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To all my friends and Instituto Superior Técnico colleagues Inês Albano, Viviana Bernardo, Carolina

Carreira, Rafael Soares, Miguel Barros, Miguel Oliveira, Miguel Silveira, Joana Coutinho, Pedro Ro-

drigues, Sı́lvia Urmal, Ana Betiol, Catarina Lourenço, Matilde Pereira, Inês Alves, Daniel Cordeiro -

college would not have been nearly as good without you.

To each and every one of you, and the dear reader, I dedicate this thesis.

i





Abstract

The blockchain technology has been drawing a great deal of attention since its arrival in 2008, with

Bitcoin. It does not come as a surprise that this technology has an enormous potential to be applied in

a vast number of areas. However, currently blockchains exist in silos, often competing when they could

be cooperating and communicating. Interoperability is essential to allow for communication between

blockchains and thus motivate mass adoption. In permissioned blockchains, interoperability is harder

given their opaque nature. Some solutions have already been created in this context, however many

require a trusted private third party, which may be insecure and it is not ideal given the nature of the

technology.

In this work, we propose T-ODAP (Trustless Open Digital Asset Protocol), a secure multi-layered pro-

tocol that enables a trustless solution for permissioned blockchain interoperability. T-ODAP is more

secure than other, centralized, solutions given that it eliminates the need for trust in the protocol’s par-

ticipants. It provides a Decentralized View Storage (DVS), a Polkadot Connector that connects per-

missioned blockchains to the latter, and a trustless version of the Open Digital Asset Protocol which

leverages the DVS and the connector. The protocol models the participants as rational agents and im-

plements game theory techniques in order to punish them in case they deviate the protocol. T-ODAP is

implemented using Polkadot and Hyperledger Cactus. We tested that the implemented solution worked

properly. In the theoretical evaluation, we were able to evaluate the full system’s robustness in face

of attacks and concluded that the system is resilient to attacks, having the same robustness level as

Hashed Time-Lock Contract (HTLC)-based payment schemes.
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Resumo

A tecnologia blockchain tem chamado atenção desde a sua chegada em 2008, com o Bitcoin. Não é

novidade que a tecnologia tem um enorme potencial para ser aplicada num vasto número de áreas.

No entanto, atualmente muitas blockchains existem em isolamento, várias vezes competindo quando

poderiam estar a cooperar e a comunicar. A interoperabilidade é essencial para permitir a comunicação

entre blockchains, motivando uma adoção em massa. Em blockchains com permissões, a interoper-

abilidade é mais complicada devido à sua natureza opaca. Algumas soluções já foram criadas neste

sentido, porém muitas requerem uma entidade externa confiável, o que pode ser inseguro e não é ideal

devido à natureza da tecnologia. Neste trabalho, propomos o T-ODAP (Trustless Open Digital Asset

Protocol), um protocolo multi-camadas seguro que possibilita uma solução trustless para interoperabil-

idade de blockchain com permissões. O T-ODAP é mais seguro do que outras soluções centralizadas,

uma vez que elimina a necessidade de confiança nos participantes do protocolo. O protocolo fornece

um Armazenamento de Vistas Descentralizado (DVS), um Conector Polkadot que conecta blockchains

com permissões a este último e uma versão trustless do Open Digital Asset Protocol que utiliza o DVS

e o conector. O protocolo modela os participantes como agentes racionais e implementa técnicas de

teoria dos jogos para puni-los caso estes se desviem do protocolo. O T-ODAP é implementado recor-

rendo ao Polkadot e ao Hyperledger Cactus. Testámos a solução implementada. Na avaliação teórica,

avaliámos a robustez do sistema no que toca a ataques e concluı́mos que o T-ODAP é resistente a

ataques, tendo o mesmo nı́vel de robustez de esquemas de pagamento baseados em Hashed Time-

Lock Contract (HTLC).

Palavras Chave

Blockchain; Interoperabilidade; Permissionada; Teoria de Jogos; Segurança; Trustless
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Blockchains are becoming more and more relevant in today’s world as they have been proven to have

the potential to revolutionize applications and redefine the digital economy [7]. While the first blockchain

to ever exist - Bitcoin [8] - has economic purposes, many other use cases for the technology, such as

healthcare support [9], have emerged over time.

A blockchain is a distributed, immutable ledger that stores transactions containing application depen-

dent data. The participants contribute to the functioning of the system, distributing the trust among all

and thus avoiding a single point of failure. A blockchain that places restrictions on who its participants

are, only allows them to perform certain actions and is controlled by a node or group of nodes (com-

mittee) is considered to be permissioned (or private), while a blockchain that allows anyone to join and

contribute to the network is permissionless (or public) [10].

There are currently a large number of blockchain projects that encompass different characteristics

- such as the consensus mechanism or hashing algorithms. They may also specialize in very distinct

areas, ranging from work such as SSIBAC (Self-Sovereign Identity Based Access Control) [11], that

leverages a permissioned blockchain to provide users with an authentication based on self-sovereign

identity, to projects such as CryptoKitties [12], a game built on top of a public blockchain. In this context,

organizations are able to choose from a wide range of options. However, this is a delicate choice, since

it is hard to learn the technology and expensive to invest in it [3].

Given the high number of specialized blockchains, there is the tendency to deploy them siloed from

each other, preventing the technology from reaching its full potential - according to Hardjono et al. [13],

the situation that exists today is similar to the one that we saw back in the 1970’s and 1980’s with the

Internet. Multiple Local Area Network (LAN) systems existed, however they had distinct approaches and

thus were isolated. Once the Internet was able to achieve interoperability, connecting the small networks

with each other, it became resilient and a commercial success. In parallel, the authors state that in order

for blockchain to survive and thrive, playing a fundamental role in the future, it requires an architecture

that satisfies the same goals of the Internet architecture.

Thus, blockchain interoperability is of utmost importance, since it allows risk reduction by enabling

migration across different blockchains. This way, once a blockchain becomes obsolete, it is possible to

replace it. Additionally, interoperability enables the creation of new use cases, exploiting synergies be-

tween different solutions and scaling of existing ones [3], potentially fostering the technology’s adoption.

Both permissioned and permissionless blockchains require blockchain interoperability. However, as

said before, the latter have structural differences between them - in a simplistic way, one blockchain type

is closed while the other is open. As such, interoperability looks different for each of the types.

For permissionless blockchains, there are several emerging solutions that provide interoperability

while still maintaining the decentralized aspect that the technology defends, such as XCLAIM [14]. This

is challenging to achieve, but still feasible due to the open nature of these blockchains. In order to have

3



blockchain interoperability, blockchains need to communicate with each other, i.e. they need to share

their states with each other. In the context of permissionless blockchains, it is easier to validate a given

blockchain state due to the very fact that it is public.

When it comes to permissioned blockchains, however, the situation is different. In general, these

blockchains are opaque and thus it is against their nature to share internal states with the external

world. This is challenging to solve - in order to know the internal state of a blockchain of this type, we

have to take the word of at least one node belonging to the latter and the state we obtain might be

incorrect if we are dealing with malicious nodes. Some interoperability solutions have also been arising

for permissioned blockchains, yet most are centralized which may not be completely secure and goes

against the decentralized nature of the blockchain technology.

This type of interoperability is very relevant given the fact that it enables new use cases leveraging

permissioned blockchains, such as cross-border asset transfers between banks. These are, in general,

still a very inconvenient form of payment given the high transaction fees, the lack of transparency and

the high latency (usually around 2-3 days). In this scenario, with permissioned blockchain interoperabil-

ity, each bank could be associated to a permissioned blockchain (given that a bank’s data can not be

public) and be able to transfer assets from one blockchain to the other in a much faster, cheaper and

secure way. Moreover, in this context, the interoperability mechanism should be trustless for a more

secure solution - the less we have to place trust on centralized intermediaries, the better, given that we

are dealing with sensitive information.

Open Digital Asset Protocol (ODAP) is an example of a recent interoperability solution. It is a

cross-communication protocol that operates between two gateway devices to transfer assets between

blockchains represented by those gateways. This asset transfer is unidirectional and comparable to

atomic swaps, where an asset is locked on one blockchain and it’s representation is created on an-

other [6].

A more decentralized, trustless and secure solution for permissioned blockchains’ interoperability is

needed. Thus, we propose T-ODAP, a multi-layered secure solution for cross-chain asset transfers with

a focus on permissioned blockchains. In the first layer, T-ODAP encompasses a trustless system that

performs the publication of permissioned blockchain’s internal state proofs in a Decentralized View Stor-

age (DVS), implemented in Polkadot [15]. The second layer comprises a connector built in Hyperledger

Cactus [16], that is compatible with several permissioned blockchains and can connect the latter to the

DVS. Hyperledger Cactus and Polkadot are interoperability mechanisms introduced in Section 2.3. Fi-

nally, the third layer entails the use of the DVS and state proofs to build a more trustless and secure

version of the ODAP protocol. In order to model the behavior of the protocol’s participants, we used

game theory techniques. Please note that the third layer consists of a theoretical model and was not

4



implemented yet due to circumstances outside of our control; the implementation is intended for future

work.

T-ODAP’s biggest focus is providing a trustless, more secure solution than others that currently exist

for permissioned blockchain interoperability. This entails a cost and complexity trade-off, which we are

willing to accept as long as our work’s objectives are met.

Finally, we present a theoretical evaluation for T-ODAP. We evaluate the full system’s robustness

in face of attacks and conclude that the system is (k,t)-weak-robust, similarly to mechanisms such as

HTLC-based payment schemes or side-chain protocols [4].

We tested the correct functioning of the first two layers of T-ODAP through Hyperledger Cactus [16],

which (among its other functionalities) enables blockchain and smart contract testing. We also presented

the metrics we would have evaluated if we had had the opportunity, as well as expressing our predictions

for the results to expect, in relation to ODAP as our baseline.

1.1 Work Objectives

The main goal of our work is to provide a secure and robust system that allows for trustless permissioned

blockchain interoperability through the use of the DVS. The DVS is implemented in the form of a Polkadot

smart contract and the connector is implemented in Hyperledger Cactus. The implementation of the

theoretical model (i.e. the adaptation of the ODAP protocol) is intended for future work.

The following research questions should be tackled by our solution:

1. How to guarantee the internal state proofs’ correctness and integrity if permissioned blockchains

are opaque?

2. How can we effectively model the dynamics of the protocol in regards to its rational participants,

using game theory?

3. How to make T-ODAP strongly robust in terms of resilience to attacks?

1.2 Organization of the Document

This thesis is is organized as follows: Chapter 2 provides background on concepts fundamental to the

blockchain technology, blockchain interoperability and game theory. Additionally, the chapter presents

related work that describes solutions that tie in with the work proposed in this document. Then, Chap-

ter 3 presents requirements, assumptions and preliminaries on Trustless Open Digital Asset Proto-

col (T-ODAP). It also discusses the system model, technologies leveraged, the protocol and the threat

model for T-ODAP. Finally, it presents a theoretical use case for the solution. Next, Chapter 4 presents
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the technologies leveraged to build the solution and also the implementation details of T-ODAP. The

evaluation methodology for assessing T-ODAP is presented in Chapter 5, where the theoretical evalua-

tion is discussed, along with details of the tests of the implementation. Lastly, in Chapter 6 we present

present our conclusions for this work, along with the contributions made, the system’s limitations and

future work.
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This chapter presents background on blockchain, interoperability and game theory applied to blockchain,

as well as the corresponding state-of-the-art. First, the concept of blockchain is explained, along with

its basic characteristics. Then, the different types of blockchain - permissioned and permissionless - is

presented. Hyperledger Fabric is also introduced as an example of a permissioned blockchain. Subse-

quently, we present background on blockchain interoperability and the current available interoperability

solutions, along with game theory basics, games, and game theory applied to blockchain. Finally, the

state-of-the-art is reviewed, ending with a comparison between existing solutions.

2.1 An Introduction to Blockchain

A blockchain can be described as a decentralized, tamper-proof distributed ledger [1], that allows trusted

transactions among untrusted participants [17].

2.1.1 Transaction

A transaction is proposed by a user (blockchain participant) and it is an essential component of the

blockchain. The data it contains depends on the blockchain’s scope - e.g. if it is financial, among other

data, the transaction contains the value in concern and the addresses of the sender and receiver. More

broadly, the transaction can also be called a record.

2.1.2 Block

A blockchain stores different sets of transactions into blocks, where each block is connected to others

forming a chain (hence its name). Besides the set of transactions (the payload), a block contains a

header. The latter usually includes, among other parameters:

i A hash of itself (block digest), used to protect the integrity of the transactions in the block;

ii A hash of the previous block, adopted to foster immutability of the chain - if a participant attempts

to tamper a block, this will be detected since its hash will change;

iii A nonce, that is used to check if the block is valid.

iv A timestamp, in order to authenticate the block’s time of creation.

Figure 2.1 illustrates the headers of the first four blocks of a chain. The first block (block 0) is called

Genesis block. It has no previous hash since there is no previous block to refer to.
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Figure 2.1: Blockchain data structure example (adapted from [1])

2.1.3 Nodes

The blockchain nodes form and maintain the network’s infrastructure. Each node communicates with

other nodes and contains a local replica of the chain - when a block is verified, each node attaches it to

its local replica. This replica is usually the same on all nodes, although on some blockchains there may

be temporary or even permanent distinct local replicas. This can either be a consequence of the nature

of the blockchain (for example, due to a probabilistic consensus algorithm) or derived from a need to

protect privacy - in a private blockchain, it is desirable for participants to be able to hide certain parts of

the state they hold [18]. Though this may be the case for local replicas, the global state (the set of states

that compose the blockchain) remains consistent.

2.1.4 Consensus

The network nodes reach consensus when they agree on a global state for the blockchain. There are

several algorithms used to reach consensus, some more complex than others, depending on the type of

blockchain (further explained in the following subsections).

2.1.5 Permissioned Blockchains

Permissioned (or private) blockchains have been popular around enterprises. In this type of blockchains

there are restrictions in terms of the users that can participate in the blockchain and what these users

can do once they enter it - a pre-selected set of nodes controls the consensus process, thus, the global

state of the blockchain. Note that entities external to the network are unable to access any information.

As a result, all peers are identifiable and well-known - in case of an attack, this can be useful for (at

least) identification of the attacker. This type of blockchain utilizes Byzantine Fault Tolerant protocols

(BFT) as consensus mechanisms. Every permissioned blockchain belongs to an organization (or con-

sortium of organizations), where each node represents a given stakeholder within that organization (or

organizations). By using a blockchain of this type, an enterprise is able to acquire the benefits of a
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blockchain without needing to reveal private information (as it would in a public blockchain such as Bit-

coin). Some examples of permissioned blockchains include Hyperledger Fabric (that will be explained

in detail later) [2], Quorum [19] and R3’s Corda [20].

There are two different architecture types when it comes to these blockchains:

i Order-Execute Architecture - This type of architecture defines that the blockchain transactions

must be first ordered (using a given consensus protocol), and only then executed. This execu-

tion must happen in all nodes that participate in the consensus process, sequentially [2]. Order-

Execute architecture was adapted by most of the existing blockchains systems, both permissioned

(such as Tendermint [21] and Quorum [19]) and permissionless (such as Ethereum [22]).

ii Execute-Order-Validate - In this architecture, that arose with Hyperledger Fabric, the transactions

are first locally executed, then ordered (through an ordering service), and finally validated by all

peers, after which they are sequentially applied to each peer’s local ledger. This architecture will

be further mentioned when we explain Hyperledger Fabric in depth, in Section 2.2.

It is important to note the drawbacks of permissioned blockchains. These include centralization

and lack of transparency, which some believe goes against the purpose of the blockchain technology

itself [10]. Security and trust issues are also a considerable concern in this type of blockchain, since if

the authorized nodes are not trustworthy, the network is compromised (given that these control its global

state).

2.1.6 Permissionless Blockchains

Unlike permissioned blockchains, this type of blockchain is transparent and open to everyone that wants

to join. Anyone can read its contents, add transactions to it, and take part in its consensus process,

participating in deciding what the current state is and what blocks are added to the chain. Permissionless

(or public) blockchains are considered fully-decentralized since there is no single entity (or consortium)

controlling the network. This brings the valuable advantage of not requiring trust in individual nodes,

but instead, trust in the system itself, which leads to greater security. Additionally, the more participants

work in the blockchain, the more secure it becomes.

Within permissionless blockchains, classical consensus protocols such as BFT cannot be applied.

The reason for this is that these protocols require a set of well-known nodes, who can authenticate each

other as members of the group. Since in this type of blockchain anyone can join the network, a Sybil

Attack [23] could be executed. In this context, the attacker is able to overwhelm the consensus protocol’s

fault tolerance threshold by creating enough virtual participants.
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Thus, consensus protocols such as Proof-of-Work (detailed later) are required, where nodes are

monetarily incentivized (with cryptocurrency) to maintain the network.

Within a decentralized system, security is more costly (consensus algorithms tend to be much com-

putationally heavier than BFT’s). Scalability is also usually worse given the fact that, in this context,

transactions require validation from multiple entities (e.g. Bitcoin is known for being robustly decentral-

ized, however it is slow). However, since the trust is distributed (instead of trust in individual entities),

the system tends to be more secure.

On another hand, permissioned blockchains tend to be more centralized and scalable, but potentially

more vulnerable to attacks given the centralization.

The blockchain trilemma addresses the challenges that blockchain developers face when trying to

create a system that is decentralized, scalable and secure, without having to compromise any aspect.

At this moment, no such blockchain exists [24] - each blockchain is often forced to make trade-offs and

choose at maximum two of the three core aspects, having to compromise on the third - but it might in

the future.

In permissionless blockchains, the consensus processes are complex and usually still need a much

longer time to complete when compared with traditional, centralized solutions (e.g. in Bitcoin, the maxi-

mum estimated throughput is approximately between 3.3 and 7 transactions per second [25] while Visa

is capable of achieving around 24,000 transactions per second [26]), negatively impacting its scalability.

Bitcoin is an example of a permissionless blockchain. It utilizes a consensus algorithm named Proof-

of-Work (PoW), that consists in solving a hard and computationally expensive cryptographic puzzle

(more specifically, finding a hash value which satisfies a given condition) [1]. Several nodes (called

miners) attempt to solve the puzzle at the same time and the first one to solve it builds a block to add to

the network (this is called mining a block). In order for this block to be added the chain, the transactions

it contains must first be verified and validated by other nodes. If the block’s transactions are valid, this

miner is rewarded with cryptocurrency. The nodes that validated the block express their acceptance by

working on creating the next block of the chain using the hash of the accepted block as the previous

hash, thus creating a coherent global state.

