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RESUMO 

O aumento contínuo das emissões anuais de gases com efeito estufa pressiona todos os setores da 

indústria a reduzir as emissões, mudar para tecnologias verdes e se tornarem mais eficientes. 

Na indústria naval existem diversos projetos e tecnologias para a redução das emissões pelos navios, 

tanto ao nível do projeto como da operação. Uma solução possível para navios existentes é a instalação 

de sistemas de otimização de combustível que atuam automaticamente nas rotações do motor e no 

passo da hélice de forma a aumentar a eficiência propulsiva do navio. Estes sistemas permitem a 

otimização do uso de combustível em rota em função de um conjunto de variáveis como a velocidade, 

os parâmetros do sistema propulsivo e as condições ambientais, que são monitorizadas de forma 

contínua ao longo das viagens. 

O objetivo desta dissertação é desenvolver modelos de aprendizagem automática que representem o 

funcionamento de um sistema de otimização de combustível e desenvolver um protótipo de um sistema 

de apoio à decisão que forneça previsões do consumo ótimo de combustível da máquina principal do 

navio. 

Para tal, é utilizada uma amostra de um ano de dados recolhidos de um sistema de otimização 

automática de combustivel de um navio, que incluem os parâmetros do sistema propulsivo, as 

condições ambientais e consumo de combustível do navio em operação. 

Esta amostra de dados é primeiro analisada e pré processada e, depois, usada em tarefas de  

aprendizagem com algoritmos de Rede Neural Artificial e Máquinas de Vetores de Suporte. O 

desempenho dos algoritmos é avaliado e, posteriormente, é desenvolvido um modelo com dois estágios 

para prever a velocidade e consumo de combustível do navio em condição de operação. 

Por fim, os modelos desenvolvidos são usados num sistema de apoio a decisão que é desenvolvido e 

demonstrado em diferentes cenários operacionais. 

 

Palavras-chaves: consumo de combustível, otimização de combustível, aprendizagem automática, 

rede neural artificial, máquina de vetores de suporte, sistema de apoio a decisão 
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ABSTRACT 

The continuous increase in annual greenhouse gas emissions pressures all industrial sectors to reduce 

emissions, move to green technologies, and become more efficient. 

In the shipping industry, there are several projects and technologies for reducing emissions by ships, 

both at the design and operation levels. One possible solution for existing ships is the installation of fuel 

optimization systems that automatically adjust engine rotations and propeller pitch to increase the 

propulsive efficiency of the ship. These systems optimize the fuel consumption in the route as a function 

of a set of variables such as speed, propulsive system parameters, and environmental conditions, which 

are monitored continuously throughout the voyages. 

The objective of this dissertation is to develop machine learning models that represent the operation of 

a fuel optimization system and to develop a prototype of a decision support system that provides 

predictions of the optimal fuel consumption of the ship's main engine. 

For this purpose, a one-year sample of data collected from a ship's automated fuel optimization system 

is used, which includes the propulsion system parameters, environmental conditions, and fuel 

consumption of the ship in operation. 

This dataset is first analysed and pre-processed and then used in learning tasks with Artificial Neural 

Network and Support Vector Machines algorithms. The performance of the algorithms is assessed and 

then a two-stage model is developed to predict the speed and fuel consumption of the ship under 

operating conditions. 

Finally, the developed models are used in a decision support system that is developed and 

demonstrated in different operational scenarios. 

 

 

Keywords: fuel consumption, fuel optimization, machine learning, artificial neural network, support 

vector machine, decision support system  

  



VII 

 

Table of contents 

DECLARATION ...................................................................................................................................... III 

Acknowledgements ................................................................................................................................ IV 

Resumo ................................................................................................................................................... V 

Abstract................................................................................................................................................... VI 

Table of contents ................................................................................................................................... VII 

List of Figures ......................................................................................................................................... IX 

List of tables .......................................................................................................................................... XII 

List of Acronyms ................................................................................................................................... XIII 

1. Introduction ....................................................................................................................................... 1 

1.1 Motivation ................................................................................................................................ 1 

1.2 Problem ................................................................................................................................... 5 

1.3 Objectives ................................................................................................................................ 7 

1.4 Work Structure ......................................................................................................................... 8 

2. Literature Review ............................................................................................................................. 9 

2.1 Machine Learning in the maritime industry .............................................................................. 9 

2.2 Predict ship resistance in the design phase .......................................................................... 10 

2.3 Machine Learning in Fuel Oil Consumption prediction .......................................................... 12 

3. Theoretical Background ................................................................................................................. 17 

3.1 Artificial Neural Network Method ........................................................................................... 18 

3.1.1 Layers ................................................................................................................................ 19 

3.1.2 Hypothesis Function .......................................................................................................... 20 

3.1.3 Bias Node .......................................................................................................................... 21 

3.1.4 Cost Function ..................................................................................................................... 22 

3.1.5 Gradient Descent Algorithm .............................................................................................. 23 

3.1.6 Overfitting and Underfitting ................................................................................................ 24 

3.1.7 Stages ................................................................................................................................ 25 

3.2 Support Vector Machine (SVM) ............................................................................................. 26 

3.2.1 Optimization objective ....................................................................................................... 27 

3.2.2 Kernel ................................................................................................................................ 29 

4. Case Study ..................................................................................................................................... 31 

4.1 Vessel Automated Optimization System ............................................................................... 31 

4.2 Dataset .................................................................................................................................. 33 



VIII 

 

4.3 Redundant data ..................................................................................................................... 34 

4.4 Original Data and Data Split .................................................................................................. 34 

4.5 Features treatments and previous analysis ........................................................................... 36 

4.5.1 System Fuel Optimization Setup and Set Fuel Consumption ........................................... 36 

4.5.2 The bearing of the route .................................................................................................... 37 

4.5.3 Trim and Mean Draught Calculation .................................................................................. 38 

4.5.4 True Wind Angle and Velocity ........................................................................................... 39 

4.6 Wave Dataset ........................................................................................................................ 42 

4.7 Final Dataset.......................................................................................................................... 43 

5. Data Analysis ................................................................................................................................. 45 

5.1 Spearman’s Rank-Order Correlation ..................................................................................... 45 

5.2 Route analysis ....................................................................................................................... 45 

5.3 Automated System Analysis .................................................................................................. 48 

5.4 Power Shaft Generator Analysis ........................................................................................... 52 

5.5 Auxiliary engine analysis ....................................................................................................... 54 

6. Fuel consumption Prediction Model ............................................................................................... 55 

6.1 Preliminary prediction model ................................................................................................. 56 

6.2 Adding new features .............................................................................................................. 59 

6.3 Two-stage model - the first stage .......................................................................................... 60 

6.4 Two-Stage Model - Second Stage ........................................................................................ 64 

6.4.1 First model ......................................................................................................................... 64 

6.4.2 Second Model .................................................................................................................... 66 

6.5 Two-stage model results and predictions .............................................................................. 68 

7. Decision Support System ............................................................................................................... 71 

8. Conclusion and future work ............................................................................................................ 77 

8.1 Conclusion ............................................................................................................................. 77 

8.2 Future work ............................................................................................................................ 78 

9. References ..................................................................................................................................... 81 

Appendix I – Spearman’s rho correlation .............................................................................................. 90 

Appendix II – Propulsion 3D Graphs ..................................................................................................... 91 

Appendix III – Propulsion system variables distribution ........................................................................ 92 

 

  



IX 

 

LIST OF FIGURES 

Figure 1-1 - Regulations, measures, and indices of shipping industry along the time ............................ 2 

Figure 1-2 – Reduced GHG for each technology .................................................................................... 4 

Figure 1-3 – Ship route during a year ...................................................................................................... 7 

Figure 2-1 - Resistance Decomposition based on Larson and Baba division [56]................................ 12 

Figure 2-2 – Ship efficiency based on Pedersen and Larsen [57] ........................................................ 12 

Figure 3-1 – Structure of a typical neuron and a typical ANN ............................................................... 18 

Figure 3-2 – Neural Network Example .................................................................................................. 19 

Figure 3-3 - Activation function plot examples ...................................................................................... 21 

Figure 3-4 - Example of use of hypothesis function in the first layer .................................................... 21 

Figure 3-5 - Example of the impact of bias node in the output.............................................................. 22 

Figure 3-6 - Graphic example of how the gradient descent works ........................................................ 23 

Figure 3-7 – Example of a large learning rate with a non-convergence ............................................... 23 

Figure 3-8 - Example of Underfitting and Overfitting ............................................................................. 24 

Figure 3-9 - Cost function result in the function of the polynomial degree ............................................ 25 

Figure 3-10 – Forward Propagation Example ....................................................................................... 26 

Figure 3-11 - Example of SVM .............................................................................................................. 27 

Figure 3-12 – Sigmoid function sketch .................................................................................................. 27 

Figure 3-13 – Cost function of the logistic regression function ............................................................. 28 

Figure 3-14– Cost function and the altered cost function of the logistic regression function ................ 28 

Figure 3-15 - Example of a Decision boundary definition ..................................................................... 29 

Figure 3-16 – Kernel new feature example ........................................................................................... 30 

Figure 4-1 - Overview of the installed system [87] ................................................................................ 31 

Figure 4-2 - Bridge panel of the system [87] ......................................................................................... 31 

Figure 4-3 – Example of Route - Lisbon to the Azores ......................................................................... 32 

Figure 4-4 – Sample data for the monitored routes .............................................................................. 32 

Figure 4-5 – Frequency Distribution of all Velocity Dataset .................................................................. 35 

Figure 4-6 – Azores region .................................................................................................................... 35 

Figure 4-7 – Madeira Island................................................................................................................... 35 

Figure 4-8 – Portugal Coast .................................................................................................................. 36 

Figure 4-9 – Initial Data of the System setup ........................................................................................ 37 

Figure 4-10 – Final Data of the System setup ....................................................................................... 37 

Figure 4-11 – Calculated Ship Route Bearing ....................................................................................... 38 

Figure 4-12 – Density Draught Distribution ........................................................................................... 39 

Figure 4-13 – Density Trim Distribution ................................................................................................. 39 

Figure 4-14 – Wind velocity triangle [91] ............................................................................................... 40 



X 

 

Figure 4-15 – Wind and wave definition reference angle [92] ............................................................... 41 

Figure 4-16 – Apparent Wind Angle and Apparent Wind Speed ........................................................... 41 

Figure 4-17 – True Wind Angle and True Wind Speed ......................................................................... 41 

Figure 4-18 – XyGrib example of a Significant Wave Height plot data ................................................. 42 

Figure 4-19 – Wave characteristics ....................................................................................................... 43 

Figure 4-20 – Final Velocity Over Ground Distribution .......................................................................... 43 

Figure 5-1 – Route duration in hours ..................................................................................................... 46 

Figure 5-2 – Spearman’s rho analysis between SOG and FOC with weather conditions .................... 46 

Figure 5-3 – Wave Height and Wind Speed distribution in time ............................................................ 47 

Figure 5-4 – Spearman’s rho analysis between SOG and FOC with operational conditions ............... 47 

Figure 5-5 – FOC – settled versus actual fuel consumption ................................................................. 49 

Figure 5-6 – FOC – set versus Fuel Rack ............................................................................................. 50 

Figure 5-7 –Ship speed x Total Propulsion Power ................................................................................ 51 

Figure 5-8 – Propeller pitch angle x Total Propulsion Power ................................................................ 51 

Figure 5-9 – Shaft rotation speed x Total Propulsion Power ................................................................. 51 

Figure 5-10 – RPM x Propulsion Power – Shaft Generator Analysis .................................................... 52 

Figure 5-11– Pitch Angle x Propulsion Power – Shaft Generator Analysis .......................................... 53 

Figure 5-12 – Fuel Rack x Propulsion Power – Shaft Generator Analysis ........................................... 53 

Figure 5-13 - Route data analysis for shaft generation ......................................................................... 53 

Figure 5-14 – Total Auxiliary Power [kW] .............................................................................................. 54 

Figure 6-1 - Schematic of the two-stage model..................................................................................... 56 

Figure 6-2 – Scatter distribution Predicted and Observed FOC – (ANN) ............................................. 57 

Figure 6-3 – Scatter distribution Predicted and Observed FOC – (SVR) .............................................. 58 

Figure 6-4 - Model comparison in different routes................................................................................. 59 

Figure 6-5 - Spearman´s Rho values .................................................................................................... 59 

Figure 6-6 – Spearman´s coefficient of the propulsion system with speed and FOC ........................... 60 

Figure 6-7 – Schematic of first-stage Prediction Model ........................................................................ 60 

Figure 6-8 – Scatter plot result of the predicted and actual value - SOG ............................................. 63 

Figure 6-9 – Cost functions analysis in the function of training set size ............................................... 63 

Figure 6-10 – Score analysis in the function of training set size ........................................................... 64 

Figure 6-11 – Schematic – Second stage model prediction .................................................................. 64 

Figure 6-12 - Scatter plot result of the predicted and actual value – FOC ............................................ 65 

Figure 6-13 – Cost result from the Test data and Training data for different samples sizes ................ 66 

Figure 6-14 – Score result (R2) for different sample sizes .................................................................... 66 

Figure 6-15 – Second Model FOC prediction without fuel rack as an input variable ............................ 67 

Figure 6-16 - Cost result from the Test and Training data for different sample sizes ........................... 67 



XI 

 

Figure 6-17 - – Score result (R2) for the samples size .......................................................................... 68 

Figure 6-18 – Two-stage fuel consumption prediction model ............................................................... 68 

Figure 6-19 - Scatter plot of predicted and observed FOC values – Two-stage model ........................ 69 

Figure 6-20 – Prediction Speed x Actual Speed ................................................................................... 69 

Figure 6-21 – Prediction FOC x Actual FOC ......................................................................................... 70 

Figure 7-1 – Decision Support System .................................................................................................. 71 

Figure 7-2 - Route 19 ............................................................................................................................ 72 

Figure 7-3 – DSS Simulation results along the route ............................................................................ 72 

Figure 7-4 – DSS result for different speeds without the use of shaft generator .................................. 73 

Figure 7-5 – Predicted FOC based on different Ship speed ................................................................. 74 

Figure 7-6 - Predicted FOC for different significant wave height .......................................................... 74 

Figure 7-7 - Predicted FOC based on different Wind Speed ................................................................ 75 

Figure 7-8- Predicted FOC for different ship’s draughts ....................................................................... 75 

 

  



XII 

 

LIST OF TABLES 

Table 1-1 – Consolidated Fuel prices in the DNV GL study [21]............................................................. 6 

Table 3-1 – Example of Machine Learning Model Types ...................................................................... 17 

Table 4-1 - Ship Characteristics ............................................................................................................ 31 

Table 4-2 – Redundant Power Data ...................................................................................................... 34 

Table 4-3 – Dataset cleaning summary ................................................................................................. 43 

Table 5-1 – Spearman’s rho coefficient [95].......................................................................................... 45 

Table 5-2 – Spearman Rho results for the automated system .............................................................. 48 

Table 5-3 – Linear regression analysis – Settled FOC x Actual FOC ................................................... 48 

Table 5-4 – Linear regression analysis – Settled FOC x Fuel Rack ..................................................... 49 

Table 5-5 – Power generated by Shaft generator and Auxiliary Engines ............................................. 54 

Table 6-1 – Training dataset to the first attempt model ......................................................................... 56 

Table 6-2 – Hyperparameters of the ANN model – First model ............................................................ 56 

Table 6-3 – ANN results to fuel prediction ............................................................................................. 57 

Table 6-4 – Hyperparameters of SVM model in the First model ........................................................... 57 

Table 6-5 – SVM results to speed prediction ........................................................................................ 58 

Table 6-6 – Hyperparameters of ANN model ........................................................................................ 61 

Table 6-7 – Training dataset to the first stage ....................................................................................... 61 

Table 6-8 – ANN results to speed prediction......................................................................................... 62 

Table 6-9 – Hyperparameters of SVM model ........................................................................................ 62 

Table 6-10 – SVM results to speed prediction ...................................................................................... 63 

Table 6-11 – Training dataset for the second stage model ................................................................... 64 

Table 6-12 - ANN results to fuel consumption prediction ...................................................................... 65 

Table 6-13 - SVM results to fuel consumption prediction ...................................................................... 65 

Table 6-14 - SVM results to fuel consumption prediction ...................................................................... 67 

Table 6-15 – Total fuel consumption comparison ................................................................................. 70 

 

 

 

 

 

 



XIII 

 

LIST OF ACRONYMS 

ANN – Artificial Neural Network 

AWA – Apparent Wind Angle 

AWS – Apparent Wind Speed 

CFD – Computational Fluid Dynamics 

CII – Carbon Intensity Indicator 

DCS – Data Collection System 

DFN – Deep Feed-Forward Neural Network 

DSS – Decision Support System 

EEDI – Energy Efficiency Design Index  

EEOI – Energy Efficiency Operational Indicator 

EEXI – Energy Efficiency Design Index for Existing Ships  

FOC – Fuel Oil Consumption 

GCNN – Geodesic Convolutional Neural Network 

GHG – Greenhouse Gas 

IEA – International Energy Agency 

JIT – Just in Time 

LASSO – Least Absolute Shrinkage and Selection Operator  

MCR – Maximum Continuous Rating 

MEPC - Marine Environment Protection Committee 

ReLU – Rectified Linear Unit 

RFR – Random Forest Regressors 

SEEMP – Ship Energy Efficiency Management Plan 

SOG – Speed Over Ground 

STW – Speed Through Water 

SVM – Support Vector Machines  

SVR – Support Vector Regression 

TWA – True Wind Angle 

TWS – True Wind Speed 

WASP – Wind Assist Propulsion 

 

 



XIV 

 

 

 

 

  



1 
 

1. INTRODUCTION 

1.1 Motivation 

Despite the shipping industry being one of the most efficient modes of transport, it produces around 3% 

of the global greenhouse gas (GHG) emissions [1] and according to International Energy Agency (IEA) 

is a hard-to-abate industry [2], due to the difficulties in electrification, long lifespan of the fleet and high 

dependency of the fossil fuels. 

