
Migrating Smart Contracts Across Heterogeneous
Blockchains

Luı́s Miguel de Castro Abrunhosa

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. André Ferreira Ferrão Couto e Vasconcelos
Prof. João Fernando Peixoto Ferreira

Examination Committee

Chairperson: Prof. Nuno João Neves Mamede
Supervisor: Prof. André Ferreira Ferrão Couto e Vasconcelos

Member of the Committee: Prof. Sérgio Luı́s Proença Duarte Guerreiro

November 2021





Acknowledgments

I would like to thank my parents for their friendship, encouragement and caring over all these years,

for always being there for me through thick and thin and without whom this project would not be possible.

I would also like to thank my aunts, uncles and cousins for their understanding and support throughout

all these years. I would like to thank to my closest friends for helping me in good and bad times in my

life.

I would also like to acknowledge my dissertation supervisors Prof. André Vasconcelos and Prof.

João Ferreira for their insight, support and sharing of knowledge that has made this Thesis possible.

Last I would like to thank Rafael Belchior for his guidance as well, and for his time spent helping me

to take out the best version of this work, along with my supervisors.

To each and every one of you – Thank you.





Abstract

Migration is an important topic of blockchain technology. Once a blockchain becomes obsolete, or

another one emerges with new and more appealing features, it is necessary to migrate all the data,

including their smart contracts. Smart contracts are a way of users to establish communication/transac-

tions between each other. We present Osprey, a smart contract migration tool between heterogeneous

blockchains.

Osprey is a flexible tool integrated as a Hyperledger Cactus plugin, that allows the translation of

Solidity smart contracts into Typescript Hyperledger Fabric chaincode. Osprey was tested on a curated

dataset of 13 Solidity smart contracts and takes on average 3.68 milliseconds to translate them. Also,

we conducted a survey where on average, Osprey ranked as a moderated structured and readable

translated tool.

Keywords

migration, translation, blockchain, hyperledger fabric, chaincode, smart contracts, ethereum, solidity.

iii





Resumo

A migração é um tópico importante na tecnologia blockchain. Uma vez que uma blockchain fica obso-

leta, ou outra emerge com novas funcionalidades, é necessário migrar toda a informação, incluı́ndo os

smart contracts. Smart contracts são o que permite os utilizadores estabelecerem transações entre si.

Apresentamos Osprey, uma ferramenta flexı́vel e integrada como um plugin para o Hyperledger Cac-

tus, que permite a migração de smart contracts escritos em Solidity para Hyperledger Fabric chaincodes

escritos em Typescript. No processo de tradução do dataset contendo 13 smart contracts, Osprey apre-

sentou em média 3,68 milissegundos, no processo de tradução do seu dataset com 13 smart contracts.

Mais ainda, numa survey realizada, em média, Osprey foi classificada como sendo uma ferramenta,

cuja tradução é razoavelmente estruturada e percetı́vel quanto à leitura do código.

Palavras Chave

migração, tradução, blockchain, hyperledger fabric, chaincode, smart contracts, ethereum, solidity.

v





Contents

1 Introduction 1

1.1 Work Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 An Introduction to Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Ethereum Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1.A Programming in Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1.B Ethereum Interaction: User - Smart Contract - Blockchain . . . . . . . . . 8

2.1.2 Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2.A Programming in Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Hyperledger Besu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3.A Hyperledger Besu vs Ethereum . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Cross-Blockchain Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Blockchain Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Cryptocurrency-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1.A Sidechain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1.B Notary Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1.C Hashed Time-Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1.D Hybrid solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Blockchain Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Blockchain Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Hyperledger Cactus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4.A Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 An Overview about Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Blockchain Migrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Related Work 21

3.1 Hyperservice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



3.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Solidity Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Osprey 27

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Smart Contract Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Test Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Evaluation 39

5.1 Osprey Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Setup and Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Translation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Readability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion 47

6.0.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Code of Project 55

viii



List of Figures

2.1 Execute-Order-Validate Approach, adapted from Androulaki’s paper [1] . . . . . . . . . . 9

4.1 Sequence diagram of the translation process integrated with Hyperledger Cactus . . . . . 30

4.2 Osprey flow overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Osprey as microservice in the cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Smart Contract Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Test Module architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Monitor job overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Job title of the users who answer the survey . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Level of understanding on Solidity and Chaincode programming . . . . . . . . . . . . . . 43

5.3 Years of experience with blockchain technology . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Number of answers regarding the evaluation of the understanding and the structure of the

translated code on a simple smart contract A.1 . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Number of answers regarding the evaluation of the understanding and the structure of the

translated code on a complex smart contract A.2 . . . . . . . . . . . . . . . . . . . . . . . 45

ix



x



List of Tables

4.1 Comparison between features to migrate Solidity smart contracts to Hyperledger Fabric

chaincode presented by a perfect migration tool and Osprey . . . . . . . . . . . . . . . . 34

5.1 Osprey Solidity smart contracts dataset translation time test, translating 10000 times the

entire dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

List of Algorithms

xi



xii



Listings

2.1 Hello World Solidity smart contract from smartbugs dataset [2] . . . . . . . . . . . . . . . 8

A.1 Simple Solidity Smart Contract used in the form . . . . . . . . . . . . . . . . . . . . . . . . 55

A.2 Simple Solidity Smart Contract used in the form . . . . . . . . . . . . . . . . . . . . . . . . 56

A.3 Greeter Solidity smart contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.4 AST generated from Listing A.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiii



xiv



1
Introduction

Contents

1.1 Work Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1



Blockchain technology has grown over the decade [3] and drawn the attention in several areas:

audits [4], health care [5], education [6], among others. It is a decentralized system, offering privacy,

security, transparency, and data immutability [7].

There are many blockchain platforms available, each with its own set of features. Having multi-

ple blockchains gives developers the freedom to choose the blockchain that fulfills their requirements.

However, companies should be careful in selecting the blockchain platform on which they develop their

applications. If later they find out that it does not meet the requirements of the application, it can be hard

to migrate into a different platform, and thus the company may lose monetary resources [8].

Blockchains over the years only focus on surpassing specific obstacles, e.g. more performance,

more security [8]. The interoperability scenario between each other is often overlooked [3]. Blockchain

interoperability is a novel and an important aspect to consider when choosing a blockchain to start de-

veloping. In summary, blockchain interoperability manages all communications between homogeneous

(blockchains built under the same virtual machine) and heterogeneous (blockchains built under different

virtual machines) blockchains. Thus, leading blockchain technology to raise its adoption and reducing

the risks.

Therefore, considering blockchains can become obsolete, it is needed to have some mechanisms to

migrate all the information from the obsolete blockchain to newer blockchains [8]. Using the blockchain

interoperability mechanism, we make use of Hyperledger Cactus, a blockchain connector (explained in

Section 2.3.4), that allows to establish a connection between the pair of blockchains in study, Ethereum

blockchain [9] and Hyperledger Fabric [7]. This connection is to achieve the migration of smart contracts

from Ethereum to Fabric, thus providing more flexibility and risk reduction in blockchain technology. Al-

though, data migration has been already conceptualized and is being implemented towards its execution

with Hyperledger Cactus open source project [10], all work done around smart contract migration is the-

oretical [11]. It is an important step towards the adoption of blockchain technology and the reduction of

risks mentioned early.

We propose a tool converts Solidity smart contracts into Hyperledger Fabric chaincode. It is based

on a parser [12] that extracts information from the Solidity smart contracts, and through a converter, it

converts that information into Hyperledger Fabric chaincode.

1.1 Work Objectives

The primary goal of this study is to develop a tool for migrating smart contracts between heterogeneous

blockchains. The objectives of developing this tool are to:

1. Formalize the problem of migrating smart contracts:

(a) Smart contract data extraction;

2



(b) Conversion of that data into the target blockchain smart contract language;

(c) Guarantee that the behavior in the target contract is equal to the source contract.

2. Propose a smart contract migration tool;

3. Implement in the proposed framework mechanisms that allow the migration of Solidity smart con-

tracts to Fabric chaincode;

We envisage this study to be widely applicable and help enterprises reduce the effort involved in

migrating their existing smart contracts to newer and more appealing blockchains. However, one re-

quirement to use our migration tool is that the smart contract to be migrated has to be written in the

Solidity program language. The blockchains that use this language to program smart contracts are, e.g.

Ethereum, Hyperledger Besu, and Quorum.

Our migration tool will try to replicate the behavior that the Solidity smart contract had in its blockchain.

1.2 Document Structure

In this document, we will first introduce an overview of blockchain technology and the way it runs. After

that, we focus on some specific blockchains, Ethereum and Hyperledger Fabric, the way they run, their

characteristics and, also some keywords and features their smart contracts have. Next we give an

overview about Hyperledger Besu and state some differences between Besu and Ethereum blockchain.

After that, we present Cross-Blockchain Communication, Blockchain Interoperability, where we show

the categories and protocols to establish communication between blockchains and, where we present

Hyperledger Cactus. Lastly, we present an overview of compilers and some patterns used in blockchain

migrators. It will help the reader understand the following chapters.

In Chapter 3, we show some related work about this topic of migrating smart contracts between

heterogeneous blockchains, some familiarities, and differences they have compared with our tool.

Following, we present Osprey, the tool we developed to migrate smart contracts between heteroge-

neous blockchains. We also explain its architecture, its modules, and some decisions made during the

implementation process.

In Chapter 5, we present the evaluation process of the tool and some conclusions about the transla-

tions process based on that evaluation. Moreover, we show some results obtained from a survey where

we tried to get some feedback on the translation process, its readability, and structure.

Concluding, we present the conclusions gotten from the development of the tool. The contributions to

blockchain technology, and the work that can be made in the future, not only improve the tool as a smart

contract blockchain migration but also allow the translation process to be more efficient and flexible.

3



2
Background

Contents

2.1 An Introduction to Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Cross-Blockchain Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Blockchain Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 An Overview about Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Blockchain Migrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4



In this section, we give an overview of blockchain technology. Blockchain technology can be inter-

preted as a distributed system where its network peers are trustless. A trustless environment in which

every decision-making is done by agreement between all peers, eradicating the centralized paradigm.

After that, we introduce Hyperledger Fabric [1], Ethereum [9], Hyperledger Besu [13] and Hyperledger

Cactus [10]. Thenceforth, the smart contracts and their migration between heterogeneous blockchain.

To further understand the concept of heterogeneous blockchain, we discuss blockchain interoperability

and how blockchains communicate with each other. Given the project’s context and the envisaged case

study, the focus is on permissioned blockchains. Furthermore, to complement our study, we will discuss

some aspects of blockchain migration [14].

2.1 An Introduction to Blockchain

A blockchain is a decentralized, distributed system composed of multiple machines. Each machine

contributes to computational and storage resources, known as nodes. Nodes are considered to be

untrusted. Thus, the decision power is divided between them. This untrusted behavior is part of a model

followed by most blockchains, the Byzantine Failure model [7]. This model describes that every node can

be faulty, including malicious nodes. A faulty node is a node that crashes or has an inconsistent state.

It will agree on some states differently than other nodes. To tackle this issue, blockchains implement a

consensus protocol. It declares that all nodes will agree on some state. This state is replicated in every

node. In other words, all nodes share and update this state, known as the global state or distributed

ledger. A distributed ledger is composed of multiple blocks chained chronologically, where each block

contains the blockchain’s global state and information about the next node in the chain.

