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Abstract

Site Calibration is the previous step to Power Curve Verification for wind turbines on complex terrains.
An uneven Site Calibration can affect the Measured Power Curve and increase the risk of compensation.
Nowadays, Site Calibration can be performed by multi-binning methods or using CFD tools as described
in the IEC 61400 – Part 12. This Master Thesis proposes a new Site Calibration methodology that
consists of using the existing reference met masts data as the input of Machine Learning regression
models to better predict the wind speed at the turbine location and hub height. Nine wind turbines at three
different locations are the object of this study. Three Machine Learning techniques are implemented:
linear modelling Polynomial regression considering both Ridge and Lasso regularization, Artificial Neural
Networks and the decision tree-based Extreme Gradient Boosting techniques. The main outcome of this
research is that Machine Learning models applied to Site Calibration are more accurate than the current
IEC 2005 standards and improve the Measured Power Curve estimation. Extreme Gradient Boosting
outperformed in an average difference of more than 30% for the RMSE wind speed error and around
29.3% in power by wind turbine compared to the IEC 2005 baseline. Universal models by wind farm
still perform better than the standards. And finally, SHAP values explainability tool points out the most
important variables: wind speeds and wind directions at different heights including Turbulence Intensity
due to its non-linearity. Furthermore, the most important sensors are the anemometer at the hub height
and the ultrasonic anemometer.
Keywords: Site Calibration, Wind turbines, Machine Learning, IEC standards, Power Curve Measure-
ment campaigns.

1. Introduction
Wind power is one of the fastest-growing renew-
able energy technologies. However, a high degree
of certainty in investments return is the key for the
development and execution of renewable projects.
In the wind industry, particular attention is paid to
the Annual Energy Production (AEP) due to its in-
fluence on the revenues of a project. A major con-
cern for the AEP is the wind turbine Power Curve
(PC) which expresses the relationship between the
wind speed at the hub height and the power output.
In this sense, the most broadly accepted Power
Performance Testing (PPT) for verifying the correct
performance of wind turbines and thus assessing
the Warranted Power Curve (WPC), is the Power
Curve Measurement campaign. It consists of mea-
suring the power output of the wind turbine after its
commissioning, being the Measured Power Curve
(MPC) the result of this verification. When it comes
to complex terrains, the PPT is a two-step proce-
dure that involves the ‘Site Calibration’ campaign
prior to the PCM.

Site Calibration (SC) is the method used to en-
able Power Curve Verification in complex terrains.
Obstacles and surface roughness may disturb the
airflow between the position of the meteorological
(met) mast used as a reference and the centre of
the turbine rotor. The SC approach estimates the
impact of such disturbance and its uncertainty. Fig.
1 shows the standard SC setup which consists in
placing two met masts, one in the reference posi-
tion also called Permanent Mast (PM) and the sec-
ond in the turbine location, known as Temporary
Mast (TM) before the machine is commissioned.
During the study period, the met masts record the
wind speeds at the same time in each location.
Once the recording period ends, the analysis is
performed, and the turbine is erected. The SC
procedure allows estimating a function or functions
that transform the wind speed from the PM into the
wind speed at the turbine position.

Nowadays, there are many different methodolo-
gies for carrying out a SC procedure and it is
an open field of research inside of the industry.
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Figure 1: Standard Site Calibration setup

Thus, the main goal of this research have been
to develop a reliable, efficient and non-expensive
method for SC. The proposed methodology is con-
sists of using PM data as the input to different Ma-
chine Learning (ML) models. The output of the
modelling will be the predicted wind speed at the
turbine location and hub height, given by the TM.

Other secondary objectives have been design-
ing a practical implementation that may allow for a
more generalized calibration of the terrain by wind
farm and also identifying the most important sen-
sors for SC. Accomplishing this latst objective may
eliminate the need for installing certain sensors on
the met masts, reducing the total cost of Power
Curve Measurement campaigns.

2. Background

Currently, there are two main methodology groups
for conducting a SC: the Annex C of IEC standards
Part 12-1: 2005 [5] and 2017 [6] which uses a sim-
ple multi-binning methodology and the actual main
alternative which is the Part 12-4 in the IEC 2017
standards. This is a physics-based SC method-
ology known as Numerical Site Calibration (NSC).
Finally, advanced anemometry technology may be
a future solution for measuring the wind speed at
the turbine position and the hub height.

