
F dDdDR + h.c, (3.38)

leading to manifestly non-diagonal couplings and, therefore, to the emergence of Higgs-meadiated FC-

NCs, which similarly to Z-boson mediated FCNCs, are controlled by Fu,d. This means that e.g. the

vertex in figure 3.2 is now allowed.

The emergence of these FCNCs leads to new very important phenomenological effects, which will

be studied in detail in chapter 4.
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h

c

Figure 3.2: One of the new vertices associated to the Higgs-mediated FCNCs that emerge in extensions
with VLQs.

3.2.2 New Mass Scale and Suppression of the FCNCs

As mentioned before, processes involving FCNCs in the SM are extremely suppressed. In this

regard, the tree-level FCNCs generated in extensions with VLQs could potentially pose problems. We

show here that this is not necessarily the case, provided that these new VLQs have masses considerably

larger than the EW scale.

To illustrate this statement, consider for each sector the relation

H ≡ MM† = VLD2V†
L, (3.39)

coming from (3.26), as well as

VL =

K R

S T

 , D =

d0 0

0 D0

 , (3.40)

where d0 and D0 are the diagonal matrices containing the masses of the SM quarks and VLQs, respec-

tively, K is a 3 × 3 matrix while T is n × n and R and ST are 3 × n matrices. Now, by using (3.23), the

relation in (3.39) can be expressed as

(mm† + ωω†)K + (mX† + ωM†)S = Kd20,

(mm† + ωω†)R+ (mX† + ωM†)T = RD2
0,

(Xm† +Mω†)K + (XX† +MM†)S = Sd20,

(Xm† +Mω†)R+ (XX† +MM†)T = TD2
0.

(3.41)

Assuming a new mass scale v′ ≫ v for the VLQs, to which the entries of M,X and D0 are propor-

tional to, and given that the entries of the unitary matrices Vu,d
L are of order 1, one has from the second

relation of (3.41)

R ≈ (mX† + ωM†)T

D2
0

∼ v

v′
≪ 1. (3.42)

Similarly, from the third relation of (3.41) one has

S ≈
(
XX† +MM†)−1

(Xm† +Mω†)K ∼ v

v′
≪ 1, (3.43)
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so that for large v′ the entries of R and S are naturally suppressed. Inserting (3.43) in the first relation

of (3.41) one obtains

mm† + ωω† + (mX† + ωM†)
(
XX† +MM†)−1

(Xm† +Mω†) ≈ Kd20K
−1, (3.44)

The LHS of (3.44) can be interpreted as the effective 3× 3 matrix of the lightest quarks

Heff ≡ mm† + ωω† + (mX† + ωM†)
(
XX† +MM†)−1

(Xm† +Mω†), (3.45)

which, analogous to H in the SM, contains essentially all information about the mixing and masses of

three standard generations of quarks. From the unitarity of VL one also has

K†K = 13 − S†S, KK† = 13 −RR†, (3.46)

which coupled with (3.42) and (3.43), shows that K is indeed a unitary matrix in approximation, for

v′ ≫ v.

Using (3.30) and (3.40) one finds

VCKM =

K†
uKd K†

uRd

R†
uKd R†

uRd

 , (3.47)

so that the 3× 3 upper-left block now plays the role of the mixing matrix of the three lightest generations.

From (3.42) it is clear that the entries outside this block are naturally suppressed, so that the CC mixings

of VLQ with each other and with SM quarks may be expected to be small.

From (3.47) and using (3.33) and (3.46), the matrices controlling the FCNCs can be expressed as

F =

K†K K†R

R†K R†R

 =

13 − S†S K†R

R†K R†R

 , (3.48)

so that the FCNCs involving the SM quarks are in principle suppressed by the ratio (v/v′)2. The remain-

ing entries of Fu,d will also be small for large v′ and therefore the effects of FCNCs involving directly the

new VLQs may be suppressed too. Thus, sufficiently suppressed tree-level FCNCs may be achieved in

extension with VLQs, provided that their masses are large. Note that, currently, the minimal bound for

the mass of an isosinglet quark is already of the order of around the TeV, a couple times larger than the

EW scale.

3.3 Solving the CKM unitarity problem with an up-type VLQ isos-

inglet

As mentioned before the introduction of VLQs to the SM may be able to solve the CKM-UP. In

principle, one could introduce any number of VLQs to the two quark sectors, but as we show here, the

introduction of a single VLQ is already very promising.
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The introduction of a down-type isosinglet, a heavy-bottom B, will result in a 3× 4 mixing matrix

VCKM =


Vud Vus Vub VuB

Vcd Vcs Vcb VcB

Vtd Vts Vtb VtB

 , (3.49)

and the unitarity problem found for the first row of the CKM matrix in the SM, as stated in (3.6), can be

solved by simply having |VuB | = ∆.

If instead one exclusively introduces an up-type isosinglet, a heavy-top T , to the theory then the new

mixing matrix will be a 4× 3 matrix of the form

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

VTd VTs VTb

 , (3.50)

with three orthonormal columns but no longer orthonormal rows. Thus, the first row of CKM no longer

respects the unitary condition, but (3.6) can still be verified for the first row of

Vu† =


Vud Vus Vub V14

Vcd Vcs Vcb V24

Vtd Vts Vtb V34

VTd VTs VTb V44

 , (3.51)

the unitarity matrix which diagonalises Hu = MuMu† in the WB where the 3 × 3 down sector mass

matrix is diagonal, and which, from (3.30), relates to VCKM. More concretely one has

VCKM = Vu†
L K0V

d
L = Vu†

L Ṽd
LK0 ≡ Vu†K0, KT

0 =


1 0 0 0

0 1 0 0

0 0 1 0

 , (3.52)

where V d
L is a general 3×3 transformation that relates the LH flavor states with the LH mass eigenstates,

whereas

Ṽd
L =


V d
L

0

0

0

0 0 0 1

 . (3.53)

The CKM unitarity problem may then be solved by having |V14| = ∆.

Thus, a minimal solution to the CKM problem may be achieved with the introduction of either a heavy-

top or a heavy-bottom to the SM. A solution with a heavy-bottom, however, will run into other difficulties.

To understand this, consider, an extension with only a heavy-bottom. The matrix which diagonalises

Hd = MdM†
d in the WB where the 3× 3 mass matrix of the up sector is diagonal is
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Vd =


Vud Vus Vub VuB

Vcd Vcs Vcb VcB

Vtd Vts Vtb VtB

V41 V42 V43 V44

 , (3.54)

where analogously to (3.52), one has

VCKM = V u†
L K0Vd

L = K0Ṽu†
L Vd

L ≡ K0Vd, K0 =


1 0 0 0

0 1 0 0

0 0 1 0

 , (3.55)

so that the down-sector mass matrix in a suitable basis may be given by

Md = VdD =


mdVud msVus mbVub mBVuB

mdVcd msVcs mbVcb mBVcB

mdVtd msVts mbVtb mBVtB

mdV41 msV42 mbV43 mBV44

 . (3.56)

Hence, in this WB one has |Md
14| = mB |VuB |, which for a heavy-bottom of mass mB ∼ 1 TeV yields

|Md
14| ∼ 40 GeV for |VuB | ≈ 0.04. However, one should recall that all the entries in the first three rows

originate from the Higgs mechanism and are all proportional to the EW scale and Yukawa couplings of

the same order. Therefore, having |Md
14| much larger than |Md

33| ≃ mb, where mb(mb) ≃ 4.18 GeV [33],

seems somewhat unnatural.

The same is not the case if instead a heavy-top with mT ∼ 1 TeV is added to the SM, because in this

case one has

Mu = VuD =


muV

∗
ud mcV

∗
cd mtV

∗
td mTV

∗
Td

muV
∗
us mcV

∗
cs mtV

∗
ts mTV

∗
Ts

muV
∗
ub mcV

∗
cb mtV

∗
tb mTV

∗
Tb

muV
∗
14 mcV

∗
24 mtV

∗
34 mTV

∗
44

 , (3.57)

with |Mu
33| ≃ mt ≃ 172.9 GeV and even with mT ∼ 4 TeV one can still have |Mu

33| ≳ |Mu
14| TeV1.

Therefore, an extension with a heavy-top is a much more natural way of solving the CKM-UP and this

will be the focus of the next chapters. We also point to the results of [30] where it is shown that the

possibility of having only an heavy-bottom to added the SM is close to being excluded.

In the next chapter, we will be focused on studying the phenomenological implications of adding an

heavy-top to the SM on processes such as neutral mixings or kaon decays.

1This is assuming |VTd| ∼ |V14| which is typically the case.
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Chapter 4

Phenomenological effects of mixing

with a heavy-top

In the previous chapter we showed that a minimal extension of the SM with an up-type VLQ isosin-

glet may constitute an elegant way of solving the CKM-UP. However, it was also demonstrated that, in

general, extensions with VLQ isosinglets generate new interactions associated with FCNCs. In principle,

these interactions can introduce new contributions to processes such as neutral meson mixings or rare

meson decays, and which are constrained by current experimental data.

In this chapter we will study in detail the NP contributions to some of these processes that arise

when a heavy-top is added to the SM and explore some of the constraints that are currently imposed by

experimental results on the most relevant quantities associated with such processes. We will be partic-

ularly interested in studying neutral meson mixings and kaon decays, which typically impose important

constraints on these types of extensions. At the end we shall quickly look at the possible decay channels

of the new heavy-top.

One point that is very important to keep in mind is that in this particular case there are only FCNCs

involving up-type quarks. Here, VCKM will be a non-unitary 4 × 3 matrix (see (3.50)) and the matrices

controlling the FCNCs are

Fu = VCKMV†
CKM = Vu†

L K0K
T
0 Vu

L,

F d = V†
CKMVCKM = V d†

L V d
L = 13,

(4.1)

where

KT
0 =


1 0 0 0

0 1 0 0

0 0 1 0

 , (4.2)

and V d
L and Vu

L are, respectively, the 3× 3 and 4× 4 unitary matrices that diagonalize Hd = mdm
†
d and

Hu = MuM†
u.
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Furthermore, throughout this chapter we will focus specifically on parametrization of VCKM where the

quantity

λKu ≡ V ∗
usVud, (4.3)

is real. This is because with this choice, the expression for several of the most important quantities

become easier to calculate than in the general case.

4.1 K0 −K
0 mixing

As stated above, the sole introduction of an up-type VLQ will lead to the emergence of FCNCs exclu-

sively in the up-quark sector, which in turn will generate different types of NP contributions depending on

the meson system. In this and the following subsection the mixing of neutral mesons N0−N0
composed

by down-type valence quarks, N = K,Bd,s, is explored.

β α

α β

ui uj

W

W

N0
N

0

β α

α β
ui

uj

W WN0
N

0

Figure 4.1: Leading contributions to K0 −K
0

and B0
d,s −B

0

d,s mixing, ui,j = u, c, t.

In the SM these processes have box diagram as their leading order contributions. These are repre-

sented in figure 4.1 and in the limit of vanishing external quark masses are described by the effective

Lagrangian [30, 31, 43]

L N
eff = −G

2
FM

2
W

4π2

∑
i,j=u,c,t

λNi λ
N
j S0(xi, xj)(βLγ

µαL)(βLγµαL), (4.4)

where α and β are the valence quarks that define the neutral meson N0 and λNi are CKM factors defined

as

λNi ≡ V ∗
iβViα. (4.5)

Here we have introduced the gauge-invariant Inami-Lim (IL) box functions S0(xi, xj) with xi ≡

(mi/MW )2 (see Appendix A). The IL functions [44] encapsulate the complicated dependence of a pro-

cess involving loops on the internal quark masses. The physical constants GF and MW are the Fermi

constant and the mass of the W -boson, respectively.

With an extra particle, i.e. the heavy-top T , (4.4) is modified into

L N
eff = −G

2
FM

2
W

4π2

∑
i,j=c,t,T

λNi λ
N
j S0(xi, xj)(βLγ

µαL)(βLγµαL) + h.c., (4.6)
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which corresponds to a very simple generalisation of the SM piece with the VLQ, now also allowed to

run inside the loops in figure 4.1. Note that all contributions associated with the up quark were discarded

which can be justified by the fact that xu ≃ 0 to a very good approximation and that, by exploiting the

orthonormality of the first two columns of the mixing matrix, one has

λNu + λNc + λNt + λNT = 0, (4.7)

and thus, by writing it in terms of the three remaining factors, the factor λNu can be eliminated.

For the moment we will focus on the neutral kaon mixing. Two relevant quantities associated with

this neutral meson system are the mass difference ∆mK = mKL
−mKS

and the CP violation parameter

εK . Both of these are related to MK
12, the off-diagonal element of the neutral kaon matrix, which can be

computed from

MK
12 = − 1

2mK
⟨K0|L K

eff |K
0⟩ . (4.8)

Following [31, 45], using the vacuum-insertion approximation (VIA) and the phase choice CP |K0⟩ =

− |K0⟩, one has

⟨K0| (sLγµdL)(sLγµdL) |K
0⟩ = 2

3
f2Km

2
K , (4.9)

where mK is the mass of the kaon and fK is its decay constant. In the end, if QCD corrections are

included one obtains

MK
12 =

G2
FM

2
W

12π2
f2KmKBKSK , (4.10)

where BK is the bag parameter which is a factor estimated from lattice QCD calculations and that

accounts for QCD corrections to the VIA, whereas

SK =
∑

i,j=c,t,T

ηKij λ
K
i λ

K
j S0(xi, xj), (4.11)

contains the dependence on the mixing and internal quark masses, but where now other QCD correc-

tion factors ηKij of O(1) are also included. These quantities account for high energy QCD effects and

renormalisation group (RG) evolution to lower scales. Note that this form is valid for scales below the

charm threshold µc = O(mc) [46].

It should be stressed that (4.10) corresponds exclusively to the short-distance (SD) contribution to

K0−K0
associated with the leading box diagram contributions in 4.1 and which can be computed using

perturbative QCD. Here, we have overlooked the long-distance (LD) contributions which are harder to

compute as they correspond to having intermediate meson states in the K0 −K
0

transition instead of

up-type quarks and the W bosons and cannot be computed perturbatively.

