
Dual Resource Constrained Flexible Job Shop Problem
using Hybrid Genetic Algorithm

Application to Quality Control Laboratory Scheduling

Diogo Marta
diogo.marta@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

December 2021

Abstract

Quality control laboratory scheduling has huge potential to reduce costs and increase production.
However, this is not widely discussed or supported by academics. This thesis proposes a hybrid genetic
algorithm with and without variable neighborhood search to minimize the total completion time.
The problem is formulated as an extension of a Dual Resource Constrained Flexible Job Shop Problem
for the allocation of both machine and worker resources. This extension, divides each job in three
phases allowing the worker to perform other jobs in between these mandatory presential stages. While
maintaining the traditional structure of genetic algorithms, this work presents a way of creating the
Initial Population, based on increment tables which groups the most compatible jobs together. Also,
rules regarding the allocation of resources to sequential tasks were introduced. A new combination
of crossover operations with weighted probabilities are proposed, proving that combining multiple
types of crossovers achieves fitter results. Additionally, a novel combination of mutation operations is
implemented and a variable neighborhood search with four different structures was introduced alongside
a dynamic termination criteria that adapts the parameters of the algorithm. A tuning of the parameters
was performed and the final results were compared to the benchmark. This study is competitive with
the benchmark for small instances, achieving the optimal solution for seven of them. For medium sized
instances the proposed genetic algorithm surpasses the literature. For large sized instances this study
generated significant results surpassing the compared results by 57%.
Keywords: Quality Control Laboratory; Dual Resource Constrained Scheduling; Flexible Job Shop
Problem; Hybrid Genetic Algorithm; Total Completion Time.

1. Introduction
Rome wasn’t built in a day - or is it the case
that Rome wasn’t built without scheduling? For
over thousands of years, humans have been us-
ing scheduling as a tool to build and coordinate
operations. Scheduling is central to how jobs are
planned and completed providing order to busi-
nesses. The constant evolution of the schedul-
ing science allows systems to be more complex,
with a higher number of activities and sequenc-
ing of operations [4]. A particular industry that re-
quires fast and reliable scheduling methods is the
Pharmaceutical Industry. Pharmaceutical compa-
nies operate in one of the most competitive and
regulated markets, where compliance with Good
Manufacturing Practices (GMP) and Good Labo-
ratory Practices (GLP) is mandatory to commer-
cialize any drug [3]. More specifically, the Qual-
ity Control of goods is responsible for monitoring

manufacturing processes through the assessment
of samples taken at different stages of the manu-
facturing process. These can be taken at the early
stages to raw materials, at mid stages and also at
the final stages when the finished product is ob-
tained. The assessment of these samples is com-
pleted by comparing with the standard pre-defined
quality metrics. Quality control makes it possible
to meet high product quality standards by promptly
detecting deviations in the quality of a manufactur-
ing stream [4].

In literature, researches have been focusing
mainly on manufacturing scheduling problems
which fail to include the peculiarities of the Quality
Control laboratory scheduling where workers are
allowed to perform more than one job simultane-
ously in different machines, as long as they respect
the times they must be present in a previous as-
signed machine. Notwithstanding, this work was

1

mainly inspired by manufacturing scheduling prob-
lems. In 2001 Felan and Fry [5] investigated the
effect of having different levels of training across
the workforce. Their results revealed that a combi-
nation of workers with very high flexibility and work-
ers with no flexibility, performed higher than those
with near equal flexibility. In 2011, Xianzhou and
Zhenhe [9], presented a new immune Genetic Al-
gorithm through combining immune algorithm with
genetic algorithm which proved to have a higher
degree of convergence precision in solving a DRC
flexible job shop scheduling problem. Lei and
Guo (2014) [6] proposed a VNS composed of two
neighbourhood search procedures and a restart-
ing mechanism to minimize the makespan. In 2017
Zhang et al. [11] proposed a Particle Swarm Op-
timization with a three layered encoding scheme
in order to minimize the production period and the
production cost.

In 2019 Cunha et al. [4] formulated a Mixed inte-
ger linear programming (MILP) algorithm to solve
the DRCFJSP in the Quality control laboratory
scheduling (QCLS) environment in order to mini-
mize the makespan. The obtained solution could
only reach the optimum for small instances where
the number of jobs considered was equal or less
than three. In 2020 Akbar and Irohara [1] proposed
seven metaheuristic algorithms with six different
decoding schemes to solve what they named a
multi-task simultaneous supervision dual resource-
constrained scheduling problem. The multi-tasking
refers to the ability of a machine to work indepen-
dently of the worker and allows for parallel schedul-
ing after an initial set up and a final supervision,
much like this thesis problem, (without the sam-
pling operation in middle). Although, it does not
allowing for different skill levels in workers and ma-
chines (flexibility). The metaheuristics that proved
the best results were the modified Permutation-
based Genetic Algorithm (PGA) and the Modified
Bees Algorithm (BA).

