
Dynamic QR codes for Ticketing Systems

José Miguel Faustino Oliveira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. José Manuel da Costa Alves Marques

Examination Committee

Chairperson: Prof. Paolo Romano
Supervisor: Prof. José Manuel da Costa Alves Marques

Member of the Committee: Prof. Miguel Nuno Dias Alves Pupo Correia

November 2021

Acknowledgments

First of all I would like to thank my supervisors Prof. José Manuel Alves Marques, Eng. Joel Teixeira

and Eng. Hugo Bicho. Their knowledge and experience were very appreciated and they provided me

the right guidance to complete this work.

I would like to thank all my friends and those who accompanied me in this journey. They encouraged

me to never give up and provided tons of moments which I will cherish forever, even at difficult times.

Last but not least, I would like to thank my parents and sister for their love and sacrifice. All I am

is thanks to them, and without whom this project would not be possible. I would also like to thank my

grandparents, aunts, uncles and cousins for their understanding and support throughout all these years.

My most sincere thanks to each and every one of them.

i

Abstract

Mobile phones are invaluable systems of our society. With the increasing growth in use of mobile phones,

emerging technologies are constantly being introduced and the development of technologies, such as

barcodes, contributed to the rapid widespread of mobile phones over various systems, including ticketing

systems. Mobile ticketing is a subset of ticketing systems and it provides a simple alternative to the use

of physical tickets. Mobile ticketing makes use of mobile tickets which are digital tickets in smartphones

and they have the same functionalities as their predecessors such as tickets in smartcards.

By taking advantage of these technologies, it is proposed a mobile ticketing system which performs

the offline validation of tickets, in the form of QR codes. The proposed system contains a mobile applica-

tion which can be used to purchase and present tickets, in the form of QR codes. Tickets are purchased

from the backend server and validated in ticket validators. Ticket validators perform the offline validation

of tickets and therefore, in instances where ticket validators do not have access to the internet, they do

not lose functionality and can continue performing the correct validation of tickets.

This paper presents insights over existing ticketing systems, the architecture of the system and tech-

nologies related to the implementation. The details of the implementation are discussed extensively as

well as the potential security issues. For the latter, there are technologies that were implemented in

order to prevent against fraud. Furthermore, this paper contains the evaluation to the implementation

and results that could support the reliability and meet the proposed requirements of this system.

Keywords

Ticketing systems; mobile ticketing; QR codes; one-time passwords; public transports

iii

Resumo

O aumento no número de utilizadores de smartphones levou ao desenvolvimento de tecnologias como

os códigos de barras nos smartphones e que contribuem para a adoção dos smartphones em novas

áreas, como os sistemas de bilhética. O mobile ticketing é um tipo de sistema de bilhética e é visto

como uma alternativa simples em relação aos sistemas de bilhética mais usados atualmente. O mobile

ticketing faz uso de mobile tickets que são bilhetes em smartphones, com as mesmas funcionalidades

que os seus predecessores, como bilhetes em smartcards.

Neste documento é proposto um sistema de bilhética móvel que faz uso de bilhetes em formato QR

code. Este sistema permite que os utilizadores façam uso de uma aplicação móvel para que possam

comprar e apresentar bilhetes. Os bilhetes podem ser comprados a um servidor, que está no backend,

e podem ser validados nos validadores de bilhetes. Dado que os validadores fazem a validação offline

dos bilhetes, em caso de falta de acesso à internet, é necessário que os validadores não percam a sua

funcionalidade e que possam continuar a fazer uma validação correta dos bilhetes.

Este documento apresenta dados acerca de sistemas de bilhética existentes, a arquitetura do sis-

tema e tecnologias relacionadas com a implementação. Os detalhes da implementação são apresen-

tados e avaliados extensivamente bem como as ameaças ao sistema. Para combater as ameaças ao

sistema, foram implementados métodos que permitem previnir os possı́veis ataques à solução e as

tecnologias que contribuı́ram para o desenvolvimento do sistema. Além disso, o documento contém

uma avaliação à implementação e os resultados que permitem assegurar que o sistema é confiável e

seguro.

Palavras Chave

Sistemas de bilhética; mobile ticketing; QR codes; one-time passwords; transportes públicos

v

Contents

1 Introduction 1

1.1 Background . 3

1.2 Research Objective . 4

1.2.1 Fraud Prevention . 4

1.2.2 Interoperability . 4

1.2.3 Convenience . 4

1.2.4 Offline Access . 5

1.3 Thesis overview . 5

2 Related Work 7

2.1 Ticketing Systems . 9

2.1.1 Entrance and Exit . 10

2.2 QR Codes . 11

2.3 Cryptography . 12

2.3.1 Symmetric Keys . 13

2.3.2 Asymmetric Keys . 13

2.3.2.A Hybrid Encryption . 14

2.3.2.B Elliptic Curve Cryptography . 14

2.4 Hashing Algorithms . 15

2.4.1 Secure Hash Algorithms . 15

2.4.2 Hash-based Message Authentication Code . 16

2.5 One-Time Passwords . 16

2.5.1 HMAC-based One-Time Passwords . 17

2.5.2 Time-based One-Time Passwords . 17

2.6 Digital Signatures . 18

2.7 OpenID Connect . 19

3 Architecture 21

3.1 Overview . 23

vii

3.2 Use Cases . 24

3.2.1 Ticket Acquisition . 24

3.2.2 Ticket Validation . 25

3.3 Security and Fraud Prevention . 26

3.3.1 Digital Signatures . 26

3.3.2 One-time Passwords . 26

3.3.3 Validation History . 27

3.3.4 Asymmetric Keys . 27

3.3.5 Types of Tickets . 28

3.3.5.A Tickets . 28

3.4 Offline use . 29

3.4.1 Time Synchronization . 29

3.4.2 Key Rotation . 30

3.5 System Architecture . 30

3.5.1 Login and Registration . 31

3.5.2 QR code Generation . 32

3.5.2.A Expiration dates in QR codes . 33

3.5.3 QR code Validation . 33

4 Implementation 35

4.1 Mobile Application . 37

4.1.1 Login and Register . 38

4.1.1.A Register . 38

4.1.1.B Login . 40

4.1.2 Purchase of tickets . 41

4.1.2.A Storage of tickets . 43

4.1.3 Display tickets . 44

4.1.3.A Trip history . 46

4.1.4 Screenshot blocking . 46

4.1.5 Root checking . 46

4.1.6 Code obfuscation . 47

4.2 Ticket Validators . 48

4.2.1 Authentication . 48

4.2.2 Ticket validation . 48

4.2.3 Key rotation . 50

4.2.4 Ticket transactions . 51

viii

4.3 Back-end Servers . 52

4.3.1 Authentication Server . 52

4.3.2 Ticketing Server . 54

4.3.2.A Access token validation . 54

4.3.2.B Services . 54

4.3.2.C Creation of signing keys . 56

4.3.2.D Creation of encryption keys . 56

4.3.2.E Anti-fraud System . 57

4.4 Clock Synchronization . 58

5 Evaluation 59

5.1 Performance Results . 61

5.1.1 Creation of QR codes . 62

5.1.2 Validation of QR codes . 63

5.1.2.A Comparison between ECIES with RSA-AES 64

5.2 Battery usage . 65

5.3 Security Issues . 66

5.3.1 Reverse Engineering . 67

5.3.1.A Code obfuscation . 67

5.3.1.B Encrypted QR codes . 67

5.3.2 Cloning . 68

5.3.3 Double Spending . 68

5.3.3.A Mobile phone sharing . 68

5.3.3.B Sharing QR codes over the internet . 69

5.3.3.C Ticket extraction . 70

5.3.4 Phishing . 70

6 Conclusion 73

6.1 System Limitations and Future Work . 76

Bibliography 79

ix

x

List of Figures

3.1 Ticket Acquisition Diagram . 24

3.2 Ticket Validation Diagram . 25

3.3 Table with the fields in the ticket . 28

3.4 Architecture . 31

3.5 QR code Generation . 32

3.6 QR code Validation . 34

4.1 Registration page in the mobile application . 38

4.2 Registration process sequence diagram . 39

4.3 Sign in page in the mobile application . 40

4.4 Payment confirmation page . 42

4.5 Add new card page . 42

4.6 Empty home page in the mobile application . 43

4.7 Tickets in the home page of the application . 43

4.8 Display ticket page . 44

4.9 Green progress bar . 45

4.10 Yellow progress bar . 45

4.11 Red progress bar . 45

4.12 Extraction of tickets from QR codes . 49

4.13 Ticket accepted . 50

4.14 Ticket denied . 50

4.15 Key rotation in ticket validators . 51

4.16 Relevant fields in the access token . 53

4.17 Table with the services provided by the ticketing server . 55

5.1 Performance results from the creation of QR codes in different devices bar chart 62

5.2 Performance results from the validation of QR codes bar chart 63

xi

5.3 Performance results from the comparison between ECIES and RSA-AES bar chart 64

5.4 Results from battery usage testing results line chart . 66

xii

Acronyms

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

BLE Bluetooth Low Energy

CA Certificate Authority

CBC Cipher-Block Chaining

CICO Check-In/Check-Out

CIO Check-In Only

DES Data Encryption Standard

DH Diffie-Hellman

EC Elliptic-Curve

ECC Elliptic-Curve Cryptography

ECIES Elliptic-Curve Integrated Encryption Scheme

FIFO First In, First Out

GCM Galois/Counter Mode

GPS Global Positioning System

HMAC Hash-based Message Authentication Code

HKDF HMAC-based Key Derivation Function

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

xiii

IBM International Business Machines Corporation

IETF Internet Engineering Task Force

IES Integrated Encryption Scheme

IMEI International Mobile Equipment Identity

ISO International Organization for Standardization

JSON JavaScript Object Notation

JWT JSON Web Token

MAC Message Authentication Code

MMS Multimedia Messaging Service

NFC Near Field Communication

NIST National Institute of Standards and Technology

NTP Network Time Protocol

OS Operating System

PDF Portable Document Format

QR code Quick Response Code

RFID Radio-Frequency Identification

RSA Rivest–Shamir–Adleman

SDK Software Development Kit

SMS Short Message Service

URI Uniform Resource Identifier

xiv

1
Introduction

Contents

1.1 Background . 3

1.2 Research Objective . 4

1.3 Thesis overview . 5

1

2

1.1 Background

Mobile phones are invaluable systems of our society and a rapid development of the internet in recent

years has allowed mobile phones to be used more than any other form of device. The development of

technologies in mobile phones has contributed to the growth of use and reachability of barcodes such

as QR codes, since they can be processed not only by barcode readers but also, by mobile phones.

Barcodes are methods that allow for the access to services. Since barcodes provide a uni-directional

method of communication, very efficiently and free of charge, barcodes are used in the most varied of

applications such as the sharing of information, URLs and even, used in payments. Taking this into

account, by being able to facilitate a payment in order to obtain a service, the intention is to extend this

method to ticketing systems in public transports. Besides barcodes, the development in the technologies

regarding mobile phones can also be extended to ticketing systems, with mobile ticketing becoming more

relevant and widely used than ever before.

Mobile ticketing aims to provide an alternative method to the acquisition and usage of tickets, with

focus on allowing users to be more involved in the process of purchasing tickets and enhancing the user

experience. Some users may avoid using public transports due to the fact that public transports require

a great deal of physical contact, and the possibility of having to wait for long queue times. Therefore,

through the study and use of recent technologies which are available in mobile phones such as QR

codes, mobile ticketing can be more intuitive and suitable for their needs.

With focus on a ticketing system using tickets in the form of QR codes, the goal is to provide an

alternative method to using ticketing systems, by taking advantage of mobile ticketing for the offline

validation of tickets. Mobile ticketing systems provide the ability of using tickets within the mobile phone

application, with a view to process the obtaining and validation of tickets. When trying to display a ticket

for the validation process, the mobile application creates a mobile ticket, in the form of a QR code.

In the public transport industry, the validation of tickets is done offline since data connections are

often unreliable and in order to prevent frustration when internet is not available. Besides that, the

security of tickets can be achieved using bi-directional communication such as the case of smartcards

which does not work for static barcodes since barcodes do not receive information.

Since QR codes do not receive information, having a static QR code leads to the problem of not

being able to update the contents of the QR code and thus, the security behind tickets could become

compromised. Cloning attacks are attacks that work by copying and stealing information from other

users such as, in the case of this system, the copying of QR codes. In order to prevent against these

attacks, the mobile application makes use of technologies such as one-time passwords. With this, the

mobile application implements a system with dynamic QR codes, which protects this system against the

most commonly used attacks against mobile ticketing.

Applications of this system can be extended to most ticket-based systems such as public transports.

3

By having users acquire and present tickets from their mobile phone, they can use public transports

without the need of a public transport card. In addition, this system can be adapted to provide other

additional services that exist in public transports such as the ability to select the zones, for which the

ticket is valid. Upon purchasing a ticket, a QR code is generated within the user application and the user

must present the QR code to a reader system which can be provided, for instance, inside the public

transport vehicle.

1.2 Research Objective

1.2.1 Fraud Prevention

One of the main objectives with the implementation of this system is the prevention of fraud. It is

mandatory that the system is able to accept valid tickets which are tickets that have not expired and

that have not been previously used. Any other situations must be rejected as the implementation of

this system must not lead to a monetary loss for neither the clients nor the companies that provide and

manage the system.

In addition, it should not be possible to erase and change data from the mobile phone as to deceive

the system and be able to create false or re-use tickets. In order to ensure security and privacy of the

data, similar situations should be detected and prevented.

1.2.2 Interoperability

The system should be available to work with every smartphone, independent of the manufacturer or

technology, regardless of its capabilities. Any iOS and Android versions should be able to use the

mobile application as long as they support internet access. With this, we will focus on versions such as:

• iOS 14.4 and later

• Android 8.0 and later

1.2.3 Convenience

The system should facilitate the experience of using ticketing systems as users are provided with an

alternative to purchasing physical tickets. The system should simplify the process of acquiring tickets and

instead of having to wait for queue times or engage in contact with people or ticket-vending machines,

users have a mobile application at their disposal, in which they can purchase tickets and use them to

acquire services. Furthermore, the system must ensure that in order to process the validation of tickets,

users are not required to be kept waiting longer than the current ticketing systems.

4

1.2.4 Offline Access

Another main objective with the implementation of this system is availability. Users should be able to use

the system and perform ticket validation without the need for having an active internet connection at all

times, in the event that a certain location has limited or there is a failure with the network access. Since

situations like these could lead to frustration for the users of the ticketing system, the mobile application

should be able to display tickets without internet connection, even if only for a brief period of time.

1.3 Thesis overview

This document is organized using the following structure: Chapter 2 provides a background on ticketing

systems and technologies used for the proposed solution. Chapter 3 contains the architecture of the

system and an overview of the components that integrate the proposed solution. Their integration is

essential for the correct functioning of the prototype of the implementation of this system. Chapter 4

contains the implementation details of the proposed solution, with technical detail for every component

of the system and reasoning behind the technologies that each component uses. Chapter 5 contains the

evaluation of the prototype by providing a detailed summary of the results obtained and a relationship of

the obtained results with the imposed research objectives. Finally, Chapter 6 concludes the document

with a summary of the work developed in the context of this dissertation and proposes future work for

the further development of this system.

5

6

2
Related Work

Contents

2.1 Ticketing Systems . 9

2.2 QR Codes . 11

2.3 Cryptography . 12

2.4 Hashing Algorithms . 15

2.5 One-Time Passwords . 16

2.6 Digital Signatures . 18

2.7 OpenID Connect . 19

7

8

Nowadays, there is an increasing tendency to use public transportation in regards to environmental

issues or due to the increasing costs of owning personal vehicles. With this, ticketing systems are also

evolving in the forms of payment and technologies used to validate tickets, to meet customer needs and

provide a better experience for users.

Hence, there have been numerous advancements in the many forms of payment and unsurprisingly,

the trend towards electronic cashless commerce is growing worldwide. Ticketing systems consist of

payments in the form of tickets and there have been implemented systems which take advantage of

Near Field Communication (NFC), Radio-Frequency Identification (RFID), Bluetooth Low Energy (BLE)

and Quick Response Codes (QR codes).

However, appropriate security mechanisms are required in order to avoid unintended results. With

focus on the security of mobile ticketing systems, one must consider the basic security services to

become part of the system such as authentication, confidentiality, integrity and non-repudiation. Many

of these security services depend on cryptographic operations such as one-time passwords, digital

signatures, etc.

In this chapter, it is intended to provide context on the technologies used and existing solutions with

these technologies, which are relevant for this case, and how these can be related with the prevention

of fraud.

2.1 Ticketing Systems

Ticketing systems are systems that are comprised of exchange of tickets in order to process payments

to services. Industries that have a large amount of users, using the system at the same instant, often

take advantage of ticketing systems as the use of tickets can facilitate the usability of the service and

verification of which users are using and have paid for the service. Hence, ticketing systems are most

commonly seen in the public transport industry.

Public transports make use of tickets that are purchased and validated, in ticket validators, in order to

be able to use a desired method of transportation. These tickets are physical tickets emitted by an office

worker or ticket vending machines, usually located at the entrance of a public transport, and each ticket

has attributes related to the service provided by the public transport. Even though traditional tickets are

still widely used, these types of tickets are falling in decay as their use is less convenient among other

methods of storing tickets [1] such as in smart cards.