With this in mind, the mass difference can now be written as
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∆mK ≃ 2|MK
12|+ (∆mK)LD, (4.12)

where (∆mK)LD refers to the long-distance contributions which are expected to significantly affect the

value of ∆mK . Presently, we only have a formula for the short-distance piece for this observable,

(∆mK)SD ≃ 2
∣∣MK

12

∣∣ = G2
FM

2
WmKf

2
KBK |SK |

6π2
. (4.13)

On the other hand, the parameter εK which quantifies indirect CP violation in the KL → ππ decay, is

dominated by the short-distance piece and can be related to MK
12 through [47]

|εK | ≃ κε√
2∆mK

|Im
(
MK

12

)
|, (4.14)

for the adopted parametrization where λKu is real. Given the difficulty of computing (∆mK)LD, we shall

use the experimental value of ∆mK , ∆mexp
K = (3.484 ± 0.006) × 10−12 MeV [33], in the numerical

calculations of εK .

Expressions for the NP contributions to (∆mK)SD and εK can now be obtained by writing the sum

(4.11) as

SK = SSM
K + SNP

K , (4.15)

where

SSM
K = ηKcc

(
λKc

)2
S0(xc) + 2ηKctλ

K
c λ

K
t S0(xc, xt) + ηKtt

(
λKt

)2
S0(xt),

SNP
K = 2ηKcTλ

K
c λ

K
T S0(xc, xT ) + 2ηKtTλ

K
c λ

K
T S0(xt, xT ) + ηKTT

(
λKT

)2
S0(xT ),

(4.16)

leading to1

(
∆mNP

K

)
SD

≈
G2

FM
2
WmKf

2
KBK

∣∣SNP
K

∣∣
6π2

, (4.17)

|εNP
K | = G2

FM
2
WmKf

2
KBKκε

12
√
2π2∆mK

|Im
(
SNP
K

)
|. (4.18)

These expressions can be used to constraint our model with a heavy-top. To consider such a model

safe with regard to the neutral kaon system we establish the following criteria

(
∆mNP

K

)
SD

≲ ∆mexp
K = (3.484± 0.006)× 10−12 MeV, (4.19)

|εNP
K | ≲ δεK ≡ 2.48× 10−4, (4.20)

where we will use δεK to refer to the upper-bound for |εNP
K |.

1Given that
∣∣SSM

K + SNP
K

∣∣ ≤ ∣∣SSM
K

∣∣+∣∣SNP
K

∣∣, (4.17) represents an approximate upper bound for
(
∆mNP

K

)
SD, not an exact formula.
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For
(
∆mNP

K

)
SD we require simply that it is lower than the experimental value, given the theoretical

uncertainty still associated with the SM prediction and its LD piece. Henceforth, we will drop the SD

label so that, unless mentioned explicitly, ∆mK and ∆mNP
K will refer to short-distance contributions.

On the other hand, the condition for |εNP
K | is much more stringent. This strongly contrasts with the

typical constraint utilised in these types of models [29, 30],

|εNP
K | ≲ |εexp

K |. (4.21)

To establish this new upper-bound, we make use of the experimental value |εexp
K | = (2.228± 0.011)×

10−3 [33] and the SM prediction |εSM
K | = (2.16 ± 0.18) × 10−3. This SM prediction, presented in a

recent paper by Brod, Gorbahn and Stamou [48] is obtained by circumventing the large uncertainties

associated to the charm-quark contribution and is very similar to the experimental value2. Therefore, we

no longer find it reasonable to maintain (4.21), which now appears to be a too permissible upper-bound,

and adopt (4.20) instead.

We now briefly explain the reasoning behind this upper-bound: the NP contribution in a model like

this should verify

∣∣∣εNP
K

∣∣∣ ≤ ∣∣∣εexp
K − εSM

K

∣∣∣ , (4.22)

but since

∣∣∣εexp
K − εSM

K

∣∣∣ ≥ ∣∣εexp
K

∣∣− ∣∣∣εSM
K

∣∣∣ , (4.23)

we choose to set the conservative constraint

∣∣∣εNP
K

∣∣∣ ≲ ∣∣εexp
K

∣∣− ∣∣∣εSM
K

∣∣∣ , (4.24)

where at 1σ one expects

∣∣εexp
K

∣∣− ∣∣∣εSM
K

∣∣∣ ≲ [2.228− 2.16 + 0.18]× 10−3 = 2.48× 10−4 ≡ δεK . (4.25)

From (4.24) and (4.25) one obtains the condition (4.20). Therefore, as a consequence of now having∣∣εSM
K

∣∣ ≈
∣∣εexp

K

∣∣, this upper-bound for
∣∣εexp

K

∣∣ is quite small, being only around 10% of the experimental

value. This is a very important result that should now set new and much more stringent conditions to

this type of extensions. This condition will also play an important role in the following chapters.

4.2 B0
d,s −B

0
d,s mixings

Similar considerations as in the K0 system apply to the B0
q systems (q = d, s), but in this case given

that λBq
c ∼ λ

Bq

t and

2Note that, although this prediction is obtained in the context of manifest CKM unitarity, this result is still relevant to our work,
given that we assume small unitarity deviations.
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S0(xc), S0(xc, xt) ≪ S0(xt), (4.26)

one obtains the simpler expression

SSM
Bq

= η
Bq

tt

(
λ
Bq

t

)2

S0(xt). (4.27)

A similar simplification can also be made for SNP
Bq

by using

S0(xc, xT ) ≪ S0(xt, xT ), S0(xT ), (4.28)

so that

SNP
Bq

= 2η
Bq

tT λ
Bq

t λ
Bq

T S0(xt, xT ) + η
Bq

TT

(
λ
Bq

T

)2

S0(xT ). (4.29)

In the end, in a similar fashion as before in the kaon system, one has

∆mSM
Bq

≈
G2

FM
2
WmBqf

2
Bq
BBq

∣∣∣SSM
Bq

∣∣∣
6π2

, (4.30)

∆mNP
Bq

≈
G2

FM
2
WmBq

f2Bq
BBq

∣∣∣SNP
Bq

∣∣∣
6π2

, (4.31)

but now the references to the short-distance contributions are dropped because these dominate the

experimental values of ∆mBq
completely, while the long-distance contributions are negligible [31]. In

fact, using the current PDG best-fit values for the moduli of the CKM matrix without imposing unitarity

[33], i.e. using

|Vtd| ≃ (8.0± 0.3)× 10−3,

|Vts| ≃ (38.8± 1.1)× 10−3,

|Vtb| ≃ 1.013± 0.030,

(4.32)

one can roughly estimate

∆mSM
Bd

≈ (3.06± 0.29)× 10−10 MeV,

∆mSM
Bs

≈ (1.07± 0.09)× 10−8 MeV,

(4.33)

by using (4.27) and (4.30). These estimates show how the short-distance SM predictions essentially

saturate the experimental values (see table A.1 in Appendix A), leaving also very little room for NP. We

will then require that the NP contribution originating from an extension with a heavy-top verify
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δmBq ≡
∆mNP

Bq

∆mSM
Bq

=

∣∣∣∣∣S
NP
Bq

SSM
Bq

∣∣∣∣∣ ≲ 0.1, (4.34)

i.e. they should be at most of the same order of magnitude as the uncertainties in the estimates (4.33).

4.3 D0 −D
0 mixing

Similarly to the meson systems studied above, the leading order short-distance contribution to the

D0−D0
mixing in the SM are given by box diagrams such as the ones in figure 4.1, now with down-type

internal quarks and up-type external quarks. These will be generated by dipenguin3 diagrams and the

experimental value of ∆mD is also essentially given by long-distance contributions [31].

u c

c u

Z
D0 D

0

Figure 4.2: NP contribution to D0 −D
0

mixing via Z-mediated FCNC.

Nonetheless, the leading NP contribution will be dominated by the tree level diagram in figure 4.2,

described by

L NP
D = −GF√

2
(Fu

12)
2(uLγ

µcL)(uLγµcL), (4.35)

which arises as a direct consequence of the FCNCs that now exist in up-quark sector. Note that at

tree-level and in the limit of vanishing external masses there is no contribution coming from the FCNCs

involving the Higgs boson.

Therefore, one can quantify the NP contribution with the mixing parameter [49, 50]

xNP
D ≡ ∆mNP

D

ΓD
≃

√
2GF

3ΓD
r(mc,MZ)BDf

2
DmD |Fu

12|
2
, (4.36)

where a factor r(mc,MZ) ≈ 0.778 (see Appendix A), which accounts for RG effects, was introduced. In

order to consider a model with a heavy-top safe with regard to this meson system, we will require that

the NP contribution does not exceed the experimental value, i.e. [51]

xNP
D ≤ xexp

D = 0.39+0.11
−0.12%. (4.37)

3Penguin diagrams are one loop corrections to tree level such as the one in 4.2 where one of the vertices is replaced by an
”effective vertex” containing the loop (see figures 4.3 and 4.4). Dipenguin diagrams are two-loop diagrams where both vertices
are replaced by such ”effective vertices”. The dipenguin diagrams which are significant in some neutral meson mixings are gluon-
mediated (see figure 17.4 of [31]).
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4.4 Rare kaon decays

In this section we will be studying the rare kaon decays KL → π0νν and K+ → π+νν, which are two

golden modes for testing the SM given that their LD contributions are negligible [31, 43]. One should

keep in mind that

KL ≈ K0 +K
0

√
2

, (4.38)

so that, for the two decays we will be studying, one has in terms of quarks

K0 → π0νν : s→ dνν,

K
0 → π0νν : s→ dνν,

K+ → π+νν : s→ dνν.

(4.39)

Therefore, both of these decays are described by essentially the same diagrams (see figure 4.3). We

will now discuss the effects of introducing a heavy-top to each decay individually.

4.4.1 KL → π0νν

Firstly, we consider the rare decay KL → π0νν, which in the SM has branching ratio, i.e. the fraction

of KL decays that correspond to this specific decay channel, proportional to [31]

k0SM ≃
∣∣ImλKc X0(xc) + ImλKt X0(xt)

∣∣2 , (4.40)

for parametrizations where λKu is real. Here, we introduced a new gauge independent IL function X0(xi)

(see Appendix A).

The charm quark contribution can be neglected given that X0(xc) ≪ X0(xt) and ImλKc = −ImλKt .

Hence, with the addition of the heavy-top, the branching ratio is proportional to

k0 =
∣∣ImλKt X0(xt) + ImλKT X0(xT ) + ImAds

∣∣2 , (4.41)

so that

Br(KL → π0νν)

Br(KL → π0νν)SM
=

k0

k0SM
=

∣∣∣∣ ImλKt X0(xt) + ImλKT X0(xT ) + ImAds

ImλKt X0(xt)

∣∣∣∣2 . (4.42)

The second term in (4.41) corresponds to the expected generalisation of the terms in (4.40) after an

extra quark is introduced. The last term arises as a consequence of the fact that this new quark is a VLQ

isosinglet and it accounts for the decoupling behaviour that arises with its addition. The gauge-invariant

factor Ads is given by [52–55]
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Ads =
∑
ij

Vid (F
u − 1)ij V

∗
jsN(xi, xj), (4.43)

where

N(xi, xj) =
xixj
8

(
log xi − log xj

xi − xj

)
, (4.44)

N(xi, xi) ≡ lim
xj→xi

N(xi, xj) =
xi
8
. (4.45)

To understand the need for this correction, it is instructive to analyse the diagrams that contribute

to this process, which are presented in figures 4.3. It is from summing all these contributions that

the expression for X0(xi) is obtained. However, one should note that in these calculations, which are

typically made in the ’t Hooft-Feynman gauge, diagrams involving the ϕ± Goldstone bosons are also

considered [31, 44]. Therefore, in this gauge all contributions come from the diagrams in figure 4.3 and

all the diagrams where one or more W± gauge bosons are replaced by Goldstone bosons ϕ±. Also

in this particular gauge, the combination of all box diagrams is associated with the IL function B0(xi),

whereas the combination of all weak penguin diagrams is associated with C0(xi) (see Appendix A). In

another gauge, the functions corresponding to these diagrams would be different, i.e. they are gauge

dependent, but the combination [44, 56]

X0(xi) ≡ C0(xi)− 4B0(xi) (4.46)

is gauge independent, and as it is, this happens to be the function on which the Lagrangian describing

this process depends in a similar fashion as (4.4) depends on the gauge-invariant IL function S0(xi, xj).

All the diagrams in figure 4.3 will have expressions that share the same form, both in the SM and

in extensions with a heavy-top, now with ui = u, c, t, T , except for the penguin-diagram associated with

the loop in figure 4.3(b.4), where the internal up-quark line couples to the Z-gauge boson and therefore

C0(xi) (and hence X0(xi)) should be modified by the presence of FCNCs. These modifications are

taken care by the addition of the Ads factor.

As suggested by (3.48), the NC mixing of the heavy-top with the SM up-type quarks will be sup-

pressed as a consequence of its large mass, meaning that typically Fu
4i ≪ 1. The same is expected

for the NC couplings between different SM up-type quarks. In the decoupling limit, where the heavy-top

does not mix with the SM quarks, one has

Fu − 14 →

03×3 03×1

01×3 −1

 . (4.47)

Thus, in a more realistic scenario with very suppressed, but non-zero mixing with the SM quarks, i.e.

when approaching the decoupling limit, one can expect to have

Ads ≃ −λKT
xT
8
, (4.48)
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Figure 4.3: Diagrams for sd → νν, which are relevant to the KL → π0νν and K+ → π+νν decays in
the unitary gauge. For the box diagrams in (a), one has ℓ = e, µ, τ . The diagrams represented by (b)
correspond to penguin-diagram contributions. The blob in black refers to the possible loops represented
in the diagrams b.1-4. For all these diagrams one has ui,j = u, c, t, T .

so that, in this limit, (4.41) can be written as

k0 =
∣∣∣ImλKt X0(xt) + ImλKT X̃0(xT )

∣∣∣2 , (4.49)

where we defined an ”effective” Inami-Lim function

X̃0(xT ) ≡ X0(xT )−
xT
8

=
3

8

xT
xT − 1

(
1 +

xT − 2

xT − 1
log xT

)
, (4.50)

for the heavy-top piece. Therefore, in this limit the NP piece has a logarithmic behaviour in xT . In these

types of analyses the factor Ads is often overlooked, but in its absence this piece would be linear in xT

and dangerously large NP contributions could be achieved for mT ∼ 1 TeV or even lower.