A transaction, in blockchain technology, is the representation of an interaction between two parties.

This interaction can be a simple exchange of digital coins (cryptocurrency) or could be a simple file trans-

fer. Additionally, users create transactions for two purposes: (1) deploy functions and state, expressed

as code in a smart contract to be consumed by other users; (2) provide their data to trigger some service

to be used. Moreover, blockchain technology is immutable, because the information that changes the

state of the blockchain cannot be changed only appended, tamper-evident and tamper-resistant. After

all, to the information being stored in the distributed ledger, it should first be validated by each participant

of the network. The security and tamper evidence characteristics are guaranteed through cryptographic

signatures and using hash functions. Tamper-resistant, through the way the state is persisted (using

Merkle trees, where each node in the tree is a hash of its children). The cryptographic signature allows

proving the data provenance in a transaction. The hash function lets data be efficiently verified. Also, it

represents the output state from the smart contract’s execution.

A smart contract is a collection of functions deployed in the blockchain that use the user’s data to

5



perform a service. Also, in a smart contract, its functions must be deterministic, otherwise, it produces

a runtime error. Furthermore, the smart contract language can vary from blockchain to blockchain, e.g.

in Ethereum, the smart contracts are written in Solidity, as for Hyperledger Fabric the smart contracts

can be in TypeScript. As mentioned before, a transfer can be a simple exchange of cryptocurrencies.

However, not all blockchains have cryptocurrencies. The cryptocurrencies are more often used in per-

missionless blockchains than in permissioned blockchains (e.g. Bitcoin [15]).

Permissionless blockchains [3] are blockchains that do not require authorization or permission to

participate in the network, e.g. Ethereum. This kind of blockchain use incentives to maintain trust in the

system. Thus, tackling most of the nodes’ malicious behavior. Furthermore, these incentives motivate

nodes to produce blocks and contribute to the network. The production of blocks, e.g. in Bitcoin, follows

a consensus called Proof of Work [16], which is all the peers competing with each other to see which

one is faster enough to be the first one to solve very complex cryptographically puzzles to build a block.

Once a node solves that puzzle, it shares it with all peers so they can append the block to their ledger.

Contrary, a permissioned blockchain is a restricted one, where it needs authorization and permission to

be part of the network, e.g. Hyperledger Fabric. In this kind of blockchain, the production of blocks, or

the mining process, is not built on incentives but in a modular consensus based on endorsement policies

enforced by the network administrator [1].

Apart from permission or permissionless environment, blockchains in their runtime can be homoge-

neous and heterogeneous.

Homogeneous blockchains share compatibility in their runtime, meaning their contracts can run on

the same execution environment. Contrarily, heterogeneous blockchains do not share compatibility,

meaning contracts run on their blockchain’s runtime.

2.1.1 Ethereum Blockchain

Ethereum is a public blockchain that allows anyone to participate in it. The participants are called

nodes. Also, Ethereum built a virtual machine, Ethereum Virtual Machine (EVM), to operate in their

environment and create a programming language to program its smart contracts. These two features,

EVM and the creation of a programming language, allowed Ethereum to be more efficient and faster

than its competitor, Bitcoin blockchain. In Bitcoin, developers only use predefined functions, being more

limited in specifying the behavior of their smart contract. Thus, being vulnerable to attacks in case the

default implementation of the functions presents any vulnerabilities.

Ethereum smart contracts are written in Solidity. Solidity is a program language influenced by

JavaScript, Python, and C++ [17]. As mentioned, different from Bitcoin, in Solidity developers can make

condition to limit the terms of using their smart contracts, building a defense from attackers in the smart

contract. Also, Solidity is considered a Turing-complete programming language, meaning developers

6



can write their own rules and conditions in smart contracts.

2.1.1.A Programming in Ethereum

In Ethereum blockchain the most popular programming language to write smart contracts is Solidity.

Comparing with its competitor Bitcoin, Ethereum has improved by allowing developers to define their

owned rules and state in the smart contract. It means that before any smart contract is executed, some

conditions enforced by the blockchain itself must be met [9]. Smart contract execution is triggered by

users. To trigger a smart contract function, a user must have an account (a wallet). The wallet is where

it contains the keys (public and private keys) to sign transactions. Also, int the wallet is where it is stored

all the amount in ether (Ethereum cryptocurrency) of the user. The information about the user who

triggered the transaction is obtained, through the keyword msg. This keyword shows the information

about the user who triggered the smart contract and, it has, among others, the following properties:

• sender - the identity of the user triggered the smart contract transaction.

• value - the amount of money the user wants to send in the transaction.

Furthermore, the wallets in Ethereum have an address associated. Every transaction is triggered,

by a user who has a wallet address associated. To this address, there is a function that is essential

to transacting money between users. This function is the send function. The send function takes the

wallet address where the money will be transferred and, the function’s parameter is the amount to be

deposit. Although in Listing 2.1 we show a smart contract in Solidity which is using the function transfer,

Solidity documentation [17] specifically mentions that this function must be used with caution, due to the

vulnerabilities that can be exploited by attackers through that function.

Regarding the store of data, Solidity offers three types of space to store data [17]: stack, memory,

and storage. Storage is a key-value store, where data persists between function calls and transactions.

The memory area is similar to the storage area. However, instead of data being persisted between

function calls and transactions, the contract gets new instances for every function call. Last, the stack is

where all computational operations are stored.

At last, there are some other keywords to be aware of when implementing a smart contract in Solidity.

The first one is the payable keyword this keyword signals the compiler, that in that specific function that is

being triggered, there is some fee to be paid by the user who triggered. The second one is the modifier

keyword, which is the conditions that developers enforce to allow the function to be executed. If any

of the conditions the modifiers are enforced fail, the smart contract’s function is not executed and the

transaction fails.

In Listing 2.1 shows a simple smart contract written in Solidity, taken from the smartbugs dataset

[18,19], that exposes only one function to send money between users.

7



Listing 2.1: Hello World Solidity smart contract from smartbugs dataset [2]

1 pragma solidity >=0.4.22 <0.8.0;

2 pragma solidity ˆ0.4.24;

3

4 contract MyContract {

5 address owner;

6 function MyContract() public {

7 owner = msg.sender;

8 }

9 function sendTo(address receiver, uint amount) public {

10 // <yes> <report> ACCESS CONTROL

11 require(tx.origin == owner);

12 receiver.transfer(amount);

13 }

14 }

2.1.1.B Ethereum Interaction: User - Smart Contract - Blockchain

Since the Ethereum blockchain is also a decentralized system, it has a consensus protocol. The con-

sensus protocol used by Ethereum is the Proof of Work (PoW). To prevent attacks, such as Denial of

Service (DoS), Ethereum uses the concept of gas [9]. Gas is an amount of digital coin a user must pay

according to the number of operations, the smart contract that he uses to perform. Ethereum’s a digital

currency, or cryptocurrency is called Ether. Following this concept, trying to perform such an attack as

DoS, comes with huge expenses. Thus, with this approach, Ethereum guarantees the correct execution

of all the intervenients in the network. Users pay Ether to miners, so they validate, build, and store the

data transferred in the blockchain. A Miner is a node in the network whose job is to validate the network

itself. Thus, they receive, propagate, verify, and execute transactions crossing across the blockchain.

When the execution finishes, they group transactions into blocks and update the state of the blockchain.

2.1.2 Hyperledger Fabric

Hyperledger Fabric is a distributed operating system for permissioned blockchain able to run distributed

applications written in Java, Go and NodeJs (TypeScript). It traces the execution history, securely, in

a replicated ledger and has no cryptocurrencies associated. Unlike most public blockchains which use

order-execute aproach, Fabric introduces a new approach, called order-execute-validate. In Fabric a

distributed application is composed by two parts:

• A smart contract or a chaincode, where the application’s logic is implemented. It is executed

8



in the execution phase. In Fabric, chaincodes are the core of distributed applications. System

chaincodes are special chaincodes responsible to manage the blockchain.

• An endorsement policy used in validation phase. Endorsement policies serve to validate a trans-

action and are parameterized by the chaincode. They choose a set of nodes to validate the trans-

actions, called endorsers. Also, only administrators can change them.

Figure 2.1: Execute-Order-Validate Approach, adapted from Androulaki’s paper [1]

In Figure 2.1, is shown a sequence flow of the execute-order-validate approach. Endorsement poli-

cies specify which peers must execute and store the output of each transaction sent by clients. This

process is the endorsement phase. After that comes the ordering phase. It uses a consensus protocol

to order the endorsed transactions grouped in blocks. Then, it broadcasts the blocks to all peers. This

phase may use the gossip protocol. Fabric orders the transaction’s output fused with state dependen-

cies processed in execution phase. Then, all peers validate the endorsed transactions and in the same

order. The validation phase is deterministic. With this approach, Fabric introduces a hybrid replication

in the Byzantine model, which puts together the passive and active replications.

A blockchain has a set of peers that form a network. These peers must have the authorization to par-

ticipate because Fabric is a permissioned blockchain and an identity provided by an MSP (Membership

Service Provider). Each peer can have at least one of the following roles in the network:

9



• Clients present transactions for execution, help in the execution phase, and broadcast those trans-

actions for the ordering phase.

• Peers execute and validate transactions. They maintain a blockchain ledger, a data structure in the

form of an hash chain, where all transactions and state are stored. The state is the latest ledger

state. Only the endorsers or endorsing peers, a subset of all peers specified by a policy of the

chaincode where the transaction belongs, execute the transactions in the execution phase.

• Ordering Service Nodes (OSN) or the orderers are the peers working together to form the ordering

service. This service total orders all transactions. Each transaction contains state updates and

dependencies computed in the execution phase. They also have the cryptographic signatures of

the endorsers. Orderers do not know the state of the application and do not integrate the execution

phase nor the validation phase.

Execution Phase, clients send transaction proposals signed to one or multiple endorsers. Each

chaincode specify, through the endorserment policy, which peers may execute those proposals. When

arrived, the endorsers simulate them, on a Docker, in the specified chaincode and apart from the main

process. The result of the simulations does not persist in the ledger state. Furthermore, the Peers

Transaction Manager (PTM), a versioned key-value store, maintain the blockchain state. The state

created by a particular chaincode cannot be accessed by another chaincode unless it has permissions

to invoke it in the same channel. It is a way of a specific chaincode to read another’s chaincode state.

The results of the simulation are a writeset and a readset. The writeset represents the state updates, the

simulation outputs. The readset represents the proposal simulation version dependencies. This result

is then signed, cryptographically, by the endorsers and sent to the client as a proposal response or

endorsement. After the client receives all the endorsements specified by the chaincode’s endorsement

policy, he verifies that all the responses are equal. After that, he produces a transaction and sends it to

the ordering service.

Ordering Phase happens after the client gets the number of transaction proposals established by

the policy. It creates a transaction and sends it to the ordering service, called the ordering phase. This

phase takes the transactions submitted and orders them atomically to ensure the consensus protocol in

each transaction. Furthermore, the ordering service puts a set of transactions into blocks and outputs

an hash-chain of those blocks. This way, it is easier and efficient to validate the blocks later.

This service offers two operations, broadcast and deliver. The first operation enables users to send

a specific transaction to the network. As for the other operation, allow peers to receive transactions

from the network. Also, the ordering service guarantees that all blocks received per channel are totally

ordered. For each channel, this ordering service ensures the following safety properties:

• Agreement : ensures that non-faulty peers agreed on the same output.