The first main step of the shipping industry on GHG emissions was in 2000 when the International 

Maritime Organization (IMO) published the first GHG study [3] that describes the GHG impact of the 

world merchant fleet in the environment, in that time IMO predicted an impact of about 1.8% of the total 

greenhouses gases emitted. After that, it took another nine years for the IMO to publish a second study, 

in 2009, where a deeper study was conducted, concluding that the maritime industry contributes to 2.7% 

of the total CO2 emissions [4]. Moreover, in the same year, the IMO’s Marine Environment Protection 

Committee 59 (MEPC) [5] published a not mandatory index, named Energy Efficiency Operational 

Indicator (EEOI), which would become a reference as a carbon intensity indicator. EEOI is defined as 

the ratio of the mass of CO2 emitted per unit of transport work - [𝑔𝐶𝑂2 𝑡𝑛𝑚⁄ ], using in its equation the 

mass of all consumed fuel in a specified route, converted in CO2 mass, divided by the total cargo carried 

in tonnes and the travelled distance in nautical miles. 

Since the beginning of the last decade, IMO has been doing a major effort to discuss and approve new 

rules and indices to reduce not only GHG but also the pollutants from burning fossil fuels on ships. The 

first rule focused on saving energy was approved in 2011 [6], with the inclusion of a new index, the 

Energy Efficiency Design Index (EEDI) measured in [𝑔𝐶𝑂2 𝑡𝑛𝑚⁄ ], and a new mandatory report, the Ship 

Energy Efficiency Management Plan (SEEMP), which have both entered into force in 2013. The EEDI 

is an index focused on the design phase of the ship, calculated based on the ship's mechanical 

installations that measure the theoretical ship's efficiency. Also, this index is cut every five years, wherein 

this period ship designs need to be increasingly efficient compared to the 2008 base.  

The SEEMP was created to be a ship energy management and monitoring report. Although it does not 

have in it any mandatory plan or obligation of GHG emissions reduction, it provides the basis for any 

initiative-taking improvement of the ship energy management. The SEEMP can contain the efficiency of 

each engine of the ship, procedures to improve each system, hull monitoring data, energy management 

analysis, weather routing analysis and other parameters that could help reduce the fuel consumption on 

the ship. Still, a specific guideline was published in 2016 [4] with some good practices and operating 

tactics, to help the shipowner to improve the operational efficiency of the ship.  

The MEPC in 2018 [8], was approved the IMO Decarbonisation Strategy, where the focus is to reduce 

the carbon intensity by 40% in 2030, compared with the 2008 base, reducing this index to 70% in 2050 

with a total GHG reduction of all world fleet in 50% (Figure 1-1). Although there are several criticisms by 

politicians and countries about the numbers involved, this is the first time an entire industry has agreed 

to be more efficient and reduce the impact on the global environment.  



2 

 

Recently, in 2021 [9],  IMO approved a new index called Energy Efficiency Design Index for Existing 

Ships (EEXI) applicable to all existing ships with more than 400 GT. This index reflects the energy 

efficiency of the vessel based on the 2008 baseline and introduced an operational index, the Carbon 

Intensity Indicator (CII), to be discussed and will be entered into force in 2023. CII has the objective to 

link GHG emissions to the amount of cargo transported over the distance travelled by each ship and 

need to be included in the SEEMP. It will be mandatory for each ship above 5000 GT and it will rate the 

energy efficiency of the ship as A, B, C, D and E, where A is the best rating. Moreover, for a ship 

classified as D in three consecutive years or classified as E, the SEEMP will be mandatorily revised, 

and a correction plan must be prepared. 

Since 2011, IMO has published two studies [1], [10], about the impact of the shipping industry in the 

atmosphere regarding GHG emissions. The last one, published in 2020, showed that despite the carbon 

intensity indicator having decreased by 31% (Figure 1-1), the total CO2 emissions have reduced only 

about 8%. This occurred due to the increase in the global economy and with that, the maritime 

transportation, and ships construction [1], also, the actual tendency is for the world fleet to increase by 

6.3% until 2026 according to a recent report from BIMCO [11]. 

Figure 1-1 presents a general overview of the rules and plans to reduce GHG emissions, based on the 

IMO GHG study [1], the scenario since the first rules applied with their impacts, and what is the objective 

discussed by operators today on the horizon of 2050. 

 

Figure 1-1 - Regulations, measures, and indices of shipping industry along the time 

Despite IMO has been accelerating the discussion and the approvement of new rules focused on 

decarbonisation in the shipping industry, there is pressure to accelerate further this process. The 

European Union has been leading this process for some time now. In 2015, they were pioneers to 

approve a regulation named Monitoring, Reporting and Verification (MRV), which requires ships to 
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monitor and report their GHG emissions [12], fuel consumption, transport work and average energy 

efficiency. This regulation entered into force in January of 2018 and has the objective to monitor the 

GHG emissions and carbon intensity in the maritime transportation of ships leaving and entering 

European ports. IMO approved a similar regulation in the MEPC 70 [13] in 2016, called Data Collection 

System (DCS), where the shipowner needs to send fuel consumption, distance travelled, type of fuel 

and other data for each ship, based on annual consumption. With this, the IMO can study the impacts 

of ships over the years and verify the impact of measures taken to reduce GHG. This regulation entered 

into force in 2018 and IMO started receiving the data in 2019. 

Moreover, in 2020 [14], the European Union (EU) approved to include the ships passing or coming to 

the European ports to enter in the European Union Emissions Trading Emission (ETS). It means that 

each ship whose voyage starts or ends in the EU or use for some reason a berth in EU ports may be 

taxed for carbon emissions [15]. The objective is to encourage investment in improvements to reduce 

GHG emissions through the reduction of the cost difference between new fuels and green technologies 

and traditional maritime fuels, e.g., HFO and MGO. Still, this measure according to Mundaca et al. [16], 

using a tax of US$ 40 per ton of CO2 emitted will reduce the ship CO2 emissions by 7.65% using as a 

reference the current level of international trade.  

To achieve these challenging goals, there are six major group measures with high potential of GHG 

mitigation, according to Bouman et al. [17]. The first one concerns hull design; as examples of this group, 

for a new ship, one can study its shape through numerical tools such as CFD and the use of test tanks 

to check the ship's resistance due to speed and thus try to optimize its shape. Also, lighter materials can 

be evaluated, better ballast management can be studied, the use of paints that avoid the fouling 

formation and the use of air lubrication system can be used to reduce the ship's resistance, in this last 

one by creating an air layer around the bottom of the ship. 

The economy of scale is the second group, it can be done to companies that work in deep-sea routes, 

since larger ships tend to be more efficient per freight unit, as it is well knowing that when doubled the 

cargo-carrying capacity, the required power increases by about two-thirds, thus reducing fuel 

consumption per freight unit. 

The third group of measures are focused on power and propulsion and are related to the design of 

power systems and machinery in a general way, using waste heat recovery to maximize the energy use 

or to install new wind propulsions systems, such as the use of kite and sails, to minimize the use of the 

propulsion system. Hybrid power systems could also be used, such as the use of batteries, which can 

be utilized in low power operations, such as manoeuvring or berthing operations. 

The fourth group is related to the fuel and alternative energy sources, i.e., the use of new fuels to 

substitute or at least in part the bunker fuels, such as HFO or MGO. As an example, the use of LNG 

and methanol that is already up and running on 619 and 39 ships [18], respectively, are intermediary 

fuels, since they reduce the production of CO2 per kWh [1]. In the future, it is expected to use green 

hydrogen or green ammonia to reach a total free carbon fuel, not only in the use of the fuel in the engines 

but in the entire supply chain. 
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Weather routing and logistic scheduling, the fifth group, consists of studying the operation of the ship or 

fleet to find the best logistics, where one can find an optimum speed to a pre-determined ship 

configuration, combined with the weather prediction along the route. This allows the shipowner to meet 

port demand on time and minimize fuel consumption per cargo per mile during the voyage. 

Last but not the least, the sixth group is about the operational speed of the vessel and its relationship 

with its design speed. Conventionally, the ships are designed to operate at their hydrodynamic boundary 

speed. However, the required power is proportional to the product of speed and resistance, and the hull 

resistance curve starts to rise exponentially as the speed increases. Therefore, a reduction in operating 

speed causes a reduction in fuel consumption per cargo per mile. 

Figure 1-2 shows some of the mentioned technologies along with their potential for GHG emission 

reductions. There are several studies about each mitigation measured, the presented values are based 

on [1], [10], [17] reports and studies. 

 

Figure 1-2 – Reduced GHG for each technology1  

As one can see, the carbon-free stage is only achieved by changing the fuel to non-fossil fuels such as 

hydrogen and ammonia, thus reducing greenhouse gas emissions completely. Still, in the middle 

ground, ships can be carbon neutral, i.e., using blue fuels such as biofuels and synthetic LNG and 

synthetic methanol.  

Also, the major players in the shipping industry started to invest in technology, studies, and development 

to produce neutral carbon ships and soon, free carbon ships. As an example, Maersk has implemented 

a research centre focused only on decarbonization in ships, CMA-CGM already has 26 ships in 

construction and 15 operating using LNG, Waterfront operates with 11 ships using methanol and they 

 
1 Figure developed by the author with the base figure source: https://conceptbunny.com/container-ship-johannesburg/ 
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have more than eight ordered, to be constructed until 2023, the Eastern Pacific Shipping is testing 

biofuel is their fleet, and NYK is expecting a ship that could be run with ammonia in 2022. 

The class societies are developing rules and good practices to help shipowners to develop new projects 

and operate their ships with green technologies. As an example, the American Bureau Society (ABS) 

developed guides to ship fuelled with ammonia [19] and using wind propulsion [20]. To finance all those 

projects and new vessels, a global framework was established by big financial companies to draft the 

Poseidon Principles, with the objective to enable financial institutions to align their ship financing 

portfolios with environmentally responsible behaviour and to encourage the decarbonization of 

international shipping. 

There is no single solution to the problem, a container ship operating on a route between Asia and 

Europe will certainly not have the same technical or operational solution compared to a smaller bulk 

carrier that sails only cabotage routes. A catchphrase commonly used by the shipping industry is that 

"there is no silver bullet", i.e., it will not be simple or easy to reduce emissions and for each ship and 

operation, a unique solution must be developed, at least in the short-term horizon. 

1.2 Problem 

The average lifespan of a merchant ship is around 25 years [21]. It is a challenge for shipowners to have 

energy-efficient ships during their entire lifespan. Even for a new building ship, it is a challenge to meet 

the new standards and rules to come and still be competitive and efficient in the shipping market. 

Improvements of existing ships can be divided into operational and technical, according to Psaraftis 

[22]. The former concerns operational improvements such as trim, weather routing, and ship monitoring 

and propulsion control systems, among others, and the latter involves equipment changes, like wind 

assist propulsion (WASP), new engines and others, as already mentioned. 

These improvements can reduce the ship's fuel consumption, however, most of them are better applied 

to new ships, where the ship can be better designed to adapt appropriately to the green technologies. 

As an example, the use of WASP to an existing ship in its best scenario barely achieve the 20% of the 

GHG reduction [23], mainly because the hull and the propeller are not prepared to a high leeway angle, 

which causes an increase in the resistance of the ship in addition of vibration in the propeller and shaft 

[24]. New ship projects such as the Oceanbird can achieve a GHG reduction of 90% with that technology 

[25]. Even if it does not reach this mark in the future, it is far above what is achieved by the current fleet. 

That difference in the impact of the technologies between existing and new ships occurs not only with 

WASP, but also with the use of new fuels, where the engines need to be adapted and new tanks must 

be installed for the storage of fuels such as methanol, LPG and ammonia, and this together with the 

loss of cargo space, can cause an increase in drag due to poor distribution of tanks on deck, which ends 

up not compensating the installed equipment. Not to mention the high investment required and the off-

hire period for the installation of the equipment, which requires good planning to achieve a financial 

return within the ship's lifetime. 
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The challenge is how to continuously optimize the fuel consumption of ships to achieve the targets and 

rules, and still be competitive, without installing new equipment, systems, or even new storage tanks 

from time to time, since this process is expensive and sometimes it is not possible to install or use new 

technology in an existing ship. Also, traditional fuel consumption represents an average of 66% of a 

voyage cost [26] and tends to increase due to the high cost associated with new fuels [21], as shown in 

Table 1-1. So, the problem does not only consist in reducing the GHG emissions but also, be more 

efficient throughout the operational life of the ship. 

Table 1-1 – Consolidated Fuel prices in the DNV GL study [21] 

 Fuel Price (USD/GJ) Price (USD/toe) 

Fossil 

MGO 13.8 578 

VLSFO 12.0 502 

LNG 7.8 327 

LPG 10.2 427 

Carbon-neutral 

Ammonia 22.9 959 

Methanol 29.8 1248 

MGO 40.0 1675 

LNG 30.7 1285 

 

One of the improvements that can be used by shipowners in existing ships, is to install a fuel optimization 

system that automatically adjusts engine rotations and propeller pitch to increase the propulsive 

efficiency of the ship. These systems optimize the fuel consumption in the route as a function of a set 

of variables such as speed, propulsive system parameters, and environmental conditions, which are 

monitored continuously throughout the voyages. The data can be used not only to calculate fuel 

consumption but also, to identify points of improvement, such as operational bottlenecks, preventive 

maintenance or situations that hamper the ship efficiency improvement. 

Such a system has been installed on a container ship with 126 m length of a Portuguese shipowner.  

The system is intended to reduce the impacts caused by environmental conditions during navigation, 

controlling the maximum fuel consumption. The automated optimization system can adapt the shaft 

rotation, the pitch angle of the propeller and the fuel rack position of the main engine to ensure that the 

fuel consumption does not exceed the set value, according to the inputs from the environment and fuel 

consumption and shaft thrust meter. Data collected from this ship's fuel optimization system is used in 

this dissertation. The system is further explained in Chapter 4.1.  

The ship sails off the continental coast of Portugal and to the Portuguese islands of Madeira and Azores. 

Figure 1-3 shows all voyages of the ship in one year. The voyages are normally made in a 

counterclockwise direction, that is, from the port of Lisbon to the Azores, to Madeira Island and then 

returning to the mainland.  

The data available for this study were collected during one year of the ship operation. The dataset 

includes data related to the propulsive system such as main engine power, shaft rotation and propeller 

pitch, also, from the auxiliary power generation system such as shaft generators and auxiliary engines, 
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as well as voyage related data like vessel position, speed over ground and wind condition. This 

generated a dataset of over 20000 records with more than 20 monitored variables. To find patterns, 

correlations or to use the data to improve the operation it is necessary to use numerical and statistical 

tools, otherwise, it will be difficult and time-consuming to analyse each group of data and try to find 

patterns to be used in an operational improvement. 

This is a challenge with the growth of ship automation, as larger datasets are generated that cannot be 

fully analysed by experts without proper numerical tools. So, automated processes with Artificial 

Intelligence (AI) and Machine Learning (ML) models have been used to help analyse these large 

datasets and to develop decision support tools [27]. The correlations between the data collected should 

be studied to use in the ML method. Also, pre-processing should be made in the data if necessary, and 

outliers and redundant variables should be removed so that the models can be more reliable. In addition, 

there are several ML methods, which should be studied and tested to assess which one can meet and 

predict the expected results. Each ship has its size, equipment, route, and own operation, so a model 

that fits each ship configuration must be found since there is no general model that can be used for all 

ships. 

 

Figure 1-3 – Ship route during a year 

1.3 Objectives 

The objective of this dissertation is to develop machine learning models that represent the operation of 

a fuel optimization system and to develop a prototype of a decision support system that provides 

predictions of the optimal fuel consumption of the ship's main engine. 

For this purpose, a one-year sample of data collected from a ship's automated fuel optimization system 

is used, which includes the propulsion system parameters, environmental conditions, and fuel 

consumption of the ship in operation 

The objective is to analyse different operational scenarios, such as the speed and the use or not of the 

shaft generator, and to check the total fuel consumption on the voyage. 
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The first step of this study consists of analysing the data collected during one year from a container ship 

operating off the coast of Portugal and the Atlantic islands. Statistical methods are used to analyse the 

correlations of each variable, remove outliers and identify patterns on system operation variables. 

With the dataset generated by the analysis process, machine learning methods are adopted and 

derived. The performance of the methods is assessed and then a model is developed to predict the 

speed and the fuel consumption of the ship. To build a model with good accuracy, a two-stage model is 

proposed, using robust ML methods, such as Artificial Neural Network (ANN) and Support Vector 

Machine (SVM). The first stage has the objective of finding a model that can predict the ship’s speed, 

and the second model, the main engine fuel consumption. 

