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Abstract 

This article presents the development, construction, testing and results analysis of a remote controlled car, with an 
engine on each wheel so that Torque Vectoring (TV) controllers capable of distributing torque independently 
between each wheel may be tested, equipped with sensors to measure the position, speed, direction, and other 
telemetric values. To help with the task of converting computer-sent information, a digital analogic converter 
connected to the car’s controller was used. Using the state machine concept as basis, the car has three defined 
states, activated through a selected three-way switch, installed on the car’s controller. Said controller was the target 
of several internal modifications so it could issue commands both manually and via computer. Every installed 
component was validated with the help of the cameras of the Qualisys system, present in the lab, to obtain viable, 
precise and accurate results. The dynamic study of the vehicle, a theoretical study and a practical study for two 
controllers responsible for the trajectory control were shown. The first was a Linear Quadratic Regulator (LQR) 
with, in spite of being capable of good results in theory, the required physical limitations ensured the wanted 
trajectory couldn’t be followed in practice. To balance the observed difficulties, a Proportional-Integral-Derivative 
(PID) controller was implemented, with verified improvements in the theoretical and experimental results, which 
made the car follow the expected trajectory. 

Keywords: Torque Vectoring, Sensors, Control, State machine, Qualisys, LQR, PID. 

 

1. Introduction 

The work developed in [1] relies on the development of a torque vectoring controller for a Formula Student 
prototype. The knowledge from this combined with [2] allowed to assemble the car presented in this article. 
The inexistence of a platform capable of supporting this type of test was the main motivation. The car built was 
the result of many different components and types of communications implemented. The car was equipped with 
four motors, one in each wheel, encoders, IMU, two Atmega328 and one Arduino Due. The car works like a state 
machine, having three states. One is the fail-safe that cuts the power to the motors, another is responsible for the 
direct drive mode which allows to control the car manually and the last one is the torque vectoring mode that 
applies the power to each wheel based on the steering angle input. A strong investment on the communication 
system was made in order to have an acceptable response and accurate telemetry data. The majority of the previous 
works developed in the lab discarded the Traxxas remote controller. This article presents a customization of this 
remote using a digital to analog converter in order to take advantage of the RF communication of the remote to 
send information from the computer to the car. The dynamic of the car is presented using [1] and [3]. In [4] torque 
vectoring was implemented in a Formula Student car using PI and LQR controllers for yaw tracking. The 
Ackerman geometry was studied and implemented in the car presented here too. 
 

2. Vehicle Model 

2.1. Vehicle coordinate frame 

The dynamics and a model of the vehicle are the most important information that needs to be defined. The 
equations of motion, steering kinematics, velocity vectors and slip angles were considered. Being important to 
refer that the rolling resistance, wind resistance and vertical force were neglected because the car is small enough 
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and not too fast for these parameters to influence the results. The vehicle body coordinate frame to be used is 
shown in Fig.1, having B(Cxyz), attached to the center of mass C. 

 

Figure 1: Body coordinate system 

To compute the body orientation, the rotations are defined as: 

𝜑 ∶ 𝑅𝑜𝑙𝑙 →   �̇� = 𝑝 ∶  𝑅𝑜𝑙𝑙 𝑟𝑎𝑡𝑒 

𝜃 ∶ 𝑃𝑖𝑡𝑐ℎ →   �̇� = 𝑞 ∶ 𝑃𝑖𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 

𝛹 ∶ 𝑌𝑎𝑤 →   �̇� = 𝑟 ∶ 𝑌𝑎𝑤 𝑟𝑎𝑡𝑒 

The forces are described in the body frame as: 

𝐹 = 𝐹 𝚤 + 𝐹 𝚥 + 𝐹 �⃗�     (1) 

𝑀 = 𝑀 𝚤 + 𝑀 𝚥 + 𝑀 �⃗�     (2) 

where Fx is the longitudinal force, Fy is the lateral force, Fz is the vertical force, Mx is the roll moment, My is the 
pitch moment and Mz is the Yaw moment. 