Regarding the IEC, the function or functions that
convert the reference wind speed into the target
wind speed is a table of Flow Correction Factors
(FCFs) that depend either on the wind direction

bin (at a minimum of 10 degrees bin), on the wind
shear or on the wind speed itself. The FCFs are
computed according to Eq. 1:

FCFk =
1

n

n∑
i=1

(
WStarget

WSreference

)
k

(1)

The FCFs are computed as the average wind
speed ratio for the n observations and may de-
pend on certain a k atmospheric variable depend-
ing on the IEC edition. IEC 2005 is the broadly
accepted standard in the wind industry for which k
corresponds only to wind direction bin. This is the
version used as reference by this paper.

On the other hand, NSC is a three-dimensional
flow analysis method based on Computational
Fluid Dynamics (CFD) simulations to forecast the
wind condition utilizing the correlations of wind
characteristics between the reference site and the
prospective wind turbine installation site [8]. Al-
though this method might present some advan-
tages, it is computational expensive, the uncer-
tainty in AEP/performance is high and it is per-
ceived as inconvenient due to a lack of knowledge
from the industry point of view.

And finally, earlier in 2001, J.P. Verhoef and G.P.
Leendertse [12] had already pointed out the neces-
sity of exploring different ML regression techniques
for SC procedures. However, despite that ANNs
were recommended for solving the SC problem 20
years ago, this researcher could not find any re-
port, article, or document regarding the application
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of any ML technique to a SC problem.
A SC procedure can have a significant impact

on the final MPC which is the result of a Power
Curve Measurement campaign. On a Turbine Sup-
ply Agreement between the parties, the PC pro-
vided by the manufacturer is the actual Warranted
Power Curve (WPC). The validation of the WPC is
done by simultaneously recording the wind speed
at the PM and the wind turbine power output. Once
the data is collected, it should be normalized to a
reference air density according to Eqs. 2 and 3:
[5]. The reference density may be a pre-defined
nominal air density representative of the site.

Vn = Vm

(
ρm
ρo

) 1
3

, (2)

Where Vn is the normalized wind speed, Vm is
the measured wind speed, ρm is the measured air
density and ρo is the reference air density.

Pn = Pm

(
ρm
ρo

)
, (3)

Where Pn is the normalized power output and
Pm is the measured power output.

Once the data is normalized, the wind speed is
binned and the average power for each wind speed
bin is computed. The result of this computation is
the MPC.

Usually, a warranty contract stipulates that the
Measured AEP (MAEP) of the wind turbine shall
be equal or greater than Warranted AEP (WAEP).
The equations for AEP (Measured and Warranted)
are:

MAEP = MPC ·WSD (4)

WAEP = WPC ·WSD · (1− uAEP) (5)

Where uAEP is the uncertainty in the AEP, which
although it is usually formulated and computed in
warranty contracts, is not addressed in this paper.

However, when it comes to complex terrains, the
wind speed at the turbine location considered in the
estimation of the MPC is computed as described in
the IEC standards, as shown in Eq. 6:

WStarget = FCFWDbin · (WSreference)WDbin (6)

Therefore, SC plays an important role when es-
timating the MPC in complex terrains. Through the
FCFs calculated during the IEC SC procedure, to-
gether with the reference wind speed measured
during the Power Curve Measurement campaigns,
the target wind speed is estimated. If an inaccurate
target wind speed is estimated, an uneven SC can
transfer a significant prediction error to the wind
speed binning used for estimating the MPC. The

risk of compensation on behalf of the turbine sup-
plier increases significantly when the target wind
speed is over-predicted for a wind speed since it
will lead to a lower MPC. This increase is specially
risky when the wind speed over-estimation is that
to the wind speed corresponding to power below
the rated power because this error is transferred to
the MPC to the third power, 7:

P =
1

2
Cp ρ π

D2

4
U3, (7)

Where Cp is the power coefficient, around 0.593.
ρ is the air density in kg/m3, D is the wind turbine
rotor diameter in meters and U is the wind speed
at the turbine height in m/s.

A method was developed by the Department of
Power Curve Verification of Vestas to quantify the
impact of an “uneven” SC procedure in energy
terms. It consists in obtaining a ‘Site Calibration
Power Curve’ (SC-PC) from the SC data. The SC-
PC combines the predicted wind speed at the tur-
bine location and the power derived from the target
wind speed at the turbine location using the WPC
as a reference [11].

