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Abstract—Benchmarking, specifically in the robotics field,
gained an undeniable relevance due to its use in comparing
and evaluating results from different experiments. Despite the
relevance and recognized importance, benchmarking is barely
used in current robotics research. In this specific field, the
formulation of a general assessment of performance is already
difficult due to the complexity of the robot systems. The benefits
of such general assessments would bring great benefits to robotics
research, either for beginners who would have an easy start
in their journey in the field or for experienced researchers
who would have it easy when comparing results of different
approaches, but also when assessing the quality of the research
presented by them.

This work presents a benchmarking framework for local
motion planners. Despite the fact that mobile robot local planning
approaches have been thoroughly investigated, the lack of an
unified benchmark for performance evaluation remains. This
aims to facilitate the comparison of planners by helping to select
the one that performs best on some problems of interest.

In order to solve this, we created a simulated version of a dif-
ferential robot model and multiple simulated environments with
different characteristics. In order to evaluate the performance,
different metrics were designed.

We applied this benchmark in two of the most popular local
planners, Dynamic Window Approach and Pure Pursuit. The
results obtained show differences in the performance depending
on the type of planner and in which environment the local
planners were used. With this, the decision of the local planner
can be done accordingly.

I. INTRODUCTION AND MOTIVATION

In the last few years there have been significant progress
in multiple fields, namely in machine learning, computer
vision and speech processing. Multiple reasons can explain
this progress, but there is one that tends to be overlooked:
the development of a conducive research ecosystem. [2] The
existence of multiple platforms like PyTorch and TensorFlow
reduces the difficulty of starting research in those areas. These
common platforms and datasets have led to standardized eval-
uations and benchmarks which translate into a better progress
quantification in those areas. [2]

When it comes to robotics the progress and exciting in-
novations are also inarguable. However, when compared to
other research areas it is harder for a new researcher to get
started and contribute to progress in the field due to the lack
of standard development tools.

As described in [3] the validation of robotic research, a
few years ago, was relatively straightforward. If a researcher
had published some of his work in a journal mentioning, for
example the equations and solver details of the software used

it was possible for the readers to re-run numerical simulations
in a short period of time. People in the field would have the
chance to test, validate and possibly generalize the algorithm.
A lot has changed in the robotics field since then. Machines
are much more complex and the robots no longer live confined
to specific environments, but are present in our daily life, from
our houses to airports and even Mars.

The progress in the field of robotics have to, and will
continue and it is our duty to understand how we can change
the method of research in a way that leads to more and
faster innovation. Quoting Steven Johnson [13]: “If you look
at history, innovation does not come just from giving people
incentives; it comes from creating environments where their
ideas can connect”. The research community needs to ex-
change experiences, algorithms, pieces of code to replicate the
experiments, find bugs or theoretical flaws, and to benchmark.
This last is the specific theme we address here.

At [16] benchmarks were defined as “process of identifying
the highest standards of excellence for products, services and
processes and then making the improvements necessary to
reach those standards”, the definition presented in [7] adds
numerical evaluation of results (performance metrics) as key
element.

Benchmarks are important instruments used to compare and
evaluate results of experiments. They can play an important
role in various aspects, several areas of research require
benchmarking to assess the value of new results against some
reference performance. Benchmarking can also be of great
help to scientists and technical developers, establishing clear
technical targets to demonstrate a certain readiness level of the
technology. [5]

In this work the focus will be on the benchmarking of a
specific functionality: robot local motion planning.

