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Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

December 2021

Abstract

The development of control strategies that maximize power generation in Wave Energy Converters
is fundamental in making the exploitation of sea waves an economically viable element of the energy
mix. Classical, model-based control techniques have significant limitations in achieving this goal, due
to their dependency on modelling accuracy and inability to adapt to changing system dynamics over
time. In this thesis a control scheme based on Deep Reinforcement Learning (DRL) is presented,
using a MATLAB and Simulink model of the Mutriku Oscillating Water Column plant as a training
environment. This controller acts on the power take-off electromagnetic torque and relief valve aperture
simultaneously, and exclusively uses data measured in the plant itself as observation signal, without
requiring an external measuring tool for estimation of the sea state. Three different agent architectures
are trained and tested: Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3)
and Soft Actor-Critic (SAC). Using as a baseline a power control law developed by previous authors,
these agents are compared in terms of their expected yearly electric power production. The black box
behaviour of the controller is also analysed, in an effort to gain insight into the type of learned control
law it implemented.
Keywords: wave energy converter, oscillating water column, Mutriku, power take-off control, deep
reinforcement learning

1. Introduction

The need for the mitigation of man-made climate
change means that one of humanity’s most diffi-
cult challenges for the 21st century is performing
a successful transition from fossil fuel-based to re-
newable energy generation. An alternative to fulfill
this demand is the widespread adoption of renew-
able energy sources, including the exploitation of
ocean energy, particularly wave energy. There is
currently only 2.31 MW of installed wave energy in
the world, although it has an estimated theoreti-
cal potential for yearly energy production of 29500
TWh [14], enough to cover the world’s electricity
needs in 2019 of 26 730 TWh [13].

Multiple methods to harness energy from the
waves were developed, the most common being os-
cillating body, Oscillating Water Column (OWC)
and overtopping devices [14]. This work focuses
on OWC devices, which extract energy through the
compression of air in an air chamber caused by the
wave oscillations , driving a power take off system
constituted by a self-rectifying air turbine (Wells or
biradial) and an electrical generator.

The main objective of this work is the devel-
opment of a model-free control strategy for the
Mutriku OWC plant, using data available at the
plant, through the use of Deep Reinforcement
Learning techniques. This control scheme should
be adaptable to different sea states and respect the

safety constraints of the plant while maximising
power production, acting on two control variables:
the generator torque and the aperture of a relief
valve.

1.1. State of the Art in OWC control

The control problem in OWC devices may be for-
mulated with multiple objectives in mind, such as
maximizing electrical power, keeping the air turbine
close to its optimal operating point or minimising
undesirable events such as turbine stalling. Mul-
tiple strategies have been used aiming to achieve
these objectives, including classical control using
both frequency and time domain models and mod-
ern control, based on computational intelligence
and the use of data.

Frequency domain control relies on approximat-
ing a set of optimality conditions for maximum
power absorption in magnitude and phase [6]. To
achieve these conditions, the impedance of the PTO
system must match the mechanical impedance of
the OWC for the frequencies found in the waves.
This behaviour is commonly approximated through
the latching of the WEC oscillation [11].

In the time domain, two main modes of control
are identified for OWC devices: turbine rotational
speed control, and airflow control.

Rotational speed control is performed by regu-
lating the electromagnetic torque of the generator,

1



where the most common control law uses a cubic
relation between rotation velocity and power in the
generator, emulating the turbine performance curve
[12].

Airflow control is performed through the use of
valves both in series and in parallel. Valves in se-
ries have been shown to increase power generation
while limiting rotation velocity in highly energetic
sea states [5]. Safety valves in series with the air
turbine have mostly been used to cut off air flow
from the turbine when it reaches a threshold rota-
tion velocity [12].

The main topic of this work, Reinforcement
Learning (RL), has also been approached before as
a strategy to control WEC devices, mostly of the
oscillating body type, using tabular [2] or deep [3]
RL, although some research has also been done on
RL control of OWC’s [7].