The use of smart cards is efficient and convenient as not only are smart cards able to store multiple

tickets but also other information such as wallet balance. By taking advantage of RFID technology,

purchasing and verifying tickets is a simple and rapid process.

Alternatively, there have been proposed systems which make use of mobile tickets instead of using

9

smart cards. Mobile tickets and e-tickets are different types of digital tickets [1] and digital ticketing

systems can take advantage of technologies such as NFC, BLE and QR codes [2] [3] [4] [5] [6].

E-tickets and mobile tickets share some of the same properties and attributes as physical tickets.

However, e-tickets consist of electronic tickets which are sent to users through an online mailing service

and received in the form of Portable Document Format (PDF) whilst mobile tickets consist of tickets that

are provided in a mobile phone application and are stored electronically on a mobile device such as

a smartphone. Digital tickets provide numerous advantages over smart cards as passengers are able

to purchase tickets remotely as to avoid queue times and reduce contact with other passengers which

provides convenience and usability [1]. The advantages of a mobile ticketing system are not limited

to passengers as the authority in charge of the system can also benefit from these types of tickets.

Digital ticketing systems require no cash transactions, allows for different types of tickets and reduced

maintenance costs of machines which maximizes profits and can even lead to a reduction in the price of

the tickets [1] [3].

As stated above, mobile ticketing can take advantage of technologies such as QR codes, NFC and

BLE. Leal et al. [7] propose multiple approaches to integrate a mobile ticketing system with Porto’s public

transportation system, by taking advantage of QR codes and NFC as well as BLE. With the QR code

approach, each public transport vehicle has these placed inside the vehicle and passengers are required

to scan the QR codes with the application in order to check-in, with check-out being optional. In addition,

users have the ability to either buy tickets in advance or being charged after reading the QR code. The

results of this approach provide convenience and usability as well as not requiring much effort from the

passenger, in order to process the validation step.

Belani et al. [8] propose two different approaches for a mobile ticketing system. One implementation,

which is an online validation system, takes advantage of Multimedia Messaging Service (MMS) technol-

ogy in order to send mobile tickets to clients, and clients validate the mobile ticket which is in the form of

a data-matrix, in a 2D Image Scanner. Alternatively, it is proposed an offline validation system, by using

QR codes. A ticket, which contains user information and other details, is processed in order to generate

a hash value, from the concatenation of the ticket identifier and the digital signature of the ticket identifier.

Since there is not an established connection between the mobile phone and the validation system, the

content of the ticket is encrypted using asymmetric-key cryptography. The resultant hash value is stored

inside a QR code which, after being read by a web camera, is validated in the validation system.

2.1.1 Entrance and Exit

In a public transport infrastructure, the entrance and exit of vehicles can be achieved using two different

approaches: the Check-In Only (CIO) approach or using a Check-In/Check-Out (CICO) approach. A

check-in only approach is where the user is only required to check-in to make use of the services

10

provided by the system. In order to check-in, users must have a valid ticket which is to be presented in

the ticket validator in order to validate the ticket. To complete the service, users can check-out of the

system by exiting the service and are not required to advertise the system that the service is complete.

Similarly to the check-in only approach, a check-in/check-out approach requires users to present their

ticket at the entrance of the service provided by the system. However, at the exit of the service, users

are required to present the ticket to the ticket validator, in order to exit the system.

Currently, the public transport industry infrastructure contains, in metro or train stations, a check-

in/check-out approach where users are required to validate their tickets at the entrance of a public

transport vehicle to be able to enter the vehicle and present the ticket to exit the ticketing system. As an

example, when using the Metro in Lisbon, users are required to present their smartcard at the entrance

and exit of the metro station.

2.2 QR Codes

Nowadays, there is a vast use of QR codes due to their versatility, the ability to be read from any direction

and their small printout size which makes their use very convenient. Their purpose is to make processes

faster and more efficient. Quick Response Codes or QR codes are matrix barcodes, readable by mobile

phone cameras or dedicated QR barcode readers [9]. In addition, QR codes are established as an

International Organization for Standardization (ISO) standard and have the property of being able to be

used offline.

QR codes consist of black squares arranged in a square grid on a white background and contain

data which can be encoded as text, URLs or other data. The types in which data can be encoded are

numeric, alphanumeric, byte or kanji. QR codes have a high capacity of encoding data, even though size

depends on the mode which data was encoded. The maximum size of a QR code is 7089 characters

when its contents contain solely numeric characters whereas when using binary data, the maximum

size is reduced to 2953 bytes. Furthermore, QR codes include information to provide error correction

capability. Information is validated using Reed-Solomon error correction algorithm, which can correct

errors up to 30% damage.

As stated above, QR codes are very versatile. QR codes are commonly used to share information

regarding e-commerce, customer information, customer surveys, link sharing and are often used in the

media. There are plenty websites provide services to generate QR codes, some even free of charge,

which leads to promoting the use of QR codes, since the process of creating QR codes is simplified

and does not require previous domain knowledge. In regards to link sharing, sharing QR codes with

customers instead of spelling the link is much more convenient and simple. Not only does scanning of

QR codes take little to no effort and time but also, it is prone to less error typing and prevents frustration.

11

In addition, it is possible to combine QR codes with cryptography so that the contents of the QR code

are encrypted and non-readable [10] [11].

Other applications to QR codes are in public transports [4] [12]. In public transports, the main use of

QR codes are e-ticketing and user information. Real-time timetables of departures and arrivals of public

transports as well as customer surveys are some examples of the information users can obtain using

QR codes, with e-ticketing referring to the payment of tickets electronically. An approach by Upendra

et al. [12] allows users to select the departure and arrival locations as well as the amount of people.

Eventually, the QR code is created in the application of the conductor of the bus and users scan the

QR code in order to complete the purchase of tickets. Another approach made by Finžgar et al. [13]

consists of an online ticketing system that receives train tickets in the form QR codes, from a ticketing

server which takes advantage of Hypertext Transfer Protocol (HTTP) requests. Each QR code contains

user information, to and from locations, a command type and whether or not the user is checking in or

checking out of the station.

2.3 Cryptography

Secure communication in vulnerable networks can be achieved using encryption of data sent across

machines. As technology is in constant development, the opportunities to modify, use, disclose and read

confidential information have grown, and therefore, the continuous development of a secure computer

system will ensure that confidential information can be securely transferred across computer networks.

Encryption is the process of converting data in a form that is not able to be read without decrypting

or deciphering it. The original message or text, before applying any processing, is called plaintext. By

applying cryptographic algorithms with an encryption key, we can convert plaintext into non-readable

data. The result of encrypted data or ciphertext is known as a cryptogram.

The process of encryption is a reversible process and thus, it is possible to obtain the original plaintext

from the ciphertext. This process is called decryption and, the study and practice of encryption and

decryption is called cryptography.

The goal of cryptography is to prevent an unauthorized person or group of users from accessing

any confidential data, and modern cryptography relies upon subjects like mathematics and computer

science. Chip-based payment cards, computer passwords and digital currencies are just a few of the

applications of the use of cryptography [14]. In addition, cryptography can also be used for user authen-

tication, with resource to using cryptographic algorithms.

Any cryptographic algorithm can be cited as secure, if its key properties can not be deduced with

a given ciphertext. For instance, a key can be a secret shared between two communicating parties

with a view to encrypt and decrypt data. With this, cryptography consists of methods of message en-

12

cryption, with symmetric-key cryptography and asymmetric-key cryptography, Message Authentication

Codes (MACs) and Hash functions.

2.3.1 Symmetric Keys

Symmetric-key cryptographic mechanisms rely on the existence of a single secret piece of information,

also known as a secret key, shared in advance, and exclusively among the communicating parties.

Earlier private-key algorithms such as Data Encryption Standard (DES), developed by International

Business Machines Corporation (IBM), are no longer considered sufficiently secure against brute-force

attacks. Due to the increasing computer processing power, these algorithms were forced to be ex-

changed by other algorithms which provided better security and robustness, such as Advanced Encryp-

tion Standard (AES) [15]. A technique by D. Singh et al. [16], provides a solution to decrease encryption

times by converting plaintext to floating point numbers.

Symmetric-key algorithms have a few drawbacks when used in a system with a lot of users. For

instance, with an increasing number of users, it becomes extremely difficult to generate, distribute and

keep track of secret keys as the number of user pairs increases. Besides that, using the same key for

both encryption and decryption creates high risk, due to the fact that the private key must be shared

between communicating parties which increases the risk of interception by attackers.

2.3.2 Asymmetric Keys

Asymmetric-key cryptography eliminates the need of exchanging a single unique private key and instead,

using two keys. Each user has one public key and one private key. The private key is associated with

a certain user and it is not shared with other users whereas the public key is a key that can be openly

distributed, without compromising security, and each key performs a unique function. Using the public

key for encryption requires the private key for decryption. Conversely, using the private key for encryption

requires a public key for decryption.

Similarly to symmetric key cryptography, public-key algorithms are susceptible to ”brute-force key

search” attacks. In order to prevent these attacks, there have been developed algorithms such as

RSA, which provide randomized padding methods and exchange keys using Diffie-Hellman (DH) key

exchange algorithm. Rivest–Shamir–Adleman (RSA) algorithm is an asymmetric cryptographic invented

by Rivest, A. Shamir, and L. Adleman in 1997 and has become the most widely used public-key algo-

rithm. The security of RSA is based on the difficulty of the integer factorization problem. RSA key sizes

refer to the bit-length of the RSA modulus, which is a large non-prime number that is part of the public

key.

RSA keys with sizes lower or equal to 1024 bits have already been cracked and thus 1024-bit RSA

13

keys are no longer the recommended standard [17]. Public-key algorithms are generally slow and with

increments in the key size, the decryption time increases [18]. 2048-bit RSA keys provides a better

trade-off between performance and security [18] whilst 4096-bit RSA keys are most commonly used in

systems which make use of asymmetric keys that are not to be changed for a long period of time.

Mainanwal et al. [19] propose an authentication system which combines RSA algorithm with a zero-

knowledge proof protocol which, by applying this to the client, the server is able to identify the user. This

system prevents sniffing attacks due to the fact that the content travelling in the network, is encrypted.

Furthermore, the authentication system uses one-time tokens to ensure that in the event that information

is intercepted, attackers are neither able to use the information nor able to read the content of the

intercepted data.

2.3.2.A Hybrid Encryption

In public-key cryptography, there are some systems which make use of encryption methods using a com-

bination of asymmetric key algorithms with symmetric key algorithms, also known as hybrid encryption.

Hybrid encryption combines the efficiency of symmetric encryption with the convenience of public-key

encryption. Similarly to symmetric encryption, a symmetric key is used to cipher the plaintext. As previ-

ously mentioned, this method creates a ciphertext in a very short period of time, despite the size of the

message. Using public-key encryption, this key is ciphered with the public key of the receiver, and sent

along with the ciphered message. The receiver uses its private key to decrypt and obtain the symmetric

key, which is then used to decrypt the contents of the original message.

One approach to hybrid encryption is Elliptic-Curve Integrated Encryption Scheme (ECIES), which

is a variant of the Integrated Encryption Scheme (IES) using Elliptic Curves. With this, ECIES is a

public-key authenticated encryption scheme which combines ECC-based asymmetric cryptography with

symmetric ciphers to provide the encryption of data. Similarly to asymmetric-key cryptography, ECIES

can provide data encryption using one of the Elliptic-Curve (EC) keys, from the EC key pair, and decryp-

tion using the corresponding EC key.

2.3.2.B Elliptic Curve Cryptography

Nowadays, there is an increasing trend to using Elliptic-Curve Cryptography (ECC) approaches in public-

key cryptosystems, in a wide variety of applications such as digital signatures (ECDSA) and key agree-

ment protocols (ECDH). This is due to the fact that, in contrast to RSA, Elliptic Curve cryptographic

algorithms make use of keys with much smaller sizes in order to achieve a similar level of security.

For instance, the widely used ECC key size of 256 bits offers 128 bits of security, which is equivalent

to using RSA keys with 3072 bits. Therefore, the use of ECC requires less processing power, in com-

parison with RSA, which is especially beneficial when using devices with limited storage and processing

14

power. Besides that, the use of ECC for hybrid encryption such as using ECIES, in comparison with

hybrid encryption using RSA-AES, leads to a significant increase of speed, which can go up to 22 times

faster [20].

2.4 Hashing Algorithms

Hashing algorithms were introduced as a tool to protect the authenticity and integrity of information. By

definition, hashing algorithms are mathematical algorithms that map a block of data of an arbitrary size

to a hash of fixed size. Nearly any piece of data can be defined as a message and the main difference

between hashing and encryption is that a hash is irreversible.

Hashing algorithms make use of cryptographic hash functions and, since cryptographic hash func-

tions are deterministic procedures, the output is always the same when given the same input. Inputs

passed to hash functions are called messages and output is often referred as the message digest.

Hash functions are also called ’one-way functions’ because all hash functions have the property

that it is impossible to determine the input knowing only the output. A cryptographic hash function

aims to guarantee a number of security properties such as being rapid to compute the hash value.

Most importantly, cryptographic hash functions differ from hash functions on the fact that two different

messages almost never produce the same message digest. Authenticity and integrity of information are

kept due to the fact that if a message digest is changed, the file has changed.

2.4.1 Secure Hash Algorithms

SHA or Secure Hash Algorithms are a set of cryptographic hash functions, published by the National

Institute of Standards and Technology (NIST). Despite being internally similar to MD5, SHA-1 and SHA-

2 are considered more secure even though cryptographic shortcomings have been found for SHA-1, and

the standard was no longer approved for most cryptographic uses after 2010.

SHA-1 creates a 160-bit hash value. SHA-2 includes SHA-224, SHA-256, SHA-384, and SHA-512,

named after the length of the message digest each creates. SHA-256 uses 32-byte words whereas SHA-

512 uses 64-byte words. SHA-2 hash functions are implemented in security applications and protocols

such as TLS and SSL, SSH, etc. SHA-256 is the recommended standard by NIST.

Performing a comparison between MD5 and SHA-1 hashing algorithms, Ratna et al. [21] perform

comparative analysis on the duration of brute force testing using Simple-O which is an authentication

system, in order to obtain a plaintext from a ciphertext. With this, it is observed that plaintexts that

are smaller than 6 characters are easily broken, taking just a few minutes whilst plaintexts longer than

6 characters increase the time that takes to perform a brute force attack on MD5 and SHA-1, from a

considerable amount of hours to a large number of days. Despite the fact that the size of the password

15

(plaintext) makes the biggest impact in regards to the duration of the brute force attack, it is observed

the difference in time and security from both hashing algorithms against brute force attacks, with SHA-1

being more secure with taking an average of 15% more time to obtain the plaintext, from a given ci-

phertext. Taking into account the performance of the hashing algorithms and despite being considerably

more secure than either MD5 or SHA-1, SHA-256 is about 20-30% slower [22] to calculate hash values

than either MD5 or SHA-1 hashes.

Digital signatures, one-time passwords and key generation in symmetric and asymmetric key crypto-

systems are examples of the applications of hash functions.

2.4.2 Hash-based Message Authentication Code

HMAC is a MAC algorithm that is computed by two calls to a hash function such as MD5 or functions

from the SHA family. Hash-based Message Authentication Code (HMAC) is a standard algorithm cur-

rently used [23]. When hashing algorithms are combined with encryption, hashing algorithms produce

special message digests that identify the source of the data. These special digests, produced from a

message and a secret key, are called Message Authentication Codes and ensure authenticity and in-

tegrity. Similarly to digital signatures, HMACs make use of hashing algorithms and cryptographic keys.

However, HMACs use symmetric keys whilst digital signatures use asymmetric keys.

The cryptographic strength of the HMAC depends upon cryptographic strength of the underlying

hash function. Similarly, the performance of the HMAC combined with a hashing algorithm depends

on the performance of the hash function [24]. HMAC share the same properties as hashing algorithms

except that some hashing algorithms are vulnerable to length extension attacks. HMAC provides security

against these attacks by adding a secret key to a message. With this, HMACs began to be used as a

complement to existent one-time passwords algorithms [25].

2.5 One-Time Passwords

Commonly used in multi-factor authentication, one-time passwords are passwords that are valid for only

one login session or transaction. The general idea of a one-time password is adding another layer

of security in order to protect against attacks. These include phishing, keyboard logging and man-in-

the-middle. One-Time Passwords avoid a number of vulnerabilities that static passwords have. Static

passwords can be guessed, forgotten, stolen, eavesdropped or deliberately being told to other people.

Attacks such as replay attacks, which in the event an attacker gets to know an OTP by intercepting a

transmission of data which has already been used, are mitigated because the code becomes invalid and

cannot be reused. Advantages of using OTPs become significant in risky situations such as entering

credentials to log in a bank system or making payment transactions.

16

The concept of passwords with a one-time use was first introduced by Leslie Lamport [26]. Nowa-

days, there have already been implemented plenty protocols which are based on one time passwords.

Examples include authentication, integration with voice recognition, combination of sequence numbers

with timestamps and GPS-based OTPs [27] [28] [29] [30].