The current upper-bound, coming from the KOTO experiment, for the branching ratio of this decay

is at around Br(KL → π0νν) ≲ 3 × 10−9 (90% CL), whereas the SM prediction is much smaller being

Br(KL → π0νν)SM ≈ 3× 10−11 [33]. This upper-bound may potentially be lowered in future experiments

and Br(KL → π0νν)exp ∼ Br(KL → π0νν)SM may be achieved, but for now the possibility of very

large NP contributions cannot be ruled out. Thus, at the moment this process does not set stringent

constraints on the type of extension we are studying, but it can be interesting to evaluate whether such
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an extension can bridge the gap between the SM prediction and the experimental upper-bound or not.

4.4.2 K+ → π+νν

In the SM and in a parametrization where λKu is real, the branching ratio of the decay K+ → π+νν is

proportional to [31]

k+SM ≃
∣∣∣λKc XNNL

0 (xc) + λKt X0(xt)
∣∣∣2 , (4.51)

whereas in an extension with a heavy-top it is proportional to

k+ ≃
∣∣∣λKc XNNL

0 (xc) + λKt X0(xt) + λKT X0(xT ) +Ads

∣∣∣2 , (4.52)

so that

Br(K+ → π+νν)

Br(K+ → π+νν)SM
=

k+

k+SM
=

∣∣∣∣λKc XNNL
0 (xc) + λKt X0(xt) + λKT X0(xT ) +Ads

λKc X
NNL(xc) + λKt X0(xt)

∣∣∣∣2 . (4.53)

Here, the charm contribution cannot be overlooked because even though XNNL(xc) ≪ X0(xt), one

now has λKc ≫ λKt . Also, note that instead of simply using X0(xc) as the charm contribution we use

XNNL(xc) ≃ 1.04 × 10−3 by following [57], which is the charm contribution at next-to-next-to-leading

order (NNLO). This correction is important because, as mentioned above, the Inami-Lim function X0(xi)

is obtained from combining the contributions of penguin and box diagrams to neutrino decays of mesons

and the expression for X0(xi) in Appendix A is obtained by taking the limit of vanishing masses for

the leptons involved in the box diagrams in 4.3(a), so that this function involves solely the mass of the

internal up-type quark. This is a good approximation for the top and heavy-top contributions given that

mt,mT ≫ mτ , however for the charm quark one has mc < mτ and (A.8) is no longer valid. Hence, it

should be replaced by

XNNL(xc) = XNNL
SD (xc) + δX(xc), (4.54)

where δX(xc) refers to the long-distance contribution. The short-distance piece is, at NNLO, given by

XNNL
SD (xc) =

2

3
XNNL

e (xc) +
1

3
XNNL

τ (xc), (4.55)

so that the contributions involving the lepton τ and the remaining lighter leptons are considered sepa-

rately.

Currently, measurements of this decay yield Br(K+ → π+νν)exp =
(
10.6+4.0

−3.4 ± 0.9
)
×10−11, whereas

the SM prediction is Br(K+ → π+νν)SM = (8.4± 1.0)× 10−11 [58]. These results allow one to establish

the following rough 1σ and 2σ ranges4 for the ratio in (4.53)

4These ranges were calculated using the usual formulas for uncertainty propagation, with σSM = 1 × 10−12 and σexp =

4.1× 10−12 =
√
4.02 + 0.92 × 10−12 for the standard deviations of the SM prediction and experimental values, respectively.
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0.75 ≲
(

Br(K+→π+νν)
Br(K+→π+νν)SM

)
1σ

≲ 1.77,

0.24 ≲
(

Br(K+→π+νν)
Br(K+→π+νν)SM

)
2σ

≲ 2.28,

(4.56)

which are large as a result of the considerable experimental uncertainty associated with this branching

ratio. Nonetheless, through the expression (4.53), the conditions in (4.56) can set relevant constraints

on the mass of the heavy-top and its mixings with SM quarks.

4.5 CP violation parameter ε′/ε

The parameter ε′/ε measures direct CP violation in KL → ππ decays. The SM contribution can be

described by the simplified expression [59]

(
ε′

ε

)
SM

= F (xt)ImλKt , (4.57)

where F (xt) corresponds to the following linear combinations of Inami-Lim functions

F (xt) = P0 + PXX0(xt) + PY Y0(xt) + PZZ0(xt) + PEE0(xt), (4.58)

where the expressions for these functions and the values of the constants P0, PX , PY , PZ and PE are

presented in Appendix A. To understand the origin of this expression, consider the diagrams that con-

tribute to this process at loop level and are relevant to the construction of the IL functions in (4.58). These

are displayed in figure 4.4. Note once more that in the ’t Hooft-Feynman gauge where it is useful to carry

out the calculations for these diagrams, one has to also consider the diagrams where one or more gauge

bosons W± are replaced by Goldstone bosons ϕ± [31, 44]. In this gauge, for each type of diagram their

amplitude will depend on one of the functions in (A.11-A.19): the box-diagram depends on B0(xi) and

the Z-mediated penguins depend on C0(xi) as mentioned in the previous subsection, but now we have

additionally the electromagnetic penguins depending on D0(xi) and the gluonic penguins depending on

E0(xi). As mentioned earlier, in general, the expressions for B0(xi) and C0(xi) are gauge-dependent,

but the same is also true for D0(xi), whereas E0 is gauge independent [56]. As done before for X0(xi),

it useful to combine these three functions in a gauge-invariant way, resulting on two additional functions5

Y0(xi) ≡ C0(xi)−B0(xi),

Z0(xi) ≡ C0(xi) +
1
4D0(xi),

(4.59)

which were introduced along with E0(xi) in (4.58). The function F (xi) is therefore a linear combination

of all the gauge-independent functions which are relevant to this process.

When a heavy-top quark is introduced, this parameter acquires a NP contribution which can be

5This gauge independent definition of Y0(xi) appears to be incompatible with the gauge independent expression for X0(xi) in
(4.46). This issue is addressed in Appendix A, where it is shown that this is not the case.
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s qk

(a)

d qk

ui q′j

W

W

s qk

d qk

(b)

γ, Z

s qk

d qk

(c)

g

Figure 4.4: Diagrams that contribute to the decay KL → ππ at loop level in the unitary gauge. For the
box diagrams in (a) one has dj = d, s, b and q′j corresponds to a quark belonging to the opposite sector to
that of qk = u, d. The diagrams represented by (b) correspond to the EW-penguin contributions, whereas
(c) represents the gluonic-penguin contributions. The blob in black refers to the loops represented in
figures 4.3(b.1-4), whereas the blob in grey refers only to the loops in figures 4.3(b.1,2,4). For the loops
of electromagnetic and gluonic-penguins, the Z bosons in these loops are replaced by a photon γ or a
gluon g. For all diagrams one has ui = u, c, t, T .

approximated by [43, 52]

(
ε′

ε

)
NP

≃ F (xT )ImλKT + (PX + PY + PZ)Ads, (4.60)

where, as before, the first term is a simple generalisation of the SM piece which is expected from the in-

troduction of a new quark and the last one accounts for the fact that this new quark is an isosinglet. Note

that the factor Ads is only introduced as a correction to the contributions associated with X0(xt), Y0(xt)

and Z0(xt), because these contributions depend on C0(xi) and, thus, in this type of extension, will be

affected by the emerging weak FCNCs. When using (4.60) we assume that the factors P0, PX , PY , PZ

and PE are the same for the heavy-top contribution, i.e. we assume these factors are constant or at

least do not change significantly when changing the argument of F (xi) from xi = xt to xi = xT , similarly

to what is done in [43].

When approaching the decoupling limit one would have

(
ε′

ε

)
NP

≃ F̃ (xT )ImλKT , (4.61)

40



where the ”effective” function

F̃ (xT ) ≡ F (xT )−
xT
8

(PX + PY + PZ) (4.62)

also evolves approximately as a logarithmic function of xT .

Finally, one can establish a rough 1σ range for the NP contribution [60]

− 4× 10−4 ≲

(
ε′

ε

)
NP

≲ 10× 10−4, (4.63)

and a model with a heavy-top can be considered safe if (4.60) verifies (4.63).

4.6 The heavy-top decay channels

Following [61], the partial decay widths for the different T → qiB, where B = Z, h,W± and qi = ui, di

represents the up/down-type SM quark of generation i, can, in the limit of m2
T ≫M2

B ,m
2
qi , be written as

Γ(T → uiZ) ≃
m2

T

32πv2
|Fu

4i|
2
, (4.64)

Γ(T → uih) ≃
m2

T

32πv2
|Fu

4i|
2
, (4.65)

Γ(T → diW ) ≃ m2
T

16πv2
|VTdi

|2 . (4.66)

It is relevant to study these quantities because typically, searches for heavy quarks are done based

on a set of assumptions made for these partial decay widths and it is from the results of these searches

that we currently obtain lower-bounds for heavy quark masses. Usually, it is assumed that

Br(T → uiZ) + Br(T → uih) + Br(T → diW ) ≃ 1.

Γ(T → uiZ) : Γ(T → uih) : Γ(T → diW ) ≃ 1 : 1 : 2,

(4.67)

where

Br(T → qiB) ≡ Γ(T → qiB)∑
j,q,B Γ(T → qjB)

. (4.68)

The second assumption is well supported by (4.64-4.66), because, considering the form of VCKM and

Fu in (3.47) and (3.48) with Kd ≃ 13, one has |Fu
4i| ≈ |VTdi |, so that, for every generation of SM quarks

Γ(T → uiZ) ≃ Γ(T → uih) ≃ 2Γ(T → diW ). (4.69)

However, the first assumption is not really justified, as the total decay width may be more evenly

distributed among all generations. What also remains unjustified but appears to have become common
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wisdom, is the usual assumption of having the first relation apply to the third generation, i.e. it is assumed

that T decays predominantly to ui = t and di = b, leading to lower-bounds such as the mT = 1.01 TeV

[62] and mT = 1.31 TeV [63] coming from the CMS and ATLAS experiments, respectively.

In the following chapters we will apply all results derived throughout this chapter to a very particular

type of extension of the SM with an heavy-top: the minimal solutions to the CKM-UP.
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Chapter 5

The s14-dominance hypothesis: a

minimal solution to the CKM-UP with a

heavy-top

5.1 The Botella-Chau parametrization and the salient features of

s14-dominance limit

Consider again the SM with the minimal addition of one VLQ resulting in a heavy-top quark T .

In this framework, and in the WB where the 3 × 3 down sector mass matrix is diagonal, i.e. Md =

diag(md,ms,mb), the mixing matrix is given by

VCKM = V†K0, (5.1)

where, with the Botella-Chau (BC) parameterization [64], V† can be written as
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V† = O34 U24 U14 VPDG

=


1 0 0 0

0 1 0 0

0 0 c34 s34

0 0 −s34 c34




1 0 0 0

0 c24 0 s24e
−iδ24

0 0 1 0

0 −s24eiδ24 0 c24




c14 0 0 s14e

−iδ14

0 1 0 0

0 0 1 0

−s14eiδ14 0 0 c14

 ·

·


1 0 0 0

0 c23 s23 0

0 −s23 c23 0

0 0 0 1




c13 0 s13e

−iδ 0

0 1 0 0

−s13eiδ 0 c13 0

0 0 0 1




c12 s12 0 0

−s12 c12 0 0

0 0 1 0

0 0 0 1



(5.2)

with cij = cos θij and sij = sin θij , and θij ∈ [0, π/2], δij ∈ [0, 2π]. The two new phases δ14 and δ24

will in general correspond to new sources of CP violation. The matrix VPDG depends exclusively on SM

parameters and corresponds to the product in the last line of (5.2) and is the 4×4 generalization of VPDG,

the standard PDG [33] parameterization for the CKM matrix in the SM model introduced in (2.46), i.e.

VPDG =


VPDG

0

0

0

0 0 0 1

 . (5.3)

Note that the BC parametrization is such that

|Vud|2 + |Vus|2 + |Vub|2 = 1− s214 (5.4)

making it evident that, in this context, a solution for the observed 3 × 3 CKM-UP implies that the angle

s14 = ∆ is non-zero.

From (5.1) and (5.2), it is very straightforward to conclude that in this parametrization one has

Vud = V†
11 = c12c13c14,

Vus = V†
12 = s12c13c14,

(5.5)

and therefore, on concludes that the CKM factor

λKu = V ∗
usVud = s12c12c

2
13c

2
14 (5.6)

is real in this parametrization, and thus that the results from last chapter conveniently hold in the BC

parametrization. Henceforth, we shall adopt this parametrization.
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Furthermore, one obtains for the matrix that controls the FCNCs

Fu =


1− |V41|2 −V∗

41V42 −V∗
41V43 −V∗

41V44

−V∗
42V41 1− |V42|2 −V∗

42V43 −V∗
42V44

−V∗
43V41 −V∗

43V42 1− |V43|2 −V∗
43V44

−V∗
44V41 −V∗

44V42 −V∗
44V43 1− |V44|2



=


c214 −c14s14s24eiδ

′ −c14s14c24s34e−iδ14 −c14s14c24c34e−iδ14

−c14s14s24e−iδ′ 1− c214s
2
24 −c214c24s24s34e−iδ24 −c214c24s24c34e−iδ24

−c14s14c24s34eiδ14 −c214c24s24s34eiδ24 1− c214c
2
24s

2
34 −c214c224c34s34

−c14s14c24c34eiδ14 −c214c24s24c34eiδ24 −c214c224c34s34 1− c214c
2
24c

2
34

 ,

(5.7)

where, for reasons which will become clear in the following subsections, we define the difference be-

tween the two new mixing phases as

δ′ ≡ δ24 − δ14. (5.8)

Now, in an attempt to fully achieve a minimal solution of the CKM-UP, we impose the s14-dominance

limit for the mixing, by taking

s14 = ∆ ∼ λ2, s24 = s34 = 0, (5.9)

where λ ≃ |Vus| is one of the parameters used in the Wolfenstein parametrization of the CKM matrix,

introduced in (2.67), and one should recall (3.7). With this prescription (5.2) takes the very manageable

form

V† =


c12c13c14 s12c13c14 s13c14e

−iδ s14

−s12c23 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23 0

s12s23 − eiδc12s13c23 −c12s23 − eiδs12s13c23 c13c23 0

−c12c13s14 −s12c13s14 −s13s14e−iδ c14

 , (5.10)

and with (5.1), the mixing matrix is given by

VCKM =


c12c13c14 s12c13c14 s13c14e

−iδ

−s12c23 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23

s12s23 − eiδc12s13c23 −c12s23 − eiδs12s13c23 c13c23

−c12c13s14 −s12c13s14 −s13s14e−iδ

 . (5.11)

Note that the two new CP violating phases can be eliminated through rephasings of the quark fields,

so that in this limit we are effectively only adding a parameter to the SM mixing, the angle θ14. The

first row of VCKM is only slightly modified by a factor of c14 ≃ 1, whereas the second and third rows

remain intact. On the other hand, the new forth row of VCKM is suppressed by a factor of s14. This row is

associated to three new couplings, generating at tree level the three decays represented in figure 5.1.
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d

T

W+

−t14V 0
ud

s

T

W+

−t14V 0
us

b

T

W+

−t14V 0
ub

Figure 5.1: Decays of the type T → di W
+ in the framework of s14-dominance. Here V 0

αβ refers to the
SM mixings and tij = tan θij .