10



• Hash-chain integrity : ensures if two blocks are delivered by correct nodes, one with a number s

and another with a number s+1, then both blocks have the same hash-chain.

• No skipping: if a non-faulty peer delivers a block with some number s ¿ 0, then all blocks with the

number s’ ¡ s, were sent.

• No creation: if non-faulty peer delivers some block with number s, then all transactions of that block

are already broadcasted.

For liveness, this service offers at least this “eventual” property:

• Validity: if a non-faulty client broadcasts a transaction, then eventually all non-faulty peers will

deliver that transaction with some sequence number.

Validation Phase consists of receiving blocks from the ordering service or through the gossip proto-

col. When arrived, this phase divides into three steps:

1. Endorsement policy evaluation executed in parallel for all transactions in the block. This evaluation

is also called validation system chaincode (VSCC). It is responsible for validating if the endorse-

ments follow the endorsement policies specified by each chaincode.

2. Read-Write conflict check is done to all transactions in the block sequentially to ensure the local

state of the endorser (before sending the response proposal) is still the same as the ones received.

It uses the version of the keys in the readset to compare with those maintained in the endorser’s

local state.

3. Ledger update phase is when all the valid transactions in the block are committed to the ledger

and so, update the blockchain state.

2.1.2.A Programming in Hyperledger Fabric

Hyperledger Fabric chaincodes can be developed, as mentioned before, with four programming lan-

guages: Java, Typescript, Go and Javascript. Similar to Solidity, in Typescript, Hyperledger Fabric

framework has some specific objects that makes the network know the entry point of each chaincode.

To identify a chaincode, the main class where all the functions to be exposed to the network are, must

extend a class called Contract. Also, every function, to be exposed to the network, of the class that

extends the Contract, must always have as its first parameter, a Context. The Context object is another

object of the Fabric framework injected automatically in the function when they are triggered by users.

It contains all the information about the user who triggered the chaincode. Bridging to Solidity, is similar

to the object msg.

11



Different from Ethereum blockchain, where the global state is managed and organized by the frame-

work itself, in Hyperledger Fabric there is no notion of global state. The global state is a key-value pair

storage. Also, is in the chaincode where the developers decide what is going to be stored as state and

how (e.g. what will be the key value and, which values will be associated).

In Listing 2.2, it is the Hello World Solidity smart contract translated to Javascript using a tool called

solidity2chaincode [20].

Listing 2.2: Hello World chaincode traduzido para Javascript usando a ferramenta solidity2chaincode [20]

15 const ClientIdentity = require('fabric-shim').ClientIdentity;

16 class MyContract {

17 async owner(stub, args, thisClass) {

18 let tmp = await stub.getState('owner');

19 return Buffer.from(tmp.toString());

20 }

21 async Constructor(stub, args, thisClass) {

22 let owner = new ClientIdentity(stub).getID();

23 await stub.putState('owner', Buffer.from(owner.toString()));

24 }

25 async sendTo(stub, msg, receiver, amount) {

26 let txOrigin = new ClientIdentity(stub).getID();

27 if(txOrigin != msg.sender){

28 throw new Error("Only owner can call this.");

29 }

30 if (msg.value > amount) {

31 let args = ['send', msg.sender, receiver, amount.toString()];

32 await stub.invokeChaincode('balance', args);

33 msg.value = msg.value - amount;

34 } else {

35 throw new Error('Exception during transfer');

36 }

37 }

38 }

Comparing Listing 2.2 with 2.1, we can see some similarities. To users trigger transactions in the

blockchain, the smart contract must expose functions for users to use.

In terms of differences, Solidity is a typified programming language, while Javascript is a dynamic

language. It means, in Solidity, to declare a variable, the type must be explicit, or when to assign a value

12



to a variable, both must have the same type, or a compile error is thrown. Javascript, on the other hand,

there is no notion of variable type. Thus a variable that contains a number value can change to a string

value, no errors are thrown.

2.1.3 Hyperledger Besu

Hyperledger Besu is an Ethereum client licensed under Apache 2.0 [13]. It is an open-source project

written in Java and can be executed in Ethereum public or private network. Also, it can be run in

tests environments such as Rinkeby, Ropsten or Görli. Besides Hyperledger Besu be an Ethereum

client, it supports some Ethereum functionalities such as Ether mining, Smart contract development,

and Decentralized applications development. Hyperledger Besu implements Ethash Proof of Work and

IBFT 2.0 and Clique Proof of Authority as its consensus protocol.

Rinkeby and private networks use Clique Proof of Authority. It is composed of approved accounts

(signers) whose role is to validate transactions and validate blocks. Additionally, it is a set of Signers

that produce the blocks. They do it in turns. For instance, if Signer D produces block A, the next block B

will be produced by Signer E, and so on. Furthermore, Signers can vote to add or remove other or new

Signers to the network.

Private networks use IBFT 2.0 Proof of Authority. It has the same attributes as Clique Proof of

Authority. However, in Clique the approved accounts are denominated as Signers. In IBFT 2.0 they

are denominated as validators. The approved accounts in both Proofs of Authority algorithms have the

same roles. However, in IBFT 2.0 the blocks must have the signature of at least 66% of the validators to

produce.

2.1.3.A Hyperledger Besu vs Ethereum

As mentioned, Hyperledger Besu is an Ethereum client project. It exposes command line functions

and a JSON-RPC API that enables users to run, maintain, debug and monitor nodes in the Ethereum

network.

Hyperledger Besu allows users to mine ether, develop smart contracts and decentralized applica-

tions. Also, Besu supports the deployment of smart contracts. However, contrarily to Ethereum, Besu

does not support key management.

2.2 Cross-Blockchain Communication

Cross-Blockchain Communication is the process of a source blockchain establishing communication

with a target blockchain to exchange transactions [3]. Each transaction exchanged is instantiated in

13



the source blockchain and then executed in the target blockchain. Also, this process of establishing a

communication between blockchains uses two communication concepts, the cross-chain communication

protocol (CCCP) and cross-blockchain communication protocol (CBCP).

Cross-Blockchain Communication is important to blockchain migration because it leverages all com-

munication aspects between both blockchains (the source and the target). The CCCP and CBCP

protocols are useful in terms of accessing a specific source blockchain to obtain information, such

as blockchain data, smart contracts. This information is processed and then, deployed on the target

blockchain. All communication details such as compatibility, synchronization of the transaction are lever-

aged by those protocols, resulting in successful blockchain interoperability.

2.3 Blockchain Interoperability

Blockchain Interoperability is a technique that allows homogeneous and heterogenous blockchains to

coexist. This coexistence means the range of blockchains involved can communicate or even com-

plement each other, not only for migration purposes (e.g. when the source becomes obsolete) but for

business purposes (e.g. running the same kind of business in a different blockchain).

Blockchain interoperability is crucial for the migration of data or smart contracts because per se

blockchain interoperability is connected with the communication establish between blockchains, being

compatible or not in its core. If we want to simply establish a connection between Hyperledger Fabric

and Ethereum, the protocols used and techniques are all compiled in the essence of interoperability

between blockchains.

Blockchain interoperability can be divided into three categories: Cryptocurrency-based approaches,

Blockchain Connectors, Blockchain Engines [14]. Our study will be focused mostly on Blockchain Con-

nectors, specifically Blockchain Migration.

2.3.1 Cryptocurrency-Based Approaches

Cryptocurrency-Based Approaches is a strategy that can be divided into four solutions. These solutions

approach the interoperability between chains and the way they cooperate, using mostly cryptocurren-

cies. The four solutions are the sidechain (or relay chain) approach, notary schemes, timed hash-locks,

and hybrid solutions.

2.3.1.A Sidechain

Sidechain is a system composed of two or more blockchains. This blockchains can have three pos-

sible roles, be a mainchain, sidechain or both (mainchain and sidechain) ( [21–25]). Mainchains are

14



blockchains used, mainly as the primary storage, but also as the primary system. Sidechains are

blockchains used, mainly as an extension of the mainchain, primarily for storage purposes. A use

case for this approach is, the blockchain has a large number of users ( i.e. in Fabric), and does not have

enough storage resources to record all the users’ data.

Sidechains are mostly used for transferring assets. This transferring process uses the two-way peg

mechanism. This mechanism locks the number of assets transferred in the source blockchain and

registers it in the target blockchain.

In the context of migration, this approach can be used to leverage the incompatibility between newly

developed blockchains with others that already exist. Let Blockchain A be a newly developed blockchain

technology that was based on the Ethereum blockchain but without the need of having cryptocurrencies

to run the system. Moreover, this blockchain A brought new unique features that revolutionize blockchain

technology. Although the compatibility with Ethereum blockchain is high, compared with heterogeneous

blockchains, there is no compatibility. In this case, a sidechain can be used to make the migration

process, being the Ethereum blockchain a b́ypass” of information between blockchains.

2.3.1.B Notary Schemes

Notary Schemes are third-parties that monitor all the transactions triggered in the various blockchains

( [26,27]). Those third parties can be centralized or decentralized. Additionally, Notary schemes perform

operations over the blockchain to validate the transactions (i.e. cryptocurrency exchange), rather than

being an extension of the blockchain like the sidechain solution. This approach can be used for migration

to validate the behavior of the data that is being migrated to the target blockchain.

2.3.1.C Hashed Time-Locks

Hashed Time-Locks is a decentralized way to make exchanges between blockchains [28]. It uses hashes

and timelocks to ensure atomicity in all operations. The hash proves the validity of transactions. The

timelocks ensure that the cryptographic proof is delivered in a specific interval of time. This technique

enables blockchains to perform atomic swaps in transactions. An Atomic swap allows users to exchange

cryptocurrencies between blockchains. In terms of migration purposes, this approach can be used to

protect the data being migrated to the target blockchain, so a malicious node does not perform an attack

to tamper with the information that is being migrated.

2.3.1.D Hybrid solutions

Hybrid solutions are a concept of interoperability that takes care of the users’ private key distribution

[29–32]. Their incompatibility in the target blockchain makes them generate new key pairs. Additionally,

15



the generation of key pairs makes blockchains associate the old key pairs with the new ones. Moreover,

hybrid solutions decentralize the management of assets between several nodes, allowing developers to

implement decentralized notary schemes and two-way peg mechanisms. This approach can be used to

link wallets between blockchains in the migration process. This link will allow the transfer of assets to be

done successfully because the old key pairs of the source blockchain are pointed to the newly generated

in the target blockchain.

2.3.2 Blockchain Engines

Blockchain Engines focus mostly on heterogeneous blockchains. They are frameworks that reuse

their components (network, consensus, contract, incentive, and data components) to customize the

blockchain. Blockchain Engines allow developers to build applications (or decentralized applications)

and specify the transferring of assets and information between blockchains without specifying the blockchain.

Furthermore, Blockchain Engines assure blockchain instances beforehand, misconcerning developers

of their creation.

Blockchain Engines in terms of migration is an abstraction of the whole process of migrating infor-

mation between blockchains. It allows developers to write their smart contracts in one specific program-

ming language and, when deploying that smart contract, it will make the code compilation of the target

blockchain where that smart contract will run.