One-time passwords are generated from applying a hashing algorithm to a seed which should only be

known to the creator and receiver of the OTP. Each OTP has a number of digits which varies according

to the situation with 4-digit OTPs being typically used on systems that do not require a great deal of

security whereas 8-digit OTPs being usually linked to high risk situations or situations involving a large

amount of OTPs being generated at the same time. Since two OTPs must not be equally generated, the

number of unique combinations increases with higher digit codes.

There are two types of one-time passwords: HMAC-based or Time-based.

2.5.1 HMAC-based One-Time Passwords

HMAC-based One-Time Passwords, often referred as HOTPs, was published as RFC4226 [25] by the

Internet Engineering Task Force (IETF). HOTP defines an algorithm to create an one-time password

from a secret key or seed and a counter. With every use, the counter is increased leading to change in

the OTP value when recalculating the algorithm.

Combining HMAC with a hash algorithm, typically SHA-1 [25], results in an irreversible hash value.

Since the HMAC-SHA1 hash value contains 20-bytes, truncation is applied in order to get a hash value

with 31 bits. The resultant truncated hash value are the last 31 bits from the HMAC-SHA1 hash value.

With this, the HOTP value is defined by extracting a number of digits, starting from the last digit, of the

truncated hash value. As previously stated, the number of digits are selected according to the required

level of security.

2.5.2 Time-based One-Time Passwords

In [31], TOTP serves as an extension of HOTP. Being an extension of HOTP, both types of one-time

passwords share similar properties such as being able to only be used once and both provide strong

authentication mechanisms due to their advantages, stated above, over static passwords. However,

a TOTP generates an OTP that is only valid during a timestep instead of having a counter which is

incremented upon each use of the OTP. A timestep is a certain period of time which TOTPs are valid.

Generation of TOTPs only change upon the passing of a timestep and their generation is deterministic.

Two TOTPs generated in the same timestep with the same secret key and number of digits will be the

same.

As stated above, OTPs provide a strong authentication mechanism. A technique by Chun-Ying

17

Huang et al. [32], focuses on preventing phishing attacks. The website has register and login methods

and the OTP is sent to the user from an instant messaging service and by having the user perform

additional security steps. Afterwards, the user is granted permission to insert the OTP. The website also

takes in session tokens and IP addresses. Z. Huang et al. [29] proposed a system which provides a

combination of OTPs with private key encryption. The mobile phone application shares a private key

with the verification system and the OTP consists of 8-digit value from a timestamp and a sequence

number. The verification system applies the same process of calculating OTPs as the application, and

the OTP is accepted in the event that both OTPs match. In case the user sends an expired OTP to

the validation system, the validation system has a resend period for convenience and usability. Liao

et al. [33] proposed a novel technique which is a QR code one-time password authentication protocol,

with a service provider granting access rights to authorized users. In this technique, it is described the

processes of registering and validation of the OTP, which makes use of timestamps, and possible attacks

to the system.

2.6 Digital Signatures

Digital Signatures are mathematical schemes for verifying the authenticity and integrity of digital mes-

sages or documents. Valid digital signatures give recipients of the message a strong reason to believe

that the message was created by a known sender and the message was not altered in transit. In many

countries, digital signatures are considered legally binding and hold the same value as traditional doc-

ument signatures. The process of creating a digital signature consists of a key generation algorithm, a

signing algorithm and a signature verifying algorithm.

Firstly, a message can be encrypted using symmetric [34] or asymmetric cryptography. In symmetric

cryptography, it is a secret key known only to the sender and receiver whereas in asymmetric cryptogra-

phy, two asymmetric keys, a private key and a public key, are generated. The sender uses their private

key to encrypt the message and the receiver can decrypt the message using the public key of the sender

and is able to confirm the identity of the sender.

Secondly, a hash function is applied to the message. A signing algorithm uses the hash value and the

sender’s private key to generate the digital signature. Afterwards, the message and the digital signature

are sent to the recipient.

Finally, the receiver applies the inverse signature function, or signature verifying algorithm, using the

public key of the sender to the digital signature and the output is the original hash value. The receiver

can then compare this hash value with the hash value that was sent with the digital signature and in

case both hash values match, it confirms that the message was sent by the sender and the content of

the message has not been altered. Therefore, digital signatures have the property of non-repudiation

18

which does not allow the signer to deny signing the document.

There are a plethora of techniques that have been implemented using digital signatures. S. Jaru-

sombat et al. [35] propose a technique that combines digital signatures with GPS tracking. By taking

advantage of the developments in the Global Positioning System (GPS) technology, the system can

generate a digital signature based on geo-encryption and a mobility model, which leads not only to

non-repudiation of the sender but also non-repudiation of the receiver. Due to the risks and modern

e-commerce security issues in China, C. Tian-huang et al. [36] propose a digital signature system to in-

crease security regarding e-commerce. A technique by S. Alam et al. [37] implements the use of digital

signatures with 512-bit RSA keys, in order to perform authentication and encryption of images.

2.7 OpenID Connect

OpenID Connect, combining OpenID and OAuth together, is an emerging representational transfer-

based identity solution and it is one of the most adopted open standards to potentially become the

standard for securing cloud computing and mobile applications.

OpenID Connect consists of an authentication layer on top of OAuth2.0 [38]. OpenID Connect con-

sists of three main steps: Trust Establishment, Token Generation and Token Redemption, and provides

services with the proper authorization, authentication, and Single-Sign-On capabilities.

To start off, the user authenticates with their credentials and makes an authentication request which

will be returned by the server, as an authorization code. Using the authorization code, the user sends a

token request to the server. In the event it is valid, the server generates an access token, id token and

code which are sent to the user. Since access tokens are used for authorization, access tokens [39] [40]

must remain confidential. Any user that gains access to an access token can have the control and

permissions of the user for which the token was emitted. Google, Yahoo and Facebook have already

implemented identity providers that are similar and based on OpenID Connect technology.

A technique by Kakizaki et al. [41] proposed an information management method using OpenID

Connect for identity verification. In order to verify the identity of the user, the system relies on OpenID

Connect and allows for the management of user information independently. Every attribute is assigned

with an Uniform Resource Identifier (URI) and thus, OpenID Connect identity provider only persist user’s

unique ID and related attribute URIs. This feature caters to the healthcare organizations that have

concerns about exposing some sensitive patient information to a third party.

19

20

3
Architecture

Contents

3.1 Overview . 23

3.2 Use Cases . 24

3.3 Security and Fraud Prevention . 26

3.4 Offline use . 29

3.5 System Architecture . 30

21

22

3.1 Overview

The main goal of this project is to develop a mobile ticketing system that allows for the offline validation

of tickets, in the form of QR codes, by taking advantage of the technologies available in mobile phones.

With using technologies such as one-time passwords, this system contains a method to regularly update

QR codes, known as the dynamic generation of QR codes, that are to be presented to a ticket validator.

In addition, this chapter contains an assessment to how this project can be implemented in different

types of ticketing systems as for instance, public transports. It is presented the overall functioning of the

system including the components roles and system architecture and also, this document contains an

explanation of our technology choices and describe how the main objectives can be achieved.

Unlike smartcards which receive information from validators, QR codes are methods of uni-directional

communication and thus, the application is not able to recognize that a ticket has been used unless it

receives confirmation from other methods of communication such as the online confirmation from ticket

validators or the backend servers. In the case of this system, ticket validators are not guaranteed to have

full internet availability and therefore, the implementation of online communication with near offline ticket

validators would be infeasible, since ticket validators would not be able to send ticket validations, in real

time, to a backend server which would then be responsible for notifying the mobile application that the

user presented a ticket to a ticket validator.

Despite working in a near offline state, ticket validators should contact the backend server regularly

as to obtain new information and send the validations of tickets, which they recorded. One of the most

innovative points of this system is that, even though ticket validators perform the validation of tickets

offline, they are able to remain usable for various days in case they face problems contacting the backend

server. Taking into account that in a real environment such as public transports, these devices require

very low maintenance, failures in communication between ticket validators and the backend servers, if

not taken in consideration, could be detrimental to the correct functioning of this system.

Currently, the public transport infrastructure in metro or train stations contains a check-in/check-out

approach, where users are required to validate their tickets at the entrance of a public transport vehicle,

to be able to enter the vehicle, and they are required to present the ticket to leave the ticketing system.

The proposed ticketing system implements a check-in only approach so that users are only required to

confirm their entrance to the service, by validating their tickets at the entrance of the public transport.

At the exit of the service, users can check-out of the system by exiting the service, whenever the user

considers the service finished. Using buses as an example, users scan their tickets at the entrance of

the vehicle and they are not required to present the ticket to leave the bus.

The implementation of this system can be subject to modifications to support other entrance/exit ap-

proaches such as a check-in/check-out approach, commonly used in public transports. In this scenario,

similarly to the process of entering a service, users would present the ticket to a ticket validator which,

23

upon presenting a valid ticket, users would be allowed to exit the system.

3.2 Use Cases

The proposed solution is a mobile ticketing system based on the dynamic generation of QR codes

through the use of a mobile application, ticket validators and backend servers. The process of using this

system can be divided in two use cases: the first use case is related to the process of acquiring tickets

and the second use case is related to the process of validation of tickets.

3.2.1 Ticket Acquisition

The figure 3.1 contains a diagram with the comprehensive representation of the method of purchasing

tickets. To start off, users need to authenticate in the application with an individual user account. When

using the application for the first time, users are required to create a new user account. After creating

their account, users are able to sign in the application and use the system.

Figure 3.1: Ticket Acquisition Diagram

Following the authentication step, users can proceed to acquire tickets. After requesting the list of

available tickets from the ticketing server, the mobile application displays the catalog of products for

users to choose.

The purchase of tickets was not a subject of study for this project and therefore, the implementation

of this system contains a simulation of the payment method. In order to implement this system in a real

24

environment, the method of payment would need to be revisited, as stated in the future work section 6.1.

There are two possible approaches to purchasing tickets 3.1: one is using the balance in the account

and the other is using a credit card. Users that have enough balance in the account, can use their

balance to make purchases to the ticketing server, whereas users that do not have enough balance can

solely purchase tickets using their credit card. Users that do not have enough balance and have not

introduced their credit card in the mobile application, are going to fail the process of purchasing tickets

due to the fact that there is no alternative payment method.

After selecting their preferred payment method, the mobile application processes the purchase re-

quest and stores the ticket in the internal storage of the mobile phone. Before storing tickets, the contents

of the ticket are encrypted to prevent the extraction of tickets from the mobile phone.

3.2.2 Ticket Validation

In the mobile application, users can select the ticket which they intend to use and the mobile application

generates a dynamic QR code, as it can be seen in the figure 3.2. This QR code can then be presented

to a ticket validator, in order to gain access to a specific service.

Figure 3.2: Ticket Validation Diagram

The only instance where users interact with ticket validators is when presenting a QR code to the

ticket validator and, after scanning the QR code, ticket validators deliver a response to the user, in the

form of visual feedback. To complete the process of validating tickets, ticket validators record a ticket

validation, which is going to be sent to ticketing server, at a later time. The ticketing and authentication

servers are located in the backend and the user does not have contact with them.

As aforementioned, in order to exit the system, users can simply leave the service and the journey is

considered complete.

25

3.3 Security and Fraud Prevention

With the development of an innovative ticketing system, which makes use of the offline validation of

tickets, it is of utmost importance that this system can prevent attackers from committing fraud. Some

users with malicious intents might attempt to attack this system, by exploiting its vulnerabilities, to gain

advantage such as making use of the ticketing system whilst not paying for tickets.

Therefore, the problems which were needed to be taken into consideration when developing this

ticketing system: the verification of authenticity of users and the prevention against cloning and double

spending attacks.

Starting off with cloning and double spending attacks, attackers attempt to commit fraud by using

tickets from other users and therefore, avoid paying for tickets. It is of utmost importance that this

system can be resilient to these attacks, in order to prove its reliability.

The problem of the authenticity verification lies in the fact that the communication between the mobile

application and ticket validators is done offline. As previously stated, a user presents a QR code to a

ticket validator which performs the validation of ticket and emits visual feedback to the user. In order to

assert authenticity and to prevent tickets from being either forged or used by other entities, this system

implements two security methods in every QR code, with the use of digital signatures and one-time

passwords.

3.3.1 Digital Signatures

The use of digital signatures allows for the prevention against the forgery of tickets and prevent any

modifications in the contents of tickets. Each ticket contains a signature field which is verified by ticket

validators, when validating tickets, and tickets whose signature does not match the signature in the

ticket are rejected. In addition, every signature is accompanied with an expiration date. By setting an

expiration date of the signature, in the ticket, users are required to request for a renewal of the signature

regularly, and this method was implemented with a view to assert the authenticity of users on a regular

basis. In the event that tickets are stolen and attackers can succeed on the bypassing the other security

mechanisms implemented against the stealing of tickets, they are only able to use the ticket for the short

period of validity of the signature.

3.3.2 One-time Passwords

Each QR code contains a one-time password, namely a time-based one-time password. Time-based

one-time passwords are used to create a QR code that can only be used once and for a very limited du-

ration. Therefore, the use of a one-time password contributes to the prevention against cloning attacks.

26

In this system, cloning attacks are attacks where the attacker is able to steal the ticket from another

user, by taking a photo of the QR code. With the use of one-time passwords, this system can prevent

attackers from using the QR code after it has already been used and even if not used, since one-time

passwords have a very limited period of validity, the one-time password may expire before the attacker

is able to use the QR code. In the former scenario, the ticket validator rejects the ticket since it contains

a history of ticket validations to prevent the use of the same QR code more than once.

The use of one-time passwords led to the implementation of a system with the dynamic generation

of QR codes in the mobile application. This is done to avoid displaying invalid QR codes and the mobile

application automatically updates the QR code, upon the expiration of the OTP value inside the QR code.

As previously mentioned, the creation of time-based passwords requires the use of a timestamp and, in

order to create equal OTP values in the mobile application and ticket validators, these are required to

perform the synchronization of the timestamp.

Besides using clock synchronization for one-time passwords, this system makes use of this synchro-

nization in the time-based fields inside of the ticket. Through the use of a synchronized expiration date of

the ticket and expiration date of the ticket signature, ticket validators are able to correctly validate these

fields.

3.3.3 Validation History

Since ticket validators perform the offline validation of tickets, they are required to maintain a history of

the validation of tickets so that they can verify the usage of tickets in multiple instances, and reject tickets

that are used more than once.

Using public transports as an example, the implementation of the validation history may differ de-

pending on the vehicle. In case there is a single validator such as at the entrance of buses, the ticket

validator is responsible for the validation of every ticket since all passengers must present their tickets

to that ticket validator. In case there are multiple ticket validators such as at the entrance of metro sta-

tions, the station must contain a physical centralized server, which ticket validators are connected to, in

order to share the validation of tickets across all ticket validators. This server may operate offline and its

purpose is to keep the centralized registry of ticket validations and allow other ticket validators, located

inside the metro station, to reject QR codes which were scanned in a different ticket validator.

3.3.4 Asymmetric Keys

This system uses asymmetric keys due to the fact that QR codes contain sensitive information and, to

provide resilience against reverse engineering attacks to the QR code. The mobile application receives

a public key from the ticketing server and uses it to cipher the ticket and OTP value, and its result is the

27

message stored inside QR codes. A ticket validator receives the corresponding private key, also from

the ticketing server, and can use it to decipher the QR code and validate its contents.

3.3.5 Types of Tickets

Due to the fact that the validation of tickets is performed offline and that QR codes cannot receive

information, ticket validators are not able to notify the mobile application that a certain ticket has already

been used. Besides that, the mobile application as well as the rest of the components of this system,

implies a zero-trust policy where this system does not allow users to execute specific privileged actions

and thus, not giving users the ability to commit fraud against this system.

Taking this into account, the types of tickets used by this system are time-based tickets which are

tickets that can be used multiple times until the ticket becomes expired. Through the synchronization of

clocks and the aforementioned security methods, this system can ensure that tickets are only usable for

the specified time. In addition, it can also ensure that ticket validators are going to reject tickets whose

time has already expired.

Figure 3.3: Table with the fields in the ticket

3.3.5.A Tickets

As seen in the figure above 3.3, each ticket contains several fields which can either be related with the

owner of the ticket, intended usage and security of the ticket. For instance, the signature fields are fields

28

which are related with the security methods in the ticket.

In this iteration of this system, there are some fields such as the intended usage fields (valid operators

and valid zones), which can be considered as optional. This is due to the fact that the purpose of these

fields is related with the usage of tickets in public transports and thus, the removal or substitution of

these fields from the ticket would not compromise the correct functioning of this system.

3.4 Offline use

Since the main goal of the proposed system is that the system can also be used offline, there are certain

aspects of this system that were modified in order to support the validation of tickets without internet

connection. The two most prominent scenarios where these aspects are important for the offline use of

this system are the synchronization of clocks and the rotation of the encryption key.

3.4.1 Time Synchronization

The synchronization of clocks to the time server requires active internet connection and there are two

instances that require synchronization of clocks: the fields in the ticket and the one-time password in the

QR code.

In order to be able to achieve synchronicity in times within the entities of this system, when offline,

the mobile application and ticket validators use the Network Time Protocol (NTP) [42].

With this, these entities can calculate the offset of their internal time clock to the time clock in the

time server. The offset value is calculated to obtain the time difference from these entities to the time

server, so that the synchronization of clocks can be achieved.