In this context, if a malicious node attempts to tamper a transaction in one block, it has to calculate the

PoW for that block and for all the following blocks, which requires an enormous amount of computational

resources, due to the fact that each block contains the hash of the previous block. Besides this, in order

for the global state to be accepted, it will have to do this faster than an honest miner would mine a block,

which is extremely difficult. Plus, given the assumption that the probability of an honest miner finding the

next block is higher than the probability of the attacker finding the next block, the attacker’s chance of

success decreases exponentially as the number of blocks it has to catch up with increases [8]. However,
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despite the defense mechanisms, this attack is still possible both in Bitcoin and in other permissionless

blockchains. The 51% attack happens when an attacker possesses more than 50% of the network’s

computational power, being able to perform any action it wants. The latter is usually associated with

mining pools (a group of miners who combine their computational power over a network, with a common

goal). This attack will be further explained in Section 2.4. Additionally, authors in [27] discovered that an

attacker with just 38.2% of the network’s computational capacity (a number less challenging to achieve

through a mining pool) was also able to successfully perform this attack [1].

It is also important to mention forks, which are multiple, competing versions of the chain. This is

dangerous, since it creates doubt around who owns which coins [28].

In Bitcoin, to guarantee a consistent global state despite the possible forks, Nakamoto proposed

the longest chain rule, that states that each node must accept the longest chain as the valid version

of the chain, because it is the one which has the greatest Proof-of-Work effort invested in it [8]. Since

the blockchain’s security and robustness is based on its decentralized consensus, that agrees on the

global state of the chain, mining on a fork chain (an alternative chain) is an attack to the consistency and

security of the whole system. Miners may want to fork instead of mining honestly due to the possibility

of obtaining higher rewards. However, these rewards are only relevant if the block is included in the

long-term agreed state (the consensus chain).

In Ethereum (another permissionless blockchain), much like in Bitcoin, all peers first attempt to form

a block that contains valid transactions. After this, a cryptographic puzzle (PoW) must be solved. The

peers that can solve the puzzle disseminate the block to the other peers via a gossip protocol. Fi-

nally, when a peer receives a block, it validates its PoW solution, and all the transactions that the block

contains.

2.1.7 Permissioned vs. Permissionless

In permissioned blockchains, the BFT consensus protocols execute a lot faster than permissionless

blockchain’s consensus protocols (such as PoW). These protocols are more efficient and performant

since they allow for a higher transaction throughput, given the fact that there is no overhead derived

from performing expensive computation as a pre-requirement to create a block (unlike in permission-

less blockchains). Permissioned blockchains (such as Hyperledger Fabric) also allow some nodes to

keep sensitive information private while still maintaining a consistent global state - this may be partic-

ularly useful to enterprises that intend to control what each stakeholder (modeled as a node) can see.

Nonetheless, permissioned blockchains have the disadvantages of centralization, security (since trusted

nodes may collude) and trust (the credibility of a permissioned blockchain depends on the credibility of

its authorized nodes). Additionally, as mentioned before, this type of blockchains is opaque to external
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observers. While this is advantageous in terms of privacy of information, it makes interoperability a chal-

lenging task due to the difficulty of observing a permissioned blockchain’s internal state. Some solutions

have emerged to tackle this problem, which we further explain in Section 2.8.

On another hand, permissionless blockchains are open and provide full decentralization (since no

central authority or authorities exist). They also provide transparency, since all participating nodes can

see all transactions that ever occurred. Both of the mentioned qualities are extremely valuable since they

remove the need for trust in individual nodes: all of the data published in the blockchain is open to the

public for verification. This way, no intermediaries are necessary, causing the blockchains to be more

secure. However, in these blockchains the consensus process is slower, due to complex algorithms

(such as PoW) being necessary to maintain the security of the system. This also causes the transac-

tion throughput to be much slower than in permissioned blockchains, harming its performance. Finally,

energy consumption is also a concern in permissionless blockchains, since its consensus algorithms

spend high amounts of energy.

Both of the blockchain types can provide great advantages. However, depending on the specific use

case and the industry it is inserted in, one option might be better than the other.

2.1.8 Blockchain adoption challenges

Although ”blockchain” is, without a doubt, one of the biggest buzzwords of the last decade, there are

still some significant obstacles preventing mass adoption, particularly in the adoption of enterprise

blockchains.

The most relevant ones are:

• Expensive implementation - The price of a commercial blockchain-based solution can vary a lot

depending on several factors such as the type of blockchain, complexity of the solution, or the

amount of users interacting with it. However, on average, this type of implementation is still very

expensive (a full-scale solution may cost more than 100,000 dollars) [29].

• Data and value silos - Different use cases and stakeholders require various blockchain features.

This has been leading to an heterogeneous and fragmented ecosystem, where blockchains are

focused on resolving specific challenges, causing scaling and synergies between different solu-

tions to be extremely difficult, if not impossible. Additionally, as a result, many blockchains are still

immature [3].

• Hard to learn - This technology might be daunting at first, especially for someone which does not

have an information technology or mathematical background. It is not considered mature yet, there

are many concepts to learn and, due to the aforementioned data and value silos, often times each
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blockchain contains a specific set of new concepts. Besides this, as so many people around the

world are writing and speaking about the subject (experts or not), a portion of the information is

either wrong or incomplete.

• Blockchains also become obsolete - Technology becomes obsolete when it is replaced by a newer

or better technology, sometimes extremely fast. Blockchains are no exception. Investing in a

blockchain technology comprises a significant risk, since it might become obsolete (or vulnerable,

or shutdown). Although some blockchain migration solutions have been appearing recently (e.g.

[30]), the current solutions are only applicable to a small set of public blockchains [3].

These obstacles are very strong reasons why blockchain interoperability is critical for this technology

to achieve its full potential and thrive.

It is important to note that permissionless blockchains also have their challenges. Despite more

people investing in cryptocurrencies such as Bitcoin and Ethereum and the huge increases in prices,

there have been many conversations around a deeper problem - the colossal amounts of energy spent

by public blockchains with consensus algorithms such as Bitcoin’s Proof-of-Work. Throughout 2017, the

latter’s energy consumption was higher than the energy consumption of 129 countries [31].

2.2 Hyperledger Fabric

As mentioned before, Hyperledger Fabric is an example of a permissioned blockchain that first intro-

duced the Execute-Order-Validate architecture. A distributed application for Fabric consists in:

i Smart Contract (chaincode) - The code that implements the application logic. System chaincodes

are special smart contracts that manage and maintain the blockchain system.

ii Endorsement Policy - Applied to a given chaincode, this policy defines the subset of peers that are

in charge of endorsing the chaincode’s transactions, i.e. executing each transaction. It is created

and modified by pre-selected administrators.

In terms of entities, this blockchain considers the following:

A Client - Is in charge of submitting transaction proposals (i.e. transactions for execution), helping or

guiding the execution phase and broadcasting the endorsed transactions for the ordering phase.

B Peer - Executes transaction proposals and validates ordered transactions. Each peer works to

maintain the ledger.
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C Ordering Service Node (orderer) - The Ordering Service establishes the total order of all trans-

actions and, optionally, access control checks (to see if a given client has certain permissions in

the system). The orderers are unaware of the system state and are unable to execute or validate

transactions, making consensus process as modular as possible.

There is one more essential architecture component to Fabric named Membership Service Provider

(MSP). The MSP service is responsible for the mechanisms of authentication and authorization of all

entities in the system. This is extremely important due to the Permissioned nature of this blockchain. It

also provides authentication to operations such as transactions or endorsements.

There are three phases in Hyperledger Fabric’s architecture: Execute, Order and Validate. This

scheme introduces a hybrid replication design - passive when it comes to the execution phase, since

parallelism is allowed and since it is not executed by all peers, and active in regards to the validation

process, since it is deterministic and executed individually by each peer.

Figure 2.2: High-level transaction flow (adapted from [2])

Fabric’s transaction flow, depicted in Figure 2.2, can be described as follows:

2.2.1 Execution Phase

The flow is initiated with the Execution Phase. First, clients sign and send a transaction proposal to one

or more endorsers (step 1), that are specified by the endorsement policy of the chaincode the transaction

belongs to. Then, each endorser simulates the proposal, i.e. it is only executed in the endorser’s local
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blockchain and not propagated to other peers (step 2). The simulation results do not persist in the

ledger state. The output corresponds to a writeset (with state updates produced by the simulation) and

a readset (the version dependencies of the simulation).

Next, each endorser cryptographically signs a message that contains the writeset and readset, along

with metadata - an endorsement. This endorsement is then sent to the client for it to continue the flow.

In order for a transaction to be created by a client, the latter needs to collect endorsements that

satisfy the endorsement policy associated with the transaction’s chaincode. This can be seen in step 3.

Here, all the different execution results received from endorsers must be equal between themselves.

Finally, if the client receives valid endorsements, that are according to the endorsement policy, it

creates the transaction and sends it to the Ordering Service.

The fact that this phase does not imply persistent changes in the ledger brings an advantage to

Fabric - if a transaction in non-deterministic, the writesets and readsets produced by different endorsers

in the Execution phase will differ, causing the endorsement policy to not be satisfied, thus causing the

transaction to not be created by the client. This way, the transaction will not cause inconsistencies in the

ledger state, as it happens with Order-Execute architecture [2].

2.2.2 Ordering Phase

In the Ordering Phase (step 4), the Ordering Service (constituted by the orderers) establishes a total

order among the received transactions. The output of this phase is a hash-chained sequence of blocks

containing transactions [2] which are then sent to the network peers. When it comes to consensus,

Fabric presents the possibility to choose between a CFT (Crash Fault Tolerant) or BFT implementation.

Fabric can be configured to use a built-in dissemination service to disseminate the blocks to all the

peers. This is because the system can have many peers, but few orderers. This service can also perform

state transfer to peers that newly joined, and peers that were disconnected for a long time.

2.2.3 Validation Phase

In the last of the three phases, depicted in step 5, each peer executes the following steps sequentially:

i The endorsement policy is evaluated for all transactions in the block, i.e. each endorsement is

verified according to the chaincode’s policy. If one endorsement does not satisfy the policy, the

transaction is considered invalid and its effects will not persist in the ledger;

ii A read-write conflict check is done for all transactions in the block. More specifically, for each

transaction’s readset, it compares the version of the keys with the corresponding keys in the local
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ledger. If they do not match, the transaction is considered invalid and it will not become permanent

in the ledger;

iii Finally, the local ledger of the peer is updated (the block is appended to the chain) causing the

update of the blockchain state (as can be seen in Figure 2.2, in the ”Commit” step).

It is important to note that invalid transactions are also included in the appended block, due to certain

use cases in which it can be useful to track them (e.g. audits, or tracking down clients that initiated a

DoS attack).

2.3 Blockchain Interoperability

There is no single way of defining ”Interoperability”. One simple yet sound definition that applies is

the following: “Interoperability is the ability of two or more software components to cooperate despite

differences in language, interface, and execution platform” [32].

The National Interoperability Framework Observatory (NIFO) defines six layers of interoperability

[33]: technical interoperability, semantic interoperability, organizational interoperability, legal interoper-

ability, integrated public service governance, and interoperability governance. In this work, we focus on

technical and semantic interoperability - the most relevant layers for the blockchain technology.

Blockchain interoperability is a relatively new theme - interest from academia and industry did not

start growing until about three years ago [3]. This type of interoperability emerged due to the desire to

create new synergies between blockchains, thus creating new use cases. Besides this purpose, it is key

to blockchain migration - the transfer of states from one blockchain to another. Migration is extremely

important because failures can (and most certainly will) happen at some point: blockchains can be

attacked, become obsolete, or shutdown [3]. Without migration, the risks associated to blockchains are

high, severely affecting scalability and holding back mass adoption.

Due to the core differences between permissioned and permissionless blockchains, the interoperabil-

ity problem is distinct for each of the types. Even within the same type, it can take many different forms

due to the huge variety of existing blockchain infrastructures - there are no standards for blockchain

interoperability yet, however it is ongoing work [3].

2.3.1 Cross-Blockchain Communication

Before diving into different mechanisms within this context, it is essential to understand cross-blockchain

communication, given that it is a requirement for blockchain interoperability.

Cross-blockchain communication involves two blockchains: a source blockchain (where a transaction

is initiated), and a target blockchain (where a transaction is executed) [3]. It comprises several base
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concepts and components [3] [34]:

• Homogeneous Blockchains - Two blockchains are homogeneous if they both belong to the same

blockchain system (e.g. EVM-based blockchains [22]).

• Heterogeneous Blockchains - Two blockchains are heterogeneous if they are not homogeneous

(e.g. Bitcoin and Hyperledger Fabric).

• Cross-Chain Transaction (CC-Tx) - A transaction between different, homogeneous chains.

• Cross-Blockchain Transaction (CB-Tx) - A transaction between different, heterogeneous chains.

• Cross-Blockchain Distributed Application (CC-dApp) - A decentralized application that leverages

cross-blockchain transactions to implement its business logic.

• Internet of Blockchains (IoB) - Is a system “where homogeneous and heterogeneous decentralized

networks communicate to facilitate cross-chain transactions of value.”.

• Blockchain of Blockchains (BoB) - Is a structure that organizes blocks with transactions that belong

to a CC-dApp, spread across multiple blockchains.

• CCCP (Cross-Chain Communication Protocol) - Is a protocol that ”allows homogeneous blockchains

to communicate” (e.g. the XCLAIM framework [14]).

• CBCP (Cross-Blockchain Communication Protocol) - Is a protocol that allows heterogeneous blockchains

to communicate (e.g. the Interledger Protocol [35]).

In this document, we will refer to CX-Tx as a transaction that can either be cross-chain or cross-

blockchain.

Several authors presented interesting results regarding CX-Tx. Zamyatin et al. concluded that secure

cross-blockchain communication (CCC) is impossible without a trusted third party, by reducing CCC to

the Fair Exchange problem [36].

On another study, Borkowski et. al presents the ”lemma of rooted blockchains” that states that

currently a source blockchain is not able to efficiently verify the existence of data on a target blockchain

[37]. This would require the source blockchain to mimic the target’s consensus mechanism and to store

a large set of the other’s blockchain block history [3].

More recently, on a study applied mainly to public blockchains, Lafourcade and Lombard-Platet [38]

stated that true blockchain interoperability corresponds to two blockchains being able to work together,
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being interoperable with each other. They state that a blockchain A is interoperable with a blockchain B

if an interoperable transaction does not violate A’s rules, and B’s ledger is not empty. In their study, they

conclude that interoperability is a contradiction of blockchain’s nature itself since the latter is constructed

to be self-sufficient and to not rely on external data. However, under a weaker definition (A is interoper-

able with B if a user can transfer assets from A to B and the transactions that represent those transfers

are only valid on B in case the sender has enough funds on A) and considering a blockchain with two

ledgers, it is indeed possible to achieve it [3].

The aforementioned studies point to an important conclusion: Cross-blockchain communication is

unfeasible (or at least extremely challenging) without a trusted third party. Trusted third parties can be

either centralized (trusted validators), semi-decentralized (a consortium of trusted validators) or decen-

tralized (e.g. another blockchain) - being the latter the focus of this report.

Since the heart of the blockchain technology is to maintain a secure and immutable ledger in a way

that is as decentralized as possible, the true gain of this mechanism arises when the trusted third party

is decentralized (which is the focus of this thesis) or at least when accountability mechanisms are in

place, in order to motivate the party to behave properly and follow the protocol.

2.3.2 Existing Interoperability Mechanisms

Existing mechanisms to achieve blockchain interoperability can be divided in different categories, which

we detail below, based in [3].

2.3.2.A Public Connectors

This category only regards public blockchains (which usually implement cryptocurrencies) and includes

several mechanisms - Sidechains, Notary Schemes, Hashed Time-Locks (HTLCs) and Hybrid solutions.

A sidechain can be defined as ”a mechanism for two existing blockchains to interoperate, scale (e.g.,

via blockchain sharding), and be upgraded” [3]. In this context, in each pair of blockchains there is one

that acts as the main chain ( that maintains a ledger of assets), while the other is considered to be

an extension of the main one - the sidechain. The mainchain and the sidechain communicate via a

Cross-Communication Protocol.

The most common use to this mechanism corresponds to the transfer of assets between the main-

chain and the sidechain. This interaction is called two-way peg.

It is important to note that two blockchains can be sidechains of each other, meaning that a sidechain

is not less important than a mainchain.

In this context, Zendoo is a sidechain creation platform for Bitcoin-based systems that allows for

the creation and communication of sidechains without knowing their internal structure [39]. The system

maintains its security through the use of zk-SNARKSs proofs [40], a type of zero-knowledge proofs.
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Notary Schemes are another type of Public Connector. They can be defined as a third-party that

monitors and performs operations on several blockchains. The mechanism is conceptually simple, how-

ever this solution is commonly centralized, which is not ideal given the focus of the blockchain technology.

It is possible to diminish the centralization by having more than one notary.

This category also comprises HTLCs, a class of payments that uses hashlocks [41] and timelocks

[42] to ensure atomicity of operations [3]. It is usually used between two parties, where one commits

to make a given transaction, by providing a cryptographic proof to the other before a certain timeout.

This way, it is possible to establish trust between them and produce multiple outputs, such as conditional

payments, or CX-Tx payments. Atomic swaps are a type of CX-Tx payments that enable the exchange

of one cryptocurrency for another, in a decentralized way.

Finally, the category comprises some hybrid solutions that combine the previously mentioned and

other novel approaches. One of these are Distributed Private key approaches. In this solution, a private

key is not held by a single entity, but by many - each participating entity holds a ”part” of the key [43],

distributing the control and the assets among them. Distributed private key schemes can be used to

implement decentralized notaries and decentralized two-way pegs [3]. Another Hybrid solution is the

use of sidechains with escrow parties that rely on smart contracts, where an escrow is an agreement in

which a third party controls a transaction or group of transactions between two entities, while typically

holding the assets of one of them [3].

2.3.2.B Blockchain of Blockchains

A blockchain of blockchains can be described as a framework that provides ”reusable data, network,

consensus, incentive, and contract layers for the creation of customized blockchains, to power decen-

tralized applications, that interoperate between each other” [3]. The blockchain of blockchains that exist

nowadays allow developers to create their blockchains while still having interoperability with others (both

created with the framework, and other existing blockchains) [3].

Polkadot [15] is an example of a blockchain of blockchains. It contains a relay chain, the central

chain of Polkadot, that has the function to coordinate the system as a whole.

Then, the system comprises parachains and parathreads. A parachain is an application-specific data

structure that often takes (but does not have to) the form of a blockchain. It may be specialized in features

like smart contracts, privacy or in verifying proofs. Since it has a parallel nature, several parachains are

able to parallelize transaction processing and achieve a very high scalability. A parathread can be

thought of as a parachain thread - i.e. a temporary parachain that is able to do everything a parachain

can, however with lower costs and resources associated with it.

There are three roles in Polkadot [44] - the Nominator, that helps particular validators to get into the
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active validator set and thus produce blocks for the chain, the Validator that can produce blocks on the

Relay Chain if it is on the active validator set and lastly the Collator, that collects parachain transactions

and produces proofs for the validators on the relay chain. The latter can also send and receive messages

from other parachains.