The matrix controlling the FCNCs in (5.7), now reduces to the much simpler form

Fu = VCKMV†
CKM =


c214 0 0 −c14s14
0 1 0 0

0 0 1 0

−c14s14 0 0 s214

 , (5.12)

and in this case, at tree level only two new decays involving FCNCs arise: T → u Z and T → u h which

are represented in figure 5.2.

u

T

Z

−s14c14

u

T

h

−s14c14

Figure 5.2: Decays of the type T → ui Z and T → ui h in the framework of s14-dominance. The only
decays allowed are the ones involving the u quark.

Here, immediately one can identify some of the most salient features of the s14-dominance limit as

being the dominant coupling of T with up and down quarks, the significantly smaller coupling of T with

the bottom quark and the vanishing of the coupling of T with the charm and top quarks. These large

couplings of the very massive heavy-top to the lighter first generation, instead of the much heavier third

generation is opposed to the usual ”wisdom”, making this a particularly intriguing and exciting limit to

study.

Moreover, the simple forms of (5.11) and (5.12) allow one to make some quick predictions regarding

neutral meson mixings. For instance, as illustrated in figures 5.3 and 5.4 one can expect the NP con-

tributions to B0
d,s − B

0

d,s to be very suppressed, so that these processes will be dominated by the SM

contributions. In addition, the fact that Fu
12 = 0 means there will exist no NP contribution to D0 − D

0

mixing at tree level.

Another, no less, important feature is the fact that the CKM factor
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b W−

d W+

t14V
0
ub ∼ λ5

t14V
0
ud ∼ λ2

→ λ7 suppressionT

b W−

d W+

V 0
tb ≈ 1

V 0
td ∼ λ3

→ λ3 suppressiont

Figure 5.3: A quick analysis of the CKM factors involved in the box diagrams that contribute to ∆mSM
Bd

and ∆mNP
Bd

, suggests that the NP contribution is extremely suppressed in the s14-dominance limit. Here
V 0
αβ refers to the SM mixings and tij = tan θij .

b W−

s W+

t14V
0
ub ∼ λ5

t14V
0
us ∼ λ3

→ λ8 suppressionT

b W−

s W+

V 0
tb ≈ 1

V 0
ts ∼ λ2

→ λ2 suppressiont

Figure 5.4: Analogous figure to figure 5.3 but now regarding the B0
s system.

λKT = λKu t
2
14 (5.13)

is real, which imposes vanishing NP contributions to ε′/ε and to the branching ratio of the KL → π0νν

decay1.

For other processes, especially the mixing of neutral kaons, the situation is more complex and a

more detailed analysis is required. We will focus on this in the next subsection.

5.2 Detailed Phenomenological Analysis

Here, we present a more rigorous analysis, in the limit of s14-dominance, for the processes studied

in chapter 4 that have non-vanishing NP contribution. We start by further exploring the implications of

this limit on the heavy-top decays and by checking the predicted suppression of the NP contributions

to the B0
d,s − B

0

d,s mixings. Then we shall turn to the not yet discussed neutral kaon mixing and the

K+ → π+νν decay.

Given that in this limit the first three rows of CKM essentially remain intact, one can simply work

with values compatible with the PDG to achieve the experimentally predicted magnitudes for the CKM

entries, the rephasing invariant phases and the CP violation invariant (see section 5.3). Thus, hereafter,

we will use

1To be more precise, this is only true if one also has ImAds = 0, which is not exactly true, but is an extremely good approxima-
tion in this limit (see (5.29))
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θ12 ≃ 0.2264, θ13 ≃ 0.0037, θ23 ≃ 0.0405, δ ≃ 1.215, (5.14)

throughout the following sections and the next chapter.

Hence, in the s14-dominance minimal limit, the only two free parameters will be the new mixing angle

s14 and the heavy-top mass mT . In the case of the mixing angle in order to tackle the CKM-UP one

assumes that s14 = ∆ ∈ [0.03, 0.05], as suggested in (5.9). For the heavy-top mass we are interested in

searching for regions that may be accessible in upcoming generations of accelerators and therefore we

shall restrict ourselves to the study of regions where mT ≤ 2.5 TeV. This is in agreement with the rough

upper-bound presented in [30] for models with an heavy-top where |V14| ≃ 0.04.

With this in mind, we will now analyse the phenomenological consequences of mixing with the heavy-

top in the s14-dominance limit, with the aim of finding a region in (s14,mT ) space where the model passes

the tests posed by the mentioned EWPMs related quantities.

5.2.1 The heavy-top decay channels

From 4.6, the partial decay widths for the different heavy-top decays are given by

Γ(T → u Z) ≃ Γ(T → u h) ≃ m2
T

32πv2
|Fu

41|
2 ≃ m2

T

32πv2
c214s

2
14, (5.15)

Γ(T → c Z) = Γ(T → t Z) = Γ(T → c h) = Γ(T → t h) = 0, (5.16)

Γ(T → d W+) ≃ 2m2
T

32πv2
|VTd|2 ≃ 2m2

T

32πv2
c212c

2
13s

2
14, (5.17)

Γ(T → s W+) ≃ 2m2
T

32πv2
|VTs|2 ≃ 2m2

T

32πv2
s212c

2
13s

2
14, (5.18)

Γ(T → b W+) ≃ 2m2
T

32πv2
|VTb|2 ≃ 2m2

T

32πv2
s213s

2
14, (5.19)

so that one has

Γ(T → d W+) ≃ 2Γ(T → u Z) ≃ 2Γ(T → u h), (5.20)

as well as

Br
(
T → d W+

)
+ Br (T → u Z) + Br (T → u h) ≃ 1, (5.21)

Br
(
T → s W+

)
+ Br (T → c Z) + Br (T → c h) ≃ s212 ≪ 1, (5.22)
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Br
(
T → b W+

)
+ Br (T → t Z) + Br (T → t h) ≃ s213 ≪ 1. (5.23)

which is strikingly different from the most typical assumptions in searches for pair production of VLQs.

As described in 4.6, usually the lower-bounds for the heavy-top mass are larger than 1 TeV and they are

obtained in these searches by assuming the sum in (5.23) to be equal to one, but in the s14-dominance

limit this assumption must be dropped. From the fact that the dominant decays involve only the lighter

first generation and the fact that Γ(T → u Z) : Γ(T → u h) : Γ(T → d W+) = 1 : 1 : 2, one can set a

lower-bound for mT as low as mT = 0.685 TeV [65].

This result, coupled with the prescription mT ≤ 2.5 TeV, then allows one to establish mT ∈ [0.685, 2.5]

TeV as a narrower region of interest for the heavy-top mass, which we shall use throughout the rest of

this work.

5.2.2 NP contributions to neutral meson mixings

To check how small the NP contribution to B0
d,s mixing are when compared to the SM it is useful to

analyse the ratio

δmBi
≡

∆mNP
Bi

∆mSM
Bi

≃

∣∣∣∣∣2StTλ
Bi
t λBi

T + STT (λ
Bi

T )2

Stt(λ
Bi
t )2

∣∣∣∣∣ , (5.24)

where the expressions in 4.2 were used, as well as the notation Sij ≡ S0(xi, xj). As represented in

figures 5.3 and 5.4, the CKM factors relevant in (5.26) verify in this limit,

|λBd

T /λBd
t | ∼ λ4, |λBs

T /λBs
t | ∼ λ6, (5.25)

so that the last term on the numerator of (5.26) can be effectively discarded. One then has

δmBi
≃

∣∣∣∣∣2StTλ
Bi

T

Sttλ
Bi
t

∣∣∣∣∣ , (5.26)

which, from (5.25) and the fact that StT ≲ 3.5St for mT ∈ [0.685, 2.5], leads us to the same conclusion

as before: the NP contributions to B0
d,s oscillations are extremely suppressed in the s14-dominance limit.

For instance, for mT ≤ 2.5 TeV and s14 ≲ 0.05 one has δmBd
≲ 0.72% and δmBs

≲ 0.04%, so that the

criteria we defined in (4.34) is clearly fulfilled and this limit can indeed be considered safe with regards

to B0
d,s oscillations.

In the case of the kaon system the analysis becomes more complicated, mainly because as shown

in 4.1 more terms are relevant in the NP piece. In fact, one now has

∆mNP
K ≃ G2

FM
2
WmKf

2
KBK

6π2

∣∣2ScT η
K
cTλ

K
c λ

K
T + 2StT η

K
tTλ

K
t λ

K
T + STT η

K
TT (λ

K
T )2

∣∣ . (5.27)

In figure 5.5 expression (5.27) is plotted for (5.14) and for three values of s14 within our range of

interest. From this figure one can readily conclude that, differently from the mass differences associated

to neutral B-meson oscillations, the NP contributions to neutral kaon mixing are much larger, and even
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though the criteria

∆mNP
K ≲ ∆mexp

K = (3.484± 0.006)× 10−12 MeV, (5.28)

we established in (4.19) seems to be less restrictive than (4.34), there are still values of s14 and mT

within the regions of interest for which this condition is not fulfilled, more specifically for s14 ≳ 0.045 and

mT ≳ 2 TeV. Nonetheless, overall there is a fairly large region where this limit can be considered safe.

ΔmK
exp1012

s14 =
0.04

s 14
=
0.
05

s14 = 0.03

m
T
=
0.
68
5
T
eV

0.0 0.5 1.0 1.5 2.0 2.5
mT(TeV)

1

2

3

4
ΔmK

NP 1012 (MeV)

Figure 5.5: Evolution of ∆mNP
K with the mass of the heavy-top, for s14 = {0.03, 0.04, 0.05} and mT ≤ 2.5

TeV. The region in red corresponds to the range of interest s14 ∈ [0.03, 0.05], whereas the grey regions
correspond to the regions excluded by imposing mT ≥ 0.685 TeV and by the criteria (5.28).

It is relevant to point out that the apparent unbounded behaviour of ∆mNP
K with increasing mT is

simply an artefact of fixing s14 = ∆ in order to solve the CKM-UP. Without this constraint one would

have |VTd|, |VTs|, |VTb| ∼ v/v′ (see 3.2.2) becoming smaller with increasing mT ∼ v′. Therefore, one

would have λNT ∼ v′−2 as well as ScT , StT ∼ logm2
T ∼ log

(
v′2

)
and STT ∼ m2

T ∼ v′2, so that the NP

contributions to neutral meson mixings are expected to be naturally suppressed with increasing mT .

When fixing |VTd| ≃ s14 = ∆ in order to study the possible ranges of mT that allow the CKM-UP to

be solved while having ∆mNP
K ≲ ∆mexp

K , the mixings can no longer counterbalance the growth of the

IL functions with increasing mT and one obtains the behaviour displayed in figure 5.5. Nonetheless, it

should be noted that while imposing |VTdi
| ≃ ∆ ∼ v/v′, we are also imposing mT ∼ v′ ≲ 6 TeV as an

implicit upper-bound for the heavy-top mass.

5.2.3 The K+ → π+νν decay

To study the NP contribution to this decay it is relevant to first compute the factor Ads defined in

(4.43). In this minimal limit, given the simple form of (5.12), it is obvious that
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Ads ≃ −λT
xT
8
, (5.29)

by using c214 ≃ 1. This is the same expression as the one encountered in (4.48) for the approximate

decoupling limit. Then, in this limit, the ratio in (4.53) can be written as

Br (K+ → π+νν)

Br (K+ → π+νν)SM
≃

∣∣∣∣∣1 + λKT X̃0(xT )

λKc X
NNL
0 (xc) + λKt X0(xt)

∣∣∣∣∣
2

, (5.30)

where one should recall from (4.50) that

X̃0(xT ) ≡
xT

8(xT − 1)

(
3 +

3xT − 6

xT − 1
log xT

)
. (5.31)

In figure 5.6 we present plots of the ratio in (5.30) as a function of mT for various values of s14. From

these plots it seems that larger values of s14 and mT are favoured and it is clear that even the rough

2σ range (4.56) imposes important constraints on our model, especially on the lower-bounds for s14 and

mT . These types of constraints are very distinct to the ones found for ∆mK , in the sense that they

exclude different regions of the (s14, mT ) parameter space, as they tend to exclude both smaller values

of s14 and mT . However, some values of s14 around s14 ≃ 0.03 might still be allowed.

s 14
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Figure 5.6: Plot of (5.30) as a function of mT for various values of s14 ∈ [0.04, 0.05] (on the left) and
s14 ∈ [0.03, 0.04[ (on the right) using (5.14). On both panels, the curves span values of s14 in steps of
2× 10−3. The coloured regions refer to the 1σ and 2σ ranges in (4.56).

5.2.4 The εK problem

For the CP violation parameter εK , using (4.18) and (5.11), one easily find the expression

|εNP
K | = G2

FM
2
WmKf

2
KBKκε

12
√
2π2∆mK

|F | , (5.32)

where

F = (ηKtTStT − ηKcTScT )c12c
2
13c23s12s13s23s

2
14 sin δ, (5.33)
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which is dominated by the term involving the top-quark contribution.

In figure 5.7, the heavy-top mass dependence of expression (5.32) is plotted using (5.14), for three

values of s14. From this plot one can conclude that |εNP
K | < δεK is only achieved in experimentally

ruled out regions for mT and is completely incompatible with s14 ∈ [0.03, 0.05]. Thus, we conclude that

the parameter region of exact s14-dominance, where we strictly have that s24 = s34 = 0, is not safe with

regard to the parameter εK . It is important to emphasise that, although this limit would not be compatible

with the usual upper-bound (4.21), the new much more restrictive upper bound |εNP
K | ≲ δεK makes this

incompatibility significantly worse.