 
2.2. Newton-Euler Dynamics 

The car is considered to be a flat box moving horizontally. Three degrees of freedom are needed, translation in x 
and y and rotation around z axis. The Newton-Euler equations used on B coordinate frame system are: 

𝐹 = 𝑚�̇� − 𝑚ω 𝑣    (3) 

𝐹 = 𝑚�̇� − 𝑚ω 𝑣    (4) 

where vx and vy are the velocity components. The inertia matrix of the body is given by equation 5, but since it is 
considered that the body only rotates around z axis, it is taken into account only the value of 𝐼  

𝐼 =

𝐼 0 0
0 𝐼 0

0 0 𝐼
  (5) 

2.3. Force system acting on rigid body 

Using the bicycle model without the roll component, the tire lateral force (𝐹 ) is given by: 

𝐹 = −𝐶 𝛼     (6) 

where 𝐶  is the cornering stiffness of the tire, and 𝛼 is the tire sideslip angle and can be physically interpreted as 
the angle between 𝑥 axis and the velocity of the tire. Mathematically, 𝛼 can be written as: 
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𝛼 = 𝛽 − 𝛿  (7) 

𝛽 = arctan 
𝑣

𝑣
  (8) 

For a small 𝛽, equation (7) can be written as: 

𝛽 =
𝑣

𝑣
 (8.1) 

Neglecting the aligning moments, 𝑀 , the forces are: 

𝐹 = 𝐹 cos(𝛿) + 𝐹 − 𝐹 sin(𝛿)  (9) 

𝐹 = 𝐹 cos(𝛿) + 𝐹 − 𝐹 sin(𝛿) (10) 

𝑀 = 𝑎 𝐹 − 𝑎 𝐹  (11) 

where the indices 𝑟 and 𝑓 means “rear” and “front” wheel respectively and 𝑎  and 𝑎  are the distance between 
front and rear wheel in relation to center of gravity.  In order to linearize the equations, small rotations should be 
considered (𝛿 = 0), hence, the the equations 9, 10 and 11 can be written as: 

𝐹 ≈ 𝐹 + 𝐹  (12) 

𝐹 ≈ 𝐹 + 𝐹  (13) 

𝑀 ≈ 𝑎 𝐹 − 𝑎 𝐹  (14) 

It should be noticed that when using bicycle model, the car becomes a one-track model, meaning that only one 
front steer angle can be controlled. It is worth referring that the slip angle 𝛼  is calculated using the tire side slip 
angle 𝛽  and an expression as a function of 𝛽 is required. For that, the lateral wheel velocity 𝑣  has an additional 
component because there is a yaw rate in the mass centre of the car with distance 𝑎  and 𝑎  has can be seen in 
Fig.2. 

 

Figure 2: Two-wheel model for a vehicle moving with no roll 

Taking equation 7 and applying for the front and rear wheel, it is written as: 

𝛼 = 𝛽 − 𝛿 (15) 

𝛼 = 𝛽 +
𝑎 𝑟

𝑣
− 𝛿  

(16) 

𝛼 = 𝛽 −
𝑎 𝑟

𝑣
  

(17) 

where 𝐹  and 𝑀  only depend on the forces in 𝑦 axis that are functions of the wheel sideslip (𝛼 , 𝛼 ). Hence, these 
equations can be approximated as: 
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𝐹 = −
𝑎

𝑣
𝐶 +

𝑎

𝑣
𝐶 𝑟 − 𝐶 + 𝐶 𝛽 + 𝐶 𝛿 (18) 

𝑀 = −
𝑎

𝑣
𝐶 −

𝑎

𝑣
𝐶 − 𝑎 𝐶 − 𝑎 𝐶 𝛽 + 𝑎 𝐶 𝛽 (19) 

The implemented state space is given by [3]: 

�̇�

�̈�
=

⎣
⎢
⎢
⎢
⎡ −

𝐶 + 𝐶

𝑚𝑣

−𝑎 𝐶 + 𝑎 𝐶

𝑚𝑣
− 𝑣

−
𝑎 𝐶 − 𝑎 𝐶

𝐼 𝑣
−

𝑎 𝐶 + 𝑎 𝐶

𝐼 𝑣 ⎦
⎥
⎥
⎥
⎤

𝑣

�̇�
+

⎣
⎢
⎢
⎡

𝐶

𝑚
𝑎 𝐶

𝐼 ⎦
⎥
⎥
⎤

𝛿 (20) 

 

2.4. Torque differential in rear wheels 

The goal with the torque vectoring is to generate yaw moment based on controlling the torque (longitudinal force) 
in each wheel. For this it will be necessary to introduce a new term 𝑀  that will represent the additional yaw 
moment generated by the torque distribution, so the new state space can be described as: 