Local path planning means that the path planning is done
while the robot is moving, which means that the algorithm is
capable of producing a new path in response to changes in
the environment. If no obstacles are on the way the shortest
path between the start point and the end point is a straight
line. Therefore the robot will proceed along this path until an
obstacle is detected. At this point the algorithm responsible for
the path planning must be able to find a feasible path around
the obstacle. After avoiding the obstacle, the robot continues
to navigate toward the end-point along a straight line until
another obstacle is detected or the end position is reached.
[14]
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II. LOCAL PLANNERS

A. Dynamic Window Approach

The DWA is a local motion planner for mobile robots
proposed in [6]. Unlike other methods of this type, DWA is
derived directly from the dynamic features of the robots and
is designed with the goal of dealing with constraints imposed
by limits on velocity and acceleration of the robot. In this
approach the search for commands controlling the robot is
carried out directly in the space of velocities. [6]

With mathematical manipulation it is possible to approxi-
mate the trajectory of a robot by a sequence of circular arcs,
commonly referred as curvatures. Each of these curvatures is
determined, in an unique way, by a velocity vector (vi,wi),
where vi is the linear and wi the angular velocity. From this
point on we will refer to this vector as velocity. In order
to generate a trajectory to a given goal, for the next n time
intervals, velocities have to be determined, one for each of the
n time intervals. This would result in a search space for these
vectors exponential in the number of the considered intervals.

To avoid this complexity and make the optimization feasi-
ble, the DWA considers a short time interval and assumes that
the velocities will stay constant in the remaining time intervals,
which equals to assume zero accelerations in that time interval.
This approximation is done based on three observations: the
reduced search space is two dimensional, which easily allows
to reach a solution. The search is repeated after each time
interval and velocities will stay constant unless new commands
are given. [6]

Restrictions on the velocity are imposed when there is an
obstacle in the closer environment of the robot. For example
some pairs of velocities could lead to a collision if followed by
the robot. Considering Vs the space of possible velocities (both
linear and angular) we can state that inside Vs are some pairs
of velocities that correspond to trajectories that are not allowed
and other pairs that are admissible. A velocity is considered
admissible if the robot is able to stop before it reaches the
obstacle. Having this said, the set of admissible velocities Va,
is defined as

Va = {(v,w) | v ≤
√

2 dist(v,w) v̇b ∧ w ≤
√

2 dist(v,w) ẇb}
(1)

where dist(v,w) is the distance to the closest obstacle on
the corresponding curvature defined by (v,w), and the pair
(v̇b, ẇb) represents the accelerations of braking. The distance
is obtained by the product of the angle γ between the robot
and obstacle with the radius r of the curvature:

dist(v,w) = γ · r (2)

The search space is then reduced to the dynamic window.
This set only contains the velocities that can be reached within
the next time interval. Considering t the time interval where
the accelerations (v̇ and ẇ) will be applied and (va,wa) the
actual velocity, the dynamic window can be defined as:

Vd = {(v,w) | v ∈ [va − v̇t, va + v̇t] ∧ w ∈ [wa − ẇt, wa + ẇt]}
(3)

This dynamic window is set around the center of the actual
velocity and the extension of the set depends on the acceler-
ations that are feasible. The curvatures outside the dynamic
window can not be reached by the robot “immediately” and
therefore are not considered.

The search space used in DWA after the restrictions imposed
above can be obtained by

Vr =Vs ∩Va ∩Vd (4)

After having determined the resulting search space from
Equation (4), an optimal velocity is selected. In order to
achieve this, the objective function is defined as

G(v,w)=σ (α ·heading(v,w)+β ·clearance(v,w)+γ ·velocity(v,w))
(5)

and the pair (v,w), that achieves the maximum value of G(v,w)
is chosen as the optimal. The objective function takes three
main criteria into account: the heading, clearance and velocity.
We now take a deeper look into these criteria.

Target Heading: This criterion is a measure of progress
towards the goal location (maximal if the robot moves directly
towards the target). The target heading(v,w) measures the
alignment of the robot with the target direction. It is obtained
by the angle of the target point relative to the robot’s heading
direction. Due to the change of this direction with different
velocities, the target heading θ is computed for a predicted
position as shown below:

Fig. 1: Target heading [6]

The predicted position is determined by assuming that the
robot moves with the selected velocity in the next time interval
and considering the kinematic dynamics, the target heading is
computed at the position that is reachable by the robot when a
maximal deceleration is performed after the next interval. [6]
This results in a smooth turning to the target when the robot
avoids an obstacle.

