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Abstract

Quality control laboratory scheduling has huge potential to reduce costs and increase production. How-

ever, this is not widely discussed or supported by academics. This thesis proposes a hybrid genetic

algorithm with and without variable neighborhood search to minimize the total completion time.

The problem is formulated as an extension of a Dual Resource Constrained Flexible Job Shop Prob-

lem for the allocation of both machine and worker resources. This extension, divides each job in three

phases allowing the worker to perform other jobs in between these mandatory presential stages. While

maintaining the traditional structure of genetic algorithms, this work presents a way of creating the Initial

Population, based on increment tables which groups the most compatible jobs together. Also, rules re-

garding the allocation of resources to sequential tasks were introduced. A new combination of crossover

operations with weighted probabilities are proposed, proving that combining multiple types of crossovers

achieves fitter results. Additionally, a novel combination of mutation operations is implemented and a

variable neighborhood search with four different structures was introduced alongside a dynamic termi-

nation criteria that adapts the parameters of the algorithm. A tuning of the parameters was performed

and the final results were compared to the benchmark. This study is competitive with the benchmark

for small instances, achieving the optimal solution for seven of them. For medium sized instances the

proposed genetic algorithm surpasses the literature. For large sized instances this study generated

significant results surpassing the compared results by 57%.

Keywords

Quality Control Laboratory; Dual Resource Constrained Scheduling; Flexible Job Shop Problem; Hybrid

Genetic Algorithm; Total Completion Time.
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Resumo

O escalonamento de um laboratório de controlo de qualidade tem um enorme potencial para reduzir

custos e aumentar a produção. Todavia, este problema tem tido pouco suporte por parte da academia.

Esta tese propõe um algoritmo genético hı́brido com a possibilidade de realizar uma procura local para

minimizar o tempo total de conclusão. Este problema é formulado como uma extensão do escalona-

mento flexı́vel de duplo constrangimento de recursos para a alocação de tanto máquinas como trabal-

hadores. Esta extensão, divide cada trabalho em três fases, possibilitando ao analista ser alocado em

mais do que uma tarefa ao mesmo tempo, em máquinas diferentes, durante os perı́odos em que este

está livre.

Mantendo a estrutura tı́pica de um algoritmo genético, o trabalho desenvolvido combina novas maneiras

de criar a População Inicial, baseadas em tabelas incrementais que junta os trabalhos mais compatı́veis.

Ainda, regras para alocação sequencial de recursos foram introduzidas. Uma nova combinação de

operações de crossover com probabilidades baseadas em pesos é proposta, provando que combinando

diferentes tipos de crossover obtém-se melhores resultados. Adicionalmente, uma nova combinação de

mutações é também aplicada e uma procura local com quatro estruturas distintas foi introduzida junta-

mente com um critério de paragem dinâmico que adapta os parâmetros do algoritmo. Um afinação

dos parâmetros foi realizada e os resultados finais foram comparados com os da literatura. Este

estudo é competitivo com a literatura para pequenas instâncias, alcançando soluções óptimas para

sete destas. Para instâncias médias o algoritmo genético ultrapassa os resultados da literatura. Para

grandes instâncias este estudo gerou resultados significantemente melhores ultrapassando os estudos
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anteriores por 57%.
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Nomenclature

Indices

j subscript for jobs

i subscript for operations

k subscript for machines

h subscript for workers

s subscript for tasks

Dimensions

n number of jobs

qj number of operations of job j

m number of machines

w number of workers

Nij number of tasks in operation i of job j

Sets

J set of jobs

K set of machines

K set of workers

Oj set of operations of job j

Kij set of machines that can be used for operation Oij

Wij set of workers that can be used for operation Oij

Parameters

pij processing time of operation i of job j

ρsijs time after the start of processing of operation i of job j

ρdijs duration of intervention s in operation i of job j

M very large number
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Variables

tij start time of operation i of job j

xijk binary assignment of operation i of job j to machine k

αijh binary assignment of operation i of job j to worker h

βiji′j′ and γiji′j′ sequencing variables

J total completion time

cj completion time of job j
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1.1 Motivation

Rome wasn’t built in a day - or is it the case that Rome wasn’t built without scheduling? For over

thousands of years, humans have been using scheduling as a tool to build and coordinate operations.

Scheduling is central to how jobs are planned and completed and provides order to businesses. Without

scheduling, workers simply cannot work. In its infancy, scheduling was grasped as a concept, for exam-

ple comprehending activities and sequencing of operations. This transitioned to executing wide-scale

operations such as building pyramids (2780 BCE), to the great wall of China (7 BCE) which required

scheduling hundreds of thousands of workers. Mosteiro dos Jerónimos is a masterpiece of construc-

tion of the 16th century which took over a century to plan and build. Convento de Mafra, dates to the

18th century and has over 1200 rooms. None of these monuments could ever have been accomplished

without some form of scheduling.

However, most empirical evidence and sources suggest that formal scheduling processes were only

implemented during the 19th Century. In today’s scheduling tools, a commonly used chart to show the

allocation of resources in time is the Gantt Chart, propagated by Henry Gantt during the early 20th cen-

tury. The purpose of this tool was to help organisations plan repetitive tasks, measure productivity levels,

and demonstrate how employees’ resources can be allocated more efficiently. The Gantt Chart revolu-

tionised the way people work and is now deployed as a powerful tool to help project managers schedule

and plan projects. Therefore, utilising scheduling processes are instrumental in aiding efficiency and

productivity in the workplace. [3]

Also, one of the earliest scheduling tools is Karol Adamiecki’s ‘Harmonygraph’ (figure 1.1). Karol

sought to create ‘work harmonization’ and demonstrated the significance of creating practical scheduling

and it has been argued that companies who implemented Karol’s methods experienced an increase in

productivity of up to 400% [3].
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Figure 1.1: The ’Harmonygraph’ by Karol Adamiecki’s [1]

The Y axis shows the time scale, and X axis shows a list of tasks. The duration of the tasks is

shown by a vertical sliding tab. This chart also depicts the activities the predecessors and successors

participated in. Although this was not published until 1931, Adamiecki’s harmonygraph inspired the CPM

(Critical Path Method) and PERT (Project Evaluation and Review Technique) systems.

The evolution of the scheduling science allows systems to be more complex, with a higher number

of activities and sequencing of operations. Scheduling is required for complex manufacturing systems.

Manufacturing systems have evolved and become increasingly industrialized, more reliant on technology

with state-of-the-art thinking and machinery. Since industrial manufacturing first started it has been

gone through four pivotal developments. Each revolution is unique and serves as major turning points

within society. Each revolution adopted new methods of manufacturing, which resulted in significant

improvement to products and competitiveness of companies.

Dating back to the middle of the 18th century, the First Industrial Revolution relied on the transition to

new manufacturing processes using water and steam. Industry 2.0, also known as ”The Technological

Revolution” introduced superior electrical technology. The Third Industrial Revolution (1970) began with

the first computer era, where automated systems became a commonality, although still very dependent

on human input and intervention. In the XX century companies targeted for large batches, low costs and

standardization. [4]

Currently, society is experiencing the fourth wave of the Industrial revolution, Industry 4.0, and

academia is already looking forward to a fifth. In the XXI century, standardization of the internet paved

way for a fast-paced world and accelerated the expansion of globalisation. The internet enabled the inter-
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connectedness of countries, goods, news, and people on an unprecedented scale. With easier access

to news and trends, this led to rapidly changing consumer demands, and resulted in industries need-

ing to become more adaptable to satisfy demand and allow for greater customization The era of mass

production is gone, more and more industries focus on the concept of mass customization. Therefore,

the integration of smart systems, machines embedded with sensors, software and other technologies

with the purpose of connecting and exchanging data with other devices and systems over the internet

is of major importance. With this technological advances, industries are capable of producing smaller

batches with smaller inventories, different products at the same time and have a better control of the

material flow in the supply chain while maintaining profitable margins. [5]

A particular industry that requires the adaptation and transition to the IoT and Industry 4.0 is the Phar-

maceutical Industry. Pharmaceutical companies operate in one of the most competitive and regulated

markets, where compliance with Good Manufacturing Practices (GMP) and Good Laboratory Practices

(GLP) is mandatory to commercialize any drug. Without such tight regulations, medicines could become

serious dangerous to public health [6]. Therefore, companies that successfully integrate in their pro-

duction systems the IoT may obtain considerable better margins over the remaining market, despite the

tight regulations and the abundance of competition.

On the other hand, the future of the pharmaceutical sector is predicted to be prosperous. For exam-

ple, the race for the Covid-19 vaccine has stimulated innovation across the industry, but the sector has

been building momentum for years. Prior to the current pandemic, between 2006 and 2020, the Indus-

try’s Research and Development (R&D) was growing at an annual rate of 7.6% in the USA [7]. These

growing costs have been mainly associated with the shifting paradigm forcing the industry to change

from a one-drug-fits-all approach to more targeted drugs for small and specific patient and therapeutic

groups (mass customization) [4].

The challenge related to the high R&D spend is the rising expectations of investors for a high return

of investment (ROI). Margins are shrinking which dissuades potential investors from investing in new

medicines. R&D has not been living up to the expectations as the total number of molecular entities

commercialized in past years did not match with the extraordinary high R&D costs [6].

On the other side, there is a growing expectation for pharmaceutical companies to have a higher

proportion of developed products regulated and accepted by markets, and developed within faster time

frames. This in turn leads to higher profit margin. With both arguments in mind, corporations begin

to follow the principles of Industry 4.0 in order to apply them to the pharmaceutical industry which

is known as Pharma 4.0. Pharma 4.0 has brought a series of challenges including the scheduling

and rescheduling problem. The scheduling and rescheduling problem entails the search for the best

possible set of decisions which allows for an increase in profits, by cutting costs in the production and

quality control phases. This achieves higher throughput rates, lower energy consumption and more
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effective and planned maintenance, whilst maintaining high quality levels. [4].

During its development life cycle, a drug must be constantly monitored with laboratory tests to assess

its quality. In this scenario, quality control laboratories serves as a critical function in pharmaceutical

production and control [8]. It is responsible for ensuring that goods comply with predefined standards

by following guidelines and practices. More specifically, it is responsible for monitoring manufacturing

processes through the assessment of samples taken at different stages of the manufacturing process.

These can be taken at the early stages to raw materials, at mid stages and also at the final stages when

the finished product is developed. The assessment of these samples is completed by comparing with

the standard pre-defined quality metrics. Quality control makes it possible to meet high product quality

standards [9] by promptly detecting deviations in the quality of a manufacturing stream.

The role of managing jobs within QC laboratories is a complicated and complex task. For example,

there are thousands of different tasks, which each require the delegation of specific skills and specialised

instruments in order to execute each test. Laboratory management involves resources (both personal

and equipment) planning and scheduling, analysis prioritization results evaluation and documentation.

The management of jobs within contract manufacturing organisations (manufacturers that produces

goods under the brand of its clients), causes greater complications. This is because these manufacturers

deal with a large array of projects and handle a variety of materials. Given the high mix of products and

tests it is important to develop effective strategies for laboratory management. Laboratory information

management systems (LIMS) used in pharmaceutical industry often lack on essential features such as

schedule planning and stock management [6].

The purpose of this thesis is to propose a solution to automatically schedule real-sized QC labora-

tories. In this chapter, a literature review on scheduling methods will be presented mainly focusing on

flexible and dual resource constrained job shop problems as it represents the problem at hand. At the

end of the chapter a guideline of the thesis is given.

1.2 Scheduling in Manufacturing System

1.2.1 Flexible Job Shop Problem

Scheduling is a challenging problem in manufacturing shop floors and is known to be strongly an NP-

hard problem. It can be defined as the allocation of finite resources over a period of time in order to

optimize one or more objectives.

Shop-floors have limitations in the amount of different tasks a certain machine and worker can per-

form. Therefore, studies have included flexibility as an additional limitation to better simulate real manu-

facturing complex conditions. Brucker and Schlie (1991) [10] introduced a Job Shop Problem (JSP) with

machines as the only flexibility parameter achieving reasonable results for instances smaller than 3 jobs.
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Later, in 1997, Dauzère-Pérès and Paulli [11] formulated a Flexible Job Shop Problem (FJSP) in which

an extended version of the disjunctive graph model was presented, allowing for no distinction between

reassigning or resequencing an operation. This problem has been studied significantly by researchers

utilising genetic algorithms [12], [13] .

1.2.2 Dual Resource Constrained Problem

The dual resource constraint formulation is a generalisation of the multi-resource constraint, and includes

three sub-problems: (i) Assigning operations to resources of machines, (ii) Assigning operations to

resources of workers and (iii) Sequencing the operations on the machines considering workers in order

to optimize the performance measure [14]. This allows for simplifications and can be utilised for simpler

computational algorithms and in turn decreases computational time for larger problems [2].

Most of the literature predominantly focuses on equipment as the sole limiting constraint within JSP.

However, workers often appear as the bottleneck in many shop-floors, especially if both workers and

machines reach capacity constraints. Kher [15] focused on evaluating the policies for deploying work-

ers and the dispatching rules (”when” and ”where”) to offer a near-perfect delivery performance for vital

customers with very rigid delivery guidelines in the Dual Resource Constrained (DRC) job shop environ-

ments.

1.2.3 Dual Resource Constrained Flexible Job Shop Problem

In 1997, Patel [16] proposed, in his master thesis, a combination of the two problems, a Scheduling of

flexible Manufacturing Systems Under Dual-Resource Constraints using Genetic Algorithms. Six differ-

ent dispatching rules were formulated and used with eight performance criteria. These were compared

with single resource constrained JSP. The results demonstrated that depending on the number of re-

sources being constrained, different dispatching rules proved better results. For the DRC problem, the

shortest processing time performed the best. In 2000, EIMaraghy et al. [17] proposed an algorithm

where machines were set in work-centers of a 2 by 2 formation. Also using six different dispatching

rules, EIMaraghy et al., drew a similar conclusion to Patel’s, except EIMaraghy et al demonstrated that

the DRC did not prove better results for any dispatching rule in particular.

Labour flexibility is often expensive, as more training is required to be administered. In 2001 Felan

and Fry [18] investigated the effect of having different levels of training across the workforce (Multi-level

heterogeneous flexibility). Their results revealed that a combination of workers with very high flexibility

and workers with no flexibility, performed higher than those with near equal flexibility.

