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Abstract

High energy sea states are valuable for wave energy converters (WEC). However, they pose a significant risk
of wrecking devices. To assure safe operations, one requires knowledge of the WEC’s future state. This paper
introduces the physics-guided vector autoregressive(PGVAR) for nonlinear multivariate forecasting problems
with known physics. This physics-guided machine learning(PGML) model estimates the oscillating water
column device’s rotation speed, acceleration, and relative chamber pressure purely based on their past history.
The model is tested for Biradial and Wells turbines in data recorded during normal and extreme sea states.
Other models such as autoregressive(AR) and vector autoregressive(VAR) are also presented and analysed.
Results show an increasing accuracy from AR, VAR until PGVAR, all without needing filters for data. Finally,
the hybrid PGVAR model forecasted real observations with enough time and accuracy for safety measures to
be implemented in emergencies. Future applications on predictive control require the PGVAR to improve the
turbine’s efficiency.

Keywords: wave energy, oscillating water column, Wells turbine, Biradial turbine, turbine speed, forecasting,
vector autoregressive model, physics-guided vector autoregressive model, physics-guided machine learning

1. Introduction

Wave energy converters (WECs) can bring rele-
vant contributions for a more sustainable energy sys-
tem around the world [1–3]. Power extraction tech-
nologies of ocean waves continue to be an active field
of research and development [4]. Furthermore, in-
terest is growing in integrating WECs in synergetic
technologies to increment their performance and their
economic and technical viability [5].

WECs’ expanding applications demand more ef-
ficient models. Therefore, intelligent control algo-
rithms emerge with strategies such as controlling os-
cillating WECs to tune their oscillations with the
incident wave elevation [6]. Another strategy is to
run the device in energetic sea states with an algo-
rithm that automatically protects the device from
hazards. Highly energetic seas might threaten WECs’
integrity; hence, survivability strategies need to be
applied to minimise structural damage. Author [7]
provides insights on survival strategies as, for exam-

ple, locking the power take-off system (PTO) to cease
motion and electricity generation.

1.1. Motivation

The present work arises due to the need of im-
proving WECs’ capacity factors. The aim is to as-
sure safe generation of electricity on high energy sea
states. This is achieved with Artificial Intelligence
(AI) algorithms which can keep devices performing
in near limit conditions by automatically controlling
safety valves on a wave-by-wave basis. This pro-
longed activity unlocks opportunities for installing
turbines in places where the total annual wave energy
is concentrated in short periods. For instance, the
Mediterranean Sea exhibits great potential for low-
priced Wells turbines when maintaining its services
in harsher situations. Although less frequent, ener-
getic waves contain the central portion of the power
density in the Mediterranean Sea. As a consequence,
it becomes essential to take full advantage of them.



Predictions are required by AI algorithms to reg-
ulate the devices. Depending on their purpose, pre-
dictions claim different time scales [8]: yearly, daily,
hourly ([9]) and wave-by-wave forecasts. Namely,
controlling safety valves demands horizons on the or-
der of 1-2 seconds.

Accordingly, the necessity arises for short-term
forecasting of a WEC’s state in high energy sea states.

1.2. Background

1.2.1. Literature Review

Concerning the model’s choice, one could argue
that harmonic models would be suitable to forecast
waves since these explicitly represent the signal as a
sum of sines and cosines. Nevertheless, author [6]
tested these and faced many problems arising from
the high complexity of the resultant models. His mod-
els adapted online to wave’s amplitudes and phases
while having pre-fixed wave frequencies. Thus, the
model’s accuracy became highly connected with its
capacity to cover the typical range of frequencies as
much as possible. The pre-choice of frequencies was
a challenging task and therefore did not fit the pur-
pose. Even though harmonic models with variable
frequency were tested, these still showed no promis-
ing results [6].

Neural Networks (NNs) were tried by, for exam-
ple, [6, 10, 11]. However, even though NNs gener-
ally have a more flexible learning structure than lin-
ear models, these models showed no significant im-
provement when confronted with the added complex-
ity. Plus, NNs have the disadvantage of working as
a black-box model and hence cannot provide insights
into the characteristics of the modelled process itself.