Fig. 2 shows an example of this method for the
wind turbine WTG14. The blue scatter on the x-
axis corresponds to the predicted wind speed by
the IEC method, while on the y-axis the power cal-
culated based on the turbine mast location mea-
sured wind speed is shown and can be considered
as the “expected power”. Also, the black dotted line
represents the WPC provided by Vestas. While the
red dotted line is the SC-PC which represents the
SC error.

When the computed FCFs over-estimate the
wind speed, the blue scatter points are shifted to
the right and the red line SC-PC is forced down-
ward. Thus, it can be stated that the standard SC
error is transferred to the wind speed prediction
binning of the MPC. Please note that for a SC error
equal to zero, black (WPC) and red lines (SC-PC)
should be equal.

Both Measured and Warranted AEP are com-
puted using Eqs. 4 and 5 and their difference
is used for measuring the error in energy terms
through Eqs. 8 and 9.

AEPdiff = MAEP −WAEP (8)

AEPpercentage =
MAEP

WAEP
· 100 (9)

For AEPdiff < 0 or AEPpercentage < 100%, the SC
procedure would increase the turbine supplier risk
of compensation.

3. Proposed Methodology
The proposed methodology consists of using the
wind and other meteorological variables measured
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Figure 2: Site Calibration-Power Curve of IEC for WTG14

by the Wind Measurement Equipment (WME) on
the PM was the input data for the ML models im-
plemented.

3.1. Data

As shown in Fig. 3, the met mast is a steel tower
on the top of which the WME is mounted. The
digital Supervisory Control And Data Acquisition
(SCADA) system which collects the data continu-
ously at a sampling rate of 1 Hz (every second)
for most of the signals. The pre-processed data
is sampled in a base of 10-minute periods: mean,
standard deviation, maximum and minimum. Each
of these points in a dataset will be named “an ob-
servation” from now on.

In ML, each variable used as input for modelling
is known as ‘feature’, so from now on, the me-
teorological variables used for modelling will be
named as input features. The input features con-
sidered are 10 minute-averaged wind speed and
wind direction at the hub, mid tip and lower tip
heights, wind shear, turbulence intensity and wind
veer. From the 3D anemometer mounted at the
hub height, the wind speed horizonal and verti-
cal components as well as for the wind direction.
Also, relative humidity, temperature, pressure and
air density were considered at two different heights.
The formulas for the post-processed variables are
as follows: Air Density is computed as shown in
Eq. 10.

AD1 =
1

T1 + 273.15[
PRhub100

Ro
− RH1

100
pvapor

(
1

Ro
− 1

Rw

)]
, (10)

• Where PRhub is the pressure at the hub height
[hPa], which may not correspond to the height
at which the pressure sensor is set. Thus:

PRhub = PR1−∆z ∆PR (11)

– Delta height [m], ∆z = zhub − z1

– Delta pressure [hPa], ∆PR =[
PRo − PRo e

( −9.8
Ro(15+273.15) )

]
0.01

– Standard Pressure, PRo = 101325 Pa

• Dry air constant

Ro = 287.05 J/(kgK) (12)

• Water vapor gas constant

Rw = 461.5 J/(kgK) (13)

• Vapor pressure [Pa]

pvapor = 0.0000205 e(0.0631846 (T1+273.15)) (14)
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Turbulence Intensity is computed only for wind
speed at the hub height as shown in Eq. 15.

TI =
WS1std

WS1avg
(15)

Wind Shear is computed for the wind profile de-
scribed by the wind speed at lower tip level and that
at the hub height.

WSH =
log

(
WS1
WS4

)
log

(
z1
z4

) (16)

Wind Veer is computed for the difference in wind
direction for that at the hub height and at the lower
tip level.

WV eer =



WD1−WD4− 360,

if WD1−WD4 > 180

WD1−WD4 + 360,

if WD1−WD4 < −180

WD1−WD4,

otherwise.

Also known as Vertical Wind Direction (WDVer),
it is computed as the angle between the horizon-
tal and the vertical wind speed measured by the
ultrasonic anemometer.