Yue et al. [19] investigated cross-training policies in DRC parallel job shop. The workers were re-

quired to learn new skills, as additional parts were added to the system. Moreover, if workers stopped
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performing a certain job for a significant period of time, a forgetting model would be implemented to

simulate the time they would take to perform it once they were assigned to that job again. This curve

reflected on the experience they have gathered and the time they had stopped doing the given work. In

2011, Xianzhou and Zhenhe [20], presented a new immune Genetic Algorithm which proved to have a

higher level of convergence precision when solving a DRC flexible job shop problem, through merging

immune and genetic algorithms.

Other meta-heuristic algorithms have proved to yield higher quality results in the Dual Resource

Constrained Flexible Job Shop Problem (DRCFJSP) while minimizing the makespan. Lei and Guo

(2014) [21] proposed a Variable Neighborhood Search (VNS) composed of two neighbourhood search

procedures and a restarting mechanism. In the same year Yazdani et al. [22] presented a Simulated

Annealing (SA) and a Vibration Damping Optimization (VDO) algorithms with the same minimization

criteria.

Apart from the makespan minimization, Paksi and Ma’ruf (2015) [23] developed a GA algorithm util-

ising indirect chromosome representation with two layers in order to reduce delays. In 2017 Zhang et

al. [24] proposed a Particle Swarm Optimization with a three layered encoding scheme in order to re-

duce the production period and cost. Zhong et al. (2018) [25] presented an algorithm that could lower

the makespan and total processing cost. They stated that the local search algorithms, tabu search, clas-

sical metaheuristic methods, or binary particle swarm optimization could not achieve the same results.

A branch population genetic algorithm based on compressed time-window scheduling strategy was im-

plemented, which did not hamper the quality of the initial population. An improvement in the makespan

was achieved by 7%.

1.2.4 Human Factors and Uncertainty

Researchers have extensively explored whether human factors should be considered in optimization

algorithms, i.e. methodologies which include factors such as fatigue and productivity. Despite the rea-

sonable considerations in favour of the human factors, Helander in 2000 [26] presented seven reasons

for not considering human factor in the production system development process which, among others,

included the unpredictability of human behaviour. This hardly quantifiable factor leads to uncertainty in

the production times which often complicates planning.

Scheduling with uncertain production times is also know as fuzzy scheduling. Lang and Li [27]

explore the uncertain operation time constraints using grey simulation technology and Non-dominated

Sorting Genetic Algorithm II considering delivery satisfaction, cost, energy consumption and noise pol-

lution as the optimized objects. In 2016 Gao et al. [28] presented an artificial bee colony algorithm

considering fuzzy processing time and new job insertion which demanded new rescheduling opera-

tions. This operation of performing new assignments based on newly arrived information is often called
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dynamic scheduling and it is another branch of scheduling problems.

1.2.5 A wider overview into Scheduling problems

This dissertation cannot possibly cover all different types of manufacturing scheduling. Nevertheless,

there are some that, due to its similarities or relevant considerations to the problem at hand, inspired the

development of this thesis and therefore, are worth to be mentioned.

Unpredictable events such as failure of a machine, sickness of a worker or new urgent batches ar-

riving at the shop floor, happen on any industry. This forces operations to be rescheduled, also known

as dynamic scheduling. In 2010, Araz and Salum [29] proposed a real-time (dynamic) scheduling ap-

proach to select a predetermined scheduling rule in DRC manufacturing systems. The model requires

a combination of Artificial Neural Networks, fuzzy inference system and simulation to provide the knowl-

edge base. Cunha (2017) [4], proposed a dynamic scheduling master thesis in which a flexible dynamic

environment existed. To cope with the dynamic environment two ant inspired multi-agent algorithms

were proposed. Recently in 2020, Andrade-Pineda et al. [30] proposed a solution for an automobile

collision repair shop where the re-scheduling needs, like due-date changes delay in arrival, changes in

job processing time and rush jobs were common. Reasonable schedules could be achieved under five

seconds.

In order to minimize the makespan, Zheng and Wang (2016) [31] developed a knowledge-guided fruit

fly optimization algorithm (KGFOA) which is an improvement from the simpler fruit fly optimization (FOA)

which enabled guiding the search process. In 2018, Guo et al. [32] proposed a hybrid genetic algorithm

which hybridizes genetic algorithm (GA) with variable neighborhood search (VNS) to overcome GA’s

slow convergence speed due to it’s unguided mutation.

Some studies also included loading and unloading times of fixtures, considering the influence of

resource requirement similarity among different operations, as well as the time to shift workers be-

tween assignments. Wu et al. [33], used similarity-based scheduling algorithm for setup-time reduction

(SSA4STR) and later introduced an improved non-dominated sorting genetic algorithm II (NSGA-II) to

optimize the DRFJSP when loading and unloading fixtures, also called, DRFJSP-LU. A goal in this

research was to minimize the total time fixtures were mounted and dismounted on/off the machines,

i.e. tasks using the same fixtures were encouraged to be completed sequentially, as it could save time

loading and unloading the fixture.

When more than a single objective is desirable to be optimized at the same time, often the problem

is called a multi-objective optimization. In 2017, Gong et al. [34] proposed an extension to the traditional

genetic algorithm, a memetic algorithm with the objective to minimize the maximum completion time,

the maximum workload of machines and the total workload of all machines. Approaching human factor

indicators, green production and processing time simultaneously, Gong et al. (2018) [35] proposed a
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hybrid genetic algorithm to solve the problem. In 2019 Yazdani and Zandieh [36] proposed two types

of multi-objective evolutionary algorithm including fast elitist non-dominated sorting genetic algorithm

and non-dominated ranking genetic algorithm. The objective was to solve Multi-Objective DRCFJSP by

minimizing the makespan and the critical machine workload simultaneously.

Some researchers have even drawn their attention to other constrained problems rather than exclu-

sively focusing on single and dual resource constraints. For example Gao and Pan (2016) [37] proposed

a multi-resource constrained flexible job shop scheduling problem by using a shuffled multi-swarm micro-

migrating birds optimizer. The constraints were labor, maintenance equipment, tooling and machinery.

This study was the first reported application of micro-evolutionary algorithms to solve flexible job shop

problems. The experimental results and statistical analyses demonstrated that the presented SM-MBO

algorithm clearly surpassed all of the other compared algorithms by a substantial margin. The authors

also pointed that their simple solution representation (only machine assignment and operation sequence

presented in the encoding), which was capable of decreasing the search space, was also a factor to be

taken into consideration in the algorithm’s success.

1.2.6 Laboratory Scheduling - Quality control specific applications

The scholars previously mentioned, haven’t included the context of the Quality control laboratory schedul-

ing. Whereby, workers can work on several jobs simultaneously, as it is only necessary to be present

in 3 different time instances on the assigned machine for a given job, representing the setup, intermedi-

ate and disassembly/data processing tasks. Each and every study previously mentioned, did not allow

workers to leave a certain machine unattended while it was performing a job.

In 2019 Cunha et al. [38] formulated a Mixed integer linear programming (MILP) algorithm to solve

the DRCFJSP in the Quality control laboratory scheduling (QCLS) environment in order to minimize the

makespan. The obtained solution could only reach the optimum for small instances where the number

of jobs considered was equal or less than three.

Recently, in 2020 Akbar and Irohara [39] proposed seven metaheuristic algorithms with six differ-

ent decoding schemes to solve what they named a multi-task simultaneous supervision dual resource-

constrained scheduling problem. The multi-tasking refers to the ability of a machine to work indepen-

dently of the worker and allows for parallel scheduling after an initial set up and a final supervision, much

like this thesis problem, (without the sampling operation in middle). Although, it does not allowing for

different skill levels in workers and machines (flexibility). The metaheuristics that proved the best results

were the modified Permutation-based Genetic Algorithm and the Modified Bees Algorithm. The same

authors, Akbar and Irohara [40], two year prior, presented a study explaining that this type of multi-

tasking ability of workers could yield workload imbalances between operators. Social sustainability was

therefore acquainted in a multiple objective model to minimize makespan and workload unbalances.
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In 2021, Martins et al. [2], sought to investigate the QC scheduling problem, formulated a three-level

dynamic heuristic with both a branch and cut and a tabu-search algorithm implemented for comparison.

The results showed that the heuristic outperforms the other algorithms for large-sized instances. The

present thesis results will be compared with the ones from Martins et al. [2] research.

1.2.7 Literature Review Scheme

In this section, a table review (1.1 and 1.2) of the different scheduling methods approached in the litera-

ture is presented in chronological order based on the criteria proposed by Dhiflaoui et al. (2018) [14].

The structure of the approach is composed of four criteria:

(1) Are the Machines Flexible? (Can machines perform more than one task but are limited in the

amount of tasks they can perform? ”yes” or ”no”).

(2) Are Workers Flexible? (Can Workers perform more than one task but are limited in the amount of

tasks they can perform? ”yes” or ”no”).

(3) The optimization criteria (Makespan, Cost, Lateness, among others).

(4) The implemented approaches (Mixed integer programming, Genetic algorithm, Tabu search,

among others).

1.3 Contributions

The added-value proposal can be summarized in the following topics:

Evaluation and development of previous literature work

The proposed framework is the first study conducted with a meta-heuristic algorithm in scheduling

problems for the Quality Control laboratory environment. Therefore, the first hybrid Genetic Algorithm

with Variable Neighborhood Search to solve such a problem is proposed and compared to bench mark

results.

Adaptation to the Quality Control Scheduling Problem

Apart from operating outside the common literature field, the present work includes six novel imple-

mentations: (1) - A probabilistic choice in the Initial Population based on weights which correspond to

different paths when selecting tasks. It proved to be best when kept on a random selection (section

5.3.1).

(2) - A Prohibition condition which controls the resources allocation which proved to improve results

by 4% (section 5.3.2).
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Table 1.1: Literature Review - part 1

Date Author(s) Machines
Flexible?

Workers
Flexible?

Optimization
Criteria Approach

1991 Brucker
and Schlie yes no Makespan 2D - Network

1997 Patel yes yes Makespan Genetic

1997 Dauzère-Pérès
and Paulli yes no Makespan Tabu Search

2000 Eimaraghy et al. yes yes Makespan Genetic

2000 Kher no no

Percentage of
tardy jobs and

Root mean
squared tardiness

ANOVA

2001 Felan and Fry no yes
Labour cost vs
Labour perform

given the flexibility
ANOVA

2007 Pezzellaa et al. yes no Makespan Genetic
2008 Yue et al. no yes Mean flow time of jobs ANOVA

2010 Araz
and Salum no no Multiple Criteria Artificial neural networks and

Fuzzy inference system

2011 Xianzhou
and Zhenhe yes yes Malespan Genetic + Immune algorithm

2011 Lang
and Li yes yes

Delivery satisfaction,
Cost,

Energy consumpiton
and Noise pollution

Grey simulation technology and
Non-dominated Sorting

Genetic Algorithm- II (NSGA)-II

2014 Driss et al. yes no Makespan New Genetic Algorithm (NGA)

2014 Lei and Guo yes yes Makespan Variable Neighbourhood
Search (VNS)

2015 Yazdani et al. yes yes Makespan Simulated annealing and
Vibration Damping Optimization

2016 Paksi
and Ma’ruf yes yes Total Tardiness Genetic

2016 Zheng
and Whang yes yes Makespan Knowledge guided

Fuit Fly Optimization

2016 Gao and Pan yes yes Makespan
Shuffled Multi-swarm
Micro-migrating Birds

Optimization (SM 2 - MBO)
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Table 1.2: Literature Review - Part 2

Date Author(s) Machines
Flexible?

Workers
Flexible?

Optimization
Criteria Approach

2016 Gao et al. yes yes Minimize maximum
fuzzy completion time Artificial Bee Colony (ABC)

2017 Cunha yes yes Optimizing unforseen events
Genetic and

Variable Neighbourhood
Search (VNS)

2017 Gong et al. yes yes

Maximum
completion time,

Maximum workload
and Total workload

Memetic Algorithm

2017 Zhang et al. yes yes Makespan and Cost Hybrid discrete particle
swarm optimization

2018 Gong et al. yes yes
Maximum Completion Time,
maximum total worker cost,

green-production related indicator

Newly Hybrid
Genetic Algorithm (NHGA)

2018 Akbar
and Irohara no no

Social Sustainability,
Workload smoothness index,

Makespan
NSGA-II

2018 Guo et al. yes yes Makespan
Genetic and

Variable
Neighbourhood Search (VNS)

2018 Zhong et al. no yes Makespan and Cost Branch Population Genetic
2019 Cunha et al. yes yes Makespan MILP

2019 Yazdani et al. yes yes

Makespan,
Critical machine workload

and Total workload of
machines simultaneously.

Fast elitist non-dominated
sorting genetic algorithm (NSGA-II)

and non-dominated
ranking genetic algorithm (NRGA)

2020 Akbar
and Irohara, no no Makespan

Tabu Search,
Simulated Annealing,

Particle Swarm Optimization,
Bees Algorithm,

Artificial Bee Colony,
and Grey wolf optimization.

2020 Andrade-
Pineda et al. yes yes Makespan and

Due-date related criteria

Iterated greedy
constructive heuristic

and MILP

2021 Wu et al. yes yes Makespan and
Total Setup time

Similarity-based
scheduling algorithm (SSA4STR)

and non-dominated sorting
genetic algorithm (NSGA-II)

2021 Martins et al. yes yes Total completion time Three-level dynamic heuristic
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(3) - An Increment Initialization that combines compatible tests together which improves results by

5.3% (section 5.3.3).

(4) - A probabilistic choice in the Crossover operation (with the same logic as the Initial Solution)

which improves the results when compared to performing Crossover operations with only one type of

crossover. Improvements from a single point crossover are 5.8%, from a double point crossover are

4.8% and from an MPX crossover are 1.1% (section 5.4).

(5) - A Variable Neighborhood Search is implemented to improve GA’s slow convergence speed

which combines four different structures. This implementation proved fitter results for small instances

(0.1% better) when compared to a GA without VNS (section 5.5).

(6) - A Dynamic Termination Criteria is proposed to allow the algorithm to adapt based on the number

of non-improving iterations (section 5.6).

1.4 Organization of the Document

The remainder of this document is structured as follows:

Chapter 2 - The Dual Resource Constrained Flexible Job Shop Problem

This chapter presents the description of the problem, it’s assumptions and it’s mathematical formula-

tion.

Chapter 3 - Genetic Algorithm

In this chapter the genetic algorithm is introduced and it’s principles explained covering the five main

phases of a GA: Initial Population (3.1), Fitness evaluation (3.2), Selection (3.3), Crossover (3.4), and

Mutation (3.5). Also different encoding schemes presented in literature are described (3.1.1).