�̇�

�̈�
=

⎣
⎢
⎢
⎢
⎡ −

𝐶 + 𝐶

𝑚𝑣

−𝑎 𝐶 + 𝑎 𝐶

𝑚𝑣
− 𝑣

−
𝑎 𝐶 − 𝑎 𝐶

𝐼 𝑣
−

𝑎 𝐶 + 𝑎 𝐶

𝐼 𝑣 ⎦
⎥
⎥
⎥
⎤

𝑣

�̇�
+

⎣
⎢
⎢
⎡

𝐶

𝑚
𝑎 𝐶

𝐼 ⎦
⎥
⎥
⎤

𝛿 +

0
1

𝐼
𝑀  (21) 

And the car linear model is shown in Fig.3, 

 

Figure 3: Vehicle linear model with additional moment 

where CG is the center of gravity, 𝑡  corresponding to 𝑤 2⁄ , 𝑇  is the torque, 𝐹  is the tire lateral force, 𝐼  is the 
inertia moment around 𝑧 axis, m is the mass of the car, Cf and Cr are the cornering stiffness constant, front and rear 
respectively, This added moment resulted from the difference between the left and the right wheel torque, 𝑇 , 𝑇 . 

𝑀 = 𝛥𝑇 ∗ 𝑡 = (𝑇 − 𝑇 ) ∗ 𝑡  (22) 

The torque at the wheel is the same as the torque at the motor because it is direct drive. To obtain the force on the 
ground the torque is divided by the wheel radius 𝑅 . 

𝛥𝑇 =
𝑅

2𝑡
𝑀  (23) 

Thus, the 𝑀  can be replaced by 𝛥𝑇 in equation 21. In case of 4-wheel torque vectoring there is one more moment 
to be added due to the torque difference of the front wheels. In this work due to the loss of the front motors only 
the Ackerman Geometry will be considered. 
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2.5. Front wheel differential 

To simulate a mechanical differential on the front wheels, Ackermann Geometry was used. The steering angle of 
each wheel should be considered. Knowing the desired steering angle, the angle of inner and outer wheel can be 
calculated separately resulting in equation (24) and (25). The Ackerman geometry is shown in Fig.4. 

𝑅 =
𝑎 + 𝑎

sin (𝛿 )
 (24) 

𝑅 =
𝑎 + 𝑎

sin (𝛿 )
 (25) 

After describing a curve, the inner and outer wheels must travel different distances due to the different arcs of their 
trajectories, meaning that the outer wheel must rotate faster than the inner one. As the wheels are attached to the 
same axle, in order to comply with that, they must rotate at different speeds. The following equations demonstrate 
the relation between the inner and outer wheels. Considering a turning of 360° in a certain amount of time: 

 

Figure 4: Ackerman geometry 

𝑑

𝑡
=

2𝜋𝑅

𝑡
 (26) 

𝑑

𝑡
=

2𝜋𝑅

𝑡
 (27) 

where 𝑑  is the distance travelled by the inner wheel in relation to the centre of rotation, 𝑑  is the distance 
travelled by the outer wheel in relation to the centre of rotation and 𝑡 is the time. Therefore, the relation between 
the outer and inner wheel velocity is described as: 

𝑣

𝑣
=

2𝜋𝑅

2𝜋𝑅
=

𝑅

𝑅
 (28) 

3. Controllers 

3.1. Arduino differential control 

To implement control, a reference signal must be created. The chosen signal was the yaw rate and it should be a 
function of the steering 𝛿. This signal is adapted to the characteristics of the car’s behaviour. It can be defined by 
the ratio between front and rear masses and between the front and rear tire cornering stiffness 

𝐾 =
𝑎 𝑚

𝐶 (𝑎 + 𝑎 )
−

𝑎 𝑚

𝐶 (𝑎 + 𝑎 )
 (29) 
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If 𝐾  is positive (𝐾  > 0), the car is said to have an under-steer behavior. In case of 𝐾 < 0, the car has a oversteer 
behavior. When 𝐾 = 0, it means the car has a neutral steer (ideal yaw rate). To avoid instability, the under-steered 
vehicle is chosen. The desired yaw rate can be defined by the velocity and the radius of curve: 

�̇� =
𝑣

𝑅
 (30) 

Giving the velocity and steering angle of the car, with known steer gradient and wheelbase, the radius is described 
as: 

1

𝑅
=

𝛿

(𝑎 + 𝑎 ) + 𝐾 𝑣
 (31) 

With equation (30) and (31), a function of 𝛿 to find yaw rate desired is computed as: 

�̇� =
𝛿

(𝑎 + 𝑎 ) + 𝐾 𝑣
 (32) 

The under-steer 𝐾  can be tuned for driver preference. The bigger the 𝐾 , the bigger the difference between the 
desired and actual yaw rate, the car will have near under steer characteristics and it will be harder to drive. 