Another alternative could be Gaussian Processes
for their ability to calculate forecasting uncertain-
ties automatically [10]. Still, running the model re-
quires the choice of permanent frequencies. As it was
for cyclical models, the choice of fixed frequencies is
non-trivial and not practical. Consequently, Gaus-
sian Processes will not be considered.

On the contrary, linear functions of past obser-
vations are easier to develop and give intuitive pa-
rameters for the model’s analysis, albeit they may
be unsuitable for deeply nonlinear and complex pro-
cesses. Moreover, linear models commonly consume
less time and data to run when compared to more
complex models. Both [6] and [10] propose Autore-
gressive (AR) models as simple solutions for their

practical way of implicitly representing cyclical mod-
els. These linear models come in handy by automat-
ically choosing the frequencies and having the on-
line adaptive phase and amplitude capacity, all effort-
lessly. AR models come from a more prominent fam-
ily of Autoregressive-Moving-Average (ARMA) mod-
els. These have become popular since the 1970s
([12, pp. 277]) as Box-Jenkins [13] methodology of-
ten showed better forecast performance than more
complex, structural models. [6, 8] tested AR models
achieving results with an accuracy of 90%-100% for
more than one period ahead by using offline low pass
filters for wave elevation forecasting. However, these
results are not practical since online filters need to be
applied in real life. Later, [14] repeated the experi-
ments and clarified their accuracy was over-optimistic
and concluded that non-filtered wave forecasting with
AR yields better results than using online filters with
AR. The same author also investigated ARMA mod-
els in [15]. These offered a comparable accuracy
to AR, hence not compensating for the added com-
plexity. AR models were used to control a pres-
sure valve in real-time, optimizing Pico’s OWC (in
Azores archipelago, Portugal). Consequently, fewer
occurrences of turbine stalls and an increase of 15%
in power production were perceived when compared
with the previous basic control strategy [16].

1.2.2. Mutriku OWC

Oscillating water column device (OWC) is
broadly considered as the simplest, most reliable and
developed type of WEC [2]. The OWC WEC can be
understood as the interaction between the OWC hy-
drodynamics excited by waves, the air chamber and
the PTO sub-system, where the PTO comprises both
the turbine and the generator.

As a case study, this paper presents Mutriku’s
OWC-breakwater WEC. As the first multi-OWC con-
structed in Europe, it was inaugurated in July 2011
and built in the province of Gipuzkoa, northern
Spain. Mutriku’s wave power plant contains 16 air
chambers that are 4.5m wide, 4.3m long and 7.45m
high (above the maximum Equinoctial Spring Tide
Low Water). Each chamber is equipped with a Wells
turbine of 18.5 kW rated power, summing up to a
total installed capacity of 296 kW [17]. This is fed
into the electrical grid powering an estimate of 100
homes. The Wells turbine is equipped in most OWC
prototypes, and it is the most famous self-rectifying
air turbine for wave energy applications [4]. Nonethe-
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less, recently, H2020 OPERA project [4] installed a
Biradial turbine developed at Instituto Superior Téc-
nico, Lisbon [18, 19]. The Biradial turbine is a novel
impulse turbine with peak and time-average efficien-
cies higher than the Wells turbines [20]. This paper
explores the Wells and the Biradial air turbines. Both
have a valve installed in series with the rotor for con-
trol purposes: that is, Wells has a butterfly valve
placed in the duct that unites the turbine to the air
chamber; Biradial has a simple axially sliding built-
in high-speed safety valve [4]. The turbines’ physical
model are in 2.3.1.

1.3. Objectives

The objectives of the paper are:
• to introduce the hybrid physics-AI PGVAR
model for nonlinear multivariate forecasting
problems with known physics;

• to introduce the choice of a signal originated
from a system with an inertial response, in this
paper, the turbine’s speed;

• to forecast the turbine’s speed for safety control
of oscillating water column wave energy con-
verters (OWC WECs);

• to evaluate the accuracy and field applicability
of PGVAR compared to Naive, AR and VAR
models;

• to examine the previous models’ performance
• to evaluate the use of linear filters;

1.4. Paper Outline

The paper is organized as follows. First, state of
the art is presented in the Introduction 1. The fol-
lowing section, Forecasting models 2, comprises a de-
scription of the Autoregressive (AR), the Vector Au-
toregressive models (VAR) and the Physics-Guided
Vector Autoregressive models (PGVAR), as well as
the tools to operate them. Afterwards, available data
are described in Section 3 and the model’s implemen-
tation procedures in Section 4. Section 5 compares
AR, VAR and PGVAR for Biradial turbine operat-
ing on the Mutriku wave power plant under highly
energetic sea states. Results are reported and dis-
cussed. Finally, Section 6 compiles the main results
and conclusions are drawn. Further work directions
are proposed.