Chapter 4 - Proposed Hybrid Genetic Algorithm

Chapter 4 details the proposed Hybrid Genetic Algorithm explaining the logic behind each specific

implementation (4.1 to 4.8). The variable neighborhood search is introduced and explained (4.9) as well

as the Dynamic Termination Criteria (4.10).

Chapter 5 - Results

This chapter presents the description of the experiments, explaining the reason behind the different

test instances utilized (5.1). Also, the studies conducted to tune the algorithm are presented (5.2 to 5.6)

and a comparison between the final results this Hybrid GA produced and bench mark results is shown

(5.7).
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Chapter 6 - Conclusion

At last, in chapter 6 the conclusions for the present dissertation are drawn and possible future work

is discussed.
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2.1 Application to the Quality Control Laboratory Scheduling

As mentioned in section 1, the classical flexible job shop scheduling problem (FJSSP) solely treats

machines as the only resource constraint, failing to consider the importance of the dominant role of

qualified labour in production and manufacturing. Quality control laboratories in pharmaceutical industry

requires both resources to be scheduled and often have a flexible workforce and machinery capable of

performing different tasks.

The quality control laboratories scheduling problem can be summarised as follows: assign each

operation (test) of each job (sample) to a machine (analytical instrument) and worker (analyst/chemist),

to minimise an objective function. Each operation can only be processed by predetermined subsets of

machines and workers. The machine is required for the full processing time of the test while the worker is

only required at a number of predetermined intervals (tasks) during the processing time of the operation.

These tasks are the machine setup, the preparation of sample and the materials and data processing at

the end. All of these tasks must be performed by the same worker. In contrast to the literature reviewed,

in this Quality Control Laboratory, workers can switch between tests, if they are present when they are

required by the operations they are allocated to. Additionally, all tasks in an operation must be carried

out by the same worker.

Some assumption are put forward:

• Each Machine can only process one operation at a time on any job.

• Each Worker may operate in more than one machine at a time, given that the worker respects the

times he needs to be present at the machines he is assigned to.

• Each operation can be performed only once on one machine and its sequence is respected for

every job.

• The operations of different jobs do not have precedence constraints, only the ones in the same

job.

• A temporary interruption of an operation is not allowed after it has started.

• An operation of any job cannot be processed until its preceding operations are completed.

• The processing time corresponding to each operation are given in advance and are the same

regardless the machine or worker that performs it.

2.2 Formulation of the Scheduling Problem

The following mathematical formulation was performed by [2]: an instance of the QC labs scheduling

problem consists of a set of jobs, J = {J1, ..., Jn} with n being the total number of jobs. The set of

machines is represented by: K = {K1, ...,Km}, the set of workers by W = {W1, ...,Ww} and the set of
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operations by Oj = {O1j , ..., Oqj} for each job j. The number of operations in job j is qj . Kij and Wij

are, respectively, the subsets of machines and workers that can process operation i of job j. Additionally,

each operation can be divided by Nij individual tasks, s that requires a worker present, either partially

or fully. Each operation is characterised by its processing time pij , the start time, ρsijs, and the duration

time, ρdijs. The machine processing time is always greater than the sum of the duration of the worker

tasks and is the same as the processing time pij .

The main decision variables are the start time of operation i of job j, tij , the binary assignment of

operations to machines, xijh ∈ {0, 1} and the binary assignment of operations to workers, αijh ∈ {0, 1}.

Additionally, the following sequencing variables are used: βiji′j′ ∈ {0, 1} is equal to 1 if Oij is scheduled

before Oi′j′ , it is 0 otherwise; and γijsi′j′ ∈ {0, 1} is equal to 1 if the task (worker intervention) s of Oij is

scheduled before the task s′, it is 0 otherwise.

2.2.1 Objective Functions

The Objective function of the problem is to minimise the total completion time J (2.1) where cj is the

completion time of job j, i.e., the time required to complete the operations of that job.

minJ =
∑
j∈J

cj , ∀j ∈ J (2.1)

2.2.2 Constraints

The completion time of each job, cj must be greater or equal than the completion time of the last opera-

tion of that job as expressed below in:

cj ≥ tcj j + pcj j (2.2)

Each test can only be assigned to one suitable machine (2.3) and worker (2.4):

∑
k∈K

xijk = 1, ∀j ∈ J, i ∈ Oj , k ∈ Kij (2.3)

∑
h∈W

αijk = 1, ∀j ∈ J, i ∈ Oj , h ∈Wij (2.4)

Constraint (2.5) guarantees the precedence is respected between operations of the same job.

tij ≥ t(i−1)j + p(i−1)j (2.5)

For the sequencing of operations in machines, constraint (2.6) ensures that the start time of any Oij

is greater or equal than the finish time of any Oi′j′ that is scheduled before (βiji′j′ = 0) in the same
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machine (xijk = xi′j′k).

tij ≥ ti′j′ + pi′j′ − (2− xijk − xi′j′k′ + βiji′j′)M, ∀j ∈ J, i ∈ Oj , Oij 6= Oi′j′ , k ∈ Kij ∩Ki′j′ (2.6)

As the prior constraint is disjunctive, the big M formulation is adopted, Similarly, constraint (2.7)

guarantees that any Oij scheduled before any other Oi′j′ in the same machine (βiji′j′ = 1 and xijk =

xi′j′k) is finished before the later starts.

ti′j′ ≥ tij + pij − (3− xijk − xi′j′k′ − βiji′j′)M, ∀j ∈ J, i ∈ Oj , Oij 6= Oi′j′ , k ∈ Kij ∩Ki′j′ (2.7)

Two constraints are required to bound for βiji′j′ = 0 and βiji′j′ = 1. In the same way, constraints

(2.8) and (2.9) ensure that a worker cannot perform overlapping tasks.

ti′j′ +ρ
s
ijs ≥ ti′j′ +ρsi′j′s′ +ρdi′j′s′− (2−αijh−αi′j′h+γijsi

′j′s′)M, ∀j ∈ J, i ∈ Oj , s ∈ Nij , Oij 6= Oi′j′

(2.8)

ti′j′+ρ
s
i′j′s′ ≥ tij+ρsijs+ρdijs−(3−αijh−αi′j′h−γijsi′j′s′)M, ∀j ∈ J, i ∈ Oj , s ∈ Nij , Oij 6= Oi′j′ (2.9)
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A Genetic Algorithm (GA) is a meta-heuristic search algorithm inspired by Charles Darwin’s theory of

natural evolution. This algorithm emulates the process of natural selection where the fittest individuals

(with favourable genetics) have higher chances to propagate their genes to the next generation. The

fittest individuals have a set of adaptive traits in nature, these advantageous differences can appear

in size, shape/form and intelligence. These adaptive traits increase the creature’s chance of survival

in a certain environment, thus, making the individual superior and a more sought-after candidate for

reproduction purposes. In contrast, the genetically inferior individuals are likely to disappear from the

gene pool altogether.

For each offspring that is born, besides the inherited genes from the parents, offspring also gen-

erate random mutations in their genes which can lead to better adaptation and consequentially higher

probabilities of gene propagation. With this natural mechanism species are able to keep the strongest

genes in the gene pool, therefore, increasing the species chances to prosper whilst adapting to an ever

changing environment.

It is worth mentioning that the artificial GA, while replicating the main concepts of natural evolution

has some relevant differences. First and foremost, an initial solution has to be created. Therefore, a

spontaneous and often random generation of the individuals is performed. Secondly, the individuals do

not age in the artificial algorithm. They are simply discarded or kept in the population depending on

their fitness value. This means that the fittest individuals may exist in numerous generations until the

termination criteria is met and the algorithm stops.

Bearing these similarities and differences in mind, in an artificial Genetic Algorithm there are five

main phases to be considered:

1) - Initial Population creation

2) - Fitness Evaluation of the population

3) - Selection

4) - Crossover

5) - Mutation

The following sections from 3.1 to 3.5 explain the main principles behind each phase:

3.1 Initial Population

This process begins with a set of generated individuals which together form the Population. Each indi-

vidual is a solution to the problem and is generally randomly generated in accordance to the problem

restrictions. Individuals are characterized by a set of parameters also known as Genes. A set of prede-

fined number of genes constitutes a chromosome (solution) which in turn is the same as an individual.

This correct ordering of genes forms a chromosome which is also known as the process of encoding.
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The following figure 3.1 illustrates this concepts. In blue, the population, which consists of four indi-

viduals/chromosomes/solutions represented in green. Each chromosome has six genes, represented in

red.

Figure 3.1: Population, Chromosomes and Genes definition

To form the Initial Population each solution needs to be correctly encoded. This can be done in various

ways and depending on the problem, one path may be better adapted to it. The following section 3.1.1

presents the four main types of encoding schemes found in the literature for scheduling problems.

3.1.1 Encoding schemes

In scheduling problems, each solution is often represented by a code that must contain an enough

amount of information to enable it to be converted into a scheduling solution when the decoding process

is later applied. If this code has less information than it should, the feasible solution space narrows. On

the other hand, if the code contains unnecessary information, the solution becomes more complex and

may delay or complicate the entire process.

Mainly, the Encoding scheme in the literature is divided by 4 major representations which does

not necessarily translate into 4 different decoding mechanisms since these, can vary from problem to

problem in order to better accommodate to it’s peculiarities.

(1) In this encoding method, each gene is represented by a quadruple string (i,j,k,l), one for each

operation, where i signifies the job which an operation belongs to; j characterizes the progressive num-

ber of that operation within job i ; k indicates the machine assigned to that operation and l indicates the

worker assigned [21] [36]. An example of this representation follows:

Table 3.1: Decoding Methods - quadruple string

(1,1,4,2) (2,1,2,2) (4,1,1,1) (4,2,5,1) (2,2,1,2) (3,1,2,2) (1,2,3,1) (1,3,1,1) (3,2,1,2) (3,3,2,2)

(2) A single chromosome is used by Akbar and Irohara [39] to encode one scheduling solution. The

code contains information about the job sequence when evaluated in the decoding scheme where a
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repetition of the same number in the encoding table represents the next operation of that job. In the

particular case of table 3.2, the 8th gene represents job 1 operation 2. This representation is also known

as the operation-based encoding method. [33]

Table 3.2: Single Chromosome encoding

1 2 4 4 2 3 1 1 3 3

To perform the decoding, in this case, the attributed worker and machine may change every time

a change in the operations order is done. For this representation [39] proposed 6 different decoding

schemes and studied their effectiveness. The differences of this processes were dependent on the

procedure used to select the machine and or operator i.e., whether the first available machine should be

selected or the first available operator, or even the pair of machine and operation combined that could

start the earliest or finish first.

(3) On a third type of encoding, Zheng and Wang (2016) [31] proposed two vectors, an operation

sequence vector (OSV) and a resource assignment vector (RAV). OSV is used to denote a sequence of

all the operations of all the jobs. RAV is used to denote an assignment of machines and workers. An

example of this representation is seen below 3.3:

Table 3.3: Two Vector encoding

OSV: O1,1 O2,1 O4,1 O4,2 O2,2 O3,1 O1,2 O1,3 O3,2 O3,3

RAV: (M4,W2) (M2,W2) (M1,W1) (M5,W1) (M1,W2) (M2,W2) (M3,W1) (M1,W1) (M1,W2) (M2,W2)

(4) Finally, the fourth type of encoding mechanism is a three layered chromosome (table 3.4) adding

from the encoding type three a decomposition of the RAV vector into a Machine Assignment vector

(MAS) and a Worker assignment vector (WAS). [34]

Table 3.4: Three Layered Chromosome

OSV: 1 2 4 4 2 3 1 1 3 3

MAS: 4 2 1 5 1 2 3 1 1 2

WAS: 2 2 1 1 2 2 1 1 2 2

3.2 Fitness Evaluation

The Fitness Evaluation quantifies all individuals in terms of the chosen objective function. A fitness

score is assigned to each solution, according to the chosen objective function, which will correlate with

the probability that the individual has of being selected for reproduction and thus remaining or not in the
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gene pool. In order to allow the evaluation of a solution an individual needs to be correctly encoded

with the genes (encoding process). After the encoding is completed it is then possible to decompose

the encoding scheme (decoding), in accordance with the problem constraints, to allow for the fitness

evaluation. The following scheme 3.2 illustrates this concepts:

Figure 3.2: Fitness Evaluation Process

In figure 3.2 a certain solution is encoded (on a three layer encoding scheme) which then follows a

process of decoding, which respects the equations defined in chapter 2, resulting in the Finish Times of

each operations. With this information, based on a certain objective function, the fitness score of this

individual is calculated and compared to the rest individuals in the same population. The represented

individual is the second best in the population with a total fitness score of 54 time instances.

3.3 Selection

The selection phase is about choosing which population will be able to produce offspring. As it happens

in the natural world, the fittest individuals have higher chances of passing on their genes. Often in

artificial algorithms, the selection is performed by tournament or roulette wheel selection. In 2005,

Zhang et al. [41] compared both methods and concluded that tournament selection is more efficient due

to its higher convergence speed, which is important for large problems (which is the case). Therefore,

in the present work, the former was chosen. Also, due to the tournament selection the best solutions

might be discarded (as they might not be chosen for a tournament) and therefore an elitism operation is

implemented to ensure the continuation of the best genes of the population.
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3.4 Crossover

Crossover operations are about selecting which genes from which parents are passed to the off-springs

(2 parents will produce 2 offspring). Often Crossover techniques rely on selecting random points in

the parents chromosomes and swapping the genes they correspond to in order to build the off-springs

encoding. The most common in literature are the single-point and the double-point crossover which will

be covered in the next chapter.

3.5 Mutation

Mutation in an artificial genetic algorithm is the process of randomly selecting one or more genes from

an offspring and then changing these genes while maintaining the solution feasibility.

After all of these steps the standard genetic algorithm repeats until a termination criteria is reached.
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The novel contribution of this thesis arises from using a Hybrid genetic algorithm to solve the DRC

flexible job shop problem in a Quality Control Laboratory Environment which, to the author’s best knowl-

edge, has never been done before. The implemented Hybrid Genetic Algorithm contains the traditional

phases in (3.1 to 3.5) with additional problem specific implementations. A flow chart of the general

implementation of the hybrid GA is presented in figure 4.1.

Reading the Instance Compatibility
Tables

Population Initialization

Problem Encoding done
here

Fitness Value Calculation

Problem Decoding done
before the fitness value

calculation

Termination Criteria
achieved?

Selection

Crossover

Mutation

Merge Population and
Fitness Value Calculation

Perform Variable
Neighbourhood Search

Perform 

Variable

Neighbourhood

Search?