Then, the two-stage model is used to build a decision support system. This system simulates the ship 

on a voyage under specific environmental conditions, changing the propulsive configurations to achieve 

a minimum desirable speed and minimizing fuel consumption.  

A code in Python computer language is developed to perform the data pre-processing, the statistical 

analysis and the machine learning tasks, as well as to predict the velocity and fuel consumption using 

the two-stage model and the decision support system.  

1.4 Work Structure 

Chapter 2 has the literature review. It describes the studies related to the use of machine learning in the 

maritime industry, not only to develop models for speed and fuel consumption prediction but also models 

used for weather routing, to predict delays and other predictions using machine learning. 

The theoretical background on machine learning is presented in Chapter 3, with a brief description of 

the machine learning models used to develop the prediction model, namely the artificial neural network 

(ANN) and the support vector machine (SVM). 

Chapter 4 analyses the data extracted from the ship's automatic fuel optimization system. It describes 

the data pre-processing and the new data that has been collected to enrich the dataset, such as draught, 

trim and all wave characteristics. 

The data correlation analysis is performed in Chapter 5, where an analysis of the voyages recorded by 

the ship is conducted. Also, a study on the impact of the use of the ship's fuel optimization system, and 

an analysis of the impact of the use of the shaft generator are conducted. 

Chapter 6 details the construction of the machine learning models, with the hyperparameters used to 

find the best models that could predict with good reliability the main engine fuel consumption and the 

speed over ground, with a focus on the construction of the decision tool. 

The decision support system is presented and demonstrated in Chapter 7 and conclusions and future 

works are provided in Chapter 8 that also discusses other uses of the machine learning models 

developed in this study. 
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2. LITERATURE REVIEW 

2.1 Machine Learning in the maritime industry 

Machine learning (ML) algorithms are programs that can learn from data and improve from experience, 

without human intervention. Even in the shipping industry machine learning algorithms have been used 

for a wide variety of studies and improvements. Jain and Deo [28] reviewed the state of the art on use 

of the Neural Network method in ocean engineering. The authors found in that time that this method 

was mainly used to predict a result of some random variables such as wave height (both temporal and 

spatial cases), tidal levels, wind speeds and other metocean parameters, moreover, there were a few 

studies to predict structural forces due to wind and wave loads and structural damage indicators. 

More recently with the growth of the knowledge about machine learning, computers processors, and 

digitalization of all the areas, there is a growing use of ML techniques to analyse other behaviours of the 

shipping industry that not only about the environmental condition, resistance force and fuel consumption 

prediction. As an example, Rawason et al. [29] studied several different machine learning methods to 

predict the risk of an incident due to severe environmental conditions. The studies resulted in a good 

prediction of incident cases, but with many false-positive cases, given that the complexity of an accident 

and incident causes. The authors discussed similar cases where if there is an accident, there are also 

several non-accidents before that, and that is quite complex to analyse with just a binary ML model 

classification. 

In the same way, Viellechner and Spinler. [30] studied different regression prediction models to foretell 

the time that a ship will be delayed considering weather disaster, piracy risk and chokepoint congestion. 

Like other studies, they found that Neural Network (NN) and Support Vector Machine (SVM) have the 

best accuracy, which considers the precision of both delay and on-time predictions, compared to all 

delay predictions. Also, the models have a good sensitivity, which considers only the prediction of delay 

values to this problem.  

Tsaganos et al. [31] used the open-source software Wake, a cost-free data mining tool, to study different 

ML algorithms to predict the marine engines faults, due to its importance to guarantee high reliability in 

ships operations. The authors found a good predictive model using the regression trees algorithm with 

the monitored variables from the engine, such as total power, the rotational speed of the engine, exhaust 

gas temperature, ignition, and others. 

Outside the areas of technical and dynamic analysis, ML has also been used in studies involving 

different subjects. Wang et al. [32] developed a Bayesian model to predict the probability of bankruptcy 

of oil tanker shipping companies. Fabregat et al. [33] used machine learning tools to estimate and 

compare the impact of cruisers on the pollution around the ports. Sanfilippo and Chikkagoudar [34] 

applied unsupervised machine learning methods to find illicit trade using merchant ships. Zhou and Thai 

[35] studied models to predict personal injury accidents in tanker shipping companies. Bramer et al. [36] 

analysed a Naïve Bayes model to identify anomalous behaviour of the shipping companies in the 

business. 
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There are also studies using machine learning to speed up the process of analysis of models already 

consolidated. These models use results of numerical models as a dataset for the learning model, thus 

having a prediction model that can give much faster answers than the numerical model studied. As an 

example, Boogaard et al. [37] studied a Geodesic Convolutional Neural Network (GCNN) model to 

predict the thrust and torque coefficient and the open water efficiency of a ship propeller based on 

Computational Fluid Dynamics (CFD) simulations. Moreira et al. [38] studied an artificial neural network 

model based on ship travelling simulations of a weather routing system, to predict ship speed and fuel 

consumption. Also, Krata et al. [39] used the same weather routing system to develop a Bayesian 

Network to predict the ship’s speed based on propulsion system variables and wave configuration. The 

authors focused to develop a trustable model to be used with real observed ship data in the near future. 

2.2 Predict ship resistance in the design phase 

Rudzki and Tarelko [40] studied many methods to calculate ship resistance and argued that there are 

two stages where it can be performed some influence in the ship propulsion performance. The first 

would be the design or project stage, and the second is the operational stage. The first stage is the 

study of the ship's behaviour and design, where its hull shape will be developed, the propeller designed, 

the necessary torque in the shaft defined, and all the other systems and features that influence fuel 

consumption will be studied and projected. The operational stage is influenced not only by the results 

of the first stage but also by several other operational factors that may not have been fully mapped in 

the first stage, such as fouling in the hull and propeller, ship vibrations and equipment malfunction. 

To have a fuel-efficient hull design and an efficient propulsion system, various methods can be applied 

in the first stage to estimate the ship resistance for each ship configuration studied. These theoretical 

models are based on physical principles, i.e., they formulate the physical behaviour of the ship to 

calculate each part of the total resistance equation, e.g., the hydrodynamic relationship between the hull 

shape and sea condition, or hydrostatic calculations to determine the trim and stability of the ship.  

To calculate the total resistance, it could be used in the design phase empirical or semi-empirical 

methods. These methods are regression formulas based on a statistical analysis of empirical data. From 

the former method, it can be used the recommended procedure by the International Towing Tank 

Conference (ITTC) [41], where an analytical methodology is presented to predict the delivered power 

and the propeller rate of revolution. For the semi-empirical methods, as an example, it can be used the 

Hollenbach method [42] or the Holtrop & Mennen method [43], [44], where the authors present methods 

to calculate the still water resistance based on regression analysis of test models in towing tanks. Being 

the latest, one of the most used models for ship performance studies and predictions in the project 

phase [45].  

But those methods, according to Bertram [46], are outdated and overestimate the total resistance of 

modern ships as they do not consider the mechanical and hull efficiencies presented in more recent 

designs. Also, Aldous [47], [48] argued that the extrapolation is based on a small number of experiments 

and extrapolations to different types of ships could have high uncertainty. 
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The added resistance in waves can be calculated by the method developed by Faltinsen et al. [49], the 

method uses the transverse drift force and the yaw moment on a ship in regular waves to calculate the 

added mass based on the strip theory of the Salvesen et al. [50]. Also, numerical methods can be used 

to calculate the total resistance in waves since the well-known Mitchel theory [51], [52] and Rankine 

source method, as in [53]. 

Some of those cited methods can be used to calculate ship resistance in still water conditions. To try to 

compare these methods with existing ships, Dinham-Peren and Dand [54] studied and analysed 

measurements of an operational ship intending to determine the actual performance of the vessel in 

calm waters. To verify and compare the monitored data with the calm water predictions the authors 

proposed to limit the data points used, using them only if the following conditions are fulfilled: 

• Wind speed less than 10 knots. 

• Significant wave height less than 2 metres. 

• Drift angle less than 5 degrees. 

• Current less than 1 knot. 

• Shaft rotation between 0 and 120 rpm. 

• Successive speed samples with a difference of less than 0.5 knot/minute. 

With these configurations, the authors aimed to get a calm water configuration inside a normal 

operational measurement, and if comparing with different operational periods, it can be verified if the 

ship is performing better or worse, or even verify the fouling in the hull or the wind effect. Moreover, 

Lakshmynarayanana et al. [55] used the same method to separate and calculate the wave resistance 

in an operational data set, using that to develop a parametric model to wave resistance force for that 

specific ship. Both studies show how distant the theoretical forecast is when compared to the operational 

data, as they differ from the expected results.  

This difference occurs because the total ship resistance has many factors that can influence it, as shown 

in Larsson and Baba [56], and many factors need to be monitored to calculate it to decrease the 

uncertainties, as seen in Pedersen and Larsen [57], also the operational routine has many changes that 

are not mapped or not properly controlled as hull cleaning, fouling in the propeller, bad machine 

operations, trim change, leeway angle, vibrations in machine operation, among others, as shown in 

Figure 2-1 and Figure 2-2.  

As an example, Park et al. [58] investigated the uncertainties of the KVLCC2 using the ITTC method 

[41] and concluded that there is an increased resistance caused by short and moderate wavelength 

cases, these been 16% and 9% respectively. So, to correct predict or reduce the uncertainties of the 

prediction of the resistance it must be calculated the uncertainties to each variable that can influence 

the resistance as in Figure 2-1, this may be unrealistic to do even for a small class of ships. Even the 

use of CFD as in [59], [60] cannot absorb all the variables and well predict a ship operational resistance 

with great accuracy due to the lack of operational information and difficulty to simulate all events that 

may occur on the route, such as breaking waves conditions, as in [61]. 



12 

 

 

Figure 2-1 - Resistance Decomposition based on Larson and Baba division [56] 

 

 

Figure 2-2 – Ship efficiency based on Pedersen and Larsen [57]  

2.3 Machine Learning in Fuel Oil Consumption prediction 

To try to correctly predict the fuel consumption and avoid errors due to the uncertainties present in the 

operational routine, some studies have been developed in the so-called black-box model, when the 

model is driven only by data and statistical methods, like the use of ship dataset and machine learning. 

Parkes et al. [62] studied the data from three sister ships with more than 120.000 records to predict the 

shaft power of each one. They used as input variables the wave height, true wind speed, apparent wind 

direction, draught, trim and the speed over ground to predict the power required by the vessel and 

developed a sensibility analysis around the number of hidden layers and parameters. Also, a 

comparison with regression methods presented in [63] was analysed, where the model fits well until the 

maximum measured speed. It is important to notice that the author did randomised analyses, and the 

results are more profitable where they had more trained data, between 11 and 17 knots, after and before 
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this range the results have a higher variance. When a machine learning solution is developed, it is 

important to have a good balance in the data weight and know the boundary limits of the prediction. The 

authors investigated the number of data required for model convergence, and the model limits were 

investigated, comparing, and analysing which variable is more necessary to reduce model uncertainties. 

The final error was obtained around 8%. 

Wang et al. [64] developed a model that uses a wavelet neural network (WNN) combined with the 

parametric ship models to optimize a ship energy efficiency for a ship cruise working in short distances. 

The model was developed to predict the water depths and the wind speed using the neural network and 

uses it as an input to the parametric ship resistance calculation, thereby calculating the curves 

correlating the engine speed with the fuel consumption. The model presented a good result and was 

implemented in the ship operational routine, reducing by 19% of the total fuel consumption. 

Gkerekos and Lazakis [65] developed a weather route model based on the documented ship 

performance and climate conditions, i.e., wave and current characteristics, where the input to calculate 

the optimal route is based on ANN model training combined with a weather prediction consideration and 

a modified Dijkstra’s algorithm. This model calculates the best route to minimise the Fuel Oil 

Consumption (FOC), on a fixed route between France and Angola. 

Peterson et al. [66] investigated and compared the use of ANN and Gaussian process models to predict 

the propulsion power of a ferry in the Faroe Islands. It was used two-month data from the speed through 

water (STW), fuel consumption, relative wind speed and angle, propeller pitch, rudder angle, trim angle, 

and the distance from the sea surface of two points along the ship’s route. Despite both models having 

a reliable performance, the Gaussian model had a poor accuracy nearby the limit of the scale, which 

means that one must be careful to choose the limits of the variables to predict consumption after the 

model has been built, otherwise the results may be unrealistic. The study concludes that the ANN model 

is more robust and tolerates projections outside the range studied compared to the Gaussian model.  

Bal Besikci et al. [67] studied an ANN model to develop a decision support system (DSS) to assist the 

crew to reduce fuel consumption. The resulted determination coefficients (𝑅²) were low compared to 

other studies presented in this chapter, i.e., 0.834 for training data and 0.759 for validation data, this 

occurred due to the use only of the noon report, which in this case was only one per day and with low 

accuracy due to human errors. With that, the authors only have about 200 samples to train, test and 

validate the model, which is also low compared to other studies. The DSS developed can verify different 

configurations of trim, RPM, velocity, and pitch of the propeller to find the best sailing configuration to 

reduce the fuel consumption, estimating the best solution to reach the destination on time. 

Pederson et al. [57] were pioneers to investigate the use of ANN to predict ship resistance based on the 

full-scale measurements of ship speed, wind speed and direction, sea and air temperature, in different 

load conditions. Also, they compared the results with the empirical and data-driven methods based on 

hydrodynamics relationships (e.g., Holtrop and Mennen) and concluded that the use of ANN is a better 

model to use in predicting operating resistance with differences ranging from 5 to 20 percentage points 

compared to theoretical models. 
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Farag et al. [68] studied an ANN prediction model for an oil tanker with a route between Sultan Qaboos 

Port, in Oman, and Rotterdam, in the Netherlands. The authors studied the correlation of 11 variables, 

related to wave, wind, current and ship speed, with the fuel consumption and modelling an ANN using 

a feed-forward neural network with the polynomial regression model in the hypotheses function. The 

results presented show a good prediction model with 𝑅² around 0.98. The authors also used the same 

route studied as an example of how to predict the fuel consumption before starting to navigate and how 

to study a just-in-time (JIT) scenario using the model. 

A deep feed-forward neural network (DFN) was developed by Lazakis et al. [69], where the authors 

developed a process to use the ocean environmental data, like wave period, wave height, wind speed 

and angle, and water temperature, and the ship configuration as draught, speed over ground and 

heading, to develop and analyse the loss of the cost function of a fuel prediction model. They developed 

540 models using DFN to find which has better results, changing the hyperparameters as the number 

of hidden layers, the number of neurons in hidden layers, the learning rate, the gradient optimizer, and 

the dropout parameter, this last one was used to prevent overfitting. The final model has an error of 

3.5% compared to the test data. 

Tuan Hoang et al. [70] developed an ANN model to predict diesel engine performance and exhaust 

emissions using biofuel instead of diesel. The authors were successful in estimating the characteristics 

of the emissions, e.g., NOx, CO and CO2, and its performance, e.g., torque, main engine power and 

exhaust gas temperature. Although the study was not focused on the maritime industry, the developed 

model is important because it can have high precision in the engine performance with different fuel 

mixture proportions, which is extremely useful for the maritime area due to the current moment of 

migration towards less polluting fuels and with less GHG emissions, with all the uncertainties about the 

new dual-fuel engines. 

A combination of ANN and Monte Carlo simulation was used in Tien-Anh [71] to develop a prediction 

method to fuel consumption in the main engine of a bulk carrier. The authors studied a two-year dataset 

from noon reports to develop this model, also dividing it into three operational states of the main engine 

based on the Maximum Continuous Rating (MCR), been them 65%, 85% and 100% of the MCR. The 

ANN was used to develop the prediction model and using the Monte Carlo simulation to analyse the 

correlation between each variable used, the author achieved a good model with a high coefficient of 

determination, also, it can analyse at each stage of main engine operation, which variables have the 

greatest impact on fuel consumption. 

Despite ANN being one of the most used models in FOC prediction, it is not always the best prediction 

model to be used, even if it can be scaled into a deep learning method, and with that find patterns, those 

other methods cannot. In Gkerekos et al. [72], a large comparison study was conducted to either 

compare two databases, noon reports and automated data, and different learning methods, e.g., 

Support Vector Machines (SVM), Artificial Neural Network (ANN), Random Forest Regressors (RFRs), 

among others. Using the features as main engine RPM, ship speed, wind speed and direction, sea state 

and direction, and draught, and changing the hyperparameters for each training model, a large analysis 

was done, analysing the convergence of each model, and comparing the best results. All models 
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reached good prediction results of the testing dataset, with a coefficient of determination greater than 

0.85, with the SVM being the best result with 0.91. 

Other studies analysing fuel prediction within machine learning, in Hu et al. [73] compares the Back 

Propagation Neural Network (BPNN) with the Gaussian Progress Regression (GPR), where both 

methods resulted in a high value of the coefficient of determination about 0.98, to predict a fuel 

consumption using wind, wave and ship routing configuration as input data. 

Kim et al. [74] studied the difference between the models of Artificial Neural Network (ANN) and Multiple 

Linear Regression (MLR) to a deep-sea route of a 13000 TEU container ship, where in this case ANN 

had a better model with a score of 0.97. The authors also studied the use of the least absolute shrinkage 

and selection operator (LASSO) regularization to investigate the curve fitting of the input variables, 

getting a better result when this regularization was applied, as it discards the variables that least 

influence the fuel consumption. 