In addition, the ticketing server operates online but also uses NTP to remain synchronized with the

This value is then stored in memory and when there is the lack of internet connection, the mobile

application and ticket validators use the offset to become synchronized with the system. Ticket validators

work offline for large periods of time and thus, it is required to make use of an offset value for the correct

validation of tickets. Furthermore, in the mobile application, the offset value is essential in instances

where the the mobile application fails to connect to the internet, to obtain the synchronized time.

Without the calculation of the offset value, the mobile application would be required to be connected

to the internet, at all times, which goes against one of the objectives of this system. The mobile applica-

tion should be able to generate QR codes, without internet connection, even if only for a short period of

time.

29

3.4.2 Key Rotation

Encryption keys are changed regularly to prevent brute-force attacks. As previously mentioned, since

ticket validators require very low maintenance, in the event that ticket validators fail to obtain a new

private key, used to decipher the contents of the QR code, they cannot properly validate tickets.

With this, instead of receiving a single private key, each ticket validator receives a batch of private

keys from the ticketing server. The ticketing server is responsible for the management of the batch of

keys and for securely distributing the batch of keys to ticket validators.

In the current iteration of this system, the ticketing server performs the rotation of the encryption

keys, in the batch, on a daily basis. This is a security procedure with focus on preventing fraud such as

reverse engineering attacks to the QR code, since attackers can attempt to brute-force the encryption

key in order to extract more information from tickets and the security mechanisms inside QR codes.

3.5 System Architecture

In the figure below 3.4, there is a representation of the system architecture which provides a compre-

hensive diagram of the relationship between every component of the system. In addition, this section

contains a description of how every component interacts within the system as well as their behaviour

and responsibilities. In the next chapter, it is discussed the implementation of these components and

technologies which allow for the correct functioning of the system.

The mobile application is the only user side entity which allows the user to interact with the system.

It contains a login system as well as a dynamic QR code generation system which allows the user to

present the QR code to a ticket validator.

As stated above, ticket validators are set up outside the application and operate offline to ensure

there are no failures in the communication between ticket validators and the mobile application, and that

internet availability is not a limiting factor for the validation of tickets.

Besides that, the mobile application and ticket validators interact with the backend servers, which

are the authentication and ticketing servers. The authentication server is used on authentication in the

mobile application and ticket validators, and the ticketing server is responsible for the purchase of tickets

and the rotation of keys.

The architecture of the system is divided in three phases which are the login system, generation of

the QR code and the validation of the QR code.

30

Figure 3.4: Architecture

3.5.1 Login and Registration

The login system found in the mobile application allows users to register or authenticate in the system,

through the authentication on the authentication server. The authentication server is an OpenID Connect

server which emits an authentication token which consists of an access token that is going to be used

on the ticketing server, for instance, to authorize the user when trying to purchase a new ticket.

In order to authenticate in the mobile application, it is required for the application to have internet

access. However, users do not have to insert their credentials in the application every time they want

to use the application, provided that the authentication token is valid. In case the authentication token

expires, the mobile application tries to use the refresh token to obtain a new authentication token and

upon the expiration of both tokens, users are prompted to reintroduce their credentials.

At the moment of login, the mobile application is required to be connected to the internet and there-

fore, the mobile application obtains a public key from the ticketing server. This key is used to encrypt the

contents of QR codes and the rotation of this key is done, by the ticketing server, on a regular basis, to

prevent brute-force attacks against the key. In the current prototype of this system, the rotation of keys

occurs once a day, though this value can be subject to modifications, without compromising the correct

functioning of this system.

The ticketing server is responsible for the generation of these encryption keys and, in order to allow

ticket validators to read the contents of QR codes, ciphered with the public key sent to the mobile

31

application, the ticketing server sends the corresponding private key to ticket validators. With this, ticket

validators are the only entities able to decrypt and thus, validate the QR codes generated in the mobile

application. Users that attempt to scan the contents of the QR code are not going to be able to extract

information unless they get access to the private key.

3.5.2 QR code Generation

Upon entering their credentials and signing in the mobile application, users are presented with the home

page which contains tickets that the user has purchased. On the first run of the mobile application, the

home page does not contain any tickets and, in order to obtain tickets, users are required to purchase

tickets from the ticketing server. Upon purchasing a new ticket, the mobile application redirects the user

to the home page.

By clicking on the ticket, the mobile application displays the purchased ticket in the form of a QR

code, so that the user can present the QR code to the ticket validator.

Figure 3.5: QR code Generation

From the figure 3.5, the process of generating a QR code starts by ensuring that the ticket does

not contain expired parameters such as the expiration date and the expiration date of the signature.

Upon the expiration of the signature in ticket, the mobile application is able to request for a renewal of

the ticket signature from the ticketing server. Eventually, the mobile application proceeds to generate a

time-based one-time password (TOTP) based on the ticket and a timestamp of the current time. The

timestamp is obtained from a time server, to ensure that there is the synchronization of clocks across

the system. Finally, the mobile application displays a QR code which consists of the encryption of the

ticket and one-time password.

32

3.5.2.A Expiration dates in QR codes

A QR code contains three different expiration dates: the expiration date of the ticket, the expiration date

of the ticket signature and the period of validity of the TOTP. A ticket is valid for the duration which the

user preferred such as a certain number of hours or days, whereas ticket signatures are short lived

to ensure that users are regularly authenticated in the system. Time-based OTPs have a very limited

period in which they are valid, usually less than one minute, for their one-time usage.

Taking this into account, a QR code is only valid for the period of validity of the OTP, and the mobile

application needs to refresh the QR code, by generating a new one, upon the expiration of the previous

QR code. This process is also known as the dynamic generation of QR codes since QR codes are

constantly being refreshed, to prevent users from presenting invalid QR codes to a ticket validator.

In addition, ticket signatures can become expired and the mobile application is able to recover these

tickets, by requesting the ticketing server to renew the ticket signature as well as the expiration date of

the signature. Tickets that become expired, are no longer accepted in the system and they are removed

from the mobile application.

3.5.3 QR code Validation

Ticket validators receive a batch of private keys, from the ticketing server, to ensure that, in case they fail

to obtain a new batch of keys, they are not deemed unusable. Even though this scenario is an extreme

case and this would require ticket validators not being able to communicate with the ticketing server for

many consecutive days, equivalent to the number of keys in the batch of keys.

As aforementioned, the ticketing server is responsible for the emission of the batch of private keys to

ticket validators, and this process is required to be a secure process to avoid the stealing of the batch

of keys and prevent fraud. Users that get access to the batch of keys, are able to gain control over the

system and it is of utmost importance that the batch of keys cannot be accessed by any entities, with

the exception of ticket validators. Taking this into account, the ticketing server would supposedly send

the batch of keys through a secure network and requests for the batch of keys can only be accepted for

entities which are able to obtain the access token of a ticket validator.

As previously mentioned, in cases where ticket validators fail to obtain a new batch of keys, they

are prepared to switch to the next private key in the batch of keys, which is synchronized with the

corresponding public key, sent to the mobile application. The batch of keys is securely stored in the

ticket validator and it is not shared with any other entities.

The process of ticket validation starts by having the ticket validator decrypt the encrypted QR code,

using the private key that was received from the ticketing server. The ticket validator records the times-

tamp as soon as the QR code is shown to the reader and uses this timestamp to validate the expiration

33

Figure 3.6: QR code Validation

dates in the ticket and the OTP. Finally, ticket validators provide visual feedback to the user based on the

validation of tickets and the result of the comparison of the OTP in the QR code and the OTP calculated

by the ticket validator. After this, the ticket validator records a ticket transaction which is a registry with

the information of a ticket along with the timestamp of the validation time.

The recording of tickets is done with a view to later sending these ticket transactions to the ticketing

server. Since ticket validators do not have constant access to the internet, ticket transactions are stored

in the memory of the ticket validator, and ticket validators attempt to send these tickets transactions,

on a regular basis, to the ticketing server. The primary purpose of sending ticket transactions to the

ticketing server is to allow for a centralized registry of the transactions made in the system. With this, the

system allows for revenue sharing and it is able to gain insights over how users make use of the system

and allow for improvements. In addition, the ticketing server contains an anti-fraud system which, by

analyzing ticket transactions, this system can detect suspicious user activity and take preventive action.

34

4
Implementation

Contents

4.1 Mobile Application . 37

4.2 Ticket Validators . 48

4.3 Back-end Servers . 52

4.4 Clock Synchronization . 58

35

36

The current implementation of this system is a prototype and since there are various methods of

implementation, this chapter contains a detailed discussion of the current method of implementation,

by providing an extensive description of the entities of this system, including the technologies used and

reasoning behind the use of these.

Alternatively, in cases where it is possible, this paper contains insights over other possible methods

of implementation, and how they could have been applied to this system.

4.1 Mobile Application

The mobile application is a user side entity which refers to the fact that users are directly associated with

a mobile application and use the application to interact with the system.

The system should be able to work independently of the device that the user is carrying and thus,

there were developed two versions of the mobile application: one version for Android and the other for

iOS devices.

The Android version of the mobile application was developed in Android Studio v4.2.2 and using

Gradle build tool v6.7.1 and using the following configurations:

• Target SDK version: API 29 - Android 10.0 (Q)

• Min SDK version: API 26 - Android 8.0 (Nougat)

On the other hand, the iOS version of the mobile application was developed in XCode 12.4 and using

the following configurations:

• Swift Language Version: 5

• iOS Deployment Target: 14.4

In order for our Android version of the mobile application to work properly, the required Software

Development Kit (SDK) version is 26 since this is the minimum version that is able to use specific

methods from Java 8. According to a study on Statisca [43] and AppBrain [44], as of June-August 2021,

about 15% of internet users have an Android version which is not supported by our prototype of the

mobile application.

As stated above, the iOS version of the mobile application provides the same functionalities as the

Android version and both versions of the mobile application were tested successfully on different devices

such as Samsung Galaxy S7 Edge (Android 8.0, API 26), OnePlus 7T Pro (Android 11.0, API 30) and

on iPhone 7 Plus (iOS 14.7).

37

4.1.1 Login and Register

When opening the mobile application, the user is presented with a login system which allows a user to

either login to their account or create a new account. In order to access and use the application, users

that do not already have an account are required to create a new account, from the registration page

4.1.

Figure 4.1: Registration page in the mobile application

4.1.1.A Register

To create a new user account, users are required to fill certain points of interest using their personal

information such as username and first and last names. In this system, the username is the unique

identifier of the system and used to login in the mobile application even though, in a different iteration

of this system, there is also the possibility of using the email address as the username. The email

address is used to validate new user accounts, to prevent an overload of fake accounts, by having the

authentication server sending an email to confirm the registration and identity of the user. In addition, this

system is not limited to the current information fields with the exception of the username and password

and so, the registration form could include other information fields such as a mobile phone number.

Another method to confirm the registration of users could have been implemented using one-time

passwords. The authentication server would send a four-digit code through a Short Message Service

(SMS) to the mobile phone number of the user and the user is required to introduce the code in the

38

application. After inserting the code in the application, the mobile application would send the code to the

authentication server and in case the code was valid, the account would become verified. Even though

the use of one-time passwords provide greater security than sending a confirmation email, the former

method was not implemented due to the difficulty in accessing a free SMS system.

The process of registration consists of two steps: obtaining a registration token that allows the ap-

plication to be able to register a user by sending the user details to the authentication server 4.2. A

registration token is an access token, more specifically a bearer token, emitted by the authentication

server which contains the required permissions to register new users. The purpose in obtaining a reg-

istration token is to allow users to self-register instead of having an administrator manually register the

account on the behalf of the user. This is specific to the authentication server and in order to let users

to self-register without the need of a registration token, it is required to have a different authentication

server as the current one does not allow registration without a registration token.

Figure 4.2: Registration process sequence diagram

Upon receiving the registration token, the mobile application sends a registration request to the au-

thentication server. The request contains the registration token as well as the user information. Upon

receiving a response from the authentication server, the mobile application displays a message contain-

ing the status of whether the creation of user account was successful or not. Due to the fact that the

username must be unique, users that attempt to register a new account with a username that is found in

the authentication server, meaning that it has already been used, are presented with an error message

to alert users that they should pick a different username.

39

4.1.1.B Login

After completing the registration process, users can proceed to sign in the application. As it can be

seen in the login form page below 4.3, in order to sign in the mobile application, users are required

to insert their username and password. Upon signing in, the mobile application proceeds to send a

login request to the authentication server. The login request consists of an Hypertext Transfer Protocol

Secure (HTTPS) request, using the Retrofit2 library on Android and the Alamofire library on iOS, sent to

the authentication server.

Figure 4.3: Sign in page in the mobile application

HTTPS requests provide greater security than HTTP requests and they are the current standard in

online communication. In this prototype of the system, we are not using point-to-point HTTPS com-

munication due to the difficulty in obtaining a certificate from a Certificate Authority (CA), to associate

to the back-end servers. This system was developed using ngrok to implement a one-sided point-to-

point HTTPS communication, since ngrok allows for HTTPS communication from the mobile application

to the ngrok servers which are then to send HTTP requests to the back-end servers, and vice-versa.

With this, the mobile application is not susceptible to interception and eavesdropping attacks such as

man-in-the-middle attacks when receiving tickets from the ticketing server.

Since the authentication server is an OpenID Connect server, the authentication server returns an

authentication token. An authentication token is an access token, a JSON Web Token (JWT) which

remains valid for one hour, since this is the recommended time according to OAuth2.0. This token is to

be used only for the current user and it is required in various services provided by the mobile application

40

such as the purchase of tickets. In addition, users are not required to insert their credentials every

time they open the mobile application, as long as the authentication token remains valid. In case the

authentication token expires, users are prompted to reintroduce their credentials to authenticate, which

requires access to the internet.

In a different iteration of this system, the mobile application can make use of refresh tokens to lessen

the amount of times users have to reintroduce their credentials in the mobile application. Upon the

expiration of an authentication token, the mobile application would send the refresh token to the authen-

tication server and if valid, the authentication server would emit a new authentication token and refresh

tokens. Having a login system which implements a refresh token does not bring advantages from a

security point and it would still require internet access despite being a convenient and practical feature.

4.1.2 Purchase of tickets

Firstly, in order to purchase of new tickets, the mobile application retrieves the list of available tickets,

from the ticketing server. Only authorized users or users that hold a valid access token, with specific

permissions 4.3, are able to access the list of available tickets and purchase new tickets.

The payment method was considered to be an area which was out of the scope of this system and

therefore, this system contains a simulation of the payment of ticket. There are various methods of

payment and different approaches to purchasing tickets which would be suitable to implement on this

system. The most widely used approaches to the purchase of tickets, consist on the implementation of

a system in which user accounts are associated with an account balance and users can also purchase

tickets using their credit cards.

A payment system based on the account balance is more convenient to users who purchase tickets

regularly such as locals or those who travel to work on a daily basis, since they are only required to

have sufficient account balance to purchase tickets whereas the payment per ticket method is more

convenient to those who use the system occasionally such as tourists, since they are usually looking for

a ticket to arrive to their final destination and they are not looking forward to spending a lot of time using

the system.

The current prototype of the mobile application contains an hybrid approach to the payment of tickets,

in order to be more convenient to the end user. Upon receiving a catalog of products from the ticketing

server, users are able to purchase their desired ticket.

From the figure 4.4, the mobile application prompts users with a confirmation page which includes

the payment methods for purchasing tickets. The current available options allow users to either pay with

their account balance or to pay for tickets using their credit card. As it can be seen in the figure 4.5,

users can fill the form fields with their credit card information, and confirm the addition of the credit card

to the mobile application. After setting their credit card information, subsequent purchases do not require

41

Figure 4.4: Payment confirmation page Figure 4.5: Add new card page

the re-introduction of credit card information as to simulate the storing of credit card information in the

mobile application and, due to simplicity reasons, it is assumed that no other credit cards are going to

be added to the mobile application.

Upon selection, the mobile application sends a purchase request to the ticketing server, which returns

a ticket to a valid request. A purchase request consists of a HTTPS request to the ticketing server which

validates the request and returns a ticket to the mobile application. The ticket is then securely stored in

the internal storage of the mobile phone.

In addition, in case users do not have sufficient account balance, the application attempts to make

use of the credit card inserted to purchase a new ticket. Alternatively, the mobile application could

present the options such as recharging the account balance. As aforementioned, the mobile application

contains a simulation of the payment method and, in a real environment, recharging the account balance

and the payment per ticket method would require a payment system which would make a purchase

request to a financial services company such as PayPal, MB Way and VISA.

Finally, the mobile application redirects the user to the home page. The home page contains a list of

valid tickets that have been previously purchased, as seen in the figure 4.7.

42

Figure 4.6: Empty home page in the mobile application Figure 4.7: Tickets in the home page of the application

4.1.2.A Storage of tickets

After purchasing tickets from the ticketing server, the mobile application stores them in the internal

storage of the mobile phone. However, in the event that the mobile phone is victim to an attack, the

attacker could try rooting the mobile phone to steal the tickets in storage and use them in a different

device.