Sort the solutions

End
Yes

No

Yes No

Figure 4.1: Implemented GA - flowchart

At first sight the implemented hybrid GA resembles the traditional one. Although, the differences to
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a standard GA do not lie in the sequencing of the steps, but in the steps itself. In this chapter these

different phases will be explained in the following sections 4.1 to 4.10. It is worth mentioning that the

Variable Neighbourhood Search is either chosen at the beginning of the algorithm or not, it does not

depend on any probabilities.

4.1 Reading the Instance

In this phase, apart from the instance loading, two binary tables, the compatibility tables are produced.

This idea was based on Xiao et al. (2021) [33] which applied this concept to the loading and unloading

of fixtures in a scheduling problem and is now applied to the Quality Control Laboratory Scheduling

environment. The tables have zeros (meaning can’t perform) or ones (meaning can perform) which

inform which jobs can be performed by which machines and workers. It is worth remarking that the Jobs

appear with decimal numbers which mean the task of the current job to be performed. This was the

notation chosen for the encoding table as it will be explained in section 4.3 Considering an example with

4 Jobs, 2 Workers and 7 machines the compatibility tables could be:

Table 4.1: Machines Compatibility Table

Job M1 M2 M3 M4 M5 M6 M7

1.1 1 0 0 0 1 0 0

2.1 0 0 1 1 1 0 0

3.1 1 1 1 0 0 0 1

3.2 0 0 0 1 0 0 0

4.1 0 1 0 1 0 0 1

Table 4.2: Analysts Compatibility Table

Job Worker 1 Worker 2

1.1 1 0

2.1 1 0

3.1 0 1

3.2 0 1

4.1 1 1

This implementation is particularly useful to easily access information to ascertain whether a re-
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source is able to perform a certain task or not. With tables 4.1 and 4.2 one can notice, for example, that

job 1.1 is able to be performed by machine 1, machine 5 and worker 1.

4.2 Initial Population

In the Initial Population phase two distinct implementations which rely on different logic were created:

the Initial Population Job Randomization (IPJR) and the Incremental Initial Population Worker Random-

ization (IIPWR). In both cases, a novel limitation in allocating resources was also implemented, namely

a Prohibition Condition (PC) which restricted both workers and machines to work more than X and Y

times in a row (respectively). The rationale behind the PC concept is that while assigning workers and

machines to a certain job, both analysts and appliances may repeat themselves infinitely, as long as

they can perform the chosen job, leading to inferior solutions solutions.

4.2.1 Initial Population with Job Selection

The logic behind this implementation is to produce an Initial Population in the most intuitive way possible.

This is accomplished by firstly choosing an available job, and then allocating a random machine and

worker that can perform the selected task.

In order to first select each job, a novel Job Selection Procedure is utilized,which combined three

different methods: a Random Initialization, a Longest Processing Time selection and a Most Number Of

Tests selection. All three of these methods can only choose from the pool of available tests previously

defined. Random Initialization is as it’s name suggests, each job is selected randomly. The Longest

Processing Time selects the one with the longest processing time. The Most Number Of Tests chooses

a job with the most amount of tests needing to be performed. In the latter two selections, if there are

multiple jobs with the same conditions one of those is then chosen by randomization. In order to choose

which implementation is used, weighs (w1, w2, w3) are assigned to each alternative corresponding to

the probability that each selection method has to be chosen.

In the figure 4.2, the Initial Population Job Randomization implementation can be seen:
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w1
w2

w3

Initial Population Job
Randomization

Obtain the jobs
available to be chosen

Mind precedence
constraints

Ramdonly select a
worker that can perform

the job

Random Initialization Longest Processing
Time Most Number Of Tests

Mind prohibition
constraints

Randomly select a
machine that can
perform the job

Assign the selected job,
worker and machine to

the encoding table

Are all jobs
assigned?

No

Yes

Job Selection
Procedure

EndEncoding Table

Figure 4.2: Initial Population with Job Selection flowchart

4.2.2 Incremental Initial Population with Worker Selection

The logic behind this implementation is based on the concept of puzzle pieces where, ideally, there is

a sequence of jobs that can be perfectly grouped together, much like a puzzle. In the context of this

problem, once a worker is assigned to a job and a machine, the worker is automatically assigned to

three time instances on that machine that he must respect. The time in between these time instances is

called Idle Gap and the problem is best solved when this interval of time is minimized. This means that

if one could find a series of jobs able to be performed by the same worker on different machines where

each job could perfectly fit in the Idle Gap of the others this problem would be optimally solved.

In order to understand which jobs best fit together, an Increment Table was calculated with it’s results

being the time that the worker has to wait before he can work on the next assigned job.

In the following figure 4.3 this concept is illustrated. Two jobs are presented and one worker is

assigned to perform both. Since the Idle Gap of the first operation matches perfectly with the work time
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of the second, the total idle time of the worker in this operation is zero (i.e. the increment is zero).

Figure 4.3: Puzzle Piece concept

In this particular example, considering these are the only two available jobs, the increment table can

be seen in table 4.3. As demonstrated, test 1 of job 1 has a zero increment to perform the test 1 of job

2. However, the reverse would mean an increment of 19 time instances. This illustrates the importance

of allocating compatible jobs together.

Table 4.3: Increment Table

1.1 2.1

1.1 − 0

2.1 19 −

In order to select and combine the jobs with the least amount of increment time together the reverse of

the previous method (IPJS) must be performed. Firstly, the algorithm has to select a worker (respecting

the prohibition conditions as well) and then it chooses a machine where this worker can perform at.

Afterwards, it obtains the pool of available jobs that both the machine and worker can execute. After this

process is completed, depending on the number of times that workers has been chosen before, several

different ramifications exist which ultimately leads to the assignment of the chosen job. This is stored in

a variable called ”Worker Number”

The ”Work Number” variable shows the number of times a certain worker was already chosen in the

assignment cycle. This variable increases to a maximum of two, therefore, when the ”Work Number”

surpasses this value it returns to the number one. This means that the increment cycle of the initial

solution is capped to assign two workers in a row. These parameters were implemented, as the initial

solution is assumed to be improved by the genetic algorithm later on. Increasing the complexity of the

algorithm on the Initial Solution would lead to increases in computational time and would risk falling
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into local optimums. Flowcharts, 4.4 and 4.5 illustrate the Incremental Initial Population with Worker

Selection (IIPWS) procedure.

The machine and worker routine is a set of condition cycles intended to qualify or disqualify the

reason behind not having any available machines to be chosen. The deeper the layer of questioning,

the upper the cycle returns to in the IIPWS. Figure 4.6 illustrates this routine.

Machine and worker Routine

Does the prohibition 

condition for the

 machines exist?

Choose the machine
disregarding the

prohibition condition

Yes

Final common
values > 0?

End and returns to the
machine selection cycle

Yes

Delete the chosen worker
from the pool of available

workers

No

Are there any 

more workers

to be chosen?

End and return to the Workers
and Machine Selection cycle

Yes

choose a new worker
disregarding the prohibition

condition

No

End and return to the Workers
and Machine Selection cycle

No

Figure 4.6: Machine and Worker Routine

4.3 Encoding

A three-layered encoding mechanism is proposed based on encoding type 1 and 4 (section 3.1.1).

This encoding mechanism was implemented, as it indicates which test is being performed in each job,

whilst having the same three-layered chromosome as encoding type 4. The implemented encoding
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Figure 4.4: Incremental Initial Population with Worker Selection flowchart - part one
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Figure 4.5: Incremental Initial Population with Worker Selection flowchart - part two

scheme has therefore, three chromosomes: the operation sequence chromosome (OS), representing

the process sequencing of operations; the machine selection chromosome (MS), which represents the

allocation of machines and the Analysts selection chromosome (AS), representing the worker assign-

ment layer. The number of genes in the chromosome equals the total number of operations in all jobs.

This representation forces the algorithm to keep the same assignment of resources when a test changes

it’s position respecting the allocation of machines and workers.

Considering an example with 4 Jobs, 2 Analysts and 7 machines, the following table Table 4.4 repre-

sents a possible configuration for the encoding mechanism.

Table 4.4: Three layered Encoding Chromosome

Operation Sequence (OS) 1.1 3.1 2.1 3.2 4.1

Machine Selection (MS) 2 3 5 4 6

Worker Selection (AS) 1 1 1 2 1

In Table 4.4 in the Operation Sequence (OS) chromosome, the unit number represents the job and

the decimal number represents the test of that job. More specifically, the forth gene in the OS chromo-

some is 3.2. This means the test 2 of job 3 is being allocated to this particular position.
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The encoding process is performed with the initial population creation and following it is the decodi-

fication process.

4.4 Decoding

The Decoding process can be divided into four steps: firstly, define the temporal vectors of the machines

and workers (Worker and Machine available time). The vectors were considered to have a resolution of

0.1 representing the workers’ and machine times necessary in each operation. This was an approxima-

tion done to the problem in order to allow the decodification of the tasks. Secondly, select the operations

from the OS vector individually from left to right and obtain the corresponding machine and analyst.

Afterwards, define a third temporal vector of the selected job, the operation work times vector with the

same 0.1 time resolution. Subsequently, compare the vectors and place the operation as early as possi-

ble. Update the temporal vectors and repeat until all jobs are assigned. The decoding process with the

temporal vectors is exemplified in figure 4.7 for two distinct consecutive operations where the machine

is not repeated.

Figure 4.7: Job allocation example with two consecutive operations
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4.5 Fitness Evaluation

Following the decoding process, the time at which each job is finished is calculated, so that, the fitness

value of the individual can be calculated. In figureTh 4.8 this procedure is illustrated:

Start Decoding
Process

Are all Jobs
assigned? Fitness Value

Yes

No

End

Create binary temporal
vector of Workers

Select next job in the
encoding table and define

the operation vector

Initialize at zero the
finish time of all jobs

Compare the operation
vector with the machine

and worker vectors

Retrieve the earliest
time the operation can

be started

Update the used  binary
temporal vector of the

used Worker

Calculate the finish time
of the job

Figure 4.8: Fitness Evaluation - Flowchart
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4.6 Selection

In the existing algorithm the Selection phase is achieved through an Elitism operation (which starts once

the number of iterations is superior 1/8 of the total population) followed by a Tournament Selection. The

Elitism procedure ensures that the best (alpha) solutions are present in the parent population and are

not discarded by the Tournament Selection. The delay added to the elitism is to guarantee that the

solution has been improved prior to defining any elite population. This aids in eliminating local optimums

at the beginning of the algorithm where the solution presents worse fitness values. The Tournament

Selection chooses five random solutions from the main population and selects the best one to be added

to crossover population. This procedure is repeated until the final population has a certain predefined

amount of tournament winning individuals. The bigger the population selected for the tournaments, the

less likely it is for weaker individuals to be selected. This is because, if a weak individual is selected

to be in a tournament, there is a higher probability that a stronger individual is also in that tournament.

Consequentially this implementation mainly chooses the best population to be featured in the Crossover

while also giving a chance to the weaker individuals to be present. The lower the number of individuals

in a tournament the higher variety of solutions available for crossover, thus reducing the convergence

speed of the algorithm.

Figure 4.9 illustrates this two methods used in the selection phase.
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Figure 4.9: Techniques used in the Selection phase - Flowchart

4.7 Crossover

The novel implemented approach explores three different crossover operations: Single Point Crossover,

Double Point Crossover and MPX crossover. As previously utilised in the Population Initialization phase

(4.2) weights were implemented to account for different probabilities of choosing a certain path. In the

next chapter this weight selection is compared and studied. The following figure 4.10 illustrates this

phase:
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Figure 4.10: Crossover - Flowchart

4.7.1 Single Point Crossover

The Single Point Crossover is performed by firstly, choosing a random point in both parents genes.

This divides the parents chromosomes in two sections identical sections. Afterwards, the crossover

is completed by swapping parents chromosomes right sides. The following figure 4.11 illustrates this

Crossover operation:

45



Figure 4.11: Single Point Crossover example

4.7.2 Double Point Crossover

In the Double Point Crossover, two different random numbers (in the chromosome length) are chosen

which correspond to a certain interval gap in the parents genes. This middle section is swapped between

the two to produce both off-springs. The following figure 4.12 illustrates this Crossover operation:

Figure 4.12: Double Point Crossover example
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4.7.3 MPX Crossover

The MPX Crossover was based on [36] and is responsible for the change in the allocation of workers

and machines. It revolves around the creation of a random binary vector with the same length of the

chromosomes, which, depending on the value it assumes on a certain gene, uses the machines and

workers from one of the parents to assemble the off-springs. The procedure is the following: assign to

the offspring with the same number of the parent the same order of jobs. Going from left to right until

the end of the chromosome, retrieve the number of the binary value on that position. If the value of the

binary vector is equal to one, parent 1 will assign offspring 2 with the machine and worker he has been

assigned to the job the offspring 2 has in that position. The opposite happens for parent 2 and offspring

1. If the value on the random vector is equal to zero, parent 1 assigns the machine and worker he has

for that job to the offspring of the same number. Likewise for the second parent and offspring.

The following figure 4.13 illustrates this Crossover operation:

Figure 4.13: MPX Crossover example

4.8 Mutation

Offspring population have a certain chance to mutate. The mutation phase starts with a Shift Mutation

(section 4.8.1) based on [4] followed by an ”Intelligent Mutation” [21] (section 4.8.2). Depending on a

certain predetermined probability, a machine and worker mutation is performed (section 4.8.3). After-

wards, the non-mutated off-springs are combined with the mutated ones to form the final off-springs

population, as it can be seen in the following figure 4.14

47



Start Mutation
Phase

Shift Mutation

Inteligent Mutation

Perform 

MW 


mutation?

Saved mutated
invididual to the

Mutated Population

All Mutating
Population
selected?

EndMutated Population

Machine and Worker
Mutation

Yes

No

Yes

No

Figure 4.14: Mutation - Flowchart

4.8.1 Shift mutation

The Shift mutation resembles the Double Point Crossover 4.7.2 where two different random numbers

with the length of the chromosome are firstly obtained. Each number will correspond to a gene (with a

job, worker and machine) and will swap positions with the other number’s position. Afterwards, feasibility

and precedence checking is required.

4.8.2 Intelligent mutation

The concept behind the Intelligent mutation is to select one of the operations from the machine with

maximum workload and assign it to the least used machine. If the machine is not compatible no mutation

occurs.

