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Resumo 

Esta dissertação apresenta o desenvolvimento, construção, testes e 

análise de resultados obtidos de um carro telecomandado, com um motor em 

cada roda para que possam ser testados controladores de Torque Vectoring 

(TV) capazes de distribuir a força de modo independente por cada roda, 

equipado com sensores para avaliar a posição, velocidade, direção, entre 

outros dados telemétricos. 

Para auxiliar na tarefa de converter informação enviada por computador, 

foi utilizado um conversor digital analógico ligado ao controlo remoto do carro.  

Tendo como base o conceito de máquina de estados, o carro tem três 

estados definidos, sendo ativados através da seleção de um interruptor de três 

posições, instalado no controlo remoto. Este controlo remoto foi alvo de 

grandes alterações internas para poder enviar as ordens de controlo quer pelo 

computador, quer manualmente. 

Todos os componentes instalados foram validados recorrendo também 

ao conjunto das câmaras do sistema Qualisys, existente no laboratório, de 

forma a obter resultados fiáveis, precisos e fidedignos. 

Foi apresentado o estudo dinâmico do veículo, um estudo teórico e um 

estudo prático para dois controladores responsáveis pelo controlo de trajetória. 

O primeiro escolhido foi um Regulador Linear Quadrático (LQR) que apesar de 

em teoria ser capaz de originar bons resultados, na prática não conseguiu 

seguir a trajetória desejada devido a limitações físicas impostas. Para colmatar 

as dificuldades verificadas, foi implementado um controlador Proporcional-

Integrativo-Derivativo (PID), tendo-se verificado melhorias nos resultados 

teóricos e experimentais, o que fez com que o carro seguisse a trajetória 

esperada. 
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Abstract 

This dissertation presents the development, construction, testing and 

results analysis of a remote controlled car, with an engine on each wheel so 

that Torque Vectoring (TV) controllers capable of distributing torque 

independently between each wheel may be tested, equipped with sensors to 

measure the position, speed, direction, and other telemetric values. 

To help with the task of converting computer-sent information, a digital 

analogic converter connected to the car’s controller was used. 

Using the state machine concept as basis, the car has three defined 

states, activated through a selected three-way switch, installed on the car’s 

controller. Said controller was the target of several internal modifications so it 

could issue commands both manually and via computer. 

Every installed component was validated with the help of the cameras of 

the Qualisys system, present in the lab, to obtain viable, precise and accurate 

results. 

The dynamic study of the vehicle, a theoretical study and a practical 

study for two controllers responsible for the trajectory control were shown. The 

first was a Linear Quadratic Regulator (LQR) which, in spite of being capable of 

good results in theory, the required physical limitations ensured the wanted 

trajectory couldn’t be followed in practice. To balance the observed difficulties, a 

Proportional-Integrative-Derivative (PID) controller was implemented, with 

verified improvements in the theoretical and experimental results, which made 

the car follow the expected trajectory. 
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Chapter 1 

1. Introduction 

1.1 Motivation 

In the future, most cars will use only electric motors. This way, the 

implementation of electric motors in each wheel will allow for the study of 

Torque Vectoring control strategies individually, per wheel. Torque vectoring 

control is a common case study and all started in the “Mechatronic Systems” 

course, where the base platform of the car was developed and assembled. For 

that, new parts were mounted on the customized old frame and electronically it 

works like a state machine. 

In this work, the RC car built allows to implement control techniques on 

the prototype in order to test it in the real world. A strong investment on the 

communication will increase the quality of the response. This was so important 

because the response depends directly on the data received from the sensors 

installed on the car. 

Usually in laboratorial projects, when a RC vehicle is used or 

transformed, the RF remote is neglected and discarded. The RF remote is a 

powerful tool in the communication system of the RC vehicles because it has 

almost no delay. 

However, the development of an interface using equipment available on 

the laboratory, with quite a few changes on the TRAXXAS RF remote and using 

new approaches, is needed. One of the main goals of this dissertation is to use 

TRAXXAS RF controllers to send the control action to the car. 

The developed work relies on the communications between the RC 

vehicle and the computer. The idea is that the car shares all the telemetry with 

the computer and, in turn, the computer is responsible for all the data treatment, 

allowing the car to describe the desired trajectory as precisely as possible. 

Communications using UDP protocol are very useful to send and receive 

packages. This protocol seems to be the best choice for the platform. A deep 

study of this implementation in the car is needed as well. 
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1.2 Objectives and contributions 

The inexistence of a platform capable of supporting torque vectoring 

tests inside the lab led to this dissertation, expecting that the developed 

platform would be capable of being used in the future, not only to control the RC 

vehicle using the computer, but to control manually, recording the telemetry 

when driven by human and be capable of describing trajectories in order to 

improve the control techniques in different study areas.  