2. Reinforcement Learning Algorithms

Reinforcement Learning (RL) methods are based
on an interaction between an agent, who acts as
a decision maker and learner, and an environment,
characterised by a set of observations available to
the agent. When the agent performs an action, the
environment’s state changes, altering the possible
future actions and respective outcomes, and provid-
ing numerical reward. The objective of the learn-
ing process is to maximise the expected future re-
wards of all subsequent action-state combinations.
To achieve this goal, the agent must balance the ex-
ploitation of actions that have previously achieved a
high reward, and the exploration of new, unknown
actions.

The problem structure behind RL may be for-
mulated in the framework of Markov Decision Pro-
cesses (MDP’s), as shown in figure 1. At every time
step t, the agent is provided with a representation
of the environment’s state St and uses it to select
an action At. After a time step, the agent receives a
reward signal Rt+1 and observes the system’s new
state St+1. The reward, should be scalar, either
positive or negative, representing a bonus or penalty
for achieving favourable or unfavourable outcomes,
respectively.

Figure 1: MDP formulation of the RL problem [19].

In the MDP framework, a mapping from every
possible state St = s to a probability of selecting
every possible action At = a is called a policy, which
may be deterministic or stochastic. The return Gt

of a policy is the expected cumulative reward that
the policy will achieve, frequently discounted by a
factor γ ∈ [0, 1], as in equation 1.

Gt =

T∑
k=t+1

γk−t−1rk (1)

The definition of return allows for the introduc-
tion of the value function V (s) defined in equation
2. An alternative formulation for the value function
is by the definition of the expected value of the re-
turn from taking action a in state s (equation 3),
called action-value function or Q-function.

Vπ(s) = Eπ[Gt|St = s] (2)

Qπ(s, a) = Eπ[Gt|St = s,At = a] (3)

Any optimal policy π⋆ will thus be a policy that
maximises the value functions V (s) and Q(s, a) for
every state s ∈ S. From the Q-function it is
also possible to generate the optimal action a⋆ =
argmaxa Q

⋆(s, a) directly.
Another key concept in defining the learning pro-

cess for multiple RL algorithms are the Bellman
equations 4 which establish a recursive definition
for the value functions.

Vπ(s) = E [r(s, a) + γVπ(s
′)] (4a)

Qπ(s, a) = Eπ [r(s, a) + γEπ[Qπ(s
′, a′)]] (4b)

2.1. Taxonomy of Reinforcement Learning Algo-
rithms

There are multiple algorithms to approach the prob-
lem of determining the optimal policy for a given
environment. Tabular methods, such as the orig-
inal Q-Learning, may be only feasibly be applied
in discrete and low dimensional state and action
spaces, where every possible action and state may
be enumerated [19].

For more complex problems, using either contin-
uous or high-dimensional action and state spaces,
using an approximator defined by parameters θ is
required. The most common type of approxima-
tor are Deep Neural Networks (DNN), which have
been shown to be universal non-linear approxima-
tors whose approximation power grows exponen-
tially with the number of hidden layers, allowing
them to address the ”curse of dimensionality” in RL
[19]. The development of a set of algorithms that
use DNN-based architectures to approximate either
the value function, the policy or both led to a new
field of RL, Deep Reinforcement Learning (DRL).

Using differentiable approximators such as DNN,
a different approach to finding the optimal policy is
computing the gradient of the expected return with
respect to the value function parameters and per-
forming gradient ascent [19], a category of methods
called policy optimisation or policy gradient.

A commonly used classification system for DRL
algorithms is the one developed by OpenAI [1],
shown in figure 2.

The first distinction presented in figure 2 is
between model-based and model-free algorithms.
Model-based RL requires a complete model for the
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Figure 2: Taxonomy of DRL algorithms [1].

environment’s transition dynamics and has higher
sample efficiency [19, 1], while model-free RL learns
only from information gathered from interaction
with the environment. Two main frameworks are
used in model-free RL: policy based methods (”Pol-
icy Optimization” in figure 2) and value-based
methods (”Q-Learning” in figure 2). Current state-
of-the-art methods combine the two approaches,
leading to actor-critic algorithms that approximate
both the policy and the value function.