 

3.2. Linear Quadratic Regulator (LQR) 

LQR is an optimal control solution for linear systems. The performance index to design the LQR controller is 
written in equation (33). It is a quadratic cost function and the main objective is to find a state-feedback law 𝑢 =
−𝐾𝑥 that minimizes this function. 

𝐽(𝑢) =
1

2
[(𝑋 − 𝑋) 𝑄(𝑋 − 𝑋) + 𝑢 𝑅𝑢]𝑑𝑡 (33) 

The state space will have as state variables 𝑣 , �̇� and 𝜓. For two motorized wheels, 𝛿 will be the only control 
input, since the 𝛿 will be imposed by the driver. To estimate the lateral velocity, an integration of the acceleration 
acquired from the IMU should be done. It was necessary to add a state variable to the system to have an output 
which is the yaw 𝜓 (equation 34). Since the velocity was imposed to be constant, in this state the longitudinal 
dynamics ended up being neglected too. 

�̇�

�̈�

�̇�

=

⎣
⎢
⎢
⎢
⎢
⎡ −

𝐶 + 𝐶

𝑚𝑣

−𝑎 𝐶 + 𝑎 𝐶

𝑚𝑣
− 𝑣 0

−
𝑎 𝐶 − 𝑎 𝐶

𝐼 𝑣
−

𝑎 𝐶 + 𝑎 𝐶

𝐼 𝑣
0

0 1 0⎦
⎥
⎥
⎥
⎥
⎤ 𝑣

�̇�
𝜓

+

⎣
⎢
⎢
⎢
⎡

𝐶

𝑚
𝑎 𝐶

𝐼
0 ⎦

⎥
⎥
⎥
⎤

𝛿 (34) 

MATLAB was used to design the controller gains. Using the command [K,S,e]=LQR(A,B,Q,R), it returns not only 
the gains K, but also the solution for the Riccati equation (35) and the closed-loop eigen values.  

𝐴 𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅 𝐵 𝑃 + 𝑄 = 0  (35) 

K is then derived by P using: 

𝐾 = 𝑅 𝐵 𝑃  (36) 

The first Q matrix used can be described as: 

𝑄 =
1 0 0
0 1 0
0 0 1

  

And 𝑅 = 1 × 10 . 
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The best results obtained with this controller were influenced by the physical limitations of the steering and the 
real response of the system. The best simulation obtained to control the car had a new Q matrix that is described 
as: 

𝑄 =
0.1 0 0
0 0.001 0
0 0 0.01

  

with 𝑅 = 1 × 10  and the resulting gains were: 

𝐾 = [0.1294 0.0361 0.3162] 

The results obtained in these conditions, provide the step response shown in Fig.5. 

 

Figure 5: LQR Step response 

In comparison with the projected controller shown before, it is possible to see that this one is slower. In practice, 
it shows low repeatability and does not achieve the desired direction. The trajectory made by the car (blue plot) is 
shown in Fig.6. 

 

Figure 6: LQR Trajectory 

Despite the car’s attempts to follow the desired direction it was never able to finish the trajectory pointing at 0 
degrees direction. Perhaps with more time and distance, the results would be better.   

 

3.3. Proportional Integral Derivative (PID) 

The state space from equation (34) was used for this part too. To compare one with the other similar response were 
wanted. The obtained results presented below, were obtained using Simulink PID block knowing that it has the 
following structure: 

𝑃 + 𝐼
1

𝑠
+ 𝐷

𝑁

1 + 𝑁
  

The values of each part of the PID used were strategically changed until had: P=14, I=0, D=6. Note that for similar 
response, identical rise time, settling time and no overshoot was the goal for the step response in the same 
conditions. The step response response is presented in Fig.8. 

Figure 7: PID Trajectory 
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Figure 8: PID Step response 

It is possible to see that the response of this controller is better from a theoretical perspective. This last sentence 
could be confirmed considering the result presented in Fig.7. This result allows to prove that the desired direction 
was successfully obtained because the car was able to follow the same direction since halfway until the end.  
 

4. Tests results 

4.1. Hardware developed 

Communication was very important to this work, since all the telemetry needed to be sent to the computer through 
Wi-Fi. On the other hand the computer communication from the computer to the car is established using the digital-
to-analogic converter NI USB 6008 because only commands of steering and power need to be sent. Most 
communication protocols appear in the car telemetry due to the use of several different microcontrollers connected 
between each other requiring different protocols. The communication diagram between Qualisys, computer, 
remote control and the car is shown in Fig.9, final configuration is shown in Fig.10 and Remote with upgrades is 
shown in Fig.11.  