Polkadot’s parachains and parathreads are interoperable with each other. The blockchain of blockchain

also contains bridges that allow Polkadot to connect to existing blockchains, such as Bitcoin.

Polkadot is built using Substrate [45], a modular blockchain framework that allows developers to

easily construct costumizable blockchains.

2.3.2.C Hybrid Solutions

These solutions are interoperability solutions that do not fall into any of the previous mechanisms. Hybrid

solutions can be divided into Trusted Relays, Blockchain Agnostic Protocols and Blockchain Migrators.

Trusted relays are trusted parties that redirect transactions from a source blockchain to a target

blockchain [3]. These schemes are usually related with a permissioned blockchain environment, where

trusted third parties forward CX-Tx transactions.

One solution in this context is Hyperledger Cactus [16]. To achieve interoperability between several

blockchains, Cactus uses trusted nodes (Cactus nodes). It is important to note that each of these nodes

is connected to solely one organization, meaning that the CX-Tx transaction requests of one node are

always from the same organization.

Each Cactus node fills two roles - connector and validator. The connector is an active component that

makes changes in a blockchain, including invoking and deploying smart contracts. The transmission of

CX-Tx transactions to a destination blockchain is executed by this component. The validator is a passive

component that includes the attestator role - a role that verifies arbitrary ledger facts. This includes

verifying if a transaction was correctly sent and received by a destination blockchain.

Please note that in Cactus it is also possible to implement a decentralized validation mechanism via

a consortium of validators. This can be implemented through the development of plugins, leading to a

semi-trusted, more decentralized model.

Blockchain Agnostic Protocols are another type of Hybrid Solution that refer to a single platform that

allows cross-blockchain or cross-chain communication between several different blockchain systems.

This mechanism does not guarantee backwards compatibility, i.e, compatibility with current blockchains

(they would have to change their source code).

An example of a blockchain agnostic protocol is DeXTT [46] - a solution that provides a cross-

blockchain transfer protocol used to transfer tokens that may exist on several blockchains simultaneously,

in a decentralized way.

Blockchain agnostic protocols also comprise BoBs. As mentioned in Section 2.3.1, a BoB is a struc-
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ture that organizes blocks with transactions belonging to a CC-dApp, spread across several blockchains.

BoB joins several blocks from different blockchains into larger blocks named ”meta-blocks”, organized

through a consensus mechanism [3]. Overledger is a BoB that builds a unique group of transactions,

that are then put together and ordered by CC-dApps [47]. It has the goal to stop digital ledger technology

from existing in silos and to achieve interoperability by being built on top of different blockchain systems.

Blockchain Migrators are also a Hybrid Solution, that allows for an end user to perform a migration

of the state of a blockchain to another [3]. One example of a blockchain migrator is presented by Fynn

et al., that present a mechanism where it is possible for a smart contract to be moved to and executed

by another blockchain, moving the state required by the transaction (move operation) [48]. With this

mechanism, it is possible to transfer arbitrary states between blockchains. So far, it has been tested [3]

on Ethereum and Hyperledger Burrow [49].

Below, we have a table that sums up the aforementioned existing blockchain interoperability solutions,

their sub-categories and each of those sub-categories’ main use case.

Figure 2.3: Blockchain Interoperability Solutions (adapted from [3])

2.4 Game Theory

Game theory has the goal of modeling a strategic interaction between different players in a context with

predefined outcomes [50] - a game. It can be applied to the most significant challenges in the Blockchain

technology, such as security problems, mining management, economical issues with the technology and

energy trading [1].
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We now present some fundamental concepts (based on [1]) for the better understanding of a game:

• Player - A player (or agent) is a decision-maker in the game;

• Utility - A utility, i.e. a revenue or payoff, reflects the outcome expected by the player, acting as

way to quantify its preferences - if a given output is preferred, the utility associated with it will be

higher than if that output is not desirable;

• Strategy - A set of actions that the player can choose from, where the ultimate goal is to achieve

its expected outcome. This strategy is based not only in the player’s own strategy, but also in the

other players’ strategies;´

• Rational - A rational player has clear preferences, is self-interested and always desires to maximize

its own utility by choosing the strategy that comprises the optimal expected outcome.

• Static Game - A game in which all player make a decision simultaneously, thus not being aware of

other players’ actions in advance.

• Dynamic Game - A game in which players take actions sequentially - the later players have infor-

mation about the first players’ choices.

2.4.1 Preliminaries on Game Theory

In this subsection we introduce formal notation in the context of game theory, that will be used in the

descriptions of games and attacks [1].

Considering N players:

• Pi - The set of strategies of the player i ;

• P - Is equal to P1× ... ×PN , and corresponds to the cartesian product of the sets of all individual

strategies;

• pj ∈ Pi - Corresponds to the strategy j of player i ;

• p = (p1, ..., pN ) - Is a vector of the strategies of N players, after each has been chosen from the

corresponding set;

• π = (π1(p), ..., πN (p)) - Is a vector of the corresponding payoffs, where πi(p) is the utility of player i.
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• p∗ = (p∗1, ..., p
∗
N ) ∈ P - Corresponds to a Nash Equilibrium if no player can gain higher utility by

changing its own strategy, when the strategies of the other players remain unchanged. This can

be translated by the following inequality:

∀i, pi ∈ Pi : πi(p
∗
i , p̄
∗
i ) ≥ πi(pi, p̄∗i ), (2.1)

Where p̄∗i = (p1, ..., pi − 1, pi + 1, ..., pN ) is a vector that contains strategies of all players except

player i. Inequality 2.1 demonstrates the state of equilibrium of the game.

• BRi is the best response mapping of player i - i.e. the strategy (or set of strategies) that produce

the most favorable outcome for a player, knowing the other players’ strategies.

• A - An attacker;

• Mi - A rational miner (i.e. a miner that desires to maximize its own utility);

• BMi - A block that was found and mined by a miner Mi.

• B∗ - The latest block in the chain;

• BA = (HA,DA) - A block found by the attacker A, that corresponds to a header (HA) and the data

itself (DA).

2.4.2 Existing Games

There are several types of games in this context, each with its strengths and drawbacks. Depending on

each use case, it might me more appropriate to use one over the other. Below, we state some of the

most relevant existing games.

2.4.2.A Non-cooperative Game

In this type of game, cooperation does not take place through forming coalitions or by reaching agree-

ments. Cooperative behaviour can exist, but it is never the main goal of the players, since they are

self-interested. Non-cooperative games can be used to analyze both the static and dynamic game [1].

In the non-cooperative game, the Nash Equilibrium (p∗) would correspond to a scenario in which

no player would want to deviate from its current strategy, since it is the one which is associated with a

higher utility value. It is important to note that in certain cases there is more than one Nash Equilibrium,

or even none at all.
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This game can be used, for example, to model the interaction between miners in a blockchain net-

work. In this scenario, the miners (which are rational players) compete for a reward from mining suc-

cessfully, and invest strategically in computational power.

2.4.2.B Extensive-form Game

This type of game describes the players’ interactions with each other through the use of a game tree.

This tree illustrates each of the possible decisions that each player can make, while containing informa-

tion about the other players’ moves and about the expected payoffs for all possible game outcomes [1].

An extensive-form game is composed of many smaller games - subgames - and each of these

games can be perceived as a static non-cooperative game. In this type of game, the Nash Equilibrium

is attained in a given subgame if it is attained in all the other subgames as well. To achieve this, a

technique called backwards induction is often applied. The technique consists in first considering the

end of the game - i.e, the decision that will be made in the last move - going back on each step until the

first move of the game. In this way, it is possible to achieve a Nash Equilibrium if there is one.

In the context of blockchain, the extensive-form game can be applied to the fork chain selection sce-

nario. In the start of each mining round, miners choose the chain in which they will mine on, depending

on the actions taken by other players in previous rounds. Eventually, the blockchain will fork which will

lead to a branching tree structure, in which the game can be applied [1].

Figure 2.4 illustrates this scenario. Here, we consider two players, miner 1 and miner 2, and two

chains, C1 and C2. Miner 1 chooses its strategy first, between C1 and C2. Then, depending on the

previous action of miner 1, miner 2 chooses between C1 and C2. The branching tree contains four

different pay-offs represented by the four terminal nodes (C1,C1), (C1,C2), (C2,C1) e (C2,C2).

2.4.2.C Stackelberg Game

The Stackelberg Game includes two entities: leaders and followers. Both of these entities are rational,

thus self-interested. The leaders have the advantage of being able to choose first, causing the followers

to choose their strategies based on the strategies chosen by the first.

The goal of this game is to establish a Stackelberg Equilibrium.

In order to find this equilibrium, backwards induction is usually applied. This game guarantees that

the leader will be able to attain at least the payoffs of the corresponding equilibrium.

Within a blockchain network context, the Stackelberg Game’s entities can be a Service Provider as

a leader and miner as a follower. The Service Provider can provide the miner with computational power,

that it can then use to mine blocks. The more computational power a miner has, the better is its chance

at receiving the mining rewards. In this example, the Service Provider would first set its price, and then

the miners would decide their demand [1].
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Figure 2.4: Fork chain scenario with two miners and two chains C1 and C2

2.4.2.D Stochastic Game

This game is played by a set of players. It can be seen as a set of static non-cooperative games, that

are repeated over time. Each stage of the game - i.e, each static non-cooperative game - corresponds

to a state. The transition to a new state is controlled by stochastic transition probabilities, that in turn are

controlled jointly by the players.

In the Stochastic Game, each player’s strategies may change, influenced by the other players’ strate-

gies and transition behaviours. In each state, the players receive a given payoff that depends on the

chosen actions.

This game is repeated until it reaches a common solution called Markov Perfect Solution - a set of

strategies that achieve the Nash Equilibrium in every state of the game.

The stochastic game can be applied to chain selection in blockchain, regarding the transitions of

blockchain structure. The game starts at an initial state, and at stage t each miner observes the

blockchain structure and decides its strategy (i.e. selects a chain to mine on). According to their strategy

and the current state, each miner receives an immediate payoff. Then, the game progresses to a new

state. This process is repeated until the game reaches a Markov Perfect Solution (which in this case

corresponds to following the Nakamoto protocol, i.e. mining on the longest chain).

2.4.3 Game Theory Applied to Blockchain

There are several game theory techniques and games that can be applied to improve certain aspects

of the Blockchain technology. We will now focus on the security aspect, presenting common attacks in

the technology, along with games that can mitigate them.
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First, we present some important definitions [4]:

• Altruistic Player - A player who follows the prescribed protocol;

• Rational Player - As before, a player who acts in order to maximize its own utility;

• Byzantine Altruistic Rational Tolerant (BART) - Type of protocol that assures safety and liveness

properties when byzantine behaviour exists;

• Incentive-Compatible Byzantine Fault Tolerant (IC-BFT) - Type of protocol that incentivizes rational

agents to follow the protocol instead of rationally deviating the latter.

Game theory is valuable in the design of IC-BTF protocols given that is can guarantee that rational

players have a better outcome by following the protocol’s instructions than by deviating from it. This is

possible when ”following the protocol” corresponds to a Nash equilibrium p∗. However, in blockchain

systems it is possible for rational players to band together and cooperatively deviate from a prescribed

protocol - in this situation, the concept of Nash equilibrium is not applicable.

Selfish Mining Attack - This is a type of attack that occurs in Proof-of-Work based blockchain

systems. In this context, attackers can be one of two entities: malicious miners (in the case of Block

withholding BWH) or malicious mining pools (in the case of Pool Block Withholding PBWH). The Selfish

Mining Attack consists of attackers not broadcasting newly found blocks, but instead, either:

1. Withholding the block, or

2. Releasing it after a certain amount of time.

This causes honest miners to waste computing power trying to find a block that has already been

found. It also increases the likelihood that the attacker will find the next block, due to its advantage in

terms of computational power and time - while honest miners are trying to find the block already found,

the attacker can start working on the next one.

Several analysis of players’ interactions exist when it comes to this type of attack. So far, research has

shown that game models such as non-cooperative, stochastic, mean-payoff [51] and splitting game [52]

can be applied to different scenarios of the Selfish Mining Attack. Below, we present some of these

findings [1].

Having two selfish pools as players, the authors of [53] adopts a non-cooperative game. Each player’s

objective is to optimize their strategy - the infiltration rate, maximizing their utility. This rate corresponds

to the fraction of computational power necessary to infiltrate an adversary. When an attack is successful,

the attacker pool receives utility not only from the attacked pool’s honest miners but also through the
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infiltrated individual miners that perform the BWH attack. It has been proved that there is a unique Nash

Equilibrium (i.e, none of the players wants to change their strategy). The equilibrium found proves that

launching the PBWH attack is always the best response for each of the players. However, if both pools

attack, each of the pool’s final utility is less than if an attack had not occurred.

In a distinct scenario, a stochastic iterative game is applied. Here, the focus is not on improving the

players’ own profits but instead to promote high social welfare (i.e. profits to the entire pool), [54] applies

Zero Determinant (ZD) strategies. In this context, there are two players - one honest miner, (focused

on improving the social welfare) and a selfish miner (solely focused on maximizing its own profit). Each

player can choose to either cooperate (mining honestly) or to launch the BWH attack to the other player.

The paper states that as long as the honest miner chooses its strategies under certain conditions, the

outcome of the opponent can be controlled - regardless of the strategies adopted by the selfish miner,

to him/her it is more profitable to either cooperate mutually or attack mutually. This way (i.e. applying

ZD stategies) the honest miner can motivate the selfish miner to cooperate, by choosing to cooperate

himself. The downside of the proposed game is that it only focuses on the selfish miner’s profit - the

honest miner may not have any incentive to apply ZD strategies in the first place.

Majority Attack - Theoretically, it is possible for a given miner to own more than 50% of the network’s

computational power. In this scenario, the distributed consensus is broken and the blockchain’s security

is not be guaranteed: the attacker has a free-pass to perform malicious actions, such as reverting

transactions or halting payments. The name of this attack is 51% attack.

The Majority Attack corresponds to the 51% attack where the attacker is a cartel of miners instead

of a single miner. Various analysis of the players’ behaviours in Majority Attack exist. Previous research

has shown that Non-cooperative, Stochastic, Sequential and Stackelberg games can be applied to dis-

tinct scenarios of the attack [1].

Fork chain mining is a problem within the Majority Attack. At given points in time a blockchain may

fork, meaning that it may be diverged into two potential paths forward. In the context of the Majority

Attack, each miner has the choice to either mine on the honest chain, or to mine on a fork - either create

or select a new branch.

The conditions under which a miner has an incentive to mine on a fork are studied in [28].

There are two possible scenarios:

(a) More than 50% of the network’s computational power extends the longest chain;

(b) More than 50% of the network’s computational power forks a chain.

In scenario a), if a miner chooses to deviate from the honest chain, it will end up wasting computa-

tional power, since the majority of the network’s computational power is invested in the honest chain. In

29



this scenario, the miner will not achieve the PoW consensus and the mined block will not be included

in the consensus chain. Thus, in this case, mining on the honest chain would be the best possible re-

sponse to all the miners, meaning that there is one Nash Equilibrium where all miners extend the honest

chain. The contrary applies to the second scenario - here, the best strategy for all miners is to mine on

the majority’s fork. Hence, there is a second Nash Equilibrium where all miners mine on that fork.

Standard Denial of Service Attack (DoS) - In the blockchain context, this attack consists of prevent-

ing honest miners from completing the mining process, thus not allowing them to win mining rewards and

expected profit. In this attack, an attacker causes the corruption of the P2P network, which drains the

resources of the attacked miners. In a DDoS (Distributed Denial of Service) attack, an attacker launches

several DoS attacks at the same time.

Previous work has shown that non-cooperative, sequential and repeated game models are applicable

to DDoS attacks. The analysis performed in [55], in the Bitcoin blockchain, is the result of one of those

studies. In this context, in order to maximize the mining rewards, the attackers - mining pools - can

choose to either:

(a) Trigger the DDoS attack, to lower the profits of the attacked mining pools;

(b) Invest in more computational power, in order to have a better possibility of solving the next PoW

puzzle.

Consider a non-cooperative game that comprises two players - a big mining pool and a small mining

pool - where the strategies of each are a function of the computational power distribution, the rate of the

network’s computational power over time and the probability of the attack being successful.

The authors of [55] have proved that when there is an inequality in the computational power distri-

bution among these players, there is a Nash Equilibrium of both players investing in it. Both players

launching the attack is also always a Nash Equilibrium, however it is weak, since players do not consider

the other player’s strategy choices.

Blockchain Denial-of-Service attack (BDoS) - Having the assumption that all miners are rational,

unlike the aforementioned standard DoS attack that has a specific target, BDoS is an attack that targets

the entire system’s mechanism design - it exploits the reward mechanism with the goal of discouraging

miner participation [56].

The core of this attack is the following (as explained by the authors of [56]):

There is a probability with which an attacker A can bring the system to a state where a block BMi

(found by a miner Mi) is invalidated. This means Mi has a smaller probability of seeing any reward for

its investment, although the costs of performing mining are the same as in honest mining.
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This can be accomplished through the following steps [56]:

1. A mines on B∗ (the latest block in the chain);

2. IfA is able to successfully attach a new block BA to B∗, instead of publishing it entirely, it publishes

its headerHA while concealing its payload DA. At this point, BA is not part of the main chain since

it has not been published in full;

3. Until another miner creates a new block, A pauses its mining process. Then:

• If all miners also stop, the system reaches a blocking state.

• If a miner Mi - that is aware of BA due to its published header - generates a new block,

appending it to B∗, A precipitates to publish the complete BA with the hope of being able to

add it to the main chain.

If the attack is successful, Mi will not receive any reward for its investment and will have wasted

computational power. This game can be analyzed as an infinite game (i.e. a game where the miners

play indefinitely), where the game’s average utility corresponds to the average utility of finite games.

In this game, the players correspond to the miners, where each one possesses a given amount of

computing power. All miners know the attack protocol of the adversary.

When the process begins everyone mines and it ends when no rational miner changes its strategy

anymore. Thus, at the end of the process, rational miners reach a Nash equilibrium.

2.5 Game Theoretical Framework

As blockchains encompass several types of behaviour typical to economical systems, such as rational or

selfish, it is important to be able to characterize their robustness in terms of resilience to such behaviours.

The authors of [4] define a framework that characterizes the robustness of these systems in terms of

both resilience to rational deviations and byzantine behaviors.