In the case of the Mutriku WEC, the transition
dynamics of the environment are not fully avail-
able, so model free DRL is the more natural choice
for the controller. Most of the relevant variables
of the model are also physical quantities that vary
continuously so it is beneficial to use a DRL algo-
rithm that is able to include continuous states and
actions. This led to the choice of the three state-
of-the-art DRL actor-critic algorithms in figure 2:
Deep Deterministic Policy Gradient (DDPG) [15],
Twin Delayed DDPG (TD3) [8] and Soft Actor-
Critic (SAC) [10]. In DDPG and TD3 the policy is
deterministic, so exploration noise must be added
to the policy output while in SAC it is stochastic,
so exploration is built in the model. DDPG is the
simplest algorithm, using only periodically updated
target networks to stabilise training, as well as sam-
pling minibatches of experiences (s, a, r, s′) from a
replay buffer to avoid sampling consecutive highly
correlated data. TD3 improves on DDPG by adding
target policy smoothing noise, the clipped double-
Q trick to avoid value overestimation, and periodic
policy updates, while SAC introduces a policy en-
tropy term to the loss function that promotes ex-
ploration of highly uncertain actions. All of the
algorithms perform a minimisation of the MSE in
estimating Bellman’s equation 4b. and gradient as-
cent on the return from following the actor’s policy
simultaneously.

3. Model

A complete wave-to-wire simulation model of the
Mutriku Wave Power Plant, based on previous work
by Henriques et al. [12], is used as a training envi-
ronment for the agent. Figure 3 describes the model
by splitting it into each of its subsystems.

Figure 3: Mutriku model diagram.

3.1. Wave Excitation Force Generation
The local Mutriku wave climate is represented by
14 sea states SS, defined by their significant wave
height, Hs, energy period, Te, and probability of oc-
currence po, as defined in table 1 [20]. The remain-
ing states are considered to be unable to generate
significant power.

Table 1: Characteristic sea states at Mutriku [20].

Sea state Significant Energy Probability
number Height Period

SS Hs (m) Te (s) po (%)

1 0.88 5.5 3.23
2 1.03 6.5 3.44
3 1.04 7.5 5.08
4 1.02 8.5 6.11
5 1.08 9.5 10.73
6 1.19 10.5 9.31
7 1.29 11.5 9.52
8 1.48 12.5 7.42
9 1.81 13.5 2.75
10 2.07 14.5 2.96
11 2.59 15.5 1.34
12 2.88 16.5 0.40
13 3.16 11.5 0.27
14 3.20 12.5 0.42

The spectral model for the waves is thus gener-
ated from the characteristic sea states using the
modified JONSWAP spectrum in equation 5 [12],
where ω is the wave frequency, SJ is the original
JONSWAP spectrum (a function of Te and Hs)
and φMutriku is a local attenuation function derived
from experimental data recovered in the Mutriku
site, shown in figure 4.

SMutriku(ω) = SJ(ω)φMutriku(ω) (5)

Figure 4: Attenuation function φMutriku [12].

The excitation force may be computed through
equation 6, where Γ is the heave excitation re-
sponse, ϕ is the excitation response to the wave
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component, ϕr is a uniform random variable, and
A is the amplitude of each frequency component, as
computed by equation 7. The amplitudes are dis-
cretised in randomised frequency intervals ∆ωi as
indicated by Henriques et al. [11]. Functions Γ(ω)
and ϕ(ω) are shown in figure 5.

Fexc =

n∑
i=1

Γ(ωi)A(ωi) cos(ωit+ ϕi(ω) + ϕr,i) (6)

A(ωi) =
√

2∆ωiSMutriku(ωi) (7)

Figure 5: Response functions Γ and ϕ [12].