2.3.3 Blockchain Connectors

Blockchain Connectors are a set of implementation concepts that allow interoperability between blockchains

at a low-level. This solution can be divided into 4 sub-categories, Trusted Relays, Blockchain Agnostic

Protocol, Blockchain of Blockchains and Blockchain Migrators.

Trusted Relays are a routing table third party that behaves like a proxy. It knows all the addresses

in the network to redirect the transactions. Blockchian Agnostic Protocol, is a solution that enables

communications between heterogeneous and homogeneous blockchains. Blockchain of Blockchains is

a solution that maintains blocks that contain all the information about the blockchains in the system.

Blockchain Migrators will be addressed in Section 2.5.

Blockchain Connectors are a useful solution in the migration process because it leverages all the

dependencies that a specific migration tool must-have. These dependencies materialize in the imple-

mentation regarding the validations [33] and connections to the blockchains. Blockchain Connectors this

way can be a generic module that can be used, despite the blockchain we want to migrate to.

16



2.3.4 Hyperledger Cactus

Hyperledger Cactus is a Blockchain Connector, more specific, a Trusted Relay implementation, dis-

cussed in Section 2.3.3. This connector’s job is to guarantee interoperability [14] between cross-chain

transactions. Both concepts, interoperability and cross-chain transactions, will be explain in Sections 2.3

and 2.2, respectively.

Hyperledger Cactus is composed of nodes. Each node has a connector, a validator, and a set of

plugins manage by the system administrator [34]. Also, Cactus nodes are a plugin-based architecture

that gives great modularity. This modularity is because the administrator can add or remove the plugins

according to their interest. Additionally, it is an API server that provides these plugins to the Cactus

node. The connector is responsible for establishing communications with the blockchains, both source,

and target. The validator takes the transactions and checks their validity.

Regarding the Cactus compatibility, it is compatible with most hyperledger technologies, and it is

under developement the integration of Cactus with public blockchains.

2.3.4.A Architecture

Hyperledger Cactus is a plugin-based architecture characterized by being flexible in terms of extension

to new features. This flexibility is mostly achieved due to the way it was designed. Its design is based on

an interface based programming, where it leverages any kind of implementation dependency. In order to

implement a new feature, a dependency to the cactus plugin core or to other plugin in which we desired

to consume, must be added to the file of dependencies (package.json). All plugins are located in the

packages directory. From the project root directory is where we add our tool as a cactus plugin. To make

our tool become a plugin, we need to insert also the dependency to the package.json file that is located

in the project root directory.

Following the design and structure of the Hyperledger Cactus creator, each plugin must be structure

with a source file. The source folder is where all the project implementation and testing is located.

Going deeper in the source directory, we have two main directories, a main directory and a test

directory. The main directory is where all the plugin logic is implemented and where we expose the

functions to be used not only to the front-end if we use as a web application, but also to be consumed

by other plugins that may want to use. The second folder is the test directory. In this directory is where

all plugin tests are made. It is here where developers test not only the behavior of each function to be

exposed to the outside world, but also in integration with other dependencies that the plugin might have.

17



2.4 An Overview about Compiler

Compilers primarily analyze the program code and output a newly generated code that a determined

machine or program can interpret and execute [35]. That analysis can be divided into three phases:

Parsing, Transformation, and Code Generation. To better understand each phase of the compiler we

will break down an example of having a Ethereum smart contract written in Solidity and turn it into a

Hyperledger Fabric Typescript chaincode (Listing A.3).

The Parsing phase is responsible to analyse the smart contract file and, break down into two phases.

The first phase is the Lexical Analysis and the latter one is the Syntactic Analysis. Lexical Analysis is

the process of extracting numbers, labels, punctuation, operators, among others. Syntactic Analysis is

the process of taking all the information taken from the Lexical phase and build a representation of that

data. That representation is called Abstract Syntax Tree or AST. An AST is a representation of the code

that is better understood, in terms of information. Listing A.4 shows us an example of the AST extracted

from the code of Listing A.3.

The Transformation phase is where the compiler will make some changes over the generated AST.

An AST is composed of nodes. Each node tells information of the data extracted from the smart contract

file. In this phase, the changes are made in each node, or it can be a newly generated Abstract Syntax

Tree. In Listing A.4, the visibility and constructor properties can be a modification on the AST node, so

the node has additional information that helps the next phase of the compiler.

The Code Generation is the final phase of a compiler. In this phase compilers can generate new

information that may overlap the information added in the transformation phase, others can just stringify

and return the generated AST without making any changes.

2.5 Blockchain Migrators

Blockchain Migrators are the process of users to migrate their blockchain information (i.e. storage, state,

smart contracts) to a different blockchain [3,14]. Although this is a big step in blockchain interoperability,

some proposed solutions aim to turn this concept into reality. For instance, in smart contracts’ migration,

there are patterns [8] that can be used to build a smart contract migration tool. This patterns are Virtual

Machine Emulation Pattern and Smart Contract Translation Pattern.

Smart Contract Migration Pattern are a set of steps, designed to allow smart contracts to run on

different kinds of blockchains, whether homogeneous or heterogeneous.

Virtual Machine Emulation Pattern allows a company to migrate the state of a VM as well as the

state of smart contracts between blockchains. If their execution environment is the same, then there is

no need to perform a copy of the VM from the source blockchain and install it on the target blockchain

(in practice, the target blockchain uses a third-party virtual machine to translate the instruction set).

18



Otherwise, it needs to make a copy and install it. After the installation process of the VM’s copy, the

token burning pattern is used in the smart contract to be migrated, to destroy it in the source blockchain.

So it can’t be used anymore. Moreover, to run the smart contract in the target blockchain three steps

must happen. First, the deployment of the smart contract in the target blockchain. When deploying the

smart contract, it is necessary to set the state of the smart contract, using the state initialization pattern.

However, the smart contract’ code may not be in the snapshot, so the same pattern is used. After that,

the smart contract must be redeployed in the target blockchain. Second, update the smart contract’

identifier, since the smart contracts’ address may be different across blockchain instances. Third add a

proof of existence entry (PoE) of all the ID’s updates, made in the database.

Smart Contract Translation Pattern allows, to “automatically” compile a smart contract, with a specific

programming language, into another smart contract, with a different programming language, and run in

a distinct blockchain. This is possible because for the translation to be made, first, it needs to provide

the smart contract’s source code to be translated. After the translator got all the information needed, it

converts into the new smart contract. After that, it runs some tests to compare the behavior, correctness,

safety, and binary of the newly created smart contract. This testing phase is crucial, to generate the

same output state from the one generated in the source blockchain. After the testing phase of the new

smart contract, the following steps are the same as the previously mentioned pattern, regarding the

deployment of the smart contract, setting the state, update the ID database, and adding the Proof of

Existence entry of the updated IDs.

19



20



3
Related Work

Contents

3.1 Hyperservice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Solidity Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

21



22



In this section, we discuss solutions relating to the migration of smart contracts between heteroge-

neous blockchains. First, we present Hyperservice [11], a framework able to abstract which blockchains

are in use. Additionally, the framework has a built-in Domain Specific language able to abstract the smart

contract program language of each blockchain in it. Next, we discuss a tool [12] able to extract relevant

information in smart contracts, specifically Solidity smart contracts in Ethereum blockchain. Last, we

discuss two solutions relating to smart contract migration patterns [8] and the limitations and strengths

of using them.

3.1 Hyperservice

Hyperservice is a framework designed to take another step further in blockchain interoperability. It

is a platform that helps developers build and execute smart contracts able to run in heterogeneous

blockchains [11].

3.1.1 Architecture

Hyperservice is composed of four components: (i) dApp Clients which are gateways consuming the

services provided by the framework. (ii) Verifiable Execution Systems (VESes) are the compilers in the

platform that compile decentralized applications into blockchain-executable transactions, Hyperservice

executables. (iii) Network Status Blockchain (NSB) which is a blockchain of blockchains providing an

overview over dApp’s execution status. (iv) Insurance Smart Contract (ISC) which arbitrate the correct-

ness and violation of dApp’s execution in a trust-free manner. Also, ISCs have mechanisms to prevent

misbehavior in transactions.

Unified State Model (USM) [11] is, according to the authors, “a blockchain-neutral and extensible

model for describing state transitions across different blockchains, which in essential defines cross-chain

dApps.”. It is accomplished through a virtualization layer where unifies the heterogeneous blockchains

by including (i) blockchains, regarding its implementations, where it abstracts them through an object

containing public state variables and functions. (ii) Developers program dApps only have to specify the

operations and the order of them on the objects.

A USM has a set of entities, operations possible to perform over the entities, and the constraints that

operations define. Furthermore, there are two types of entities: accounts and contracts. The account is

what characterizes a person. It contains its unique address and its account balance. The contract is all

the operations and constraints defined (public state variables, callable interfaces, functions, and other

attributes) to be executed by clients. Moreover, all entities and operations belong to a local machine,

regarding the source blockchain of the smart contract.

23



Despite operations are local to a machine, when compiled, they eventually result in many transactions

on several blockchains. Thus, the synchronization of the consensus processes is not guaranteed. To

guarantee this “synchronization” USM establishes some constraints when defining the dependency of

operations. There are two kinds of dependencies: preconditions and deadlines. Preconditions are

all dependencies satisfied when all the preconditioning operations finish. Thus, with preconditions,

developers can order their operations into direct acyclic graphs (DAGs). In these DAGs, the state of

the parents of the nodes is persistent. Its children have access to it. Deadlines are all preconditioning

operations bounded to a time interval after the dependencies are satisfied. Moreover, with deadlines,

applications don’t get stuck and always move forward.

Hyperservice Programming Language (HSL) allows developers to build smart contracts regardless of

the cryptocurrency used. Thus, developers can specify through a “universal call-option”, which coin they

accept as payment in the smart contract. Additionally, the key aspect of the variety of payment options

given to clients is the HSL compiler. HSL compiler is the core of the entire programming framework.

Hyperservice Language Compiler performs two tasks. First, guarantee the security and correctness

checks on HSL programs. HSL has a multi-language front-end, based on the source code of the smart

contract. It extracts the information of the state variables and functions, then converts it into a USM

object. This object passes through serious syntax and correctness checks. Second, compile programs

into blockchain-executable transactions. Once the verifications are validated, the compiler generates

an executable program. This executable is structured in a Transaction Dependency Graph, containing

the information about the set of blockchain-executable transactions, metadata of each transaction, the

preconditions, and deadlines constraints of the HSL program.

3.1.2 Discussion

Hyperservice solution envisages solving the heterogeneity of blockchains. It abstracts the blockchain

layer by having a virtualization layer defining which blockchain the Unified State Model will compile. Fur-

thermore, it abstracts the blockchain smart contract language by (i) having in the front-end an interpreter

translating the smart contract input. (ii) By developing an hyperservice language and compiler to man-

age, based on the smart contract, the operations executed on each blockchain. Although Hyperservice

is a fined-grain concept towards the interoperability between blockchains and suits all work objectives of

this study (1, 2 and 3), it has one limitation. It is a theoretical solution at the time of writing this thesis.

Moreover, Hyperservice is considered as a framework where developers develop under the Hyper-

service programming language, and the instructions in the programming file will trigger transaction in

the various blockchains that are specified in the code.