4.8.3 Worker and Machine mutation

This mutation operation uses the same shifted genes from the Shift Mutation 4.8.1. Here both machines

and workers are changed to new compatible workforce to perform that job. If no compatibility exists no

change is performed.
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4.9 Variable Neighbourhood Search

The logic behind Variable Neighbourhood Search (VNS) is to explore neighborhoods of a current incum-

bent solution. If the new solution proves fitter than the previous one, then the algorithm selects it as

the incumbent solution and explores further neighbor solutions until a termination criteria is achieved.

This ”exploration” is usually performed by operations similar to the ones implemented in the mutation

phase in section 4.8. VNS was implemented in an effort to improve GA’s slow convergence speed due

to unguided mutations.

In the implemented VNS, 4 neighborhood structures were implemented: Exchange, Replace, Change

and Intelligent structure. Different search algorithms were implemented as it allows for different neigh-

borhood searches which, can potentially improve the convergence speed of the algorithm thus reducing

the makespan.

The Exchange structure is analogous to the same exact principle as the shift mutation. The Change

structure is equivalent to the Worker and Machine Mutation and the Intelligent structure follows the same

logic as the one with the same name in the Mutation phase. The Replace mutation consists of selecting

two different random numbers within the chromosome length which consists of two different genes.

Subsequently, the gene position that corresponds to the smallest number is placed in the position on

the encoding table of the biggest number. The gene in the newly occupied position moves one position

backwards as well as the rest of the genes until no more overlapping occurs.
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The following implemented algorithm is the following:

Algorithm 4.1: Variable Neighbourhood Search (VNS)
Data: Parent and Offspring Population
Result: VNS population
1: Sort the population;
2: Select the best percentage of individuals to perform VNS (VNS population);
3: Obtain individual x;
4: while Not all individuals in the VNS population had undergone the VNS do

5: Set: a = 0; b = 0; c = 0; d = 0; t = 0;

6: for t = 1
t−→ iteration do

if a = 0 or (a = b = c = d = 1) then
Produce new individual y by Swap operation. Evaluate the individual y;
if y is better than x then

x = y; a = 0; t = 0;
else

a = 1 - a; t = t + 1;
if b = c = d = 1 then

b = c = d = 0

if b = 0 then
Generate new solution y with Insert. Evaluate the individual y;
if y is better then x then

let x = y, b = 0, t = 0;
else

b = 1 - b; t = t + 1;

if c = 0 then
Produce new individual y with Assign. Evaluate the individual y;
if y is better then x then

let x = y, c = 0, t = 0;
else

c = 1 - c; t = t + 1;

if d = 0 then
Generate new solution y with Intelligent. Evaluate the individual y;
if y is better then x then

let x = y, d = 0, t = 0;
else

d = 1 - d; t = t + 1;

if t > iteration/4 then
Terminate

7: Return individual x;

4.10 Dynamic Termination Criteria

The termination criteria was implemented in the event the algorithm did not yield any improvements

after N iterations. Since this lack of improvement may be related to a local optima, a procedure was

implemented to avoid the algorithm being trapped in one. In this case, a counter of the successive non
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improving iterations was implemented, that when it surpasses
1

4
of the termination criteria variable, the

percentage of offspring and the mutation percentages increases to 80% and 50% respectively. Also

if the VNS is active it increases to 30% of the best population. Afterwards, an intelligent mutation

is performed to all the population. If the total completion time of the instance is reduced, this new

individual replaces the previous one. If the algorithm improves these parameters return to the normal

values and the counter is returns to zero. The algorithm may end after a predefined number of non-

improving consecutive iterations is reached (termination criteria). The algorithm is also limited to 3h of

total computational time. The following algorithm (2) illustrates this logic:

Pr

Algorithm 4.2: Termination Criteria
Data: Best Solution
Result: Continuation or Termination of the algorithm
while Computational time l<3h do

if algorithm did not improve from last iteration then
number of non-improving iterations += 1 (counter);

if counter >
1

4
termination criteria then

Mutation coefficients = 50%;
Percentage of best population in VNS = 30%;
Percentage of Offspring = 80%;

if counter > termination criteria then
terminate algorithm;

else
counter = 0;
All values return to the original state;
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5.1 Description of the Experiments

The experiments developed encompass different configurations of the QC labs scheduling problem. To

allow for realistic data, a study by Martins et al. [2] was conducted on real quality control laboratory

and an instance generator was developed. The instances used in this work are the same ones used

by [2]. The instance generator aims to mimic the conditions faced on a regular working day in this

Quality Control Laboratory environment. The instance generation approach followed makes use of the

sample type (job type) concept, which has direct relation to what might happen in real life scenario in

QC labs. Each combination of product and source (e.g. raw material, final product) usually results on

a predetermined set of tests (operations) that need to be completed. This way, jobs come from a set of

predetermined possible job types, each characterised by a number of operations and their processing

times.

Regarding the aforementioned job types, J , three are considered in all experiments. For each job

type, the number of operations is determined using a discrete uniform distribution (DUD), ranging from

1 to 3. Each operation has a processing time pij ranging from 1 to 5 and the worker tasks start from

three time points: the start of the operation, at 30% of operation processing and at 90% of operation

processing. The duration of the worker tasks are: 5%, 10% and 10% of the total processing time,

representing the setup, intermediate and disassembly/data processing tasks.

The parameters that characterise experiments are the number of jobs n, number of machines m,

number of workers w and the flexibility. Experiments have been developed for 5, 10 and 70 jobs. The

smaller instances have been used to facilitate the implementation of the algorithm and are not represen-

tative of the QC lab dimension. The medium 12 instances of 10 jobs represent the daily workload of a

QC laboratory. The larger 70 job instances mimic the realistic QC labs weekly scheduling problem. The

number of machines is set at 7, representing different types of equipment present at laboratories. For

this thesis, the implementation developed is flexible. i.e., it can be used for any number of machines.

The number of workers can be 2, 3 and 7, representing cases that are respectively, worker restricted,

balanced and machine restricted. The flexibility parameter is used to compute the machines and work-

ers that are able to carry out a certain operation. When generating the instance, each one of the workers

and machines has a probability equal to their flexibility of being eligible to carry out the operation. Ex-

periments are done for flexibilities of 30% and 60%, encompassing cases where machines and workers

have less or more general competences. If more than one machine and worker can perform a certain

job, the time they take is the same, i.e., there is no heterogeneity between workers and machines that

can perform the same operation.

The experiments developed are summarised in Table 5.1. Three replications of each experiment have

been generated to improve the reliability of results. With n taking three possible values, w taking three

possible values and the flexibility with two possible values, the total number of instances with different
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experimental parameters is eighteen. Considering that each of these instances have three distinct

unique parameter variations, this is three replications, there are a total of fifty-four distinct experiments.

[2]

All experiments were performed on a computer running Windows 10 with an Intel Core i5-8265U

processor (1.60GHz base frequency) and 8GB of RAM.

Table 5.1: Parameters for the experiments designed [2]

Parameters Values

Job generation parameters

Job Types N 3

Operations in job qj DUD(1, 3)

Operation processing time pij DUD(1, 5)

Starting point of worker tasks 1 [0, 0.3pij , 0.9pij ]

Duration of worker tasks pdijs [0.05pij , 0.1pij , 0.1pij ]

Experiment Parameters

Number of jobs n [5, 7, 10]

Number of machines m 7

Number of workers w [2, 3, 7]

Flexibility n [0.3, 0, 6]

5.2 General GA Parameters

The general genetic algorithm parameters are considered to be the essential parameters, present in

every GA. The correct tuning of this constants is not a trivial task, since these variables are often co-

dependent. This section will cover how the tuning of these parameters could potentially improve the

algorithm’s results and present the values considered in this dissertation. These tests ran without VNS

and a sample instance was considered (70 jobs, 7 machines, 3 workers, 0.3 flexibility and number 0)

since to understand the degree of convergence of the algorithm the tests need to run for long periods

of time, therefore, computing all 18 instances of 70 jobs proved to be unfeasible. The results are the

average of the the best result in 5 runs.

56



5.2.1 Population Size

Regarding the population size tuning, a total of 50 iterations were considered and kept constant as well

as an offspring percentage of 70% and a mutation chance of 50%. The average standard deviation of

the results was 57.2 hours. The results are presented in figure 5.1 below:

Figure 5.1: Study of the Total Completion Time with different population sizes

From 5.1 the most suitable population numbers are 150 with an average of 811 seconds of compu-

tational time, 400 with 2032 seconds and 700 with 3219 seconds.

Since the final results are meant to run the instances for 3h (10800 seconds), with a population of

700 individuals, the total number of iterations could only be about 3.35 times the number of iterations

used in this tests (meaning roughly 160 iterations) which is a low number to allow a proper convergence

of the algorithm. As for the 400 individuals it allows for roughly 5 times the 50 iterations, i.e., 250 total

iterations. For the 150 individuals it allows up to 13 times the 50 iterations (i.e., around 650 iterations).

Since the objective is to obtain the best possible result in 3h the 400 off population was chosen since it

provides a good compromise between the results and the computational time.

5.2.2 Offspring Percentage

Regarding the offspring percentage tuning, apart from the other parameters, a total of 100 iterations with

a total population of 400 was considered. The percentage of population to be selected for the offspring
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operation was changed from 10 to 100%. The results can be seen in the following figure 5.2, in which

the average standard deviation is 62.4 hours.

Figure 5.2: Study of the Total Completion Time with different percentage of Offspring

From figure 5.2 one can remark that the values presenting the best results for the offspring percent-

age are the 50% and 70%. Since the objective is to obtain the best possible results in 3h, the latter value

was considered.

5.2.3 Mutation Percentage

For the percentage of mutation tuning, a total of 50 iterations were considered while the other parameters

were the ones obtained from the previous tuning (400 of population and 70% of offspring). The following

figure 5.3 shows the results in which the average standard deviation is 67.4 hours.
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Figure 5.3: Study of the Total Completion Time with different percentage of mutation

From figure 5.3 one can conclude that from the study the mutation is not very relevant for this instance

(results differ by 1%). Nevertheless the best percentage of mutation is 30% as it induces the least total

completion time in the model instance.

5.3 Initial Population

In order to obtain the best possible results, every weight must be tuned. Therefore the adjustments start

in the initial population. The goal is to obtain the best solutions without falling into a local optima.

5.3.1 Job Selection Procedure

Tests were performed to the Job Selection Procedure (section 4.2.1) in order to verify which combination

of weights (w1, w2, w3) proved better results. The following tables 5.2 and 5.3 contain the average values

followed by the respective standard deviation returned by the algorithm for the 70 job instances. These

were obtained from a population of 500 individuals. In green is the best value and in yellow the second

best for the same instance.
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Table 5.2: Weight Tuning part 1

Nº

Jobs

Wor-

kers
Flex Rep

100|0
|0

0|100

|0
0|0
|100

40|30

|30

60|20

|20

60|30

|10

0 5277 +/-211 5558 +/-225 6428 +/-306 5957 +/-261 5786 +/-254 5696 +/-255

1 7369 +/-283 7492 +/-317 8250 +/-392 8095 +/-319 7860 +/-324 7750 +/-2770.3

2 4541 +/-137 4568 +/-152 4938 +/-176 4629 +/-145 4624 +/-150 4583 +/-142

0 5194 +/-206 5303 +/-195 6243 +/-239 5336 +/-202 5298 +/-197 5212 +/-188

1 5651 +/-256 5923 +/-310 6627 +/-248 5773 +/-260 5696 +/-247 5649 +/-255

2

0.6

2 5681 +/-276 6240 +/-305 6690 +/-290 6278 +/-307 6104 +/-305 6000 +/-287

0 4615 +/-237 4208 +/-235 5765 +/-252 5314 +/-310 4983 +/-272 4930 +/-285

1 13050 +/-825 13645 +/-873 14596 +/-843 13920 +/-924 13695 +/-879 13610 +/-9060.3

2 6208 +/ 256 7211 +/-341 7195 +/-239 6909 +/-297 6710 +/-288 6750 +/-313

0 3695 +/-176 4104 +/-224 4151 +/-165 4024 +/-182 3961 +/-180 3961 +/-182

1 3863 +/-187 4300 +/-247 4325 +/-188 4108 +/-230 4033 +/-192 4004 +/-194

3

0.6

2 2718 +/-163 2937 +/-205 3064 +/-203 2955 +/-199 2892 +/-193 2862 +/-192

0 4362 +/-273 4877 +/-346 4880 +/-304 4708 +/-335 4606 +/-296 4596 +/-304

1 6612 +/-450 6835 +/-482 6957 +/-456 6909 +/-509 6834 +/-456 6794 +/-4580.3

2 3627 +/-177 3739 +/-212 3805 +/-171 3655 +/-204 3608 +/-180 3600 +/-191

0 5680 +/-281 5427 +/-269 6376 +/-303 6082 +/-304 5937 +/-312 5878 +/-286

1 2831 +/-174 3324 +/-234 3480 +/-213 3388 +/-221 3220 +/-219 3156 +/-217

70

7

0.6

2 4564 +/-286 5180 +/-279 5281 +/-281 5106 +/-317 4960 +/-290 4944 +/-301

Total 95536 100871 109048 103146 100805 99976

Table 5.3: Weight Tuning part 2

Nº

Jobs

Wor-

kers
Flex Rep

60|10

|30

80|10

|10

90|5
|5

95|5
|0

95|0
|5

98|2
|0

0 5815 +/-256 5549 +/-248 5413 +/-233 5341 +/-244 5334 +/-215 5289 +/-228

1 7938 +/-344 7603 +/-312 7504 +/-291 7441 +/-288 7466 +/-314 7384 +/-2870.3

2 4683 +/-156 4582 +/-155 4565 +/-150 4553 +/-143 4547 +/-144 4548 +/-145

0 5407 +/-211 5254 +/-197 5219 +/-191 5180 +/-189 5217 +/-212 5194 +/-206

1 5821 +/-264 5632 +/-255 5626 +/-245 5599 +/-258 5716 +/-248 5641 +/-256

2

0.6

2 6204 +/-295 5925 +/-278 5797 +/-275 5703 +/-264 5764 +/-285 5676 +/- 275

0 5038 +/-262 4762 +/-255 4656 +/-232 4604 +/-236 4634 +/-239 4602 +/-218

1 13895 +/-860 13462 +/-897 13252 +/-871 13129 +/-827 13206 +/-850 13101 +/-8380.3

2 6751 +/-260 6516 +/-296 6355 +/-284 6275 +/- 251 6289 +/-261 6235 +/-272

0 3987 +/-177 3871 +/-172 3792 +/-168 3755 +/-181 3752 +/-195 3706 +/-177

1 4100 +/-191 3986 +/-190 3931 +/-189 3897 +/-193 3931 +/-179 3886 +/-206

3

0.6

2 2896 +/-186 2818 +/-180 2786 +/-173 2752 +/-180 2737 +/-167 2731 +/-167

0 4613 +/-309 4500 +/-282 4439 +/-272 4411 +/-289 4417 +/-274 4411 +/-268

1 6805 +/-468 6727 +/-460 6689 +/-465 6619 +/-485 6651 +/-455 6633 +/-14370.3

2 3657 +/-171 3620 +/-178 3626 +/-172 3586 +/-155 3631 +/-170 3609 +/-166

0 5979 +/-300 5826 +/-306 5749 +/-287 5667 +/-276 5707 +/-300 5683 +/-285

1 3238 +/-217 3047 +/-205 2951 +/-202 2869 +/-196 2910 +/-190 2853 +/-185

70

7

0.6

2 4974 +/-299 4812 +/-288 4682 +/-299 4627 +/-196 4590 +/-256 4579 +/-271

Total 101799 98488 97031 96009 70093 95759
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The reasoning behind the different experimented weights was: firstly, assume the maximum prob-

ability to each path and rank them from best to worst. This likely means that the more the best paths

are followed by the algorithm the better the results are. Therefore the following tests were conducted

bearing in mind that w1 and w2 proved the best and second best results (respectively).