3.2. Water Column Hydrodynamic Model
As mentioned by Henriques et al. [12], differen-
tial equation 8 for the surface height z as a func-
tion of excitation force Fexc may be formulated us-
ing theory describing the motion of floating bod-
ies, where m is the mass of the piston, A∞ is the
added mass at infinite frequency, ρw is the water
density, g is the acceleration of gravity, S is the
surface area of the OWC, pat is the atmospheric
pressure, p∗ = p/pat − 1 is the dimensionless air
pressure in the chamber and R is the wave radia-
tion memory term.

(m+A∞)z̈ = −ρwgSz − patSp
∗ + Fexc −R (8)

The values of the geometric and physical con-
stants used in equation 8 are shown in table 2.

Table 2: OWC model Parameters.
Parameter Symbol Value

m 72 010 kg
A∞ 27 748 kg
ρw 1025 kgm−3

g 9.81m s−2

S 19.35m2

pat 1.013 25× 105 Pa

In equation 8, R is the memory term of the wave
radiation force, expressed by the non-causal convo-
lution integral in equation 9. This integral requires
past and future wave data to be computed, so it
estimated using the Prony method instead, where
it is approximated by a state-space method with a
set of 16 state variables Ik, derived from the repre-
sentation of kernel K as a summation of complex
exponential terms [4].

R =

∫ t

0

K(t− τ)ż(τ)dτ (9)

3.3. Air Chamber Expansion Model
To model the compression of the air chamber, it
is common to assume the perfect gas model for
air and isentropic compression [5]. It was shown
[5, 12] that, under these assumptions, the differen-
tial equation that determines the dimensionless air
pressure p∗ is given by equation 10. In this equa-
tion, ṁ is the mass of air flowing out of the chamber,
ρc is the air density inside the chamber and Vc is
the instantaneous air volume in the chamber, given
by Vc = V0 −Sz, ρat is the atmospheric air density,
and γ = cp/cv is the specific heat ratio of air, with
a value of 1.4. At hydrostatic conditions, the air
chamber has a height of 7.45m and area S, yielding
a reference volume of V0 = 144.1575m3.

ṗ∗ = −γ(p∗ + 1)
V̇c

Vc
− γ(p∗ + 1)

γ−1
γ

ṁ

ρatVc
(10)

3.4. Turbine Dynamics Model
A set of dimensionless numbers may be defined to
represent the Wells turbine dynamics, as shown in
equations 11a to 11d: pressure head Ψ, flow rate
Φ, power coefficient Π, and turbine efficiency ηturb.
Additional variables used in the adimensionalisa-
tion are the turbine diameter D (0.75m) and ro-
tational velocity Ω, the stagnation pressure head
∆p = patp

∗, the inlet air density ρin and the mass
flow rate ṁturb.

Ψ =
∆p

ρinΩ2D2
(11a)

Φ =
ṁturb

ρinΩD3
(11b)

Π =
Pturb

ρinΩ3D5
(11c)

ηturb =
Pturb

Ppneu
=

Π

ΦΨ
(11d)

The direction of air flow varies depending on air
pressure inside the OWC chamber, changing the
definition of inlet stagnation air density ρin, as
shown in equation 12.

ρin =

{
ρc, if p∗ > 0

ρat, if p∗ ≤ 0
(12)

The previously introduced dimensionless num-
bers were implemented in the model as functions
of the dimensionless pressure head Φ = fΦ(Ψ),
Π = fΠ(Ψ) and ηturb = fη(Ψ), as shown in figure 6.

3.5. Generator model
Equation 13 describes the relation between the ap-
plied turbine Tturb and generator Tgen torques and
the rotor’s rotation velocity Ω, where I is the rotor
inertia of 3.06 kgm2.

4



Figure 6: Dimensionless variables Φ, Π and η, as a
function of Ψ [12].