24



3.2 Solidity Parser

Solidity Parser is an open-source translator tool, developed to translate smart contracts in Solidity to an

Abstract Syntax Tree (AST ) in Javascript. The only option to run in another blockchain smart contracts

in Solidity is through integrating the Ethereum Virtual Machine (EVM) or transcribe the smart contract

in Solidity to the smart contract language of the target blockchain. Nevertheless, this tool [12], was

developed with the goal of translating smart contracts in Solidity and allow developers to transcribe

them into chaincode (Fabric smart contract). Also, this parser can “successfully parse up to 75% of the

Solidity constructions (types, functions, inheritance, events)”.

3.2.1 Architecture

Translating Ethereum smart contracts into Hyperledger Fabric smart contracts (chaincode) involves two

steps: (1) The conceptual mapping of Ethereum smart contracts to construct, as much as possible to

Hyperledger Fabric smart contracts, (2) The development of a source-to-source compiler to maintain the

semantic equivalence.

Mapping Ethereum to a Fabric-based Network. A typical Ethereum node maintains its state globally.

To be equivalent, Hyperledger Fabric has its nodes connected to a single channel. They base the tool

on that assumption.

However, contracts in Ethereum do not have a notion of version. When instantiating a contract, the

actor must specify the name of the chaincode. This value (the name of the chaincode) is then used to

create a contract address and initialize it with a value of zero in the balance of the chaincode. If the

user’s certificate and contract’s address are strings, then the Ether balance can be stored in it. This is

done to keep track of the balance on the accounts and contracts on both blockchains. Moreover, the

chaincode where the accounts and the balance of the contracts are stored, in Fabric, is called balance.

This chaincode provides functions to send and transfer money (ether) and to query the balance of a

specific account or contract address. In order, to perform these operations, the X.509 certificate and the

name of the contract are checked globally.

To translate smart contracts in Solidity into chaincode, the tool uses two steps. First is the generation

of an Abstract Syntax Tree (AST) in JSON format. Second, based on the AST, it performs two iterations

over the tree. One to extract, and the other to translate the AST into JavaScript code. The first iteration

is to take all the state variables, functions, events, structs, enums, and others. The second iteration is to

translate the statements.

Functions, Functions Modifiers, State Variables. Sol2js does not make any verification regarding

the semantics and syntax of smart contracts in Solidity. Thus, each function invocation and modifica-

tion of state variables are handled based on their visibility (e.g. private functions of a class cannot be

25



accessed in the derived classes). Visibility can be public, external, private, or internal. If everything

behaves as expected, then the smart contract is translated without the need of modifying the code.

The tool generates a target function containing a copy of the function modifier along with the function

modified. Thus, for state variables with public visibility, it generates a getter function that returns the

current value of the state variable. Additionally, in the Hyperledger Fabric, to store and retrieve state

variables, Sol2js uses getState() and putState() functions of ChaincodeStubInterface. In the context of

the translated code, its size has an impact by the number of state variables contained in the Solidity

smart contract.

3.2.2 Discussion

Solidity Parser envisages on converting a smart contract in Solidity to a smart contract in Fabric(1

and 2). It tries to extract all relevant information from the smart contract in Solidity (e.g. functions,

variables, etc), and adhoc transcribe it to chaincode. Besides the successful translations are around

75% the tool does not handle some features used in smart contracts in Solidity. Sol2js does not support

multiple inheritance, function overloading, function types, fixed-point number types, and libraries and

type overriding. Also, this tool is not flexible, which means that is a strictly end-to-end translation between

Solidity and Javascript, whereas our solution is more flexible and allows other translations rather than

Solidity to Typescript.

Although our datasets are different, based on the average that the authors presented on the paper

[12] (176.72 ms), our solution presented around 3.68 ms. These results show that even our solution

does not support some features that Sol2Js does, it still is more time performance than Sol2Js.

26



4
Osprey

Contents

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Smart Contract Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Test Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

27



28



4.1 Overview

To explore the possibility of migrating smart contracts between heterogeneous blockchains, we design

Osprey [36]. We decided to name the migration tool Osprey, because the name itself is the name of

a migratory bird species and, our goal is to migrate smart contracts from one blockchain to another.

Osprey is a tool that can translate smart contracts written in Solidity to chaincode written in Typescript.

Also, with the integration of Hyperledger Cactus, a blockchain connector, Osprey can provide a much

reliable translation. This happens because Cactus provides us a way of instantiating and destroying

ledgers, to simulate a running blockchain. These ledgers complement our tool, giving it the ability to

prove the behavior of the original smart contract, and the translated chaincode. This proof is made,

by running the smart contract test files and the translated ones. Thus comparing the result of both

executions.

Osprey has a smart contract module and a test module. The smart contract module is responsible

to process the input smart contract, pass to the Abstract Syntax Tree and then iterate over the tree to

translate it into Typescript chaincode. The test module is responsible to translate the input Javascript

unit tests used to test the Solidity smart contracts into Typescript test files used to test in Hyperledger

Fabric chaincodes. The way this module works is similar to the smart contract module. It uses an

Abstract Syntax Tree to make a representation of the unit test file content so it can be interpreted and

translated to the structure used in Typescript file to test Hyperledger Fabric chaincodes.

4.2 Requirements

Although the tool does not address all use cases, meaning it does not perform all kinds of Solidity smart

contract translations, our goal is to address simple Solidity smart contracts that users want to translate

to Typescript Hyperledger Fabric chaincode.

Osprey was designed with two goals in mind. Translate smart contracts written in Solidity to Type-

script chaincode, and provide flexibility. Flexibility means developers can use our tool to translate smart

contracts to other programming languages than Typescript, without having to handle the implementation

of the intermediate language (Abstract Syntax Tree).

4.3 Tool

Hyperlegder Cactus, a blockchain connector, and a plugin-based framework, allow not only to connect

with other permissioned blockchains such as Hyperledger Fabric but with public blockchains too, such

as Ethereum blockchain. This connection is achieved through a Hyperledger project, called Hyperledger

29



Besu. Besu is a Ethereum client, that allows performing operations such as get smart contracts, among

other operations, in Ethereum. This operation is a huge help to our tool because it automatically obtains

smart contracts from Ethereum and inputs them in Osprey. Osprey will be a plugin integrated in Cactus.

After that, the translation process offered by our tool will run, and once it is done, both the input and

output will be tested in instances of their blockchains. Once the validations are done, then Cactus

provide mechanisms to deploy the translated chaincode in Hyperledger Fabric.

Figure 4.1: Sequence diagram of the translation process integrated with Hyperledger Cactus

As Figure 4.1 shows, the first part of the process of migrating smart contracts between heteroge-

neous blockchains is the retrieving of smart contracts. As explained, this part is done by Cactus through

establishing a connection with Hyperledger Besu. After that, those smart contracts are inputted to Os-

prey and, as you can see in Figure 4.2, the translation of the smart contracts happens. After that, the

translated files and the original smart contract files are executed in their ledgers, provided by Cactus,

to test them. After that, the results of each ledger execution are compared. Once the validation of the

executions is successfully checked, the translated chaincode is deployed in Hyperledger Fabric.

Regarding the translation flow, Figure 4.2 shows us an overview of each step of the process. Once

Besu returns the smart contract to the connector, the smart contract translation is divided in two ways.

The first one is the path of translating the smart contract source files. The ones where the business

logic is implemented. The latter one is the path to translate the test files of the project. The ones that

prove the business logic is behaving as it supposes to. In section 4.4, we explained in detail, how the

translation of the smart contract source files is designed and how it behaves in the translation process.

In section 4.5, we explain in detail, how the translation of the smart contract test files is designed and

how it behaves in the translation process.

After the process part of the smart contract source files and the smart contract test files are done,

then it comes the converting/translating part. this part of the process is where Osprey tries to translate

30



Figure 4.2: Osprey flow overview

the information received from the processing part and write them in the proper files, structuring them

into folders, originating the project.

As a Cactus plugin, Osprey is a microservice tool that can be deployed in the cloud and integrated

with blockchain service providers such as azure, aws, among others. The changes to be done to ensure

the success of translations are to guarantee that the source blockchain and target blockchain smart

contracts programming language is implemented in the tool, otherwise, the tool cannot perform the

migration. Figure 4.3 demonstrates the communication.

Figure 4.3: Osprey as microservice in the cloud

4.4 Smart Contract Module

As mentioned before, Osprey architecture is divided into two modules, the Smart Contract Module,

and the Test Module described in Section 4.5. In this section, we explain in detail how this module is

structured, what features are implemented, what features are not implemented, and how the translation

process behaves.

4.4.1 Architecture

Osprey was designed to be highly interface based, especially in the Test Module (Section 4.5). This de-

cision was made to give developers the freedom to integrate other programming language translations,

being those implementations, a plugin. Regarding this module, although this concern of being highly

31



interface-based was taken into consideration, when implementing, we could not strictly follow this line

of thought. This happened because we are dependent on a tool called solidity2chaincode [37]. How-

ever, the output programming language of the translation is Javascript, most of the code needed to be

adapted in other to meet the specifications of the Hyperledger Fabric Typescript chaincode.

Regarding the extension to new smart contract translation, Osprey uses the adapter pattern [38],

this pattern leverages the incompatibility that each smart contract has between each other. Through the

interface ITranslatorService users can have the possibility to extend a new smart contract programming

language without interfering with the implementations of other translations. This interface offers two

functions to be implemented, translate and write functions. The first function is where it should be the

logic about the interpretation of the AST. This function, besides taking the AST as parameter, can take a

blockchain connector client. This blockchain connector client offers functions to interact directly with the

blockchain, translating behaving as an inline translation. The write function is where all the logic about

the writing to files should be.

As you can see in Figure 4.2, the translation of a smart contract project is made in three phases. The

first phase is when a smart contract project (source and test files) is inputted into the tool. The second

phase is where the files are processed. This phase is responsible to read the project files and convert

the information within those files into an Abstract Syntax Tree (AST). The AST is a way of representing

an intermediate language of the information held in the files. After being converted into an AST, that tree

is passed to the adapter to be interpreted and translated to the output programming language. This is

the last phase.

The translation process works as follows, first it iterates over the AST to translate each dependency

of the main smart contract class. The dependencies are expressed in the imports within the file. This

process is done to guarantee that in the smart contract where the dependency is being used, the func-

tions and variables are called correctly. Through each dependency found, the tool will search for the

path given in the import and translate that file.

When translating a file, the behavior of the tool is, for every class found (classes in Solidity are ex-

pressed with the contract keyword), it will search first the global variables, then structs, enums, events,

modifiers, functions, and object dependencies (in Solidity object dependencies are declared using the

using keyword). Although in Hyperledger Fabric chaincodes there are no global variables, because the

state is managed by key-value pair storage, this process is very important to be sure which variables

are to be stored as key-value pair when instantiating the chaincode. Translating from Solidity to Type-

script, structs are classes which are a representation of many variable types in memory. Enums are

datatypes that enable setting predefined constants. Events are variable objects used to signal users

when some conditions happen. Modifiers are functions applied to other functions. They are used to

specify preconditions to enable or not the execution of the called function. To handle the translation of

32



these types, we have data model classes such as the EnumBuilder responsible to translate enum types,

Mixins responsible to translate the inheritance of classes. Typescript does not support multiple inheri-

tances, so a workaround is to use mixins. Mixins are functions that return other functions. StructBuilder

that are responsible to translate structs in Solidity to Typescript classes. The ClassBuilder class is the

main class responsible to combine all data model classes into a single class file. After all, is translated,

the adapter wraps all the translations and starts writing them in the proper files. Figure 4.4 shows an

overview of this module.