It can be noticed that when the weight one, w1, has 100% of probability of being chosen, which

corresponds to the random initialization, the results proved to be the best for nearly all the instances.

It is worth mentioning that the 70 Job instance is used throughout all tuning tests in this work as it

has the most job allocation and consequentially, more reliability, and is the target instance of study for

this work.

5.3.2 Prohibition Condition Study

The prohibition Condition as explained in section 4.2 assures that there is a limit for allocating a certain

X number of workers and Y number of machines in a row. In this section, a tuning of these parameters

is performed the same way as it was done in the section 5.3.1 above.

Isolated Example with and without Prohibition Conditions

Firstly, to prove that the prohibition condition improves the results, let’s consider a small instance with

5 jobs, 3 workers and flexibility 0.6. A possible first configuration for the encoding table without any

Prohibition Conditions applied could be:

Table 5.4: Example with no Prohibition Condition applied

1.1 5.1 1.2 3.1 5.2 4.1 2.1 2.2 3.2 3.3 4.2

5 1 7 7 7 5 5 1 7 2 7

1 3 3 2 3 1 3 1 1 2 3

The present configuration 5.4 has a total completion time of 58 time units. Now, if the reasoning

provided is correct, if one applies the prohibition condition to encoding table, with both workers and

machine not able to be chosen more than 2 times in a row, the fitness value should improve or in the

very least stay the same. In the present example, on the job 5.2, machine 7 needs to be replaced by

another suitable machine. The suitable machines for job 5.2. are: Machines 1, 2, 4 or 5. Applying

the decoding and using the same objective function, the total completion time for machine 1,2 and 4

are, respectively: 44.4, 44.4 and 44.4 time units. For machine 5 it must be taken into account that this

creates another prohibition condition in job 2.1 as it can be seen in the table below 5.5:
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Table 5.5: Prohibition applied in job 2.1

1.1 5.1 1.2 3.1 5.2 4.1 2.1 2.2 3.2 3.3 4.2

5 1 7 7 5 5 5 1 7 2 7

1 3 3 2 3 1 3 1 1 2 3

The present configuration in table 5.5 has a total completion time of 49.4 time units. Following the

same reasoning as before, the available machines for job 2.1 are: 1, 3, 4 or 7. Since changing to any

of these values does not induce any other prohibition conditions, the total completion time for these

machines are, respectively: 41.4, 40.5, 40.5 and 40.5, proving that introducing a prohibition condition on

the machines improves the initial solution.

Now let’s consider another possible first configuration for the encoding table without any Prohibition

Conditions where a worker is chosen 3 times in a row. A possible configuration for the encoding table

could be:

Table 5.6: Example with no Prohibition Condition applied - worker

1.1 5.1 1.2 3.1 5.2 4.1 2.1 2.2 3.2 3.3 4.2

5 1 7 7 5 5 5 1 7 2 7

1 1 1 2 3 1 3 1 1 2 3

The present configuration in table 5.6 has a total completion time of 49.4 time units. With the same

reasoning, another possible worker to perform job 1.2 is worker 3 which makes the total completion time

equal to 40.7 time units, thus improving the solution.

Weight tuning of the Prohibition Conditions

The reasoning for the following experimented weights was: first check if there is some correlation be-

tween the number of times the prohibition conditions are fired and the mean results obtained. Secondly,

while maintaining one of the conditions fixed (either the worker or the machines) check if by increasing

or decreasing the other, it changes the results for better or worse. The results on table 5.7 were ob-

tained by performing the average of five runs on a population size of 500 for each instance. The average

standard deviation across all instances was +/- 259.
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Table 5.7: Prohibition Condition values tuning

Nº

Jobs
Workers Flex Rep

GA

no Prohibition

GA

W = 3

M = 2

GA

W = 3

M = 3

GA

W = 3

M = 4

GA

W = 3

M = 6

GA

W = 4

M = 3

GA

W = 4

M = 4

GA

W = 4

M = 5

GA

W = 5

M = 5

0 5413.141 4985 5001 5007 5005 5067 5056 5057 5112

1 7500.56 7316 7356 7384 7378 7378 7381 7384 73920.3

2 4558.991 4554 4544 4541 4543 4537 4546 4548 4547

0 5211.68 5138 5134 5134 5149 5141 5149 5143 5163

1 5639.7 5441 5455 5449 5450 5533 5529 5529 5552

2

0.6

2 5803.67 5642 5648 5650 5648 5637 5665 5643 5661

0 4675.081 4521 4548 4593 4585 4546 4568 4570 4594

1 13412.95 12096 12497 12783 12980 12552 12720 12931 129050.3

2 6349.8 6134 6172 6198 6204 6172 6216 6206 6201

0 3792.893 3647 3679 3673 3674 3676 3683 3680 3680

1 3923.9 3850 3854 3876 3870 3871 3863 3862 3875

3

0.6

2 2763.56 2686 2701 2704 2729 2703 2717 2733 2710

0 4403.69 4310 4343 4369 4374 4358 4387 4359 4364

1 6714.08 6502 6606 6609 6598 6597 6579 6610 65940.3

2 3623.75 3565 3585 3615 3610 3596 3599 3627 3625

0 5738.35 5558 5628 5644 5667 5629 5663 5660 5653

1 2957.89 2816 2836 2839 2831 2837 2847 2855 2846

70

7

0.6

2 4682.125 4512 4538 4529 4553 4532 4520 4552 4543

Average 5398 5182 5229 5255 5269 5242 5260 5275 5279

From table 5.7 it can be noticed that the prohibition condition achieves the best results for W=3 and

M=2, improving results by 4% when comparing with a GA with no prohibition condition.

It is worth mentioning that values belowW = 3 andM = 2 were not tested since this could potentially

risk falling into local optimum in the very beginning of the algorithm. The values of the prohibitions means

it is the value when the prohibition starts. Therefore if W = 3, it means that the algorithm will not allow

4 equal workers to be sequentially assigned .

As it can be seen in Appendix B, in tables B.1 and B.2 there is no correlation between the amount of

times a certain prohibition is fired and the results on that particular instance.

5.3.3 IP with Job Selection vs Incremental IP with worker selection

The final addition to the Initial Population is the Incremental Initial Population with worker selection as it

is explained in section 4.2.2. The following table 5.8 contains a comparison between the average values

of the Normal initialization (IPJS) with the average values of this new approach. These are obtained

from a population of 500 individuals and the following values are the respective standard deviation. As

it happened previously, the best values for each instance are marked in green.

63



Table 5.8: IP with Job Selection (normal initialization) vs Incremental IP with worker selection (increment initializa-
tion)

Nº
Jobs

Workers Flex Rep
Normal

Initialization
Increment

Initialization
0 5006.7 +/-184 4958.5 +/-192
1 7324.3 +/-287 7245.2 +/-2480.3
2 4540.2 +/-143 4579.7 +/-171
0 5141.4 +/-182 5184.9 +/-214
1 5435.3 +/-216 5193.9 +/-183

2

0.6
2 5600.7 +/-245 5531.8 +/-196
0 4519.9 +/-203 4900.3 +/-211
1 12024.1 +/-675 10027.1 +/-5660.3
2 6108.2 +/-243 6057.6 +/-321
0 3655.2 +/-182 3098.7 +/-120
1 3850.4 +/-177 3677.4 +/-158

3

0.6
2 2689.9 +/-164 2524.3 +/-141
0 4331.1 +/-251 4088.6 +/-247
1 6503 +/-415 5934.4 +/-3720.3
2 3562.1 +/-153 3572.3 +/-184
0 5603.2 +/-275 5141.9 +/-233
1 2822.8 +/-177 2414.6 +/-112

70

7

0.6
2 4490.2 +/-250 4142.5 +/-172

Total: 93208.7 88273.7

From table 5.8 it can be noticed that for the majority of the instances the Increment Initialization

(IPJS) obtains fitter results thus proving the accuracy of this implementation. When comparing the total

completion time of all instances, the Increment Initialization improves the results by a margin of 5.3%

when comparing to the Normal Initialization.

Convergence Speed

The results from table 5.8 prove that the Increment Initialization reaches fitter solutions in the Initial

Population. This section studies whether this solutions are capable of having a faster convergence speed

in the final solution of the Genetic Algorithm. In this case, a study was conducted for the first instance

where the best initial and final objective functions for both the normal and incremental initialization were

registered. The algorithm ran with a population of 10 individuals for 500 iterations with no VNS. The

results can be seen in the following table (5.9) and in the figures 5.4 and 5.5:

Table 5.9: Convergence Study

Best Initial Population Solution Best Final Solution Difference (%)

Normal Initialization 4774.9 4327.0 9.38
Increment Initialization 4678.7 4131.9 11.69
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(a) Iteration Plot (b) Time Plot

Figure 5.4: Normal Initialization convergence

(a) Iteration Plot (b) Time Plot

Figure 5.5: Increment Initialization convergence

As it can be seen, the increment Initialization has a faster convergence speed while also achieving

fitter solutions thus proving the strength of this implementation.

5.4 Crossover Tuning

Tests were performed to the Crossover methods (section 4.7) in order to identify which combination of

weights (c1 - Single Point Crossover, c2 - , Double Point Crossover and c3 - MPX crossover) proved fitter

results. The following tables 5.10 and 5.11 present the best objective function obtained from a population

size of 75 with 35 total iterations. In green is the best value and in yellow the second best for the same

instance.
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Table 5.10: Crossover Tuning part 1

Nº
Jobs

Wor-
kers Flex Rep 100|0

|0
0|100
|0

0|0
|100

30|30
|40

20|20
|60

10|10
|80

5|5
|90

0|50
|50

0|25
|75

0 4168 4277 3844 3991 4301 3986 3793 3976 3904
1 6141 5940 5963 5978 5875 6184 5976 6014 60620.3
2 3738 3724 3802 3649 3668 3657 3745 3599 3792
0 4448 4162 4303 4159 4303 4263 4161 4192 4226
1 4756 4660 4298 4498 4250 4353 4193 4302 4195

2

0.6
2 4558 4502 4485 4587 4496 4456 4406 4449 4474
0 3638 3746 3675 3441 3698 3634 3607 3712 3645
1 8343 7873 7180 7881 7801 7802 7446 7670 72980.3
2 4942 5042 4827 4868 4896 4790 4788 4880 4810
0 2976 2914 2772 2817 2841 2855 2950 2772 2916
1 3133 3097 3041 3181 3147 3061 3025 3099 3132

3

0.6
2 2041 2060 1954 2024 1925 1960 1940 1969 1983
0 3337 3331 3279 3291 3307 3293 3337 3250 3339
1 4757 4637 4496 4669 4618 4426 4496 4598 46420.3
2 2902 2811 2888 2790 2920 2847 2726 2865 2821
0 4669 4679 4268 4268 4118 4157 4192 4265 4447
1 2041 2189 2024 2153 2025 2127 2078 2079 2088

70

7

0.6
2 3346 3548 3342 3604 3309 3375 3212 3456 3271

Total 73931 73189 70439 71849 71497 71222 70071 71146 71045

Table 5.11: Crossover Tuning part 2

Nº
Jobs

Wor-
kers Flex Rep 0|15

|85
0|10
|90

10|0
|90

10|5
|85

15|5
|80

20|5
|75

50|0
|50

70|0
|30

70|5
|25

33.3|33.3
|33.4

0 4029 3962 3843 3911 3825 3966 3980 4047 4009 3841
1 5975 6141 6037 6095 6077 6037 6133 6182 6138 60260.3
2 3601 3711 3724 3641 3600 3656 3730 3748 3640 3732
0 4107 4279 4023 4041 4260 4047 4280 4285 4364 4257
1 4254 4312 4383 4372 4194 4492 4648 4252 4659 4452

2

0.6
2 4346 4369 4435 4370 4368 4261 4392 4485 4611 4512
0 3692 3651 3702 3616 3584 3595 3606 3609 3619 3572
1 7514 7660 7291 7024 7717 7391 7463 8099 7670 81710.3
2 4651 4763 4660 4616 4776 4521 4788 4700 4631 4746
0 2872 2978 2823 2738 2903 2856 2813 2953 3005 3052
1 3015 2945 3033 3032 3049 3061 3090 3222 3055 3018

3

0.6
2 1949 1908 1937 1957 1957 1929 1990 2106 2002 2051
0 3285 3241 3276 3322 3302 3306 3269 3260 3337 3274
1 4649 4644 4498 4582 4556 4574 4568 4656 4662 45690.3
2 2806 2804 2804 2841 2810 2818 2763 2908 2828 2861
0 4138 4144 4131 4133 4217 4247 4228 4369 4401 4209
1 2178 2099 2054 2052 2091 2116 2110 2118 2080 2056

70

7

0.6
2 3356 3325 3438 3304 3276 3384 3357 3270 3504 3312

Total 70415 70935 70093 69645 70562 70256 71208 72269 72214 71711

The reasoning behind the different experimented weights was similar to (5.3.1): firstly, assume the

maximum weight to each path and rank them from best to worst. This likely means that the more the best

path is followed by the algorithm the better the results are. Therefore, the following tests were conducted

bearing in mind that c3 proved the best results. The next four tests with an incremental increase towards

the 3rd weight demonstrate this reasoning and obtain the second best result for the weights: c1 = 5,

c2 = 5, c3 = 90. Afterwards, a disruptive weight selection (c1 = 0, c2 = 50, c3 = 50) was done to
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check whether results would improve. This was followed by a progressive increase in the 3rd weight

while marginally changing the other two. The best results were obtained for c1 = 10, c2 = 5, c3 = 85.