Clearance: Clearance(v,w) is the distance to the closest
obstacle on the trajectory, or in other words, the closest obsta-
cle that intersects with the curvature. The value of clearance
is set to a large constant if no obstacle is present.

Velocity: The velocity(v,w) function has the role of eval-
uating the progress of the robot in the trajectory. It can be
described as the forward velocity of the robot and is simply a
projection on the translational velocity v.

The values of all three criteria are then normalized to [0,1]
and the objective function is computed. Depending on the
values of α , β and γ of 5 these criteria can have different
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influences on the objective, but all of them are equally crucial.
If only the clearance and the velocity were maximized, the
robot would travel into free space but not towards a goal. On
the other hand if heading was the only criteria taking into
account, the robot would get stopped by the first encountered
obstacle and would not be able to move away from it. In
the last years, some improvements to this local planner have
been suggested. More recently, and worth mentioning, in [22]
some problems that arise from the use of DWA are mentioned.
The main issues are the ones that come when dense objects
appear on the robot’s global planning path. When this is the
case, the robot is easily trapped. The robot is incapable to
judge the density of the environment and therefore needs
more turning, acceleration and deceleration operations to get
out of trouble. This lack of perception in the density of
objects, the robot will not surround the dense area but enter
it. The native DWA explained above, only considers factors
such as heading angle, target distance and speed. It does not
consider the density of objects in the environment, which
will inevitably lead to the robot being easily trapped and
therefore, very time-consuming. Considering this, the papers
suggests an improvement by adding a density evaluation factor
to the evaluation function. With this feature it is possible to
evaluate if a certain obstacle is in the dense area and solve
the problem that the local trajectory planning algorithm DWA
can not avoid dense objects in advance. The density factor
is responsible to predict the dense area based on the update
of the information retrieved by the sensor, pre-perceive the
distribution of dense objects and reduce the number of times
the robot falls into dense areas. According to the results shown
in [22], this improvement results in a more efficient DWA and
can be widely used in robots that perform their tasks in dense
environments.

B. Pure Pursuit

Pure Pursuit is a well-known planner that follows a given
path, thus it is usually denominated as a geometric path
tracking method. The Pure Pursuit algorithm calculates the
angular velocity to reach a target point using the current
position, linear velocity of a robot and the curvature passing
the target point.[10] One of the first detailed descriptions of the
implementation of the Pure Pursuit algorithm was described
in [17].

Geometry Deviation: The Pure Pursuit approach enables the
determination of the curvature that will drive the robot to a
goal point.

After retrieving the initial position, a search for the target
waypoint or goal point as previously mentioned, is performed.
The target waypoint is a point that lies on the path and on
a given search circle. The radius of this circle is set as a
parameter, the lookahead distance. After this, an arc that joins
the current point and the goal point is constructed and the
chord length of this arc is the lookahead distance. This acts
as constraint so that it is possible to determine a unique arc
that joins the two points.

In the Figure below we can see the point (x,y), which is
one lookahead distance, l from the origin. The point (x,y) is
constrained to be on the path. The objective is to calculate the
curvature of the arc that joins the origin to (x,y) and whose
chord length is l.

Fig. 2: Illustration of the Pure Pursuit algorithm [17]

The next step is the calculation of the curvature of the
circle passing the vehicle position and the target waypoint.
Considering the Figure (2), the curvature k is obtained by

x+d = r

x2 + y2 = l2 (6)

The first equation from the ones above describes the circle
of radius l. This area includes the possible locations of goal
points. The second one states that the radius of the arc and
the x offset are independent and differ by d.