Figure 4.4: Smart Contract Module Overview

4.4.2 Features

Our tool migrates smart contracts written in Solidity to Hyperledger Fabric chaincode written in Type-

script. To ensure a perfect migration between those blockchains, the tool should ensure all features that

Solidity offers, the translated smart contract also offers. Table 4.1 shows the features Solidity Parser [20]

have and what Osprey offers.

Table 4.1 shows us a comparison of what Solidity Parser tool [20], with what Osprey currently sup-

ports. Note that table 4.1 is mostly focused on the current migration in study between smart contracts

written in Solidity to chaincodes written in Typescript. Analysing Table 4.1, Osprey comparing with Solid-

ity Parser, supports almost every feature but those who are specific of the Ethereum blockchain. Those

specific features are Payables, EVM objects such as the msg object that goes with every transaction

triggered over a smart contract, EVM functions such as the function transfer which performs a transfer

of assets between two wallets, the balance function responsible to return the amount of cryptocurrency

a specific wallet has. The Data Structures such as Mappings and Array and, multiple inheritances are

not specific features of the blockchain.

33



Features Solidity Parser Osprey
Modifiers support support
Structs support support
Events support support
Payables support not support
Libraries support support
Using support support
Data Structures (Mappings, Arrays) support not support (Future

Work)
EVM objects (msg, tx, etc) support not support (Future

Work)
EVM functions (transfer, send, balance, etc) support not support (Future

Work)
Imports support support
Multiple Inheritance support not support (Future

Work)

Table 4.1: Comparison between features to migrate Solidity smart contracts to Hyperledger Fabric chaincode pre-
sented by a perfect migration tool and Osprey

4.5 Test Module

In this section, we will explain in detail the Test Module, its architecture, how it behaves, and the features

it supports in its translation.

4.5.1 Architecture

To guarantee the successful translation of a smart contract on both sides, the original smart contract

and translated smart contract, the unit tests of both smart contracts must behave in the same way. This

behaves must be coherent because the results expected will be approximated from what the developer

tried to test in the test file of the source smart contract. Thus, conclude whether or not the behavior was

preserved during the translation process.

Regarding the test translation flow, the Osprey test module behaves similar to the smart contract

module. First, it will search in the test directory specified as input for the test file which was inputted too.

After that, it will transform the information of the source test file into a Abstract Syntax Tree (AST). This

process is made using a package called accorn. Accorn is a package that converts Javascript files into

Abstract Syntax Tree. Once the AST is built, Osprey iterates over it and, node by node it translates to

Typescript. After the translation is done, Osprey produces a test file to be used in Hyperledger Fabric.

Also, integrating Osprey in Hyperledger Cactus, our tool can have two major features: (i) provide an

end to end translation and, (ii) run, automatically, those tests translated. Cactus, could be seen as

a framework-as-a-service, where it provides mechanisms to get the source smart contracts and, to

instantiate two ledgers, one to run the source smart contract, and the other to run the translated smart

contract.

34



In terms of architecture, the Osprey test module was designed the same way as the smart contract

module, using the adapter design pattern. This pattern allowed us to have the same feature that the

smart contract module has, flexibility. Flexibility, because we can have multiple output translation imple-

mentations without compromising the entire structure of the tool. Also, in this module, we used another

design pattern to complement the adapter. This pattern is called Factory design pattern [39]. It allows us

to decide which instance of the test translation to use based on the input of the user. Based on that input,

Osprey can use an instance to translate the test files and output the files in the chosen programming

language.

In Figure 4.5 we can see the test module architecture.

Figure 4.5: Test Module architecture overview

As presented the architecture in its genesis, is not different from the one we saw in Figure 4.4 from

the Smart Contract Module. However, we can see a new component added to the architecture in both

modules, Test and Smart Contract modules, called Monitor. This decision was made, because the fact

we needed to not only track where the smart contract translations were outputted, but also to track in the

tests’ translation process when we were facing smart contract function calls or calls to other packages

used in the translation. It is the monitor’s job to track that kind of information as long as the iteration

and translation process occurs. For instance, in Figure 4.6 we can observe on the left a call to a smart

contract function. The monitor will save that information, and when the translation occurs we can see on

the right side that it was adapted to a smart contract function call used on the Cactus test file template.

Furthermore, a decision in the test translation process was made. We didn’t include the assertions

packages used in the source test file (i.g. chai, bigint, among others). This decision was made because,

in the Cactus template, those packages are being used. Also, we ignore the first test function in the

35



Figure 4.6: Monitor job overview

source test file, the one with the keyword contract. This decision was made, based on the fact that the

test translation will be wrapped up in a test function from the Cactus template.

4.6 Implementation

Osprey tool was implemented not only as a standalone migrator tool, but also as a plugin integrated

into Hyperledger Cactus. Osprey was developed in Typescript, to use the interoperability between

blockchains that Cactus framework offers, such as Hyperledger Fabric connector, Hyperledger Besu

connector.

Mainly Hyperledger Cactus complements Osprey such that it can successfully perform smart contract

migration between the various blockchains. As stated before, this migration process takes at least 4

connections to both blockchains in the migration process, the source, and the target blockchains. These

four connections provided by Cactus are made through connectors. Connectors are implementations

that allow blockchains to have interoperability between them, as well as guaranteeing all the security

specifications that each transaction must have in their respective blockchain. Also, these connections

are respectively to obtain the smart contract to be translated and then migrated; Then to instantiate two

test ledgers of both blockchains, the source and the target blockchains; And, after that to deploy the

smart contract in the target blockchain.

Looking at the connections that Osprey must have to complete a full smart contract migration, it

states the category where we consider Hyperledger Cactus as a blockchain-as-a-service. Blockchain-

as-a-service, since it allows Osprey connect to both blockchains to perform transactions over them and,

also to build a test infrastructure to test the smart contract, before deploying them in the real target

36



blockchain environment.

37



38



5
Evaluation

Contents

5.1 Osprey Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Setup and Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Translation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Readability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

39



40



5.1 Osprey Evaluation

In this section, we evaluate the translation of heterogeneous smart contracts using our tool Osprey.

The metrics used on the evaluation process were the time elapsed on every translation of each smart

contract and, in the end we discuss aspects about the tool’s utility.

5.2 Setup and Test Environment

All tests were made using a 16 GB RAM machine with a AMD Ryzen 5 3600 CPU and 480 GB SSD

of storage. We have put a dataset of 13 Solidity smart contracts to test. The test was the translation

of each smart contract of the dataset and measure the time that Osprey took to translate them. The

number of times that the dataset was translated was 10000 times.

5.3 Translation Evaluation

We gathered a total of 13 smart contracts in Solidity and execute performance tests to validate the time

elapsed of translating each smart contract from the dataset. To ensure that each translation was suc-

cessfully, we manually test the output Osprey gave. The smart contracts used were collected mostly

through Github and from the SmartBugs dataset [2]. Figure 5.1 shows the time elapsed of each transla-

tion and the average of all smart contracts translated after 10000 times.

Smart Contract Time Elapsed
AdvanceStorage.sol 2.58 ms
Greeter.sol 1.82 ms
IntegerOverflowAdd.sol 1.86 ms
IntegerOverflowBenign1.sol 1.96 ms
IntegerOverflowMinimal.sol 2.20 ms
IntegerOverflowMul.sol 3.25 ms
IntegerOverflowMultiTxMultiFuncFeasible.sol 4.20 ms
IntegerOverflowMultiTxOneFuncFeasible.sol 3.94 ms
IntegerOverflowSingleTransaction.sol 3.35 ms
Overflow.sol 4.17 ms
Overflow Add.sol 2.65 ms
QueueMapping.sol 7.59 ms
SimpleStorage.sol 4.42 ms

Average = 3.68 ms

Table 5.1: Osprey Solidity smart contracts dataset translation time test, translating 10000 times the entire dataset

Analysing table 5.1 we can verify that the faster smart contract translation was the Greeter.sol, a

simple smart contract that has one constructor and one function. Contrarily we can verify that the

slowest smart contract translation was the QueueMapping.sol, a more complex smart contract where it

41



envolves structures and other more complex operations. Although the throughput and latency were not

tested, we can infer this results are acceptable.

5.4 Readability

In this section we will measure the readability of the smart contract translation outputted by Osprey.

Since the tool will be used to perform smart contract migration between heterogeneous blockchains,

whether to make a full end-to-end migration or to translate the smart contract to a new blockchain, to

continue the development process, it is important the smart contract Osprey outputs be readable and

structured to lower the refactoring code by the developers.

To have some insight on how Osprey translated and structured the smart contracts it outputs, we

conducted a survey where we tried to reach out the people that were familiar with the blockchain tech-

nology and the smart contract programming. In this survey we had a total of 17 participants. We tried to

focus mainly on the translation process and how they classify the smart contract regarding the readabil-

ity and the structure of the produced code. Furthermore, we tried to divide the smart contracts regarding

its complexity. As mentioned, our dataset is composed by 13 smart contracts, out of those 13 smart

contracts we chose 2. The complexity of the smart contracts chosen, was measure by the amount of

functions, global variables and the extensibility of the contract, in terms of the number of lines of code,

each function presented. Based on this premise we classify the smart contracts presented in Appendix

A, as simple and complex respectively (A.1, A.2).

Once Osprey, as mentioned before, can be used as a standalone migration tool, in order to users use

our tool to migrate smart contracts, and continue the development process, it is important to evaluate

how well the translated smart contract is readable and organized. For this purpose, we call the readability

of the tool. This is justified, because in software development industry, code readability is a key aspect

for the maintenance product and project. Also, if the code is organized and well structured, it is easier

for developers to add more features and maintain the project/product.

For the answers to the survey be more accurate, we tried to minimize the scope of people that an-

swered. That scope tried to involved people that were familiarized with blockchain technology, blockchain

product delivery and, smart contract development, both in Solidity and Hyperledger Fabric typescript

chaincode development. Figure 5.1 shows the scope of people who answered the survey.

From Figure 5.1, leading the percentage of the answers was people whose job title is related to

Academic environment, being professors, students, researchers with 71.4% of the answers. Following

the lead were the Software Developers with 35.5%, and at last were the product owners with 21.4% of

the answers. From this 14 people who answer the survey the greatest part of were not familiarized with

both Solidity and Chaincode programming. Figure 5.2 show the percentage of each column, being 1 not

42



0 2 4 6 8 10

Software Developer 40%

Business Analyst 0%

Academic (e.g. Professor Student Researcher) 66.7%

Product Owner 20%

Security analyst 0%

Other 0%

number of answers per job title

Figure 5.1: Job title of the users who answer the survey

familiarized with the programming language, and 5 being familiarized with the programming language.

0 2 4 6 8 10 12

0

1

2

3

number of answers per level

le
ve

lo
fu

nd
er

st
an

di
ng

Solidity
Chaincode

Figure 5.2: Level of understanding on Solidity and Chaincode programming

Moreover, from the total of people who answer this survey, most of them only have at least one year

of experienced with blockchain technology. On the other hand, three out of fourteen have three or more

years of experience with blockchain technology. Figure 5.3 show the statistics.