2. Forecasting Models

2.1. AR Model

Autoregressive models (AR) detect patterns on
sequential data (such as time series) and estimate fu-
ture values. It forecasts a variable of interest, assum-
ing it can be obtained by a linear combination of past
values of the variable. The autoregressive term refers
to the regression of a variable against itself. Namely,
the model will forecast 1 step the variable x based on
its m number of past values.

xt+1 =

m∑
i=1

aixt−i+1 + εt+1 (1)

where the residual term is given by εt+1 and the ai
coefficients are the model’s weights for the linear com-
bination of past values.

Following equation (1), if the ai coefficients are
estimated and residuals are Gaussian and white, the
best L-step ahead forecast x̂(t+L|t) at time t is given
by the equation:

x̂t+L|t =

m∑
i=1

aix̂t−i+L|t (2)

where x̂t+L−i|t ≡ xt+L−i if t+L− i ≤ t since there is
no need to estimate already known information from
past values. Equation 2 is implemented running the
model L times while using forecasted values as inputs
to obtain the succeeding ones.

The performance of each model is measured by
the goodness of fit index (GoF ). GoF is a classic and
intuitive tool for results’ comparison. After running
the model on test data, GoF outputs the prediction
accuracy L time steps ahead as follows:

GoF (L) =

(
1−

√∑
t[x(t+ L)− x̂(t+ L | t)]2√∑

t x(t+ L)2

)
· 100 (3)

2.1.1. Confidence intervals

The model’s forecasts alone give incomplete in-
formation about future events, as they are certainly
affected by errors. Hence, it becomes indispensable
to estimate the error and confidence intervals to ac-
company the prediction results. After checking the
gaussianity of the errors, the l-step ahead prediction
error is given by a Gaussian distribution

ε̂(t+ l | t) = x(t+ l)− x̂(t+ l | t) ≈ ℵ
(
0, σ2

l

)
(4)
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defined by its variance σ2
l or standard deviation σl.

The variance σ2
l is easily estimated from the past er-

rors of N observations through the equation:

σ̂2
l =

1

N − 1

N∑
t=1

ε̂(t+ l | t)2 (5)

2.2. VAR Model

Vector Autoregressive model (VAR) is a multi-
variate forecasting model which assumes a single vari-
able can obtained by linearly combining the past val-
ues of a group of variables. VAR models resemble
AR models with the difference that their variables
are vectors and their coefficients are matrices. The
model’s equation is as follows:

Xt+1 = A1Xt−1+1 + . . .+AmXt−m+1 + ut+1 (6)

where X is a vector containing observations of k vari-
ables: X = (x1, x2, . . . , xk)

′ and Ai is the (k × k) co-
efficient matrix that multiplies to the ith lagged value
of X, for i = (1, 2, ...,m), in which m is the model’s
order, i.e., the number of past values required to fore-
cast. Finally, ut+1 is the residual vector at the future
time instance (t+ 1) which consists of the difference
between the observed Xt+1 and the estimated X̂t+1

[21] .
The estimated L-step ahead forecast of the future

X̂(t+ L|t) at time t is given by the equation:

X̂t+L|t = A1Xt−1+L|t + . . .+AmXt−m+L|t (7)

where X̂t+L−i|t ≡ Xt+L−i if t + L − i ≤ t since past
information is already known. Equation 7 is imple-
mented running the model L times while using the
forecasted values as inputs to obtain the succeeding
ones.

VAR is suitable for multivariate time series as
it accounts for the interactions of all model inputs
throughout time. Note that, similarly to AR, this
method is only used under the assumption of station-
ary data.