δϵK = 2.5910-4

s14 = 0.04

s14 =
0.05

s14 = 0.03

m
T
=
0.
68
5
T
eV

|ϵK
SM| = 2.1610-3

0.0 0.5 1.0 1.5 2.0 2.5
mT(TeV)

0.002

0.004

0.006

0.008

ϵK
NP

Figure 5.7: |εNP
k | as a function of mT in the framework of strict s14-dominance, for s14 = {0.03, 0.04, 0.05}

and mT ≤ 2.5 TeV. The region in blue corresponds to the range of interest s14 ∈ [0.03, 0.05], whereas the
grey region refers to values of mT below the lower-bound, mT = 0.685 TeV. The horizontal black dashed
line corresponds to |εNP

K | = |εSM
K |. In green we represent the region |εNP

K | < δεK = 2.48 × 10−4 inside of
which we consider the model to be safe.

This is inherently connected to the fact that λKT is real in this limit. Generally, one would have

εNP
K ∝ Im

(
λKt λ

K
T + (λKT )2

)
= ReλKT ImλKt + ImλKT ReλKt + 2ImλKT ReλKT , (5.34)

where the smaller charm contribution was neglected. In this strict s14-dominance, i.e. where s24, s34 = 0,

only the first term survives as ImλKT = 0. This, coupled with the fact that ReλKT consists of a single term,

allows one to achieve the very simple form in (5.32) and (5.33). Therefore, the region of parameters

where |εNP
K | ≲ δεK is extremely tiny and corresponds to values of s14 and mT that are currently excluded.

However, in a general case with s24, s34 ̸= 0 the remaining terms in (5.34) do not vanish and both

ReλKT and ImλKT are composed by several terms, leading to an expression for |εNP
K | that is much more

complex. Also, since we now include not only these two new mixing angles, but also two new CP

violating phases, the parameter space becomes much larger and one might reasonably hypothesise
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that all these terms can, through choices of these new four parameters, combine in a large number of

different ways that allow |εNP
K | < δεK to be achieved for mT ∈ [0.685, 2.5] TeV and s14 ∈ [0.03, 0.05]. The

allowed region of the parameter space should therefore be much larger.

Meanwhile, as we have demonstrated, the s14-dominance limit is extremely interesting because it al-

lows for a minimal solution to the CKM-UP in which, with the exception of εK , ∆mK and Br (K+ → π+νν),

many of the most relevant observables associated to the electroweak precision measurements (EWPM)

will automatically receive very small or even no NP contribution. For ∆mK and Br (K+ → π+νν), how-

ever, there is still a significant range for mT and s14 where we might consider this limit safe. Thus, we

find that εK is the only observable studied in chapter 4 that is truly out of range. This is however not

surprising, as we consider such a compact and strict limit.

Two important questions arise:

• How much does one need to deviate from the strict s14-dominance limit (s24, s34 = 0) in order to

achieve |εNP
K | < δεK inside the range of interest for the masses mT ?

• What are the phenomenological implications of this deviation? Can the main features of s14-

dominance still be preserved?

These questions will be the focus of the next chapter.

5.3 Numerical Example I: Absolute s14-dominance

For the moment, and as a final illustration, not only of the problem with this minimal solution, but also

of some of its exciting features, we present a numerical example for the s14-dominance limit.

Consider the following up-sector mass matrix in a WB where the 3 × 3 down sector mass matrix is

diagonal2

Mu =


0 0 0 56.9745

0 0 7.27005 12.9489 e1.93232i

0 18.9053 172.766 4.52335 e−1.57428i

0.0428697 1.66448 36.4393 e−1.52453i 1390.29

 , (5.35)

given in GeV at the MZ scale. The up-type quark masses are then, at this scale,

mu = 0.0018 GeV, mc = 0.77 GeV, mt = 174 GeV, mT = 1392 GeV. (5.36)

which are deviate from the values in [66] by less than 1.6σ.

In the basis where the down sector mass matrix is diagonal, the matrix V† which diagonalizes Mu

on the left will have absolute value

2Note that in this WB, the 4× 4 up-sector mass matrix can always be written in this form, i.e. with 6 null entries and only three
complex entries. This is achieved with rephasings of the quark fields and appropriate orthogonal transformations of the RH quark
fields.
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|V†| ≃


0.973615 0.224271 0.00369673 0.0419877

0.224338 0.97367 0.0404887 0

0.00853055 0.0397524 0.999173 0

0.0409159 0.00942494 0.000155354 0.999118

 . (5.37)

Recall that VCKM is given by a 4× 3 matrix of the first three columns of this matrix.

We obtain also for the rephasing invariant phases relevant for CP violation

sin(2β) = 0.7279, γ = 69.58◦, χ = 0.01960, χ′ = 0.00064236, (5.38)

and the CP-violation invariant, defined as

J ≡ Im (VusVcbV
∗
ubV

∗
cs) , (5.39)

has absolute value |J | = 3.064× 10−5.

One can check that these values for the mixings, the rephasing invariant phases and the CP violation

invariant are recovered if one plugs s14 = 0.042 and the values (5.14) in (5.2). One can also verify that

this results are compatible, at ≲ 2σ, with the current experimental values for these quantities provided in

[33]3. This then justifies why we have chosen to use the fixed values in (5.14) for the SM parameters.

For the EWPMs related quantities discussed above, we obtain the following NP contributions

∆mNP
Bd

≃ 1.453× 10−12 MeV,

∆mNP
Bs

≃ 2.419× 10−12 MeV,

∆mNP
K ≃ 7.522× 10−13 MeV,

|εNP
K | ≃ 4.959× 10−3,

Br(K+→π+νν)
Br(K+→π+νν)SM

≃ 0.281,

(5.40)

which, as stated, clearly emphasises the problem with the limit s24 = s34 = 0 and the value for the

parameter |εNP
K | as its value is about 20 times larger than δεK .

3One should compare the magnitudes of the mixings in (5.37) with their current best-fit values without imposing CKM unitarity.
Then, it should be noted that, given the very low uncertainty associated to |Vud| = 0.97370 ± 0.00014 not all values of s14 ∈
[0.03, 0.05] allow for deviations smaller than 3σ, but this is the only quantity studied here that is affected by that problem.
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Chapter 6

The limit of realistic s14-dominance:

solving the εK problem

Even if one overlooks the intrinsic problem with εK , the limit of strict s14-dominance is somewhat

unnatural. In a more realistic scenario one would have s24, s34 ̸= 0 and could reasonably expect |εNP
K | <

δεK to be achievable. However, in order to keep the simplicity and other interesting features of s14-

dominance one might have to require s24, s34 ≪ s14, which amounts to replacing the strict s14-dominance

limit by a more realistic version. Nonetheless, a priori, it is not obvious that a small deviation from

s24, s34 = 0 would lead to |εNP
K | < δεK and thus the framework of s14-dominance could be entirely

incompatible with the resolution of the εK problem.

We will now show that this is not the case. More concretely, we will show that it is possible to achieve

|εNP
K | < δεK in the allowed range for mT , while having s14 = 0.04± 0.01 ∼ λ2 and

s24, s34 ≲ λ5, (6.1)

with the most important features of strict s14-dominance being effectively preserved.

Firstly, we will show how small NP contributions to εK can be obtained in this more realistic limit.

Later, possible modifications to the observables analysed in section 5.2.2 are discussed. To conclude,

we study the NP that emerges with s24, s34 ̸= 0 in processes that remained unaffected in the strict

s14-dominance limit.

The ultimate goal is once again to find allowed regions of the parameter space, where the model is

able to overcome the NP constraints studied in chapter 4, but now within this slightly different framework.

6.1 Solving the εK problem with s24, s34 ≪ s14

Using the BC parametrization, with the approximation

c13, c23, c24, c34 ≃ 1 (6.2)
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which we shall use throughout this chapter and rephasing the left-handed heavy top quark field as

TL → eiδ14TL, we parametrize the CKM matrix, in leading order, as

VCKM =


V11 V12 V13

V21 − c12s14s24e
−iδ′ V22 − s12s14s24e

−iδ′ V23

V31 − c12s14s34e
iδ14 V32 V33

V41 + s12s24e
iδ′ V42 − c12s24e

iδ′ − c12s23s34e
−iδ14 V43 − s23s24e

iδ′ − s34e
−iδ14

+O(λ8),

(6.3)

where now we employ an important change of notation: Vαβ with α = u, c, t and β = d, s, b will henceforth

refer to the entries of (6.3), the mixing matrix in the realistic limit; Vij with i, j = 1, 2, 3, 4 will refer to the

entries of (5.11) the mixing matrix in the strict s14-dominance limit. Also, in (6.3), we relax one of the

upper-bounds in (6.1) and assume even that s24 ≲ λ4. As done in (5.7), we introduced the phase

difference δ′ ≡ δ24 − δ14, which plays a role further on.

The new correction to the mixings will not meaningfully affect the magnitudes or the phases of the

SM mixings, but, most important, will introduce new terms in the expression of |εNP
K |. One now obtains,

|εNP
K | ≃ G2

FM
2
WmKf

2
KBKκε

6
√
2π2∆mK

∣∣F − F ′∣∣ , (6.4)

Apart from physical constants, F corresponds to the NP piece that arises from having s14 ̸= 0 and

s24, s34 = 0 as before in (5.33), while now F ′ corresponds to the corrections to the NP piece arising

from relaxing this limit and allowing s24, s34 ̸= 0 too. This new factor F ′ is, in a very good approximation,

given by

F ′ ≃ F ′
1 sin δ

′ + F ′
2 sin(δ − δ′) + F ′

3 sin 2δ
′, (6.5)

where

F ′
1 = (S̃TT s

2
14 − S̃tT s

2
23 − S̃cT )s12c12s14s24,

F ′
2 = S̃tT s13s23s14s24,

F ′
3 = 1

2 S̃TT s
2
14s

2
24,

(6.6)

and S̃iT ≡ SiT η
K
iT with i = c, t, T . Using (5.33), (6.1) and (6.2) and keeping only the leading order terms,

one obtains

F − F ′ ≃ s12c12s
2
14

(
S̃tT s13s23 sin δ − S̃TT s14s24 sin δ

′
)
, (6.7)

which suggests that having sin δ′ > 0 may allow one to obtain smaller |εNP
K |. Note that in the PDG (and

hence in the BC) parametrization sin δ > 0). In figure 6.1, a plot of |εNP
K | as a function of mT using the

exact expression (6.4) is presented with (5.14) as input parameters as well as
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s14 = 0.04, δ′ =
π

2
, (6.8)

for various values of s24 ≲ λ5. This plot clearly illustrates how the new terms in (6.5) can effectively

cancel the original terms (5.33) allowing one to achieve |εNP
K | < δεK for a large range of heavy-top

masses.

It is important to note, however, that this cancellation is not achieved through a fine-tuning of the new

parameters s24 and δ′. In fact, it turns out that there exists a considerable range for these parameters

where this results can be achieved, as will be demonstrated in section 6.5, where a global analysis is

carried out that simultaneously takes into account the constraints associated with other relevant EWPMs

quantities.
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24
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Figure 6.1: Analogous plot to that of figure 5.7 but for realistic dominance with θ14 = 0.04 and δ′ = π/2.
Various values of s24 are spanned in steps of 2× 10−4 for s24 ∈ [0, 1.2× 10−3]. The curve for s24 = 0 (in
red) corresponds to the solid line in figure 5.7. The region |ϵNP

K | < δεK is highlighted.

Interestingly, the leading order and next to leading order terms of the corrections to NP contributions

in (6.5) and (6.6) depend only on two new parameters, s24 and the phase difference δ′. Furthermore,

notice that for s14, s24 ̸= 0 and s34 = 0, after the appropriate rephasing of the quark fields, (5.2) can be

written as
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V† =


1 0 0 0

0 c24 0 s24

0 0 1 0

0 −s24 0 c24




c14 0 0 s14e

iδ′

0 1 0 0

0 0 1 0

−s14e−iδ′ 0 0 c14

 ·

·


1 0 0 0

0 c23 s23 0

0 −s23 c23 0

0 0 0 1




c13 0 s13e

−iδ 0

0 1 0 0

−s13eiδ 0 c13 0

0 0 0 1




c12 s12 0 0

−s12 c12 0 0

0 0 1 0

0 0 0 1

 ,

(6.9)

δ′ is the effective NP phase corresponding to the ”two angle limit” where s14 and s24 are the only NP

mixing angles, not δ14 as one could have assumed. This seems to indicate that having s34 ̸= 0 is not

really necessary to obtain |εNP
K | ≲ δεK and that this ”two angle limit” with dominant s14 and small s24 may

correspond to a minimal solution to the CKM-UP, the minimal solution that circumvents the εK problem.

Nonetheless, in a more realistic scenario where s34 ̸= 0, one can still have s34 ∼ λ5, without it affecting

εK in any meaningful way. In fact only for s34 ≳ λ3, do the leading order terms in (6.7) start depending

on s34 and explicitly on δ14. Still, it is not yet clear whether the implications of realistic s14-dominance on

other processes allow this ”two angle limit” with vanishing s34. These modifications will be the focus of

the following section.

6.2 Modifications to K0 −K
0, B0

d,s −B
0
d,s and K+ → π+νν

When considering a realistic dominance case, many entries of VCKM are modified as seen in (6.3).

As shown in the previous section, these changes can lead to significant changes to |εNP
K | and therefore,

could potentially lead to important modifications to ∆mNP
K , Br (K+ → π+νν) or even ∆mNP

Bd,s
. That is

what we will check now, using (6.1). We shall skip a detailed study of the modifications to the heavy-top

decays, but by analysing (6.3) and (5.7) it is easy to verify that with the prescription in (6.1) no meaningful

changes will occur. The only result of relative significance is that the widths in (5.16) will no longer be

strictly zero, but still very small.

All the changes to ∆mNP
N come essentially from modifications to λNi with i = c, t, T . In the case of

∆mNP
K one has

λKc ≃ V21V
∗
22 +O(λ7),

λKt ≃ V31V
∗
32 +O(λ9),

λKT ≃ V41V
∗
42

(
1− c12s24e

−iδ′/V ∗
42

)
+O(λ9),

(6.10)
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and given that c12s24/V ∗
42 ∼ λ2 ≃ 5%, one can expect ∆mNP

K not to change significantly.