Ω̇ =
Tturb − Tgen

I
(13)

In this model is assumed that the control brak-
ing torque will be adjusted by the generator’s power
electronics, and that the generator torque Tgen will
be a resistive torque, meaning it will take a positive
value in equation 13. Other restrictions that apply
to the torque are the maximum generator power
output P rated

gen = 18.5 kW and the maximum gen-

erator torque T rated
gen = 90.1875Nm, meaning that

under a torque control law Tu
gen, the true generator

torque will be given by equation 14.

Tgen = max
(
0,min

(
Tu
gen, T

rated
gen , P rated

gen /Ω
))

(14)

The electrical power Pelec output from the gen-
erator may be approximated by equation 15, where
ηgen is the generator efficiency and Λ is the gener-
ator’s load factor ( Λ = Pgen/Prated) .

Previous experimental testing [9] was performed
to determine the performance curve ηgen(Λ) on
a similar generator to the one used at Mutriku,
demonstrating that the curve shown in figure 7 fits
the experimental data [12].

Pelec = ηgen(Λ)Pgen (15)

Figure 7: Generator efficiency curve ηgen [12].

3.6. Valve Models
Two types of valves are used in the control of OWC
devices: High-Speed Safety Valves (HSSV) and re-
lief valves, installed in series or in parallel with the
turbine duct, respectively [12]. In this work, the use
of a relief valve in the Mutriku OWC to control the
turbine will be analysed, while the HSSV is used

only as a fail-safe mechanism to prevent excessive
rotation velocity.

The model for the air flow through the relief valve
ṁv [5], is represented by equation 16, where Av is
the effective valve area and kv is the valve aperture
state.

ṁv = sign(p∗)Avkv
√
2ρin|p∗pat| (16)

The HSSV valve is modelled as a binary vari-
able u that is introduced in the dimensionless power
function fΠ(uΨ), closing when the rotor reaches
the maximum allowed rotation velocity Ωmax =
4000 rpm [12].

4. Problem Definition and Controller Design
In the MDP framework used to formulate an
RL problem, the environment will be the entire
Mutriku simulation model described in section 3.

The observations that form the state space are
the estimates for significant wave height Hs and
energy period Te from the sea state estimator, the
instant dimensionless pressure p∗, the turbine rota-
tion velocity Ω and its derivative Ω̇, and the gener-
ator torque T t−1

gen and valve aperture kt−1
v from the

previous time step and their time derivatives Ṫ t−1
gen

and k̇t−1
v .

The action space a is formed by the time deriva-
tives of the generator torque Ṫ t

gen and the valve

aperture k̇tv. Having the controller impose a time
derivative on the control actions reduces the oscil-
lations in the control action during training, reduc-
ing the frequency of forced simulation terminations
and improving convergence speed. To summarise,
the action space a and state space s, are formulated
in equations 17 and 18, respectively.

s =
[
Hs Te p∗ Ω Ω̇ T t−1

gen kt−1
v Ṫ t−1

gen k̇t−1
v

]
(17)

a =
[
Ṫ t
gen k̇tv

]
(18)

The reward function rt must be defined according
to the control objectives: maximise power produc-
tion, avoid excessive PTO control effort and pre-
serve the structural integrity of the system.These
requirementes lead to equation 19.

In this equation, a positive reward is given pro-
portional to the average normalised electrical power
Pelec, taken as the average of the output power
over the controller’s sampling interval, normalised
to the [0, 1] range by the maximum possible electric
power output by the generator. Negative terms are
added proportional to the dimensionless generator
torque and valve aperture in the previous time step
T t−1
gen /T rated

gen and kt−1
v to discourage excessive con-

trol effort. A penalty is also added in proportion
to the time derivative of generated power raised an
even power eeven, to penalise large variations in the
output power.