2.3. PGVAR Model

The Physics-Guided Vector Autoregressive model
(PGVAR) is a type of physics-guided machine learn-
ing (PGML) model used to forecast multivariate se-
ries. The PGVAR can obtain a variable by linearly
combining the past values of a set of variables and
correcting the result through physical equations. This

hybrid model is composed of an ML-based VAR stage
which feeds its output to a physics-based correction
stage, mathematically:{
Xnon-pg

t+1 = A1Xt−1+1 + . . .+AmXt−m+1 + ut+1

Xt+1 = Fpg(X
non-pg
t+1 )

(8)

in which X is a vector containing observations of
k variables: X = (x1, x2, . . . , xk)

′ and Ai is the
(k × k) coefficient matrix that multiplies to the ith

lagged value of X, for i = (1, 2, ...,m), where m is
the model’s order, i.e., the number of past values
required to forecast. The vector ut+1 is the resid-
ual vector at the future time instance (t + 1) which
consists of the difference between the observed Xt+1

and the estimated X̂t+1. Finally, Fpg denotes for
the physics-guided function which converts the non-
physics-guided forecasted vector Xnon-pg

t+1 into its cor-
rected version Xt+1.

The estimated L-step ahead forecast of the future
X̂(t+ L|t) at time t is given by the equation:

{
X̂non-pg

t+L|t = A1Xt−1+L|t + . . .+AmXt−m+L|t

X̂t+L|t = Fpg(X̂
non-pg
t+L|t )

(9)

where X̂t+L−i|t ≡ Xt+L−i if t+L−i ≤ t since the past
values are already known. Equation 9 is implemented
running the model L times while using the corrected
forecasted values as inputs to obtain the succeeding
ones (see fig 1).
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Figure 1: PGVAR(m) scheme

PGVAR model was built as an interpretable grey
box model in which all nodes have physical meaning,
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and their connections resemble real-life connections to
take leverage over prior knowledge of physical laws.
As the model runs, the PG stage repeatedly corrects
and constrains the outputs with predefined linear and
nonlinear equations between variables. Consequently,
results become more coherent with science while less
dependent on training data. Ultimately, the PG stage
adds robustness and generalizability to out-of-sample
cases.

2.3.1. Physical model utilized

The PG stage implemented is governed by an
OWC WEC system taken from [4].

To better understand the power flow from waves
to the electrical grid, one can visualize Fig.2.

Figure 2: Wave-to-wire power-flow on an OWC wave energy
converter. The bidirectional power-flow between the air cham-
ber, the turbine and the atmosphere is represented by double
arrows. In the figure, V , I and T lim

ctrl stand for voltage, electrical
current and generator electromagnetic torque, respectively.

The necessity of forecasting the WEC’s state in
high energy sea states ( mentioned in Section1) de-
mands choosing a variable from Fig.2 to represent
the wave-WEC’s behaviour. For example, chamber
pressure could be chosen, for it is a filtered version
of the wave elevation, in which the OWC serves as a
low-pass filter. Then, following the same reasoning,
the turbine filters the pressure signal and converts it
to spinning motion. Consequently, this paper intro-
duces the prediction of the turbine’s speed to define
the WEC’s state.

Finally, the information provided by the forecast
is sent to the OWC system’s supervisor, which is pro-
grammed to make the turbine’s rotation speed stay
within safety limits. The supervisor can increase the
generator torque or close the safety valve in less than
2 seconds for Wells (0.2 seconds for Biradial), thus as-
suring the turbine’s safe operation. Note that air
compressibility grants the possibility of closing the
high-speed safety valve whenever instructed by the
supervisor, but its insights are out of the scope of the
paper.

Turbine-generator set. The equation employed in the
PG stage supra 9 sets as variables of interest the
chamber pressure, turbine speed and turbine accel-
eration, respectively X = (p,Ω, Ω̇).

The PGVAR makes use of the VAR model ca-
pability to linearly combine and forecast variables of
interest. However, VAR poorly predicts the turbine
acceleration. Therefore, and also because p and Ω
have an associated acceleration state, it was found
beneficial to implement the highly nonlinear function
that takes as inputs the estimates of p̂t+1 and Ω̂t+1

and outputs ˆ̇Ωt+1:

Fpg =


p̂t+1 = p̂non-pgt+1

Ω̂t+1 = Ω̂non-pg
t+1

ˆ̇Ωt+1 = F
(3)
pg ( p̂non-pgt+1 , Ω̂non-pg

t+1 )

(10)

PGVAR model combined equations 9 and 10
where the 1st and 2nd variables are maintained and
the 3rd variable is corrected with a physics-guided

function F
(3)
pg (11) composed of several equations

taken from [4].
Turbine acceleration is obtained by the torque

balance equation between the turbine and the gen-
erator:

Ω̇ = F (3)
pg (p,Ω) = (Tturb − T em

gen)/I, (11)

in which I, Tturb and T em
gen are respectively the mo-

ment of inertia of the rotating parts, the instan-
taneous turbine aerodynamic torque (13), and the
instantaneous generator electromagnetic torque im-
posed to control the rotational speed (16). The Wells
and Biradial turbines installed at Mutriku power
plant have a correspondent diameter of 0.75 m and
0.50m, with their in [4].