WDV er =
−180

π
arctan

(
WSV er

WSHor

)
(17)

Regarding data mining, the implemented proto-
col consisted of three different steps: data pre-
processing, data filtering and data conditioning.
The first step involves transforming raw data into
an understandable format ready to be explored.
This first step included a data correction step for
the Turbulence Intensity and the Inflow angle, a
data cleaning process of the missing observations
and a data quality control that consisted on detect-
ing the faulty values for each variable defined by
a range of quality and dropping the corresponding
observations. After pre-processing, a data filter-
ing process was applied. These filters correspond
to the measurement sectors and the operational
range of the wind turbine and the icing filter. Fi-
nally, a data conditioning step was put in place in
order to prepare each dataset for the subsequent
ML modelling. This step consisted of first, apply-
ing the “Hold-out” method which is splitting the raw
dataset into two different datasets: the training set
(70%) and the test set (30%). The ML models
are trained and validated with the training set while
are assessed with the test set, which is basically a
complete unseen data series for the trained model.

After splitting, each feature of the dataset was nor-
malized.

The object of study are nine wind turbines lo-
cated at three different sites in Australia. The
first dataset includes data for two wind turbines
(WTG14 and WTG15). For dataset2, three wind
turbines are included in the study (T11, T17 and
T22) and finally, for the third dataset four differ-
ent wind turbines are analysed (WTG18, WTG20,
WTG43, WTG46).

3.2. Modelling
In this subsection both the steps of the mod-
elling and the different ML techniques implemented
based on python code scripts.

3.2.1 Modelling steps

The four steps of any ML task are hyperparameter
tuning, model training, generalization and model
explainer.

Each algorithm requires a specific set of hy-
perparameters that need to be adjusted accord-
ing to the task. Both Grid Search and Random
Search are implemented for hyperparameter tun-
ing through a as k-fold Cross-Validation [1]. Regu-
larization may also be applied. It consists in con-
straining a model to make it simpler and reduce the
risk of overfitting [1].

Training a model in ML is like solving an opti-
mization problem. The model learns from the train-
ing set of inputs by adjusting the its parameters
(also named coefficients) so that the difference be-
tween the predicted output and the target value is
minimum. This difference is called ‘loss’ and it is
expressed through the Mean Squared Error (MSE)
as can be seen in Eq. 18.

minimize
1

n

n∑
i=1

(yi − ŷi)
2 (18)

Where yi is the target value and ŷi is the pre-
dicted value for each of the n observations.

ML involves using an algorithm to learn and gen-
eralize from historical data to make predictions on
new data. The variables that are entered into the
model are called features and the output of the
model is called a prediction.

The generalization consists in using the test set
to assess how well the model can generalise to
new and unseen data. Three different metrics are
defined so that the models are comparable to both
wind and power:

The Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi|2 (19)

The Root Mean Squared Error (RMSE):
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Figure 3: Meteorological mast with the Wind Measurement Equipment (Not at scale)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (20)

And the Mean Absolute Percentage Error
(MAPE):

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (21)

And finally, SHAP [9] is the state-of-the-art in ML
models’ explainability. SHAP values are a series of
parameters that quantify the contribution of each
feature to the prediction of a given complex model.

3.2.2 Modelling techniques

Three different ML techniques are implemented.
Linear modelling Polynomial regression consider-
ing both Ridge and Lasso regularization, imple-
mented on Scikit-Learn library [10], Artificial Neural
Networks on Keras [3] and the decision tree-based
Extreme Gradient Boosting techniques based on
xgboost package [2].

A linear model in ML is any model that assumes
a linear relationship between the input features and
the output and those can be expressed explicitly.
Two types of linear models are implemented: sim-
ple linear regression and polynomial linear regres-
sion. The equation of the simple linear model only
considers the set of values xij for each of the p in-
puts, for each of the n observations, in their original
form to predict the target value ŷi, through the op-

timization of the linear coefficients for each feature
βj and the independent coefficient βo.

ŷi = βo +

p∑
j=1

(βj + xij) (22)

On the other hand, the polynomial regression in-
puts those features in a polynomial shape. For
instance, if the problem had the features (a, b, c)
the input polynomial features for degree equal to 2
would be (1, a, b, c, a2, b2, c2, ab, bc, ca) [4].