A support vector regression (SVR) model was developed by Kim et al. [75] for a 200,000-ton cargo bulk 

carrier, the objective, in addition to developing the main engine power prediction model, was to compare 

the machine learning method to the method presented in ISO 15016. The result showed that the model 

predicted from the data collected directly from the ship are more reliable than those derived from ISO 

15016 for that specific vessel. The model presented a good prediction with a coefficient of determination 

about 0.89, better than the model presented by the ISO that resulted in 0.3. This difference occurred, 

according to the authors, because the ISO model assumes static sea conditions, and this is more evident 

when compared with the ML model for cases with the severe sea. 
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3. THEORETICAL BACKGROUND 

Machine learning is often defined as a “Field of study that gives computers the ability to learn without 

being explicitly programmed”, a definition attributed by Arthur Samuel based on his studies in the field 

[76], where the author explains that by programming computers to learn, it is possible to eliminate the 

need for much of the effort in detailed programming, the author has studied computer games and 

artificial intelligence. A more technical definition is used based on Thomas Mitchell definition, “A 

computer program is said to learn from experience E with respect to some task T and some performance 

measure P, if its performance on T, as measured by P, improves with experience E”, in the Introduction 

Chapter of his book [77].  

The methods can be divided basically into supervised and unsupervised learning. The first is used to 

learn from well-defined input and output sources, comparing each iteration with the predicted results 

and the correct results given, and minimizing the error for the next analysis and learning iteration. It can 

be a regression model when it predicts continuous-valued output, e.g., price of commodities, fuel 

consumption or estimating life expectance, or classification model, when it is an output of discretized 

variables, in other words, there is a classification in the predicted result, some examples are: verify the 

colours of an image, diagnosis of diseases such as cancer, facial recognition and identify financial fraud. 

Unsupervised learning is a method that can discover hidden patterns in the data without the need to 

direct what is expected. It is a powerful tool to analyse large datasets because it can identify and 

segment patterns when it is impractical for a human to propose a trend with a large amount of data 

provided. This method is largely used to segment the customers in shops and websites, or biology 

studies for genetics and species, and also, in day-by-day when the websites suggest a new book, film 

or news, it is an unsupervised machine learning method acting behind the curtains. 

Currently, there are many types of machine learning algorithms, part of them is exemplified and 

categorised as supervised and unsupervised and shown in Table 3-1. There are also the categories of 

Semi-supervised and Reinforcement, as well as other ML models. In [78] one can find the use of each 

one and some descriptions on how they work. 

Table 3-1 – Example of Machine Learning Model Types 

Supervised 

Classification 

Naïve-Bayes 

K-Nearest Neighbors Classification (KNN) 

Suport Vector Machines 

Artificial Neural Network 

Regression 

Linear Regression 

Suporte Vector Regression (SVR) 

K-Nearest Neighbors Regression (KNN) 

Artificial Neural Network 

Unsupervised 

Dimensionality Reduction Multidimensional Scaling 

Clustering 
K-Means 

Gaussian Mixture Models 

 



18 

 

3.1 Artificial Neural Network Method 

One of the most used methods to predict results and translate and recognise pictures and sounds is the 

Artificial Neural Network method (ANN). The method has been used for many functionalities such as 

face-recognizing [79], automated driving cars [80], sound recognition [81], among others. In the shipping 

sector, some studies are using it to predict fuel consumption and ship speed, as well as for other 

prediction models as shown in Chapter 2.1. 

Artificial Neural Network (ANN) is a type of machine learning method inspired by the decision-making 

process of the biological human central nervous system that uses nerve cell networks (neurons), where 

the dendrites (Figure 3-1) receive all the sensory, auditory, visual and taste information, processes this 

information in the nucleus and forwards the information to the axons. This output is what it uses to send 

signals to other neurons and restart the process, with new assimilation, analysis and new signal. This 

occurs until a response to the stimulus or thought is formed [82]. The ANN mimics the brain, making the 

same composition and using algorithms to solve problems and find patterns as shown in Figure 3-1.  

Conventional computer programs are used to replace, enhance or speed up a human calculation or 

other activity, where the computer follows a set of instructions (algorithms) to solve a problem. Machine 

learning methods, as the ANN, oppositely, learn by example, using a large number of highly 

interconnected processing elements (nodes) that work in parallel to solve a specific problem. 

 

Figure 3-1 – Structure of a typical neuron and a typical ANN2  

This method is widely used in data mining from large datasets due to the increased use of the internet, 

automation, and internet of things (IoT) [83] such as medical records, web clicking, biology, quantum 

chemistry, face identification, engineering development and other systems with many nonlinear 

relationships involved between its elements. It is used for applications that cannot be programmed by 

hand, e.g., autonomous vehicles, images recognition, stock market prediction and medical diagnosis.  

Neural networks are specific, in other words, ANN is built to solve a specific type of problem. In a general 

way, it can be used as a tool for prediction, forecasting, estimation, classification, and pattern recognition 

 
2 First figure source: Southampton Machine Learning Course. 
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in different areas as explained above, but there is no ANN built to a universal purpose, solution or study, 

to each case one needs to build a particular network.  

3.1.1 Layers 

ANN has three basic sections each one composed of nodes, i.e., Input Layer, Hidden Layer and Output 

Layer, as shown in Figure 3-2. The Input Layer, as the name suggests, is the first layer of a neural 

network where the input nodes are allocated, each of these nodes represents an input variable to be 

analysed, called as features and represented as 𝑥𝑗
(𝑖)

, which is the value of the feature 𝑗 in the (𝑖𝑡ℎ) 

training example for the training set. All features are stored in a vector form represented by 𝑎(1), as 

shown in Figure 3-2. It is important to mention that in cases with just a few features the matrix and vector 

solution is faster compared to the other solvers.  

The hidden layer is a layer of nodes between the input and output layers (Figure 3-2) and can be single 

or multiple. Neural Networks with more hidden layers can go deeper into the learning process and find 

patterns and associations that are not possible with a few layers, this is an example of the so-called 

deep learning. The hidden nodes belonging to this layer can also have different quantities for each case, 

and even for each hidden layer in the network. There are some studies about how many hidden nodes 

one can use to have a good performance of the model [84], [85], also, an analysis of the number of 

hidden nodes and layers was performed in this analysis to find the better ANN configuration that predicts 

a good result without overfitting. The nodes are represented by 𝑎𝑗
(𝑙)

, where 𝑗 is the position of the value 

in the hidden layer 𝑙.  

Finally, the output layer within the output nodes can be with single or multiple nodes, where it can be a 

binary or probabilistic value (classification problem), like cancer analysis or face identification, or a 

continuous value (regression problem) like the fuel consumption, gas emission or ship speed. This layer 

contains the results from the prediction solution, and it is represented by the vector ℎΘ(𝑥), called 

hypothesis function or activation function [82]. 

 

Figure 3-2 – Neural Network Example 
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3.1.2 Hypothesis Function 

The hypothesis function, or activation function, is the function that calculates the output of a given node. 

This function is the result of the summation of the multiplication of each node in the previous layer 𝑙 to 

a parameter Θ(𝑙), also called weight as in equation (3.1), or it can be represented in a vector form, as a 

multiplication of two vectors as in equation (3.2). The results of this process represent the total influence 

of each previous node in the actual active node. 

Still, the parameters or weights, represented by Θ(𝑙), are the variables that represent the influence 

between two nodes to obtain the net input of a subsequent node in the subsequent layer. One can see 

a graphical example in Figure 3-4. 

 ℎ𝜃(𝑥(𝑖)) = ∑ 𝜃𝑗𝑥𝑗

𝑛

𝑗=0

 (3.1) 

 ℎ𝜃(𝑥(𝑖)) = 𝜃𝑇𝑥(𝑖) = [𝜃1 𝜃2   … 𝜃𝑛] [

𝑥1
𝑥2

…
𝑥𝑛

] (3.2) 

Some mathematical functions can be used as an activation function, as an example, one of the most 

used functions to calculate probabilistic prediction is the sigmoid function (3.3), as it results in a value 

from 0 to 1, and the probability of something happening is also in the range of 0 and 1, it fits perfectly 

as the activation function in classification problems. 

 ℎ𝜃(𝑥(𝑖)) = 𝑔(𝜃𝑇𝑥(𝑖)) =
1

1 + 𝑒−𝜃𝑇𝑥(𝑖) 
(3.3) 

However, nor the probabilistic analysis or the classified analysis fit in this study since almost all the 

variables are continuous, so some of the functions that fit for this regression method are presented. 

The hyperbolic tangent activation function (3.4) is similar to the sigmoid function, a called s-shape curve, 

but the results are between the values -1 and 1, with that the input that causes negative impacts can be 

mapped as strongly negative results and also, the near-zero input will be mapped as a near-zero result. 

 ℎ𝜃(𝑥(𝑖)) = 𝑡𝑎𝑛ℎ(𝜃𝑇𝑥(𝑖)) =
𝑒𝜃𝑇𝑥(𝑖)

− 𝑒−𝜃𝑇𝑥(𝑖)

𝑒𝜃𝑇𝑥(𝑖)
+ 𝑒−𝜃𝑇𝑥(𝑖) 

(3.4) 

Another very useful and used function is the Rectified Linear Unit (ReLU) (3.5), as one can see, the 

ReLU is half rectified (from the bottom). The function 𝑅(𝜃𝑇𝑥(𝑖)) is zero when the result is less than zero 

and is equal to the result value when it is greater than or equal to zero. This function is one of the most 

used in neural network models. 

 ℎ𝜃(𝑥(𝑖)) = 𝑅(𝜃𝑇𝑥(𝑖)) = max (0, 𝜃𝑇𝑥(𝑖)) (3.5) 

In Figure 3-3 one can see the expected result for each function presented. 
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Figure 3-3 - Activation function plot examples 

 

3.1.3 Bias Node 

Another important component of the ANN is the bias node. This node is added in each input and hidden 

layer and normally has the value as 1 or -1, as exemplified with the unitary neuron in Figure 3-4. This 

node is also multiplied by a weight, and it is intended to provide to each equation a unitary constant 

value that could be used to shift the solution, as shown in Figure 3-5, and help to converge the weight 

calculation and efficiently minimize the cost function, as it complements the equation with a constant 

value. 

 

Figure 3-4 - Example of use of hypothesis function in the first layer 
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Figure 3-5 - Example of the impact of bias node in the output 

3.1.4 Cost Function 

The cost function is the function that calculates the total error of the network comparing the predicted 

results with the expected results. This error value represents the loss or cost associated with the 

network, which is sometimes referred to as objective function due to the objective of the ANN is to 

minimize this function. 

There are a few types of cost functions that can be used in ANN, e.g., Mean Squared Error (MSE), 

Squared Error (SE), Sum of Squared Errors (SSE) are the popular ones, there are other functions that 

can also be used as objective functions, for instance, Exponential, Hellinger Distance and Cross-

entropy. 

In this study, the MSE equation (3.6) is used to evaluate the cost of each iteration until the convergence 

and to evaluate the cost of the testing and validations sets. 

 𝐽(𝜃) =  
1

2𝑚
∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2
𝑚

𝑖=1

 (3.6) 

Where 𝑚 is the number of sample data, ℎ𝜃(𝑥(𝑖)) is the predicted value calculated using the hypothesis 

function, and 𝑦(𝑖) is the real result for the 𝑖𝑡ℎ example. 

Still, to avoid the Overfitting problem it is common to use a so-called regularization value, represented 

by 𝜆, that penalizes the parameters' values 𝜃. The regularization value is used to avoid the overfitting 

problem since it helps minimize the influence between the nodes. The new cost function is represented 

by the equation, and one can see that the parameter penalizes the square of the sum of all the 

parameters. 

 𝐽(𝜃) =  
1

2𝑚
[∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))

2
𝑚

𝑖=1

+ 𝜆 ∑ 𝜃𝑗
2

𝑛

𝑗=1

] (3.7) 

where 𝑛 is the total number of parameters. It is important to notice that the parameter 𝜃0, corresponding 

to the bias value influence, is not penalized. 
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3.1.5 Gradient Descent Algorithm 

Gradient Descent is the optimization method used in an ANN to find the combination of weights that will 

minimize the cost function. With this method, at each iteration, the weights are updated descend down 

the slope of the gradients to find the minimum error point as in equation (3.8).  

 
𝜃𝑗 ∶= 𝜃𝑗 − 𝛼

𝛿

𝛿𝜃𝑗

𝐽(𝜃) (3.8) 

Where 𝛼 is the learning rate of the network, it is a value that determines the size of the step that is used 

to move towards the global solution, i.e., global minimum. It can be static, or it can change in function 

of the network’s error rates, if the error falls, the learning rate can decrease. In Figure 3-6, one can see 

how the algorithm works, the size of each step is defined by the size of the learning rate, and it is 

expected with a good selection of the learning rate, the cost function will decrease and stay constant 

after a certain number of iterations. 

 

Figure 3-6 - Graphic example of how the gradient descent works 

It is important to mention that the choice of learning rate influences the velocity to find the result and 

sometimes the non-convergence of the solution. For very low values the solution will take many 

iterations to find the minimum point as the descend step size is too small, for high values in the opposite 

way, it may have a non-convergence since the solution is oscillating around the minimum solution and 

never reach the minimum error. 

 

Figure 3-7 – Example of a large learning rate with a non-convergence 



24 

 

3.1.6 Overfitting and Underfitting 

Three types of datasets are used to develop an ANN. The first one is the training set that corresponds 

usually to 60% of the samples and is used to calculate the parameters of the network. The second, the 

cross-validation set, is used to calculate the cost of each iteration and to minimize the overfitting problem 

and stop the iteration when it is already converged and stopped improving, this set is about 20% of the 

samples. The testing set, with the final 20% of the samples, is used to check how accurately the network 

has been trained.  

To verify how a model is performing one need to compute the train set error, using the Cost Function 

𝐽(𝜃), but this is an optimistic estimation of the generalization error since it is calculated just in the training 

set. Therefore, it is important to also calculate the error of the test and cross-validation sets and compare 

each, to find if the model fits in all sets. 

When a learning algorithm did not perform as expected with high error it will be due to either a high bias 

problem or a high variance problem, also called underfitting and overfitting problems. An underfit 

machine learning model will have high values on the cost function performance on the training and test 

data and will not predict well, it occurs when the model can’t perform in the training data nor generalize 

to test data, due to a lack of features, of a low number of samples. 

Overfitting occurs when a network performs well with a specific training set and minimizes the error, but 

when used with a testing set, the error rate is much larger, which means it has a high generalization 

error. This often occurs when a network pays too much attention to unnecessary details called noise 

instead of paying attention to the signal. 

 An example of underfitting and overfitting is shown in Figure 3-8. One can see in that case a 

linear solution is underfitting the model and a high degree polynomial is overfitting, where all the training 

data match with the model results but will not work properly with other amounts of data. Figure 3-9 

shows what the cost function might look like concerning the order of the polynomial, where 𝐽𝑐𝑣 is the 

error from the cross validation set and 𝐽𝑡𝑟𝑎𝑖𝑛 is the training set error.  

 

 

Figure 3-8 - Example of Underfitting and Overfitting 
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Figure 3-9 - Cost function result in the function of the polynomial degree  

To avoid the underfitting and overfitting problem, one can change some variables and methods to 

calculate the neural network: 

• Add polynomial features– Verify not only if the linear solution fits well but try different inputs 

with the interaction between the variables. This could also increase the effectiveness of the 

model, where one can find a model that needs less training set to achieve the result. 

• Change regularization value – Change from a small to a large value, e.g., 0.001 to 100. The 

decrease of λ tends to fix the high bias and oppositely, increase λ, tends to fix the high 

variance. 

• Try a different set of features – Study which feature has an impact on the result. 

• Get more training data – Get more samples and datasets to improve the model.  

 

3.1.7 Stages 

The stages in a feedforward artificial neural network are Forward Propagation, Error Calculating, 

Gradient Calculating, and Weights Updating. They are briefly explained below. 

Forward Propagation 

In this first step of the ANN, each value allocated in each node is calculated using the hypothesis function 

with the values from the previous layer, as explained in chapter 3.1.2, in that way calculating each node 

until the final result. Normally, the parameters are used with a unitary value, but there are some scripts 

to randomize these first values to try to improve the efficiency of the solution. 

In Figure 3-10, one can see an example of how the forward propagation works, where each input is 

multiplied by a parameter and summed to others, including the bias node, to have as an output the next 

node in the next layer. 
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Figure 3-10 – Forward Propagation Example 

Calculate the total error 

The cost function is calculated as explained in chapter 3.1.4, to verify the error of the actual parameters 

in the ANN and to conclude whether it has an acceptable error and converged or has failed to converge 

and need new iterations to find a better solution. Also, it compares with the previous cost function result 

and verifies whether if the minimum value has already been reached. In this stage, one can previously 

choose the value of the regularization parameter to prevent outfitting, if necessary. 

Calculate the gradients and update the weights 

If the difference of the calculated cost function with the previous solution is large, a new iteration is 

needed. So, with the total error of the neural network calculated, the gradient descent algorithm is 

applied, as explained in chapter 3.1.5, in each node to find each node error and adjust each node 

parameter, with this, a new iterative process is restarted until the minimum value of function cost is 

reached. 