Before delving into further details, we present some fundamental concepts mentioned in the afore-

mentioned work:

• Joint strategy - A joint strategy σ = (σ1, σ2, σ3, ..., σn) is a set of strategies such that the outcome

pleases every player, and they have no incentive in changing their strategy σi;

• Weakly dominated strategy - A strategy is weakly dominated if, by choosing that strategy over any

another, the player will have a lower outcome;
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• Strong resiliency - A mechanism is strongly resilient if every subset of players has no incentive to

deviate from the protocol;

• Practical mechanism - A mechanism (Γ, σ) is practical if σ is a Nash equilibrium p∗ of the game Γ

after deletion of weakly dominated strategies;

• Optimal resiliency - A mechanism is optimal resilient if it is practical and strongly resilient;

• k-resiliency - An equilibrium is k-resilient if no coalition of k players has an incentive to coopera-

tively change strategy;

• t-immunity - A property that guarantees that the utility of players is not inferior if at most t players

deviate the protocol and play a different strategies;

• t-weak-immunity - A system is t-weak-immune if, for any altruistic player, the worst possible payoff

received is the initial state (no matter how many players deviate from the prescribed protocol);

• (k,t)-robust - A system is (k,t)-robust if it is both k-resilient and t-immune;

• (k,t)-weak-robust - A system is (k,t)-weak-robust if it is both optimal resilient and t-weak-immune.

• Game composition - For different games A and B, the game A composed with B corresponds to

players choosing a strategy from each game and receiving the sum of the utilities of games A and

B as utility.

The definition t-immunity is too strong and often impossible to achieve in practice, which is why the

authors present the concept of t-weak-immunity.

Since blockchain systems are designed in a modular way, the framework evaluates their robustness

by analyzing the robustness of individual modules and inferring the properties of the system, through

game composition.

One of the protocols evaluated by the game theoretical framework is a cross-chain swap protocol.

In the latter, two users can swap assets that belong to two different blockchains which do not communi-

cate with each other (e.g. Altcoin and Bitcoin).

In order to do so, two transactions must be published on each of those two blockchains. This process

triggered once a private key x is disclosed between the two users. It is important to note that each of

these two transactions must be published within a specific time interval, 41 or 42, depending on the

corresponding blockchain.

32



Considering the condition proved in [57] and the context of [58], the authors of [4] conclude that

41 >= 242, which leads to the interval in which the transactions can be published - [0,42] (given that

42 is the minimum between 41 and 42).

Since blockchains are independent from each other, the protocol comprises two different mecha-

nisms, one for each blockchain. Below, we present definitions for both [4]:

Definition 1 - The Bitcoin game is an extensive-form game (see 2.4) G1 with 2 players N = A,B and

5 nodes, 1 being the vertex (see Figure 2.5).

Figure 2.5: Game tree of G1 (adapted from [4])

In the Bitcoin game, each player can perform the following actions (where the order matters):

1. A can create TX1 and TX2 (Y) which leads to node 2, or not do it (N), with outcome (0,0);

2. B can sign TX2 (Y) which leads to node 3, or not do it (N), with outcome (0,0);
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3. A can publish TX1 to the Bitcoin blockchain (Y), which leads to node 4, or do nothing (N), with

outcome (0,0);

4. Both A and B can publish TX2 before x is revealed (Y) or not do it (N). If any of the two chooses

action Y, the outcome is (0,0). Otherwise, A reveals x and (N,N) leads to node 5;

5. B can publish x on the Bitcoin blockchain (Y) with outcome (1,1) or not do it (N) with outcome (1,-1)

, where TX1 corresponds to a transaction that lets B receive a given amount of bitcoins if B provides x,

and TX2 corresponds to a transaction that gives A back that amount in case B does not provide x within

41 hours.

In this scenario, the joint strategy that entails following the protocol is σ1 = ({Y,Y,N}, {Y,N,Y}).

Definition 2 - The Altcoin game is an extensive form game G2 with 2 players N = A,B and 5 nodes,

number 1 being the vertex (see Figure 2.6).

Figure 2.6: Game tree of G2 (adapted from [4])

34



In the Altcoin game, each player can perform the following actions (again, the order matters):

1. B can create TX3 and TX4 (Y), which leads to node 2, or do nothing (N), with outcome (0,0);

2. A can either sign TX4 (Y), which leads to node 3, or do nothing (N), with outcome (0,0);

3. B can publish TX3 on the Altcoin blockchain (Y), which leads to node 4, or do nothing with outcome

(0,0);

4. Both A and B can publish TX4 before x is revealed (Y) or not do it (N). If any of the two chooses

action Y, the outcome is (0,0). Otherwise, A reveals x and (N,N) leads to node 5;

5. A can either publish x on the Altcoin blockchain (Y), with outcome (1,0) or not do it (N), with

outcome (0,0)

, where TX3 corresponds to a transaction that lets A receive a given amount of bitcoins if B provides x,

and TX4 corresponds to a transaction that gives B back that amount in case A does not provide x within

42 hours.

Here, the joint strategy is σ2 = ({Y,N,Y}, {Y,Y,N}).

The authors consider the full protocol to be the composition of the aforementioned two games. This

protocol does not guarantee the property of t-immunity, given the fact that if one player deviates the

protocol (e.g. if it does not create one transaction), the latter stops and can not proceed further.

On another hand, under the assumption that any transaction can be published in the time interval

[0,42], we have that:

• In both games G1 and G2, σ1 and σ2 produce Pareto efficient outcomes (i.e. there is no other

outcome that increases at least one player’s payoff without decreasing the other’s payoff) of (1,1)

and (1,0) respectively;

• Given that the outcomes are Pareto efficient and the Nash equilibrium is strong, we have that both

mechanisms are strongly resilient;

• Every strategy that is not σ1 or σ2 is weakly dominated (they provide either -1 or 0, which is less

than 1), hence the mechanisms are practical;

• Being both practical and strongly resilient, the mechanisms are optimal resilient;

• In G1, when following respectively strategies σ1A and σ1B, both A and B never get negative utility
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(even if the other player deviates from the protocol). The same applies to G2 with σ2A and σ2B.

This means that both mechanisms are weak immune;

• Both games being optimal resilient and weak-immune, and considering that the full protocol is a

composition of the latter, the full protocol is optimal resilient and weak-immune, thus it is (k,t)-

weak-robust.

2.6 XCLAIM

XCLAIM is a framework that operates with Cryptocurrency-Backed Assets (CbA) to achieve interoper-

ability in a trustless way (i.e. without the need of a centralized trusted third party).

The framework performs issuance, swapping, and redemption of assets. In order to do this while still

maintaining a secure and decentralized solution, XCLAIM takes advantage of publicly verifiable smart

contracts and chain relays (contracts that provide inspection and verification of transactions).

2.6.1 Definitions

There are several definitions fundamental to the understanding of the XCLAIM framework [14]:

• Cryptocurrency-backed assets (CbAs) - Assets that are deployed on top of a blockchain I that are

backed by a cryptocurrency on a blockchain B.

• b - Cryptocurrency in blockchain B;

• i(b) - Asset present in blockchain I that is backed by b (CbA);

• Issuing Blockchain (I) - The blockchain on which the i(b) is issued;

• Backing Blockchain (B) - The blockchain that backs i(b) using cryptocurrency b;

• Asset Value - The amount of units of b used to generate i(b).

• Asset Redeemability - Whether if units of i(b) are redeemable (i.e. recoverable) on B for b.

• Asset Fungibility - Whether or not units of i(b) are interchangeable. XCLAIM assumes that CbA’s

are fungible.

In XCLAIM, CbA’s are symmetric, meaning that the total amount of units of b is equal to the total

amount of units of i(b), i.e. |b| = |i(b)|
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2.6.2 System actors

The actors that make interoperability possible in XCLAIM are stated below [14]:

• CbA Requester - Locks a given amount of cryptocurrency on B to request a corresponding amount

of CbA on I.

• CbA Sender - Owns a given amount of CbA and transfers ownership to another user on I.

• CbA Receiver - Receives and is assigned ownership over an amount of CbA on I.

• CbA Redeemer - Destroys a given amount of CbA on I to request the corresponding amount of

cryptocurrency on B.

• CbA Backing Vault - A (non-trusted) intermediary responsible for fulfilling redeem requests of CbA

for cryptocurrency on B. XCLAIM assumes that vaults are rational.

• Issuing Smart Contract (iSC) - The public (and verifiable) smart contract that is liable for managing

the correct issuing and exchange of CbA on I. It also ensures the correct behaviour of the vault.

To ensure that the CbA Backing Vaults behave in a correct way (i.e. that they do not deviate from

the protocol, e.g. stealing cryptocurrency) XCLAIM applies game theory techniques, implementing col-

lateralization and punishment, enforcing a proof-or-punishment model [14]. In each process, if the CbA

Backing Vaults do not present a valid proof stating the protocol was followed, they are punished.

To provide a practical example, we can assume the following scenario: Alice, that controls a given

amount of Bitcoin on the Bitcoin blockchain, wants to create Bitcoin-backed assets and transfer them to

Bob, that controls a given amount of Ether in Ethereum.

Alice first takes on the role of CbA Requester and sends one BTC to a CBA Backing Vault (i.e. Alice

locks one BTC with the vault), so that the vault emits one CbA that represents that BTC in the Ethereum

network.

The vault is incentivized to follow the protocol due to [14]:

1. Collateralization and Punishment - The process of a vault providing a given amount of its assets

(a collateral) as a proof that it will properly behave. If the intermediary misbehaves (e.g. if it steals

the assets), the collateral it provided is given to the damaged party;

2. Fees - If it behaves as expected, it will receive reward fees.

If the vault follows the protocol, it will, through the iSC, create and send the requested CbA to Alice.

After this step, Alice will become the CbA Sender and, through the iSC, transfer the received CbA to
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Bob. Then, still as the CbA Sender, Alice will atomically swap the CbA against Bob’s ether on Ethereum.

Finally, if Bob later wishes to redeem his unit of CbA for one Bitcoin, it will lock its CbA and, through the

iSC, receive one bitcoin in return. The CbA is then destroyed.

It is worth noting that the vault only has an incentive to misbehave if the following is true [14]:

icol < b.ε(i,b) (2.2)

Where icol corresponds to the collateral provided by the vault and ε(i,b) corresponds to the exchange

rate between the cryptocurrencies i and b.

2.7 CrowdPatching

CrowdPatching is a blockchain-based protocol (focused on permissionless chains, that are able to run

smart contracts and comprise a cryptocurrency) that allows for updates to be delivered to IoT devices

in a decentralized way [59]. The protocol delegates the distribution of updates to self-interested partic-

ipants, called distributors, which are compensated in case the update is successfully delivered to the

correspondent IoT device.

More specifically, the updates begin by being announced to the network through a smart contract

(deployed by the manufacturers), that also issues cryptocurrency payments to any distributor that pro-

vides an unforgeable proof-of-delivery. This proof - a signature generated by an IoT device - is only

provided if certain conditions are met. One of the conditions is the delivery of a specific type of proof - a

zero-knowledge proof [60].

A zero-knowledge proof system is a protocol [59] in which a given prover wants to convince a given

verifier that a certain statement is true, without exhibiting the secret values included in the content of that

statement. Specifically, CrowdPatching uses Zk-SNARKs (Zero-Knowledge Succinct Non-interactive

Arguments of Knowledge). This system comprises a light-weight verification process and makes it

possible for proofs to be generated asynchronously and limited in size. Bulletproofs is a more recent

alternative that doesn’t require a trusted setup, unlike zk-SNARKs [61]. However, at the moment of

writing, this system is not yet developed enough to apply in our protocol.

2.7.1 Protocol Entities

The protocol encompasses multiple entities [59]:

• P2P file sharing network - It is shared by every participant, and allows for peer discovery (through

Distributed Hash-Tables);
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• Permissionless Blockchain - The underlying blockchain where the updates are announced (through

a smart contract) and through which the distributors and hub are compensated with cryptocurrency

(if they follow the protocol);

• Manufacturer - Entity that initiates the protocol and desires to release an update for a set of IoT

devices;

• IoT Devices - Devices that produce proof-of-delivery and proof-of-final-delivery (under specific

conditions) and receive the updates from their manufacturer;

• Hub - A gateway that manages and is responsible for IoT objects in a local network, performing

the most demanding steps of the protocol in behalf of them. Hubs are trusted by IoT devices but

not necessarily by manufacturers, thus they are incentivized with cryptocurrency. They present a

proof-of-final-delivery and are compensated if the latter is valid;

• Distributors - The self-interested participants who perform the distribution of updates from the

manufacturer to the corresponding set of IoT devices. They present a proof-of-delivery and are

compensated if the latter is valid. These can be divided into first-hand distributors (FHD), that ob-

tain the update file directly from the manufacturer and second-hand distributors (SHD) that obtain

the update file through FHD, in exchange for cryptocurrency.

Note that the proof-of-final-delivery, produced by IoT devices and submitted by hubs, if valid, shows

that the IoT device is finally able to see the update file.

It is important to note that, in order to provide flexibility, it is possible for IoT devices to perform both

their own role and also the hub’s role, eliminating the need for a hub.

In order to keep track of the reputation of distributors, CrowdPatching maintains a key-value store

database, where each distributor’s public key is associated with an integer number that corresponds to

its score (when a distributor delivers for the first time, an entry is added to the database with the value

1).

2.8 Public Bulletin for Verifying Permissioned ledgers

This recent protocol [5] focuses on enabling an external party to observe and verify a permissioned

blockchain’s internal state, providing that there is at least one honest member present in the blockchain’s

committee. The state verification is achieved through the use of a secure public ledger that acts as a
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bulletin board, in which snapshots of the permissioned blockchain’s state (named ”view” by the authors)

are published at fixed intervals.

Besides the ability to assure the validity of state to the party, the protocol is able to reason about the

currency of that state. The latter is influenced by the number of blocks k between each published view

(i.e. with a smaller k, views are published more frequently thus external observers are provided with a

greater time coherence with the ledger).

2.8.1 System Actors

• Internal clients - Members of the permissioned ledger which are not part of the management

committee;

• External clients - Actors external to the ledger that need to obtain and verify states from the per-

missioned network;

• Management committee - Special members of the permissioned ledger with full access to the latter

and which are responsible for its management.

Both the management committee and internal clients are considered participants of the permissioned

network, while external clients are not.

When it comes to the management committee, three adversary scenarios are considered in this

work:

• Trustworthy Committee - The committee as a whole is trustworthy, although some members might

me malicious (the committee can tolerate faults);

• Malicious but cautious committee - The committee may behave arbitrarily, but only in situations

where its behaviours can not be detected;

• Malicious Committee - The committee is fully malicious, and may behave arbitrarily at any situation.

On one hand, external clients do not have full visibility into the permissioned blockchain, which

makes it hard to consider its committee to be trustworthy. On the other hand however, as committees

are frequently formed by a respected consortium which wants to maintain its good reputation, it is also

not viable to consider the latter to be fully malicious.

Therefore, the authors consider the committee to be malicious but cautious, with the assumption

that at least one honest member exists in the latter. Otherwise, the permissioned ledger is completely

unreliable.
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2.8.2 Definitions

In this paper, Yu et al. define a permissioned ledger Ln as a state machine, which is replicated and man-

aged by the management committee (according to defined policies). The machine transitions between

states every time a sequence of transactions is executed. Ln is represented by a tuple in the following

way:

Definition 1 - Ln = (Ti, Ai,Mi, Pi)
n
i=1,

where Ti corresponds to sequences of transactions, Ai to sets of possible application states, Mi to a set

of management committees and Pi to a set of management policies.

Each state in the permissioned ledger Si ∈ S is also a tuple, represented by the following:

Definition 2 - Si = (Ai,Mi, Pi)
n
i=1,

with a set Ai of application states, a management committee Mi and a management policy Pi. The

management committee is responsible for state Si, according to the management policy Pi. When a

transaction is applied to state Si, at least one of its three components will be updated, which results in

the next state Si+1.

It is important to note the difference between the internal state and the external view of a given per-

missioned ledger. The first is only visible to internal participants, while the second is the observation that

external clients can make about the ledger. Moreover, for the same internal state there can be several

(valid) external views.

In order to verify a given fact F against the internal state of a permissioned ledger, three entities

must be involved - the management committee, an immutable public bulletin board where views of the

ledger’s state are published, and external clients that are interested in verifying the latter’s state.

To achieve this, the authors proposed the following phases (see Figure 2.7):

1. Generation and publication of views - For each new block at height i, every committee member

computes a digest of the corresponding state Si. Then, from this digest, each node computes an

external view, which corresponds to a tuple containing the digest, a signature over the digest and

the corresponding block height.

Every k blocks, a new round is initiated and some committee members can choose to publish

external views for the current height in the public bulletin. The number k can vary, and changing

it will influence both the cost of the protocol and the state coherence with the ledger (if it’s higher,
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the cost will be lower but also the state coherence and vice-versa).

It is important to note that, in reality, a publication to the bulletin board comprises more than an

external view; it also contains a rolling hash. The latter contains all past views observed by the

publishing member, up to the current view [5].

The existence of a rolling hash adds accountability to the publishing member, and provides a way

to indirectly validate views from previous rounds (in which the member might not have participated

in).

2. Querying bulletin board for ledger view at time t - An external client accesses the views of the

permissioned ledger through the public bulletin. Since the latter allows the node to reason about

the currency of state, the external actor will first query the public bulletin for a view at a given time

t.

3. Querying committee member for proof about facts against the ledger view - After retrieving the

view at a given time, the external client can query a committee member for a state against that

view, and a proof about its validity.

4. Verification of the proof by external client - Once the client has the proof, it can verify its correct-

ness. If the proof is valid, the received internal state can be trusted.

Besides these functions, the bulletin board tracks published views for accountability (through the

rolling hashes associated with each published view), ensures that views do not conflict with each other

and provides a platform for reporting conflicts.

The latter is especially important when there is only one honest member in the committee - if, in a

given round, that member is not publishing any views but observes an invalid view being published, it

will report the conflict to the bulletin board to warn other members about the event.

It is important to note that, although providing a platform for reporting conflicts, the paper states that

these conflicts must be resolved externally (maybe with the use of a trusted third party).

2.9 ODAP

As mentioned in 1, ODAP is a cross-communication protocol that operates between two gateway de-

vices to transfer assets between blockchains represented by those gateways. This asset transfer is

unidirectional and comparable to atomic swaps, where an asset is locked on one blockchain and it’s

representation is created on another [6] [62].
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Figure 2.7: Public Bulletin protocol flow (adapted from [5])

2.9.1 System Actors

The protocol comprises the following actors:

• Source ledger BS - Ledger that locks x units from asset type a so that they are created in the

recipient ledger;

• Source gateway GS - Gateway that transfers x units from asset type a to the recipient gateway;

• Recipient gateway GR - Gateway that is the target of the transfer and follows instructions from the

source gateway;

• Recipient ledger BR - Ledger in which the received asset’s representation is created and becomes

available.

Note that in ODAP, the target ledgers BS and BR can be of any type (i.e. either permissioned or

permissionless).