From above and with the goal of relating the curvature of
the arc to the lookahead distance, the following equations hold

d = r− x

y2 +(r− x)2 = r2

x2 + r2 −2rx+ y2 = r2

l2 = 2rx

r =
l2

2x

k =
2x
l2

(7)

Implementation: The pure pursuit algorithm is responsible
to produce the steering angle required to bring the vehicle
back to the reference path. The classic frame that describes
this algorithm can be seen below:

Fig. 3: Pure Pursuit algorithm frame [19]

The first step of the algorithm is to determine the current
location that consists of a two dimensional position and the
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orientation. After retrieving this, the next step is to find the
path point closest to the vehicle. As mentioned before, the goal
point should be within one lookahead distance of the vehicle.
However it is possible that multiple points fall in this category.
If this is the case the vehicle should steer towards the closest
point one lookahead distance from its current location which
commences up the path.

The next step is to find the goal point. This occurs by
moving up the path and calculating the distance between that
path point and the vehicle’s current location. The moment
this goal point has been found, it has to be transformed to
the vehicle’s local coordinates since path point locations are
recorded in the global frame. By using the Equation 6, the
curvature is calculated and it is transformed into steering wheel
angle by the controller. At last, the position of the vehicle is
updated.

To better understand how the steering angle and the rest
of the variables are obtained Figure 4 shows a schematic
representation of the algorithm:

Fig. 4: Pure Pursuit algorithm schematic [19]

First, the angle α is obtained:

α =

∣∣∣∣θ − arctan
(

ylookahead − y
xlookahead − x

)∣∣∣∣ (8)

The angle α is the angle between the body of the robot
and the line that connects the lookahead point and the rear
wheel position of the robot. In the above expression, xlookahead
and ylookahead describe the position of the lookahead point
corresponding to the robot position, x and y describe the
position of the robot and θ is the heading of the vehicle.

Another variable that can be retrieved with geometric ma-
nipulation is the radius of curvature R that the vehicle needs
to follow:

R =
ld

2sinα
, (9)

where ld is the lookahead distance.
By using an Ackermann geometric model for the robot, the

steering angle can be obtained by:

φ = arctan
(

2Lsinα

ld

)
, (10)

where L is the wheelbase of the vehicle.

III. STATE OF THE ART

Benchmarking sampling-based planners is non-trivial for
several reasons. First, since the planners rely on sampling,
the performance can not be evaluated from a single run.

Instead, benchmarks need to be run multiple times to obtain
a distribution of the performance metric of interest in that
case. Besides this, the optimization for different metrics de-
pends on the application and there is no universal metric to
assess the performance of local planner algorithms across all
benchmarks. [15] Despite this, some general infrastructures for
comparing different planning algorithms have been proposed
in order to overcome the problem of scarce literature in this
area [4]. Here we single out some that motivated the methods
here proposed.

As one of the first references to benchmarking in robotics,
[11] introduces a method for measuring odometry errors of
mobile robots, focusing on a quantitative evaluation of sys-
tematic and non systematic errors. In [18] an early benchmark
for robot navigation is presented. However, the way to evaluate
the robot performance in a changing environment is not taken
into account.

Considering a static environment, an evaluation of two spe-
cific robot tasks, namely path planning and obstacle avoidance,
is done in [21].

One of the most used approaches consists of the evaluation
of performance taking the results within the same environment
into consideration - namely in the same moment with the
same constraints. [3] This is the case of robotic competitions.
Competitions, such as the DARPA Grand Challenges and
RoboCup can be considered as an option. Inside the RoboCup
initiative, we find RoboCup@Home interesting to mention,
that defines a live competition of service robots that need to
fulfill a series of tests in a domestic environment. [20] Instead
of defining a final challenge, this competition is defined as
a benchmarking process that guides the system development
from simple tasks towards successively more complex tasks
in realistic environments. [20]

Competitions like the ones mentioned above provide an
opportunity for researchers to benchmark different approaches
and understand the relative advantages of each one, consider-
ing a defined measure of success. However, competitions lack
the possibility to repeat an experiment with different methods.
[23]