3.2 Support Vector Machine (SVM) 

Another type of supervised machine learning method is the Support Vector Machines (SVM) also used 

to analyse data for classification and regression analysis. It was developed by Boser et al. in 1992 [86] 

and it works differently as in ANN and other machine learning methods. Instead of minimizing the cost 

function, as explained in Chapter 3.1.4, this method is a training algorithm with the objective to maximize 

the margin between the training patterns and the decision boundary Figure 3-11, i.e., it finds a pattern 

in the data using vectors to define the decision boundary. SVM is largely used in classification problems, 

but one can modify the so-called kernel, as explained in Chapter 3.2.2, to be used as a clustering model, 

i.e., unsupervised learning, or a regression model, called Support Vector Regression (SVR) to be used 

with continuous variables as in the present study.  
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Figure 3-11 - Example of SVM 

3.2.1 Optimization objective 

This method uses a modified logistic regression method, previously presented, to do the supervised 

classification of the results. Using the sigmoid function, Eq. (3.9), for an expected result equal to 1, it is 

desired that ℎ𝜃(𝑥) is approximately 1, that is, that the model has a good prediction and for this 𝜃𝑇𝑥(𝑖) 

must be much larger than zero. On the opposite side for a final value of zero, one expects ℎ𝜃(𝑥) to be 

close to zero and thus 𝜃𝑇𝑥(𝑖) to be much smaller than 0. In Figure 3-12 one can see a graphical 

explanation. 

 
ℎ𝜃(𝑥) =

1

1 + 𝑒−𝜃𝑇𝑥
 (3.9) 

 

 

Figure 3-12 – Sigmoid function sketch 

The form of the logistic regression cost function is modified to facilitate computational calculations and 

simplify the optimization method. For the best visualization of the solution, the cost function (Eq. (3.10)) 

and its altered form (Eq. (3.11)) are shown in Figure 3-13 for the conditions where the result is zero or 

one. The proposed modification makes that for cases where the result is equal to 1, for 𝜃𝑇𝑥(𝑖) values 

greater than 1, the cost function has its results at zero, being a straight line as in Figure 3-14 and for 

values less than 1, it is modified to a line segment parallel to the original cost function, similarly, the 

curve for the results (y) equal to zero is also modified, as shown in Figure 3-14. These new curves are 
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called as 𝑐𝑜𝑠𝑡1 and 𝑐𝑜𝑠𝑡0, with the first function to get the expected results as y=1 and the second as 

y=0. 

 𝐽(𝜃) =  −(𝑦 log ℎ𝜃(𝑥) + (1 − 𝑦) log(1 − ℎ𝜃(𝑥))) 
(3.10) 

 
𝐽(𝜃) =  −(𝑦 log

1

1 + 𝑒−𝜃𝑇𝑥
+ (1 − 𝑦) log(1 −

1

1 + 𝑒−𝜃𝑇𝑥
)) (3.11) 

 

 

Figure 3-13 – Cost function of the logistic regression function 

 

Figure 3-14– Cost function and the altered cost function of the logistic regression function 

The total cost function is presented in Equation (3.12), but this is now adapted with the new functions 

𝑐𝑜𝑠𝑡1 and 𝑐𝑜𝑠𝑡0, and in addition the regularization parameter 𝜆 is changed so that instead of giving high 

weight to the second part of the equation, it will be focused on the first part, i.e., unlike the ANN method, 

this method prioritizes to minimize the first part of the cost function and not only the sum of 𝜃𝑗 parameters 

(3.13). The new parameter 𝐶 = 1/𝜆 is also called as regularization parameter. 

 
𝑚𝑖𝑛𝜃

1

𝑚
[∑ 𝑦(𝑖)(− log ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖))(− log(1 − ℎ𝜃(𝑥(𝑖))))

𝑚

𝑖=1

] +
𝜆

2𝑚
∑ 𝜃𝑗

2

𝑛

𝑗=1

 
(3.12) 

 
𝑚𝑖𝑛𝜃𝐶 [∑ 𝑦(𝑖)𝑐𝑜𝑠𝑡1(𝜃𝑇𝑥(𝑖)) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃𝑇𝑥(𝑖))

𝑚

𝑖=1

] +
1

2
∑ 𝜃𝑗

2

𝑛

𝑗=1

 
(3.13) 
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With this new cost function 𝜃𝑇𝑥(𝑖) results are now calculated with a margin since it is no longer only 

greater or equal to zero (i.e., 𝜃𝑇𝑥(𝑖) ≥ 0) or less than zero (i.e., 𝜃𝑇𝑥(𝑖) < 0) as in the ANN solution, but 

the solution has to be greater than 1 or less than -1 as already presented. This creates a distance 

between the results and the decision boundary, as shown in Figure 3-15. The figure shows the division 

between two classified results. Besides this, parameter C will be determinant to define the position of 

the decision boundary and its created margin, depending on the problem to be studied, an analysis of 

parameter C must be done to prevent overfitting and underfitting, since larger values of C tends to cause 

high variance and with small values, high bias. 

 

Figure 3-15 - Example of a Decision boundary definition 

3.2.2 Kernel 

The linear method cannot always find a decision boundary for the solution, even more, when there are 

non-linearly correlated data, as is the case in this study, so to use the SVM one must use a mathematical 

method that linearizes the relationship between the variables, referred as to the kernel. 

The SVM can be used linearly as presented, where the system searches a set of 𝜃 to find the best 

solution to the linear problem (Eq. (3.12)), or it can use a kernel, which is a method of creating a new 

variable from a relationship between two features. So, the values of 𝜃 will be calculated using the new 

relationship (Eq. (3.15)), called also, of similarity, so the new equation to be solved by the SVR method 

remains as shown in Eq. (3.16). 

 𝑦 = 1 𝑖𝑓 𝜃𝑇𝑥 ≥ 0 

𝜃0 + 𝜃1𝑥1 + ⋯ + 𝜃𝑛𝑥𝑛 ≥ 0 

(3.14) 

 𝑓𝑖 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑥(𝑖)) (3.15) 
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 𝑦 = 1 𝑖𝑓 𝜃𝑇𝑓 ≥ 0 

𝜃0 + 𝜃1𝑓1 + ⋯ + 𝜃𝑛𝑓𝑛 ≥ 0 

(3.16) 

To better exemplify, Figure 3-16 shows a classification relationship between two variables, one can see 

that this relationship is not linear, to solve this particular problem, a kernel function can be used such as 

in Eq. (3.17) to find a relationship between these variables and with that, be able to find the decision 

boundary. Still, Figure 3-16 shows how this new feature 𝑓 modified the solution, making easier to find a 

decision boundary.  

 𝑓 = 𝑥2 + 𝑦2 (3.17) 

 

Figure 3-16 – Kernel new feature example 

Several kernels can be used to solve non-linear problems. One of the most used classification problems 

is the Gaussian kernel, as in Eq. (3.18), where 𝜎 can be changed to solve higher bias or higher variance 

since these variable changes how smooth is the result of the kernel function.  

 
𝑓(𝑥, 𝑥′) = 𝑒

−
‖𝑥−𝑥′‖

2

2𝜎2  
(3.18) 

To the regression analysis, the default kernel used is the Radial Basis Function (RBF), as in Eq. (3.19). 

It is similar to the Gaussian equation but there is a 𝛾 value, where the defined default value is as in Eq. 

(3.20). It defines how much a single training example influences the entire model, also used to control 

the bias and variance of the problem. 

 𝑓(𝑥, 𝑥′) = 𝑒−𝛾‖𝑥−𝑥′‖
2

 (3.19) 

 
𝛾 =

1

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝜎2 
 (3.20) 
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4. CASE STUDY 

4.1 Vessel Automated Optimization System 

An automated optimization system has been installed on the ship to optimize the use of propulsion 

system power and reduce fuel oil consumption [87]. The system proposes to reduce the impacts caused 

by environmental conditions during navigation, controlling the maximum fuel consumption set by the 

captain or chief engineer, with a real-time monitored system, receiving inputs from the environment and 

fuel consumption and shaft thrust meter. The automated system can adapt the shaft rotation, the pitch 

angle of the propeller and the fuel rack position of the main engine to ensure that the fuel consumption 

does not exceed the set value. In Figure 4-1, one can see a schematic of how the system works 

integrated into the Engine Control Room (ECR) and in Figure 4-2 is the panel example installed in the 

ship bridge. The ship has the main dimensions and machinery characteristics as presented in Table 4-1. 

   

 

Figure 4-1 - Overview of the installed system [87] 

 

Figure 4-2 - Bridge panel of the system 
[87] 

Table 4-1 - Ship Characteristics 

Ship Feature Value Ship Feature Value 

Ship Type Container Ship Propeller’s Diameter 4400 

Length - L 126 [m] Propeller’s Blade 4 

Breadth - B 19 [m] TEU 620 

Draught - D 7.5[m] DWT 8450 [t] 

Main engine type 
MAK8M552 

6000 kW @500 RPM 

Design Speed 16 [knots] 

Build-in 1994 

Propulsion Single CPP Reduction Gear 3.36:1 
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As an example of how the system works, Figure 4-3 shows the graphs of the speed over ground (SOG), 

the fuel consumption of the system propulsion, the set maximum fuel consumption and the main 

configuration of the propulsion system, i.e., shaft rotation speed, fuel rack position and propeller pitch. 

This data shown refers to the route from Lisbon to the Azores, as in Figure 4-3, travelled in the period 

studied. One can verify as the set maximum fuel consumption changes, the system changes the 

configuration of the propulsion system to counterbalance the subsystems and find the best combination 

at which the propulsion system can deliver the maximum power, also it can be verified how accurate the 

system is since the target FOC and the actual FOC are quite identical. 

 

Figure 4-3 – Example of Route - Lisbon to the Azores 

 

Figure 4-4 – Sample data for the monitored routes 
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4.2 Dataset 

Most of the accumulated data come from the automated recording system installed onboard. The system 

monitors various subsystems, all correlated with fuel consumption and energy spending. The list of 

variables recorded by the automated system is explained below. 

• Time: The exact time of record, with seconds, minutes, hours, day, month, and year. 

• Latitude and Longitude: The exact GPS position in degrees. 

• Speed Over Ground: The measured momentary ship speed relative to the ground in knots. 

• Speed Through Water: The measured momentary ship speed relative to the water in knots. 

• Apparent Wind Angle: Angle at which the vessel faces the wind in degrees. 

• Apparent Wind Speed: Speed of the feeling wind in [m/s]. 

• Total Fuel Consumption: Total fuel consumption of the ship in [t/24h] considering propulsion 

consumption, shaft generator and auxiliary engines consumption. 

• Total Propulsion Consumption: Fuel consumption only for the propulsion system, without 

shaft generator, in [t/24h]. 

• Total Propulsion Power: Power generated only for the propulsive system in [kW]. 

• Total Shaft Generator Power: Power generated by the shaft generator in [kW]. 

• Total Main Engine Power: Total power in [kW] provided by the main engine for the propulsive 

system and shaft generator. 

• Main engine rotation per minute: Rotation of the engine registered in [RPM] 

• Total Auxiliary Engine Power: Total power in [kW] supplied by the auxiliary engines. 

• Auxiliary Engine Power 01, 02 and 03: Power in [kW] supplied by each auxiliary engine. 

• Total Auxiliary Engine Consumption: Auxiliary engine fuel consumption in [t/24h]. 

• Propeller rotation per minute: The shaft rotation speed in [RPM]. 

• Propeller pitch angle: This Ship has a CPP, so, this feature measures the angle between the 

rotor disc horizontal plane and the chord line of the propeller in degree. 

• Fuel temperature: HFO temperature to be burned in the main engine in [°C]. 

• System fuel optimization (ON, OFF): Feature that provides the information if the automated 

system is on or off using the Booleans numbers, as 0 when it is OFF and 1 if it is on. 

• Fuel consumption settled: Indicator showing the maximum fuel consumption to be optimised 

by the system in [t/24h]. 

The total dataset available for this study has about 25019 samples, recorded every 20 minutes for 

exactly one year. Although having a large dataset with different variables, important variables were not 

in the dataset and were obtained separately. The draught and trim were obtained from the route reports, 

as explained in Chapter 4.5.3, and the local wave data by the Copernicus Climate Data Store [88], as 

explained in Chapter 4.6. 
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4.3 Redundant data 

To have a reduced database, to facilitate the verification of correlations, reduce the size of computational 

memory usage and the computational calculation time, a redundancy analysis of the variables is carried 

out to verify which of them could be discarded.  

This system presents some unnecessary data for this analysis, some of the variables that represent the 

energy generation are not independent and can be represented using linear relationships between them, 

this can avoid overfitting in the model. As an example, the Total Main Engine Power is the sum of the 

Total Propulsion Power and the Total Shaft Generator Power being these three variables redundant 

between them, also, each generator has its indicator, but, for this study, only the sum of the power 

generated by all auxiliary engines is sufficient. Table 4-2 summarises the variables that have been 

replaced or not used because they are redundant in the ship’s power system. 

Table 4-2 – Redundant Power Data 

Not used Variables Used Variables 

Total Main Engine Power Total Shaft Generator Power 

Auxiliar engine 01 Power Total Propulsion Power 

Auxiliar engine 02 Power Total Auxiliar Engine Power 

Auxiliar engine 03 Power  

 

4.4 Original Data and Data Split 

As showed in Figure 1-3, all the data points are registered with all the variables already listed, but, since 

the objective is to study the fuel consumption during ship navigation and its influences by the 

environment and operational decisions, it is necessary not only to check the reliability and redundancy 

of the dataset but also to identify the cut-off points to be applied on the data, to try to group them with 

the same patterns. 

Figure 4-5 shows all the distribution of the velocity over ground datapoint and also, verify that there are 

two very clear distinct groups, a “zero-speed to a low-speed” situation group, where the ship is whether 

in manoeuvring to proceed towards or departs to the port or she is at the pier loading and unloading 

operation, and an “ongoing” situation group with a characteristic of a VOG greater than 10 [knots]. 

A data division is applied based on the distribution shown in Figure 4-5, having the speed of 10 [knots] 

as a cut-off value. One can verify how accurate is this division in Figure 4-6, Figure 4-7 and Figure 4-8 

where they show the two new groups, the blue dots are the situation where the ship sails with more than 

10 [knots] and the red dots when she has less than that speed, with this, it is clear that the proposed 

division can fit the objective of studying the fuel consumption used in the routes. 
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Figure 4-5 – Frequency Distribution of all Velocity Dataset 

 

Figure 4-6 – Azores region 

 

Figure 4-7 – Madeira Island 
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Figure 4-8 – Portugal Coast 

 

4.5 Features treatments and previous analysis 

After splitting the database to use only navigation with a speed above 10 knots, some treatments and 

adjustments are applied to the features to be able to verify the correlations between them, their 

consistencies and to analyse their behaviour.  

4.5.1 System Fuel Optimization Setup and Set Fuel Consumption 

The operability of the automated optimization system has two possibilities: on or off, registered as 1, if 

on, or 0, if off, in the dataset. But there are some situations the system shows numbers between 0 and 

1, out of a Boolean pattern. Also, the fuel consumption set has a recorded number higher than zero 

whether the system is on or off. So, it is necessary to filter the data and get only two situations, if the 

system is on and operating with a set maximum value or if the system is off with the value set to zero, 

this is important to understand and find patterns between the set fuel consumption and the real fuel 

consumption, without the intermediate situation that can only cause noise in the system.  

A filter is created so that if the system configuration values are different from zero and one, the data 

would be removed, also, if the system is off with the value defined as zero, the variable “set fuel 

consumption” is considered as zero. Figure 4-9 shows the initial system functional data without any filter 

nor cut-off, where one can see the outliers’ points. Figure 4-10 shows the results when either the filter 

described and the 10 [knots] cut-off are used. The new condition has variability in the set FOC only 

when the system is switched on, avoiding correlations of falsely set values that do not represent the 

operational reality of the system. 
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Figure 4-9 – Initial Data of the System setup 

 

Figure 4-10 – Final Data of the System setup 

4.5.2 The bearing of the route 

The heading of the ship is needed to calculate the true wind angle also, it is an input of the learning 

model as it is correlated with the influence of the wave and wind in the ship resistance. As the 

instantaneous values of the ship heading are not available in the dataset, it is approximated by the 

bearing angle between two consecutive coordinates (i.e., latitude and longitude) recorded during the 

routes. 

To calculate the bearing of the ship 𝜉6, it is used the angle between the latitude and longitude 

coordinates, using the particular case of the law of haversines [89], that relates the points and angles in 

spherical trigonometry. For two given coordinates (𝐿𝑎𝑡𝐴, 𝐿𝑜𝑛𝑔𝐴) and (𝐿𝑎𝑡𝐵, 𝐿𝑜𝑛𝑔𝐵), the 2-argument 

arctangent relationship as in Eq. (4.1) is used for this calculation. 