2.9.2 Protocol Flow

The simplified transfer process is depicted in Figure 2.8 and encompasses the following steps:

• End-user triggers protocol - Before the first phase, an end-user interacts with its local gateway GS
and informs it that it wants to perform an asset transfer.
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• Transfer Initiation Flow - In this first phase, a secure channel is created, asset information is verified

and identification procedures occur (such as each gateway resolving each other’s identity, either

directly or via a decentralized registry);

• Lock-Evidence verification flow - Then, in phase 2, the gateways exchange proofs regarding the

status of the assets, and these proofs are persisted (which can be useful in resolving a dispute).

The asset is also pre-locked, meaning that it will be transferred and thus it can not be used;

• Commitment Establishment Flow - In the last phase, the gateways commit to the asset transfer.

Assets are locked (meaning that the asset is transferred and becomes unavailable in BS ) and

created on the target ledger BR. This process avoids double-spend attacks.

In the transfer initiation flow phase, in order to verify asset information, the gateways leverage an

asset profile. The latter corresponds to a generic schema, that presents an implementation-agnostic

manner of representing a digital asset. This assures that heterogeneous ledgers refer to the same asset

within a given transfer.

An asset profile contains several fields, including parameters such as an issuer, a digital signature,

and keywords (list of keywords to make the asset easily searchable).

Besides the asset transfer process, ODAP presents a logging mechanism for fault tolerance (i.e. to

recover from crashes) and also to provide accountability in case of an attack. Additionally, it comprises

a distributed recovery mechanism named ODAP-2PC, a two phase commit protocol. We will not go into

detail about ODAP-2PC since it is out of the scope of this thesis.

Both GS and GR (see Figure 2.8) are logging nodes and write log entry requests after certain opera-

tions, which can be of one of two types - private operations or public operations.

Private operations refer to operations executed solely by one gateway and thus are only known by

that one gateway. In this context, three log entries are required - an entry that contains the intention

to execute an operation, another that confirms that the latter was executed, and a third indicating if the

operation succeeded or failed. This results in either (init-X, exec-X, done-X) if the operation succeeds,

or (init-X, exec-X, fail-X) in case it fails.

On another hand, within public operations the state is known by more nodes than the one executing

them. In this case, the log entries required are similar to the corresponding entries for private operations,

with an additional acknowledgment entry for the non-executing nodes to acknowledge a given public

operation. This results in either (init-X, exec-X, done-X, ack-X) if the operation succeeds, or (init-X,

exec-X, fail-X, ack-X) in case it fails.

The authors also provide a log storage API in order to interact with the log storage while abstracting

storage details.
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Figure 2.8: Simplified sequenced diagram illustrating ODAP (adapted from [6])
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2.10 Comparison of Existing Solutions

Table 2.1 compares the aforementioned solutions using different metrics, more specifically whether

each solution:

• Supports permissionless blockchains;

• Supports permissioned blockchains;

• Has a high level of trustlessness, meaning that the end-user does not need to trust any participant

or group of participants in the system [63] (see 3.1 for a more in-depth definition);

• Supports smart contracts;

• Presents a reward mechanism;

• Presents a punishment mechanism;

• Is able to verify the internal state of a permissioned blockchains.

XCLAIM is flexible and adapts to both permissionless and permissioned blockchains (in case they

leverage Proof-of-Authority consensus), provided that the issuing blockchain I supports Smart Contracts

(SC).

The solution does not place trust in the vaults (they are assumed to be rational), but instead, it

places trust in the protocol and the incentives it provides to the latter. XCLAIM supports smart contracts

- it leverages the iSC contract in the protocol, which controls the behavior of the vaults and resides in

the issuing blockchain I.

Additionally, as mentioned before, XCLAIM comprises several mechanisms that enforce the good

behavior of the vaults. It uses collateralization as a punishment mechanism and, in a way, as part of the

reward mechanism, since the collateral is given back to the vault if it follows the protocol.

Finally, it does not implement verification of permissioned blockchain’s internal state, which can be

unsafe. Instead, it states that chain relays - a mechanism that provides external blockchain data (such

Paper Public
blockchains

Private
blockchains Trustless Smart

Contracts
Reward
mechanism

Punishment
mechanism

Verify
internal
state

XCLAIM [14] 3 3* 3 3 3 3 7

CrowdPatching [59] 3* 7 3 3 3 7 NA
Public Bulletin [5] NA 3 3 3 NA NA 3

ODAP [6] 3 3 7 3 7 7 7

T-ODAP 3 3 3 3 7 3 3

Table 2.1: Comparison of related work solutions
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as transactions in the backing blockchain B) to the smart contract that executes on I - can be used for

permissioned systems as well, in case they leverage a Proof-of-Authority consensus type.

Despite its strengths and potential, XCLAIM cannot resolve this thesis’s problem since it only sup-

ports a limited type of permissioned blockchains. Moreover, the use of chain relay to provide external

data from a permissioned blockchain might not be secure - as these blockchains are opaque, one can

not know if the information directly provided from the inside is trustworthy. This is improved in our

solution. Furthermore, in order to deal with fluctuating cryptocurrency rate exchanges (ensuring that re-

deemability remains possible) XCLAIM provides (among other mechanisms) over-collateralization. This

mechanism translates into the use of a buffer to be able to tolerate sudden exchange rate drops. It

helps to mitigate the rate fluctuation, however, due to the higher amount of locked-up capital, it can incur

opportunity costs [64].

CrowdPatching supports only permissionless blockchains that support smart contracts and cryp-

tocurrency. The solution operates with smart contracts, that announce the information of new updates

to the network and issue payments for distributors and hubs that follow the protocol.

It it trustless, given that it leverages public escrow parties to transport IoT updates, instead of trans-

porting the updates directly to the IoT devices. As XCLAIM, instead of trusting each party directly, it

trusts the protocol and that the incentives given to them are enough.

Its reward mechanism comprises compensating its well-behaved participants through cryptocurrency

payments, issued by a smart contract.

Finally, as the solution is intended for IoT devices and not blockchains, the verification of permis-

sioned blockchains is not applicable.

CrowdPatching presents some drawbacks. It does not contain a punishment mechanism, which

may harm the solution’s security, since being incentivized with cryptocurrency might not be enough for

the distributors to follow the protocol, and the leveraged proofs (zk-SNARKs) present some challenges,

including their performance (requiring a trusted setup for each program in a smart contract, each contract

requiring a high amount of data) and security (requiring to trust a third-party manager) [65].

The public bulletin work has the goal of verifying the internal state of permissioned ledgers, thus

whether it supports public blockchains or not is not applicable.

The protocol removes the need to trust permissioned blockchains and their committees, by leveraging

a smart contract which presents proofs of internal states. Thus, it is considered trustless.

Reward and punishment mechanisms are not applicable in this context, since the goal of the bulletin

is merely to present the proofs provided by the permissioned blockchain’s committee members, and to

be a platform for reporting conflicts. We do not need to incentivize the permissioned blockchain to follow
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the protocol, because if it provides an incorrect proof, it is invalid and thus not published in the public

bulletin.

The last work in the state-of-the-art corresponds to ODAP (Open Digital Asset Protocol). The latter

is rather flexible, allowing blockchains of both types (both permissioned or permissionless) to transfer

assets to each other.

In ODAP Hermes, gateways are trusted, and it is assumed that they will not drop an asset before a

given transfer or that they will not transfer it to the wrong gateway.

The protocol supports smart contracts since it supports gateways that interact with the latter.

Since in this protocol the gateways are trusted, it does not require game theory techniques such as

reward or punishment mechanisms to incentivize the gateways.

The most significant disadvantage of ODAP is the fact that the gateways trust each other. Moreover,

it is not able to verify permissioned blockchain’s internal state, which might not be secure for the same

reasons presented when talking about the disadvantages of XCLAIM.

A more trustless solution, that can be applied to private (and public) blockchains, is necessary.

Because of this, in our work, T-ODAP, we build a more secure and completely trustless version of

ODAP through the use of a DVS (based on [5] and implemented in Polkadot), in which proofs are pub-

lished about the state of the ledgers.

This way, before a source gateway executes a transfer of an asset to a recipient gateway, the recipient

gateway can verify the source gateway ’s internal state to ensure that the latter has enough funds to

perform the operation, thus not having to trust the source gateway.

As an additional security layer and in order to incentivize the gateways to follow the protocol, T-ODAP

comprises a punishment mechanism based on reputation - if a gateway misbehaves, its reputation is

diminished and thus that gateway becomes less likely to be chosen in future iterations of the protocol.

We believe that a reward mechanism does not make sense in our system since the gateways have their

functions pre-established and already know that they have to follow the protocol.

In order to connect to the underlying platform Polkadot, our work also entails a Polkadot connector

implemented on Hyperledger Cactus.

In the next chapter, we present the design and implementation of T-ODAP.
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In this chapter, we propose a solution for the problem introduced in Chapter 1. Recall that the

main goal of this work is to provide a secure and robust system that allows for trustless permissioned

blockchain interoperability through the use of the Decentralized View Storage. In order to promote

robustness, we will model the system as a game with regards to its participants.

We discuss the requirements that our solution must comply with, followed by the assumptions made

in the system. Then, the proposed architecture and design is introduced and discussed, followed by the

protocol flow and the threat model.

3.1 Requirements

T-ODAP must provide a secure and trustless protocol that enables asset transfers via gateways.

Several non-functional requirements are desired:

• Security - The protocol should ensure that the processing and delivery of the assets is secure,

namely assuring that gateways follow the protocol and do not tamper, drop or re-direct the assets

to wrong gateways. In order to do this, the protocol enforces the use of the decentralized view

storage, where proofs about both gateways’ states are frequently published.

• Compatibility - T-ODAP should be compatible with several permissioned (and permissionless)

blockchains that support smart contracts with functionality for locking and unlocking assets.

• Trustless - The protocol should provide a trustless solution, i.e. a solution in which a participant

does not need to trust any other participants in the system in order to maintain security of its

assets and other expectations of functionality, only needing to trust the protocol, mathematics,

cryptography, code and economics [63]. In our case, this means that the two gateways in any

protocol instance do not need to trust each other in order to perform an asset transfer;

• Availability - T-ODAP should be working in proper conditions, with a minimal downtime;

• Testability - It needs to be possible to test the system in a safe environment (e.g. a non-production

environment emulating a high workload);

• Privacy - The protocol should only be able to provide state proofs about the internal state of each

participating gateway, and not any other that is not involved.

• Efficiency - The solution should be efficient, i.e. despite encompassing additional steps in relation

to ODAP, these additional steps should not affect performance severely.
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T-ODAP must be instantiated by gateways belonging to blockchains that support smart contracts with

functionality for locking and unlocking assets.

We also present a set of functional requirements for our solution. Those include:

• Store proofs of a permissioned blockchain’s internal state;

• Verify those proofs of state;

• Deploy a smart contract to Polkadot;

• Connect blockchains to Polkadot;

• Perform cross-chain asset transfers;

• Rollback an asset transfer.

The use cases that the solution should tackle are illustrated in Figure 3.1, which also includes the system

actors described in Section 3.3.3.A.

Figure 3.1: Use Cases Requirements T-ODAP
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3.2 Assumptions

Similarly to related work [14], we assume that adversaries (in this case, the gateways) are computation-

ally bounded and rational agents, motivated by actions that increase their utility and avoiding actions that

decrease their utility. As such, the latter can attempt to perform any attack that potentially maximizes

their utility, such as not completing an asset transfer. In our context, we assume that a malicious node is

any node which deviates from the established protocol T-ODAP. In terms of the network, we assume that

honest nodes are well-connected and there is a maximum delay in which they receive transaction broad-

casts from users. When it comes to the DVS, we assume that each permissioned network comprises at

least one auditor node (a member of that network) which solves conflicts between views, deciding which

views are valid and which are not. Thus, we assume all views published in the DVS are valid (i.e. that

they correspond to the correct internal state of the corresponding permissioned blockchain).

3.3 System Overview

Our solution is composed of several layers that stack on each other - the DVS, the Polkadot Connector

and T-ODAP. This scheme is depicted in Figure 3.2.

Figure 3.2: Layers that build T-ODAP

3.3.1 Decentralized View Storage

In the bottom layer of Figure 3.2, we have the DVS. The latter is based on the Public Bulletin for per-

missioned ledgers presented in Section 2.8, a bulletin where internal state proofs of a permissioned

blockchain can be published by the corresponding blockchain’s committee members. These state proofs

(views) are publicly available for external clients to observe and verify facts against. In practice, they cor-

respond to a digest of a permissioned blockchain’s internal state.

The necessity for a Public Bulletin or a DVS stems from the fact that permissioned blockchains are

closed systems. In order to allow for a truly secure and trustless interoperability between permissioned
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blockchains (or between a permissioned and a permissionless chain), there needs to exist a system

which securely shares the state of the latter for external observers.

Similarly to the Public Bulletin presented by Yu et. al. [5], the DVS (Decentralized View Storage) is

an immutable public bulletin where state proofs of a permissioned blockchain are regularly (i.e. every k

blocks) published by its corresponding committee members.

It also considers a malicious but cautious committee, along with at least one honest member in

the latter, which reports a conflict if it witnesses malicious behavior. However, there are some key

differences.

In the context of the Public Bulletin, as stated by the authors, it is possible that distinct valid external

views exist for the same state. However, for a given height, this bulletin board’s algorithm only publishes

a new view in the board in case it is equal to the other views published for that same height. Otherwise,

it reports a view conflict that has to be solved externally.

The DVS, however, provides an improvement to the aforementioned method used by the Public

Bulletin - instead of reporting a conflict immediately once a new view is different from other views seen

in a given height, our algorithm encompasses a voting mechanism. A quorum of members vote on the

view and the collective decision determines if that view is either valid or inconclusive, case in which a

view conflict is reported which must be solved externally, by an auditor node.

This auditor node exists in each permissioned network, and corresponds to a node which function

is to decide if a given view is valid or not. We understand that the existence of this validator node can

be seen as contradictory having our goal of trustlessness in mind, however it was the solution we found

within our limited time. This is an aspect that can be improved in future work.

Since there is at least one honest member in the committee, even in the worst possible scenario in

which all committee members but one collude and try to publish an invalid view, the honest member will

vote negatively on that view. For this reason, in our algorithm, one negative vote is sufficient to raise a

conflict on the view. Please note that even if the honest member does not belong to the voting quorum, it

can still report the view when it detects it is invalid. On another hand, this means that if a single malicious

committee member votes negatively on a valid view, even if the other members vote positively on that

view, a view conflict will be reported.

The aforementioned conflict resolution is not resolved by the DVS, it is resolved externally. Once

it is resolved, the view is deemed either valid or invalid - and the member or members which voted

contrarily are recognized as being malicious. In future work, we can implement a mechanism to punish

these members in order to discourage them from performing malicious actions again, but for now this

mechanism does not exist in the DVS.

It is a trade-off between security and convenience - since permissioned blockchains are opaque,

there is no way to know for sure if a member is malicious or not. For this reason, the Decentralized View
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Storage always assumes the worst case scenario.

In terms of the DVS’s publishing frequency, we take into consideration that the number k should

be adjusted depending on the blockchain leveraging it; for a blockchain in which blocks are frequently

added to the chain, the number should be higher. But a blockchain with a smaller transaction frequency

should work with a lower k value (otherwise, in this case the DVS would publish views with too long a

time gap).

This mechanism is implemented in the form of a smart contract and deployed in the Polkadot network

(see Section 4.2 for more details on the implementation decisions).

3.3.2 Polkadot Connector

The Polkadot connector emerges on top of the DVS layer, as a bridge for permissioned blockchains to

be able to access Polkadot.

This is possible since the connector is part of Hyperledger Cactus (see Section 2.3), an interoper-

ability mechanism which is, at the moment, compatible with several permissioned blockchains including

Quorum [19], Corda [20] and Hyperledger Fabric [2]. Thus, a permissioned blockchain supported by

Hyperledger Cactus can use the latter to access Polkadot through this connector.

The connector also implements mechanisms to deploy smart contracts to the Polkadot network and

to interact with them, by being able to call read and write function from those contracts.

Since the DVS is implemented in the form of a smart contract and deployed in Polkadot, the Polkadot

Connector is able to interact with its functionality - given that it receives the correct parameters, it can

retrieve or publish a specific view in the DVS.

Beyond providing permissioned blockchains with the ability to connect the DVS - allowing them to

perform a secure internal state sharing with external clients - we contributed to an open source project

and created a connector with a more general impact, allowing several blokchains to connect to Polkadot,

to deploy smart contracts of their choice in the latter and to interact with them.

3.3.3 T-ODAP

As mentioned in Section 2.10, T-ODAP arises as a trustless version of the existing protocol ODAP,

leveraging the use of a DVS for permissioned blockchains’ internal state sharing. This way, T-ODAP

does not require that gateways trust each other since they can verify each other’s state in the DVS, prior

to any asset transfer occurring.

Note that T-ODAP is compatible with both permissionless and permissioned blockchains, however it

is focused in the latter. This is because the DVS is necessary for proving the internal state of permis-

sioned blockchains, but not needed for permissionless ones given that these are publicly verifiable.
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3.3.3.A System Actors

The following actors exist in T-ODAP:

• Source Ledger BS - The ledger that desires to transfer an asset to the recipient ledger, by locking

x units from asset type a to be created in the latter;

• Source Gateway GS - The gateway that transfers the locked x units from asset type a to the

recipient gateway;

• Decentralized View Storage (DVS) - The immutable bulletin where a permissioned blockchain’s

internal state proofs are published regularly;

• Recipient Gateway GR - The gateway that responds to GS and is the target of the transfer;

• Recipient Ledger BR - The ledger that receives the asset transfer, by creating the corresponding

tokens in its ledger and making them available.

The existence of the DVS allows GR to verify BS ’s internal state before an asset transfer; more

specifically, verifying if it is indeed true that x units of the asset of type a are locked in the source ledger

BS . If that is the case (meaning that GS was honest), the algorithm proceeds normally and the transfer

completes after the necessary steps (see Section 3.4.2). Otherwise, we are in the presence of malicious

behavior and the asset transfer is rolled back, thus not being finalized in GR and corresponding tokens

not being created in BR.

These actors are also illustrated in the aforementioned Figure 3.1.

3.3.3.B System Model

As mentioned in Section 3.2, we consider gateways as economically rational agents, playing to receive

the maximum possible utility.

Similarly to [64], we define two possible action choices for each rational player:

• Desired action - An action αA performed by agent A, where αA ∈ σd and σd describes the set of

actions that are in accordance with the specification of the T-ODAP protocol;

• Undesired action - An action αA performed by an agent A, where αA ∈ σu and σu describes the

set of actions that are not in accordance with the specification of the T-ODAP protocol. No action

at all (αA =) is also considered an undesired action.

In each step of our protocol, each gateway must decide if it will either choose an action αA ∈ σd or

an action αA ∈ σu. If both parties choose desired actions in every step of the protocol, the asset transfer

is completed and the protocol ends with success. Otherwise (see Section 3.5 for specific threats), the
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asset transfer is rolled back.