With the aim of developing competitions that come close
to scientific experiments while providing an objective per-
formance evaluation of robot systems, the RoCKIn project
is born. [8] This new approach aims to tackle the issue
that competitions provide benchmarking at the system-level
based on a single high-level measure by moving to more
sophisticated benchmarking activities, while retaining some
of the traditional values of competitions as producing a rank
among alternative solutions at competition time, assigning
prizes and awards to the best teams and push for progress. By
using the results of the first RoCKIn competition, the authors
were able to show how this project can provide a set of tools to
enable the replicability of experiments involving autonomous
robots.

In the last few years, with the awareness of how important
benchmarking is to objectively compare different solutions,
other approaches have been proposed. One example can be
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the one proposed in [9], it addresses the problem of evaluating
automated guided vehicles with different degrees of autonomy
by defining benchmark tools to grade the performance of each
approach.

The benchmark methodology described in [9] includes the
definition of different types of scenarios, including wide and
narrow corridors, small and large isles, zig-zag maneuvering
and scenarios with moving objects (other vehicles or people).
For each scenario described above, a set of pairs with start or
goal positions are also defined. Another relevant defined set
is the one containing the maximum speeds, that the vehicle
can move when the driver fully accelerates. At last, random
tests are generated with combinations of start/goal positions
and maximum speeds. The number of tests for each algorithm
is given by:

N =
n! m

2!(n−2)!
(11)

where n is the dimension of the set of pairs start/goal positions
and m is the dimension of the set of maximum speeds. [9]

Crucial aspects like robustness, efficiency, safety and com-
fortability are also evaluated. Robustness is measured by the
number of experiments in which the vehicle reaches the goal
without any collision, efficiency as a measure of mean time,
velocity or mean path length. Safety is measured in terms of
average minimum distance to obstacles and risk of collisions,
comfortability in terms of the type of the described trajectory
and variations of acceleration (jerk).

More recently, in [12] a complete and principled evaluation
framework for comparing the performance of local planners
is established. To achieve this, multiple simulation scenarios
were developed and different types of evaluation metrics were
proposed.

Indoor scenarios were used to make an overall evaluation
of the local planners. This category includes large-scale-
office- and small-scale-family-house-like scenarios. Narrow
space scenarios (like U-shaped or Z-shaped corridors) were
designed to challenge the flexibility and smoothness of the
local planners. In the previous categories the complete prior
map is given as the input to local planners. To test the
adaptability, the authors blurred the maps individually and
input the incomplete map to the local planners.

At last, the robustness of local planners is challenged in
dynamic scenarios that include simulations where only two
people are walking, but also a more complex one where six
people are walking around in an open space environment. In
this last one, the robot needs to pass through the crowd to
reach the goal at the other, reproducing a crowded scene in
the real world. This type of scenarios challenges the safety,
flexibility and real-time performance of local planners.

The evaluation of the performance of the local planner is
done from different aspects by using different metrics.

Safety metrics are used to evaluate the security performance
of the local planner. These metrics can be evaluated in terms
of minimum distance to the closest obstacle and percentage
of time spent by the robot in the surrounding area of the
obstacles.

In [12], do is defined as the minimum distance to the closest
obstacle and po as the percentage of time spent by the robot in
the area around obstacles, and the safety metric is expressed
as:

do = min{di},1 ≤ i ≤ n (12)

po =
∑(tb − ta)

tn − t1
×100% (13)

where a and b represent the indices of the timestamps that
satisfy dk ≤ dsa f e,a ≤ k ≤ b, where dk is the distance to the
closest obstacle for i = k and dsa f e is the preset safe distance
to obstacles.

Another type of metrics is presented: efficiency metrics.
These are used to evaluate motion efficiency, described by
how quickly the local planner guides the robot to the local,
and computational efficiency, which evaluates the real-time
performance of local planners.