 𝜉6 = 𝑎𝑡𝑎𝑛2(𝑋, 𝑌) (4.1) 

where 
 𝑋 =  cos(𝐿𝑎𝑡𝐵) ∗ 𝑠𝑖𝑛(Δ𝐿) (4.2) 

 
 𝑌 =  cos(𝐿𝑎𝑡𝐴) ∗ sin(𝐿𝑎𝑡𝐵) − sin(𝐿𝑎𝑡𝐴) ∗ cos(𝐿𝑎𝑡𝐵) ∗ cos(Δ𝐿) (4.3) 

with Δ𝐿 = 𝐿𝑜𝑛𝑔𝐵 − 𝐿𝑜𝑛𝑔𝐴. 
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Figure 4-11 shows the distribution of the calculated bearing of the ship 𝜉6 using the already cleaned up 

dataset, where 0° represents North and 270°, the West position. That means, if the ship has a heading 

angle of 270º, she is navigating to the west. One can note that the distribution of the course angle has 

a high concentration around a few values, as the ship is a liner only making a fixed round trip with regular 

schedule legs, this behaviour is expected. 

  

Figure 4-11 – Calculated Ship Route Bearing 

4.5.3 Trim and Mean Draught Calculation 

The forward and aft draught are recorded not in an automated way. They are given from the initial route 

reports when the ship is departing from a port. To calculate the mean draught and the trim, the well-

known Equations (4.4) and (4.5) [90] are used. 

Within the recorded draughts, the mean draught and trim are calculated, but it is important to notice that 

it is not necessary to calculate those new data to use them in ML methods, as they are pretty robust 

models and can learn even using brute data, understanding their impacts only using the forward and aft 

draught. But, to have more visibility of the impact and correlation between the trim and draught with 

other variables, also be conservative, as most of the studies use these features, those variables are 

calculated and implemented. 

 
𝑇𝑀 =

𝑇𝐴 + 𝑇𝐹

2
 (4.4) 

 
Φ =  tan−1 (

𝑇𝐴 − 𝑇𝐹

𝐿
) (4.5) 

where, 𝑇𝐴 is the draft at the after perpendicular and 𝑇𝑓 is the draft at the forward perpendicular. 

Figure 4-12 and Figure 4-13 show the results where one can verify that in most cases the trim did not 

pass the 0.5°, but in the draught analysis, one can verify that she has a good dispersion between 5 [m] 
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and 7.5 [m], this is an expected draught variation for this ship type, as it operates in ballast and laden 

condition. 

 

Figure 4-12 – Density Draught Distribution 

 

Figure 4-13 – Density Trim Distribution 

4.5.4 True Wind Angle and Velocity 

The apparent wind is the wind that the ship feels when in motion, it is a combination of the true wind 

and the observer relative velocity as delineated in Figure 4-14 and is described by a speed and an angle. 
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Figure 4-14 – Wind velocity triangle [91] 

The wind measured in the ship is the apparent wind speed (AWS) and apparent wind angle (AWA) with 

the angle references as shown in Figure 4-15, but the true wind needs to be calculated to correct develop 

the prediction model because, as the operator does not know the future speed of the ship, the wind used 

as input data for the prediction model must be the true wind, with speed and angle, in the route region.  

To calculate the true wind speed (TWS) and true wind angle (TWA) it is used the relationship between 

the vectors of the speeds as the sum of the apparent wind speed vector with ship speed vector is equal 

to the true wind speed, which results in the following equations (4.6) and (4.7). 

 𝑇𝑊𝑆 =  √𝑆2 + 𝐴𝑊𝑆2 − [2. 𝑆. 𝐴𝑊𝑆. cos(𝐴𝑊𝐴)] (4.6) 

 
𝑇𝑊𝐴 = cos−1

[𝐴𝑊𝑆2 − 𝑇𝑊𝑆2 − 𝑆2]

2. 𝑇𝑊𝑆. 𝑆
 ± 𝜉6 (4.7) 

where, 𝜉6 is the true heading angle of the ship in radians.  

Figure 4-16 shows the apparent wind angle and apparent wind speed, and Figure 4-17 show the 

calculated results of the angles and velocities. As expected, the apparent wind angle is more recurrent 

at the bow due to the vectorial summation of speeds, as shown in Figure 4-14. Still, the perceived speed 

is higher than the real speed, as also expected by the formulation. 
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Figure 4-15 – Wind and wave definition reference angle [92] 

 

Figure 4-16 – Apparent Wind Angle and Apparent Wind Speed 

 

Figure 4-17 – True Wind Angle and True Wind Speed 
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4.6 Wave Dataset 

The wave is one of the main factors contributing to the increase in the ship’s resistance [58] and in 

consequence of that, the fuel consumption. To add these features the Copernicus Climate Data Store 

[88] is used, from this data store, it is obtained the “Mean Wave Period”, the “Significant height of 

combined wind waves and swells” and the “Mean wave direction”, to all the area and time of the ship´s 

route recorded. 

The recovered data is between the 1st of January 2020 and the 31st of December 2020, recorded every 

hour, collecting data within the area between Latitude 42°N and 32°N and Longitude 5°W and 30°W. 

Using the opensource XyGrib [93] to visualize the data in Figure 4-18, one can see the area studied and 

compare it with the previous route in Figure 1-3. In this example, the software shows the significant 

wave height distribution at a random time in the chosen area. 

 

Figure 4-18 – XyGrib example of a Significant Wave Height plot data 

A Python script is implemented to mount and analyse the wave data set. Considering each latitude and 

longitude position with its specific day and time, the sea state is investigated and added to the dataset 

for each ship position, during the studied period. Figure 4-19 shows the distribution and characteristics 

of the waves that the ship encountered in the voyages. 
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Figure 4-19 – Wave characteristics 

4.7 Final Dataset 

For the original dataset with 25019 records, only 11597 have the velocity equal to or above 10 [knots], 

as represented in Figure 4-20. Also, it is verified that in one route the draught configuration and trim 

values were missing and this dataset, along with all variables related to that specific time, have been 

removed from the dataset to guarantee the reliability of the results, since it is not guaranteed that all the 

learning models and scripts can handle with missing values. Table 4-3 summarises the dataset final 

characteristics. 

Table 4-3 – Dataset cleaning summary 

Dataset Number of cases 

Full database 25019 

Equal or above 10 [knots] 11597 

Less than 10 [knots] 13422 

Missing datasets 258 

Outliers 302 

Final database 11116 

 

 

Figure 4-20 – Final Velocity Over Ground Distribution 
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5. DATA ANALYSIS 

5.1 Spearman’s Rank-Order Correlation 

After splitting the databases, applying filters, and transforming and including other variables a Spearman 

rank-order correlation is applied to verify the correlation between each variable. That method was 

applied in [62] and [94] and helped the authors to find the characteristics that have the highest 

correlation, as this is not easy to visualise due to the non-linearity between the variables. 

The Spearman rank-order correlation or Spearman’s rho is a nonparametric correlation analysis that is 

used to rank the relationship between rank-ordered variables, similar to the database studied. This 

method assesses monotonic relationships and is appropriate for both continuous and discrete variables, 

linear or not. When a perfect monotone function between two variables occurs the correlation coefficient 

will be +1 or −1, as shown in Table 5-1, where it presents the coefficient range and its meaning between 

two studied variables.  The general equation of Spearman’s rho is represented in Eq. (5.1). 

Table 5-1 – Spearman’s rho coefficient [95] 

Correlation Coefficient for a 
Direct Relationship 

Correlation Coefficient for an 
Indirect Relationship 

Relationship Strength of the 
Variables 

0.0 0.0 None/trivial 

0.1 -0.1 Weal/small 

0.3 -0.3 Moderate/medium 

0.5 -0.5 Strong/large 

1.0 -1.0 Perfect 

 

 
𝜌𝑟𝑥,𝑟𝑦

=
𝑐𝑜𝑣(𝑟𝑥 , 𝑟𝑦)

𝜎𝑟𝑥
𝜎𝑟𝑦

 (5.1) 

where 𝑐𝑜𝑣(𝑟𝑥 , 𝑟𝑦) is the covariance of ranked data 𝑟𝑥 and 𝑟𝑦, and 𝜎𝑟𝑥
 and 𝜎𝑟𝑦

 are the standard deviation 

of 𝑟𝑥 and 𝑟𝑦. 

Due to the size of the complete result of the Spearman’s rho analysis, the result of the comparison of 

all variables is in Appendix I, and partial analysis is discussed in the following chapters so that the 

relationships between subsystems and environmental variables can be better understood and studied. 

5.2 Route analysis 

The ship has fixed routes, as already shown in Figure 1-3, moreover, in Figure 5-1, one can see that 

the duration of the longer route does not exceed 65 [h] or nearly 3 days. The shorter routes last only a 

few hours, between 5 and 11 hours, which means that this ship makes a short sea shipping operation 

and differs from other container ship studies, as in [96]–[98], where they have deep-sea routes. This is 

a factor that hinders the study for route optimisation and the development of a weather route, as shown 

in [45], [75] and [76] because route optimisation using environmental variables would not have much 

effect due to the small variation in weather on the route under consideration. A model to improve the 
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ship operational performance, such as in [64], where the author studied the best engine speed for the 

optimal energy efficiency under different working conditions, fits better in this ship operation, and in fact, 

it is already underway with the past initiative of the shipowner to install an automated optimization 

system to maximize the use of the fuel consumption in this ship as explained in Chapter 4.1. 

 

Figure 5-1 – Route duration in hours 

With the correlation analysis done in Chapter 5.1, it is possible to verify the influence of environmental 

conditions on speed and fuel consumption using the database. One can verify in Figure 5-2 that there 

is a small influence of the weather on the speed and main engine consumption There are some 

hypotheses that can be formulated to understand why this unexpected lack of influence occurred. It 

could be because it is a short route, the variation between the weather conditions during the navigation 

time is small, so they end up not influencing the speed and fuel consumption in a way to be perceived 

by the numerical model. Or, still, the automated system combined with the constant changes of the set 

maximum consumption, works as a filter where the influence of the weather condition is felt on the fuel 

consumption and not on the speed. This could explain why weather has a higher Spearman’s rho value 

with FOC compared to SOG. 

  

Figure 5-2 – Spearman’s rho analysis between SOG and FOC with weather conditions 
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Furthermore, analysing the two variables that most influence fuel consumption, wave height and wind 

speed, the latter varying slightly during the year, as shown in Figure 5-3. A long-term moving average 

is used only to visualize the wind speed trend that the ship encountered in its route, it can be seen that 

it is practically the same throughout the year. The same is done for the significant wave height, however, 

this one can be verified that it is lower during summer compared to winter. 

 

Figure 5-3 – Wave Height and Wind Speed distribution in time 

Figure 5-4 shows the relationship between the ship’s operating conditions, with its draught, trim and fuel 

consumption set. The trim and draught have little influence on speed and fuel consumption, something 

also not expected, as seen in some studies [72], [101]. This occurs because draft and trim are not 

varying with time, i.e., the variables are static throughout the routeing period, so this correlation fails to 

capture the influence of the two variables on speed and fuel consumption. And one can verify how high 

is the relationship of set consumption and speed and fuel consumption, the latter being almost perfect. 

 

Figure 5-4 – Spearman’s rho analysis between SOG and FOC with operational conditions 
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5.3 Automated System Analysis 

Within the previous Spearman correlation results, in Table 5-2, it is analysed the relationship between 

the set fuel consumption variable with the actual propulsion consumption and its subsystems. The 

system receives some influence from wind speed and a slight, but not ignored, influence from wave 

height. This influence may occur due to variations in sea conditions during the route, where the 

captain/chief engineer is required to increase the maximum fuel consumption allowed to increase speed 

or at least reach a speed at which the ship will not delay its arrival at the port of destination. Further 

information needs to be collected on how the operator uses this system and mapping the decision-

making process for changing the maximum consumption in the system. 

Still, one can verify that the system has a high influence on the fuel rack position and propeller pitch, 

and these are the two subsystems most used to control the propulsion consumption by the automated 

system. An example is presented in Figure 4-4, where one can verify the system changing the fuel rack 

position, propeller pitch angle and shaft rotation speed to achieve the desirable fuel consumption. 

Moreover, the shaft rotation has a low correlation with the automated system due to the use of the shaft 

generator, when this is in use, the shaft needs to have a constant rotation, so the automated system is 

not able to change this rotation speed. This case is discussed in Chapter 5.4 and has an example of 

this particular situation in Figure 5-13. 

Table 5-2 – Spearman Rho results for the automated system 

 SOG 
Propulsion 

Consumption 
Propeller 

pitch 
Fuel rack 
position 

Shaft 
RPM 

Wave 
Height 

Wind 
speed 

System Settled 
FOC 

0.59 0.98 0.47 0.97 0.02 0.19 0.3 

 

Linear regression is applied relating the set fuel consumption with the actual fuel consumption, as shown 

in Figure 5-5, where one can verify the high correlation between these two features, with the detailed 

results presented in Table 5-3. This regression has a coefficient of determination (R²) of about 0.98, 

confirming the high correlation of Spearman’s rho results. One can see that the propulsion consumption 

is almost the same as it is set in the system, in other words, the propulsion system always operates 

within the limit imposed by the system operator. 

Table 5-3 – Linear regression analysis – Settled FOC x Actual FOC 

Coefficient of Determination – R² 0.9833 

Intercept (Independent term) 0.5611 

Slope 0.9606 
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Figure 5-5 – FOC – settled versus actual fuel consumption 

It is difficult to develop a model to predict the fuel consumption with this high correlation between the 

actual fuel consumption and the set fuel consumption, in addition, there is a high usage rate of the 

system, which is about 98% of the time travelled. This means that the ship will always operate at the 

system limit so there is no way to predict the fuel consumption as this will be whatever the system 

operator sets. The model then needs to be made to study whether it is possible to achieve a speed with 

given fuel consumption. This explains the low correlation between weather conditions and ship speed.  

According to the result presented in Table 5-2, the system actuates more in the fuel rack position than 

in other propulsion subsystems. Moreover, in the scatterplot (Figure 5-6) it can be seen the high 

correlation between the set fuel oil consumption and the fuel rack position. Furthermore, a linear 

regression analysis is made to verify this relationship, shown in Table 5-4, where the resultant coefficient 

of determination is about 0.96, demonstrating the high inference of the automated system on the main 

engine fuel injection control system, or fuel rack. 

 

Table 5-4 – Linear regression analysis – Settled FOC x Fuel Rack  

Coefficient of Determination – R² 0.9575 

Intercept (Independent term) 28.9750 

Slope 2.2425 
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Figure 5-6 – FOC – set versus Fuel Rack 

Figure 5-7 shows the dispersion graph of the ship’s speed and the propulsion power of the main engine. 

One can see how this differs from the results expected by the already well known parametric 

relationships, such as Holtrop’s [44] or ITTC [41], thus reinforcing, as already mentioned in Chapter 2, 

that there are many variations and uncertainties in ship operations that end up influencing the speed 

and fuel consumption relationship so that a prediction model can present high uncertainties. 

The other two propulsion subsystems influenced by the automated system, are the propeller pitch and 

the shaft rotation speed. One can verify the scatter plot of them with the main engine power in Figure 

5-8 and Figure 5-9, where on the propeller pitch graph is clear to see that there are some distinct 

operating patterns, some of them are mapped out and discussed in Chapter 5.4.  

Also, on the shaft rotation speed graph, a clear straight line can be seen as the upper limit between the 

relationship between the shaft rotation speed and propulsion power, the same occurs at the lower limit 

of shaft speed, around 119 RPM. This represents the engine’s minimum rotation point. 

There is a clear distinct operating condition where either the propulsion system works at the operational 

limits of the ship’s shaft with the engine rotation, or in an operational situation where the rotation is 

around 150 RPM. But in the latter case without any apparent pattern of operational limit condition nor 

high correlation behaviour. This behaviour is discussed in Chapter 5.4. 
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Figure 5-7 –Ship speed x Total Propulsion Power 

 

Figure 5-8 – Propeller pitch angle x Total Propulsion Power 

 

Figure 5-9 – Shaft rotation speed x Total Propulsion Power 
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5.4 Power Shaft Generator Analysis 

With the analyses presented in Chapter 5.3, with different operational patterns in the operating 

conditions of the propulsive system, another system that influences the main engine is studied, the shaft 

generator. Where this system is directly accoupled in the shaft and use its speed rotation to generate 

energy. But this system needs some specific conditions to properly works, one of them is the fixed 

rotation of the shaft, so the automated system is not allowed to change the rotation speed to limit the 

fuel consumption, it needs to remain constant.  

As one can see in Figure 5-10, the two shaft rotation patterns are divided based on the use of the shaft 

generator, where when the system is in use, the shaft needs to operate at a constant rotation speed 

and needs to compensate for the torque loss, operating at a high rotation speed. 

 

Figure 5-10 – RPM x Propulsion Power – Shaft Generator Analysis 

Figure 5-11 shows the relationship of the propeller pitch angle and the total propulsion power, splitting 

the data between using or not using the shaft generator. It can be verified that when the shaft generator 

is running, the propeller angle is smaller to counterbalance the increase in shaft rotation speed and 

maintain the maximum fuel consumption established in the automation system. Furthermore, in Figure 

5-12, one can see that the fuel rack does not show different patterns with the shaft generator on or off.  