Taking this into account, it is important to store encrypted tickets instead of storing tickets in plaintext

and, in order to store encrypted tickets, the mobile application takes advantage of Android Security

Crypto library which contains the MasterKey and EncryptedFile classes. The Android MasterKey class

is used to reference a key which is stored in the Android Keystore and to encrypt data encryption keys for

encrypting files. The Android EncryptedFile class is used to create and read encrypted files and requires

a MasterKey to encrypt files. The algorithm used to encrypt create a MasterKey and an EncryptedFile

is AES-256 in Galois/Counter Mode (GCM) mode, since it is the recommended algorithm on the official

Android developers webpage. Using AES with bigger key sizes, such as 256 bits, is more secure against

brute force attacks and GCM mode provides authentication and is more parallelizable hence being faster

than Cipher-Block Chaining (CBC) mode.

Since tickets are encrypted before being stored in internal storage, tickets that were stolen and used

in a different device are not able to be used to display tickets in the form of QR codes.

43

4.1.3 Display tickets

The ticket validator reads tickets in the form of QR codes. From the home page of the mobile application,

users can select their desired ticket to display a ticket in the form of a QR code.

For the generation of a QR code, the mobile application creates an encrypted JSON object which

contains the ticket and TOTP. Initially, there was the idea of creating a QR code which included the

authentication token as well as the ticket and TOTP. However, this token drastically increased the size

of the QR code and made the process of validation much more difficult. Taking this into account, there

were improvements to shorten the size of the QR code as much as possible (discussed below), with

the creation of digital signatures and encryption keys used to encrypt the contents of the QR code also

being taken in consideration, in order to reduce the key size without compromising the security of these

keys (section 4.3).

Figure 4.8: Display ticket page

As stated above, TOTPs are only valid for a short period of time and, in the event that the current

TOTP expires, the mobile application dynamically generates a new QR code which is valid for the du-

ration of the new TOTP. In this version of the mobile application, each TOTP and QR code lasts for

60 seconds since TOTPs should only be valid for a very short period of time but also, it is taken into

account that users might face delays in connection or in the creation of the QR code. Alternatively, this

system could have been implemented using a different period of validity or timestep such as the current

recommended timestep in the RFC6238 [31], which is 30 seconds.

With the dynamic generation of QR codes, the mobile application contains a feature which allows

44

Figure 4.9: Green progress bar Figure 4.10: Yellow progress bar Figure 4.11: Red progress bar

users to visualize when to use the current QR code or wait for the creation of a new one. This is to

ensure that users are not met with the rejection of the presented ticket to the ticket validator. As seen

in the figure 4.11, users should wait for the creation of a new QR code since the current one is due

to expire soon. Presenting a valid ticket to a ticket validator on either a yellow or green progress bar

indicates that the TOTP remains valid for a period of time which, in case of network delays, would not

present a problem to the validation of tickets.

In the event that the OTP expires, the application dynamically creates a new QR code which includes

the ticket and the newly calculated OTP value. However, in the event that neither the ticket nor the ticket

signature are valid, the mobile application acts accordingly to avoid displaying an invalid QR code. In

case the ticket signature expires, the mobile application is able to obtain tickets with a fresh signature

by sending a recover signature request to the ticketing server. A recover signature request consists of

a request to the ticketing server to renew the ticket signature as well as its expiration date to ensure

authenticity. Despite the fact that the expiration date of the signature in the ticket is usually much shorter

than the expiration date of the ticket (3), the ticketing server validates the request and verifies the ticket

to avoid recovering expired tickets. In case the ticket expires and not the signature in the ticket, the

mobile application does not need to inform the ticketing server and proceeds to delete the ticket from

the internal storage and it is no longer displayed on the home page.

By having previously calculated the offset to the time server and having a valid authentication token,

the mobile application is able to work offline for a brief period of time. This is not the focus of the

system but there can be instances where the mobile application temporarily loses access to the internet

and blocking users from being able to display tickets could pose as a threat to the functionality of this

system.

The final step in the creation of the QR code consists of the encryption of the QR code contents,

namely the ticket and TOTP. Before encrypting these contents, the mobile application compresses the

message using the GZIP library, in order to reduce the contents of the QR code and making QR codes

more readable. The message is encoded using Base64 to avoid losses in content of the message and

to prevent decoding errors that might occur when creating a QR code. In order to encrypt the QR code

contents, the mobile application makes use of the public key of the ticket validators which is provided

by the ticketing server and shared in the network to all users. To generate tickets in the form of QR

codes, the Android version of the mobile application uses the ZXing library (Core v3.4.0). ZXing (”Zebra

45

Crossing”) is an open-source barcode image processing library implemented in Java which provides an

easy to implement interface to generate QR codes and show them in bitmap format. The iOS version

uses CIImage which is equivalent to the ZXing library with the exception of being a built-in class in iOS.

Having the QR code displayed on the mobile application, users are only required to present the QR

code to a ticket validator in order to validate the ticket and be able to use the system.

4.1.3.A Trip history

A feature that could have been implemented in the prototype of the mobile application is the ability to

see expired tickets. This is a convenient feature since some users would appreciate being able to see a

list of the previous tickets that were purchased by selecting an option to see the list of expired tickets as

well as information regarding the expired ticket such as the date of expiration and other ticket details.

However, this feature was not considered to be an area of focus and thus, it was not implemented

in this prototype version of the mobile application. As stated previously, the mobile application removes

expired tickets from the internal storage and does not display expired tickets in the home page.

4.1.4 Screenshot blocking

Screenshots are methods of sharing information and applications that make use of sensitive information

or copyrighted content such as banking applications, usually disable screenshots in the mobile applica-

tion. In this system, double spending is one of the main attacks to the mobile application and one way to

perform double spending attacks is by screenshotting the QR code with the ticket and sending the QR

code, through the internet, to another user.

The Android version of the mobile application does not allow users to take screenshots, when dis-

playing a ticket. Conversely, the iOS version of the mobile application does not permit the blocking of

screenshots and, in order to prevent users from performing double spending attacks, the iOS version

of the mobile application can make use of an external framework such as ScreenShieldKit. Screen-

ShieldKit blocks sensitive content from a screenshot that is taken to the application screen but, since

ScreenShieldKit is not an open-source library, it was not implemented and tested.

4.1.5 Root checking

The mobile application implements root checking capabilities to prevent users from rooting the device

and making use of the mobile application in unintended ways. Besides that, the mobile application

contains sensitive information, e.g. tickets, which are stored in the internal storage of the mobile phone

device and devices that have root capabilities, are able to bypass security checks that are imposed to

prevent users from accessing private information.

46

To do so, the Android version of the mobile application uses the RootBeer library [45] which checks

for indications of root and in case it finds that the device has been rooted, the mobile application does

not allow the user to further use the mobile application. In the iOS version of the mobile application, it is

implemented similarly to the Android implementation, without the use of a library and checks whether or

not the system can execute root tasks, contains suspicious applications or paths and has Cydia installed,

which is similar to the App Store with the exception of supporting Jailbroken devices.

4.1.6 Code obfuscation

Additionally, the mobile application tries to prevent reverse engineering attacks by using code obfusca-

tion. Reverse Engineering attack consists of opening up an object to study its mechanisms which can

be used in order to extract valuable information on how it works.

The Android version of the mobile application implements ProGuard, which is a Java open-source

cross-platform tool. ProGuard is a command-line tool that shrinks, optimizes and obfuscates the code.

ProGuard identifies unused classes, fields and methods attributes of applications and removes them

as well as gives them short meaningless names. In addition, ProGuard analyses and optimizes the

bytecode.

For the iOS version of the mobile application, due to the difficulty in using an open-source library

that met our requirements, there is a simplistic implementation of code obfuscation, which is applied

to sensitive data such as private credentials, stored in the application. These values were encrypted

beforehand and stored as bytes and, when using these values, the mobile application performs the

decryption of these values, to obtain the original data. The current method of obfuscating code is not

fully secure since it lacks the use of a random salt value and therefore, the same key is used to cipher

and decipher the contents of every sensitive field. Besides that, this implementation can only be applied

to protecting sensitive fields whereas, in the case of ProGuard, code obfuscation is also applied to

class names and methods, etc. To further implement code obfuscation in iOS and in order to meet the

proposed requirements, it would require the use of commercial libraries such as iXGuard.

47

4.2 Ticket Validators

This section details the ticket validator implemented in this system as well as to apply the ideas previously

discussed in the previous chapter (3). A ticket validator is responsible for the validation of tickets and

emits visual feedback to the user, based on the status of the validation. In addition, the ticket validator

controls the rotation of keys in the batch of keys, sent from the ticketing server, in order to remain

synchronized with the system. Additionally, a ticket validator is responsible for the synchronization of

time with a time server and therefore, remain synchronized with the rest of the system.

The ticket validator was developed in IntelliJ IDEA 2021.1 and using Java 8 and it is able to work

offline for certain period of time. In case ticket validators do not have access to the internet for a long

period of time, the batch of keys inside the ticket validator is not updated and the validator does not

have the correct key, for the validation of tickets, on that specific day. This is considered to be the most

extreme situation and it is assumed that ticket validators are going to obtain new information from the

back-end servers, at least once, before every key in batch of keys becomes expired.

4.2.1 Authentication

In order to obtain information from the ticketing server, ticket validators are required to provide a valid

access token which allows for the authentication of the ticket validator. With this, a ticket validator

starts by requesting an access token to prove its authenticity to the authentication server, using their

credentials. The authentication server returns an access token which is specific for ticket validators, with

a validity period of 60 days. Since ticket validators are only required to access the ticketing server for a

limited number of times, having to constantly obtain a new access token would lead to unnecessary calls

to the authentication server and thus, this system implements ticket validators with long-lived access

tokens. In addition, the access token contains permissions that are only specific to ticket validators in

order to prevent other clients from accessing confidential information such as permissions to obtain the

batch of keys from ticket validators, which are used to decrypt the contents of tickets in the form of QR

codes.

4.2.2 Ticket validation

The process of validation of tickets starts upon reading the QR code contents, from the scanning of the

QR code in the ticket validator. In order to read QR codes, the prototype version of the ticket validator

application starts by creating a webcam, using the Webcam library by Sarxos, and creating a display

which is used to display visual feedback.

The figure below 4.12 contains a comprehensive diagram of the extraction of tickets from QR codes.

As stated above, to avoid losses in content of the message when generating QR codes, the mobile

48

application encodes the message to Base64 and the ticket validator decodes its value to obtain the

original message. After decrypting the content of the QR code, the ticket validator proceeds to decrypt

the encrypted message. The encryption phase occurs in the mobile application, using the public key

associated with the ticket validators on a specific day, and the ticket validator uses the corresponding

private key from the batch of keys, to decrypt the contents of the message.

Figure 4.12: Extraction of tickets from QR codes

Following the decryption of the message, the ticket validator proceeds to decompress the contents of

the message using the GZIP library. The process of compression is executed in the mobile application,

in order to reduce the size of QR codes.

In the event that these steps are successful, the ticket validator obtains a JavaScript Object Notation

(JSON) in a string format, and converts it to a class using the Gson library from Google. By converting

the string into a class, the ticket validator can obtain the contents of the JSON from the class attributes

such as the ticket and OTP.

The next step in the validation of tickets is the validation of the contents of the ticket. As seen in the

figure 3.6, tickets contain three parameters which are used for the validation of tickets: the expiration

date of the ticket, the expiration date of the signature and signature. The expiration date of the ticket is

the date until the ticket is valid and upon expiration, users are required to purchase a new ticket. The

expiration date of the signature is the date until the signature of the ticket is valid and requires a renewal

of the ticket signature, from the ticketing server. The signature in the ticket is used to ensure the integrity

and non-repudiation of the ticket, including the fact that the ticket was emitted by the ticketing server.

Following the verification of these parameters, the ticket validator proceeds to verify whether or not

it had previously accepted that QR code, to prevent cloning attacks. Cloning attacks are attacks where

the attacker makes a copy of the QR code such as taking a photo of the QR code, and attempts to use

the ticket in order to make use of the system. Taking this into account, ticket validators store a history of

validations, in memory (for simplicity reasons), and rejects QR codes that have been previously used.

In case these steps are successful, the ticket validator creates a OTP and compares it with the OTP

of the ticket. The method of creating an OTP by the ticket validator is equal to the method used to create

the OTP in the mobile application, and if these values are equal, the QR code is accepted by the ticket

validator.

Ticket validators emit visual feedback to the user, based on the validation of tickets, since ticket

validators contain an interface for users to easily identify whether or not the ticket presented was deemed

49

Figure 4.13: Ticket accepted Figure 4.14: Ticket denied

valid. As seen in the pictures below, the ticket validator accepts the ticket (in the figure 4.13) and rejects

the ticket (in the figure 4.14).

4.2.3 Key rotation

Since ticket validators do not have constant access to the internet, the ticketing server emits a batch of

keys instead of sending a single key to the validators. A batch of keys consists of a map of private keys,

identified by the date in which each key is supposed to be used. Each key consists of a Base64 encoded

KeysetHandle to avoid losses and prevent the corruption of messages, which contains a key generated

in the ticketing server using the Google Tink library. In this version of the system, ticket validators use

a ScheduledExecutorService to obtain a new batch of keys, everyday at midnight, and this request is

executed once a day. Despite this, these values can be subject to change in another version of the

system without compromising functionality.

The figure 4.15 contains a visual representation of the process of rotating keys in ticket validators.

To begin with, the ticket validator obtained a batch of keys beforehand and proceeds to rotate the key

which is currently in use (Key A), with the rotation of keys being based on whether or not the ticket

validator was able to access the ticketing server to obtain a new batch of keys. Having determined that

the upcoming key is Key B, the ticket validator proceeds to select Key B from either the new batch of

keys or, in case it did not have access to the internet, from the old one. From the figure, we can see

that a new and updated batch of keys, from the ticketing server, does not contain the now expired key

(Key A) and contains a new key (Key D). On the other hand, the old batch of keys is not updated and the

ticket validator is able to select the key that determined to be next in line (Key B).

Ticket validators determine which key is going to be used next based on the date associated with the

key, and this process is synchronized across the system. Additionally, since the rotation of keys occurs

once a day, the date associated with the ticket is the specific date on which the key is going to be used by

the validator. Failures in the synchronization of dates may lead to ticket validators failing to synchronize

with the system and eventually fail to properly decrypt and validate tickets.

50

Figure 4.15: Key rotation in ticket validators

Besides receiving the batch of keys, ticket validators receive the signing key of the ticketing server,

and this key is also associated with an expiration date. Upon the expiration of the signing key, ticket

validators fetch the new signing key from the ticketing server.

4.2.4 Ticket transactions

Upon accepting a ticket from being valid, the ticket validator stores a recording of the validation of a ticket

in storage. This is called a ticket transaction and it consists of the identifier of the ticket and the instant

of validation. These are to later be forwarded to the ticketing server so that system administrators can

obtain valuable information regarding the usage of tickets and prevent fraudulent behaviour.

The forwarding of ticket transactions is done asynchronously and, in the current version of ticket

validators, at the same time that ticket validators obtain a new batch of keys (midnight of every day).

Similarly to the obtaining updated batch of keys, the time and frequency of sending ticket transactions to

the ticketing server can be subject to change. After receiving confirmation that ticket transactions were

successfully received by the ticketing server, the ticket validator proceeds to delete them from storage.

51

4.3 Back-end Servers

This section details the back-end servers and their specifications in this system since these are used to

manage back-end processes such as the communication with the client, more specifically, the mobile

application. In addition, the main goal of a server is to provide functionality and information for a lot

of users since servers are equipped with more storage and processing capabilities. Taking this into

account, there are some processes which can be managed by the back-end servers instead of the

mobile application.

As stated above, in chapter 3, users do not interact with the back-end servers physically. These

servers are located in the back-office and they provide information such as keys and tickets to the

mobile application.

This system contains two different back-end servers: the authentication server and the ticketing

server. The former is used for authentication in the system and the latter is used to the distribution of

keys and tickets to the client.

4.3.1 Authentication Server

This version of the system makes use of a server from Keycloak [46] which is an open source identity and

access management solution, and it takes care of the authentication services such as the registration

and login of clients in the system. This system includes a token-based authentication protocol which

consists of an authentication system which allows clients to verify their identity and emits a unique

access token to a successfully authenticated client.

An access token is a JWT which contains several fields of information that are required for the correct

functioning of the system, including user roles and user permissions, which can either be applied to a

specific user or instead, all users. The figure below 4.16, contains a table with relevant fields to the

implementation of this system.

To start off, this system contains realm roles or roles that identify the different types of clients: user

and validator, which refer to the user which makes use of the mobile application and ticket validators, re-

spectively. With this, the ticketing server is able to implement client-specific methods and reject requests

from access tokens which do not have the required roles. Additionally, the authentication server allows

for more fine-grained permissions such as the ability to obtain the catalog of products or the permis-

sion to purchase tickets. In this system, client roles are implemented with relation to the only audience

member (ticketing server) and an example of a situation where one would put this into practice could be

that a certain user is deemed of fraudulent behaviour and the system would, consequently, prohibit the

purchase of new tickets from the ticketing server.