Contributions

The added-value proposal can be summarized in
the following topics:

Evaluation and development of previous literature
work

The proposed framework is the first study con-
ducted with a meta-heuristic algorithm in schedul-
ing problems for the Quality Control laboratory
environment. Therefore, the first hybrid Genetic
Algorithm with Variable Neighborhood Search to
solve such a problem is proposed and compared
to bench mark results.

Adaptation to the Quality Control Scheduling Prob-
lem
Apart from operating outside the common litera-
ture field, the present work includes six novel im-
plementations:

(1) - A probabilistic choice in the Initial Popula-
tion based on weights which correspond to differ-
ent paths when selecting tasks. It proved to be best
when kept on a solely random selection.

(2) - A Prohibition condition which controls the
resources allocation which proved to improve re-
sults by 4%.

(3) - An Increment Initialization that combines
compatible tests together which improves results
by 5%.

(4) - A probabilistic choice in the Crossover op-
eration (with the same logic as the Initial Solution)
which improves the results when compared to per-
forming Crossover operations with only one type
of crossover. Improvements from a single point
crossover are 5.8%, from a double point crossover
are 4.8% and from an MPX crossover are 1.1%.

(5) - A Variable Neighborhood Search is imple-
mented to improve GA’s slow convergence speed
which combines four different structures. This
implementation proved fitter results for small in-
stances (0.1% better) when compared to a GA
without VNS.

(6) - A Dynamic Termination Criteria is proposed
to allow the algorithm to adapt based on the num-
ber of non-improving iterations.

2. The Dual Resource Constrained Flexible Job
Shop Problem

2.1. Application to the Quality Control Laboratory
Scheduling

The quality control laboratories scheduling prob-
lem can be summarised as follows: assign each
operation (test) of each job (sample) to a ma-
chine (analytical instrument) and worker (ana-
lyst/chemist), to minimise an objective function.
Each operation can only be processed by prede-
termined subsets of machines and workers. The
machine is required for the full processing time of
the operation while the worker is only required at
a number of predetermined intervals (tasks) dur-
ing the processing time of the test. These manda-
tory presential tasks for the worker are the ma-
chine setup (start), the preparation of sample and
the materials (medium) and data processing at the
end. All of these operations must be performed by
the same worker.

2.2. Formulation of the Scheduling Problem
The following mathematical formulation was based
on [7]. An instance of the QC labs scheduling prob-
lem consists of a set of jobs, J = {J1, ..., Jn} with
n being the total number of jobs. The set of ma-
chines is represented by: K = {K1, ...,Km}, the

2

set of workers by W = {W1, ...,Ww} and the set
of operations by Oj = {O1j , ..., Oqj} for each job
j. The number of operations in job j is qj . Kij

and Wij are, respectively, the subsets of machines
and workers that can process operation i of job j.
Additionally, each operation can be divided by Nij

individual tasks, s that requires a worker present,
either partially or fully. Each operation is charac-
terised by its processing time pij , the start time,
ρsijs, and the duration time, ρdijs. The machine pro-
cessing time is always greater than the sum of the
duration of the worker tasks and is the same as the
processing time pij .

The main decision variables are the start time of
operation i of job j, tij , the binary assignment of
operations to machines, xijh ∈ {0, 1} and the bi-
nary assignment of operations to workers, αijh ∈
{0, 1}. Additionally, the following sequencing vari-
ables are used: βiji′j′ ∈ {0, 1} is equal to 1 if Oij

is scheduled before Oi′j′ , it is 0 otherwise; and
γijsi′j′ ∈ {0, 1} is equal to 1 if the task (worker in-
tervention) s of Oij is scheduled before the task s′,
it is 0 otherwise.

2.3. Objective Functions
The Objective function of the problem is to min-
imise the total completion time J (1) where cj is
the completion time of job j, i.e., the time required
to complete the operations of that job.

minJ =
∑
j∈J

cj , ∀j ∈ J (1)

2.4. Constraints
The completion time of each job, cj must be greater
or equal than the completion time of the last oper-
ation of that job as expressed below in:

cj ≥ tcj j + pcj j (2)

Each test can only be assigned to one suitable ma-
chine (3) and worker (4):

∑
k∈K

xijk = 1, ∀j ∈ J, i ∈ Oj , k ∈ Kij (3)

∑
h∈W

αijk = 1, ∀j ∈ J, i ∈ Oj , h ∈Wij (4)

Constraint (5) guarantees the precedence is re-
spected between operations of the same job.

tij ≥ t(i−1)j + p(i−1)j (5)

For the sequencing of operations in machines,
constraint (6) ensures that the start time of any Oij

is greater or equal than the finish time of any Oi′j′

that is scheduled before (βiji′j′ = 0) in the same
machine (xijk = xi′j′k).

tij ≥ ti′j′ +pi′j′− (2−xijk−xi′j′k′ +βiji′j′)M,

∀j ∈ J, i ∈ Oj , Oij 6= Oi′j′ , k ∈ Kij ∩Ki′j′ (6)