The main objective is to evaluate the response of the car with torque 

vectoring, having access to all the telemetry provided by the car and making 

use of the laboratorial vision tool called Qualisys.  

The communication speed and the computational power installed on the 

RC vehicle is very important due to physical area limitations imposed by the 

vision system. 

1.3 Thesis Outline 

This dissertation is organized as follows: In Chapter 2 the state of the art 

related to torque vectoring and platforms already developed are presented. The 

details of the model, physical representation and the stability are explained and 

are presented in Chapter 3. The state space used, the control approaches and 

simulations done are presented in Chapter 4. In Chapter 5 the hardware 

development and the assembly of the car are presented. In Chapter 6 all the 

communication used in the dissertation are presented. In Chapter 7 the 

experimental results and validations are presented, analysed and discussed. 

Finally, in Chapter 8 some concluding remarks are presented, and possible 

future work is suggested. 

  



3 
 

2. State of the Art 

In [1] Torque vectoring techniques were studied and tested in a Formula 

Student prototype. It was a complete work including controllers and estimators 

using real data and applying all the dynamics studied in plenty of courses of the 

master’s degree. When the torque vectoring is implemented it allows to 

substitute the mechanical differential improving stability and handling of the car. 

The electrical implementation is a complex task, since it has to consider all the 

vehicle dynamics. The afore-mentioned article developed a simulation using a 

dynamic model of the vehicle, allowing for the fine tuning of the presented 

controllers. This approach proved to be a good one, avoiding damage to the 

real equipment and having the knowledge about how the changes in the 

controller affect the system, since good results were achieved in the real 

Formula Student car.  

The study in [2] discarded the Traxxas RF remote because of the high 

cost of the interface responsible to communicate between computer and 

remote. The UDP communication method was used. 

In [3] are shown the benefits of using UDP Protocol, proving its high 

efficiency and low CPU occupancy in communications. 

In [4], the prototype used in this dissertation was built only to the point of 

being capable of moving mimicking the commands of the Traxxas RF. The 

sensors were mounted but not wired or programmed, showing no information at 

all. 

In [5], theoretical concepts are discussed and applications about vehicle 

dynamics are shown. A complete description and example models are 

available, contributing in a large scale to the work developed in the torque 

vectoring techniques presented in this dissertation. 

In [6], a torque vectoring control was used and implemented in a Formula 

Student car using PI and LQR controllers for yaw rate tracking. Linear and non-

linear tests were performed, and his performance evaluated when implemented 

in the vehicle. The Ackerman Geometry was studied and applied to the front 

differential. This type of geometry is applied in different types of cars, 

transforming the input steering angle in two different angles, one in each wheel.  
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In [7] the front differential with two independent motors was studied. A 

Linear Parameter-Varying (LPV) controller was used to control the longitudinal 

and lateral behaviour, while a Torque Slip Limiter (TSL) was tuned to work as a 

trade-off between tracking the longitudinal velocity and the yaw rate. 

In [8] and [9], trajectory tracking and control of an RC car on a circuit 

were studied. The platforms used were simpler but similar. The control 

techniques studied proved to be a good help for this dissertation, since the car 

need to be controlled in a circuit too. 

In [10] Linear-Quadratic Regulator (LQR) information regarding 

application and use of this controller was found, among more helpful information 

about the search engine of MATLAB, allowing to improve the computation and 

the development of the work.  

In [11] information and Arduino libraries for IMU (GY-80) are available to 

use and modify according to the necessary use. This community allows for code 

contributions and helps each member with code development. 

In [12] all the information regarding to Wire library could be found. The 

I2C communication is described and examples of implementation are shown, 

helping in further development of the code needed in each different situation. 

In [13], [14] and [15], developed code and information regarding its use, 

about memory flash steps and wiring diagrams was presented. The tools 

provided are very useful when using the ESP8266 module, allowing Wi-Fi 

communications. 

In [16], implementation of the torque vectoring in one RC car and the 

communication system that use Qualisys camera system to evaluate the car’s 

positioning inside the arena was presented. This communication systems uses 

a Raspberry Pi 3 model B to control the car and communicate with Qualisys. 

The steps to configure the Raspberry were provided by the authors of the work. 
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3. Vehicle Model 

3.1 Vehicle coordinate frame 

The dynamics and a model of the vehicle are the most important 

information that needs to be defined. Equations of motion must be computed, 

steering kinematics must be taken into consideration and wheel velocity vectors 

and slip angles must be implemented. The article [4] will be followed, noticing 

that rolling resistance, wind resistance and vertical force will be neglected 

because the car is small enough and it will not be too fast for these parameters 

to be important for this dissertation. 

The vehicle body coordinate frame to be used is shown in Figure 1, 

having B(Cxyz), attached to the center of mass C. 