This system allows users to self-register from the mobile application and thus, the process of regis-

52

Figure 4.16: Relevant fields in the access token

tration in this system is made solely by the user and it does not require the intervention of an authority

which would take care of the registration process, on behalf of the user. Instead, in order to allow users

to self-register from the mobile application, the authentication server requires users to be authorized and

thus, the mobile application needs to request a registration token beforehand. The registration token is

an access token with permissions to perform the action of registration in the server and, in this version of

the system, we use the default registration token from Keycloak, for simplicity reasons, which contains

permissions to manage users in the system, it is valid for 10 minutes and solely used for the regis-

tration process. Upon receiving this token, the mobile application makes a registration request which

includes the registration token along with user credentials and information that is specified in the register

fields. The registration request is processed by Keycloak and creates a response based on the status of

whether or not the user was registered in the server.

Users that have already registered in the system can proceed to use their credentials to login in the

system. In case their credentials are valid, the authentication server emits an authentication token which

is an access token that can be used on the mobile application and ticket validators, to make requests

to the ticketing server. This token is only valid for 60 minutes and, to avoid having to re-introduce their

credentials every 60 minutes, the authentication server includes a refresh token in the login response,

with a period of expiration of 30 days. In addition, the access token in ticket validators is valid for 1 day

since access tokens are used to authenticate in the ticketing server, on a daily basis, and the period of

expiration of the refresh token is 30 days. The period of expiration of the refresh token is much longer

than the access token since its only purpose is to avoid the inconvenient task of having to re-introduce

user credentials and instead, use the refresh token to obtain a new access token. When requesting a

new access token using a refresh token, the authentication server emits a new refresh token which can

later be used for the same process.

53

4.3.2 Ticketing Server

This server was developed using Spring Boot and Java 11, and it is considered to be a resource server

since it handles requests upon the verification of the access token, emitted by the authentication server.

Using Spring Boot Security and the Java-JWT library from Auth0, the ticketing server is able to read and

validate the access token, created in the authentication server.

4.3.2.A Access token validation

The ticketing server verifies if the access token was created by the authentication server and rejects

requests that contain forged access tokens. In order to verify the authenticity of access tokens, the

Java-JWT library obtains the list of certificates from the authentication server and compares the signing

key id with the signing key id found in the header parameter of the JWT. Upon receiving a JWT that

was created in the authentication server, the ticketing server proceeds to validate the parameters in the

token such as the header, signature and payload contents. The validation of the header consists on the

validation of the type of token, which is required to be a JWT token, and the validation of the signature

consists on the verification of the authenticity of the signature, with the public key of the authentication

server. Since the header parameter contains the identifier of the signing key, the ticketing server is able

to identify the public key that was used for the signature and obtain its value, from the authentication

server, which is required in case the authentication server uses multiple signing key pairs. Following

the verification of the header and signature parameters, the ticketing server proceeds to validate the

contents of the payload parameter such as the expiration date, audience and roles.

Upon verification of these parameters, the ticketing server proceeds to execute the request of the

client and, depending on the request, the ticketing server rejects requests based on the roles in the

access token. This ensures that unauthorized parties are not allowed to obtain confidential information

and if it were allowed, the reliability of this system could become compromised. As an example, users

are not able to request batches of private keys, from the ticketing server, since this service is only

provided to ticket validators. In addition, as stated above, the authentication server allows for including

more specific roles in the access token to prevent clients from executing a certain action that would be

allowed previously such as preventing users with fraudulent behaviour from obtaining new tickets and

keys.

4.3.2.B Services

After validating the access token, the ticketing server is able to execute requests for users and ticket

validators. In light of this, the services provided by the ticketing server are split into three categories:

services provided to users only, services provided to ticket validators only and mutual services.

54

Figure 4.17: Table with the services provided by the ticketing server

In order to purchase a new ticket from the ticketing server, the mobile application makes a purchase

request to this server which includes the product listed in the available tickets list. The ticketing server

creates a new identifier for the ticket using a new id created by the UUID class, uses the parameters of

the product to fill the rest of the fields in the ticket and creates a signature of the ticket which is inserted

in the signature field of the ticket. Before sending the ticket to the client, the ticketing server updates a

HashMap of tickets which contains all the tickets for every user so that it is able to obtain the details of a

particular ticket, for recovery purposes.

Each signature in the ticket is valid for 60 minutes so that users are required to provide a form of

authentication to the ticketing server on a regular basis. This operation is called the recovery of tickets

and the ticketing server re-signs tickets with an expired signature and forwards them back to the owner

of the ticket. This process starts with the validation of the ticket fields such as verification of the signature

and that the ticket is not expired, since failures in the verification of these parameters would mean that

the ticket was either forged or expired and no longer usable, respectively. Besides that, the ticketing

server validates if the ticket belongs to the user that is making the current request and that the ticket is

located in the tickets map. In case these conditions are met, the ticketing server creates a new signature

for the ticket, updates its entry in the tickets map and sends the ticket back to the user.

The ticketing server is also able to receive ticket transactions, from ticket validators, and these are to

be stored in storage. In this prototype of the ticketing server, ticket transactions are stored as a JSON file,

for simplicity reasons, in the storage of the ticketing server. However, a different version of the ticketing

server could implement a database schema or a data warehouse with a view to later perform analysis

over ticket transactions. Upon having successfully registered these ticket transactions and stored, the

ticketing server emits an OK response to the ticket validator which sent the transactions.

The obtaining of a batch of keys and the public key of the validator as well as the public key of the

ticketing server are services which include encryption keys and signing keys, respectively, and these are

mentioned in the sections below.

55

4.3.2.C Creation of signing keys

Signatures are created using ECDSA [47] which is a digital signature algorithm that uses Elliptic Curve

Cryptography. Elliptic Curve Cryptography or ECC provides similar security to using RSA keys whilst

having much smaller keys in size comparison, which leads to the having tickets with smaller signatures

and consequently, tickets have smaller size. To generate signing keys, the ticketing server makes use

of the Tink library by Google, and uses the NIST curve P-256. Even though this curve is the only curve

supported by Tink at this moment in time, later iterations of this system could have different curves

supported, and their use would not compromise the correct functioning of this system.

In this system, signing keys are not subject to change and do not expire. These keys are associated

with the ticketing server and their purpose is for the ticket validators to be able to verify the integrity of

tickets, emitted by the ticketing server. For simplicity reasons, the rotation of these signing keys was not

implemented, and the ticketing server makes use of a single signing key. In case the ticketing server

would make use of multiple signing keys, it would be required to include an additional field in each ticket,

with the identifier of the signing key.

4.3.2.D Creation of encryption keys

Besides having signing keys, the ticketing server is also responsible for creating and securely distribut-

ing encryption keys which are used in the encryption of the contents of QR codes, generated by the

mobile application. These keys are also ECC keys but instead of using asymmetric cryptography, the

ticketing server creates hybrid encryption keys. By using hybrid cryptography, when a message is ci-

phered in the mobile application, the combination of symmetric and asymmetric keys removes some of

the drawbacks of encrypting large contents with asymmetric keys, since these are limited to a maximum

size of the message and the slow speed of encryption. Taking this into account, the ticketing server also

uses the Tink library by Google, to create these encryption keys which are to be forwarded to the mobile

application (Tink is available for Java and Objective-C). These keys are generated using ECIES, from a

combination of the curve P-256 from NIST for the asymmetric key and AES 128 for the symmetric key.

These keys include Authenticated Encryption with Associated Data (AEAD) for confidentiality and au-

thenticity of the key, and HMAC-based Key Derivation Function (HKDF) for extracting a pseudo-random

key from HMAC-SHA256.

Encryption keys are changed on a regular basis, to prevent brute-force attacks and attacks against

QR codes. Despite being changed on a daily basis (every 24 hours), this system can be adapted to

work with a different key rotation period which does not make the system susceptible to the attacks

aforementioned. The purpose of encryption keys is to ensure that the only entity with the ability to read

tickets are ticket validators and in order to do so, ticket validators receive batches of keys, from the

ticketing server.

56

The ticketing server updates these batches of keys similarly to using First In, First Out (FIFO) on a

stack and therefore, removing an expired encryption key and adding a new one that goes to the end of

the batch. An encryption key is associated with the synchronized date from the system, which acts as

an identifier of the key in the batch of keys. When changing to the next day, the ticketing server removes

expired keys and adds the missing number of keys to the batch. In addition, since it knows the current

date of the system, the ticketing server uses it to fetch the public key of the encryption key pair and

shares it with the network.

In this system, the size of the batch of keys is 5 and it allows for ticket validators to remain usable for

5 days without receiving another batch of keys from the ticketing server. Despite this, it is assumed that

ticket validators are able to obtain a new batch of keys regularly and should receive a new batch of keys

much prior to becoming unusable. In addition, the ticketing server can change the size of the batch of

keys without compromising the functionality of the system.

4.3.2.E Anti-fraud System

The ticketing server receives ticket transactions from ticket validators with a view of keeping a centralized

registry of the validation of tickets and to prevent fraud. The ticketing server could contain an anti-fraud

system which analyses these ticket transactions, by taking a look at the identifier of the ticket used to

validate in the ticket validator and the timestamp in the ticket transaction or the time that the ticket was

validated.

The anti-fraud system was not implemented for simplicity reasons and since it is out of the scope of

the system. This system is able to detect fraudulent behaviour in cases where it is possible to detect

multiple usages of the same ticket, through comparison of the validation timestamps.

In the case of a public transport system, the anti-fraud system can detect suspicious cases of ticket

validations in instances where the time of validating tickets does not match the minimum required time

to validate a certain ticket. Using the metro as an example, in case a ticket is validated in two different

stations in a shorter period of time than the minimum time it takes to complete the journey from one

station to the other, the anti-fraud system recognizes this as fraudulent behaviour and takes preventive

action.

To prevent users with fraudulent behaviour from using tickets, the anti-fraud system notifies the tick-

eting server and this server does not renew the signature in the ticket used. Even though this preventive

measure can successfully prevent users from further committing fraud, it does not act instantaneously

since the ticketing server is not able to notify ticket validators that a certain ticket is being used to commit

fraud, in real time.

57

4.4 Clock Synchronization

Due to the fact that this system works offline, this system is able to achieve synchronicity within its

components due to the synchronization of clocks with every entity of the system, with the exception

of the authentication server. This means that the ticketing server and ticket validators as well as the

mobile application make use of the same time reference. The authentication server does not require

the same method of synchronization of clocks, with the other components of the system, since access

tokens emitted by the authentication server can be validated without having to obtain its time from the

same time server as the other components. An access token contains the issuing and expiration date of

the access token and in order to verify if the access token is valid, the access token uses the Unix time

representation which can be obtained using the Instant class in Java.

The rest of the entities of the system have their clocks synchronized using the Network Time Protocol

or NTP protocol, which is used to synchronize the times in two different computers or, in this case,

between a client and a time server. A client requests the current time of the time server and calculates

the difference between the clock in the time server with its own clock. This difference is called the offset

and when it is added to the current time in the device of the client, the client obtains the current time,

with precision, in the time server.

The implementation of the NTP protocol in the entities of the system, with the exception of the

authentication server, are equal and they are used on the same time server. The time server used by

this system is the Google Public NTP which is the time server provided by Google, and its time comes

in UTC which is the time standard commonly used across the world. In order to calculate the offset,

an entity such as the mobile application, makes use of the Apache Commons Net library. This library

contains the NTPUDPClient which contains methods to calculating the offset to the time server.

58

5
Evaluation

Contents

5.1 Performance Results . 61

5.2 Battery usage . 65

5.3 Security Issues . 66

59

60

Following the implementation of the system, the various components that make up the system were

subject to testing, namely measuring times as to obtain performance metrics over important services

provided by each component such as the time to create a QR code or the time to validate QR codes.

This chapter contains the metrics collected through the use of the system and contains a deliberation

over the results obtained.

It is important to notice that these values were obtained in a simulation environment and not in a real

public transport vehicle or station. Only by testing in a real environment, with the interference of vehicles

or temporary losses of internet connection, could the results obtained have been more precise. In a

scenario where there are no slowdowns in internet connection, the results obtained are approximate to

the real-time operation of this system.

The simulation scenario used for the evaluation of this system was a scenario similar to the scenario

found in the ticket validation use case figure 3.2. As stated above, the user of this system uses the

mobile application on a physical device, namely a mobile phone. A ticket validator is located in front of

the user so that the ticket validator is able to scan a QR code with the ticket, shown by the user. After

reading the QR code, the ticket validator emits visual feedback based on the validation of the ticket. The

back-end servers are located in the backoffice and, in order to simulate the use of back-end servers,

these servers were located in a separate room, different from the one where the user was showing

tickets to the ticket validator.

As previously mentioned, there are two different version of the mobile application: one for Android

devices and the other version for iOS devices. For the Android version, the devices used for testing

were OnePlus 7T Pro and Samsung S7 Edge whereas for the iOS version, the mobile phone device

was iPhone 7 Plus. In addition, ticket validators were created on a computing platform consisting of

an Intel i7-3520M (3.6GHz) with 16GB of RAM. Furthermore, the back-end servers were created on a

computing platform consisting of an Intel i5-6200U (2.8GHz) with 8GB of RAM.

In order to obtain the test results, each component tested creates a record with the timestamp of the

time prior to executing the service as well as the timestamp of the time after the execution. A log file is

created with these times and the difference between both times which are then stored.

5.1 Performance Results

This section contains the results from the various tests made to the mobile application and ticket valida-

tor. Besides containing a detailed discussion of the obtained results, this section also provides insights

on situations where these values can be different from real-world results.

61

5.1.1 Creation of QR codes

Starting off with the ticket validation use case 3.2.2, a user has already purchased a ticket and intends to

display the ticket to a ticket validator. As previously mentioned, the mobile application creates a QR code

based on the encryption of the ticket and OTP values, and this section presents the results of creating

QR codes.

By evaluating the performance of the mobile application, in different mobile phones, it is possible to

gain insights over time amount of time a mobile phone device takes to cipher the message and evaluate

whether this time is appropriate for the dynamic generation of QR codes.

Since older mobile phones may lack the processing capabilities of newer mobile phones, this doc-

ument presents the obtained results across multiple mobile phones with different Operating Systems

(OSs), and even with different OS versions, so that it would be possible to perform an evaluation of the

difference in performance and study the impact of using mobile phones, with different capabilities, on

this system. These results are also taken into account to ensure that users are less likely to be limited

to using newer devices, when using this system.

Figure 5.1: Performance results from the creation of QR codes in different devices bar chart

The figure above 5.1 contains the results of the average time to perform the creation of QR codes,

over 150 runs. As stated above, in order to obtain these results, the mobile application obtains the

timestamp before creating a QR code and calculates the difference to the timestamp obtained when the

QR code is set to display on screen. Besides that, the mobile application calculates the difference of

these times and stores it in a file.

In a real environment, the results obtained would be similar to the results in the figure, since the

mobile application was installed in everyday devices and thus, they are not specific to this test case.

From the results obtained, it is possible to infer that the time taken in the creation of QR codes is

62

acceptable and also suitable for the dynamic approach to QR codes, since users are not required to wait

for the process of generating QR codes as it occurs almost instantly after selecting the desired ticket to

present as a QR code.

Additionally, older devices such as Samsung S7 Edge, do not fall behind in comparison with newer

models such as the OnePlus 7T Pro. In iOS devices, the evaluation was only possible to be done using

one mobile phone and thus, it was not possible to create a more detailed comparison between newer

and older models or even across different operating systems.

Despite this, the results show that there is a noticeable difference in the times of the creation of QR

codes in iOS devices, in comparison with Android devices. One reason for this time disparity between

iOS and Android devices, could be the fact that iOS has a native class for the generation of QR codes

whereas the Android application required the use of an external library.

5.1.2 Validation of QR codes

Following the creation of QR codes in the mobile phone application, a ticket validator must ensure the

correct validation of tickets, through the scan of QR codes. This section presents the evaluation over

the validation of QR codes and the comparison between the usage of two different hybrid encryption

mechanisms, and how these results impact validation machines.

The process of validation of QR codes starts with the decryption of the message in the QR code

and, since this could be the most intensive step in the validation of QR codes, this test case is also

focused on various methods of decryption of the message. Furthermore, the focus on the validation of

tickets is done to ensure that ticket validators do not take up much time validating tickets and execute

the validation of tickets within an acceptable time limit, as stated in the research objectives section 1.2.

Figure 5.2: Performance results from the validation of QR codes bar chart

63

The figure 5.2 contains the average time that the ticket validator took, when executing 175 runs in a

computing platform, to validate each QR code that was presented to the reader. Since it was not possible

to test and obtain performance results from a ticket validator machine that is used in a real environment,

these results do not represent the results that would be obtained in a real environment, since ticket

validator machines have much smaller processing capabilities, in comparison with the computer used to

obtain these results.

By taking a look at the results in the figure, the ticket validator performs the validation of tickets with

an average time of 289.4ms. Despite the fact that ticket validator machines in public transports have

smaller processing capabilities than the machine used to obtain these results, the implementation of this

system with the former ticket validators should not be too time consuming and cause users to find the

process of validating tickets, inconvenient.

5.1.2.A Comparison between ECIES with RSA-AES

In addition, it was tested the use of alternative hybrid encryption methods such as RSA-AES and these

results were compared with the results obtained from using ECIES. In the figure 5.3, it is presented a

graph with the average time across 75 runs, of the process of decryption of the message in the QR code.

This is solely for the process of decryption of the message, and these times do not include the time from

other methods for validating the ticket as well as emitting visual feedback to the user.