Ridge and LASSO regression are two regular-
ization techniques that consist in adding a term to
the error to reduce the value of the coefficients in
the model. The level of penalty is controlled by the
hyperparameter α. Eq. 24 presents the optimiza-
tion for Ridge and Eq. 23 for LASSO.

minimize
1

n

n∑
i=1

yi − βo −
p∑

j=1

βj + xij

2

+ α

p∑
j=1

|βj | (23)

minimize
1

n

n∑
i=1

yi − βo −
p∑

j=1

βj + xij

2

+ α

p∑
j=1

β2
j (24)
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Artificial Neural Networks (ANN) is the second
method implemented for solving the Site Calibra-
tion regression task. It is a type of non-linear
ML modelling. An ANN is then an interconnected
group of nodes, known as Artificial Neurons that
through an iterative process can learn from a
dataset to predict an output. The architecture of
the ANN is shown in Fig. 4.

Figure 4: Basic Architecture of an Artificial Neural Network

The considered architecture is a fully connected
network with one neuron at the output layer, since
the SC task is to estimate one single target, the
wind speed at the wind at the hub height on the
turbine location. There 6 types of hyperparam-
eters that are tuned through a Random Search
for the ANN modelling. The number of hidden
layers (up to 3) and the number of neurons per
layer (up to 100), the learning rate, the regulariza-
tion technique (L1, L2, Dropout or Early Stopping),
the optimizers (SGD, Momentum, Nesterov, Adam,
Nadam or RMSProp) and the activation function
(ReLU, Leaky ReLU, eLU or SeLU).

The third and final ML implemented is the
Extreme Gradient Boosting decision tree-based,
which is an ensemble model. The idea behind en-
semble modelling is that a single algorithm, on its
own, might not be able to capture all the relations
in a given dataset. However, a group of algorithms
trained with different parts of a dataset might be
able. Boosting trains models sequentially, each
new model is trained to correct the errors of the
previous ones.

On the other hand, as can be seen in Fig.
5, decision trees apply a top-down approach to
data so that for given a dataset, the algorithm
splits each region in a way that makes most train-
ing observations as close as possible to that pre-
dicted value. Up to 8 different hyperparameters
are tunned for the XGB molldeing through an step-
wise Grid Search as Aarshay Jain describes [7].
Among these hyperparameters, the most relevant
are the number of estimators, the learning rate and
the maximum depth of each tree.

Figure 5: Basic Architecture of a Decision Tree

4. Results & discussion
The main goal of the present paper is to prove the
validity of a data-driven model to perform a SC for
wind turbines. Table 1 summarizes the average
MAPE error by ML technique compared to the IEC
2005 standards. The main outcome from this com-
parison is that in all cases, ML models present a
lower error than the standards. The error reduction
by wind turbine for wind speed was from 0.7% up
to 5.4% while for the power output, from 1.5% up
to 15.6%.

Table 1: Average MAPE error comparison by ML technique

Average MAPE (%) wind
speed

power
output

IEC 6.87% 15.61%

Linear regular 5.33% 11.73%
general 5.71% 14.90%

ANN regular 5.12% 11.29%
general 5.59% 15.10%

XGB regular 4.77% 10.59%
general 5.44% 13.60%

For individual models, the ML technique with bet-
ter performance was XGB followed by ANN, being
the linear models the less effective in predicting the
wind speed. When looking at the Universal model
by wind farm, although not being as accurate as in-
dividual models by wind turbine, they still perform
better than the IEC standards.

From the wind industry perspective, the main
concern raised is to find a SC that accurately pre-
dicts the wind speed at the hub height and at the
turbine location and, more important than that, a
model that correctly estimates the MPC and thus
the MAEP.

Fig. 6 presents the SC-PC for wind turbine
WTG14. The MPC based on XGB is closer to
the expected WPC than the IEC curve, especially
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Figure 6: Site Calibration-Power Curve comparison for WTG14

around the elbow, but also on the lowest part of
the curve. Regarding the MAEP, the XGB tech-
nique considerably improves the MAEP estimation
compared to the IEC method for all cases with the
exception of wind turbine WTG18, for which the
difference with the expected AEP is similar. The
average improvement is around 62% of the AEP
baseline and in the best case up to a 89.7% im-
provement for wind turbine WTG14.

Feature importance depends mainly on the ML
technique and, but also on the site. Fig. 7 there-
upon shows the average feature importance by ML
technique for all sites.

As seen in Fig. 7, for all three models, the
two most important features are the wind speed
at the hub height, as expected, but also its hori-
zontal component captured by the ultrasonic or 3D
anemometer. Moreover, WS3 and WS4 meteoro-
logical variables are ranked to be around the same
position for all three models.