As the prior constraint is disjunctive, the big
M formulation is adopted, Similarly, constraint (7)
guarantees that any Oij scheduled before any
other Oi′j′ in the same machine (βiji′j′ = 1 and
xijk = xi′j′k) is finished before the later starts.

ti′j′ ≥ tij + pij − (3− xijk − xi′j′k′ − βiji′j′)M,

∀j ∈ J, i ∈ Oj , Oij 6= Oi′j′ , k ∈ Kij ∩Ki′j′ (7)

Two constraints are required to bound for
βiji′j′ = 0 and βiji′j′ = 1. In the same way, con-
straints (8) and (9) ensure that a worker cannot
perform overlapping tasks.

ti′j′ + ρsijs ≥ ti′j′ + ρsi′j′s′ + ρdi′j′s′−
(2− αijh − αi′j′h + γijsi′j′s′)M,

∀j ∈ J, i ∈ Oj , s ∈ Nij , Oij 6= Oi′j′ (8)

ti′j′ + ρsi′j′s′ ≥ tij + ρsijs + ρdijs−
(3− αijh − αi′j′h − γijsi′j′s′)M,

∀j ∈ J, i ∈ Oj , s ∈ Nij , Oij 6= Oi′j′ (9)

3. Proposed Genetic Algorithm
A Genetic Algorithm (GA) is a meta-heuristic
search algorithm inspired by Charles Darwin’s the-
ory of natural evolution. This algorithm emulates
the process of natural selection where the fittest
individuals have higher chances to propagate their
genes to the next generation. In the proposed hy-
brid GA there are eighth main phases to be con-
sidered: (1) The Initial Population, (2) The Encod-
ing and Decoding, (3) The Fitness Evaluation, (4)
Selection, (5) Crossover, (6) Mutation, (7) Variable
Neighborhood Search and (8) the Dynamic Termi-
nation Criteria. Compatibility tables were imple-
mented to assist the correct allocation of the re-
sources to the tasks. This idea was based on [8].
The tables have zeros (meaning can’t perform) or
ones (meaning can perform) which inform which
jobs can be performed by which machines and
workers.

3.1. Initial Population
Two distinct implementations which rely on differ-
ent logic were created: the Initial Population Job
Randomization (IPJR) and the novel Incremental
Initial Population Worker Randomization (IIPWR).
In both cases, a limitation in the resources alloca-
tion, namely the Prohibition Condition (PC), was

3

implemented. PC restricts both workers and ma-
chines to work more than X and Y times in a row
(respectively). The rationale behind the PC con-
cept is that while assigning workers and machines
to a certain job, both analysts and appliances may
repeat themselves infinitely, as long as they can
perform the chosen job, leading to inferior solutions
solutions.

Initial Population with Job Selection

A novel Job Selection Procedure is utilized, which
combined three different methods: a Random Ini-
tialization, a Longest Processing Time selection
and a Most Number Of Tests selection. All three
of these methods can only choose from the pool
of available tests previously defined. Random Ini-
tialization is as it’s name suggests, each job is se-
lected randomly. The Longest Processing Time
selects the one with the longest processing time.
The Most Number Of Tests chooses a job with the
most amount of tests needing to be performed. In
the latter two selections, if there are multiple jobs
with the same conditions one of those is then cho-
sen by randomization. In order to choose which
implementation is used, weighs (w1, w2, w3) are
assigned to each alternative corresponding to the
probability that each selection method has to be
chosen.

Incremental Initial Population with Worker Se-
lection

The logic behind this implementation is based on
the concept of puzzle pieces where, ideally, there
is a sequence of jobs that can be perfectly grouped
together, much like a puzzle. In the context of this
problem, once a worker is assigned to a job and a
machine, the analyst is automatically assigned to
three time instances on that machine that he must
respect. The time in between these time instances
is called Idle Gap and the problem is best solved
when this interval of time is minimized. This means
that if one could find a series of jobs able to be per-
formed by the same worker on different machines
where each job could perfectly fit in the Idle Gap of
the others this problem would be optimally solved.

In order to understand which jobs best fit to-
gether, an Increment Table 1 was calculated with
it’s results being the time that the worker has to
wait before he can work on the next assigned job.

Table 1: Increment Table

1.1 2.1

1.1 − 0

2.1 19 −

Table 2: Three layered Encoding Chromosome

Operation Sequence (OS) 1.1 3.1 2.1 3.2 4.1

Machine Selection (MS) 2 3 5 4 6

Analyst Selection (AS) 1 1 1 2 1

The number of jobs grouped together in a row is
capped at two in a row, since, the initial solution is
assumed to be improved by the genetic algorithm
later on. Increasing the complexity of the algorithm
on the Initial Solution would lead to increases in
computational time and would risk falling into local
optimums.