We previously saw that rational agents are motivated by actions that increase their utility and unmo-

tivated by the actions that decrease it.

In order to provide a secure protocol and motivate the players to choose desired actions instead of

the contrary, T-ODAP punishes a gateway each time it chooses an undesired action. This punishment

consists of decreasing that gateway’s public reputation, making it less likely that it is chosen in the next

T-ODAP instance. The latter has a negative value associated to it, which will decrease the player’s

overall utility.

Please note that would not make sense to offer the agents a reward or incentive to choose desired

actions, since following this protocol is their only purpose.

There are several factors (based on [64]) that contribute to the utility attributed to an action u(αA) by

an agent A:

• Cost (c) - The cost associated with the action. This includes costs derived from transactions or

the opportunity cost for locking x units of an asset of type a that could be leveraged in a different

protocol to earn an interest;

• Valuation (v) - A value that encodes a specific, private preference of agent A for an outcome

depending on the action.

• Punishment (p) - A value that encodes the punishment associated with a given undesired action.

Note that the valuation is related with the preference (or not) for a certain malicious action and can

either be influenced by external actors (e.g. the agent can be bribed to perform an undesired action) or

intrinsic to the agent (it might have a specific motivation for malicious behavior).

Having this in mind, we calculate the utilities as following:{
−c if αA in σd,

v− c− p if αA in σu
(3.1)

Where c corresponds to the cost (including opportunity costs, if the action comprises locking assets),

v to the private valuation (i.e. the preference for an outcome) and p to the punishment for choosing an

undesired action.

In terms of utility value, a desired action has to discount the cost and has no incentive as a positive

utility. In turn, an undesired action has the valuation with a positive value, however has to discount not

only the cost, but also the punishment value.
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In this context, to guarantee that a rational agent will choose a desired action, we have to make sure

that the utility value of that action is higher than the one of a undesired action, i.e., the following must be

true:

− c > v − c− p =⇒ p > v, (3.2)

As there is no way to know the actual value of the valuation (since it is private) and given that it

might be challenging to predict it, we consider two types of rational agents and their relationship with the

valuation and punishment values (based on [64]):

• Type Ad - An agent that consistently follows desired actions, since the utility from a desired action

is always higher than the utility for an undesired one, i.e. p > v (the utility lost by the agent in case

it does not follow the protocol is higher than in case it does).

• Type Ar - An agent that is undecided in its decision between a desired and an undesired action,

leading to p ≈ v.

The other possible type would be an agent that consistently follows undesired actions, given that its

valuation for an undesired action is always greater than the punishment for choosing the latter. This type

of player is not relevant to our system since a fully byzantine player can never be incentivized to follow

the protocol.

However, T-ODAP can guarantee that both types Ad and Ar will choose a desired action every time

the latter has a greater utility than an alternate undesired one.

3.4 Protocol

We now discuss the design and architecture of T-ODAP protocol. Figure 3.3, built with the Archimate

language [66], illustrates the latter. In this figure, we can observe the several components forming

T-ODAP’s architecture, which are divided in four different groups for a better understanding.

The first group (on top) comprises the source ledger Bs, as well as an asset of type A and the source

gateway Gs, which executes the asset transfer. The source gateway is a specialized type of Cactus

Node (a node belonging to Hyperledger Cactus - see Section 2.3), and it can be defined as ”a computer

system in a blockchain network for the purpose of assisting in the movement of virtual assets into (out

of) the blockchain network” [67]. The end-user is connected to Gs. The latter is the component which

triggers the whole protocol, by issuing a CC-Tx asset transfer request. This request is associated with

the transfer of x units of an asset of a given type A from Bs, which (if the protocol is successful) will be

created as y units of an asset of given type B in the recipient ledger Br.
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Figure 3.3: Archimate T-ODAP Protocol Architecture

The second group is similar to the first one, however this one comprises, instead, a recipient ledger

Br, the corresponding recipient gatewayGr which interacts withGs and which is the target of the transfer,

and the resulting created y units of asset of type B in Br. This group is not directly connected to an

end-user.

Both gateways interact with each other, being that Gs is the one that initiates the connection.

Then, we can observe the third and fourth groups. The third group encompasses Hyperledger Cactus

and its several connectors to blockchains/interoperability mechanisms (not all are represented), as well

as its several Cactus Nodes. The fourth group comprises the Polkadot network and the DVS smart

contract, deployed in it.

In order to (indirectly) access the DVS, the gateways have to leverage the Polkadot Connector. Be-

fore the protocol instance begins, the connector connects to Polkadot and deploys the contract code

containing the logic of the DVS. Then, Gs and Gr can use the connector to retrieve and read views from
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it, analyzing the state of Br and Bs, respectively.

Bs and Br are also connected to the DVS since, in order to guarantee the integrity of the views, the

latter must be published by members of the blockchain itself and not by the gateways. If the gateways

were able to publish views, since the latter can be malicious, we would not be able to be certain that the

published views were always correct.

3.4.1 Cross-chain digital assets

Let us dive into the life cycle of the cross-chain digital assets transferred from one blockchain to another.

As previously discussed, in a simplified manner, an asset transfer between two gateways entails, on

one hand, Bs locking x units of an asset of type a and, on another hand, Br creating a representation of

that asset corresponding to y units of an asset of type b.

This means that an asset goes through a transformation from the moment it is locked in the source

ledger, to the moment its representation is finally created in the recipient ledger. In order to facilitate

the understanding of the cross-chain digital asset’s life cycle, we consider that in a given asset transfer,

there is only one asset, which can have one of three states:

• Pure asset - The asset’s initial state. It is still unlocked in the source ledger Bs and thus accessible;

• Blocked asset - The asset’s intermediate state. It is locked in the source ledger Bs and thus

inaccessible. A blocked asset can be (based on [6]):

– Pre-locked - The asset will be transferred, and it becomes temporarily inaccessible. In case

the protocol fails before the transfer (i.e. in case Gr rejects the asset transfer) the operation

is rolled back and the asset goes back to the pure asset state;

– Locked - The asset was transferred and thus it is not accessible. This lock holds until there is

an unlock (controlled by smart contract logic), in order to protect the protocol from malicious

parties using the asset while it is locked;

– Burnt - The asset was destroyed or permanently locked.

• Digital twin asset - The asset’s final state. It corresponds to the representation of the original asset,

created in Br. After being created, it becomes accessible.

As in ODAP (see Section 2.9), all asset related information is encapsulated in an asset profile. The

latter includes information such as an asset code (a unique code that allows for easy identification) and

a digital signature emitted by the asset’s issuer.
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3.4.2 Flow

We will now discuss the protocol flow of T-ODAP, illustrated in figure Figure 3.4.

Before diving into the protocol steps, we will present the types of actions that a gateway can perform

(based in [6]).

In terms of off-chain actions, we have:

• Commit - To commit on a given asset transfer. This action takes place in case the protocol was

successful, and in case both gateways followed desired actions;

• Rollback - To go back to the state prior to the operation (i.e. the asset goes back to pure state).

A rollback can occur if Gr rejects the asset transfer, or in case Gs does not lock the asset when it

should (an attack);

• Complete - To finish the asset transfer, once the digital twin asset is successfully created on Br.

When it comes to on-chain actions, a gateway can alter an asset’s state through the actions pre-lock,

lock, unlock and create asset, as seen in Section 3.4.1.

Figure 3.4 illustrates an example of T-ODAP’s protocol flow, having Fabric as the source ledger and

Quorum as its recipient counterpart. Here, we can observe the main differences in relation to ODAP:

• DVS is a participant;

• Phase 3 - View Publication Flow - is introduced.

We can also observe that an if condition is introduced at the bottom, which depends on the outcome

of the last step of Phase 3.

First, an end-user (i.e. an application) issues a CC-Tx asset transfer request through Hyperledger

Cactus (see Section 3.4), which triggers the beginning of the protocol. Then, Phase 1 (Transfer Initia-

tion Flow) and 2 (Lock-Evidence Verification Flow) take place; these remain unchanged from what was

presented in Section 2.9 - the first phase leverages initiation processes, necessary for connection be-

tween the gateways and the second phase takes care of taking the asset from a pure state to a blocked

state (more specifically, pre-locked), along with verifying that the recipient ledger is indeed interested in

receiving the asset transfer.

Then, Phase 3 begins. Here, we begin with Hyperledger Fabric (Bs) publishing a view at a given

time t (note that views are frequently published, with the value k depending on the source blockchain).

This step is particularly important since it shares the internal state of Fabric at that moment in time, and

since this view contains information about the state of the asset to be transferred.

The protocol proceeds with Gr retrieving Fabric’s most recent published view, in order to be able to

analyze its contents and confirm that the asset is indeed in a blocked state. Note that, in this stage, Gr
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only retrieves the view after a given time t has passed. This amount of time depends on the blockchain

Bs. This is due to the fact that even if the asset is locked, the view containing this information might only

be published after some time, or the network can have some delay. To guarantee that the retrieved view

contains the correct and most recent information about the lock, we wait t units of time.

The outcome of this verification triggers one of two options within the protocol:

• If the asset is indeed locked, Phase 4 (Commitment Establishment Flow) takes place. This phase

comprises a preparation commit, a final lock (by Bs), which sets the asset’s state from pre-locked

to locked (both in blocked state) and a final commit of the transfer, containing all the information

necessary for Br to create the asset.

After Gr claims that the asset was created in Quorum, Phase 5 (Asset Creation Verification Flow)

starts. Here, Gs will retrieve Quorum’s most recent published view (again, waiting t units of time

before doing so) and verify if the information provided by Gr is correct. In case it is, the transfer

process finishes with success, having the asset in its final state - digital twin asset. Otherwise, Gr

attempted to execute an attack by not creating the asset in the Quorum blockchain. The transfer is

rolled back and the blocked asset in Bs is set to a pure state again, so that it is not lost.

• If the asset is unlocked, this means that Gs opted for an undesired action. The transfer has to be

rolled back; otherwise, by creating a representation of the asset in Bs, double spend would occur.

3.5 Threat Model and Security Analysis

As we previously saw, gateways have the choice to perform either desired or undesired actions. The

choice of an undesired action entails a punishment, which varies according to the action taken. Both

gateways may have an incentive to deviate from the protocol (thus, execute an attack).

We will now present the threats that compose the threat model and, for each threat, perform an in-

formal security analysis of our protocol’s behavior towards it. For each threat presented, we explain its

context, associate it with a level of severity from 1 to 5 (where 1 corresponds to very low and 5 corre-

sponds to very high severity) and, finally, delve into how T-ODAP offers protection from that threat. Note

that each threat corresponds to an action that can be performed by a malicious node.

Threat 1 - The source gateway Gs steals the asset to be transferred (it does not lock the asset

before transferring it to Gr).

Let us imagine Gs is meant to transfer an asset to Gr, so that the latter creates the asset’s repre-

sentation in Br. Gs can try to steal the asset by not providing instructions for Bs to lock the asset, while
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lying to Gr about locking it. This way, Br will still end up creating the asset’s representation (the digital

asset twin Section 3.4.1) although the asset has not been locked in the source ledger.

This threat has a level 5 of severity (very high) since it allows for double spending (i.e. the same

digital asset being used more than once).

T-ODAP mitigates this attack through the use of the Decentralized View Storage. As we have pre-

viously seen in Section 3.4.2, the latter allows for the removal of trust between the gateways, since the

recipient gateway Gr can observe the source ledger’s internal state (including the asset’s state) prior to

the transfer, so that it can stop the latter in case the asset’s is incorrect.

Threat 2 - The source gateway Gs steals part of the asset to be transferred but transfers the remain-

ing portion.

This threat is a slight variation of the previous. In this context, imagine the asset transfer comprises

transferring 5 units of token of type A to be created as x units of token of type B in Gr. The source

gateway can try to lock only 3 of those units and steal the remaining 2. The transfer will still take place,

since Gr believes that Bs locked the entire asset.

This threat has a level 4 of severity (high) since it leads to a similar result as threat 2 - double spending

still occurs with a portion of the asset, even though it is not the whole asset.

T-ODAP mitigates this threat as it mitigates threat 1 - the recipient gateway can verify Bs the exact

amount of token units that must be locked. If this number does not match what is expected, the transfer

is rolled back.

Threat 3 - The recipient gateway Gr does not create the assets in the recipient ledger.

Here, the threat is focused on the recipient gateway, which performs a denial-of-service attack by not

creating the assets in Br. The latter can be executed by a malicious Gr that desires to harm the users of

the source gateway, the source gateway or both by causing them to lock funds that will never be created

in Br. Despite not having a monetary incentive (given that the assets are not created), the malicious

intent towards the participants can suffice as an incentive for the attack (i.e. the valuation value is high

for this attacker).

This threat has a level 5 of severity (very high), considering that the initiating user will lose access

to the funds and the recipient user in the corresponding Br will not receive them, which is even more

serious when handling a great number of assets.

T-ODAP mitigates threat 3 through the fifth phase of the protocol (see Figure 3.4), in which the in-

ternal state of the recipient ledger is verified after Gr claims that the assets were created. In case the
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gateway is malicious and the assets are not created, the transfer suffers a rollback and the asset’s state

in Bs goes back to pure state.

Besides the aforementioned threats being taken into account and mitigated by T-ODAP, the attacks

described in threat 1, 2 and 3 can still be successfully executed during the attack windows - i.e. during

the intervals between view publications, since during the latter the attack is not registered and thus can

not be proven to have happened. As an example, in the second phase of a T-ODAP protocol instance,

an asset is blocked (in a pre-locked state). The Gs communicates that information to Gr and waits for

the source ledger’s next view publication. Immediately after this, the Gs unlocks the asset, but the View

Publication Flow will still occur successfully given that the view contained the asset in its blocked state.

In order to diminish the attack window as much as possible, the view publishing frequency should be

high (i.e. k should be low). However, this is a trade-off - highly frequent publications incur high costs for

the solution. In future work Section 6.2, other solutions may be employed in order to maintain an equi-

librium between the cost and the security of the solution (e.g. device attestation to verify the gateway’s

code logic [68] or checking the asset’s state for a limited period of time, to guarantee that it remains

locked).

As mentioned in Section 3.3.3.B, in order to motivate the agents to follow desired actions instead of

undesired ones, we attribute punishments to the latter.

The punishment value corresponds to the severity value of the attack attempted multiplied by the

quantity of units the gateway tried to steal, i.e.:

p = s× u, (3.3)

where p corresponds to the punishment, s to the attack severity and u to the amount of units attempted

to be stolen.

With this formula, we can guarantee that the punishment value is always greater or equal (in case

the severity value equals 1) than the valuation’s value (i.e. what the attacker would gain from stealing).

Thus, as seen in Section 3.3.3.B, the gateways are always incentivized to choose the desired actions

that benefit the protocol.
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Figure 3.4: T-ODAP Protocol Flow example
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In this chapter, we present the decisions made in the implementation process of T-ODAP in terms of

technology, along with technical details.

4.1 Technologies

This section introduces the decisions made in terms of the technology used for T-ODAP.

Recalling Figure 3.2, there are three main layers that compose our system, starting from the bottom

one - the DVS, the Polkadot Connector and the T-ODAP protocol itself.

4.1.1 DVS

As we mentioned prior, the Decentralized View Storage is an immutable bulletin, and we implemented

it in the form of a smart contract. We came to this decision by basing our work on [5] and given the

fact that, nowadays, most blockchains support smart contracts. Having made the decision of DVS being

implemented this way and available as a live, distributed smart contract in a given blockchain network,

the next step was deciding the language in which the contract would be implemented, along with deciding

the underlying infrastructure where it would be deployed and live.

As the smart contract needed to be accessible externally (i.e. by permissioned blockchains), at

first we analyzed several public blockchains as potential underlying infrastructures. In particular, we

considered Ethereum. However, we concluded that this solution would have drawbacks since it suffers

from scalability issues (Ethereum only supports about 200 transactions per second [3]), consumes a

vast amount of energy and has no provable transaction finality - it only guarantees that eventually, at

some point in the future, all nodes will agree on the truthfulness of a given set of data (probabilistic

finality) [69].

Recently, Ethereum 2.0 (an important update to the current Ethereum) also emerged. This new

version of the blockchain will use sharding techniques to improve its throughput, and will also present

far lower transaction fees. Its finalization expected latency is around 6-12 minutes [3]. While this is

an exciting prospect, Ethereum 2.0 is still in an immature phase (the second phase of the roll-out will

happen near the end of 2021).

After analyzing other possible solutions as underlying infrastructures for the DVS, we opted for Polka-

dot, a scalable and flexible interoperability mechanism - more specifically, a Blockchain of Blockchains

(see Section 2.3.2).

Polkadot shares many functionalities with the aforementioned Ethereum 2.0, including the interoper-

ability approach of sharding, which grants both a high scalability. However, Polkadot has an expected

latency of 6-60 seconds [3] which is significantly better than the latter. Besides, the BoB provides a

hybrid type of consensus (including two protocols, BABE and GRANDPA [69]) which leverages both
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provable and probabilistic finality. This way, the system is able to get the benefit of both provable (blocks

can never be reversed after some process takes place) and probabilistic finality (ability to always produce

new blocks), and also avoid the drawbacks of having just one of the two protocols.

Having decided on Polkadot, we then needed to choose the smart contract language in which we

were going to implement the DVS’s functionality. Two distinct pallets are currently offered by Polkadot

for smart contract development - the Frontier pallet, for the development of EVM-based contracts, and

the Contracts pallet, for the development of WebAssembly (WASM) based contracts [70]. The last pallet

made some improvements in regards to the first (such as introducing a rent for each contract to justify

its existence on-chain) which is why we chose to use it.

This pallet supports any traditional programming language that compiles to WASM code, along with

the Domain Specific Language (DSL) Parity’s ink! based in Rust [71]. However, as ink! is domain

specific, leveraging it increased the efficiency of the software development process (despite the time

invested in learning the language), which is why we chose it for the development of our smart contract.

4.1.2 Polkadot Connector

The next challenge was finding a method for connecting the permissioned blockchains to the DVS (i.e.

connecting the blockchains to Polkadot).

Our first idea was to build a bridge to Polkadot directly, but this would require manually building sev-

eral bridges from several permissioned blockchains since, at the time, Polkadot only provided bridges

to Ethereum and Bitcoin. Currently, the BoB offers some bridge options in terms of connecting to per-

missioned environments (such as Tindermint) [72], however they are still limited and building even one

bridge manually would not be feasible due to time constraints.

After analyzing other options, we encountered Hyperledger Cactus - a hybrid interoperability mech-

anism, which is currently live and is already compatible with several permissioned blockchains such as

Quorum, Corda, Fabric and Besu [73].