Afterwards, the remaining tests were attempts to give extra weight to the first path proving the logic that

the worthiest weight to increase is the 3rd, corresponding to the MPX crossover.

5.5 Variable Neighborhood Search

5.5.1 Tuning

The parameters to tune in the VNS are the following:

• Percentage of best population to undergo VNS.

• Number of iterations in the VNS.

These must be tuned so that the increase in computational time provided by the VNS is compensated

by an increase in the convergence speed. In order to tune these parameters the algorithm ran with a

total population of 20 individuals for 10 iterations. All the values were calculated from an average of

the 5 best individuals on each instance. Also, to allow comparison in the same plot, all the values are

relative to the maximum value in each instance. The instance plots can be read in the blue left vertical

axis (corresponding to the total completion time), whereas the computational time plot is read in the right

orange vertical axis.

Percentage of best population to perform VNS

Chart 5.6 contains a study (first three instances) for the percentage of the best population to undergo

the VNS, while maintaining the number of iterations in the VNS constant and equal to six. The remaining

plots for instances 4 to 18 can be consulted in the appendix A.2.1.

After analysing each instance, the percentage of population to undergo VNS that presents the fitter

results can be seen in the following table 5.12. Also the number of occurrences on each percentage is

presented in table 5.13.
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Figure 5.6: Study of the Total Completion Time with different percentage of population accepted for VNS (Instances
1 - 3)

Table 5.12: Best Percentage of VNS in each instance

Instance Best VNS Percentage (%)

1 20 or 40
2 30
3 30
4 30
5 10, 40 or 60
6 40
7 30
8 10 or 30
9 10
10 20 or 50
11 30
12 30
13 30 or 40
14 20
15 20 or 30
16 20 or 60
17 5
18 20
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Table 5.13: Number of Occurrences on each percentage

Best VNS Percentage (%) 5 10 20 30 40 50 60

Number of Occurrences 2 3 7 7 4 1 2

The criteria to select the best percentage of VNS was to select the lowest value with the lowest

possible amount of computational time. Therefore, for the case in figure 5.6, in instance 1 the 20% mark

and the 40% mark were both selected. Table 5.13 indicates that the best percentage of VNS is found

between 20 and 30 percent. Therefore, a percentage of 25% for the VNS was chosen.

Number of iterations in the VNS

In order to tune the number of iterations, the same procedure was implemented resulting in the following

figure 5.7 for the first 3 instances:

Figure 5.7: Study of the Total Completion Time with different VNS iterations (Instances 1 - 3)

After analysing each instance, the number of iterations that presents the fitter results can be seen in

the following table 5.14. Also the number of occurrences on each percentage is presented in table 5.15.
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Table 5.14: Best Number of Iterations in VNS in each instance

Instance Best Number of Iterations (%)

1 2
2 5 or 8
3 3 or 9
4 4 or 6
5 4 or 8
6 5
7 2 or 8
8 5
9 4

10 4
11 6
12 4
13 2
14 4
15 5 or 7
16 6
17 4
18 5

Table 5.15: Number of Occurrences on each iteration

Best Number of VNS Iterations 2 3 4 5 6 7 8

Number of Occurrences 3 1 7 5 3 1 3

The criteria to select the most suitable number of iterations was the same as the one used for the

percentage of best population for VNS. Therefore, for the case in figure 5.6, in instance 1, two iterations

is the most suitable number. Table 5.15 indicates that most suitable number of iterations is four (with 7

occurrences).

The remaining plots for instances 4 to 18 can be consulted in appendix A.2.2.

5.6 Dynamic Termination Criteria

To understand whether the Dynamic Termination Criteria presented fitter results, a study was conducted

in the medium instances (10 jobs) since, in these, for a computational time of 15 minutes one can obtain

converged results that went through several iterations before reaching the final values. For the smaller

instances the algorithm converges too fast not allowing for a proper comparison. For the instances of 70

jobs it takes much more time. The results were preformed with a total population of 400 individuals. The

results are presented in 5.16.
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Table 5.16: Termination Criteria Comparison

Nº
Jobs

Wor-
kers Flex Rep Termination Criteria No Termination Criteria

0 91.5 93.7
1 191.4 193.20.3
2 53.9 56
0 121.6 122.8
1 107.9 107.2

2

0.6
2 130.6 131.7
0 108.4 108.1
1 123.1 123.10.3
2 96.3 96.4
0 60.7 60.8
1 95.4 96.7

3

0.6
2 72.9 72.9
0 103.0 103.4
1 120.6 120.10.3
2 93.1 93.0
0 105.1 104.9
1 99.9 102

10

7

0.6
2 89.6 89.6

Total 1865 1876

From table 5.16, as expected, the Termination Criteria proves fitter results for the total completion

time and will therefore be used in the final results.

The following figure 5.8 depicts a case where, due to the Dynamic termination Criteria, the algorithm

was able to be improved in the last iterations of the study. Also in figure 5.9, the convergence plots of

the algorithm while not using the Dynamic Termination Criteria is shown:

(a) Iteration Plot (b) Time Plot

Figure 5.8: Convergence plot of Instance 2 with Termination Criteria

71



(a) Iteration Plot (b) Time Plot

Figure 5.9: Convergence plot of Instance 2 with no Termination Criteria

5.7 Final Results Comparison

The following table 5.18 contains the total completion time (in hours) obtained by the implemented GA

with and without VNS, alongside with benchmark results from the work completed by Martins et al. [2].

Highlighted in green and yellow are the best and second best results for each instance, respectively.

The parameters used for these results were the ones obtained from the tuning operations (5.2 to 5.5)

and can be found in table 5.17.

Table 5.17: Parameters used in the final results

Population Size 400

Initial Population Weights W1 = 100 | W2 = 0 | W3 = 0

Incremental Initialization? Yes

Elitism (%) 5

Elite Start 1
4

Population size

Percentage of offspring (%) 70

Crossover Weights C1 = 10 | C2 = 5 | C3 = 85

Mutation Percentage (%) 30

Termination Criteria 250 Iterations or 3h (big instances)

From table 5.18 it is proven that both Genetic Algorithms surpass the Branch and Cut algorithm for

large instances with the simple GA surpassing with a margin of 57%. Between both GA’s, the one

without VNS proves fitter results for medium and large sized instances by a margin of 0.6% and 0.4%

respectively. For small instances, the GA with VNS obtains fitter results by 0.1% when compared to the
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Table 5.18: Final Results comparison

Nº
Jobs Workers Flex Rep GA GA + VNS B&C

0 41.3 41.3 41.3
1 54.9 55.1 54.00.3
2 23.6 23.6 23.6
0 42.3 41.8 41.7
1 45.8 45.5 44.3

2

0.6
2 23.6 23.6 23.3
0 70.2 70.2 67.7
1 34.3 34.3 33.30.3
2 43.3 43.3 40.6
0 27.4 27.4 27.4
1 26.8 26.8 26.7

3

0.6
2 33.0 33.0 32.3
0 29.7 29.7 26.7
1 46.4 46.4 46.40.3
2 24.1 24.1 21.4
0 26.1 26.0 26.0
1 42.1 42.1 42.1

5

7

0.6
2 27.0 27.0 27.0
0 92.1 91.2 89.8
1 188.8 187.8 189.50.3
2 54.7 55.4 54.4
0 120.7 120.1 120.3
1 108.4 113.3 111.3

2

0.6
2 130.2 130.1 127.0
0 108.2 108.2 106.3
1 123.4 122.5 114.30.3
2 96.4 96 94.8
0 61.3 60.7 60.2
1 90.4 92.9 105.2

3

0.6
2 73.9 75.2 76.0
0 103 105.1 113.4
1 119.6 120 119.90.3
2 93.1 93.8 87.1
0 102.6 106.5 129.9
1 101.6 98.7 141.2

10

7

0.6
2 84.4 85.6 99.9
0 3526.9 3656.6 8149.5
1 5522.8 5544.4 9910.80.3
2 3539.5 3509.2 -
0 3744 3560.8 10172.7
1 3888.7 3887.9 11286.7

2

0.6
2 3906.4 4366.4 9030.0
0 3304.5 3366.4 8541.5
1 6401.2 6431.8 -0.3
2 4077.1 4102.9 8423.6
0 2502.6 2466.8 5829.2
1 2828.1 2776.8 7738.7

3

0.6
2 1795.3 1827 3573.9
0 3111.2 3108.9 8255.7
1 4249.6 4178.9 9559.30.3
2 2551.2 2563.4 6130.3
0 3772.1 3724 -
1 1776.6 1811.2 -

70

7

0.6
2 3069.7 2926.5 -

Total 66082.2 66334.2 -
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Table 5.20: Encoding table of the final solution for instance 1

Job 2.1 2.2 2.3 3.1 5.1 5.2 4.1 1.1 1.2 1.3 4.2 5.3 3.2 4.3 3.3

Machine 1 6 7 4 4 6 3 7 3 1 5 5 4 7 7
Worker 1 1 2 2 2 1 1 1 1 2 1 1 1 2 1

simple GA. For small instances the Branch and Cut algorithm surpasses both GA’s (by a margin of 2.3%

to the GA + VNS). For medium instances the BC presents better results when the number of workers

is two, but as the instance size increases towards seven workers it looses it’s advantage. Therefore, for

medium instances the GA performs better than the BC by a margin of 0.6% and the GA + VNS obtains

the same overall results as the BC. The following table 5.19 outlines these comparisons:

Table 5.19: Comparison between algorithms for the 3 types of Instances

Instance Type Best Algorithm Second Best Algorithm Worst Algorithm

Small (5 Jobs) B&C GA + VNS GA
Medium (10 Jobs) GA GA + VNS & B&C -
Large (70 Jobs) GA GA + VNS B&C

Representation of the Solution

In order to represent the solution a Gantt Chart for both workers and machines is computed. For the

solution of the first instance in table 5.18 with a total completion time of 41.3 hours (and a makespan

of 12.6 hours), it’s Gantt Charts are represented in figures 5.10 and 5.11, to which corresponds the

encoding table 5.20.
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Figure 5.10: Worker Gantt Chart of first instance of the small instances
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Figure 5.11: Machine Gantt Chart of first instance of the small instances
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6.1 Conclusions

The objective of this thesis was to develop tools capable of creating a real life-size schedule for a Quality

Control laboratory environment using a meta-heuristic algorithm. To achieve this objective, a hybrid

Genetic algorithm was implemented to minimize the total completion time. This algorithm was designed

specifically for the problem at hand and introduced novel approaches to former studies in literature, even

when considering to the more general manufacturing scheduling. Compatibility tables were successfully

used in the context of laboratory scheduling to inform upon the availability of resources (machines and

workers).

The Initial Population had a system of weights which corresponded to probabilities of performing

a certain path in the assignment of the genes. The random Initialization (w1) proved the best results

overall. Additionally, the prohibition conditions proved fitter results regardless the value used in each of

them. The fitter results were obtained while restricting the number of workers in a row to 4 and machines

to 3. The Incremental Initial Population with worker selection also proved to improve the algorithm’s

convergence and overall results. Regarding the Crossover, unlike the initial population, the fitter results

in this phase were found with a combination of the three weights: c1 = 10, c2 = 5 and c3 = 85. The

general GA parameters were studied and a tuning was performed for the total population size, the total

percentage of offspring and percentage of mutation. The Variable Neighborhood Search proved to be

best when the percentage of the best percentage of population chosen to perform VNS was 25% and

when a total of four iterations were performed.

The GA with VNS proved fitter results when compared to the simple GA only for the small instances

with five jobs but could not match with the optimal values from the Branch and Cut algorithm. The final

results and comparison with bench mark tests was performed and the implemented algorithm proved

fitter results for the GA without Variable Neighborhood search for large and medium instances. Since the

objective of this dissertation was to create a real life-size schedule for a Quality Control laboratory, the 70

job instances are the ones mimicking this dimension. The Genetic Algorithm (GA) in this study improved

the results from previous studies by a total of 57%. Therefore, the objectives of this dissertation were

met and a novel implementation was successfully introduced.

6.2 Future Work

The scheduling of resources extends further than the dual resource constrained flexible job shop prob-

lem. As introduced in the literature review in chapter 1.2.5, there are other factors that can be consid-

ered. For example, workers do not all perform with the same level of productivity, resource constraints

are often not limited to workers and machines. Furthermore, in some cases it may be useful to consider

other objective functions and optimization criteria, even simultaneously. Therefore, as for future work,
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this thesis could be extended to a multi-resource or multi-objective scheduling problem. It is worth men-

tioning that the algorithm is also prepared to minimize the makespan which can be particularly useful if

one decides to migrate to multi-objective scheduling. Heterogeneous workers may also be considered

in future work and learning curves implemented in the study.

Due to unpredictable events, there may be shortage of supply or an urgent order in need to be

attended. Therefore, dynamic scheduling is often of high importance in scheduling problems which

could be a valuable extension to this thesis.

Furthermore, the optimal tuning of parameters in a genetic algorithm is often complicated to achieve

since parameters are not mutually exclusive and often depend on each other. A further study could

be performed in order to understand how these parameters could be better tuned and access which

parameters have higher correlation between each other. Perhaps a cross-tuning of the parameters

could be studied in future work, or a tuning using Bayesian optimization.

The study of the quality control laboratory scheduling is still very recent. This is known to be the first

study in this environment to make use of a meta-heuristic algorithm. Further meta-heuristics could be

developed and compared to the one in this work and possibly find which meta-heuristic provides fitter

results to the problem at hand.

Also, it could be of interest to study how the current Genetic Algorithm could perform faster and more

efficient. As an example, parallel computing could be explored in the algorithm in order to reduce the

fitness evaluation phase computational time.

80



Bibliography

[1] D. Wolejszo, “History of project scheduling,” https://www.linkedin.com/pulse/

history-project-scheduling-dariusz-wolejszo/, 2019.

[2] M. Miguel, L. Joaquim, V. Tiago, C. Bernardo, C. Andrea, M. V. Susana, and S. João, “Minimizing

total completion time in large-sized pharmaceutical quality control scheduling,” pending magazine

approval.

[3] P. Weaver, “A brief history of scheduling: Back to the future,” myPrimavera Conference, no. April,

p. 24.

[4] M. B. Horta Mesquita Da Cunha, “Scheduling of Flexible Job Shop Problem in Dynamic Environ-

ment,” pp. 1–10, 2017.