3.2. Encoding and Decoding
The implemented encoding scheme has three
chromosomes: the operation sequence chromo-
some (OS), representing the process sequencing
of operations; the machine selection chromosome
(MS), which represents the allocation of machines
and the Analysts selection chromosome (AS), rep-
resenting the worker assignment layer. The num-
ber of genes in the chromosome equals the total
number of operations in all jobs. This representa-
tion forces the algorithm to keep the same assign-
ment of resources when a test changes it’s position
respecting the allocation of machines and workers.
Considering an example with 4 Jobs, 2 Analysts
and 7 machines, table 2 represents a possible con-
figuration for the encoding mechanism.

The Decoding process can be divided into four
steps: firstly, define the temporal vectors of the ma-
chines and workers (Worker and Machine available
time). The vectors have a resolution of 0.1 repre-
senting the workers’ and machine times necessary
in each operation. Secondly, select the operations
from the OS vector individually from left to right and
obtain the corresponding machine and analyst. Af-
terwards, define a third temporal vector of the se-
lected job, the operation work times vector with the
same 0.1 time resolution. Subsequently, compare
the vectors and place the operation as early as
possible. Update the temporal vectors and repeat
until all jobs are assigned. The decoding process
with the temporal vectors is exemplified in figure 1
for two distinct consecutive operations where the
machine is not repeated.

3.3. Fitness Evaluation
The Fitness Evaluation quantifies all individuals in
terms of the chosen objective function. A fitness
score is assigned to each solution which correlates
with the probability that the individual has of being
selected for reproduction and thus remaining or not
in the gene pool. This process consists of perform-
ing the decoding for all the individuals in the popu-
lation to obtain the time that each job has finished.
Afterwards, the fitness value can be calculated de-

4

Figure 1: Job allocation example with two consecutive opera-
tions

pending on the objective function.

3.4. Selection
The Selection phase is achieved through an Elitism
operation (which starts once the number of itera-
tions is superior 1/8 of the total population) and is
followed by a Tournament Selection. The Elitism
procedure ensures that the alpha solutions are
present in the parent population and are not dis-
carded by the Tournament Selection. The delay
added to the elitism is to guarantee that the solu-
tion has been improved prior to defining any elite
population. This aids in eliminating local optimums
at the beginning of the algorithm where the solu-
tion presents worse fitness values. The Tourna-
ment Selection chooses five random solutions from
the main population and selects the best one to
be added to crossover population. This procedure
is repeated until the final population has a certain
predefined amount of tournament winning individ-
uals.

3.5. Crossover
Three different crossover operations are explored:
Single Point Crossover, Double Point Crossover
and MPX crossover. As previously utilised in the
Population Initialization phase, weights were im-
plemented to account for different probabilities of
choosing a certain path. After every crossover, fea-
sibility and precedence checking is required.

Single Point Crossover
Choose a random point in both parents genes.
This divides the parents chromosomes in two sec-
tions identical sections. Afterwards, the crossover
is completed by swapping parents chromosomes
right sides.

Double Point Crossover
Choose two different random numbers (in the chro-
mosome length) which correspond to a certain in-
terval gap in the parents genes. This middle sec-
tion is swapped between the two to produce both

offspring.

3.6. MPX Crossover
Based on [10], the MPX is responsible for the
change in the allocation of workers and machines.
It revolves around the creation of a random binary
vector with the same length of the chromosomes,
which, depending on the value it assumes on a
certain gene, uses the machines and workers from
one of the parents to assemble the off-springs. The
procedure is the following: assign to the offspring
with the same number of the parent the same or-
der of jobs. Going from left to right until the end of
the chromosome, retrieve the number of the binary
value on that position. If the value of the binary vec-
tor is equal to one, parent 1 will assign offspring 2
with the machine and worker he has been assigned
to the job the offspring 2 has in that position. The
opposite happens for parent 2 and offspring 1. If
the value on the random vector is equal to zero,
parent 1 assigns the machine and worker he has
for that job to the offspring of the same number.
Likewise for the second parent and offspring.

3.7. Mutation
Offspring population have a certain chance to mu-
tate. The mutation phase starts with a Shift Mu-
tation based on [2] followed by an ”Intelligent Mu-
tation” [6]. Depending on a certain predetermined
probability, a machine and worker mutation is per-
formed. Afterwards, the non-mutated off-springs
are combined with the mutated ones to form the
final off-springs population.

Shift Mutation
The Shift mutation resembles the Double Point
Crossover where two different random numbers
with the length of the chromosome are firstly ob-
tained. Each number will correspond to a gene
(with a job, worker and machine) and will swap po-
sitions with the other number’s position.

Intelligent Mutation
Select one of the operations from the machine with
maximum workload and assign it to the least used
machine. If the machine is not compatible no mu-
tation occurs.

Worker and Machine mutation
This mutation operation uses the same shifted
genes from the Shift Mutation. Here both machines
and workers are changed to new compatible work-
force to perform that job. If no compatibility exists
no change is performed.