Turbine system. Following [4], the turbine aerody-
namic power Pturb can be presented in dimension-
less form using the power coefficient Π as function
of the dimensionless pressure head Ψ detailed in [4].
Here, p is the stagnation pressure head between the
air chamber and the atmosphere, ρin is the turbine
inlet density at stagnation conditions, Ω is rotational
speed of the turbine, and D is the rotor diameter.

The reference density, ρin, is a function of the
pressure difference between the atmosphere and the
air chamber. The processes of inhalation and exha-
lation require different approaches to the reference
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density, as shown below:

ρin =

{
(p/pat + 1)1/γ if p ≥ 0 (exhalation)

ϱat , if p < 0 (inhalation)

(12)

Finally, given P = T · Ω, one can obtain the turbine
aerodynamic torque:

Tturb = ϱin Ω2d5Π(Ψ) (13)

Generator system. While producing electricity, the
generator acts as a controller applying resisting
torque. It’s power is proportional to the turbine speed
(14).

P opt
gen = aΩb (14)

In addition, the generator rated power must not be
exceeded,

P em
gen = min

(
P opt
gen , P rated

gen

)
(15)

Lastly, the electromagnetic torque applied by the gen-
erator is trivially obtained,

T em
gen = P em

gen Ω−1 (16)

3. Available Data

Even though a generic model was implemented in
2.3.1 for the OWC, for the data, a specific site loca-
tion had to be chosen. Therefore, the observations
were taken from Mutriku’s OWC WEC described in
Section 1. Among 10months of data starting on 2017-
07-19 18:07:05 and ending on 2018-05-21 07:14:20,
one data sets was chosen:

1. The state is characterized as the most ener-
getic sea state in which the plant was still
running. The storm hit the station on 2018-
01-17 at around 5am with a significant wave
height of Hs = 5.28m and a wave period of
Te = 13.97 s. Under these conditions, the OWC
had a theoretical maximum absorption power
of P̂wave ∗ Lw = 858.762 kW.This set is of most
interest as it is an observed case where the tur-
bine’s speed reaches its limits (250 rad/s) with-
out external manipulations such as closing the
safety valve. The interaction between the waves
and the OWC was recorded at a sampling time
of Ts = 0.2568 s. In total, one hour and 10 min-
utes (19000 data points) were extracted as the
most prolonged consecutive interval of energy
generation.

Prepossessing data sets included splitting the data
into training data (80%) and testing data (20%), as
the machine learning community considers it an op-
timal proportion.

Raw data was exploited for all results (Section 5)
except when it explicitly states the data was filtered.
In those cases, Butterworth filters were used to prove
the vain application of linear filters. These low-pass
filters have a predefined cut-off frequency, for which
any frequency above it is mitigated and eventually
suppressed from the signal. The filter details are out
of the scope of the paper. Nevertheless, the reader is
referred to [22].

Waves typical period lies between 7-15 seconds
and, since one needs a period of measure of at least
1/20 of the smallest significant period, a minimum
frequency of 2,9 Hz is advised for the measurements.
Each data set has a generous sampling time Ts of
0.2568 seconds ( ≈ 4 Hz) so that no information is
lost in high sampling times.

The data sets that support the findings of this
study was provided within the EU H2020 OPERA
[4] project and are available in GitHub [23]

4. Implementation

The model was built using python’s open source
package: Statsmodels [24]. Namely, AR and VAR
models developed in [25].

The AR model’s regression coefficients are esti-
mated by training the model for a set of data. Firstly,
the AR equation is modelled using a state-space ap-
proach, and then parameters are estimated via max-
imum likelihood [26]. This method estimates the pa-
rameters combination that yields the maximum like-
lihood for a 1-step-ahead forecast [25, pp. 33–35].