Regarding the translation of smart contracts, the translation of the simple smart contract Appendix A

[A.1] show very impressive results. Most answers were on the level five (levels one to five, one being do

not understand and, five understand) on understanding the smart contract and their translation. On the

other hand, the results about the structure of the translation, although, most of it is on well structured

(level four), it shows that the tool itself has a lot of improvements to be made, in order to become a very

43



2 4 6 8

0-1

1-3

3-5

+5

number of answers

ye
ar

s
of

ex
pe

rie
nc

e

Figure 5.3: Years of experience with blockchain technology

good migration tool. Figure 5.4 shows the results.

0 2 4 6 8 10 12

1

2

3

4

5

number of answers per level

le
ve

lo
fu

nd
er

st
an

di
ng

an
d

co
de

st
ru

ct
ur

e

understandable
structured

Figure 5.4: Number of answers regarding the evaluation of the understanding and the structure of the translated
code on a simple smart contract A.1

Going deeper in the complexity of the translation, we present a more complex Solidity smart contract

(Appendix A [A.2]) and their respective translation. In this scenario, Figure 5.5 shows that the tool itself

have a lot space to improve. This is because, most of the answers were divided between the level two

and four. Level two means that they didn’t understand very much the smart contract and, its translation.

However, most of the answers classified the translation as being fairly good structured.

44



0 2 4 6 8 10 12

1

2

3

4

5

number of answers per level

le
ve

lo
fu

nd
er

st
an

di
ng

an
d

co
de

st
ru

ct
ur

e

understandable
structured

Figure 5.5: Number of answers regarding the evaluation of the understanding and the structure of the translated
code on a complex smart contract A.2

45



46



6
Conclusion

Contents

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

47



48



This research presents you Osprey, a smart contract migrator tool between heterogeneous blockchains.

Osprey helps blockchain interoperability take a step further on making companies use blockchain tech-

nology without being afraid of the costs of maintenance or afraid to start over when a blockchain be-

comes obsolete or even when they find another blockchain that offers more appealing features. Inte-

grated in Hyperledger Cactus, a blockchain connector, as a plugin, Osprey can (i) establish a connec-

tion with Hyperledger Besu and Hyperledger Fabric; (ii) acquire the smart contracts from Ethereum

blockchain through Hyperledger Besu; (iii) use a blockchain validator, before and after deliver the con-

tracts to the migrator, to evaluate/analyse them; and (iv) issue the transactions in Hyperledger Fabric

blockchain. Also, another reason on integrating our tool in Cactus, the ability to instantiate and destroy

blockchain instances to test the functionality of the smart contracts. After the original and translated

smart contracts are tested, and the ledgers destroyed, both execution outputs are compared to validate

their correctness and behavior. Moreover, Osprey can be used as a blockchain cloud migration tool

solution where it can be deployed in the cloud and used by the community. The experimental results

over a dataset with 13 Solidity smart contracts, shows that Osprey in average can perform translations

in about 3.68 milliseconds. Although this is a solution that can be extended and can be improved in more

features, this is a contribution to help blockchain community move forward on blockchain smart contract

migration and help future works on blockchain interoperability solutions.

6.0.1 Contributions

This research allows blockchain technology to take a step further and contribute to the interoperability

of blockchains, by allowing the migration of smart contracts between heterogeneous blockchains. At the

time this study is made, the solutions available are only theoretical ones, such as Hyperservice [11].

Also, the only solution found at this time was the solidity parser solution [12]. A solution that is a proof of

concept that blockchain migration between heterogeneous blockchains can be made. However, it is an

old solution that has not been maintained nor updated and, it only performs migrations between Solidity

smart contracts to Javascript chaincode. This means it lacks flexibility.

Osprey on the other hand is a tool flexible, which first starts to migrate Solidity smart contracts

to Typescript chaincode, but it can be extended to perform migrations between other types of smart

contracts. Our contributions are as follows.

1. Translate smart contracts written in Solidity to Typescript.

2. Design a tool, able to be flexible, meaning it can be extended to migrate smart contracts from other

blockchains and whose smart contract programming languages are different from Solidity as input

and Typescript as output.

3. Develop translation mechanisms for unit tests between both blockchains, source, and target.

49



4. Contribute to Hyperledger Cactus becoming a more complete tool in terms of blockchain interop-

erability.

6.1 Future Work

This work help the subject of smart contract migration on a new level, being one of the tools implemented

with almost full translation of Ethereum smart contracts written in Solidity. Osprey helps companies to

not being afraid of migrating their projects when it’s development reaches a critical stage (e.g. the main-

tenance cost of the project is too high, or some vulnerabilities were discover in the current blockchain

their working on). Furthermore, to turn each individual module of the tool more complete, in the future

we plan to tackle the features, in the smart contract module 4.4, that were not implemented. After that

we, plan to disconnect completely from the dependency held on the solidity2chaincode tool [37], turning

the implementation of this module, similar to the test module.

Regarding the test module (Section 4.5), for future work we plan to move further on the implemen-

tation of the features that are not implemented and, to implement a way of having inline test calls. The

inline testing feature, allow at runtime, when the test ledgers are instantiated the code can automatically

be called over those ledgers, becoming the migration process and testing more automatic.

50



Bibliography

[1] E. Androulaki, A. Barger, V. Bortnikov, S. Muralidharan, C. Cachin, K. Christidis, A. De Caro,

D. Enyeart, C. Murthy, C. Ferris, G. Laventman, Y. Manevich, B. Nguyen, M. Sethi, G. Singh,

K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger

Fabric: A Distributed Operating System for Permissioned Blockchains,” in Proceedings of the 13th

EuroSys Conference, EuroSys 2018, vol. 2018-January. Association for Computing Machinery,

Inc, apr 2018.

[2] “smartbugs/dataset at master · smartbugs/smartbugs.” [Online]. Available: https://github.com/

smartbugs/smartbugs/tree/master/dataset

[3] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Survey on Blockchain Interoperability:

Past, Present, and Future Trends,” 2020. [Online]. Available: http://arxiv.org/abs/2005.14282

[4] R. Belchior, M. Correia, and A. Vasconcelos, “Justicechain: Using blockchain to protect justice logs,”

in OTM Confederated International Conferences” On the Move to Meaningful Internet Systems”.

Springer, 2019, pp. 318–325.

[5] M. Mettler, “Blockchain technology in healthcare: The revolution starts here,” in 2016 IEEE 18th

International Conference on e-Health Networking, Applications and Services (Healthcom), 2016,

pp. 1–3.

[6] M. Turkanović, M. Hölbl, K. Košič, M. Heričko, and A. Kamišalić, “Eductx: A blockchain-based

higher education credit platform,” IEEE Access, vol. 6, pp. 5112–5127, 2018.

[7] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang, “Fine grained, secure and efficient

data provenance on blockchain systems,” Proceedings of the VLDB Endowment, vol. 12, no. 9, pp.

975–988, 2018.

[8] H. D. Bandara, X. Xu, and I. Weber, “Patterns for Blockchain Migration,” pp. 1–40, 2019. [Online].

Available: http://arxiv.org/abs/1906.00239

51

https://github.com/smartbugs/smartbugs/tree/master/dataset
https://github.com/smartbugs/smartbugs/tree/master/dataset
http://arxiv.org/abs/2005.14282
http://arxiv.org/abs/1906.00239


[9] “Ethereum Whitepaper — ethereum.org.” [Online]. Available: https://ethereum.org/en/whitepaper/

{#}ethereum

[10] “cactus/whitepaper.md at master · hyperledger/cactus.” [Online]. Available: https://github.com/

hyperledger/cactus/blob/master/whitepaper/whitepaper.md

[11] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and Y. C. Hu, “Hyperservice: Interoperabil-

ity and programmability across heterogeneous blockchains,” Proceedings of the ACM Conference

on Computer and Communications Security, pp. 549–566, 2019.

[12] M. A. Zafar, F. Sher, M. U. Janjua, and S. Baset, “SOL2JS: Translating solidity contracts into

Javascript for hyperledger fabric,” SERIAL 2018 - Proceedings of the 2018 Workshop on Scalable

and Resilient Infrastructures for Distributed Ledgers, pp. 19–24, 2018.

[13] “Hyperledger Besu Enterprise Ethereum Client - Hyperledger Besu.” [Online]. Available:

https://besu.hyperledger.org/en/stable/

[14] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Survey on Blockchain Interoperability:

Past, Present, and Future Trends,” ACM Computing Surveys, vol. 54, no. 8, pp. 1–41, may 2021.

[Online]. Available: http://arxiv.org/abs/2005.14282

[15] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Tech. Rep. [Online]. Available:

www.bitcoin.org

[16] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Čapkun, “On the security and

performance of Proof of Work blockchains,” in Proceedings of the ACM Conference on Computer

and Communications Security, vol. 24-28-October-2016. Association for Computing Machinery,

oct 2016, pp. 3–16.

[17] “Solidity — Solidity 0.8.0 documentation.” [Online]. Available: https://docs.soliditylang.org/en/v0.8.0/

[18] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of automated analysis tools on

47,587 ethereum smart contracts,” in Proceedings of the ACM/IEEE 42nd International Conference

on Software Engineering, 2020, pp. 530–541.

[19] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: a framework to analyze solidity smart

contracts,” in Proceedings of the 35th IEEE/ACM International Conference on Automated Software

Engineering, 2020, pp. 1349–1352.

[20] “tool to migrate solidity do javascript.” [Online]. Available: https://github.com/hyperledger-labs/

solidity2chaincode

52

https://ethereum.org/en/whitepaper/{#}ethereum
https://ethereum.org/en/whitepaper/{#}ethereum
https://github.com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md
https://github.com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md
https://besu.hyperledger.org/en/stable/
http://arxiv.org/abs/2005.14282
www.bitcoin.org
https://docs.soliditylang.org/en/v0.8.0/
https://github.com/hyperledger-labs/solidity2chaincode
https://github.com/hyperledger-labs/solidity2chaincode


[21] “Ieee xplore full-text pdf:.” [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?

arnumber=9284781&casa token=VPiHj4dwcqsAAAAA:Wg-id3QVLRu5xA0YiferiOHvJXcPHnALB

J0Fkgig9yX0f-hui8fIYMeVhM4M7blAs37zYLrLg&tag=1

[22] P. Frauenthaler, M. Sigwart, C. Spanring, and S. Schulte, “Testimonium: A cost-efficient blockchain

relay,” 2 2020. [Online]. Available: http://arxiv.org/abs/2002.12837

[23] “ethereum/btcrelay: Ethereum contract for bitcoin spv: Live on

https://etherscan.io/address/0x41f274c0023f83391de4e0733c609df5a124c3d4.” [Online]. Avail-

able: https://github.com/ethereum/btcrelay

[24] J. F. Snyder, M. A. Ratner, H. Wang, D. He, X. Wang, C. Xu, W. Qiu, Y. Yao, and Q. Wang, “An elec-

tricity cross-chain platform based on sidechain relay you may also like on the sensitivity of protein

data bank normal mode analysis: an application to gh10 xylanases monique m tirion-ion conduc-

tivity of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether sidechains an

electricity cross-chain platform based on sidechain relay,” Journal of Physics: Conference Series,

vol. 1631, p. 12189, 2020.

[25] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,” 2017. [Online]. Available:

https://plasma.io/

[26] H. Tian, K. Xue, S. Li, J. Xu, J. Liu, and J. Zhao, “Enabling cross-chain transactions: A decentralized

cryptocurrency exchange protocol.”