3.8. Variable Neighbourhood Search
VNS explores neighborhoods of a current incum-
bent solution. If the new solution proves fitter than
the previous one, then the algorithm selects it as

5

the incumbent solution and explores further neigh-
bor solutions until a termination criteria is achieved.
This ”exploration” is performed by operations simi-
lar to the ones implemented in the mutation phase
in section. VNS was implemented in an effort to
improve GA’s slow convergence speed due to un-
guided mutations.

In the implemented VNS, 4 neighborhood struc-
tures were implemented: Exchange, Replace,
Change and Intelligent structure. Different search
algorithms were implemented as it allows for differ-
ent neighborhood searches which, can potentially
improve the convergence speed of the algorithm
thus reducing the makespan.

The Exchange structure is analogous to the
same exact principle as the shift mutation. The
Change structure is equivalent to the Worker and
Machine Mutation and the Intelligent structure fol-
lows the same logic as the one with the same name
in the Mutation phase. The Replace mutation con-
sists of selecting two different random numbers
within the chromosome length which consists of
two different genes. Subsequently, the gene po-
sition that corresponds to the smallest number is
placed in the position on the encoding table of the
biggest number. The gene in the newly occupied
position moves one position backwards as well as
the rest of the genes until no more overlapping oc-
curs.

3.9. Dynamic Termination Criteria
The termination criteria was implemented in the
event the algorithm did not yield any improvements
after N iterations. Since this lack of improvement
may be related to a local optima, a procedure was
implemented to avoid the algorithm being trapped
in one. In this case, a counter of the successive
non improving iterations was implemented, that

when it surpasses
1

4
of the termination criteria vari-

able, the percentage of offspring and the mutation
percentages increases to 80% and 50% respec-
tively. Also if the VNS is active it increases to
30% of the best population. Afterwards, an intel-
ligent mutation is performed to all the population.
If the total completion time of the instance is re-
duced, this new individual replaces the previous
one. If the algorithm improves on following itera-
tions it return to the normal values and the counter
is returned to zero. The algorithm may end after a
predefined number of non-improving consecutive
iterations is reached (termination criteria). The al-
gorithm is also limited to 3h of total computational
time.

4. Results & discussion
4.1. Descripiton of the Experiments
To allow for realistic data, a study by Martins et al.
[7] was conducted on real quality control laboratory

and an instance generator was developed. This
program aims to mimic the conditions faced on a
regular working day in this Quality Control Labora-
tory environment.

Regarding the job types, J , three are considered
in all experiments. For each job type, the number
of operations is determined using a discrete uni-
form distribution (DUD), ranging from 1 to 3. Each
operation has a processing time pij ranging from
1 to 5 and the worker tasks start from three time
points: the start of the operation, at 30% of oper-
ation processing and at 90% of operation process-
ing. The duration of the worker tasks are: 5%, 10%
and 10% of the total processing time, representing
the setup, intermediate and disassembly/data pro-
cessing tasks.

The parameters that characterise experiments
are the number of jobs n, number of machines
m, number of workers w and the flexibility. Ex-
periments have been developed for 5, 10 and 70
jobs. The smaller instances have been used to
facilitate the implementation of the algorithm and
are not representative of the QC lab dimension.
The medium instances (10 jobs) represent the
daily workload of a QC laboratory. The larger 70
job instances mimic the realistic QC labs weekly
scheduling problem. The number of machines is
set at 7, representing different types of equipment
present at laboratories. For this thesis, the imple-
mentation developed is flexible. i.e., it can be used
for any number of machines.

The number of workers can be 2, 3 and 7, rep-
resenting cases that are respectively, worker re-
stricted, balanced and machine restricted. The
flexibility parameter is used to compute the ma-
chines and workers that are able to carry out a
certain operation. When generating the instance,
each one of the workers and machines has a prob-
ability equal to their flexibility of being eligible to
carry out the operation. Experiments are done for
flexibilities of 30% and 60%, encompassing cases
where machines and workers have less or more
general competences. If more than one machine
and worker can perform a certain job, the time they
take is the same, i.e., there is no heterogeneity be-
tween workers and machines that can perform the
same operation.

Three replications of each experiment have been
generated to improve the reliability of results. With
n taking three possible values, w taking three pos-
sible values and the flexibility with two possible val-
ues, the total number of instances with different
experimental parameters is eighteen. Consider-
ing that each of these instances have three distinct
unique parameter variations, this is three replica-
tions, there are a total of fifty-four distinct experi-
ments.

6

Figure 2: Study of the Total Completion Time with different pop-
ulation sizes

4.2. General GA Parameters
The general genetic algorithm parameters are con-
sidered to be the essential parameters, present in
every GA. These following tests ran without VNS
and a only one sample instance was considered
(70 jobs, 7 machines, 3 workers, 0.3 flexibility and
number 0) since to understand the degree of con-
vergence of the algorithm the tests need to run for
long periods of time, therefore, computing all 18
instances of 70 jobs proved to be unfeasible. The
results are the average of the 5 best objective func-
tions.