Proportionality constants k1, k2, k3 and k4 allow
for separate tuning of the importance of each of
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the reward terms. Flag f1 takes a value of 1 if
the simulation is terminated early due to turbine
stoppage or due to the dimensionless pressure in the
chamber reaching a threshold value of |p∗| > 0.25.
If the controller outputs a torque that requires a a
higher generator output power than the rated power
(Pgen > P rated

gen ), flag f2 is activated. Finally, if the
generator-turbine set reaches its maximum rotation
velocity Ωmax, flag f3 will activate.

rt =k1Pelec − k2

(
d

dt
Pelec

)eeven

− k3
T t−1
gen

T rated
gen

− k4k
t−1
v −

3∑
i=1

fi

(19)

The values of the proportionality constants k1,4
and flags f1,3 are given in table 3.

Table 3: Reward constants and flags.

k1 k2 k3 k4 f1 f2 f3 eeven

10 4 0.1 0.05 −20 −5 −0.5 8

4.1. Sea State Estimation
The JONSWAP spectrum may be used directly in
simulation to generate the excitation force from a
sea state, but in the context of online controller de-
ployment, Hs and Te must be estimated from time
series data that is representative of the wave dy-
namics. In this implementation, one of the chal-
lenges was using exclusively air chamber pressure
data to approximate the sea spectrum Ŝ(ω).

Spectral analysis may be used to characterise sea
states since, given a power spectral density S(ω),
wave significant height Hs and energy period Te are
defined by equations 20 and 21 [17].

Hs = 4

√∫ ∞

0

S(ω)dω (20)

Te =

∫∞
0

S(ω)
ω dω∫∞

0
S(ω)dω

(21)

To approximate the power spectral density of the
pressure time series, the modified periodogram is
used [18], which is given by equation 22.

Ŝ(f) =
∆t

N

∣∣∣∣∣
N∑
t=1

w(t)y(t)e−i2πf∆tt

∣∣∣∣∣
2

(22)

After an extensive parameter search, the val-
ues for the periodogram parameters were selected.
These include the sampling interval ∆t = 1 s, the
number N = 900 of time series points to use,
the window function w(t) = 1 (unmodified peri-
odogram) and the update interval tspectrum = 5 s.

To validate the algorithm, online estimation was
performed for a 15min period on each sea state.
Figure 8 shows the results of this simulation. While

the reconstruction of the sea states is not perfect,
the qualitative ordering of the values of Te and Hs

is preserved in general, with only temporary errors
caused by random pressure peaks. The most likely
cause for estimation errors is the non-linearity of
the model, which includes the air compression, the
frequency dependent attenuation function φMutriku

and the limit on pressure due to the safety valve.

Another relevant issue is the oscillations in the
estimate of the energy period (figure 8), which stem
from numerical issues in the quotient of integrals in
equation 21, minimised by only recomputing the
estimate every tspectrum = 5 s.

4.2. Controller Architecture

The chosen DRL methods require choosing a
set training hyperparameters, including the DNN
structure and a set of numerical parameters that
control the learning process.

Since TD3 is an extension to DDPG that im-
proves training stability, to properly compare these
two alternatives it was decided to use the same actor
and critic network architectures for both, introduc-
ing only a second critic in the TD3 agent. The cho-
sen architectures for the actor and critic networks
are shown in the left and middle networks in figure
9, respectively. The network is mostly made up of
a series of fully connected (FC) and rectified linear
unit (ReLU) layers. Note the parallel input paths
for state and action in the critic, and the tangent
layer as the actor output layer, used to squash the
output to the [-1,1] interval.

To increase training stability, the size of the re-
play buffer and mini-batch were increased from
their default implementations [15, 8] to 100000 and
256, respectively. To avoid over-fitting, a gradient
threshold of 1 was imposed on the gradients used
in optimization and an L2 regularisation term was
added to the loss function. All other hyperparame-
ters were kept from the original implementations.

Unlike the DDPG and TD3 controllers, the SAC
controller uses a stochastic actor representation,
meaning that while the structure for the pair of
critic networks may be reused from TD3 (middle
network in figure 9), the actor network must be
modified to output a normal distribution, as shown
in the right network in figure 9. This is achieved by
splitting the network output path into two branches
representing the mean and standard deviation of
the stochastic policy. Since the standard deviation
must take a smooth positive value, a softplus layer
is added on the corresponding branch before the
output.