Python scripts and descriptions can be accessed
from the Github repository [23]

5. Results

5.1. Turbine’s speed

The x(t+l) is the signal to be forecasted for which
x can be turbine’s speed (Ω), turbine’s acceleration
(Ω̇) and pressure (p). And x̂(t + l/t) is the l steps
ahead prediction based on information up to instant
t. As expected on this type of signal, the predictabil-
ity decreases over time since uncertainties are always
present. A goodness of fit (GoF 3) value of 100%
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would mean the signal is perfectly modelled, which is
not possible for any prediction into the future (l > 0).

The first thing that emerges from Fig.3 is that Ω
predictions are significantly better than other vari-
able’s predictions. Previous papers in this field fo-
cused solely on forecasting wave elevation or wave
pressure signals. As far as the author is aware, only
[11] used Ω to forecast the chamber pressure, yet the
author did not forecast Ω itself. Nevertheless, this pa-
per innovates by introducing a more predictable vari-
able such as the turbine speed to ensure the device’s
safety. The turbine’s inertia works similarly to a low
pass filter that mitigates high-frequency disturbances
and has a certain delay compared to the pressure sig-
nal. Its inertia increases Ω’s dependence on its past
values, smoothing the signal and thus making it good
for forecasting. Additionally, one can take advantage
of the fact that the pressure signal, in principle, con-
tains information about the future Ω signal since the
latter one is a delayed consequence of the first one
(see Fig.2). This is done by using the VAR stage
that linearly combines values of pressure to forecast
Ω and by the PG stage that non-linearly combines
values of pressure and Ω to obtain Ω̇. The acceler-
ation contains information about the future value of
the signal and, if integrated, it returns future values
of Ω. To extract that information, one uses the lin-
ear combination of Ω and Ω̇ values on the VAR stage,
which can be thought of as a discrete integration over
time for a certain sampling frequency. All these ad-
vantages make Ω predictions far better than pressure
ones (respectively 85% >> 45%, even for the elemen-
tary AR-mle models). Negative values of GoF were
converted toGoF = 0% for their inadequacy. Further
analysis of the GoF of Ω̇ suggests it is not optimal.
Although it depends on a precise signal (Ω), it is also
affected by the uncertainty present in the pressure
signal. Pressure’s accuracy could rise with a different
PGVAR, but focusing on pressure is out of the scope
of this paper. Still, Section 6 proposes other works to
be done in that direction.

5.2. Models

The following 5 models are compared: Naive, AR
with maximum likelihood estimation (AR-mle), AR
with ordinary least squares (AR-ols), VAR and PG-
VAR models. Firstly, one needs a baseline with an el-
ementary model such as the Naive one. This method
simply assumes the future value is the same as the
present one x̂(t+ l/t) = x(t). Its accuracy rapidly de-
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Figure 3: Goodness of fit of different forecasting models on
the highly energetic sea state, forecasting: turbine’s speed Ω,
turbine’s acceleration Ω̇ and pressure p.