Population Size
A total of 50 iterations were considered and kept
constant as well as an offspring percentage of 70%
and a mutation chance of 50%. The average stan-
dard deviation of the results was 57.2 hours. The
results are presented in figure 2. The final results
are meant to run the instances for 3h (10800 sec-
onds), therefore, a population 400 off population
was selected since it provides a good compromise
between the results and the computational time.

Offspring Percentage
A total of 100 iterations with a total population of
400 was considered. The percentage of popula-
tion to be selected for the offspring operation was
changed from 10% to 100%. The results can be
seen in figure 3, in which the average standard de-
viation is 62.4 hours. The values presenting the
best results for the offspring percentage are the
50% and 70%. Since the objective is to obtain the
best possible results, the latter value was consid-
ered.

Mutation Percentage
A total of 50 iterations were considered while the
other parameters were the ones obtained from the
previous tuning (400 of population and 70% of off-
spring). Figure 4 shows the results in which the

Figure 3: Study of the Total Completion Time with different per-
centage of Offspring

Figure 4: Study of the Total Completion Time with different per-
centage of mutation

average standard deviation is 67.4 hours. The
best percentage of mutation is 30% as it induces
the least amount of total completion time in the in-
stance with similar computational time to the re-
maining results.

4.3. Initial Population
Job Selection Procedure
Tests were performed in all large instances (70
jobs) in order to verify which combination of
weights (w1, w2, w3) proved better results. Table
3 presents the sum of all instances for each weight
selection. It can be noticed that when the weight
one, w1, has 100% of probability of being chosen,
which corresponds to the random initialization, the
results proved to be the best. It is worth mentioning
that the 70 Job instance is used throughout all re-
maining tuning tests (unless specified in contrary)
as it has the most number of job allocations and
consequentially, more reliability, while also being is
the target instance of study for this work.

Prohibition Condition Study
The results on table 4 were obtained by performing
the average of five runs on a population size of 500

7

Table 3: Weight Tuning

Weigths Total Completion Time

100|0|0 95536
0|100|0 100871
0|0|100 109048
40|30|30 103146
60|20|20 100805
60|30|10 99976
60|10|30 101799
80|10|10 98488
90|5|0 97031
95|0|5 96009
98|2|0 95759

Table 4: Prohibition Condition Study with different rules

GA Average of the
Total Completion Time

No Prohibition Condition 5398
W = 3, M = 2 5182
W = 3, M = 3 5229
W = 3, M = 4 5255
W = 3, M = 6 5269
W = 4, M = 3 5242
W = 4, M = 4 5260
W = 4, M = 5 5275
W = 5, M = 5 5279

for each instance and then averaging all instances
for the same coefficients. The average standard
deviation across all instances was +/- 259. It can
be noticed that the prohibition condition achieves
the best results for W=3 and M=2, improving re-
sults by 4% when comparing with a GA with no
prohibition condition.

IP with Job Selection vs Incremental IP with worker
selection
The final addition to the Initial Population is the In-
cremental Initial Population with worker selection.
Table 5 contains a comparison between the sum
of the average values of the Normal initialization
(IPJS) over five runs with the sum of the average
values of this new approach. These are obtained
from a population of 500 individuals and only the
large instances were considered. The Increment
Initialization improves the results by a margin of
5.3% when comparing to the Normal Initialization
while also improving the algorithm’s convergence
speed.

4.4. Crossover Tuning
Tests were performed to the Crossover methods
in order to identify which combination of weights
(c1 - Single Point Crossover, c2 - , Double Point
Crossover and c3 - MPX crossover) proved fitter re-
sults (table 6). The best results were obtained for
c1 = 10, c2 = 5, c3 = 85

Table 5: IP with Job Selection (normal initialization) vs Incre-
mental IP with worker selection (increment initialization)

Type of Initial Population Sum of the
Total Completion Time

Normal Initialization 93208.7
Increment Initialization 88273.7

Table 6: Crossover Tuning

Crossover Weights Sum of the
Total Completion Time

100|0|0 73931
0|100|0 73189
0|0|100 70439
30|30|40 71849
20|20|60 71497
10|10|80 71222
5|5|90 70071

33.3|33.3|33.4 71711
0|10|90 70935
10|0|90 70093
10|5|85 69645
15|5|80 70562
20|5|75 70256

Table 7: Number of Occurrences on each percentage

Best VNS Percentage (%) 5 10 20 30 40 50 60

Number of Occurrences 2 3 7 7 4 1 2

4.5. Variable Neighborhood Search
The parameters to tune in the VNS are the follow-
ing:

(1) - Percentage of best population to undergo
VNS.