While linear models are much less selective,
thus these models tend to give importance to more
variables, non-linear models can better select the
most important variables, especially XGB, which
is very consistent regarding feature importance
among the different wind turbines.

From all wind variables, the case of TI is worth

to be mentioned. TI has a highly non-linear rela-
tionship with the target, that is why it is at the end
of the ranking for the linear models while it is at the
top for non-linear models, especially for XGB which
TI can be found in the third place.

Although the SHAP values tool implemented
provides the importance by feature, from the wind
industry insights learned, the importance is re-
quired to be measured by sensor. Thus, one sim-
ple methodology has been developed to transform
feature importance to sensor importance using Eq.
25:

importancesensor =

n∑
i=1

(
importancefeature∑

sensors

)
i

(25)
Fig. 8 shows the average sensor importance by

ML technique estimated considering the necessary
signals for computing the different features.

As can be seen in Fig. 8 the top 5 most impor-
tant sensors for SC are exclusively wind speed and
wind direction related and the least important in all
cases is the Rain gauge. Looking at this ranking
in detail, it is concluded that anemometer at the
hub height and the 3D anemometer are a must in
SC performed through ML techniques, while Tem-
perature sensors and Relative Humidity and Pres-
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Figure 7: Average feature importance Top 10 Ranking by ML technique

sure sensors at the lowest tip level, far from the hub
height, could be considered in the droplist.

Figure 8: Sensor importance averaged for all sites by ML tech-
nique

5. Conclusions
As seen in Fig. 2, it has been proved that the IEC
2005 SC standard method systematically overesti-
mates the wind speed around the rated power. The
two main consequences are a significant decrease
in the MPC at its elbow and in some cases, a re-
duction in the MAEP by default. Moreover, the wind
speed is underpredicted on the lowest part of the
Power Curve and thus, the MPC tends to increase.
Therefore, the inaccuracy of wind speed predic-
tion for SC procedures in some cases increases
the risk of compensation on behalf of the turbine

supplier.
ML supervised learning tools are more accurate

than the IEC in predicting the wind speed at the
hub height and wind turbine location when per-
forming a SC procedure. In most cases, the sys-
tematic errors introduced in the MPC by the IEC
standard method are corrected by the ML models
implemented, especially XGB. And consequently,
ML models are also more accurate in estimating
the MAEP. This main conclusion can lead to other
two relevant outcomes namely the assurance of
development of new renewable projects as well as
the integration of wind farms into the network.

First, regarding the main motivation of this Mas-
ter Thesis, ML models applied to SC can potentially
reduce the risk of compensation on behalf of the
turbine supplier due to wind turbine underperfor-
mance. Moreover, it also can ensure the certainty
of the investment return and the profitability for the
wind farm owner which is the key for the develop-
ment and execution of renewable projects.

On the other hand, unlike conventional power
plants, wind farm power production is entirely de-
pendent on environmental conditions at each wind
turbine location. However, wind speed at the hub
height and turbine location not only depends on an
intermittent and variable wind resource at the refer-
ence location but also on complex non-linear atmo-
spheric interactions. This reference meteorological
masts data is later used for power production pre-
diction for the wind farm daily operation. Thus, the
increase in the accuracy of the power prediction
thanks to a more accurate SC procedure is recog-
nized as a major contribution to reliable large-scale
wind power integration.

For all of the above, it is recommended to aban-
don the multi-binning linear regression methods
and to adopt the multivariate non-linear regression
models. Especially XGB modelling due to its out-
performing results and its ability to accurately se-
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lect the optimal required features. It is also rec-
ommended to include other meteorological vari-
ables rather than the wind speed and wind direc-
tion at the hub height, namely other wind-related
variables at the middle tip and lower tip levels, the
Turbulence Intensity and to consider the installation
of ultrasonic anemometers on the PM.

Model explainability tools for ML models, such
as SHAP values, can increase the transparency
of the models which can be translated to increas-
ing acceptance among the wind industry members.
Moreover, model explainers applied to SC can also
be useful for optimizing the budget of Power Curve
Measurement campaigns by identifying the most
relevant WME devices.

Finally, it is concluded that universal ML mod-
els by farm can perfectly be an option for pursuing
a SC. Although universal models have not proved
to be as accurate as regular individual models by
wind turbine, they still outperform IEC standards.
‘Universal models’ may be seen as more conve-
nient in terms of complexity.
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