In the case of ∆mNP
Bd

, one has

λBd
c ≃ V21V

∗
23 +O(λ9),

λBd
t ≃ V31V

∗
33 +O(λ7),

λBd

T ≃ V41V
∗
43

(
1− s34e

−iδ14/V ∗
43

)
+O(λ9),

(6.11)

and, since V ∗
43 ∼ λ5, ∆mNP

Bd
can change noticeably for s34 ∼ λ5. However, given how small δmBd

is in

the strict limit (s24, s34 = 0), it is safe to assume that these changes are not large enough to compromise

the safety of the realistic limit with regard to the B0
d−B

0

d mixing. Moreover, the smaller s34 is, the smaller

these changes will be and in the ”two angle limit” (s34 = 0) discussed in the previous section, changes

of around 5% or smaller can be expected, recovering essentially the value of ∆mNP
Bd

in the absolute

s14-dominance limit.

Similarly, for ∆mNP
Bs

one has

λBs
c ≃ V22V

∗
23 +O(λ10),

λBs
t ≃ V32V

∗
33 +O(λ10),

λBs

T ≃ V41V
∗
43

(
1− s34e

−iδ14/V ∗
43

)
+O(λ10),

(6.12)

and for s34 ∼ λ5 no dangerous changes can occur. For even smaller s34, the result of strict s14-

dominance is essentially recovered.

To study the modifications to Br (K+ → π+νν), it is instructive to compute the factor Ads again, now

in this limit of realistic s14-dominance. In general it is given by

Ads = λKc (Fu − 1)22N(xc) + λKt (Fu − 1)33N(xt) + λKT (Fu − 1)44N(xT )

+V ∗
csVtd(F

u − 1)23N(xc, xt) + V ∗
tsVcd(F

u − 1)32N(xt, xc)

+V ∗
csVTd(F

u − 1)24N(xc, xT ) + V ∗
TsVcd(F

u − 1)42N(xT , xc)

+V ∗
tsVTd(F

u − 1)34N(xt, xT ) + V ∗
TsVtd(F

u − 1)43N(xT , xt).

(6.13)

From (5.7) it is obvious that, for s14 ∼ λ2 and s24, s34 ≲ λ5, the entry (Fu − 1)44 ≈ 1 is by far the

largest of all the entries involved in (6.13), a result that somewhat resembles the decoupling limit in

(4.47). This, coupled with the fact that

N(xc) ≪ N(xt) ≲
N(xT )

15
(6.14)
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within the mass range mT ∈ [0.685, 2.5] TeV and the fact that |λKt | ∼ |λKT |, means that the first line of

(6.13) is completely dominated by the heavy-top contribution. Similarly, it is straightforward to conclude

that all the remaining terms in (6.13) are very small, so that, to a very good approximation, one has

Ads ≃ −λKT
xT
8
. (6.15)

Once more, this expression is the same as the one encountered in (4.48) for the approximate decou-

pling limit. Comparing this with the result in (5.29), one concludes that there are no meaningful changes

to Ads when deviating from s24, s34 = 0.

Therefore the main modifications to the ratio

Br (K+ → π+νν)

Br (K+ → π+νν)SM
≃

∣∣∣∣∣1 + λKT X̃0(xT )

λKc X
NNL
0 (xc) + λKt X0(xt)

∣∣∣∣∣
2

, (6.16)

will essentially come from modifications to λKT which as was shown in (6.10) are expected to be small.

Therefore, one can expect the results from strict s14-dominance limit to be recovered. Nonetheless, the

NLO correction to λKT which depends on both s24 and δ′ allows for a bit more tweaking, so that the range

of values for s14 that allows for the conditions in (4.47) to be achieved might be slightly larger. Varying

s34 will not yield any noticeable changes, so that this in this limit, this quantity is effectively independent

of s34.

6.3 Numerical Example II: Realistic s14-dominance with very small

s24, s34

To exemplify our more realistic case near to our exact s14-dominance, now with very small s24, s34,

we consider the slightly different up-mass matrix (from the previous numerical example) given in GeV at

the MZ scale:

Mu =


0 0 0 56.8458

0 0 7.28841 13.5107 e1.90426i

0 18.9003 172.766 4.5632 e−1.57415i

0.0428698 1.66405 36.522 e−1.52607i 1390.29

 , (6.17)

which leads to the same mass spectrum as the one in Eq. (5.36) and to

|V†| ≃


0.973615 0.224271 0.00369673 0.0419877

0.224355 0.973666 0.0404887 0.000499559

0.00853049 0.0397524 0.999173 1.4987× 10−6

0.0408234 0.00983053 0.000152441 0.999118

 , (6.18)

which is extremely similar to (5.37). In this case, one can check that (6.18) corresponds to having
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s14 = 0.042, s24 = 5× 10−4, s34 = 1.5× 10−6, δ14 = 0, δ24 = 0.6, (6.19)

as well as (5.14), so that, although non-zero, s24 and especially s34 are still very small.

The rephasing invariant phases area also very similar to before, now being

sin(2β) = 0.7278, γ = 69.58◦, χ = 0.01960, χ′ = 0.000588093. (6.20)

The same happens for the CP violation invariant which in this case is |J | = 3.064× 10−5.

The following EWPMs observables, now have the following NP contributions

∆mNP
Bd

≃ 1.423× 10−12 MeV,

∆mNP
Bs

≃ 2.475× 10−12 MeV,

∆mNP
K ≃ 8.188× 10−13 MeV,

|εNP
K | ≃ 2.324× 10−4,

Br(K+→π+νν)
Br(K+→π+νν)SM

≃ 0.311.

(6.21)

As it is clear, the problem with εK is now successfully solved. Comparing (5.40) and (6.21) one also

sees that although noticeable changes to ∆mNP
Bd and ∆mNP

Bs took place, these are still small and in no

way compromise the safety of the model. Therefore, this realistic scenario is successful in solving the εK

problem while preserving the most relevant and interesting features of s14-dominance and by employing

only very small deviations to the strict s14-dominance limit.

Nonetheless, given that now ImλKT and Fu
12 are not strictly zero, some processes that in the previous

limit received no NP contribution, now might be significantly modified. We will focus on this in the

following section.

6.4 Emergence of extra New Physics

One of the most important features of the strict s14-dominance is that many of the processes dis-

cussed in chapter 4 receive extremely small or even no NP contribution at all. When adopting the more

realistic limit even the processes originally unaffected by having s14 ̸= 0 will now have non-zero NP

contributions and it is crucial to verify whether those contributions can compromise the validity of the

realistic limit.
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6.4.1 D0 −D
0 mixing

For s34, s24 ̸= 0, in the BC parametrization, one has

xNP
D ≃

√
2mD

3ΓD
GF f

2
DBDr(mc,MZ)c

2
14s

2
14s

2
24, (6.22)

which in fact is the general formula for the NP contribution of this parameter in a model with an heavy-top.

Hence, despite the fact that once more we have a quantity independent of s34, this time this indepen-

dence is unrelated to the mixing limit we chose. Thus with this parameter, one will only be able to impose

constraints on s24.

Then, for any value of s14 in the range s14 ∈ [0.03, 0.05] one can achieve the condition introduced in

(4.37)

xNP
D < xexp

D = 0.39+0.11
−0.12%, (6.23)

provided that s24 ≲ 0.002 ∼ λ4, which is a somewhat larger upper-bound than our assumption in (6.1).

Hence, this limit is safe with regard to D0 oscillations.

On the flip side this result means that, within this context no meaningful enhancement to this param-

eter can be achieved. For instance, for s14 ≃ 0.05 and s24 ≃ 0.001 one obtains xNP
D ≃ 0.066%, which is

around 2.7σ away from the experimental value, but still better than the strict s14-dominance case, where

no enhancement is found.

6.4.2 The KL → π0νν decay

In general with s24, s34 ̸= 0 one has ImλKT ̸= 0 leading to a non-zero NP contribution to the branching

ratio of KL → π0νν. Using (6.1) one has

ImλKt ≃ s13s23 sin δ,

ImλKT ≃ −c212s14s24 sin δ′,

(6.24)

so that using the expressions in (4.42), one can write

Br
(
KL → π0νν

)
Br (KL → π0νν)SM

≃

∣∣∣∣∣1 + ImλKT X̃0(xT )

ImλKt X0(xt)

∣∣∣∣∣
2

≃

∣∣∣∣∣1− c212s14s24 sin δ
′

s13s23 sin δ

X̃0(xT )

X0(xt)

∣∣∣∣∣
2

, (6.25)

where within our range of interest for mT , one has to a very good approximation

X̃0(xT ) ≃
3

8
(1 + log xT ) ≲ 2X0(xt). (6.26)

With this in mind, it is easy to check that for s24 ≲ 0.001, one obtains

c212s14s24
s13s23 sin δ

≲
1

4
(6.27)
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and since sin δ′ > 0 is needed to solve the εK problem, one should have

1

4
≲

Br
(
KL → π0νν

)
Br (KL → π0νν)SM

≤ 1, (6.28)

so that a reduction of the branching ratio is expected when compared with the SM prediction. This

seems to suggest that the KOTO experimental upper-bound for this quantity (see the discussion in

4.4.1) may possibly still be too high. If nothing, it is clear that any NP contribution coming from a model

with an heavy-top in the s14-dominance limit cannot bridge the gap between theory and experiment.

Nonetheless, combining this type of model with some other New Physics beyond the SM, particularly in

the neutrino sector may perhaps be able to significantly enhance the theoretical prediction.

Again, note that s34 does not play a role in this limit, at leading order.

6.4.3 The parameter ε′/ε

Recall from (4.63) that the NP contribution to this parameter is given by

(
ε′

ε

)
NP

≃ F̃ (xi)ImλKT . (6.29)

As mentioned previously, in the strict s14-dominance limit there is no NP contribution to ε′/ε given

that ImλKT = 0, and the condition

− 4× 10−4 ≲

(
ε′

ε

)
NP

≲ 10× 10−4, (6.30)

is trivially verified. For s24, s34 ̸= 0 one obtains

(
ε′

ε

)
NP

≃ −F̃ (xi)c212s14s24 sin δ′, (6.31)

by using (6.24). Once more, note that within the framework of s14-dominance, this NP contribution is

independent of s34 at leading order.

We now take the decoupling limit, which as we have seen earlier is a good approximation in both

s14-dominance scenarios. Therefore, we shall use

F̃ (xT ) = F (xT )−
xT
8

(PX + PY + PZ) . (6.32)

In the region of interest mT ∈ [0.685, 2.5] TeV, from Appendix A one can write

F̃ (xT ) ≃ P0 + PXX̃0(xT ) + PY Ỹ0(xT ) + PZZ̃0(xT ), (6.33)

where, similarly to (6.26), one has
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Ỹ0(xT ) ≡ Y0(xT )−
xT
8

≃ −3

8
(1− log xT ) ,

Z̃0(xT ) ≡ Z0(xT )−
xT
8

≃ −109

144
+

log xT
3

,

(6.34)

as well as

PEE(xT ) ≪ P0, PW W̃0(xT ), (6.35)

where W = X,Y, Z. In the end, one can approximate

F̃ (xT ) ≈ P1 + P2 log xT , (6.36)

with

P1 = P0 +
3
8PX − 3

8PY − 109
144PZ ≃ 21.67,

P2 = 3
8PX + 3

8PY + 1
3PZ ≃ −2.54.

(6.37)

Within the range mT ∈ [0.685, 2.5] TeV, this approximation1 yields an error no bigger than 6% while

providing a much simpler form when compared to (6.32) and (4.58), allowing for a quick analysis of this

NP contribution. For instance, given that log xT ≲ 7 for mT ≤ 2.5 TeV, one can immediately conclude

that F̃ (xT ) > 0 and (ε′/ε)NP < 0 in this mass range, so that the upper-bound of (6.30) is never achieved

within the framework of s14-dominance.

Moreover, it is now clear that the NP contribution is an increasing function of mT in our range of

interest. Therefore, for any given set of parameters s14, s24 and δ′, one has

−
[
F̃ (xT )|mT=0.685 TeV

]
c212s14s24 sin δ

′ ≤
(
ε′

ε

)
NP

≤ 0, (6.38)

and the problem reduces to finding the regions in (s14, s24, δ
′) space where

− 4× 10−4 ≤ −
[
F̃ (xT )|mT=0.685 TeV

]
c212s14s24 sin δ

′. (6.39)

In terms of s24 one has

s24 ≲
4× 10−4 · (P1 + P2 log xT ) |mT=0.685 TeV

c212s14 sin δ
′ , (6.40)

with the RHS being the lowest within s14 ∈ [0.03, 0.05], for s14 = 0.05 and δ′ = π/2, where one has

s24 ≲ 7.8 × 10−4. Within our parameter regions of interest, this is the most stringent constraint to s24

originating from the condition (6.30). Nonetheless, for other values of s14 and δ′, important constraints

1Note that in this mass range this is a good approximation for any model with an heavy-top, provided that the decoupling limit
offers a good approximation to Ads, i.e not necessarily just in the s14-dominance limits.
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on s24 might still be imposed by (6.30), i.e. one might still achieve upper-bounds for s24 compatible with

the s24 ∼ λ5 prescription.

All in all, there seems to exist a considerably large region of parameters where values as large as

s24 ∼ λ5 are allowed, although larger values of s14 and sin δ′ seem to slightly be disfavoured. This

means that, contrary to the strict s14-dominance limit, the realistic limit is safe with regard to all the

processes and EWPM-parameters we proposed to study. However, our understanding of the parameter

space based on the individual analyses presented throughout this chapter for each process, would

substantially benefit from a global analysis .

6.5 Global Analysis

It is then instructive to present a global analysis of the parameter space of our realistic s14-dominance

case, subject to all the phenomenological constraints we just discussed. In particular, we look for the

allowed ranges for s14, s24, δ′ and mT .

In figure 6.2 we present the result of a simulation of 106 points (see Appendix C), with s14, s24, s34, δ14, δ24

and mT as the free parameters. These span values of s14 that allow for the CKM unitarity problem to be

solved and values of s24, s34 compatible with the realistic case of s14-dominance. More concretely the

ranges used for the free parameters are

δ14, δ24 ∈ [0, 2π], s14 ∈ [0.03, 0.05], s24, s34 ∈ [0, 0.001], mT ∈ [0.685, 2.5]TeV, (6.41)

where the range for s24 and s34 are compatible with our assumption that s24, s34 ≲ λ5.

The points displayed in figure 6.2 verify

|εNP
K | < δεK = 2.48× 10−4,

∆mNP
K < ∆mexp

K = 3.484× 10−12 MeV,

(ε′/ε)NP ∈ [−4, 10]× 10−4,

Br(K+→π+νν)
Br(K+→π+νν)SM

∈ [0.24, 2.28].