(2) - Number of iterations in the VNS.
These must be tuned so that the increase in com-
putational time provided by the VNS is compen-
sated by an increase in the convergence speed. In
order to tune these parameters the algorithm ran
with a total population of 20 individuals for 10 itera-
tions. All the values were calculated from an aver-
age of the 5 best individuals on each instance. The
results were plotted and afterwards, the number
of occurrences on each percentage was summed
and is presented on table 7, indicating that the
best percentage of VNS is found between 20 and
30 percent. Therefore, a percentage of 25% for
the VNS was chosen. The same procedure was
conducted for the number of iterations in the VNS
which resulted in a total number of four.

4.6. Final Results Comparison
The final results were compared with a Branch and
Cut algorithm from [7] resulting in tables 8, 9 and
10. From table 10 it is proven that both Genetic
Algorithms surpass the Branch and Cut algorithm
for large instances with the simple GA surpassing
with a margin of 57%. Between both GA’s, the
one without VNS proves fitter results for medium
and large sized instances by a margin of 0.6% and
0.4% respectively. For small instances, the GA with
VNS obtains fitter results by 0.1% when compared
to the simple GA. For small sized instances (8)
the Branch and Cut algorithm surpasses both GA’s
(by 2.3% when compared to the GA + VNS). For
medium instances (table 9) the BC presents better
results when the number of workers is 2, however,
as the instance size increases towards seven work-
ers it looses it’s advantage. Therefore, for medium

8

Table 8: Final Results Comparison for 5 job Instances
Workers Flex Rep GA GA + VNS B&C

0 41.3 41.3 41.3
1 54.9 55.1 54.00.3
2 23.6 23.6 23.6
0 42.3 41.8 41.7
1 45.8 45.5 44.3

2

0.6
2 23.6 23.6 23.3
0 70.2 70.2 67.7
1 34.3 34.3 33.30.3
2 43.3 43.3 40.6
0 27.4 27.4 27.4
1 26.8 26.8 26.7

3

0.6
2 33.0 33.0 32.3
0 29.7 29.7 26.7
1 46.4 46.4 46.40.3
2 24.1 24.1 21.4
0 26.1 26.0 26.0
1 42.1 42.1 42.1

7

0.6
2 27.0 27.0 27.0

Table 9: Final Results Comparison for 10 job Instances
Workers Flex Rep GA GA + VNS B&C

0 92.1 91.2 89.8
1 188.8 187.8 189.50.3
2 54.7 55.4 54.4
0 120.7 120.1 120.3
1 108.4 113.3 111.3

2

0.6
2 130.2 130.1 127.0
0 108.2 108.2 106.3
1 123.4 122.5 114.30.3
2 96.4 96 94.8
0 61.3 60.7 60.2
1 90.4 92.9 105.2

3

0.6
2 73.9 75.2 76.0
0 103 105.1 113.4
1 119.6 120 119.90.3
2 93.1 93.8 87.1
0 102.6 106.5 129.9
1 101.6 98.7 141.2

7

0.6
2 84.4 85.6 99.9

sized instances the GA performs better than the
BC by a margin of 0.6% and the GA + VNS obtains
the same overall results as the BC.

Representation of the Solution
In order to represent the solution a Gantt Chart for
both workers and machines is computed. For the
solution of the first instance in table 10 with a total
completion time of 41.3 hours (and a makespan of
12.6 hours), it’s Gantt Chart for the machine allo-
cation is represented in figure 5.

Table 10: Final Results Comparison for 70 job Instances
Workers Flex Rep GA GA + VNS B&C

0 3526.9 3656.6 8149.5
1 5522.8 5544.4 9910.80.3
2 3539.5 3509.2 -
0 3744 3560.8 10172.7
1 3888.7 3887.9 11286.7

2

0.6
2 3906.4 4366.4 9030.0
0 3304.5 3366.4 8541.5
1 6401.2 6431.8 -0.3
2 4077.1 4102.9 8423.6
0 2502.6 2466.8 5829.2
1 2828.1 2776.8 7738.7

3

0.6
2 1795.3 1827 3573.9
0 3111.2 3108.9 8255.7
1 4249.6 4178.9 9559.30.3
2 2551.2 2563.4 6130.3
0 3772.1 3724 -
1 1776.6 1811.2 -

7

0.6
2 3069.7 2926.5 -

Figure 5: Machine Gantt Chart of first instance of the small
instances

5. Conclusions
The objective of this thesis was to develop tools
capable of creating a real life-size schedule for
a Quality Control laboratory environment using a
meta-heuristic algorithm. To achieve this objective,
a hybrid Genetic algorithm was implemented.

The Initial Population had a system of weights
which corresponded to probabilities of performing
a certain path in the assignment of the genes. The
random Initialization (w1) proved the best results
overall. Also, the prohibition conditions proved fit-
ter results while restricting the number of work-
ers in a row to 4 and machines to 3. The Incre-
mental Initial Population with worker selection also
proved to improve the algorithm’s convergence and
overall results. Regarding the Crossover, unlike
the initial population, the fitter results in this phase
were found for a combination of the three weights:
c1 = 10, c2 = 5 and c3 = 85. The general GA pa-
rameters were studied and a tuning was performed
for the total population size, the total percentage of
offspring and percentage of mutation. The Variable
Neighborhood Search proved to be best when the
percentage of the best population chosen to per-
form VNS was 25% and when a total of four itera-
tions were performed.