The motion efficiency uses the total travel time, T :

T = tn − t1 (14)

And the computational efficiency is given by the average
time consumption of a single local planner iteration:

C =
1
n

n

∑
i=1

ci (15)

Lastly, [12] also refers to smoothness metrics that are used
to assess the quality of motion commands given by the local
planners. The overall smoothness performance is evaluated
by the path and velocity smoothness. The path smoothness
is defined as:

f ps =
N−1

∑
i=2

||∆xi+1 −∆xi||2 (16)

where ∆xi = xi−xi−1 represents the displacement vector at xi =
(xi,yi)

T . The velocity smoothness is measured by computing
the average of acceleration:

f vs =
1

n−1

n−1

∑
i=1

∣∣∣∣vi+1 − vi

ti+1 − ti

∣∣∣∣ (17)

IV. IMPLEMENTATION

To comprehensively evaluate the performance of local plan-
ners, different scenarios were simulated to recreate different
types of rooms in where a robot can be used and can be seen
below:
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Fig. 5: Top left: Airlab; Top right: Office b; Bottom: 7A-2.
Figures not to scale.

Fig. 6: Scenarios used in the experiments. Top left: Intel; Top
right: Fr079; Bottom: Mexico. Figures not to scale.

Fig. 7: Scenario used in the experiments: Turtlebot world.
Figure not to scale.

We choose Gazebo as the simulation platform since its
high popularity among the ROS community. In the evaluation,
we focus on the local planning problem of differential drive
mobile robots. We refer to the popular model Turtlebot3 Waffle
and design a robot model in Gazebo through the XML macros
language Xacro. The footprint of the robot is set to a circle
with a radius of 0.22m. On this basis, a lidar sensor is mounted
on the robot. The sensor has a maximum and minimum range
of 3.5m and 0.12m, respectively, and an update rate of 5Hz.

Fig. 8: Simulator view with a simulated scenario and the
simulated robot model

We select multiple sets of different goal poses to test local
planners in each scenarios. In addition to this, we obtain the
robot pose from the ground truth provided by Gazebo to avoid
the influence of localization.

The local planners used are the ones mentioned in II and
their implementation can be consulted in [1]. It is important
to note that the algorithms presented have different names
and are called DWB for the Dynamic Window Approach one
and Regulated Pure Pursuit for the implementation of Pure
Pursuit. The last one implements additional regulation terms
on collision and linear speed.

Metrics serve as the evaluation needed to assess the per-
formance of our benchmarking objects. In our case, we use
metrics as tools to evaluate the performance of the local
planners. In order to do this, different metrics were chosen.
The first metric used to assess the performance was the number
of times that the robot reaches the target pose and in which
scenarios this happens, more or less frequently. The execution
time was used as a metric and can be described as the time
that goes from the moment when the target pose is accepted,
to the time where is actually reached or not, like shown below:

T = tn − t0, (18)

where tn represents the timestamp of the call in which the
robot reaches the target pose (or not) and t0 represents the
timestamp of the call in which the target pose is accepted.

Having this said, we used this metric in different situations,
the first one being the total execution time independently of
the fact that the target pose is reached or not and then only
for the situations where the target pose is reached. And lastly
for the situations where the target pose is not reached.

Besides the execution time, another metric that was used to
evaluate the performance was the path length. This is done
by splitting the path into small segments and considering
the general length of one segment. Since dx and dy are
infinitesimally small, the length dL can be approximated using
the Euclidean Distance. By summing all these consecutive
segments of the curve, we get the integral:

L =
∫ tn

t0

√(
dx
dt

)2

+

(
dy
dt

)2

dt (19)
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Like mentioned before for the execution time, this metric
was also assessed in total and in two different cases, one when
the target pose is reached and one when it is not.