Figure 5.3: Performance results from the comparison between ECIES and RSA-AES bar chart

From the figure, the implementation of ECIES finishes the process of decryption much quicker, with

an average time of deciphering of less than 7ms whereas the implementation of RSA with AES has an

average time of over 24ms. Despite the fact that using RSA with AES is not as fast as using ECIES, these

64

results indicate that either approach would be suitable for the current security levels, since the validation

times are not very significant when used in the current prototype of the ticket validator. However, in

a real environment, due to the fact that ticket validator machines do not have the same processing

capabilities as the computing machine used to represent the ticket validator, the impact of using RSA

with AES instead of ECIES could become more noticeable and therefore, the use of ECIES would be

more suitable for the validation of tickets.

The process of hybrid encryption using ECIES consists of using ECC with symmetric encryption,

namely EC keys generated from the curve NIST P-256 combined with AES-128 symmetric keys. In

order to be able to perform a fair comparison, the implementation of RSA with AES provides similar

security levels to the ones found in ECIES. When using a combination of RSA with AES, the approach

used RSA 3072-bit keys with AES-128 since RSA 3072-bit keys have the same level of security as ECC

P-256 keys.

In the event that this system required higher security levels such as using EC keys from NIST P-512

for 256-bits of security, instead of having 128-bits of security from using ECIES, with EC keys from NIST

P-256, the average time of using the implementation with RSA with AES could rise exponentially and

cause a major impact in the overall performance of ticket validators [48].

5.2 Battery usage

Nowadays, it is important that mobile phones are able to remain usable for extensive periods of time,

namely for the duration of a whole day. This section details the battery consumption over time of the

mobile phones and an explanation of how these results could diverge from usages in a real environment.

Since the generation of QR codes in the mobile application is dynamic, the mobile application creates

and displays a new QR code every 60 seconds and as such, it is considered to be the most expensive

action in regards to battery usage. For the current use case of the application, users would use the mo-

bile application for a few minutes and close the application as the main purpose of the mobile application

is allow users to present a ticket from the mobile application to the ticket validator.

The figure 5.4 contains a graph with the variation of battery over time, in different mobile phone

devices, that were tested using the mobile application, performing the dynamic generation of QR codes,

in order to put stress over the mobile phone and maximize its battery consumption. These results were

taken using a refresh rate of 60Hz and without the use of the power saving mode across all devices.

From the results in the figure, presenting the QR code over a short period of time such as 2 minutes,

may not even affect the battery percentage as seen in the OnePlus 7T Pro. Despite this, the mobile

application does not lead to draining huge percentages of battery resources, with an average of less

than 1%. Therefore, these values are acceptable for real environment usage since these values do not

65

Figure 5.4: Results from battery usage testing results line chart

cause almost any impact to the battery percentage of the mobile phone.

An exception to the rule is the Samsung S7 Edge which has a battery with years of extensive use

and charges, and since the health of its battery is really low, the results on the Samsung S7 Edge may

diverge from other devices of the same model.

Alternatively, it would be possible to test the battery consumption of the mobile application in case

it was left open, for instance, on the home page, for a long period of time such as 1-2 hours. It would

provide insights on the different processes that run in the background of the mobile application impact

the battery performance of the mobile phone.

5.3 Security Issues

Besides obtaining performance metrics of the usability of the components of this system, specifically the

mobile application and ticket validator, it is necessary to take into consideration that this system can be

susceptible to attacks.

As previously mentioned, this system could be implemented in a public transports system and thus,

some users with malicious intents could attempt to circumvent the security measures imposed for the

correct functioning of this system, in order to avoid paying for tickets and commit fraud. In addition, other

types of fraudulent behaviour may include the attempt of taking advantage of inexperienced users, with

techniques such as social engineering or phishing.

This section details the possible attacks and methods which attackers can attempt to exploit the

vulnerabilities of this system, and countermeasures implemented to protect this system against those

attacks and prevent fraud. Taking this into account, the following attacks are the attacks that are most

66

likely to be used against this system:

• Reverse Engineering

• Cloning

• Double Spending

• Phishing

5.3.1 Reverse Engineering

A reverse engineering attack consists of opening up an object to study its mechanisms. This system

contains two methods to prevent reverse engineering attacks: code obfuscation of the application code

and the encryption of the contents of QR codes.

5.3.1.A Code obfuscation

In this system, attackers may attempt to reverse engineer the application code with a view to extracting

valuable information on how the application works, and to do so, attackers have at their disposal several

mechanisms such as IDA Pro, which allow to convert the binary application code, to source code. The

intention behind dissecting this application could be to gain insights over the creation of QR codes such

as which algorithms are being used or even, the methods of storing tickets, to facilitate access to tickets.

In order to protect against these types of reverse engineering attacks, the obfuscation of the applica-

tion code reduces the possibility of execution of this attack since its purpose is to difficult the process of

extraction of valuable information from the mobile application.

The Android version of the mobile application uses ProGuard which is a Java open-source cross-

platform tool whereas the iOS version of the mobile application contains a simplistic approach to code

obfuscation where sensitive data is stored encrypted, beforehand, and decrypted at the moment of use.

This approach is not fully secure and only protects sensitive fields while ProGuard can also provide

obfuscation to class names and methods. A possible implementation of code obfuscation in the iOS

version of the mobile application, which would suit our needs better, is using iXGuard.

5.3.1.B Encrypted QR codes

Alternatively, this system can be subject to reverse engineering attacks to the QR code. Since tickets

are displayed in the form of QR codes, attackers may attempt to gain insights over the creation of tickets

and find vulnerabilities in the methods of creating tickets. Besides that, attackers may also attempt to

find faulty methods which the mobile application uses to display QR codes such as in the creation of the

one-time password.

67

Hence, in order to prevent this specific case, the mobile application implements the encryption of the

contents of QR codes so that only authorized entities, namely ticket validators, can be able to read the

QR code. In addition, the rotation of the encryption key is done on a regular basis, to prevent brute-force

attacks against the key and consequently, make reverse engineering attacks more difficult to perform.

5.3.2 Cloning

Cloning attacks are attacks where an attacker steals information from another user, with the intention of

using this information for their benefit and, in the case of this system, cloning attacks could be performed

by copying or taking a photo of the QR code from another user. The window of attack is very short-lived

since this attack could only be executed within the timestep or period of validity of the TOTP, which, as

aforementioned, usually lasts less than one minute.

Despite this, cloning attacks can not be fully prevented with the use of one-time passwords due to

the fact that attackers could still make multiple usages of the stolen QR code, as long as it had not

yet expired. In order to prevent this, ticket validators are required to have a validation history so that

the ticket validator can detect and reject QR codes that had been previously used. Time-based OTPs

remain unchanged for the duration of the timestep and therefore, ticket validators are able to detect

different uses of the same QR code.

As previously mentioned, ticket validators could be connected through a physical centralized server

and therefore, these ticket validators would have access to validations which were performed by other

ticket validators. With this, even though ticket validators operate in a near offline state, they would be

able to reject tickets which had been previously accepted, in a different ticket validator.

5.3.3 Double Spending

A double spending attack is an attack which can be executed by reproducing the ticket and having two

users, using the same ticket. To execute this attack, an attacker is required to obtain a ticket from another

user, and both users could be cooperating to commit fraud.

There are multiple ways of executing double spending attacks such as mobile phone sharing, the

sharing of QR codes over the internet and the extraction of tickets from the mobile application. This

section also covers the reasoning behind the methods used to prevent these attacks.

5.3.3.A Mobile phone sharing

To start off, one user could share their mobile phone with another user, after validating their QR code,

and the other user can use the same ticket, as long as the mobile application has created a new QR

code. This is due to the fact that ticket validators create a record of the ticket information and OTP

68

value. Since this system makes use of time-based tickets, the owner of the ticket should be able to use

the ticket more than once. Hence, ticket validators do not prohibit multiple uses of the same ticket but

instead, they prohibit multiple uses of the same QR code.

For simplicity reasons, the current prototype of this system assumes that the sharing of the mobile

phone would not be possible and therefore, the current implementation of this system does not prohibit

against this specific scenario. A possible implementation of this feature could make use of an anti-

passback control system, which would prevent subsequent usages of the same ticket, and it is further

developed in the Future Work section (6.1).

In addition, the ticketing server contains an anti-fraud system which detects fraudulent behaviour by

analysing the ticket transactions sent from the ticket validators. Users that bypass the proposed anti-

passback control mechanism, are going to be detected by the anti-fraud system which takes preventive

action.

5.3.3.B Sharing QR codes over the internet

Another case of double spending is the sharing of QR codes over the internet. For instance, one user

could take a screenshot of a QR code, created in their mobile application, and send it to another user so

that they would use the same QR code in a different ticket validator. This scenario can only be possible

due to the fact that ticket validators operate in a near offline state and do not receive information from

other entities such as other ticket validators or a backend server, to inform that a specific ticket has been

used.

In order to prevent users from sharing sensitive information, the mobile application implements se-

curity methods such as screenshot blocking. Despite the fact that users can still take a photo of the QR

code of another user, by blocking the possibility of taking a screenshot of the QR code, users are less

likely to attempt the execution of this attack.

The Android version of the mobile application contains the implementation of this method since it is

supported natively by Android. However, as aforementioned, the iOS version of the mobile application

does not implement methods to block screenshots since these are not supported natively by iOS.

Hence, the current prototype of the iOS version of the mobile application contains a small window

of attack which is equivalent to the period of validity of the OTP in the QR code. In addition, tickets

contain specific parameters that can be used to limit the target audience of the ticket such as valid zones

and valid operators. Tickets that are not presented to ticket validators that meet these requirements,

are going to be rejected. With this, in the current prototype of iOS version of the mobile application,

the combination of these factors does not fully prevent this specific case of double spending attacks.

However, it makes the attack more difficult and reduces the possibility of successfully executing this

attack.

69

Another possible implementation of screenshot blocking in the iOS version of the mobile application

is through the use of ScreenShieldKit which blocks sensitive content in screenshots, as mentioned in

the Future Work section 6.1.

Similarly to mobile phone sharing, users that bypass this security mechanism are going to be de-

tected by the anti-fraud system which takes preventive action against fraudulent behaviour.

5.3.3.C Ticket extraction

Users may attempt to forcefully move tickets from one application to another, in a different mobile phone.

In case tickets were stored as plaintext, other applications could read the contents of tickets and generate

new QR codes. Hence, the mobile application performs the storage of the encrypted contents of tickets,

in the internal storage, of a mobile phone and therefore, these tickets can only be decrypted using the

keystore from that specific device. Other devices are not able to read the contents of the ticket and thus,

they cannot create new QR codes.

Besides that, in order to move tickets from one application to another, the attacker must bypass

the security mechanisms imposed by the Android OS, in order to execute methods that require special

access or root. For this case, the mobile application implements root checking and disables the ability

of using the application in rooted devices or, in the case of iOS devices, jailbroken devices.

5.3.4 Phishing

Phishing attacks are attacks that can be performed by deceiving users to access websites or install ap-

plications which are controlled by the attacker. The intent behind phishing is to gain personal information

of the users of this system so that attackers can exploit this system and potentially commit fraud through

the use of personal information from other users. For instance, in the event that users have installed

a malicious fake application, there is high likelihood that their account credentials, tokens and tickets,

have been stolen and will used by attackers. Thus, the application needs to provide a robust security

mechanism that protects users against phishing.

Ticket validators send ticket validations to the ticketing server and, one of its purposes is to allow

for the analysis of ticket validations and detect fraudulent behaviour. In the event that users share

their tickets with other users, ticket validations would allow for the detection of information sharing.

Through analysis of ticket validations, it would be possible to identify instances where multiple users

are making use of the same ticket. In these situations, system administrators would be responsible for

taking preventive action.

Furthermore, there is the possibility of implementing multi-factor authentication in the mobile applica-

tion. With multi-factor authentication, users would be required to authenticate through another method

70

besides their account credentials such as using one-time passwords. In this case, users would be re-

quired to confirm the one-time password sent by the authentication server to the mobile phone of the

owner of the account.

Another possible implementation to prevent against phishing attacks would be that the authentication

server could disable the ability of having more than one active session per account. Each account and

session would be associated with a specific mobile phone device, for instance, through the recording of

the International Mobile Equipment Identity (IMEI). In this scenario, users that had an active account

session in their mobile phone device would be protected against this case of phishing attacks since the

authentication server would detect and reject logins made in different mobile phones.

71

72

6
Conclusion

Contents

6.1 System Limitations and Future Work . 76

73

74

With the recent advances in mobile ticketing, several research groups have been trying to imple-

ment a ticketing system which makes use of barcodes such as QR codes, some with relevant results.

However, after performing the analysis of these systems, we came to the conclusion that these imple-

mentations still did not meet all the required criteria and that there is room for improvement. For instance,

one approach contained the implementation of a ticketing system that provided the offline validation of

tickets through the use of digital signatures. The approach to the system would be able to correctly vali-

date tickets with a single validator but, in case of a distributed system that involves the offline validation

of tickets over multiple ticket validators, this system would not provide the reliable validation of tickets

and prevent fraud.

Taking this into account, the proposed solution consists of a distributed system, in order to achieve

scalability, and it contains the development of a mobile application, a ticket validator and back-end

servers. One of the main innovations in our approach is that the mobile application is able to generate

dynamic QR codes. As previously mentioned, through the generation of dynamic QR codes and taking

advantage of one-time passwords, the mobile application is able to ensure the security and freshness of

tickets. However, it is required to take into account that mobile devices face other issues such as battery

consumption and that ticket validator machines in public transports have limited processing capabilities

in comparison with computing platforms. Besides that, in order to maximize the number of users that are

able to use this system, other factors were taken into account such as interoperability and thus, there

was the development of two version of the mobile application, one for Android devices and the other for

iOS devices.

The evaluation of the performance of the system consists of the evaluation of the mobile application

and ticket validators such as the creation of tickets and the validation of tickets, respectively. In addition,

there were specific requirements which were imposed as research objectives such as the time limit for

the validation of tickets in order to ensure that results would be acceptable in a real environment. The

results obtained were mostly satisfactory and the minority of outliers, i.e. values that deviated most from

the average time, did not compromise the correct behaviour of the system.

In conclusion, the proposed solution focuses on a ticketing system which provides the accurate

validation of tickets by ticket validators and allows users to perform the generation of QR codes, within

their mobile phone application. By providing an integration of mobile tickets with one time passwords, the

proposed solution implements a system based on the dynamic generation of QR codes. Even though

this system aims to focus on the general concept of mobile ticketing, it can be adapted to a specific field

such as the public transport industry. Some of the characteristics of system are innovative and involve

the implementation of QR codes with one-time passwords in order to provide tickets which can be used

in a mobile ticketing system. Our solution meets the requirements and research objectives which were

initially proposed, with an innovative approach and margin for improvements.

75

6.1 System Limitations and Future Work

Following the development of the system, there are some additional features that could be added to

later iterations of this system and some features in the current version that, for simplicity reasons, can

be even further developed.

This section consists of the explanation of these features and how they could improve the system.

These are some of the main ideas that can be explored in the future:

• Implementation of the anti-passback control system As stated above, ticket validators record

the information of tickets and the OTP value, in a validation history, so that validators can use

these values to reject uses of the same ticket by unauthorized parties. This issue is specified

in the Double Spending section (5.3.3) and the intention behind using a validation timeout would

account for the prevention of users sharing their mobile phone device, with another user, after one

user has used the ticket.

As an example, a possible implementation of this feature would have ticket validators reject valida-

tions for the same ticket, for a period of 10-15 minutes, in case the validation of the ticket occurred

within the timeout period. By implementing a timeout period, users are less likely to take advantage

of this exploit.

• Implementation of ticket recovery feature In the current prototype of the mobile application,

upon signing in using their account credentials in a different mobile phone, users would not have

any tickets. This is due to the fact that the process of recovering tickets, in a different mobile phone,

was not implemented.

This process would consist of making a recover request to the ticketing server so that it would

forward the tickets which the user purchased, to the mobile application. Since this process would

allow users to store their tickets in multiple devices, it is necessary to take into account and prevent

multiple users from making use of the same tickets, as this would be considered a double spending

attack.

One possible implementation to prevent this is that the ticketing server would prevent users from

recovering tickets within a specific time frame such as the expiration time of the signature. In this

scenario, the ticketing server would not allow for the recovery of tickets whose signature had not

yet expire. Upon the expiration of the signature, the ticketing server is able to send these tickets to

the mobile application.

Alternatively, the aforementioned time frame could be extended over a longer period such as the

period of several hours or days and in case this period had not yet finished, users would need to

contact customer support to recover their tickets.

76

• Integration of a payment gateway The current prototype of the mobile application does not in-

tegrate a payment gateway for the purchase of tickets. The implementation of this feature would

include a payment request to a financial company which would in turn, notify the ticketing server of

the purchase of a certain ticket and, in case the payment of the ticket was successful, the ticketing

server would forward the ticket to the user.

• Improvement of code obfuscation in iOS devices Code obfuscation in iOS devices contain a

simplistic method of obfuscating sensitive information. This method, as aforementioned, works

by encrypting sensitive fields in the mobile application beforehand, and the application decrypts

these fields at the moment of using them. This method is insecure since the mobile application

does not perform the rotation of the encryption key. In addition, there is the lack of use of salt when

generating this key and thus, the current prototype of the mobile application in iOS, makes use of

same key for every sensitive field.