This was ideal since, by using Hyperledger Cactus, we would not have to worry about manually

building several bridges for connecting permissioned blockchains to Polkadot. Instead, we just needed

to build one connector that would connect them to Polkadot (which is what we did).

4.1.3 T-ODAP

On top of the Polkadot Connector, we had to decide the technology for our trustless version of the Open

Asset Digital Protocol - T-ODAP.

This decision was rather easy since the ODAP protocol is currently implemented in Hyperledger

Cactus. Therefore, besides implementing the Polkadot connector, we would only have to adapt ODAP’s
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existing version to have the interaction with the DVS’s smart contract in Polkadot (reading and writing

from the latter).

4.2 Implementation

This work’s implementation comprises Hyperledger Cactus for cross-blockchain transaction logic as

well as Polkadot as an underlying infrastructure. It also encompasses one smart contract, with the

decentralized view storage’s logic, written in Parity’s rust-based ink! language [71].

Please note that smart contracts are only now stabilizing on Polkadot. The latter does not natively

support them, however some parachains will (see Section 2.3.2).

It is important to note that, although parachains are not yet launched in Polkadot, there is a project

called Edgeware [74] which implements the Contracts pallet and is currently in production. Edgeware is

essentially a smart-contract blockchain that allows developers to deploy their ink! written smart contracts.

It will be integrated as a parachain in Polkadot, so every smart contract deployed in Edgeware will

become a part of the Polkadot blockchain.

It is also possible to create a simple Substrate Blockchain, in which a smart contract can be deployed

and interact with the Substrate’s test network.

4.2.1 Decentralized View Storage Components

As mentioned in Section 4.1, the decentralized view storage (i.e. the smart contract containing its logic)

is implemented in ink!.

The storage of the contract contains (see Figure 4.1):

Figure 4.1: Snippet of DVS Storage

• commitments per member - A HashMap containing account IDs (corresponding to committee mem-

bers’ accounts) as keys and HashMaps as values. The innermost HashMaps comprise integers as

keys (each corresponding to a height) and commitments as values. In essence, each committee
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member is associated with several heights and each of those heights is associated with a single

commitment (or none).

We chose a collection to save this information since we do not a priori know the number of heights

that will be associated with that particular committee, or how many commitments will exist. The

number of committee members might also change. In particular, we chose a HashMap to save this

information due to the latter’s complexity and due to HashMaps’ fast look-ups and insertions.

• replies per member - As the previous, it is a HashMap containing account IDs (corresponding to

committee members’ accounts) as keys and HashMaps as values. Here, the innermost HashMaps

comprise integers as keys (each corresponding to a height) and Strings as values. In short, each

committee member is associated with several heights and, in turn, each of those heights is associ-

ated with a String which corresponds to a reply (or none). The latter is the approval or disapproval

of a given view.

As before, a collection was chosen to save this information since we do not a priori know the

number of heights that will be associated with that particular committee, how many replies will exist

or how many committee members will exist (this number might change as time passes). We chose

a HashMap to save this information due to the same reasons stated for commitments per member.

• whitelist - A vector containing the committee members of the destination permissioned blockchain.

This is necessary in order to verify that certain actions can only be executed by authorized mem-

bers. A vector was chosen for the whitelist since it is a growable array type, which is necessary

because new members can be added to (and removed from) the committee.

• current height - An unsigned integer that corresponds to the permissioned blockchain’s current

block height. It is unsigned given that the latter can never be negative. The current height is

used by the smart contract when checking if the timeout has expired.

• timeout - An unsigned integer that corresponds to the maximum number of new blocks in the

permissioned blockchain we can wait for before an operation is rolled back.

4.2.2 Polkadot Connector Components

The Polkadot Connector provides functionality that enables any permissioned blockchain (as long as it

is supported by Hyperledger Cactus) to connect to the Polkadot network and perform monetary trans-

actions to the latter. Besides this, the connector provides methods for these blockchains to deploy and

interact with smart contracts in the network.

It is important to note that the aforementioned methods are not specific to T-ODAP or our use case.

The Polkadot Connector is used in our work, but is, in its core, a contribution to the development of
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Hyperledger Cactus and blockchain interoperability and can be leveraged to many other use cases.

Our connector in Hyperledger Cactus uses three different API’s to communicate with the Polkadot

network: ”@polkadot/api” (which has the base API functionality), ”@polkadot/api-contracts” (which con-

tains the API specific for smart contract interaction) and ”@polkadot/types” (which encompasses specific

Polkadot types).

Prior to diving into the main functions, we present the interfaces that are either fed as input (requests)

or returned as output (responses) in those functions:

• DeployContractInkBytecodeRequest - A request that encompasses the attributes required to de-

ploy a specific ink! smart contract in Polkadot. These are:

– wasm - A Uint8Array object (a typed array of 8-bit unsigned integer values) which corresponds

to a WASM binary file, generated after building the smart contract code;

– abi - An AnyJson object (can be a string, number, boolean or any type of json object) cor-

responding to the smart contract’s Application Binary Interface (ABI), which describes the

interfaces that can be used to interact with the contract;

– endowment - A positive number which corresponds to the balance to transfer to the newly

created smart contract;

– gasLimit - A positive number which corresponds to the maximum gas the caller is willing to

spend when executing the smart contract’s constructor;

– params - An optional parameter of type Array <Unknown>, corresponding to any parameters

that possibly need to be supplied to the smart contract’s constructor.

• DeployContractInkBytecodeResponse - A response returned by the connector which provides in-

formation on the success of the smart contract’s deployment. It contains only one attribute, suc-

cess, a boolean value with the value ”true” in case the smart contract was deployed, and ”false”

otherwise.

• ReadStorageRequest - A request that contains attributes necessary for reading the storage of a

smart contract. The latter are:

– account - A string that corresponds to the Polkadot account which wants to perform the read

request. This account signs the transaction encoding the read operation;

– gasLimit - A positive number which corresponds to the maximum gas the caller is willing to

spend when executing the smart contract’s constructor;

– read function - A string corresponding to the name of the read function for the specific smart

contract;
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– params - An optional Array<Unknown>, corresponding to any parameters that possibly need

to be supplied to the smart contract’s read function.

• ReadStorageResponse - A response returned by the connector which provides information on the

success of the read operation. It encompasses the following attributes:

– success - A boolean with the value ”true” in case the smart contract was deployed, and ”false”

otherwise;

– output - An optional parameter of type AnyJson, which corresponds to the output of the read

operation (only existing in case the operation was successful).

• WriteStorageRequest - A request that contains attributes necessary for writing in the storage of a

smart contract. These are similar to the attributes in a ReadStorageRequest :

– account - A string that corresponds to the Polkadot account which wants to perform the write

request. This account signs the transaction encoding the read operation;

– gasLimit - A positive number which corresponds to the maximum gas the caller is willing to

spend when executing the smart contract’s constructor;

– write function - A string corresponding to the name of the write function for the specific smart

contract;

– params - An optional Array<Unknown>, corresponding to any parameters that possibly need

to be supplied to the smart contract’s write function.

• WriteStorageResponse - A response returned by the connector which provides information on the

success of the write operation. It contains only one attribute, success, a boolean value with the

value ”true” in case the smart contract was deployed, and ”false” otherwise.

Leveraging the aforementioned interfaces, we present the most relevant connector functions for our

work:

• deployContract - A function that receives a DeployContractInkBytecodeRequest, returns a De-

ployContractInkBytecodeResponse and whose purpose is to deploy a smart contract given the

above-mentioned parameters. The function throws an error in case the smart contract deployment

fails. Otherwise, it stores the contract’s ABI and code and sets success = true.

• readStorage - A function that receives a ReadStorageRequest, returns a ReadStorageResponse

and whose purpose is to perform a read operation on a smart contract given the attributes of the

request. The function throws an error in case the operation fails or, in case the result is a falsy

value, returns success with the value ”false”. Otherwise, it returns the attribute success with the

value ”true”, along with the retrieved output of the read function.
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• writeStorage - A function that receives a WriteStorageRequest, returns a WriteStorageResponse

and whose purpose is to perform a write operation on a smart contract given the attributes of the

request. The function throws an error in case the operation fails or, in case the result is a falsy

value, returns success with the value ”false”. Otherwise, it returns the attribute success with the

value ”true”.

Figure 4.2: T-ODAP’s Functions and Interfaces

Besides these functions, as presented before, the connector presents functionality to send monetary

transactions to Polkadot. It also leverages a metrics collection and alerting tool, Prometheus [75] that

stores the number of transaction performed.
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In this chapter, we evaluate T-ODAP. We begin by discussing the evaluation methodology, the met-

rics evaluated and the test environment. The evaluation is then performed, being divided into two sec-

tions: theoretical and practical evaluation. The first comprises a game theoretical evaluation based on a

framework that evaluates the solution’s robustness in terms of resilience to attacks. The practical section

could not be complete due to the fact that, as mentioned before, the third layer of T-ODAP was not im-

plemented. However, we explain the metrics we planned to evaluate and discuss our expected results.

We then present a use case for our solution. Finally, we discuss the results obtained and reinforce the

distinguishing aspects of our solution.

5.1 Evaluation Methodology

Our evaluation of T-ODAP is mostly focused on the solution’s robustness in face of attacks (i.e. its

security).

Please note that, as stated before, T-ODAP was not fully implemented due to circumstances beyond

our control which delayed the solution’s implementation. More specifically we depended on having a

complete implementation of the ODAP protocol in order start our implementation of the third layer of

T-ODAP, however ODAP was not fully implemented on the date we thought it would be finished which

caused our work to be incomplete.

On this note, the theoretical evaluation (focused on robustness in face of attacks) could proceed

with no alterations, tests were performed to the two first layers of the protocol, however the practical

evaluation could not be done.

In this context, the main question our evaluation tackles is: How is T-ODAP’s robustness character-

ized in terms of resilience to attacks?

Additionally, although we could not implement the practical evaluation, the questions we had planned

to tackle with the latter in order to draw conclusions on the suitability of T-ODAP were the following:

• What is the minimum possible attack window for this solution, i.e. how frequent should the publish-

ing of views in the DVS be?

• What is the latency for each view publication at the maximum throughput, i.e. what is the minimum

amount of time required to perform a view publication?

• What is the monetary cost of the DVS solution (cost/byte) i.e. what is the efficiency of the solution?
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5.2 Test Environment

Given that the T-ODAP system is composed by several layers (as seen in Figure 3.2), we tested our

solution after the implementation of each.

In order to test the DVS, which is implemented in the form of a smart contract (see Section 4.2.1), we

wrote tests in the ink! language and ran these tests using rust’s toolchain ”nightly” [76], version 1.55.0.

The latter included 12 general cases and also edge cases. The tests included the following cases:

• A view being published since it met all the criteria;

• A view not having sufficient approvals and thus not being published;

• A view not being published due to the publishing entity not being authorized (i.e. not being a

committee member);

• A view not being published due to an incorrect rolling hash;

• A view publishing that exceeds the timeout and thus is rolled back (and not published).

Next, following the implementation of the Polkadot connector, we tested it. The latter was done on

top of the hybrid interoperability solution Hyperledger Cactus. As mentioned before, Cactus achieves

interoperability between several blockchains, with a focus on permissioned ones.

In order to be able to properly test our Polkadot connector, we needed to create a Polkadot test

environment containing a working node for the connector to connect to. To do this, we leveraged Docker

version 20.10.2 to create a container in which we installed the necessary software - some Ubuntu pack-

ages, Rust and the nightly toolchain, WASM-related packages and, finally, the Polkadot node itself.

In order to facilitate the use of the container in the tests, we also created a class that programmati-

cally obtained information about the docker container running the Polkadot Node, as well as starting and

stopping the latter. The aforementioned class, as well as the tests, were written using Typescript.

We have five main test files in which we performed distinct tests to the connector:

• constructor-instantiation - We tested the good functioning of our connector and its connection to

the Polkadot test ledger (i.e. the Polkadot node);

• deploy-ink-contract - We tested the deployment of a smart contract to the Polkadot node. To test

this, we used the smart contract containing the DVS’s logic;

• read-ink-contract - We tested a read operation from the previously deployed DVS smart contract;

• write-ink-contract - We tested a write operation to the previously deployed DVS smart contract.
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The tests passed successfully, indicating the correct behavior of our work.

In the next section we will focus on the evaluation of the T-ODAP system as a whole.

5.3 Theoretical Evaluation

As mentioned before, this component of the evaluation of T-ODAP comprises a theoretical game-theory

based approach to evaluate the solution in terms of robustness to attacks.

In order to do this, we leverage the game theoretical framework studied in Section 2.5.

The latter evaluates a blockchain protocol’s robustness by first identifying the players involved, the

actions they can perform (tied with specific utilities) and the game or games that better represent that

protocol.

In T-ODAP, we have two players - the source gateway Gs, and the recipient gateway Gr. These are

considered to be rational players, meaning that they both always desire to maximize their own utility (see

Section 2.4).

Based on the protocol flow described in Section 3.4.2, we divided the protocol into three different

games, the first (A) corresponding to Phases 1, 2 and 3, the second (B) corresponding to the scenario

where the asset is locked and the third (C) to the remaining scenario.

In each game, the order of the actions performed matters. In this context, if any player deviates the

protocol, the game goes back to the initial state, with a null outcome (0) for each (i.e. (0,0), where the

first position corresponds to Gs and the second one to Gr). The initial state corresponds to the state

before the asset transfer. If they do follow each step correctly, they receive a positive utility of (1,1). If a

player is harmed by another player’s action, the harmed player receives a negative utility of -1, similarly

to authors in [4]. The values of 1 and -1 were chosen by convention.

In game A, represented in Figure 5.1, the following actions can be executed:

• Gs can either create a channel (Y), which leads to node 2, or not do it (N) with outcome (0,0);

• Gr can either verify the assets (Y) which leads to node 3, or not do it (N) with outcome (0,0);

• Gs can either initiate the transfer (Y) which leads to node 4, or not do it (N) with outcome (0,0);

• Gr can either respond to the transfer initiation with an ACK (Y) which leads to node 5, or not do it

(N) with outcome (0,0);

• Gs can either lock the asset and inform Gs of this with an ACK (Y) which leads to node 7, or not

do it (N) which leads to node 6;
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• From node 7:

– Gs can either confirm the asset is indeed locked and confirm this to Gr with an ACK (Y) which

leads to node 7.1, or not do it (N) with outcome (0,0);

– Gr can either retrieve Bs’s most recent view and observe that the asset is locked (Y) which

leads to outcome (1,1), or not retrieve the view and verify the asset’s state (N) with outcome

(0,0);

• From node 6:

– Gs can either maliciously inform Gr that the asset is locked and confirm this with an ACK (Y)

which leads to node 6.1, or not do it (N) with outcome (0,0);

– Gr can either retrieve Bs’s most recent view and observe that the asset is unlocked (Y) which

leads to outcome (0,0), or not retrieve the view and verify the asset’s state (N) with the same

outcome (0,0);

When it comes to the last action described for game A, in case the asset is unlocked the outcome

is 0 for both players since Gs deviated from the protocol by not locking the asset. In this context, we do

not consider Gr to be harmed since the protocol contains methods to avoid the successful execution of

attacks.

In game B, we have the following possible actions, as illustrated in Figure 5.2:

• Gs can either prepare the commit (Y) which leads to node 2, or not do it (N) with outcome (0,0);

• Gr can either inform Gs that it received the information with an ACK (Y) which leads to node 3, or

not do it (N) with outcome (0,0);

• Gs can either perform the final asset lock (Y) which leads to node 4, or not do it (N) with outcome

(0,0);

• Gs can either commit the asset (Y) which leads to node 5, or not do it (N) with outcome (0,0);

• Gr can either create the corresponding asset and inform Gs of this (Y) which leads to node 7, or

not do it (N) which leads to node 6;

• From node 7:

– Gs can either retrieve Br ’s most recent view and observe that the asset is created (Y) which

leads to node 7.1, or not retrieve the view and verify the asset’s state (N) with outcome (0,0);

– Gr can acknowledge to Gs that it created the asset on its side (Y) which leads to node 7.2, or

not do it (N) with outcome (0,0);
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Figure 5.1: Game A - Diagram

– Gs can inform Gr that the transfer is complete (Y), which leads to outcome (1,1), or not do it

(N) with outcome (0,0);

• From node 6:

– Gs can either retrieve Br ’s most recent view and observe that the asset is not created (Y)

which leads to node 6.1, or not retrieve the view and verify the asset’s state (N) with outcome

(0,0);

– Gs can inform Gr that it will rollback the asset transfer (Y) which leads to node 6.2, or not do

it (N) with outcome (0,0);

– Gr can acknowledge to Gs that it received information about the rollback (Y), which leads to

node 6.3, or not do it (N) with outcome (0,0);

– Gs can instruct Bs to unlock the asset (Y), which leads to outcome (0,-1), or not do it (N)

which leads to outcome (0,0);

Finally we have game C, illustrated in Figure 5.3, with the following possible actions:
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Figure 5.2: Game B - Diagram

• Gr can inform Gr that it will rollback the asset transfer (Y), which leads to node 2, or not do it (N)

with outcome (0,0);

• Gs can acknowledge to Gs that it received information about the rollback (Y), which leads to node

3, or not do it (N) with outcome (0,0);

• Gr can rollback the transfer (Y) with outcome (-1,0), or not do it (N) with outcome (0,0);

Note that both cases of rolling back the transfer to avoid the successful execution of an attack - either

a double spend attack or a denial-of-service attack (see Section 3.5) - provide a negative outcome for

the malicious gateway - (0,-1) in Game B and (-1,0) in Game C - given that their attempted attack has

failed. For the honest gateway, the outcome is 0 since the asset transfer goes back to the initial state.

As described in Section 2.5, it is easier to analyze a protocol by dividing it into several independent

games. In our case, each game is independent. However, it is important to note that a given instance of

T-ODAP will only encompass two of the three games described - depending on the outcome of Game A,
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Figure 5.3: Game C - Diagram

either Game B or Game C will be triggered. More specifically, Game B will be triggered with an outcome

of (1,1) in Game A, and Game B will be triggered with an outcome of (0,0) in Game A.

For Game A, with our two players, we have that the strategy profile that corresponds to following the

protocol is σA1 = ({Y,Y,Y,Y}, {Y,Y,Y}), i.e. in case Gs correctly locks the asset, while σA2 = ({Y,Y,N,Y},

{Y,Y,Y}) is followed when Gs deviates the protocol by not locking the asset, leading to outcome (0,0).

In case of Game B with the same players, the strategy profile that corresponds to following the

protocol is σB1 = ({Y,Y,Y,Y,Y}, {Y,Y,Y}), i.e. in case Gr correctly creates the corresponding asset, while

σB2 = ({Y,Y,Y,Y,Y,Y}, {Y,N,Y}) corresponds to Gr not creating the asset, leading to outcome (0,-1).