As an example, the related data to a whole route is shown in Figure 5-13, where one can see the speed, 

shaft rotation, propeller pitch, fuel consumption, fuel rack position and power generation by the auxiliary 

system over time. It can be seen how the system adjusts when switching from the use of the auxiliary 

generator to the shaft generator. Thus, one can see the different behaviour before and after the change, 

where, after the change, the shaft rotation speed increased by around 150 [RPM] and remains constant 

until the end of the route. The propeller pitch angle is reduced to compensate for the increased shaft 

speed and still achieve the maximum fuel consumption set. So, it is important to consider the use of the 

shaft generator in the decision model, as it influences the propulsion configuration. 
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Figure 5-11– Pitch Angle x Propulsion Power – Shaft Generator Analysis 

 

Figure 5-12 – Fuel Rack x Propulsion Power – Shaft Generator Analysis 

 

Figure 5-13 - Route data analysis for shaft generation 



54 

 

5.5 Auxiliary engine analysis 

An analysis is performed to verify the use of the ship's auxiliary power generation system. The dataset 

of power generation by the shaft generator and of the total power production of the auxiliary engines is 

analysed. The results are presented in Table 5-5, where one can see that the two systems generate 

approximately the same amount of power for the ship. Also, they worked almost half of the time in the 

year each. However, it can be seen in Figure 5-14 that the shaft recovery system was not used at the 

beginning of the studied period. 

Table 5-5 – Power generated by Shaft generator and Auxiliary Engines 

 Shaft Generator Auxiliary Engine 

Using time [%] 56.8% 44.2% 

Mean Power Generated [kW] 275.5 kW 270.2 kW 

 

  

Figure 5-14 – Total Auxiliary Power [kW]  

In Spearman’s rho analysis (Appendix I), one can see that the systems are related to each other and 

the significant wave height and wave period. However, this could be incorrectly related due to some 

malfunction or other condition that caused the shaft generator to not work at the beginning of the period 

studied. New variables and data should be collected and studied to be able to relate which of the energy 

generation groups should be used in each situation and why. 
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6. FUEL CONSUMPTION PREDICTION MODEL 

The fuel consumption prediction model aims to evaluate, for a given speed, what would be the 

propulsion fuel consumption of the main engine, and thus be a decision support tool for the shipowner 

or to the ship's crew, to analyse the possibility of reaching the port in a certain time, by spending a 

certain amount of fuel. 

As already mentioned in Chapter 2.3, the prediction models using ML have achieved good results and 

are in line with the operational reality of ships, without the excessive cost of a complete hydrodynamic 

analysis, such as CFD, or even using parametric analyses that in some cases may have low 

performance due to several variables of the ship operation. 

The first attempt to develop the model is performed according to the literature, e.g., [71], [72], where the 

variables of the ship configuration and weather conditions are used to find a model to predict the fuel 

consumption for a given voyage. However, this approach has not succeeded well, having an 

unsatisfactory performance with a score of about 0.88. This could occur because, in this situation, the 

automated optimization system installed in the ship interferes with the expected relationship between 

the environment and operation conditions and the speed of the vessel. This model and discussion are 

presented in Chapter 6.1. 

To develop a machine learning model for fuel consumption analysis, a predictive model with the 

variables representing the propulsion system is proposed. These variables have as a characteristic the 

direct influence of the automated optimization system. This is a way to use as an input the automated 

system, without using the “set maximum fuel consumption” variable since it has a high bias, as already 

explained in Chapter 5.3. If this variable is used as input, whatever the value of this variable, a 

remarkably close value will be the result of the prediction model, in the same way as the data presented 

in Figure 5-5. This occurs because the learning method will give a large weight to this characteristic in 

its final solution, ignoring the other existing variables. 

A two-stage model is proposed to solve this high influence problem. The first stage is developed to study 

and get a reliable prediction method for the speed over ground from a ship’s configuration and weather 

conditions. The general model is presented in Chapter 6.3. The second-stage model is aimed to find an 

ML model to predict the fuel consumption for the propulsion system, as explained in Chapter 6.4. 

The objective of the two-stage model is to verify in the first stage if a given SOG, for a given weather 

condition and ship configuration, is feasible and under what operating conditions, i.e., shaft rotation 

speed, propeller pitch angle and fuel rack position. The corresponding operating conditions are then 

used in the second stage to predict the propulsion fuel consumption, as shown in Figure 6-1. 
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Figure 6-1 - Schematic of the two-stage model 

 

6.1 Preliminary prediction model 

The first attempt to develop a fuel consumption prediction model is based on all variables that could 

interfere with the ship's speed and thus cause an increase or decrease in fuel consumption, as shown 

in studies and literature already discussed in Chapter 2. These variables are the ship's operating 

conditions and the weather conditions of the voyage, as shown in Table 6-1, where one can see that 

the model aims to predict the fuel consumption as a function of wave and wind condition, the draught 

and trim configuration and the ship speed. 

Table 6-1 – Training dataset to the first attempt model 

Training dataset  

Wave Angle Mean Draught 

Wave Period Trim 

Wave Height Heading 

Wind Angle Wind Speed 

 Ship Speed 

 

The machine learning model used initially for developing the prediction model is the ANN, for which the 

range of hyperparameters is shown in Table 6-2. One can see that the number of hidden layers is tested 

from one to three so that it can be seen how the model improves with more layers. Also, different 

activation functions, such as hyperbolic tangent, ReLU, and the influence of the regularization value3 

are tested, similar to [68], [72], [102]. 

Table 6-2 – Hyperparameters of the ANN model – First model 

Hyperparameter Values/Type of function 

Regularization Term - 𝝀 ∈ [0,1.28] 

Number of hidden layers [1,2,3] 

Number of nodes ∈ [2,100] 

Solver Adam 

Activation function "tanh", "identity", "relu", 

 
3 This term is called α in the sktlearn used function neural_network.MLPRegressor 
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Although this model has performed well in other studies, with score values around 0.98 [68], in this case, 

its performance is not satisfactory. The resulting values for each number of layers are shown in Table 

6-3, and, even when adding more layers, the results are not satisfactory. 

Table 6-3 – ANN results to fuel prediction  

Size of ANN Number of Nodes 
Regularization 

Term – 𝝀 
Activation Score - 𝑹² 

1 hidden layer (100) 0.0 tanh 0.7929 

2 hidden layers (100,80) 0.08 tanh 0.8538 

3 hidden layers (160, 100, 40) 0.02 tanh 0.8817 

 

Still, Figure 6-2 shows the dispersion between the predicted values and the observed values, and one 

can see a great dispersion in the relationship between them, which cannot be acceptable in an 

operational prediction tool. 

 

Figure 6-2 – Scatter distribution Predicted and Observed FOC – (ANN)  

The Support Vector Machine (SVM) model is also used as it has also provided good results in other 

studies [72], [75], [103] and is a powerful machine learning method that can learn from data with non-

linear relationships like the ones presented. The analysis is made by changing the hyperparameters, as 

shown in Table 6-4. 

Table 6-4 – Hyperparameters of SVM model in the First model 

Hyperparameter Value 

Gamma ∈ [2−15, 20] 

C – Regularization parameter ∈ [20, 28] 

Epsilon ∈ [10−4, 1] 

Kernel Radial Basis Function 
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As expected, the SVM model has also not performed well, and its best result is shown in Table 6-10, 

being the best score of 0.88. In Figure 6-3 one can see that although the result has an expected trend, 

it presents many outliers, these being more dispersed at the limits of the calculated conditions and a 

little more concentrated between the 12 to 16 [ton/24h] conditions, but with many points outside the 

expected region.  

Table 6-5 – SVM results to speed prediction 

Hyperparameter Value 

Gamma 1.45e-03 

C – Regularization parameter 64 

Epsilon 1.43e-01 

Score (R²) 0.88 

 

 

Figure 6-3 – Scatter distribution Predicted and Observed FOC – (SVR) 

This dispersion becomes more evident when comparing the predicted results with the observations of 

the voyages studied. Figure 6-4 shows the consumption of four of the 145 voyages collected. It can be 

seen that several points are quite different from the original points. This can cause problems in predicting 

fuel consumption, where the best solution may not be chosen due to the distorting results as presented. 

Moreover, the model can fit very well in some cases, as in Route 77 (Figure 6-4), but in other cases, 

varied greatly, as in the Route 138 case, where the real fuel consumption appears almost constant all 

the time, but the predicted FOC appears sometimes with 2 [ton/24h] less than the real case.  

Moreover, the low prediction performance of the model may be also due to the variables not having 

great correlations among them. In Figure 6-5 one can see that only the wave height, wind speed and 

ship speed variables have some influence on fuel consumption. The lack of correlated parameters may 

be the cause of the underfitting of the model. This is not acceptable for a fuel consumption prediction 

model, where the main objective is to develop a reliable prediction tool. So, another model is proposed 

to achieve better prediction performances. 
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Figure 6-4 - Model comparison in different routes 

 

Figure 6-5 - Spearman´s Rho values  

6.2 Adding new features 

As described in Chapter 3.1.6, when the model is underfitting, new variables can be considered and 

checked to achieve a model with better accuracy. So, to build a new model, Spearman's relationship is 

used to analyse which variables have the highest correlation with the main engine fuel consumption. 

Figure 6-6 shows the results for the subsystems of the propulsive system, namely pitch and fuel rack 

position. As expected, they have a high correlation with main engine fuel consumption and ship speed. 

Also, since these two parameters have a direct influence from the automated system, it is included the 

shaft speed rotation, not only because it directly interferes with the ship´s speed, but because it can also 
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be used to analyse and calculate when the shaft generator system is used, as shown in Chapter 5.4, 

and how it will impact in the speed of the ship. 

However, despite the system having very good predictability as will be seen in Chapter 6.4, to be used 

as a decision support tool it needs a previous step to analyse if the desired speed can be achieved and 

with which configuration of the propulsion system this can occur. This way, the model ensures that the 

ship’s speed is consistent with the propulsion system parameters that are used for the fuel consumption 

prediction. 

 

Figure 6-6 – Spearman´s coefficient of the propulsion system with speed and FOC  

 

6.3 Two-stage model - the first stage 

A machine learning first stage prediction model is developed using the features of the weather 

conditions, i.e., wave and wind, for each position of the studied routes; the ship configuration, i.e., 

draught, and trim and the propulsion configuration as fuel rack position, shaft rotation speed and 

propeller pitch angle. A schematic of the model is in Figure 6-7, where one can see the list of variables 

and methods used with their hyperparameters. 

 

Figure 6-7 – Schematic of first-stage Prediction Model 
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Again, the first method used is the Artificial Neural Network (ANN). The combination of hyperparameters 

presented in Table 6-6 was tested to find a better convergence for this specific solution. The λ value is 

the regularization term that penalizes the cost weights in the cost function, which is used to avoid 

overfitting. The number of hidden layers and their nodes is modified to analyse how deep need to be 

this neural network to achieve a good prediction. Also, the solver Adam [104] is used to optimize the 

weight calculations and it is assessed which activation function provides the best result, evaluating the 

hyperbolic tangent, the ReLU and the identity functions.  

Table 6-6 – Hyperparameters of ANN model 

Hyperparameter Values/Type of function 

Regularization Term - 𝝀 ∈ [0,1.28] 

Number of hidden layers [1,2,3] 

Number of nodes ∈ [2,100] 

Solver Adam 

Activation function Tanh, ReLU, identity 

 

The data used to train the model to contain variables related to the local environmental conditions, route 

conditions, ship characteristics on the route and propulsion system data, as in Table 6-7. This initial 

dataset is based on the studies already cited, with the weather and ship configuration features, and the 

correlation analysis in Chapter 5.1, where it is included the configuration of the propulsion system. 

Table 6-7 – Training dataset to the first stage  

Training dataset – First stage 

Wave Angle Mean Draught 

Wave Period Trim 

Wave Height Heading 

Wind Angle Shaft Rotation Speed 

Wind Speed Fuel Rack 

 Propeller Pitch 

 

To verify which ANN prediction set fits better within this dataset, a Python script is developed to calculate 

and analyse each configuration. The script calculates for each group of variables and provides a final 

score, and all the input and final results are included in a file for posterior analysis. There are a few 

software and scripts that could be used for this purpose. In this study, the Scikit-learn [105] is used, 

which is free opensource software in Python, largely used in academic research and studies to develop 

machine learning and artificial tools. Moreover, the function MLPRegressor4 from this library is used. 

The analysis used the dataset already pre-processed, i.e., with outliers and inconsistencies removed, 

as explained in Chapter 4. The dataset is split into two parts, the first is the learning dataset with 80% 

of the total data, and the 20% is the test dataset to calculate the coefficient of determination or score 

 
4 https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html 
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(𝑅²). Also, the MLPRegressor divided the 20% to use as a cross-validation test, to improve the efficiency 

of the learning method. Still, the dataset used for learning is random, that is, the dataset is randomised, 

with the records not being time consecutive, to prevent the model from having a high bias or causing 

overfitting. 

Table 6-8 presents the results for each size of the neural network. One can see that with the growth of 

the network the performance of the model increases. Also, the regularization term is low, which means 

that the weights applied to the variables are not causing overfitting. Still, the activation function as a 

hyperbolic tangent is expected since in similar studies [72], [106] it had a better performance compared 

to the others. 

Table 6-8 – ANN results to speed prediction 

Size of ANN Number of Nodes 
Regularization 

Term - 𝝀 
Activation Score - 𝑹² 

1 hidden layer (100) 1.28 tanh 0.8128 

2 hidden layers (100,80) 5e-3 tanh 0.8567 

3 hidden layers (200, 100, 80) 1e-5 tanh 0.8887 

 

To test and compare with other machine learning methods and to try to improve the score, a Support 

Vector Machine (SVM) model is developed, as it has been successfully implemented in some fuel 

prediction studies as already mentioned. In Table 6-9 one can see the hyperparameters that are used 

to analyse and find a good configuration for the prediction model. 

Table 6-9 – Hyperparameters of SVM model 

Hyperparameter Value 

Gamma ∈ [2−15, 20] 

C – Regularization parameter ∈ [20, 28] 

Epsilon ∈ [10−4, 1] 

Kernel Radial Basis Function 

 

The same dataset used in the ANN model is used by the SVM model, with the training and test data 

split, also. A script in Python is developed to calculate the prediction model of each set of 

hyperparameters configuration and each score using the Scikit-learn library already mentioned, using 

the Epsilon-Support Vector Regression5 function to analyse the data. The best solution found is shown 

in Table 6-10 and the scatter plot of the results compared with the data is in Figure 6-8.  

The model obtained has better accuracy than the ANN. Besides that, the regularization parameter did 

not extrapolate to the maximum that it could, that is, the solution obtained avoided overfitting with high 

regularization parameters. The gamma value found is small and shows that the model found a solution 

where the kernel calculation does not vary smoothly, having minor variation, which could cause 

overfitting in some models. 

 
5 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html 
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Table 6-10 – SVM results to speed prediction 

Hyperparameter Value 

Gamma 4.00e-04 

C – Regularization parameter 32 

Epsilon 1.42e-01 

Score (R²) 0.9256 

 

 

Figure 6-8 – Scatter plot result of the predicted and actual value - SOG 

A sensitivity analysis was performed to check what is the minimum dataset size for the result to convert 

to the best result. In Figure 6-9 one can see the result for cost function for each test set size, where one 

can see that the model converges with a dataset starting at 5000 samples. Similar occurred in Figure 

6-10, which shows the score of each test set size. 

 

Figure 6-9 – Cost functions analysis in the function of training set size  
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Figure 6-10 – Score analysis in the function of training set size 

6.4 Two-Stage Model - Second Stage 

6.4.1 First model 

A second stage model is developed to generate fuel consumption predictions for the propulsive system.  

It is proposed that this model is trained to receive the data resulting from the first stage model and thus 

indicate what the consumption would be for a given route and expected speed.  Figure 6-11 shows the 

proposed scheme of the second stage model. Like the first stage, the second stage model is developed 

using the same features and, additionally, the SOG, as shown in Table 6-11. Also, the same 

hyperparameters are used in both machine learning models, ANN as in Table 6-6 and SVM as in Table 

6-9.  

 

Figure 6-11 – Schematic – Second stage model prediction 

Table 6-11 – Training dataset for the second stage model 

Training dataset – the second stage 

SOG Mean Draught 

Wave Angle Trim 

Wave Period Heading 

Wave Height Shaft Rotation Speed 

Wind Angle Fuel Rack 

Wind Speed Propeller Pitch 
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The results of the ANN model are shown in Table 6-12. As expected, the results have higher accuracy 

with the addition of the variables related to the ship propulsion compared to the first model described in 

Chapter 6.1. This model contains the input data with more correlation between them so that the simpler 

neural network system already showed satisfactory results, with 𝑅2 ≈ 0.98, very similar to those 

presented with more hidden layers. 

Table 6-12 - ANN results to fuel consumption prediction 

Size of ANN Number of Nodes 
Regularization 

Term - 𝝀 
Activation Score - 𝑹² 

1 hidden layer (100) 1.0e-4 tanh 0.9795 

2 hidden layers (100,100) 0.002 tanh 0.9878 

3 hidden layers (200, 100, 40) 0.01 tanh 0.9888 

 

For the SVM model, the same hyperparameters shown in Table 6-9 are used, and the same inputs are 

used in the ANN model, with the same training set and test set. The best result found can be seen in 

Table 6-13. It can be seen that the model results fit the observed data very closely, as shown in Figure 

6-12.  