The numeric hyperparameters for SAC were ei-
ther reused from DDPG and TD3 in order to allow
for a direct comparison of the algorithms, or, for the
ones that are unique to SAC, the values presented
in the original paper [10] were used

5. Results

Each of the controllers was trained using the MDP
formulation and training hyperparameters found in
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Figure 8: Real time estimates for the significant height and energy period for each of the sea states.

Figure 9: Left to right: DDPG and TD3 actor, critic and SAC actor DNN architectures.

the previous section. Since the possible reward from
an episode is largely dependent on the randomly
sampled sea state, it is inconvenient to set an aver-
age reward target as a stopping criterion, so training
is stopped at a set number of simulation time steps,
with convergence evaluated after training.
In order to expose the agents to all of the char-

acteristic sea states, every episode is initialised by
choosing a random sea state, and simulated 30min
of simulated time in normal operation, unless early
termination is forced by flag f1.

5.1. Training Process
The training curve for DDPG and TD3 is shown
in figure 10. Comparing the three controllers, it
is clear that the DDPG controller converges to a

policy that achieves a lower average reward than
TD3 or SAC, showing the advantage of introducing
the two latter, more complex algorithms. The critic
output evolution also shows value overestimation in
DDPG, where the critic estimates a higher average
value than TD3 or SAC while achieving a lower av-
erage reward. DDPG was also prone to over-fitting
and divergence, requiring early stopping of training
at 1× 105 steps, instead of the 3× 105 used in TD3
and SAC, to obtain a viable controller.

The training time, simulated time and ratio be-
tween them for each of the trained controllers is
shown in table 4. Every controller presents a ratio
higher than 1, showing the viability of implement-
ing training in real time on a physical prototype,
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Figure 10: DDPG, TD3 and SAC controllers training reward curves.

even with consumer level hardware.

Table 4: Training and simulation time for the 3
DRL algorithms.

DRL algorithm Training Simulated Time
algorithm time [s] time [s] ratio

DDPG 25 443 200 444 7.87
TD3 76 664 600 132 7.82
SAC 117 970 601 682 5.10

5.2. Controller performance

To evaluate controller performance, the average
power generation is calculated over 20 random ini-
tialisations of each sea state simulated for 30min.
The controllers are compared not only against each
other but with the optimal baseline law Tgen(Ω) =
2× 104Ω2 [12], yielding the results in figure 11.

Figure 11: Electrical power generation under each
control law.

The first conclusion to be drawn is that the
DDPG agent is not an adequate solution to this
problem, since it only outperforms the baseline
power law on sea states SS3 to SS5, SS9, SS13 and
SS14. Comparing it to the other two DRL con-
trollers, it only outperforms TD3 or SAC on sea
state SS6 and SS3, respectively.

TD3 and SAC present similar power generation
values for most sea states, but TD3 has a higher
mean power generation on the more (SS10 to SS14

and SS8) and less (SS1 to SS4) energetic sea states,
while SAC favours electricity production in states
with an intermediate significant height (SS5 to SS7
and SS9).

For the intermediate sea states (SS3 to SS12, the
TD3 and SAC controller are able to achieve slightly
higher power generation on average than the power
law controller, with increases varying from 1% to
16% over the baseline.

The improvement seen in power generation is
larger for the most energetic sea states, particu-
larly SS13 and SS14 with improvements of 35.4%
and 27.7%, respectively, when using SAC or 35.6%
and 31.1% when using TD3.

Low energy sea states also benefit from a signif-
icant increase in power generation under SAC and
TD3 over the baseline law, which was expected as
the power law optimises for turbine efficiency, ig-
noring generator efficiency which is lower when the
generator operates at a smaller load factor. By in-
cluding this effect, power generation is increased by
112%, 136% and 39% in sea states SS1, SS2 and
SS3, respectively, for the TD3 agent, and by 100%,
43.5% and 16.8% for the SAC agent, when com-
pared with the baseline values.