Finally, in case of Game C (which is only triggered if the asset is not locked in Bs), the strategy profile

where both players follow the protocol corresponds to σC = ({Y}, {Y,Y}), with outcome (-1,0).

As mentioned before, an instance of T-ODAP can be composed by Game A and Game B forming

mechanism AB or by Game A and Game C, forming mechanism AC. In the latter case, the outcome will

never be the best outcome possible for any of the players - it will either be 0 or -1.

AB is formed by composing both A and B games. The latter is represented as

(A ◦B, {σA, σB}) (5.1)

where σA and σB comprise all of the strategy profiles in games A an B, respectively.

Let us analyze the mechanism AB.

As mentioned in Section 2.5, a system is t-immune if the utility of players is not inferior if at most t

players deviate the protocol. This is not the case for the aforementioned mechanism, since players go

back to the initial state with a null outcome if any player deviates the protocol. This means that AB is not

t-immune, which means it is not (k,t)-robust.
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In order to explore the properties of the mechanism, we need to explore the properties of each game.

In Game A, the strategy profile σA1 is the only one with a maximal outcome of (1,1); all the other strategy

profiles lead to a null outcome. This means that the mechanism (A, σA1) is strongly resilient.

It also means that (A, σA1) is practical given that all strategies except for σA1 are weakly-dominated,

since they bring the outcome to 0 which is less than the maximal outcome. Having this in mind, we have

that σA1 is a Nash equilibrium of the game A after deletion of weakly-dominated strategies, making (A,

σA1) practical.

Being strongly resilient and practical, (A, σA1) is considered to be optimal resilient.

This mechanism also presents an interesting property - for any honest player, the worst possible

payoff it receives is the initial state. This is true since an honest player can either receive outcome 1,

if the other player is honest as well, or receive 0 (corresponding to the initial state) if the other player

deviates the protocol, meaning that the mechanism is also weak-immune.

Now looking at Game B, we have that the strategy profile σB1 provides a maximal outcome of (1,1).

Similarly to Game A, all other strategy profiles lead to an outcome of 0, which means that the mechanism

(B, σB1) is strongly resilient.

As all strategies except σB1 lead to an outcome that is less than the maximal outcome, this again

means they are weakly dominated. This way, σB1 is a Nash equilibrium after deletion of the other

strategies, making (B, σB1) practical as (A, σA1).

(B, σB1) is also optimal resilient due to being strongly resilient and practical.

Game B also presents the property of weak-immunity for the same reasons as Game A. Similarly, in

the worst case an honest player receives an outcome of 0 if the other player deviates from the protocol,

and in the best case both receive 1 if they follow the latter.

Since both mechanisms are optimal resilient and weak immune, by applying the Theorems 2, 3 and

4 of [4] which ensure the invariance of properties once the composition operator is applied, we get that

the resulting mechanism AB is both optimal resilient and weak immune, which makes it (k,t)-weak-robust.

Similarly to AB, AC is formed by composing both A and C games. The latter is represented as

(A ◦ C, {σA, σC}) (5.2)

where σA and σC comprise all of the strategy profiles in games A an C, respectively.

Let us analyze this mechanism, again by exploring the properties of each of the games. In this case,

we already analyzed Game A, leaving us with game C to explore.

In the latter, the strategy profile is σC . Contrarily to before, this strategy leads to an outcome of (-1,0),

which is not the maximal outcome. In fact, the null outcome (0,0) is higher. This means (C, σC) is not
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strongly resilient.

The mechanism is also not practical, given that σC is not a Nash Equilibrium.

On another hand, (C, σC) is weakly dominated, since an honest player never receives less than

the outcome of the initial state. If the players reached Game C, it is because Gs is malicious and did

not lock the asset it was supposed to transfer to Gr. Therefore, if Gr chooses to rollback the transfer

(the last action in the game), Gs gains a negative utility since its attempt of a double spend attack was

unsuccessful. Gr on another hand can either be honest or malicious. If it is honest and follows σC , the

outcome is equal to the outcome of the initial state (0).

Since Game C is weak-immune but not optimal resilient, the latter is not (k,t)-weak-robust. This

means that the composition mechanism AC is also not (k,t)-weak-robust [4].

Game C is only triggered in case Gs misbehaves in Game A. If we were to analyze (B, σB2), we

would obtain the same results due to the strategy leading to an outcome of (0,-1). The T-ODAP instance

represented by mechanism AC does not correspond to a scenario in which both players follow the

protocol, hence it makes sense that this specific mechanism is not (k,t)-weak-robust.

Indeed, out of both mechanisms AB and AC, AB is the one relevant to decide if T-ODAP is (k,t)-weak-

robust given the fact that, as mentioned before, out of the two it is the only one that presents a possibility

of players following the protocol from the beginning to the end.

Given that AB is (k,t)-weak-robust and given that it is the only relevant mechanism for the charac-

terization of T-ODAP’s robustness due to the aforementioned reasons, we can conclude that T-ODAP is

(k,t)-weak-robust.

5.4 Practical Evaluation

As mentioned before, the practical evaluation could not be completed due to our implementation of the

third layer having been delayed due to external circumstances.

Nonetheless, we present the metrics which we were going to evaluate in the practical evaluation if

we had had the time - throughput, latency, cost and the publishing frequency of T-ODAP.

5.4.1 Throughput

This metric is important to our work, given that the solution must be able to deal with several cross-chain

transaction requests for asset transfers without causing great harm in latency and performance. We

would evaluate T-ODAP’s scalability by testing it against:

1. Throughput - T-ODAP’s transaction throughput would be evaluated. We would measure the sys-

tem’s response against different asset transfer request rates, to study what is its average and

maximum throughput.
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2. T-ODAP vs. ODAP - We would also evaluate our baseline’s (ODAP) current throughput (specifically,

its average and maximum throughput) against T-ODAP’s, in order to determine how much slower

is T-ODAP in relation to ODAP. As T-ODAP is built on top of ODAP and adds extra steps (and thus,

more complexity), it is certain that our solution will be somewhat slower than the baseline. As

mentioned before, we understand that there is a trade-off between performance and security yet

we choose to give more weight the trustlessness and security of our solution.

5.4.2 Latency

The evaluation of the solution’s latency reflects how responsive it can be. This metric is also extremely

relevant to our work given that we want it to be as responsive as possible, without compromising the

security of our solution.

In this context, we would test T-ODAP against distinct workloads of asset transfer request rates. The

latency of ODAP would also be evaluated against our solution’s latency.

Similarly to before, T-ODAP is expected to have higher latency when compare to its baseline, ODAP,

due to the reasons mentioned in the previous subsection. This is not desirable, however it is something

we are willing to accept - we believe that the benefits of the trustlessness of our solution outweigh the

cons of having a higher latency and lower average and maximum throughput.

5.4.3 Cost

In this context, the cost of the solution corresponds to the monetary cost of running an instance of the

protocol, in terms of transaction fees - T-ODAP encompasses several transactions, some of which entail

monetary cost.

Similarly to previous solutions [14] we would measure these costs in EUR as the amount of trans-

action fees required to the correct functioning of the protocol. The costs would be calculated using the

conversion rates at the time of the experimental evaluation.

In order to evaluate this parameter, we could run several instances of the protocol and save the costs

entailed in each instance. Then, we could perform an average and observe which were the minimum

and maximum values. We would also evaluate the cost of ODAP against the cost of T-ODAP.

Although we can not predict the specific values, similarly to the throughput and latency, it is expected

that the cost of T-ODAP would be slightly higher given that there are extra transactions involved (such

as reading or publishing a view in the DVS).
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5.4.4 DVS Publishing Frequency

This is a key metric for our work, given that the DVS Publishing Frequency directly affects the security of

our solution. If a given blockchain publishes views with large time intervals between them, it is possible

that, when running an instance of the protocol, a certain action that has already taken place doesn’t

show up in the retrieved view (for example, Gs locking the asset). This can cause the asset transfer to

rollback when that did not need to happen. The opposite can also occur - an attacker may unlock the

asset between the publication of views, which causes the retrieved view to contain the state of the asset

as locked when it is not indeed locked, which can lead to a double spend attack (see section 3.5).

On another hand, publications with very short time intervals are much better in terms of security

however cause a great overhead in the DVS and thus add more latency to the solution, which is not

ideal.

In this context, we would test the solution against different publishing frequencies and observe its

behavior in terms of robustness to attacks, trying to understand what is the ideal value or range of

values for k of publishing frequency in terms of a having a small attack window, as well as not having a

great loss in performance at the same time.

5.5 Use Case - Trustless Cross-Border Transfers between Banks

It is now a well-known fact that blockchains can have a much larger applicability than just cryptocurrency

- they can be leveraged for applications that include securing medical data, NFT marketplaces, music

royalties tracking or cross-border payments, the focus of our use case.

Nowadays, cross-border payments are classified by many as the most inconvenient form of payment

[77], mostly due to the extremely high transaction fees - in the first quarter of 2021, this value was at

6.38% [78] - but also due to the worrisome lack of transparency and the high latency (a cross-border

transfer takes, on average, around 2-3 days, while a domestic transfer usually takes seconds).

This is a real problem, especially since the majority of these cross-border transactions correspond to

migrants sending money to their families back at home, most of which have a high need for the latter [77].

Many of these issues derive from the fact that a cross-border transfer involves a large number of

intermediaries (in the form of banks that process the transaction) until it reaches its destination bank.

This makes the whole process less secure; the more intermediaries there are, the a higher the risk of

fraud and more points of failure exist. Additionally, the more intermediary banks, the higher the fees.

Blockchain-powered solutions have been appearing as a way to mitigate this problem - the technol-

ogy offers decentralization which results in better security, much faster transactions and lower fees [77].

Ripple is an example of a blockchain-based solution that states to offer cross-border asset transfers in

real-time (the CEO of the company claims that a transaction takes on average 4-7 seconds [79]).
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These solutions are not yet being used worldwide given that regulations revolving blockchain-powered

cross-border transactions are not yet clear, and that companies still have some hesitancy around the

subject - more banks have to join the network first in order to be seen as a viable option.

T-ODAP can be leveraged to perform trustless cross-border asset transfers between banks.

With the use of T-ODAP’s Decentralized View Storage, besides being able to remove all intermedi-

aries that exist in a regular, non-blockchain based transfer (which causes the process to be much faster

and cheaper), the protocol also eliminates the necessity of banks trusting each other (which leads to a

more secure mechanism, given that they are much less susceptible to attacks).

In this context, each bank is associated with a T-ODAP gateway, which can perform this type of asset

transfers in a trustless manner. This can be seen in T-ODAP’s architecture Figure 3.3 - in this context,

each bank would save their data in each of the ledgers (source or recipient), being that one bank would

be the asset sender and the other one the asset receiver. Here, the end-user corresponds for example

to a person which desires to transfer his/her money from their account to a relative’s account, which

resides in a different country (and whose account is registered in a different bank). This entity is the one

that initiates the protocol.

Although we did not implement the use case, it might be relevant to note that we planned to im-

plement it having Hyperledger Fabric and Hyperledger Besu as the blockchains chosen for this task,

since they are well-known and documented enterprise-friendly chains which support smart contracts

and since they are already compatible with Hyperledger Cactus. We also planned to implement the use

case in the form of smart contracts, using NodeJS to program Fabric’s smart contract and Solidity to

implement Besu’s smart contract given that the latter is the most active and maintained language for

smart contracts development in Ethereum.

5.6 Discussion

We conclude that our system has an adequate robustness level in terms of rational deviations and im-

munity to byzantine behavior - more specifically, it is (k,t)-weak-robust, which is indeed a less strong

definition than a (k,t)-robust system, yet it is still a great achievement given that, as mentioned before,

it presents the robustness level presented by very popular protocols in the field including HTLC-based

payment schemes, side-chain protocols and cross-chain swap protocols [4]. Additionally, the tests per-

formed to our solution’s implementation (both to the smart contract and to the Polkadot connector)

demonstrate that the solution (only including two of T-ODAP’s layers) is functioning as intended.

In terms of the practical evaluation, although the latter could not be finished, we presented the metrics

we planned on evaluating the system with - throughput, latency, cost and publication frequency - and
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also presented our predictions in terms of the evaluation’s results for each metric. These results show

that, given the complexity of T-ODAP, in relation to ODAP, the three more performance-related metrics

(throughput, latency and cost) are expected to suffer.

The latter makes sense given that, in general, a more secure mechanism which does not require

trust in its participants tends to have a higher complexity when comparing with other systems which are

centralized. These added steps are necessary for the correct functioning of the system, and usually

cause the system to be less performant. We understand that this is a limitation of our system, yet our

focus is in the trustlessness of T-ODAP.

Another limitation of our work is the fact that it is not fully implemented. The implementation of

the third layer of T-ODAP, as well as a complete practical evaluation, is intended as future work. More

limitations to our system are described in section 6.2.

Despite the incomplete implementation and its performance limitations, among the related work, to

the best of our knowledge T-ODAP is one of the first blockchain interoperability solutions with focus on

permissioned blockchains to be completely trustless. Indeed, the related work studied in this thesis

contained several interesting solutions - most focused on permissionless chains but some focused on

permissioned chains (such as ODAP). However, none tackled all the points that T-ODAP does (for more

information on the related work, refer to section 2.10).
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Blockchain interoperability is essential for mass adoption. This applies to both permissioned and

permissionless blockchains, however we focused on the first due to the small amount of solutions that

currently exists. Some projects have been studying and presenting ways to achieve this, however most

require a centralized trusted third party, which may not be completely secure. By trusting individual

entities, these systems are vulnerable to attacks such as incorrect state sharing by malicious members

of permissioned chains or by a malicious centralized third-party. Therefore, there is an opportunity for

a new, trustless solution which makes the process more secure. The latter ensures that trust is moved

from one entity to a protocol; this provides a higher level of security given that the protocol itself is secure.

We explored and analyzed several state-of-the-art solutions, including XCLAIM, CrowdPatching,

ODAP and Public Bulletin. The aforementioned studies comprise highly valuable aspects which can

be applied to a solution for permissioned blockchain interoperability. This includes mechanisms based

on game theory that incentivize the participants to follow the established protocol, a mechanism to pub-

lish internal state proofs and a mechanism to perform unilateral asset transfers between gateways. All

were extremely valuable for the construction of the solution, however none of them encompasses all the

desired characteristics for our solution - e.g. XCLAIM uses possibly insecure chain relays and ODAP

requires gateways to trust each other which can be insecure.

We presented T-ODAP, a multi-layered secure and trustless system leveraging a DVS to publish inter-

nal state proofs, a Polkadot Connector to interact with the latter and a trustless adaptation of the ODAP

protocol. T-ODAP has the goal to arise as an alternative to the centralized interoperability solutions

currently offered to permissioned blockchains, providing stronger levels of security in relation to other

protocols such as ODAP due to being trustless.

Theoretically, we evaluated the full system’s robustness in face of attacks and concluded that the

system is (k,t)-weak-robust, similarly to popular mechanisms such as HTLC-based payment schemes.

We performed tests to the implemented layers of our solution, which were successful. The latter were re-

alized through Hyperledger Cactus, which enables blockchain and smart contract testing. Unfortunately,

we were not able to perform an experimental evaluation given the fact that the third layer of T-ODAP was

not implemented. However, we presented information about the tests we did to the first two layers of

our solution, which indicated the correct functioning of the system. Finally, we presented the metrics we

would have evaluated if we had had the opportunity, as well as expressing our predictions for the results

to expect, relatively to ODAP, which is our work’s baseline.

Our solution contributes to the development of permissioned blockchain interoperability, which in turn

will hopefully contribute to the widespread adoption of permissioned blockchains in enterprises, affecting

the latter and society as a whole.
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6.1 Contributions

We were able to deliver several contributions to the scientific community and the open-source commu-

nity, that have value not only together but also individually.

As primary contributions, we delivered:

1. A Decentralized View Storage built as a Polkadot smart contract, which allows for trustless state

sharing between opaque blockchains, that can be leveraged for multiple use cases;

2. A public Polkadot Connector implemented in Cactus, capable of connecting several permissioned

blockchains to Polkadot. Besides implementing the connector, we contributed to the open-source

community of Hyperledger;

3. A theoretical model of a trustless adaptation of the ODAP protocol, T-ODAP, that leverages the

DVS (and the connector in order to interact with the latter);

4. A game theory based analysis that demonstrates that T-ODAP is (k,t)-weak-robust.

Note that the implementation of the Polkadot connector and the DVS smart contract can be found in

https://github.com/hyperledger/cactus/pull/1490.

6.2 Limitations and Future Work

T-ODAP has some limitations, the first being that it is more costly than ODAP. This makes sense since

our solution adds steps and more complexity to the latter, as well as several transactions in blockchains,

which causes this higher cost. However, as stated before, the biggest focus of T-ODAP is in a trustless

and secure solution, so the higher cost comes as a trade-off.

As mentioned before, the third layer of T-ODAP and, consequently, the use case mentioned in Sec-

tion 5.5, were not implemented. The implementation was not possible on time due to circumstances

outside of our control; however, the layer and corresponding use case are ready for implementation in

future work. This work can be done through Hyperledger Cactus, which has open-source code, where

ODAP is implemented as well. The adaptation consists on connecting ODAP to the DVS through the

Polkadot Connector, and then adjusting the protocol to verify the asset’s state before and after an as-

set transfer (as described in Section 3.4.2). The use case can be built on top of T-ODAP, leveraging

the Hyperledger Fabric and Hyperledger Besu blockchains as Source and Recipient ledgers, such as

described in Section 5.5.

Additionally, in future work, other features may be added to T-ODAP such as the support of slashing

to punish participants in case they deviate the protocol. This can correspond, for example, to the use of

a collateral (as in XCLAIM [14]), which is removed in case the participants misbehave. This mechanism
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involves, however, some challenges: how to assure that an internal state proof is actually invalid, in

order to punish a participant fairly? The latter is hard to achieve due to the opaqueness of permissioned

blockchains.

The Decentralized View Storage may also support more gateways simultaneously, instead of only

two. This leads to much more possible synergies between different blockchains, yet it also entails much

more complex logic and a broader array of attacks. Moreover, the assumption described in Section 3.2

which states that our solution assumes all views published in the DVS are valid can possibly be removed

in future work. This means accepting the fact that auditor nodes can be malicious or assume that there

are no auditor nodes at all, and present a solution for this challenge.

It is also interesting to leverage a crash-recovery mechanism for the T-ODAP gateways, given that

one of them can crash in the middle of an asset transfer and it is not desirable to have to rollback

that transfer every time this happens. [6] presents a first approach to this problem, however it is not

implemented yet.

An additional feature for future work can be the attestation of the smart contract code running on

each gateway, or having nodes checking the smart contracts and guaranteeing they do not change.

This is due to the fact that the contracts may contain malicious code that tries to unlock an asset right

after locking it, for example. Finally, it can be interesting to see study if it is possible to decentralize the

solution further, and see the limitations of the latter.
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