The GA with VNS proved fitter results when com-
pared to the simple GA only for the small instances
with five jobs but could not match with the op-
timal values from the Branch and Cut algorithm.
The final results and comparison with bench mark
tests was performed and the implemented algo-
rithm proved fitter results for the GA without Vari-
able Neighborhood search for large and medium
instances. Since the objective of this dissertation
was to create a real life-size schedule for a Qual-
ity Control laboratory, the 70 job instances are the
ones mimicking this dimension. The GA in this

9

study improved the results from previous studies
by a total of 57%. Therefore, the objectives of this
dissertation were met and a novel implementation
was successfully introduced.

5.1. Future Work
The scheduling of resources extends further than
the dual resource constrained flexible job shop
problem. Workers do not all perform with the same
level of productivity, resources are often not limited
to workers and machines, in some cases it may be
useful to consider other objective functions and op-
timization criteria, even simultaneously. Therefore,
as of future work, this thesis could be extended to a
multi-resource or multi-objective scheduling prob-
lem. Also heterogeneous workers may be consid-
ered and learning curves implemented in the study.

Also, due to unpredictable events, there may be
shortage of supply or an urgent order in need to be
attended. Therefore, dynamic scheduling is often
of high importance in scheduling problems which
could be a valuable extension on this thesis.

On another matter, the perfect tuning of parame-
ters in a genetic algorithm is often something very
complicated since these are not mutually exclu-
sive and often depend on each other. A further
study could be performed in order to understand
how these parameters could be better tuned and
access which parameters have higher correlation
between each other. Perhaps a cross-tuning of the
parameters could be studied in future work, or a
tuning using Bayesian optimization.

The study of the quality control laboratory
scheduling is still very recent. This is known to be
the first study in this environment to make use of a
meta-heuristic algorithm. Further meta-heuristics
could be developed and compared to the one in
this work and possibly find which meta-heuristic
provides fitter results to the problem at hand.

Also, it would be of interest to study how the cur-
rent Genetic Algorithm could be made faster and
more efficient. As an example, parallel comput-
ing could be explored in the algorithm in order to
reduce the fitness evaluation phase computational
time.

References
[1] M. Akbar and T. Irohara. Engineering Applications of Arti-

ficial Intelligence Metaheuristics for the multi-task simulta-
neous supervision dual resource-constrained scheduling
problem. Engineering Applications of Artificial Intelligence,
96(March):104004, 2020.

[2] M. Bayão and H. Mesquita. Scheduling of Flexible Job
Shop Problem in Dynamic Environment, 2017.

[3] A. Costigliola, F. A. Atde, S. M. Vieira, and J. M. Sousa.
Simulation Model of a Quality Control Laboratory in Phar-
maceutical Industry. IFAC-PapersOnLine, 50(1):9014–
9019, 2017.

[4] M. Cunha, L. Viegas, M. Vieira, M. T, and M. Susana. Dual
Resource Constrained Scheduling - Quality Control Labo-
ratories. IFAC PapersOnLine, 52(13):1421–1426, 2019.

[5] J. T. Felan and T. D. Fry. Multi-level heterogeneous
worker flexibility in a Dual Resource Constrained (DRC)
job-shop. International Journal of Production Research,
39(14):3041–3059, jan 2001.

[6] D. Lei and X. Guo. Variable neighbourhood search for
dual-resource constrained flexible job shop scheduling. In-
ternational Journal of Production Research, 52(9):2519–
2529, 2014.

[7] M. S E Martins, J. L Viegas, T. Viegas, B. Coito, A. Costigli-
ola, S. M Vieira, J. Sousa, and J. Figueiredo. Minimizing
total completion time in large-sized pharmaceutical quality
control scheduling, Submitted and pending approval.

[8] X. Wu, J. Peng, X. Xiao, and S. Wu. An effective approach
for the dual-resource flexible job shop scheduling problem
considering loading and unloading. Journal of Intelligent
Manufacturing, 32(3):707–728, 2021.

[9] C. Xianzhou and Y. Zhenhe. An improved genetic al-
gorithm for dual-resource constrained flexible job shop
scheduling. Proceedings - 4th International Conference on
Intelligent Computation Technology and Automation, ICI-
CTA 2011, 1:42–45, 2011.

[10] M. Yazdani and M. Zandieh. Evolutionary algorithms for
multi-objective dual-resource constrained flexible job-shop
scheduling problem. OPSEARCH, 56(3):983–1006, 2019.

[11] J. Zhang, W. Wang, and X. Xu. A hybrid discrete particle
swarm optimization for dual-resource constrained job shop
scheduling with resource flexibility. Journal of Intelligent
Manufacturing, 28(8):1961–1972, 2017.

10