 

Figure 9: Communication diagram 

   
Figure 11: Remote and NI USB 6008 

Figure10: Final configuration 
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The data from the IMU and encoders were obtained using Arduino libraries such as “GY80” [5], and "Wire" library 
to get data using I2C communications [6]. To read the encoders were used two ATMEGA328 as slaves to get data 
from two encoders each and send it, by I2C, to the Arduino Due working as master to implement the TV controller. 
It is important to explain that due to the assembly of the two new encoders the Arduino responsible for the front 
wheels was reconfigured to read the new ones. With that upgrade, better results were achieved. To connect and 
receive the IMU data, the library code was adapted to fulfill some requirements and be able to receive and measured 
accurately all pretended values. The UDP connection was used to send data from Arduino DUE to Computer. The 
UDP connection was already used in [2], but now was used with upgraded Simulink toolboxes to receive data. In 
this case the data sent by ESP8266 was transformed in one string and then decoded on Simulink. The ESP8266 
send UDP messages taking advantage of the AT Commands [7]. These AT Commands are part of the AT Firmware 
of the ESP8266 and they allow a large variety of customization and uses. Qualisys connection to the laptop was 
the same one used in [8], the only difference were the configurations of the IP address of each machine inside of 
the “Config.txt” file, and then running the “Qualisys UDP Receiver.exe” file to receive the data. One of the 
validation tests made was the speed comparison, the results are shown in Fig.12. Other one was the IMU validation 
shown in Fig.13 

 

  Figure 12: Speed comparison 

 

4.2. Experimental results 

Now that the controller has been chosen and the car is assembled and had sensors validated, the torque vectoring 
implemented on the state machine needed to be tested too. To evaluate if torque vectoring makes any difference 
in trajectory, some comparison tests were performed. The car was programmed to start the trajectory in straight 
line and then perform a right or left J-shaped curves. It is important to explain that in each test (right and left) all 
the conditions were maintained, the only difference between each test was the toggle switch in the remote 
controller turned on activating the torque vectoring. The results for each pair of tests are shown in Fig.14 and 
Fig.15. 

 
 Figure 14: Left turn comparison Figure 15: Right turn comparison 

Figure 13: Yaw comparison 
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In the environment of the laboratorial tests, sending a signal of 0.8V for the steering corresponding to 𝛿 =
14.29° = 0.249 𝑟𝑎𝑑 it was expected to have a left turn with the expected radius 𝑅 ≈ 1𝑚. Evaluating Fig.16 and 
Fig.17 it was possible to determine that the radius of the trajectory described was bigger than the expected, 
probably caused by the understeer of the car on the arena. The activation of the torque vectoring forces the car to 
describe the turn in a minor radius. In a limited space like the Qualisys arena, the starting point had to be moved 
in order to have similar trajectories. The major struggle was the inversion of the signal to the ESC responsible for 
speeding up the right wheel, sometimes it was not able to deliver the signal with efficiency and the car tended to 
slow down. However, the car ended up with good results, reducing the radius of the curve and having the best 
control of the PID in the straight. Despite all the issues associated with communications and hardware, good results 
were successfully achieved with this controller, ending up being only a PD, since integral part was zero. 

 
5. Conclusion 

Between all the setbacks during this time, the purpose of this work was successfully reached, providing a new 
platform able to be used in different control projects. The car was tested with the Raspberry Pi 3 but some issues 
related to the delay between Qualisys and the car were not solved in due time, so this configuration was set aside, 
but remained able to use as future implementation. The results obtained with the electric differential were good 
and prove that the torque vectoring allows the car to turn in a small radius of curvature, proving that the developed 
platform has a good capability to realize different tests describing the expected trajectories. The Qualisys system 
proved to be a very important tool for this work after the calibration was done. Since most of the work developed 
relies on the assembly and connections between different components, the knowledge achieved in terms of 
communications and programming languages was very satisfactory. With Traxxas remote, good results were 
achieved too, all the setup proved to be reliable, working well and avoiding the use of batteries. In the end the 
reliability of the state machine proved to be good because the transition from one state to other occurs immediately 
without delay. One of the setbacks was the upgrade of the encoders, but the proto-board developed proved to be a 
good choice as well because the pull-up resistor was easily implemented. In other hand, the most intricate part was 
the encoders’ mounts’ construction and the resizing of the belts. 
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