[5] M. Christoph Frey, Production Management A, course book, 2020.

[6] A. Costigliola, F. A. Ataide, S. M. Vieira, and J. M. Sousa, “Simulation Model of a Quality Control

Laboratory in Pharmaceutical Industry,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9014–9019, 2017.

[7] Statista, “Annual growth of pharmaceutical rd spending in europe and

the u.s. between 2006 and 2020,” https://www.statista.com/statistics/315959/

annual-growth-rate-of-pharmaceutical-research-and-development-expenditure/, 2021.

[8] FDA, “Pharmaceutical quality control labs,” https://www.fda.gov/

inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/

pharmaceutical-quality-control-labs-793, 2014.

[9] M. Colledani and T. Tolio, “Joint design of quality and production control in manufacturing systems,”

CIRP Journal of Manufacturing Science and Technology, no. 3, pp. 281–289.

[10] Brucker and Schlie, “Job-shop scheduling with multi-purpose machines,” Computing 45 (4):

369–375 (1991).

81

https://www.linkedin.com/pulse/history-project-scheduling-dariusz-wolejszo/
https://www.linkedin.com/pulse/history-project-scheduling-dariusz-wolejszo/
https://www.statista.com/statistics/315959/annual-growth-rate-of-pharmaceutical-research-and-development-expenditure/
https://www.statista.com/statistics/315959/annual-growth-rate-of-pharmaceutical-research-and-development-expenditure/
https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/pharmaceutical-quality-control-labs-793
https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/pharmaceutical-quality-control-labs-793
https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/pharmaceutical-quality-control-labs-793


[11] Dauzère-Pérès and Paulli, “An integrated approach for modeling and solving the general multi-

processor job-shop scheduling problem using tabu search,” Annals of Operations Research 70:

281–306 (1997).

[12] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for the Flexible Job-shop Schedul-

ing Problem,” Computers and Operations Research, vol. 35, no. 10, pp. 3202–3212, 2008.

[13] I. Driss, K. N. Mouss, and A. Laggoun, “A new genetic algorithm for flexible job-shop scheduling

problems,” Journal of Mechanical Science and Technology, vol. 29, no. 3, pp. 1273–1281, 2015.

[14] M. Dhiflaoui, H. E. Nouri, and O. B. Driss, “ScienceDirect ScienceDirect ScienceDirect Dual-

Resource Constraints in Classical and Flexible Dual-Resource Constraints in Classical and Flexible

Job Shop Problems : A State-of-the-Art Review Job Shop Problems :,” Procedia Computer Science,

pp. 1507–1515.

[15] H. V. Kher, “Examination of worker assignment and dispatching rules for managing vital customer

priorities in dual resource constrained job shop environments,” Computers Operations Research

27 525-537 (2000).

[16] V. Patel, “Scheduling in a dual resource constrained system using genetic algorithms,” p. 108, 1997.

[17] H. Eimaraghy, I. Manufacturing, and S. Ims, “Scheduling of Manufacturing Systems Under Dual-

Resource Constraints Using Genetic Algorithms,” vol. 19, no. 3, pp. 186–201, 2000.

[18] J. T. Felan and T. D. Fry, “Multi-level heterogeneous worker flexibility in a Dual Resource Con-

strained (DRC) job-shop,” International Journal of Production Research, no. 14, pp. 3041–3059,

jan.

[19] H. Yue, J. Slomp, E. Molleman, and D. J. Van Der Zee, “Worker flexibility in a parallel dual resource

constrained job shop,” International Journal of Production Research, vol. 46, no. 2, pp. 451–467,

2008.

[20] C. Xianzhou and Y. Zhenhe, “An improved genetic algorithm for dual-resource constrained flexi-

ble job shop scheduling,” Proceedings - 4th International Conference on Intelligent Computation

Technology and Automation, ICICTA 2011, vol. 1, pp. 42–45, 2011.

[21] D. Lei and X. Guo, “Variable neighbourhood search for dual-resource constrained flexible job shop

scheduling,” International Journal of Production Research, vol. 52, no. 9, pp. 2519–2529, 2014.

[22] M. Yazdani, M. Zandieh, R. Tavakkoli-moghaddam, and F. Jolai, “Two meta-heuristic algorithms for

the dual-resource constrained exible job-shop scheduling problem,” vol. 22, pp. 1242–1257, 2015.

82



[23] A. B. Paksi and A. Ma’Ruf, “Flexible Job-Shop Scheduling with Dual-Resource Constraints to Min-

imize Tardiness Using Genetic Algorithm,” IOP Conference Series: Materials Science and Engi-

neering, vol. 114, no. 1, 2016.

[24] J. Zhang, W. Wang, and X. Xu, “A hybrid discrete particle swarm optimization for dual-resource con-

strained job shop scheduling with resource flexibility,” Journal of Intelligent Manufacturing, vol. 28,

no. 8, pp. 1961–1972, 2017.

[25] Q. Zhong and H. Yang, “Optimization algorithm simulation for dual-resource constrained job-shop

scheduling,” International Journal of Simulation Modelling, vol. 17, no. 1, pp. 147–158, 2018.

[26] M. G. Helander, “Seven common reasons to not implement ergonomics,” nternational Journal of

Industrial Ergonomics 25 (1): 97–101 (2000).

[27] M. Lang and H. Li, “Research on dual-resource multi-objective flexible job shop scheduling under

uncertainty,” 2011 2nd International Conference on Artificial Intelligence, Management Science and

Electronic Commerce, AIMSEC 2011 - Proceedings, no. 2009, pp. 1375–1378, 2011.

[28] K. Z. Gao, P. N. Suganthan, Q. K. Pan, M. F. Tasgetiren, and A. Sadollah, “Artificial bee colony

algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion,”

Knowledge-Based Systems, pp. 1–16.
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A
Tuning

A.1 Initial Results - No Tuning

The first results for the Genetic Algorithm A.1 were obtained with the simpler approaches where only

the one point crossover was implemented, no initial population nor crossover calibration and no VNS.

A stopping criteria was implemented that fires if after 30 iterations the algorithm has no improvements.

Also, the algorithm is limited to run for a maximum of 15 minutes regardless of the number of iterations

it performs.
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Table A.1: Initial Results - Not Tuned

Nº
Jobs Workers Flex Rep GA Time (s) Pop Num It

Nº of last
non

improving it:
0 41.7 12.3 150 40 30
1 55.1 12.7 150 42 300.3
2 23.6 6.8 150 35 30
0 42.6 13.6 150 43 30
1 45.9 12.7 150 42 30

2

0.6
2 23.6 5.5 150 31 30
0 70.2 12.7 150 35 30
1 34.3 10.1 150 39 300.3
2 43.3 9.4 150 33 30
0 27.4 7.7 150 38 30
1 26.8 8.7 150 40 30

3

0.6
2 33 10.2 150 39 30
0 29.7 6.6 150 32 30
1 46.4 9.6 150 32 300.3
2 24.1 8.2 150 39 30
0 26.1 8.2 150 40 30
1 42.1 10.6 150 39 30

5

7

0.6
2 27 6.8 150 30 30
0 91.6 32.2 150 64 30
1 192.4 70.1 150 83 300.3
2 56.7 27.2 150 68 30
0 121.3 56.7 150 64 30
1 108 56.8 150 67 30

2

0.6
2 130.9 50.3 150 57 30
0 108.4 28.1 150 42 30
1 123.8 47.1 150 57 300.3
2 96.5 25.4 150 43 30
0 63 23.8 150 59 30
1 92.9 25.6 150 42 30

3

0.6
2 76.8 32.5 150 68 30
0 103.9 23.3 150 37 30
1 124.3 22.8 150 39 300.3
2 95.3 20.2 150 36 30
0 111.2 45.8 150 71 30
1 101.1 42.6 150 67 30

10

7

0.6
2 88.6 35.3 150 69 30
0 3912.1 907.4 150 72 2
1 5957.2 903.3 150 38 00.3
2 3671.7 905.9 150 101 0
0 4152.7 904.5 150 52 1
1 4462.6 903.2 150 53 2

2

0.6
2 4501.6 911.7 150 53 0
0 3446.3 907.2 150 68 3
1 7094.6 907.6 150 44 00.3
2 4414.3 911.6 150 79 1
0 2766 906.8 150 92 1
1 3022.9 900.8 150 88 11

3

0.6
2 1893.5 900.6 150 138 1
0 3205 905.9 150 77 2
1 4507.3 921.3 150 54 10.3
2 2861.9 903.7 150 96 6
0 4301.5 907.7 150 55 1
1 2039.1 901.2 150 66 2

70

7

0.6
2 3325.4 914.4 150 41 4

Total 72085.3
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It can be noticed that for the smaller instances of 5 and 10 jobs the algorithm reaches some kind of

optimum. For the largest instance of 70 jobs the algorithm is far from converging into one.

A.2 VNS Tuning

A.2.1 Percentage of best Population

Figure A.1: VNS Tuning Instances 4 - 6
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Figure A.2: VNS Tuning Instances 7 - 9
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Figure A.3: VNS Tuning Instances 10 - 12

89



Figure A.4: VNS Tuning Instances 13 - 15
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Figure A.5: VNS Tuning Instances 16 - 18
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A.2.2 Number of Iterations

Figure A.6: VNS Iteration Tuning Instances 4 - 6
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Figure A.7: VNS Tuning Instances 7 - 9
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Figure A.8: VNS Iteration Tuning Instances 10 - 12
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Figure A.9: VNS Iteration Tuning Instances 13 - 15
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Figure A.10: VNS Iteration Tuning Instances 16 - 18
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B
Prohibition Condition
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Table B.1: Prohibition Condition values with counting part 1

Nº
Jobs Workers Flex Rep

GA
W = 3
M = 3

Worker
Count

Machine
Count

Total
Count

GA
W = 3
M = 2

Worker
Count

Machine
Count

Total
Count

GA
W = 3
M = 4

Worker
Count

Machine
Count

Total
Count

GA
W = 3
M = 6

Worker
Count

Machine
Count

Total
Count

0 5001 5118 1140 6258 4985 5123 4049 9172 5007 5113 446 5559 5005 5140 52 5192
1 7356 0 1271 1271 7316 0 5666 5666 7384 0 367 367 7378 0 27 270.3
2 4544 0 816 816 4554 0 3419 3419 4541 0 221 221 4543 0 16 16
0 5134 5537 1029 6566 5138 5567 6676 12243 5134 5615 177 5792 5149 5450 4 5454
1 5455 9681 1496 11177 5441 9609 8936 18545 5449 9684 286 9970 5450 9645 8 9653

2

0.6
2 5648 2341 1507 3848 5642 2513 9645 12158 5650 2525 279 2804 5648 2399 11 2410
0 4548 0 1858 1858 4521 0 6476 6476 4593 0 613 613 4585 0 111 111
1 12497 5087 4804 9891 12096 5026 10535 15561 12783 5125 2485 7610 12980 4997 688 56850.3
2 6172 1252 1196 2448 6134 1253 4843 6096 6198 1266 345 1611 6204 1136 28 1164
0 3679 4206 1452 5658 3647 4250 8783 13033 3673 4183 295 4478 3674 4093 8 4101
1 3854 2204 1158 3362 3850 2118 7216 9334 3876 2133 208 2341 3870 2106 6 2112

3

0.6
2 2701 2678 1398 4076 2686 2705 7268 9973 2704 2668 266 2934 2729 2642 14 2656
0 4343 888 810 1698 4310 873 3805 4678 4369 895 200 1095 4374 842 23 865
1 6606 2386 1389 3775 6502 2404 6594 8998 6609 2532 330 2862 6598 2487 30 25170.3
2 3585 1219 803 2022 3565 1300 3533 4833 3615 1217 226 1443 3610 1233 18 1251
0 5628 1435 2007 3442 5558 1518 10870 12388 5644 1411 433 1844 5667 1387 16 1403
1 2836 2122 1441 3563 2816 2190 8727 10917 2839 2181 234 2415 2831 2128 10 2138

70

7

0.6
2 4538 1688 1683 3371 4512 1620 9628 11248 4529 1600 317 1917 4553 1622 15 1637

Average 5229 5182 5255 5269

98



Table B.2: Prohibition Condition values tuning part 2

Nº
Jobs Workers Flex Rep

GA
W = 4
M = 3

Worker
Count

Machine
Count

Total
Count

GA
W = 4
M = 4

Worker
Count

Machine
Count

Total
Count

GA
W = 4
M = 5

Worker
Count

Machine
Count

Total
Count

GA
W = 5
M = 5

Worker
Count

Machine
Count

Total
Count

0 5067 4012 1159 5171 5056 4052 400 4452 5057 3918 146 4064 5112 3226 170 3396
1 7378 0 1343 1343 7381 0 332 332 7384 0 98 98 7392 0 99 990.3
2 4537 0 819 819 4546 0 189 189 4548 0 65 65 4547 0 54 54
0 5141 3134 1054 4188 5149 3062 194 3256 5143 3131 34 3165 5163 1846 33 1879
1 5533 5506 1447 6953 5529 5440 277 5717 5529 5362 41 5403 5552 3202 39 3241

2

0.6
2 5637 1289 1548 2837 5665 1317 263 1580 5643 1281 55 1336 5661 652 53 705
0 4546 0 1884 1884 4568 0 669 669 4570 0 230 230 4594 0 282 282
1 12552 2447 4831 7278 12720 2456 2435 4891 12931 2399 1343 3742 12905 1293 1368 26610.3
2 6172 543 1244 1787 6216 492 335 827 6206 501 93 594 6201 212 100 312
0 3676 1431 1490 2921 3683 1403 288 1691 3680 1432 56 1488 3680 541 53 594
1 3871 832 1218 2050 3863 818 192 1010 3862 860 32 892 3875 380 28 408

3

0.6
2 2703 937 1449 2386 2717 954 302 1256 2733 971 60 1031 2710 334 86 420
0 4358 251 815 1066 4387 255 235 490 4359 286 80 366 4364 79 67 146
1 6597 738 1422 2160 6579 668 317 985 6610 764 92 856 6594 186 83 2690.3
2 3596 296 811 1107 3599 299 198 497 3627 295 49 344 3625 78 50 128
0 5629 262 1937 2199 5663 260 379 639 5660 262 80 342 5653 47 70 117
1 2837 554 1429 1983 2847 542 295 837 2855 548 38 586 2846 150 46 196

70

7

0.6
2 4532 284 1682 1966 4520 316 357 673 4552 304 62 366 4543 58 61 119

Average 5242 5260 5275 5279
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