Table 6-13 - SVM results to fuel consumption prediction 

Hyperparameter Value 

Gamma 1.10e-04 

C – Regularization parameter 256 

Epsilon 1.00e-04 

Score (R²) 0. 9971 

 

 

Figure 6-12 - Scatter plot result of the predicted and actual value – FOC 

Furthermore, it can be seen from Figure 6-13 and Figure 6-14 that the convergence of this model 

requires fewer test data. With less than 2000 samples the model has already converged to an optimal 
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solution since the cost of the train and test data converged in a small number and the score (R2) is close 

to 1. 

 

Figure 6-13 – Cost result from the Test data and Training data for different samples sizes 

 

Figure 6-14 – Score result (R2) for different sample sizes 

6.4.2 Second Model 

Since the model has shown to have excellent accuracy, it is assessed whether one of the variables 

could be removed so that, besides the computational gain, it could better balance the relationship 

between the other variables and avoid having a high bias. Thus, the fuel rack position that is the variable 

with the highest correlation with the fuel consumption is removed from the dataset and a new analysis 

is performed using only the SVM method with the same variations of hyperparameters shown in Table 

6-9. 

As can be seen in Figure 6-15 that even removing the variable with a correlation value of 0.95 with the 

main engine fuel consumption (Figure 5-6), the model provides good predictions, maintaining a high 

value of the coefficient of determination.  
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Table 6-14 - SVM results to fuel consumption prediction 

Hyperparameter Value 

Gamma 1.10e-04 

C – Regularization parameter 256 

Epsilon 1.00e-04 

Score (R²) 0. 9928 

 

 

Figure 6-15 – Second Model FOC prediction without fuel rack as an input variable 

Also, a similar analysis is conducted as before, to calculate the cost of the solution for each sample size. 

The results are shown in Figure 6-16 and  Figure 6-17. One can see that the model converges with just 

a small part of the dataset size, which can be useful reduce the computational time in future analyses. 

 

Figure 6-16 - Cost result from the Test and Training data for different sample sizes 
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Figure 6-17 - – Score result (R2) for the samples size 

6.5 Two-stage model results and predictions 

With the two-stage models already defined, a script is developed so that the first stage model is an input 

for the second stage model, as outlined in Figure 6-18. Thus, the two-stage model proposed can analyse 

each set of propulsive systems, predicting the speed and consequently analysing the consumption of 

the chosen system. 

 

Figure 6-18 – Two-stage fuel consumption prediction model 

The models chosen for the solution are for the first stage, the SVM with the hyperparameters of Table 

6-10, and for the second stage, the SVM model with the hyperparameters of Table 6-14 and Table 6-13 

since they both have a good prediction score. Also, it is used the model without the fuel rack position, 

since the FOC prediction model has a good performance without this variable, as demonstrated in 

Chapter 6.4.2.  

A tool is implemented in Python to combine the two stages and to provide the speed and fuel 

consumption predictions. Figure 6-19 shows the results predicted by the model compared to the real 

observed consumption. It can be seen that the model has a good adherence, with a coefficient of 

determination of around 0.99. 
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Figure 6-19 - Scatter plot of predicted and observed FOC values – Two-stage model 

A brief analysis of four of the routes is shown in Figure 6-20 and Figure 6-21, where the first presents 

the speed-related results and the second presents the fuel-related results. As one can see in the speed 

prediction, although the predictions follow the general trends, at some points of the route there is a 

difference of 0.5 knots between the predicted and the actual data. This does not affect the result of the 

fuel consumption prediction because this is a combination of factors, and the learning model is basing 

its results on other parameters. 

 

Figure 6-20 – Prediction Speed x Actual Speed 
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Figure 6-21 – Prediction FOC x Actual FOC 

Table 6-15 shows the total fuel consumption by the main engine calculated for each of the above routes. 

The errors are acceptable and less than 1%. Also, an analysis is conducted for all 145 routes, comparing 

the predicted and observed total fuel consumptions. In this case, the maximum error is 2.27% and the 

mean error is about 0.44%. 

Table 6-15 – Total fuel consumption comparison 

Route Predicted total FOC [tons] Actual total FOC [tons] Error 

19 28.346 28.324 0.08% 

77 33.490 33.308 0.55% 

53 39.646 39.631 0.04% 

138 44.214 44.574 -0.81% 
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7. DECISION SUPPORT SYSTEM 

A decision support system (DSS) is developed to demonstrate how the developed ML models can be 

used in practice. Figure 7-1 shows the schematic design of the code developed in Python for this 

analysis. 

The user must define the target speed and indicate whether the shaft generator is used or not. In this 

analysis, data from the studied routes such as latitude, longitude, wind and wave conditions are used 

as input to the model. However, the system can cope with specific conditions of the operation included 

by the user. The same is done for the ship conditions, i.e., draught and trim data. 

Furthermore, the system takes all the propulsive system configuration variables (i.e., fuel rack, shaft 

rotation speed and propeller pitch), to ensure that the condition of the propulsive configuration is 

feasible. As already mentioned in the previous chapters, the learning methods make predictions based 

on the range of the training dataset. Therefore, if the input values used are outside the range used for 

training, the results may deviate from reality. So, the values adopted by the analysis are distributed as 

shown in Chapter 4, Chapter 5.3, Appendix II and Appendix III. 

The first step of the model consists of building the dataset to be analysed. The parameters to be 

introduced are the route, the speed, the use or not of the shaft generator and the draught and trim 

conditions of the ship. With these data, the system actively or passively adds the environmental data 

and calculates the ship's heading based on the route. It thus assembles the data related to the route to 

be investigated. 

In the second step, the model verifies for each position of the route with each configuration of the 

propulsion system, if it reaches a speed greater or equal to the requested speed. Then, in the third step, 

the predicted fuel consumption is calculated for each configuration that attains the desired speed, thus 

knowing which is the lowest fuel consumption for that speed. 

 

Figure 7-1 – Decision Support System 
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This calculation is made for each point along the route, verifying which operational conditions could be 

used and their fuel consumption. An analysis is performed based on one of the recorded routes (Figure 

7-2), with the original weather and operating conditions. This route has about 970 nautical miles.  

 

Figure 7-2 - Route 19 

The DSS is programmed to switch on the shaft generator in one-third of the route travelled, and then to 

switch off in the final section. The model is set to calculate the FOC for a minimum speed of 13.5 [knots]. 

The results are shown in Figure 7-3. One can see that when the shaft generator is switched on, the 

propeller pitch reduces to compensate for the increased rotational speed of the shaft. In addition, the 

consumption increases slightly to ensure the requested minimum speed. A study on the impact of the 

use of the shaft generator on the speed and FOC should be conducted to ensure that this modelling 

approach is in line with reality. The graph is discretised by space, i.e., the results presented represent 

the variation of the systems along the route. 

 

Figure 7-3 – DSS Simulation results along the route 
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Figure 7-4 shows the predictions for different speeds, without the use of the shaft generator. As expected 

in this case for higher speeds there is higher fuel consumption, and one can see that the fuel rack follow 

the same behaviour of the FOC. The shaft rotation at the speeds of 12 and 14 knots is low and increases 

for the speed of 16 knots to compensate for the limitations of the propeller pitch angle, which was already 

close to the limit at the speed of 14 knots. Thus, for the 16 knots case, the model increased the shaft 

rotation to obtain more thrust in the propulsion system. Further analysis is needed to understand why 

the model prefers to use 119 rpm rather than 130 rpm, and whether it represents the ship's current 

propulsion system. 

 

Figure 7-4 – DSS result for different speeds without the use of shaft generator 

 

A sensitivity analysis is also performed to asses how the model behaves with some variables. An 

analysis is conducted simulating a calm water condition, with winds of 4 [m/s] and a significant wave 

height of 0.7 [m]. The environmental values are not set to zero because as mentioned before, the model 

learns up to the limits of the studied ranges, so the lower limits of the wave and wind conditions are 

used, as shown in Figure 4-19 and Figure 4-17. 

With these environmental conditions, the cases with a ship’s speed from 12 to 16 knots are simulated. 

Figure 7-4 shows the results for the total fuel consumption for the entire route for each ship’s speed. 

One can see that the model understood the relationship between speed and consumption as a 

polynomial function relationship, as expected. 

Similar to the previous simulation, a new analysis is conducted, but in this case, varying the significant 

wave height. The wind condition remained the same, with the wind at 4 [m/s], the ship’s speed is chosen 

as 13.5 knots, and the analysed wave conditions vary from 1.0 [m] to 3.5 [m] of significant wave height. 

Figure 7-6 shows an almost linear relationship between the significant wave height and predicted. 
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Figure 7-5 – Predicted FOC based on different Ship speed 

  

Figure 7-6 - Predicted FOC for different significant wave height 

Also, an analysis changing the wind speed was performed, where the ship’s speed was kept at 13.5 

knots, the significant wave height at 0.7 [m] and varying the wind speed between 2.5 [m/s] and 15 [m/s]. 

In Figure 7-7 one can see the result for the total consumption on the route. Where at lower speeds, the 

predictions are nearly the same with small variations within the error range of the model. The 

consumption only increases from a wind speed of 10 [m/s]. This behaviour needs to be investigated if 

the DSS model shows a low correlation with reality. If the model has low accuracy, one of the reasons 

may be that it is underestimating the resistance force due to the wind. 

A final analysis is conducted to asses whether the model can capture the impact of changing the ship 

draught on the fuel consumption. In Figure 7-8, one can see the variation of draught from 5 [m] to 7.5 
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[m] and its impact on total fuel consumption. The analysis is performed using the calm water condition 

already explained and also with a speed of 13.5 knots. 

These analyses serve the purpose of understanding how the machine learning models perceived the 

influence of each variable related to this particular ship under specific operational conditions. It can be 

seen that the model identified a large influence of the ship's speed and draught, as already expected. 

However, the significant wave height and wind speed have a low impact on the FOC predictions. This 

may be due to the low correlation observed between the environmental variables and ship speed and 

ship consumption (Figure 5-2), as investigated in Chapter 5. 

 

Figure 7-7 - Predicted FOC based on different Wind Speed 

 

Figure 7-8- Predicted FOC for different ship’s draughts 
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8. CONCLUSION AND FUTURE WORK 

8.1 Conclusion  

This dissertation has developed machine learning models that represent the operation of a fuel 

optimization system and has developed a prototype of a decision support system that provides 

predictions of the optimal fuel consumption of the ship's main engine.  

The study was developed based on a one-year sample of data collected from a ship's automated fuel 

optimization system, which includes the propulsion system parameters and fuel consumption of the ship 

in operation as well as data on the environmental conditions and other variables that were added to 

enrich the dataset. 

The analyses performed on the dataset demonstrated that the automated system for fuel consumption 

optimization is reliable since the actual fuel consumption along the ship voyages is always very close to 

the set value. Moreover, by optimizing the propulsive system all the time to guarantee the set 

consumption, this system makes the environmental variables appear uncorrelated with the speed and 

with low impact with the fuel oil consumption, as shown in Chapter 5. 

This has affected the preliminary Machine Learning models proposed to predict the fuel consumption, 

because the variables used by the model present low correlation, making the final model not perform 

well. As shown in Chapter 6.1, both preliminary Artificial Neural Network and Support Vector Machines 

models using the ship and weather conditions as a training dataset did not perform as expected. The 

models showed a coefficient of determination of about 0.88, which is not acceptable for a fuel 

consumption forecast, since the shipowner needs to have a good prediction of how much fuel the ship 

will spend on the voyage and if the ship will reach the required carbon index limit. 

Therefore, a 2-stage Machine Learning prediction model was proposed using new features such as the 

shaft rotation speed, fuel rack and propeller pitch, as explained in Chapter 6.2. In the first stage, Artificial 

Neural Network and Support Vector Machines models were developed to predict the ship’s speed based 

on the ship configuration, weather conditions and propulsion system configuration, with the Support 

Vector Machines the method showing best prediction accuracy on the dataset, with a score of 0.92.  

The second stage model was developed to predict the fuel consumption of the main engine also using 

Artificial Neural Network and Support Vector Machines models. In this case, both methods had a good 

performance, with scores of 0.99 and 0.98, respectively. 

The proposed two-stage model proved to have good accuracy, as shown in Chapter 6.5, reaching 0.99 

in the score value when using the Support Vector Machines model in both stages, as it presented a 

better result in each stage. 

The Decision Support System was proposed and formulated based on the 2-stage prediction model, to 

evaluate what would be the fuel consumption for a chosen minimum speed, using or not the shaft 

generator. The first stage assesses if the target speed is reached for a given operating condition, and 

in the second stage, the fuel consumption for each condition of the first stage is calculated. Chapter 7 
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shows some examples of how to use the system and a sensibility analysis that provides indications of 

the influence of selected variables on the total ship’s fuel consumption. It was shown the large influence 

of the ship's speed and draught, as already expected and the low impact of the environmental conditions. 

This reinforces the findings of Spearman’s correlation analysis, presented in Chapter 5, where the 

correlation between the environmental conditions and the ship’s speed and FOC are minimal. Despite 

The developed models need to be tested and adjusted for ship operation. New variables and larger 

datasets properly pre-processed may be required. It is suggested to collect more data or, if possible, to 

try to use the model to find out how adherent this model is with reality. New tests can be made including 

new variables such as engine speed and fuel temperature, as long as it is known how much the 

optimisation system influences these variables. 

8.2 Future work 

The 2-stage model has been shown to provide good predictions, as presented in Chapter 6.5. Even 

removing one of the variables, the system shows a good score of 0.99 in the FOC prediction. However, 

further studies should be carried out and compared to verify the validity of the use of these models in a 

DSS, since it is not clear that the machine learning method captures all the influences necessary to 

predict the FOC using this decision support system. Also, this model was developed with a focus on fuel 

consumption and not to find out the impact of each component that interferes in consumption. For that, 

a specific model must be created, with specific dataset treatments for each case under study, similar to 

what was done by Dinham-Peren et al. [54], in the study of ship resistance in calm water conditions 

using operational data. 

The input in the DSS model can be complemented with theoretical models, creating a so-called grey 

model, combining the parametric models with the ML methods. There are a few studies in that area, as 

by Leifsson et al. [107] and Haranen et al. [108]. These models can prevent the system from choosing 

a set of solutions that would not be feasible for the ship's propulsion system to achieve a speed with the 

desired fuel consumption. Thus, avoiding a possible bias or overfitting of the prediction model. 

The SVM model seemed to provide better results in this dataset, but in future work, after comparing with 

new real observations, it is necessary to verify if there is some kind of unbalance between the variables 

that may require a reanalysis and new treatments of the dataset, which could be subjected to 

standardization to achieve better results. Also, in future work, deeper ANNs could be tested, including 

non-linear relationships between the variables. 

Analyses of new scenarios can be made, but these must be in accordance with the range of the model, 

because any prediction model has its limits in the range of the input data, and extrapolating values 

outside of this range may not correspond to reality.  

In this study, it was not possible to access the types of sensors and their uncertainties. It is known that 

there are biases and uncertainties in the measurement instruments. The ISO 19030 - Ship Performance 

and Condition Monitoring [109] provides guidance and introduce good practices on that. Future work 

would be to analyse these uncertainties and implement them in the model to know the total uncertainties 
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of the model. Some studies have analysed these uncertainties as by Hagestuen et al. [110], Thornhill 

et al. [92], Aldous et al. [111] and Aldous [47], but they have not coupled them to a machine learning 

prediction model. 

Better models can be built with other Python libraries, like Keras [112]. This library contains more models 

and machine learning functionalities and possibilities to work with parallel computing, which would speed 

up the analysis process. 

Several applications can be developed using this model as a starting point, in addition to the decision 

model for shipowners focusing on the speed analysis and fuel consumption by the main engine. It can 

be used to plan a route based on environmental and ship conditions, as for this it would be only 

necessary to have the environmental forecasts and the ship's operational condition. For this, a model 

based on the Dijkstra algorithm should be used, changing it to allow the software to consider not only 

the distance but also the consumption for each section analysed [102]. 

A just in time (JIT) tool can be constructed, as in Farag and Ölçer [68], to try to optimize the sailing time 

and the waiting time for port entry, thus being able to optimize the speed during the route and consuming 

less fuel, also making the ship not wait in a queue, reducing the consumption of more expensive fuels 

such as MDO. This tool could work integrated within the ship system. 

The prediction model can also be used to check if the ship complies with regulatory standards, verifying 

if the carbon index is within the limits imposed for that class of ships. For example, using the EEOI, one 

can calculate the carbon index based on the total FOC of the routes, as previously shown in Table 6-15. 

A digital twin can be modelled, as in Coraddu et al. [113], to study how the ship would behave in new 

scenarios, equipment changes or marine fouling growing. This type of development involves larger 

datasets enriched with additional variables and a complete understanding of how they relate to each 

other. 
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APPENDIX I – SPEARMAN’S RHO CORRELATION  

 

Figure – Spearman’s Correlation of all variables 
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APPENDIX II – PROPULSION 3D GRAPHS 

 

Figure – 3D Graph – Propeller Pitch, Shaft Rotation and Propulsion Power 

 

Figure - 3D Graph – Propeller Pitch, Shaft Rotation and Fuel Rack 
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APPENDIX III – PROPULSION SYSTEM VARIABLES DISTRIBUTION 

 

Figure – Shaft rotation and Propeller pitch distribution 

 

Figure  – Fuel rack and ship speed distribution 

 