Using the probability distribution po from table
1 over a year, the expected value of the electrical
power generation may be estimated. Furthermore,
considering the average Iberian Electricity Market
(MIBEL) price in September 2021 as a reference
(160.77 €/MWh) [16], the expected power genera-
tion and revenue under each control law are shown
in table 5, assuming operation of all 14 Wells tur-
bines at Mutriku over a year [12].

Table 5 verifies that DDPG does not represent a
viable alternative for this problem, since it is not
expected to generate higher yearly energy than the
baseline, leading to an expected yearly loss for the
plant operator of 1273€. TD3 and SAC, however,
present a clear advantage over the baseline law,
yielding additional profits of 2227€ and 2285€, re-
spectively. The SAC expected power generation is
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able to surpass TD3 over a full operation year due to
its better performance on the most likely sea states
to occur (SS5 to SS7).

Table 5: Yearly nergy generation and revenue under
each control scheme.

Control Energy Total
algorithm Generation Revenue

[MWh] [€]

Power Law 232.8 37423
DDPG 224.9 36150
TD3 246.6 39650
SAC 247.0 39708

Analysing the behaviour of the two successful
control schemes, figures12 and 13 show a set of rele-
vant OWC variables when applying the trained SAC
and TD3 controllers, respectively, on representative
sea states 3, 8 and 13.

Figure 12: Plant performance using the SAC con-
troller on sea states 3, 8 and 13.

Compared with the power law controller, the
most notable change is the presence of sharp peaks
in the generator torque for sea states 3 and 8.
This behaviour may be explained in part by con-
sidering the optimality conditions described in fre-
quency domain control, well-approximated by a
type of latching control. This behaviour is even
further encouraged when considering the generator
efficiency curve (figure 7), which shows that effi-
ciency is higher at higher generator loads. Unlike
the power control law, the agent includes the gen-
erator efficiency in its behaviour so, in sea states
where the available pneumatic power is low, it low-
ers the electromagnetic torque to allow rotation ve-
locity to increase, and then extracts the kinetic en-
ergy stored by inertia at a higher load factor by
suddenly increasing the applied torque.

A similar behaviour occurs when using TD3 to
control the plant, where an improvement compared
to SAC is seen mainly in SS8, where the controller
manages to keep the rotation velocity mostly under
the reference value of 4000 rpm, unlike the SAC con-
troller where the HSSV must be actuated in regular
intervals.

Figure 13: Plant performance using the TD3 con-
troller on sea states 3, 8 and 13.

6. Conclusions

In this work, three for DRL agent architectures
were applied to the problem of maximising electri-
cal power generation in the Mutriku OWC.

Using this type of algorithm to control the plant
shifts the main computational effort to the training
process, that may occur offline and in simulation,
before deployment on a prototype. However, this
does not exclude the possibility of performing online
training as well, allowing the controller to adapt
to changing system dynamics. DRL also has the
advantage of being a model-free technique, making
it a useful approach when facing systems with high
modelling uncertainty, as is the case of the Mutriku
OWC, as well as being able to retrain to any other
OWC device with minimal adaptation.

Analysing the training results, the DDPG con-
troller has poor performance, due to instability is-
sues and convergence to a sub-optimal policy, which
resulted in a lower expected power production than
the baseline power law. In contrast, TD3 and SAC
have both been shown to be promising alternatives,
with the trained controllers leading do an increase
in expected yearly electric power production of 5.9%
and 6.0% over the baseline.

Future research on the application of Deep Rein-
forcement Learning to the control of OWC devices
should focus on the testing of these types of algo-
rithm on a physical prototype. To ensure a safe
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training process, training should begin in simulation
and then be refined by transferring the controller to
the real system for further training
It would also be beneficial for controller robust-

ness to use real pressure data from the Mutriku site
as an input to the simulation, but this approach
may not be valid in cases where the turbine opera-
tion has an effect on the chamber pressure.
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