(6.42)

We do not impose any constraint associated to other observables such as ∆mBd,s
and xD, because

as shown before their NP contributions are extremely suppressed in both limits of s14-dominance. We

also omit plots involving s34, as this parameter, within the chosen range s34 ∈ [0, 0.001], has no noticeable

influence of importance on the outcome of the allowed parameter region. This gives strength to the

notion that the ”two angle limit” discussed in (6.1), might be the ultimate minimal solution to the CKM-

UP.

Interestingly from the top panel of figure 6.2, one has s24 ≳ 1× 10−4 as an approximate lower-bound
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Figure 6.2: Results for the allowed parameter regions of our model verifying the conditions in (6.41,
6.42) and using (5.14).

for s24. Nonetheless, one should keep in mind that this minimal-bound depends on the maximal heavy-

top mass associated to the range we have chosen, in this case mT = 2.5 TeV, as its clear from the

central panel.

Overall, the results shown in these panels suggest that there exists a considerably large region in

parameter space subject to the ranges given in (6.41), where the conditions (6.42) are fulfilled. It is

important to note, however, that values around s14 ≲ 0.037 seem to be extremely disfavoured. This is

not surprising considering the results displayed in figure 5.6.
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Chapter 7

Conclusions

Motivated by the success and simplicity of VLQ extensions in addressing the CKM-UP, we discussed,

in this thesis, the main features and phenomenological implications of extensions of the SM with an

heavy-top to processes such as neutral meson mixings and kaon decays. We chose to focus on models

with just one up-type VLQ isosinglet as they provided the most simple of frameworks which succesfully

address the CKM-UP, and which at the same time prove to be more ”natural” than extensions with

down-type VLQs.

Then, based on current experimental results and improved theoretical predictions, we established

criteria for the safety of such models, i.e. conditions for the sizes of NP contributions of experimentally

measurable quantities such as ∆mK , ε′/ε and εK that, for now, guarantee that the combination of SM

and NP contributions do not deviate significantly from the experimental results. Most noteworthily, we

have shown how, given the results of recent theoretical calculations for the SM prediction of εK which are

very similar to the experimental value, the typical upper-bound for the NP contribution of this parameter

|εNP
K | ≲ |εexp

K |, should be replaced by the much more stringent condition |εNP
K | ≲ δεK .

Having established these criteria, we then explored the possibility of having a minimal extension of

the SM involving the sole introduction of an heavy-top quark T . This was implemented within the limit of

s14-dominance, where the introduction of s14 ∼ λ2 alone is sufficient to solve the CKM-UP, allowing the

remaining mixing angles s24 and s34 to either be zero or much smaller.

In a first attempt, we explored the limit of strict s14-dominance, where s24 = s34 = 0 and the NP

phases δ14 and δ24 of the BC parametrization are unphysical. Within this limit, some extremely interesting

features were encountered such as the dominant heavy-top decays to light quarks while decays to the

bottom or top quark are very suppressed, which is a result that defies the usual assumption. In fact,

this salient feature means that heavy-top masses as low as mT = 0.685 TeV cannot be excluded, which

is a value potentially accessible to the next generation of accelerators. Moreover, in this limit, not only

does the 3× 3 block of VCKM containing the SM mixings remain essentially unchanged, but also the NP

contributions to processes such as D0 − D
0
, KL → π0νν and to the parameter ε′/ε are automatically

zero, while for B0
d,s − B

0

d,s, although non-zero, are still exceedingly small. These results demonstrated

that this limit can, to a very significant extent, recover many of the SM predictions. Even processes
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that may receive significant NP contributions like K0 − K
0

and K+ → π+νν do not strictly restrict the

relatively small parameter space formed by the only two free parameters of the model: s14 and mT .

However, in the end, this limit failed to accommodate the new more stringent constraint we had set for

the NP contribution of εK , leaving the whole parameter space for this limit completely excluded.

This result then lead us to explore a slightly modified version of this limit, the limit of realistic s14-

dominance, where the prescription for s14 was maintained as a means to solve the CKM-UP, but the

assumption of vanishing s24 and s34 was relaxed and instead s24, s34 ∼ λ5 was used, so that now δ14

and δ24 have to be considered. It was then shown that, in this limit, the problem previously encountered

for εK could be satisfyingly solved leading to a reasonably large allowed region of parameters. Moreover,

the results for the SM mixings, the heavy-top decays and the NP contributions to K0 −K
0
, B0

ds − B
0

ds

and K+ → π+νν, that where encountered in the strict limit where essentially recovered. The remaining

processes which previously received no contribution, now do, but in this limit they are still very small

and do not comprise the safety of the model. Interestingly, in this analysis the leading order expressions

for all the NP contributions of the studied processes/parameters depend solely on three of the five new

mixing parameters, the mixing angles s14 and s24, as well as the phase difference δ′ = δ24 − δ14. This

means that the addition of s34 might be superfluous and the ”two angle limit” defined by having s14 ∼ λ2,

s24 ∼ λ5 and s34 = 0 and consequently δ′ as the only relevant NP phase, should constitute the true

minimal solution to the CKM-UP for one heavy-top models.

Finally, we conclude. Here, we have proposed an extremely useful minimal framework beyond the

SM, that, while providing a solution to the CKM unitarity problem, has, in addition, exceptionally striking

and intriguing new features which make it also a possible candidate model for finding New Physics.
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V. V. Vien. Fermion spectrum and g − 2 anomalies in a low scale 3-3-1 model. Eur. Phys. J. C, 81

(2):191, 2021. doi: 10.1140/epjc/s10052-021-08974-4.

[67] K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser, and C. Sturm.

Charm and Bottom Quark Masses: An Update. Phys. Rev. D, 80:074010, 2009. doi: 10.1103/

PhysRevD.80.074010.

[68] X.-D. Huang, X.-G. Wu, J. Zeng, Q. Yu, X.-C. Zheng, and S. Xu. Determination of the top-quark

MS running mass via its perturbative relation to the on-shell mass with the help of the principle of

maximum conformality. Phys. Rev. D, 101(11):114024, 2020. doi: 10.1103/PhysRevD.101.114024.

[69] J. Brod and M. Gorbahn. Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP

Violation Parameter ϵK and ∆MK . Phys. Rev. Lett., 108:121801, 2012. doi: 10.1103/PhysRevLett.

108.121801.

73



[70] A. J. Buras, B. Duling, T. Feldmann, T. Heidsieck, C. Promberger, and S. Recksiegel. Patterns of

Flavour Violation in the Presence of a Fourth Generation of Quarks and Leptons. JHEP, 09:106,

2010. doi: 10.1007/JHEP09(2010)106.

[71] J. Brod and M. Gorbahn. K at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution.

Phys. Rev. D, 82:094026, 2010. doi: 10.1103/PhysRevD.82.094026.

[72] C. Bobeth, A. J. Buras, A. Celis, and M. Jung. Patterns of Flavour Violation in Models with Vector-

Like Quarks. JHEP, 04:079, 2017. doi: 10.1007/JHEP04(2017)079.

[73] A. J. Buras, B. Duling, T. Feldmann, T. Heidsieck, C. Promberger, and S. Recksiegel. The Impact

of a 4th Generation on Mixing and CP Violation in the Charm System. JHEP, 07:094, 2010. doi:

10.1007/JHEP07(2010)094.

[74] S. Aoki et al. FLAG Review 2019: Flavour Lattice Averaging Group (FLAG). Eur. Phys. J. C, 80(2):

113, 2020. doi: 10.1140/epjc/s10052-019-7354-7.

[75] A. J. Buras and D. Guadagnoli. Correlations among new CP violating effects in ∆ F = 2 observables.

Phys. Rev. D, 78:033005, 2008. doi: 10.1103/PhysRevD.78.033005.

74



Appendix A

Numerical values and Inami-Lim

functions

Here we present the numerical values of the input parameters used throughout this work, as well as

the explicit expressions for the Inami-Lim functions.

The values used for the Fermi constant GF and the masses of the Z and W bosons are [33]

GF = 1.1664× 10−5 GeV−2,

MW = 80.3791 GeV,

MZ = 91.1876 GeV.

(A.1)

The masses of the quarks mi which enter the Inami-Lim functions are the MS masses mi(µ = mi).

We use the central values of [67, 68]

mc(mc) = 1.279± 0.013GeV,

mt(mt) = 162.6± 0.4GeV.

(A.2)

For the factors ηNij we use the central values of [69–72]

ηKcc = 1.87± 0.76,

ηKtt = 0.5765± 0.0065,

ηKct = 0.496± 0.04,

ηBtt = 0.55± 0.01.

(A.3)
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For the remaining correction factors associated to the B0
d,s systems we simply use ηBij ≃ 1, which

should not be problematic, given that the terms involving the charm quark are not relevant in calculations.

Following [70], the QCD corrections involving T are approximated as

ηKcT ≃ ηKct ,

ηKtT ≃ ηKTT ≃ ηKtt ,

ηBtT ≃ ηBTT ≃ ηBtt .

(A.4)

In table A.1 we present the values used in this work for quantities relevant to the neutral meson

systems. For the D0 system we also use ΓD = 1/τD for the total decay width of D0, with mean life-time

τD = (410.1± 1.5)× 10−15 s [33] and we use r(mc,MZ) ≈ 0.778, where [50]

r(µ,M) =

(
αs(M)

αs(mt)

)2/7 (
αs(mt)

αs(mb)

)6/23 (
αs(mb)

αs(µ)

)6/25

(A.5)

and αs ≡ g2s/4π is the strong coupling constant.

N0 mN [MeV] ∆mexp
N [MeV] fN [MeV] BN

K0 497.611± 0.013 (3.484± 0.006)× 10−12 155.7± 0.3 0.717± 0.024
B0

d 5279.65± 0.12 (3.334± 0.013)× 10−10 190.0± 1.3 1.30± 0.10
B0

s 5366.88± 0.14 (1.1683± 0.0013)× 10−8 230.3± 1.3 1.35± 0.06
D0 1864.83± 0.05

(
6.25+2.70

−2.90

)
× 10−12 fD = 212± 0.7 ≈ 1.18 [73]

Table A.1: Mass and mixing parameters [33] and decay constants and bag parameters [74] for the
neutral meson systems. In computations use the central values.

Also, when computing the εK parameter, we use the central value of κε = 0.92± 0.02 [75].

The Inami-Lim functions used throughout this paper are given by [44, 56]

Sij ≡ S0(xi, xj) = xixj

[
log xi

(xi − xj)(1− xi)2

(
1− 2xi +

x2i
4

)
+ (xi ↔ xj)−

3

4(1− xi)(1− xj)

]
, (A.6)

Sii ≡ S0(xi) ≡ lim
xj→xi

S(xi, xj) =
xi

(1− xi)2

(
1− 11

4
xi +

x2i
4

)
− 3

2

x3i log xi
(1− xi)3

, (A.7)

X0(xi) =
xi

8(xi − 1)

(
xi + 2 +

3xi − 6

xi − 1
log xi

)
, (A.8)

Y0(xi) =
xi

8(xi − 1)

(
xi − 4 +

3x

xi − 1
log xi

)
, (A.9)
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Z0(xi) = − log xi
9

+
18x4i − 163x3i + 259x2i − 108xi

144(xi − 1)3
+

32x4i − 38x3i − 15x2i + 18xi
72(xi − 1)4

log xi, (A.10)

E0(xi) = −2 log xi
3

+
xi(18− 11xi − x2i )

12(1− xi)3
+
x2i (15− 16xi + 4x2i )

6(1− xi)4
log xi. (A.11)

All these functions are gauge invariant, however, X0(xi), Y0(xi) and Z0(xi) correspond to linear

combinations of gauge-dependent functions as discussed in 4.4. The expressions for X0(xi) and Y0(xi)

are obtained by combining a ∆F = 1 box-diagram function with a Z-penguin function. These are

B0(xi) and C0(xi), respectively, in the t’ Hooft-Feynamn gauge. On the other hand, Z0(xi) is obtained

by combining the electromagnetic-penguin function, D0(xi) in this same gauge, with the Z-penguin

function. Moreover, S0(xi, xj) is a ∆F = 2 box diagram function that is relevant in meson mixings

and E0(xi) is associated to gluon penguins. Here ∆F refers to the changes to the flavour quantum

numbers in a given process. For instance, the K+ → π+νν decay (d → sνν in terms of quark content)

corresponds to a ∆F = 1 process, whereas the K0 −K
0

mixing (ds ↔ ds in terms of quark content) is

a ∆F = 2 process.

At first glance there seems to exist an incompatibility between the gauge independent expressions in

(4.46) and (4.59). How can bothX0 ≡ C0(xi)−B0(xi) and Y0 ≡ C0(xi)−4B0(xi) be gauge independent?

Following [56], we will now answer this question.

In a general Rξ-gauge one has

X0(xi) ≡ C0(xi, ξ)− 4B0

(
xi, ξ,

1
2

)
,

Y0(xi) ≡ C0(xi, ξ)−B0

(
xi, ξ,− 1

2

)
,

Z0(xi) ≡ C0(xi, ξ)− 1
4D0(xi, ξ),

(A.12)

where

B0(xi, ξ, I3) ≡ B0(xi) + f(I3)ρ(xi, ξ),

C0(xi, ξ) ≡ C0(xi) +
1
2ρ(xi, ξ),

D0(xi, ξ) = D0(xi)− 2ρ(xi, ξ),

(A.13)

with I3 being the third component of weak isospin associated to the outgoing fermions in box diagrams

and f
(
− 1

2

)
= 1

8 and f
(
1
2

)
= 1

2 . The gauge dependence of all these functions is contained in the factor

ρ(xi, ξ) = ρ(xi, ξ)−
7

2
B0(xi), (A.14)

where
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ρ(xi, ξ) =
ξ

x− ξ

(
3

4

1

x− 1
+

1

8

ξ

x− ξ

)
x log x− ξ

8

[
6

1− ξ
log ξ − 1

]
+

1

8

ξ2

x− ξ

[(
5 + ξ

1− ξ
− ξ

x− ξ

)
log ξ − 1

]
.

(A.15)

Plugging (A.13) in (A.12), one recovers

X0(xi) = C0(xi)− 4B0(xi),

Y0(xi) = C0(xi)−B0(xi),

Z0(xi) = C0(xi)− 1
4D0(xi),

(A.16)

i.e. the expressions in (4.46) and (4.59).