[27] W. Warren and A. Bandeali, “0x: An open protocol for decentralized exchange on the ethereum

blockchain,” 2017.

[28] “Dextt: Deterministic cross-blockchain token transfers — enhanced reader.”

[29] J. Burdges, A. Cevallos, P. Czaban, R. Habermeier, S. Hosseini, F. Lama, H. K. Alper, X. Luo,

F. Shirazi, A. Stewart, and G. Wood, “Overview of polkadot and its design considerations.”

[30] “Ieee xplore full-text pdf:.” [Online]. Available: https://ieeexplore.

ieee.org/stamp/stamp.jsp?arnumber=8431965&casa token=O5XrC 13FWwAAAAA:

hIlu7JDIBPlwOWDRW9VDXbRcpb27kgR--akUa5pmJbc2snkoizqbSHDdVFO6xRY7aAf75-6CJg

[31] “Ieee xplore full-text pdf:.” [Online]. Available: https://ieeexplore.

ieee.org/stamp/stamp.jsp?arnumber=8743548&casa token=kiFdvnVki4MAAAAA:

U0stBTODdpT8NsPOpUh19Ri4GvKhbiEfmUp6EfWoKHQXCYolJLYeSgqrSA6gUCabGHr6GaQYvA

[32] X. Wang, T. Tawose, F. Yan, and D. Zhao, “Distributed nonblocking commit protocols for many-party

cross-blockchain transactions.”

53

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284781&casa_token=VPiHj4dwcqsAAAAA:Wg-id3QVLRu5xA0YiferiOHvJXcPHnALB_J0Fkgig9yX0f-hui8fIYMeVhM4M7blAs37zYLrLg&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284781&casa_token=VPiHj4dwcqsAAAAA:Wg-id3QVLRu5xA0YiferiOHvJXcPHnALB_J0Fkgig9yX0f-hui8fIYMeVhM4M7blAs37zYLrLg&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9284781&casa_token=VPiHj4dwcqsAAAAA:Wg-id3QVLRu5xA0YiferiOHvJXcPHnALB_J0Fkgig9yX0f-hui8fIYMeVhM4M7blAs37zYLrLg&tag=1
http://arxiv.org/abs/2002.12837
https://github.com/ethereum/btcrelay
https://plasma.io/
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8431965&casa_token=O5XrC_13FWwAAAAA:hIlu7JDIBPlwOWDRW9VDXbRcpb27kgR--akUa5pmJbc2snkoizqbSHDdVFO6xRY7aAf75-6CJg
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8431965&casa_token=O5XrC_13FWwAAAAA:hIlu7JDIBPlwOWDRW9VDXbRcpb27kgR--akUa5pmJbc2snkoizqbSHDdVFO6xRY7aAf75-6CJg
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8431965&casa_token=O5XrC_13FWwAAAAA:hIlu7JDIBPlwOWDRW9VDXbRcpb27kgR--akUa5pmJbc2snkoizqbSHDdVFO6xRY7aAf75-6CJg
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8743548&casa_token=kiFdvnVki4MAAAAA:U0stBTODdpT8NsPOpUh19Ri4GvKhbiEfmUp6EfWoKHQXCYolJLYeSgqrSA6gUCabGHr6GaQYvA
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8743548&casa_token=kiFdvnVki4MAAAAA:U0stBTODdpT8NsPOpUh19Ri4GvKhbiEfmUp6EfWoKHQXCYolJLYeSgqrSA6gUCabGHr6GaQYvA
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8743548&casa_token=kiFdvnVki4MAAAAA:U0stBTODdpT8NsPOpUh19Ri4GvKhbiEfmUp6EfWoKHQXCYolJLYeSgqrSA6gUCabGHr6GaQYvA


[33] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono, “Enabling Cross-Jurisdiction Digital Asset

Transfer,” in IEEE International Conference on Services Computing. IEEE, 2021.

[34] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Somogyvari, S. Fujimoto, R. Belchior,

T. Kuhrt, and T. Takeuchi, “cactus/whitepaper.md at master · hyperledger/cactus.” [Online].

Available: https://github.com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md

[35] “the-super-tiny-compiler/the-super-tiny-compiler.js at master · jamiebuilds/the-super-tiny-

compiler.” [Online]. Available: https://github.com/jamiebuilds/the-super-tiny-compiler/blob/master/

the-super-tiny-compiler.js

[36] “theliso/cactus: Hyperledger cactus is a new approach to the blockchain interop-

erability problem.” [Online]. Available: https://github.com/theliso/cactus/tree/main/packages/

cactus-plugin-blockchain-migrator

[37] “hyperledger-labs-archives/solidity2chaincode: This tool converts solidity contract into javascript

chaincode through source-to-source translation for running them onto hyperledger fabric.” [Online].

Available: https://github.com/hyperledger-labs-archives/solidity2chaincode

[38] “Adapter.” [Online]. Available: https://refactoring.guru/design-patterns/adapter

[39] “Best Practice Software Engineering - Factory Method.” [Online]. Available: http:

//best-practice-software-engineering.ifs.tuwien.ac.at/patterns/factory.html

54

https://github.com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md
https://github.com/jamiebuilds/the-super-tiny-compiler/blob/master/the-super-tiny-compiler.js
https://github.com/jamiebuilds/the-super-tiny-compiler/blob/master/the-super-tiny-compiler.js
https://github.com/theliso/cactus/tree/main/packages/cactus-plugin-blockchain-migrator
https://github.com/theliso/cactus/tree/main/packages/cactus-plugin-blockchain-migrator
https://github.com/hyperledger-labs-archives/solidity2chaincode
https://refactoring.guru/design-patterns/adapter
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/factory.html
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/factory.html


A
Code of Project

Listing A.1: Simple Solidity Smart Contract used in the form

1 pragma solidity ˆ0.8.7;

2

3 contract SimpleStorage {

4 uint256 storedData;

5

6 function set(uint256 x) public {

7 storedData = x;

8 }

9

10 function get() public view returns (uint256) {

11 return storedData;

12 }

13 }

55



Listing A.2: Simple Solidity Smart Contract used in the form

1 pragma solidity ˆ0.5.16;

2

3 contract QueueMapping {

4 uint256 private front;

5 uint256 private back;

6 mapping(uint256 => uint256) private queue;

7

8 constructor() public {

9 front = 1;

10 back = 0;

11 }

12 ...

13 function enqueue(uint256 data) public {

14 require(back + 1 > back, "The queue is full.");

15 //Increment back and set data

16 back++;

17 queue[back] = data;

18 }

19 ...

20 }

Listing A.3: Greeter Solidity smart contract

1 pragma solidity 0.8.7;

2

3 contract Greeter {

4 string greeting;

5

6 constructor(string memory greeting) {

7 greeting = greeting;

8 }

9

10 function greet() public view returns (string memory) {

11 return greeting;

12 }

13 }

56



Listing A.4: AST generated from Listing A.3

1 {

2 "type": "SourceUnit",

3 "children": [

4 {

5 "type": "PragmaDirective",

6 "name": "solidity",

7 "value": "0.8.7"

8 },

9 {

10 "type": "ContractDefinition",

11 "name": "Greeter",

12 "baseContracts": [],

13 "subNodes": [

14 {

15 "type": "StateVariableDeclaration",

16 "variables": [

17 {

18 "type": "VariableDeclaration",

19 "typeName": {

20 "type": "ElementaryTypeName",

21 "name": "string"

22 },

23 "name": "greeting",

24 "expression": null,

25 "visibility": "default",

26 "isStateVar": true,

27 "isDeclaredConst": false,

28 "isIndexed": false

29 }

30 ],

31 "initialValue": null

32 },

33 {

34 "type": "FunctionDefinition",

35 "name": null,

36 "parameters": {

37 "type": "ParameterList",

57



38 "parameters": [

39 {

40 "type": "Parameter",

41 "typeName": {

42 "type": "ElementaryTypeName",

43 "name": "string"

44 },

45 "name": " greeting",

46 "storageLocation": "memory",

47 "isStateVar": false,

48 "isIndexed": false

49 }

50 ]

51 },

52 "body": {

53 "type": "Block",

54 "statements": [

55 {

56 "type": "ExpressionStatement",

57 "expression": {

58 "type": "BinaryOperation",

59 "operator": "=",

60 "left": {

61 "type": "Identifier",

62 "name": "greeting"

63 },

64 "right": {

65 "type": "Identifier",

66 "name": " greeting"

67 }

68 }

69 }

70 ]

71 },

72 "visibility": "default",

73 "modifiers": [],

74 "isConstructor": true,

75 "stateMutability": null

58



76 },

77 {

78 "type": "FunctionDefinition",

79 "name": "greet",

80 "parameters": {

81 "type": "ParameterList",

82 "parameters": []

83 },

84 "returnParameters": {

85 "type": "ParameterList",

86 "parameters": [

87 {

88 "type": "Parameter",

89 "typeName": {

90 "type": "ElementaryTypeName",

91 "name": "string"

92 },

93 "name": null,

94 "storageLocation": "memory",

95 "isStateVar": false,

96 "isIndexed": false

97 }

98 ]

99 },

100 "body": {

101 "type": "Block",

102 "statements": [

103 {

104 "type": "ReturnStatement",

105 "expression": {

106 "type": "Identifier",

107 "name": "greeting"

108 }

109 }

110 ]

111 },

112 "visibility": "public",

113 "modifiers": [],

59



114 "isConstructor": false,

115 "stateMutability": "view"

116 }

117 ],

118 "kind": "contract"

119 }

120 ]

121 }

60


	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings

	1 Introduction
	1.1 Work Objectives
	1.2 Document Structure

	2 Background
	2.1 An Introduction to Blockchain
	2.1.1 Ethereum Blockchain
	2.1.1.A Programming in Ethereum
	2.1.1.B Ethereum Interaction: User - Smart Contract - Blockchain

	2.1.2 Hyperledger Fabric
	2.1.2.A Programming in Hyperledger Fabric

	2.1.3 Hyperledger Besu
	2.1.3.A Hyperledger Besu vs Ethereum


	2.2 Cross-Blockchain Communication
	2.3 Blockchain Interoperability
	2.3.1 Cryptocurrency-Based Approaches
	2.3.1.A Sidechain
	2.3.1.B Notary Schemes
	2.3.1.C Hashed Time-Locks
	2.3.1.D Hybrid solutions

	2.3.2 Blockchain Engines
	2.3.3 Blockchain Connectors
	2.3.4 Hyperledger Cactus
	2.3.4.A Architecture


	2.4 An Overview about Compiler
	2.5 Blockchain Migrators

	3 Related Work
	3.1 Hyperservice
	3.1.1 Architecture
	3.1.2 Discussion

	3.2 Solidity Parser
	3.2.1 Architecture
	3.2.2 Discussion


	4 Osprey
	4.1 Overview
	4.2 Requirements
	4.3 Tool
	4.4 Smart Contract Module
	4.4.1 Architecture 
	4.4.2 Features

	4.5 Test Module
	4.5.1 Architecture

	4.6 Implementation

	5 Evaluation
	5.1 Osprey Evaluation
	5.2 Setup and Test Environment
	5.3 Translation Evaluation
	5.4 Readability

	6 Conclusion
	6.0.1 Contributions
	6.1 Future Work

	Bibliography
	Appendix A

	A Code of Project