A future version of the mobile application should make use of a code obfuscation library, which

would be more secure and would better meet our needs, such as iXGuard. iXGuard works similarly

to ProGuard, an open-source code obfuscation library for Java, by encrypting the sensitive fields

of the application as well as class names and methods.

• Implementation of protection against screenshots in iOS devices Users that take screenshots

of tickets as QR codes, are able to share the ticket with other users, through the internet. In

this system, the current prototype of the iOS version of the mobile application does not contain

protection against the screenshotting of tickets, as previously mentioned.

Despite the fact that the one-time password creates a very limited window of attack, ticket validators

which are located in different locations, can accept QR codes shared over the internet, as long as

the OTP in the QR code has not expired and the parameters in the ticket are valid for the specific

validator. With this, a future version of the iOS version of the mobile application should contain

methods for preventing users from taking screenshots or blocking the contents of the screenshot

taken such as using ScreenShieldKit.

• Implementation of the anti-fraud system As aforementioned, the anti-fraud system located in

the ticketing server was not implemented since it was out of the scope of this project. However,

a possible implementation would require the training of a system which would be able to detect

fraudulent behaviour in instances where it could be detected that multiple users were making use

of a ticket.

A future iteration of this system should have this anti-fraud system implemented as the anti-fraud

system allows for the detection of fraud and contributes to prevent monetary loss for the company

responsible for this system.

77

• Implementation in a real environment Following the development of a prototype of this system,

a future implementation of this system could be applied in a real environment such as the pub-

lic transports industry. Therefore, this system could be proposed for implementation to a public

transports company such as Transportes Metropolitanos de Lisboa.

Nowadays, recent versions of ticket validators used in public transports, also support the scanning

of QR codes and therefore, the implementation of this system using these types of ticket validators

would be possible. In addition, the support of QR code scanning in newer ticket validators leads

to the tendency of using QR codes in the future and, as a result, these validators are not at risk

of becoming outdated in the near future. However, older versions of ticket validators that do not

support the scanning of QR codes, are not able to be used in the implementation of this system

since this system requires the use of QR code technology to display tickets.

78

Bibliography

[1] M. Mezghani, “Study on electronic ticketing in public transport. Final Report, European Metropolitan

Transport Authorities. May 2008, http://www.emta.com/IMG/pdf/EMTA-Ticketing.pdf (date of access

25.04.2015).” [Online]. Available: http://www.emta.com/IMG/pdf/EMTA-Ticketing.pdf

[2] H. L. H. S. Warnars, Y. Lanita, A. Prasetyo, and R. Randriatoamanana, “Smart integrated payment

system for public transportation in jakarta,” Bulletin of Electrical Engineering and Informatics, vol. 6,

no. 3, pp. 241–249, 9 2017.

[3] I. Yatskiv, M. Savrasovs, D. Udre, and R. Ruggeri, “Review of intelligent transport solutions in

Latvia,” Transportation Research Procedia, vol. 24, pp. 33–40, 12 2017.

[4] B. Guirao, A. Garcı́a, M. Lopez-Lambas, C. Acha, and J. Comendador, “New qr survey methodolo-

gies to analyze user perception of service quality in public transport: The experience of madrid,”

Journal of Public Transportation, vol. 18, pp. 71–88, 09 2015.

[5] J. Neefs, F. Schrooyen, J. Doggen, and K. Renckens, “Paper Ticketing vs. Electronic Ticketing

Based on Off-Line System ’Tapango’,” 05 2010, pp. 3 – 8.

[6] M. Makita, “NFC-Based Mobile Ticketing. July 2017, https://nfc-forum.org/nfc-based-mobile-

ticketing/.” [Online]. Available: https://nfc-forum.org/nfc-based-mobile-ticketing/

[7] R. Couto, J. Leal, P. M. Costa, and T. Galvão, “Exploring ticketing approaches using mobile tech-

nologies: Qr codes, nfc and ble,” in 2015 IEEE 18th International Conference on Intelligent Trans-

portation Systems, 2015, pp. 7–12.

[8] D. Škarica, H. Belani, and S. Illes, “Implementation and evaluation of mobile ticket validation sys-

tems for value-added services,” 10 2009, pp. 260 – 264.

[9] “Information technology — Automatic identification and data capture techniques — QR Code bar

code symbology specification,” Standard, Feb. 2015.

[10] S. Dey, “SD-EQR: A New Technique To Use QR CodesTM in Cryptography,” 05 2012.

79

http://www.emta.com/IMG/pdf/EMTA-Ticketing.pdf
https://nfc-forum.org/nfc-based-mobile-ticketing/

[11] R. Aulya, H. Hindersah, A. Prihatmanto, and K. H. Rhee, “An authenticated passengers based on

dynamic QR Code for Bandung Smart Transportation Systems,” 08 2016, pp. 23–27.

[12] C. U. Reddy, D. V. P. Reddy, N. Srinivasan, and J. A. Mayan, “Bus ticket system for public transport

using QR code,” IOP Conference Series: Materials Science and Engineering, vol. 590, p. 012036,

oct 2019. [Online]. Available: https://doi.org/10.1088/1757-899x/590/1/012036

[13] L. Finzgar and M. Trebar, “Use of NFC and QR code identification in an electronic ticket system for

public transport,” SoftCOM 2011, 19th International Conference on Software, Telecommunications

and Computer Networks, pp. 1–6, 2011.

[14] P. Reddy, “Real Life Applications of CRYPTOGRAPHY. Nov

2019, https://medium.com/@prashanthreddyt1234/real-life-applications-of-cryptography-

162ddf2e917d.” [Online]. Available: https://medium.com/@prashanthreddyt1234/

real-life-applications-of-cryptography-162ddf2e917d

[15] S. Duggal, V. Mohindru, P. Vadiya, and S. Sharma, “A Comparative Analysis of Private Key Cryp-

tography Algorithms: DES, AES and Triple DES,” International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 6, p. 1373, 06 2014.

[16] D. Singh and A. Singh, “A Secure Private Key Encryption Technique For Data Security in Modern

Cryptosystem,” BVICAM’s International Journal of Information Technology, vol. 2, 01 2010.

[17] D. J. Bernstein, J. Breitner, D. Genkin, L. Groot Bruinderink, N. Heninger, T. Lange, C. van Vre-

dendaal, and Y. Yarom, “Sliding right into disaster: Left-to-right sliding windows leak,” in Crypto-

graphic Hardware and Embedded Systems – CHES 2017, W. Fischer and N. Homma, Eds. Cham:

Springer International Publishing, 2017, pp. 555–576.

[18] D. Pocock, “RSA Key Sizes: 2048 or 4096 bits? - https://danielpocock.com/rsa-key-sizes-2048-or-

4096-bits/.” [Online]. Available: https://danielpocock.com/rsa-key-sizes-2048-or-4096-bits/

[19] V. Mainanwal, M. Gupta, and S. K. Upadhayay, “Zero knowledge protocol with rsa cryptography

algorithm for authentication in web browser login system (z-rsa),” in 2015 Fifth International Con-

ference on Communication Systems and Network Technologies, 2015, pp. 776–780.

[20] V. Gayoso Martı́nez, L. Hernandez Encinas, and A. Queiruga-Dios, “Security and practical consid-

erations when implementing the elliptic curve integrated encryption scheme,” Cryptologia, vol. 39,

pp. 1–26, 05 2015.

[21] A. A. P. Ratna, P. Purnamasari, A. Shaugi, and M. Salman, “Analysis and comparison of md5 and

sha-1 algorithm implementation in simple-o authentication based security system,” 06 2013, pp.

99–104.

80

https://doi.org/10.1088/1757-899x/590/1/012036
https://medium.com/@prashanthreddyt1234/real-life-applications-of-cryptography-162ddf2e917d
https://medium.com/@prashanthreddyt1234/real-life-applications-of-cryptography-162ddf2e917d
https://danielpocock.com/rsa-key-sizes-2048-or-4096-bits/

[22] L. Latinov, “MD5, SHA-1, SHA-256 and SHA-512 speed

performance, https://automationrhapsody.com/md5-sha-1-sha-256- sha-512-speed-

performance/,” July 2018. [Online]. Available: https://automationrhapsody.com/

md5-sha-1-sha-256-sha-512-speed-performance/

[23] N. I. of Standards and Technology, “The Keyed-Hash Message Authentication Code (HMAC),” Soft-

COM 2011, 19th International Conference on Software, Telecommunications and Computer Net-

works, pp. 1–13, 07 2008.

[24] K. R. Glenn and C. R. Madson, “The Use of HMAC-SHA-1-96 within ESP and AH,” RFC 2404,

Nov. 1998. [Online]. Available: https://rfc-editor.org/rfc/rfc2404.txt

[25] M. View, D. M’Raihi, F. Hoornaert, D. Naccache, M. Bellare, and O. Ranen, “HOTP: An

HMAC-Based One-Time Password Algorithm,” RFC 4226, Dec. 2005. [Online]. Available:

https://rfc-editor.org/rfc/rfc4226.txt

[26] L. Lamport, “Password authentication with insecure communication,” Commun. ACM, vol. 24,

no. 11, p. 770–772, Nov. 1981. [Online]. Available: https://doi.org/10.1145/358790.358797

[27] R. SecurID, “Two Factor Authentication, Security Token - EMC.” [Online]. Available: http:

//www.rsa.com/node.aspx?id=1156

[28] M. Karuppiah, G. D, H. Mehta, A. Rajan, and B. Perumal, “A novel way of integrating voice recog-

nition and one time passwords to prevent password phishing attacks,” International Journal of Dis-

tributed and Parallel systems, vol. 5, pp. 11–20, 07 2014.

[29] Y. Huang, Z. Huang, H. Zhao, and X. Lai, “A new one-time password method,” IERI Procedia,

vol. 4, pp. 32 – 37, 2013, 2013 International Conference on Electronic Engineering and

Computer Science (EECS 2013). [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S2212667813000099

[30] U. Abdurrahman, M. Kaiiali, and J. Muhammad, “Enhancing totp protocol by embedding current

gps location,” 10 2014.

[31] M. View, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based One-Time Password Algorithm,”

RFC 6238, May 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6238.txt

[32] C.-Y. Huang, S.-P. Ma, and K.-T. Chen, “Using one-time passwords to prevent password phishing

attacks,” J. Network and Computer Applications, vol. 34, pp. 1292–1301, 07 2011.

[33] K. Liao, W. Lee, M. Sung, and T. Lin, “A one-time password scheme with qr-code based on mobile

phone,” in 2009 Fifth International Joint Conference on INC, IMS and IDC, 2009, pp. 2069–2071.

81

https://automationrhapsody.com/md5-sha-1-sha-256- sha-512-speed-performance/
https://automationrhapsody.com/md5-sha-1-sha-256- sha-512-speed-performance/
https://rfc-editor.org/rfc/rfc2404.txt
https://rfc-editor.org/rfc/rfc4226.txt
https://doi.org/10.1145/358790.358797
http://www.rsa.com/node.aspx?id=1156
http://www.rsa.com/node.aspx?id=1156
http://www.sciencedirect.com/science/article/pii/S2212667813000099
http://www.sciencedirect.com/science/article/pii/S2212667813000099
https://rfc-editor.org/rfc/rfc6238.txt

[34] T. Hwang, Y.-P. Luo, and Z.-R. Liu, “Forward/Backward Unforgeable Digital Signature Scheme Using

Symmetric-Key Crypto-System,” 12 2016, pp. 244–247.

[35] S. Jarusombat and S. Kittitornkun, “Digital Signature on Mobile Devices based on Location,” 10

2006, pp. 866 – 870.

[36] C. Tian-huang and X. Xiao-guang, “Digital signature in the application of e-commerce secu-

rity,” 2010 International Conference on E-Health Networking Digital Ecosystems and Technologies

(EDT), vol. 1, pp. 366–369, 2010.

[37] S. Alam, A. Jamil, A. Saldhi, and M. Ahmad, “Digital image authentication and encryption using

digital signature,” in 2015 International Conference on Advances in Computer Engineering and

Applications, 2015, pp. 332–336.

[38] O. Foundation, “OpenID Connect: https://openid.net/connect/.” [Online]. Available: https:

//openid.net/connect/

[39] “Access Tokens: https://www.oauth.com/oauth2-servers/access-tokens/.” [Online]. Available:

https://www.oauth.com/oauth2-servers/access-tokens/

[40] K. Dodanduwa and I. Kaluthanthri, “Role of Trust in OAuth 2.0 and OpenID Connect,” in 2018 IEEE

International Conference on Information and Automation for Sustainability (ICIAfS), 2018, pp. 1–4.

[41] Y. KAKIZAKI and H. TSUJI, “A decentralized attribute management method and its implementation,”

International Journal of Information Processing and Management, vol. 3, 01 2012.

[42] “Network Time Protocol.” [Online]. Available: https://en.wikipedia.org/wiki/Network Time Protocol

[43] StatCounter, “Mobile Android operating system market share by version worldwide from January

2018 to June 2021,” June 2021. [Online]. Available: https://www.statista.com/statistics/921152/

mobile-android-version-share-worldwide/

[44] AppBrain, “Android OS version market share over time,” August 2021. [Online]. Available:

https://www.appbrain.com/stats/top-android-sdk-versions

[45] S. Alexander-Bown, “RootBeer library.” [Online]. Available: https://github.com/scottyab/rootbeer

[46] “Keycloak.” [Online]. Available: https://www.keycloak.org/

[47] “ECDSA.” [Online]. Available: https://en.wikipedia.org/wiki/Elliptic Curve Digital Signature

Algorithm

82

https://openid.net/connect/
https://openid.net/connect/
https://www.oauth.com/oauth2-servers/access-tokens/
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.appbrain.com/stats/top-android-sdk-versions
https://github.com/scottyab/rootbeer
https://www.keycloak.org/
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

[48] V. Gayoso Martı́nez, L. Hernandez Encinas, and A. Queiruga-Dios, “Security and practical consid-

erations when implementing the elliptic curve integrated encryption scheme,” Cryptologia, vol. 39,

pp. 1–26, 05 2015.

83

84

85

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	Acronyms

	1 Introduction
	1.1 Background
	1.2 Research Objective
	1.2.1 Fraud Prevention
	1.2.2 Interoperability
	1.2.3 Convenience
	1.2.4 Offline Access

	1.3 Thesis overview

	2 Related Work
	2.1 Ticketing Systems
	2.1.1 Entrance and Exit

	2.2 QR Codes
	2.3 Cryptography
	2.3.1 Symmetric Keys
	2.3.2 Asymmetric Keys
	2.3.2.A Hybrid Encryption
	2.3.2.B Elliptic Curve Cryptography

	2.4 Hashing Algorithms
	2.4.1 Secure Hash Algorithms
	2.4.2 Hash-based Message Authentication Code

	2.5 One-Time Passwords
	2.5.1 HMAC-based One-Time Passwords
	2.5.2 Time-based One-Time Passwords

	2.6 Digital Signatures
	2.7 OpenID Connect

	3 Architecture
	3.1 Overview
	3.2 Use Cases
	3.2.1 Ticket Acquisition
	3.2.2 Ticket Validation

	3.3 Security and Fraud Prevention
	3.3.1 Digital Signatures
	3.3.2 One-time Passwords
	3.3.3 Validation History
	3.3.4 Asymmetric Keys
	3.3.5 Types of Tickets
	3.3.5.A Tickets

	3.4 Offline use
	3.4.1 Time Synchronization
	3.4.2 Key Rotation

	3.5 System Architecture
	3.5.1 Login and Registration
	3.5.2 QR code Generation
	3.5.2.A Expiration dates in QR codes

	3.5.3 QR code Validation

	4 Implementation
	4.1 Mobile Application
	4.1.1 Login and Register
	4.1.1.A Register
	4.1.1.B Login

	4.1.2 Purchase of tickets
	4.1.2.A Storage of tickets

	4.1.3 Display tickets
	4.1.3.A Trip history

	4.1.4 Screenshot blocking
	4.1.5 Root checking
	4.1.6 Code obfuscation

	4.2 Ticket Validators
	4.2.1 Authentication
	4.2.2 Ticket validation
	4.2.3 Key rotation
	4.2.4 Ticket transactions

	4.3 Back-end Servers
	4.3.1 Authentication Server
	4.3.2 Ticketing Server
	4.3.2.A Access token validation
	4.3.2.B Services
	4.3.2.C Creation of signing keys
	4.3.2.D Creation of encryption keys
	4.3.2.E Anti-fraud System

	4.4 Clock Synchronization

	5 Evaluation
	5.1 Performance Results
	5.1.1 Creation of QR codes
	5.1.2 Validation of QR codes
	5.1.2.A Comparison between ECIES with RSA-AES

	5.2 Battery usage
	5.3 Security Issues
	5.3.1 Reverse Engineering
	5.3.1.A Code obfuscation
	5.3.1.B Encrypted QR codes

	5.3.2 Cloning
	5.3.3 Double Spending
	5.3.3.A Mobile phone sharing
	5.3.3.B Sharing QR codes over the internet
	5.3.3.C Ticket extraction

	5.3.4 Phishing

	6 Conclusion
	6.1 System Limitations and Future Work

	Bibliography
	Bibliography