V. EXPERIMENTAL RESULTS

As previously mentioned, for this benchmark we used
different local planners, different scenarios and metrics were
chosen to evaluate the performance. The main goal of this
work is to benchmark local planners and having this in mind
two different local planners were chosen. The use of different
metrics and scenarios is key to assure a fair evaluation.

We now present the results obtained by using DWB and
RPP. To obtain these results, 1000 runs were done.

A. DWB

In this section the results regarding DWB are presented.
First, we start with the results concerning the percentage of
times that the target pose was reached:

TABLE I: Evaluation of DWB by percentage of times that the
target pose is reached

Target Pose Reached Percentage of Times
Yes 91.83
No 8.17

Considering the same metrics but taking the scenarios
used in the runs into consideration, the following results are
obtained:

TABLE II: Evaluation of DWB by percentage of times that
the target pose is reached in different scenarios

Scenario Percentage of Times Target Pose is reached
7A-2 95.83

Turtlebot world 100
Airlab 100
Intel 94.20

Office b 100
Mexico 55.07
Fr079 95.89

In the next table the planner is evaluated in terms of average
execution time and respectively standard deviation:

TABLE III: Evaluation of DWB by average execution time
and standard deviation

Average Execution Time Standard Deviation
Total 61.545 55.374

If Target Pose is Reached 63.206 47.403
If Target Pose is Not Reached 42.86 109.074

Now the planner is evaluated in terms of average path
length and respectively standard deviation. The results are the
following:

TABLE IV: Evaluation of DWB by average path length and
standard deviation

Average Path Length Standard Deviation
Total 14.19 12.648

If Target Pose is Reached 14.845 12.016
If Target Pose is Not Reached 6.827 16.612

Having these results, we can conclude that the planner was
successful in the vast majority of times with exceptions in
bigger environments. However, it is also interesting to note
that when the target pose is not reached, the average execution
time and the average path length is considerably smaller which
is a positive takeout since it means that when the path is not
feasible the amount of wasted time is small.

B. Regulated Pure Pursuit
In this section the results regarding RPP are presented.

Firstly, the results concerning the percentage of times that the
target pose was reached are presented:

TABLE V: Evaluation of RPP by percentage of times that the
target pose is reached

Target Pose Reached Percentage of Times
Yes 90.51
No 9.49

Considering the same metrics but taking into consideration
the scenarios used in the runs the following results are ob-
tained:

TABLE VI: Evaluation of RPP by percentage of times that the
target pose is reached in different scenarios

Scenario Percentage of Times Target Pose is reached
7A-2 96

Turtlebot world 100
Airlab 100
Intel 93.06

Office b 95.83
Mexico 58.33
Fr079 91.04

In the next table the planner is evaluated in terms of average
execution time and standard deviation respectively:

TABLE VII: Evaluation of RPP by average execution time and
standard deviation

Average Execution Time Standard Deviation
Total 36.967 63.117

If Target Pose is Reached 35.69 25.434
If Target Pose is Not Reached 49.135 188.751

Now, the planner is evaluated in terms of average path
length and standard deviation respectively. The results are the
following:

TABLE VIII: Evaluation of RPP by average path length and
standard deviation

Average Path Length Standard Deviation
Total 15.658 20.242

If Target Pose is Reached 15.897 12.657
If Target Pose is Not Reached 13.372 57.748
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With these results, we can conclude that the planner was
overall successful in reaching the target pose despite excep-
tions in the bigger environments with obstacles. However, in
this case the average execution time when the target pose is
not reached is larger than when it is reached which can be a
disadvantage and can be seen as a waste of time. Regarding
the average path length, the results for the total average path
length and when the target pose is reached are similar to the
ones obtained with DWB. However, when the target pose is
not reached the average path length when RPP is used is
considerably larger than when using DWB.

C. Comparison Between Planners

When comparing local planners, execution time and path
length can be highly important. In a real life situation robots
can be required to perform tasks where they need to be fast and
also reach the target pose by following a short path. Having
this in mind, we compared the behavior of both local planners
in terms of average execution time and average path length in
a general way, then considering only when the target pose is
reached and lastly, when the target pose is not reached.