The t’ Hooft-Feynman gauge (ξ = 1) is particularly useful because one has ρ(x, 1) = 0, so that

B0(xi, 1, I3) = B0(xi) =
1

4

(
xi

1− xi
+

xi log xi
(xi − 1)2

)
(A.17)

C0(xi, 1) = C0(xi) =
xi
8

(
xi − 6

xi − 1
+

3xi + 2

(xi − 1)2
log xi

)
(A.18)

D0(xi, 1) = D0(xi) = −4 log xi
9

+
−19x3i + 25x2i
36(xi − 1)3

+
x2i (5x

2
i − 2xi − 6)

18(xi − 1)4
log xi, (A.19)

and the functions associated to ∆F = 1 box diagrams, Z-penguin diagrams and electromagnetic pen-

guin diagrams acquire the simplest forms.

The function F (xi) in Eq. (4.58), relevant to the study of ε′/ε, is a linear combination ofX0(xi), Y0(xi), Z0(xi)

and E0(xi). We use the following values for the constants entering this expression [59]

P0 ≃ −3.392 + 15.3037 B
(1/2)
6 + 1.7111 B

(3/2)
8 ,

PX ≃ 0.655 + 0.02902 B
(1/2)
6 ,

PY ≃ 0.451 + 0.1141 B
(1/2)
6 ,

PZ ≃ 0.406− 0.0220 B
(1/2)
6 − 13.4434 B

(3/2)
8 ,

PE ≃ 0.229− 1.7612 B
(1/2)
6 + 0.6525 B

(3/2)
8 ,

(A.20)

as well as the central values of B(1/2)
6 = 1.11± 0.20 and B(3/2)

8 = 0.70± 0.04 [60].
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Appendix B

Effective low energy Lagrangians

In (3.4) and throughout much of chapter 4 we presented low energy effective Lagrangians. These

correspond to convenient ways of parametrizing the low energy effects of the full theory [31, 32]. To un-

derstand this, consider the CC interaction presented in figure B.1(a). In momentum space, the Feynman

rule for the W -boson line is given by

GW
µν(k) = i

−gµν +
kµkν

M2
W

k2 −M2
W + iε

, (B.1)

which in the limit of low energies, i.e. |k|2/M2
W ≪ 1 leads to

GW
µν(k) → i

gµν
M2

W

. (B.2)

This results means that the W -boson internal line in this limit is contracted into a point as illustrated

in figure B.1(b), so that the W -boson degree of freedom is effectively removed.

u e

d νe

(a)

W

u e

d νe

(b)

Figure B.1: (a) Tree level Feynman diagram describing the neutron beta decay; (b) Feynman diagram
describing the effective interaction in the limit of low energies |k|2/M2

W ≪ 1.

The effective Lagrangian describing this process is typically written as

Leff = −4GF√
2

(uLγµVuddL) (eLγ
µνe) . (B.3)

However, building the same Lagrangian using (B.2) and the vertices arising from the Lagrangian in

(2.40), one obtains
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Leff = − g2

2M2
W

(uLγµdL) (eLγ
µνe) , (B.4)

so that one can establish the important relation

GF√
2
=

g2

8M2
W

. (B.5)

For other processes involving the Z gauge boson, the Higgs boson or heavy quarks internal lines,

similar considerations apply and these heavy degrees of freedom can be effectively removed in the limit

of low energies. In fact, it is by applying these considerations to the quark internal lines present in

the one-loop contributions to neutral meson mixings and meson decays, that the expressions for the IL

functions and the effective Lagrangians in chapter 4 are obtained.
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Appendix C

Software Code

Here we present the Wolfram Mathematica notebook used to generate the 106 points displayed in

figure 6.2.

(*−−−−−−−−Input Values−−−−−−−−−−−−−−*)

(*SM mixing parameters*)

sol = {theta12 −> 0.2264, theta13 −> 0.0037, theta23 −>

0.0405, delta −> 1.215};

(*Quark masses*)

mu = 0.00127;

mc = 1.279;

mt = 162.6;

(*Physical constants*)

GF = 1.1663787*10ˆ−5(*GeVˆ−2*);

MW = 80.37912; (*GeV*)

MZ = 91.1876; (*GeV*)

(*Values relevant for neutral kaon mixing and kaon decays*)

ke = 0.92;

mK = 0.497611 (*GeV*);

BK = 0.717;

fK = 0.1557(*GeV*);
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DmKexp = 3.484*10ˆ−15(*GeV*);

(*Values relevant for epsilon ’/ epsilon*)

msmc = 109.1;

mdmc = 5.4;

u = (114.54/(msmc + mdmc))ˆ2 ;

B6 = 1.11; B8 = 0.7;

R6 = B6 u; R8 = B8 u;

ro0 = −3.392; ro6 = 15.293; ro8 = 1.71;

rX0 = 0.655; rX6 = 0.029; rX8 = 0;

rY0 = 0.451; rY6 = 0.114; rY8 = 0;

rZ0 = 0.406; rZ6 = −0.022; rZ8 = −13.434;

rE0 = 0.229; rE6 = −1.760; rE8 = 0.652;

P0 = ro0 + ro6 R6 + ro8 R8;

PX = rX0 + rX6 R6 + rX8 R8;

PY = rY0 + rY6 R6 + rY8 R8;

PZ = rZ0 + rZ6 R6 + rZ8 R8;

PE = rE0 + rE6 R6 + rE8 R8;

Co = PX + PY + PZ;

(*−−−−−−−−−−−−−CKM−−−−−−−−−−−−−−*)

(*Building the CKM matrix*)

O12 = {{Cos[theta12], Sin[theta12], 0, 0}, {−Sin[theta12],Cos[theta12], 0, 0},

{0, 0, 1, 0}, {0, 0, 0, 1}};

O23 = {{1, 0, 0, 0}, {0, Cos[theta23], Sin[theta23], 0},

{0, −Sin[theta23], Cos[theta23], 0}, {0, 0, 0,1}};

O13 = {{Cos[theta13], 0, Sin[theta13] Exp[−I delta ], 0},

{0, 1, 0, 0},{−Sin[theta13] Exp[I delta ], 0, Cos[theta13], 0}, {0, 0, 0, 1}};

O14 = {{Cos[theta14], 0, 0, Sin[theta14] Exp[−I delta14]},

{0, 1, 0, 0},{0, 0, 1, 0}, {−Sin[theta14] Exp[I delta14], 0, 0, Cos[theta14]}};

O24 = {{1, 0, 0, 0}, {0, Cos[theta24], 0, Sin[theta24],Exp[−I delta24]},
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{0, 0, 1, 0}, {0, −Sin[theta24] Exp[I delta24], 0, Cos[theta24]}};

O34 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, Cos[theta34],

Sin[theta34]}, {0, 0, −Sin[theta34], Cos[theta34]}};

V = O34 . O24 . O14 . O23 . O13 . O12 . DiagonalMatrix[{1, 1, 1, 0}];

Vc = O34 . O24 . O14 . O23 . O13 . O12 . DiagonalMatrix[{1, 1, 1, 0}]

/. {delta −> −delta, delta14 −> −delta14, delta24−> −delta24};

U = O34 . O24 . O14 . O23 . O13 . O12;

(*CKM lambdaN factors*)

lambdaK = {{Conjugate[V[[1, 2]]] V[[1, 1]],

Conjugate[V[[2, 2]]] V[[2, 1]], Conjugate[V[[3, 2]]] V[[3, 1]], Conjugate[V[[4, 2]]] V[[4, 1]]}};

lambdaB = {{Conjugate[V[[1, 3]]] V[[1, 1]],

Conjugate[V[[2, 3]]] V[[2, 1]], Conjugate[V[[3, 3]]] V[[3, 1]], Conjugate[V[[4, 3]]] V[[4, 1]]}};

lambdaBs = {{Conjugate[V[[1, 3]]] V[[1, 2]],

Conjugate[V[[2, 3]]] V[[2, 2]], Conjugate[V[[3, 3]]] V[[3, 2]], Conjugate[V[[4, 3]]] V[[4, 2]]}};

(*−−−−−−Inami−Lim functions−−−−−−−−−−−*)

x[a ] := aˆ2/MWˆ2;

s[a , b ] :=

a b ((Log[a]/((a − b) (1 − a)ˆ2)) (1 − 2 a +

aˆ2/4) + (Log[b]/((b − a) (1 − b)ˆ2)) (1 − 2 b + bˆ2/4) −

3/(4 (1 − a) (1 − b )));

s0[a ] := (a/(1 − a)ˆ2) (1 − (11/4) a + aˆ2/4) − (3/

2) ((aˆ3 Log[a])/(1 − a )ˆ3);

zero = {{0, 0, 0}};

S = {{s0[x[mu]], s[x[mu], x[mc]], s[x[mu],x[mt ]], s[x[mu], x[mT]]}, {s[x[mc], x[mu]], 1.87 s0[x[mc]],

0.496 s[x[mc], x[mt ]], 0.496 s[x[mc], x[mT]]}, {s[x[mt], x[mu]],

83



0.496 s[x[mt], x[mc]], 0.5765 s0[x[mt ]],

0.5765 s[x[mt], x[mT]]}, {s[x[mT], x[mu]], 0.496 s[x[mT], x[mc]],

0.5765 s[x[mT], x[mt ]], 0.5765 s0[x[mT]]}};

S3 = ArrayFlatten[{{Delete[Transpose[Delete[Transpose[S], 4]], 4],

Transpose[zero]}, {zero, 0}}];

X0[z ] = (z/(8 (z − 1))) (z + 2 + ((3 z − 6)/( z − 1)) Log[z]);

Y0[z ] = (z/(8 (z − 1))) (z − 4 + ((3 z )/( z − 1)) Log[z]);

Z0[z ] = ((−1)/9) Log[z] + (18 zˆ4 − 163 zˆ3 + 259 zˆ2 − 108 z)/(144 (z − 1)ˆ3) +

((32 zˆ4 − 38 zˆ3 − 15 zˆ2 + 18 z)/(72 (z − 1)ˆ4)) Log[z];

E0[z ] = ((−2)/3) Log[z] + (z (18 − 11 z − z ˆ2))/(12 (1 − z)ˆ3) +

((zˆ2 (15 − 16 z + 4 z ˆ2))/(6 (1 − z )ˆ4)) Log[z];

F[z ] = P0 + PX*X0[z] + PY*Y0[z] + PZ*Z0[z] + PE*E0[z];

(*−−−−−−−−Calculating Ads−−−−−−−−*)

N0[z1 , z2 ] = ((z1 z2)/(8 (z1 − z2))) (Log[z1] − Log[z2]);

X = V . Transpose[Conjugate[V]]; (*matrix controlling FCNCs*)

W = X − IdentityMatrix[4];

Vcis = {Transpose[Conjugate[V]][[2]]};

Vjd = {Transpose[V][[1]]};

n = {{(x[mu]/8) W[[1, 1]], N0[x[mu], x[mc]] W[[1, 2]],

N0[x[mu], x[mt]] W[[1, 3]], N0[x[mu], x[mT]] W[[1, 4]]},

{N0[x[mu], x[mc]] W[[2, 1]], (x[mc]/8) W[[2, 2]],

N0[x[mc], x[mt]] W[[3, 4]], N0[x[mc], x[mT]] W[[2, 4]]},

{N0[x[mu], x[mt]] W[[3, 1]], N0[x[mc], x[mt]] W[[3, 2]],

(x[mt]/8) W[[3, 3]], N0[x[mt], x[mT]] W[[3, 4]]},

{N0[x[mu], x[mT]] W[[4, 1]], N0[x[mc], x[mT]] W[[4, 2]],

N0[x[mt], x[mT]] W[[4, 3]], (x[mT]/8) W[[4, 4]]}};

Ads = Vcis . n . Transpose[Vjd];
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(*−−−−Calculating NP contributions−−−−−−−−−−*)

epsilonK = Tr [(( GFˆ2 MWˆ2 mK fKˆ2 BK ke)/(12 Sqrt[2 Piˆ2DmKexp)])

Im[lambdaK . (S − S3) . Transpose[lambdaK]]] /. sol;

DeltamK = ((GFˆ2 MWˆ2 mK fKˆ2 BK)/(6 Piˆ2)) Abs[lambdaK . (S − S3) .

Transpose[lambdaK]] 10ˆ3 /. sol//Tr; (*MeV*)

epsilonp = Im[F[x[mT]] Transpose[lambdaK][[4]] + Ads Co]

/. sol // Tr; (* epsilon ’/ epsilon *)

(* Kˆ+−>Piˆ+nub nu *)

KlSM = Transpose[lambdaK][[2]] Pc 0.2252ˆ4 +

Transpose[lambdaK][[3]] (X0[x[mt]]) /. sol /. Pc −> 0.404;

KlNP = Transpose[lambdaK][[2]] Pc 0.2252ˆ4 +

Transpose[lambdaK][[3]] (X0[x[mt]]) +

Transpose[lambdaK][[4]] X0[x[mT]] + Ads /. sol /. Pc −> 0.404;

k = Abs[KlNP/KlSM]ˆ2 // Tr;

(*−−−−−Generating 10ˆ6 points−−−−−−−−−−−−−*)

t14 = {};

t24 = {};

deltap = {};

MT = {};

For[i = 0, i < 1000000, i++;

{theta14 = RandomReal[{0.03, 0.05}],

theta24 = RandomReal[{0, 0.001}],

delta14 = RandomReal[{0, 2 Pi}],

theta34 = RandomReal[{0, 0.001}],

delta24 = RandomReal[{0, 2 Pi}],
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mT = RandomReal[{685, 2500}]};

If [k > 0.24 && k < 2.28 &&

Abs[epsilonK] < 0.000248 &&

Abs[Delta mK] < 3.484*10ˆ−12 &&

epsilonp > −0.0004 && epsilonp < 0.001,

{AppendTo[t14, theta14];

AppendTo[t24, theta24];

AppendTo[MT, mT];

AppendTo[deltap, delta24 − delta14]}];

Clear[theta14, theta24, theta34, delta14, delta24, mT]

]

data1 = Transpose@{Sin[t14]*100, Sin[t24]*1000};

data2 = Transpose@{Sin[t14]*100, MT/1000};

data3 = Transpose@{Sin[t24]*1000, MT/1000};

data4 = Transpose@{Sin[t14]*100, deltap/Pi};

data5 = Transpose@{Sin[t24]*1000, deltap/Pi};

data6 = Transpose@{MT/1000, deltap/Pi};
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