cays on pressure and Ω̇ since these oscillate relatively
quickly and with high amplitudes. The obtained GoF
values below 40% were omitted as they mean the pre-
diction diverges. Whereas for Ω predictions, Naive
model gives reasonable results ( GoF = 85% for 2
seconds forecast ) due to the low amplitude varia-
tion of Ω values. This model is handy to create a
baseline comparison between Ω forecasts. By outper-
forming the Naive baseline in Fig.3, the more sophis-
ticated techniques are disclosing casual relationships
on the signal. It happens to all models, except for
the AR-mle model, which yields worse results than
the Naive method for a horizon larger than 2 sec-
onds. Above that, the AR using maximum likelihood
estimation to train its parameters (AR-mle) takes sig-
nificantly more time to run and more data when com-
pared with the other methods in this paper. On the
one hand, AR-ols, VAR and PGVAR take some in-
significant 3 seconds to train with 1 hour of data and
only 6 seconds to forecast 15 minutes of data. On the
other hand, AR-mle took 170 and 1.5 seconds, respec-
tively (times were obtained using a 2.80-GHz, 8-core
Intel processor). Reversely, AR with ordinary least
squares (AR-ols) is a simple model that can get accu-
rate results with less running time and training data
compared with AR-mle. It also proves that combin-
ing just one variable’s past values already gives most
of the information the model demands for accurate
results (GoF = 87.6% for 2 seconds forecast of Ω on
the energetic sea state). One can notice AR-ols is the
only model using 44 past inputs instead of 45. This
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happened because the software was programmed to
automatically choose the number of past values that
yielded the best AIC criteria. Although AR-ols has
shown to be good, there is a need to have a GoF
high enough (say GoF ≥ 90% as a reasonable ref-
erence) to have more reliable forecasts. Therefore,
instead of just one variable, the VAR model linearly
combines different variables to share information be-
tween them and, with it, manages to reduce about
one-third of Ω’s error (from GoF = 87.6% to 91.7%
at 2 seconds of Ω on the energetic sea state). It is also
seen that pressure’s forecasts become better than AR-
ols ones. VAR already showed good results (with Ω’s
GoF ≥ 90%), but one can take a step further and
leverage the prior knowledge of physics to correct the
predicted variables. This is the property of PGVAR
used to improve its accuracy compared with the VAR
model (for example, from GoF = 91.7% to 93.5% at 2
seconds of Ω on the energetic sea state). After having
the VAR stage predictions, the following PG stage
combines its variables according to known physics.
Overall, there was a significant improvement from the
common AR-mle to the novel PGVAR model (halving
the error on Ω from GoF = 85.1% to GoF = 93.5%).
Ω̇ was needed for VAR and PGVAR models. In Fig.3
there is visible a gain of 10% on GoF from VAR to
the PGVAR. In contrast, pressure does not show im-
provements from VAR to the PGVAR model. This
was expected since the PGVAR model was mainly
built for Ω.

5.3. Filters

Errors might come from uncertain measures, and
thus one could argue that an online filter would solve
the problem. However, despite increasing the ini-
tial accuracy, online filters cause a delay in the sig-
nal.Indeed, applying an AR model to a linearly fil-
tered signal simply yields a different combination of
past values when compared to applying an AR to the
unfiltered signal. Thus, as it was concluded on [14],
in real-life applications, forecasting unfiltered signals
with AR models is better than forecasting linearly fil-
tered delayed data. The same is said for the VAR and
PGVAR models since they also take their unfiltered
inputs and operate some linear combination of past
values.

5.4. Discussion

In all experiments, the risk of operating at
high energy sea states was undertaken by predict-
ing WEC’s reactions to incident waves. For it, the

state of the WEC was measured through different
variables. Among them, Ω proved to be a better alter-
native to the classic pressure or wave elevation. The
turbine’s inertia results in a smooth signal with grad-
ual variations. The models were capable of defining
an upper bound of confidence based on the residuals.
That bound gives the maximum future values of Ω
with an associated certainty. This ended up accom-
plishing the purpose of indicating if the turbine is at
risk of crossing its maximum speed. Biradial turbines
fit well for the purpose of forecasting as the regulation
of Ω weakly affects the OWC hydrodynamics while
still improving the power performance of the PTO
(more details in [4]). As for the AR models, training
via OLS and MLE yielded different outcomes. The
first showed to be much better than the latter as the
MLE required much more data and running time to
reach the same accuracy as OLS. No benefits were
proven upon using MLE. It should also be emphasized
that AR models do not necessitate linear filters. This
artificial intelligence algorithm is capable of learning
from data with errors. Particularly, AR already com-
bines the inputs as a linear filter but without causing
any delay. Filters were discarded since online filter-
ing causes a delay on the signal that works in con-
tradiction with forecasts, and their added accuracy
does not overcome their delay. AR’s simplicity when
compared with nonlinear models, along with its con-
siderable accuracy, suggested AR models would fit
the purpose (Section 1). Nevertheless, these models
are limited to the information of the signal contained
within itself. The solution came with VAR models.
Following the physical model, several variables were
tested. Upon analyzing their contributions to each
other’s forecasts, it was seen that only Ω, pressure
and Ω̇ were influencing each other through the VAR
equation’s parameters. These weights managed to ex-
tract and combine different information present in the
three variables. As a result, they worked to improve
the accuracy while purely relying on statistical learn-
ing. As in most cases physical models exist, a step fur-
ther was taken to take advantage of that knowledge.
PGVAR utilized a physics-guided architecture falling
under the category of PG machine learning (PGML)
models. The PGVAR model was created as the final
and most accurate model in this paper. The new PG
stage does not need to train its nonlinear relation-
ships; rather, it is predefined by the user based on
theoretical models. Consequently, it wasn’t trained
with extensive data nor much operation time. The
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PG stage does not depend on the available data. This
feature adds robustness and generalizability to out-
of-sample cases. Unlike classical black-box ML algo-
rithms, a physical meaning is ascribed to all nodes
on PGVAR, converting the model into a fully inter-
pretable one. One can even explore the parameters
of the VAR equation to understand from which lags
and variables is the model getting information. To the
best of the author’s knowledge, the PGVAR model is
original and outperforms the state-of-the-art models
reducing the error by ≥ 20% for VAR and ≥ 50%
for AR and, consequently, shrinking the size of the
confidence intervals. Overall, the goodness-of-fit at
2 seconds forecast increased from ≤ 79% in real wave
elevation forecasting of previous articles [10, 11, 14],
to ≥ 93% in real Ω forecasting while still defining the
WEC system’s state. Note that other papers that
use offline filters for the data have more accuracy
than those presented here. However, those ideal fil-
ters cannot be applied on the field, and thus their re-
sults are not considered. Performance enhancements
are achieved in short-term wave forecasting with PG-
VAR, while still requiring minimal investment in ba-
sic equipment, whether for measuring data or for run-
ning the model. The hybrid model managed to cal-
culate the turbine’s speed 2 seconds ahead with very
high precision. These 2 seconds are of utmost impor-
tance since the safety valve installed in series with
the turbine takes less time to close and protect the
turbine from incident waves. Thus, overall, PGVAR
emerged among other models as the solution to safely
operate a turbine in high energy sea states.