To better understand the difference in the performance of
the local planners, the results presented in V-A and V-B are
combined:

TABLE IX: Evaluation of DWB and RPP by percentage of
times that the target pose is reached in different scenarios

Scenario Percentage of Times Target Pose is reached
DWB RPP

7A-2 95.83 96
Turtlebot world 100 100

Airlab 100 100
Intel 94.20 93.06

Office b 100 95.83
Mexico 55.07 58.33
Fr079 95.89 91.04

TABLE X: Evaluation of DWB and RPP by average execution
time and standard deviation

Average Execution Time Standard Deviation
DWB RPP DWB RPP

Total 61.545 36.967 55.374 63.117
If Target Pose is Reached 63.206 35.69 47.403 25.434

If Target Pose is Not Reached 42.86 49.135 109.074 188.751

TABLE XI: Evaluation of DWB and RPP by average path
length and standard deviation

Average Path Length Standard Deviation
DWB RPP DWB RPP

Total 14.19 15.658 12.648 20.242
If Target Pose is Reached 14.845 15.897 12.016 12.657

If Target Pose is Not Reached 6.827 13.372 16.612 57.748

With these results, we can see that the percentage of times
that the target pose is reached is the same for both planners in
small environments such as Airlab and Turtlebot world. The
results obtained for the other scenarios are also similar, it is

worth mentioning the difference for the Office b - an office-
like room, where DWB reaches the target pose every time
and RPP only reaches it in 95.83% of the times. Regarding
average execution time, RPP, in average, needs a smaller
amount of time to reach the target pose which can be seen
as an advantage. However, the execution time when the target
pose is not reached is bigger than when it is reached. This
can be problematic since the user will need more time until
figuring out that the path is not feasible. Regarding average
path length, the results are very similar for the measurements
when the target pose is reached and in total. However and
once again, the value is rather different when the target pose
is not reached.

Besides the tables above we decided to present the results
in the following way:

Fig. 9: Total average execution time in function of total average
path length for both planners

Fig. 10: Average execution time in function of average path
length for both planners, when the target pose is reached or
not

Analyzing the results above, we can conclude that overall
the average path length is slightly bigger when using RPP. The
difference in average execution time between the planners is
larger. In this case DWB has a much higher average execution
time than RPP.

In the case where the target pose is reached, the results
are the same as the above. The situation is rather different in
the case where the target pose is not reached since RPP has
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a higher average execution time and the difference between
average path lengths also increases with RPP having the largest
one, once again.

After this analysis, we considered that it was important to
know the relation between the average execution time and the
different scenarios for both planners. The following results
were obtained:

Fig. 11: Relation between average execution time and the
different scenarios for DWB

Considering the above, the average execution time is bigger
for DWB overall. However, in small and relatively simple
scenarios (like Airlab and Turtlebot world) the results are very
similar.

After this, we decided to do the same as previously pre-
sented but this time considering average path length. The
results are the following:

Fig. 12: Relation between average path length and the different
scenarios for DWB

The results were very similar in this case with the exception
of the use in the larger scenario (Mexico) where the average
path length obtained by using RPP was higher than the one
achieved by using DWB.

VI. CONCLUSION

Our goal with this work was - more than creating a method
for absolute evaluation of local planners - to help researchers
in the robotics field to choose their local planner accordingly

to the situation where it is going to be used. Having this
said, we tested two local planners suitable for differential drive
robots, one of the most commons drive mechanisms, and made
simulations in different scenarios with different characteristics
from open-space to office-like rooms.

The comparison of the local planners was not possible if
tools for evaluation were not used. For this reason, we imple-
mented different metrics: average execution time, average path
length and number of times that the pose is reached to be able
to help the decision of when to use a certain local planner.
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