6. Conclusions

This paper introduces the forecasting model PG-
VAR for multivariate nonlinear problems with known
physical phenomenons. PGVAR model takes the ar-
tificial intelligence’s capability of detecting patterns
(VAR) and integrates it with a physics-guided model
to account for the known nonlinear relationships
(PG). As proof of concept, the PGVAR is evaluated
by predicting two data sets with two types of tur-
bines. The objective is to forecast a turbine’s speed
to assure it does not exceed its limits while relying
solely on the system’s past history.

6.1. Achievements

Experiments show that VAR and PGVAR per-
form satisfactorily in problems where only AR was

originally tested. As opposed to the classic forecast
of wave elevation or wave energy converter’s cham-
ber pressure, this paper predicts a much more stable
variable, the turbine’s speed, while still ensuring the
turbine’s integrity. To do this, the model outputs
a confidence interval containing the future values of
the turbine’s speed. With it, the system has enough
time to close its safety valves in case of an emergency.
Furthermore, the PGVAR model demonstrated im-
provements compared to VAR (≥ 20% error reduc-
tion) and AR (≥ 50% error reduction) models jus-
tifying the added complexity upon building it. PG-
VAR turned out to be an interpretable model claim-
ing effortless training, low computational costs and
low-priced measuring equipment. Additionally, it was
concluded that no real benefit could be expected in
using linear filters since the AR components of the
models already act as filters, enabling uncertainty
measurements, yet without the delay caused by clas-
sical online filtering. By combining the empirical ev-
idence presented, it can be claimed that PGVAR has
higher accuracy than VAR, which in turn performs
better than AR in multivariate forecasting problems
with known physics. Thus, PGVAR models are a
relevant contribution to the state-of-the-art physics-
guided machine learning field (PGML). Moreover, the
PGVAR is essential for future applications on predic-
tive control to increase the turbine’s efficiency.

6.2. Future work

There are several possible directions for further
work. Regarding pressure’s accuracy, one could in-
crease it by adding up-wave measurements [27] or
by replicating what was done in this paper for the
turbine’s speed. That means building a PGVAR
with pressure’s derivative obtained from the physical
model in [4]. These new variables will upgrade the
PGVAR overall performance and optimize the power
output [4, 28]. The PG stage could correct the VAR
outputs, calculate their derivatives and even com-
pute other variables based on those outputs. Con-
sequently, and as a closing mark, the introduced PG
stage can increase the model’s interpretability, accu-
racy, robustness and generalizability to out of sample
cases.
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