 
Figure 1 - Body coordinate system 

To compute the body orientation, the rotations are defined as: 

𝜑 ∶ 𝑅𝑜𝑙𝑙 →   �̇� = 𝑝 ∶  𝑅𝑜𝑙𝑙 𝑟𝑎𝑡𝑒 

𝜃 ∶ 𝑃𝑖𝑡𝑐ℎ →   �̇� = 𝑞 ∶ 𝑃𝑖𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 

𝛹 ∶ 𝑌𝑎𝑤 →   �̇� = 𝑟 ∶ 𝑌𝑎𝑤 𝑟𝑎𝑡𝑒 

The forces are described in the body frame as: 

𝐹 = 𝐹 𝚤 + 𝐹 𝚥 + 𝐹 �⃗� (1) 

𝑀 = 𝑀 𝚤 + 𝑀 𝚥 + 𝑀 �⃗� (2) 

where Fx is the longitudinal force, Fy is the lateral force, Fz is the vertical 

force, Mx is the roll moment, My is the pitch moment and Mz is the Yaw moment. 
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3.2 Newton-Euler Dynamics 

The model used is small and flat, and some simplifications were made as 

the car was considered to be a flat box moving horizontally. Three degrees of 

freedom are needed, being translation in x and y and rotation around the z axis. 

The Newton-Euler equations used on the body coordinate frame system are: 

𝐹 = 𝑚�̇� − 𝑚ω 𝑣  (3) 

𝐹 = 𝑚�̇� − 𝑚ω 𝑣  (4) 

where vx and vy are the velocity components. The inertia matrix of the 

body is given by equation 5, but since it is considered that the body only rotates 

around the z axis, it is taken into account only the value of 𝐼  

𝐼 =

𝐼 0 0
0 𝐼 0

0 0 𝐼
 (5) 

At some point, it will be important to compute the car trajectory. The 
trajectory can be defined as: 

𝜓 = 𝜓 + 𝑟𝑑𝑡 (6) 

𝑥 = 𝑣 cos 𝜓 − 𝑣 sin 𝜓 𝑑𝑡 (7) 

𝑦 = 𝑣 sin 𝜓 − 𝑣 cos 𝜓 𝑑𝑡 (8) 

where 𝑟 is the position vector and 𝜓  is the initial yaw value. 

3.3 Force system acting on the rigid body 

The forces applied in the wheel 𝑖 are given as: 

𝐹 = 𝐹 cos  − 𝐹 sin   (9) 

𝐹 = 𝐹 cos  − 𝐹 sin   (10) 

𝑀 = 𝑀 + 𝑥 𝐹 − 𝑦 𝐹  (11) 

where 𝑥 , 𝑦  are the cartesian coordinates of each wheel in relation to the 

centre of gravity,   is the angle between the wheel 𝑖 with the 𝑥 axis of the body 
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represented in the force vector system. This representation is shown in Figure 

2. 

 

Figure 2 - The force system at the tire [5] 

The tire lateral force (𝐹 ) is given by: 

𝐹 = −𝐶 𝛼  (12) 

where 𝐶  is the cornering stiffness of the tire, 𝛼 is the tire sideslip angle 

and can be physically interpreted as the angle between the 𝑥 axis and the 

velocity of the tire as represented. This representation is shown in Figure 3. 

 
Figure 3 - Angular orientation of a moving tire [5] 

Mathematically, 𝛼 can be written as: 

𝛼 = 𝛽 − 𝛿 (13) 

𝛽 = arctan 
𝑣

𝑣
 (14) 

For a small 𝛽, equation (13) can be written as: 

𝛽 =
𝑣

𝑣
 (15) 
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As a simplification of the model in use, the bicycle model is used without 

the roll component. Neglecting the aligning moments, 𝑀 , forces applied are 

given by: 

𝐹 = 𝐹 cos(𝛿) + 𝐹 − 𝐹 sin(𝛿) (16) 

𝐹 = 𝐹 cos(𝛿) + 𝐹 − 𝐹 sin(𝛿) (17) 

𝑀 = 𝑎 𝐹 − 𝑎 𝐹  (18) 

where the indexes 𝑟 and 𝑓 mean “rear” and “front” wheel respectively 

and 𝑎  and 𝑎  are the distance between front and rear wheel in relation to 

centre of gravity. In order to linearize the equations, small rotations should be 

considered having 𝛿 = 0, and as such, the equations 16,17 and 18 can be 

written as: 

𝐹 ≈ 𝐹 + 𝐹  (19) 

𝐹 ≈ 𝐹 + 𝐹  (20) 

𝑀 ≈ 𝑎 𝐹 − 𝑎 𝐹  (21) 

It should be noticed that when using the bicycle model the car becomes a 

one-track model, meaning that only one front steer angle can be controlled. It is 

worth referring that the slip angle 𝛼  is calculated using the tire side slip angle 𝛽  

and an expression as a function of 𝛽 is desired. For that, the lateral wheel 

velocity 𝑣  has an additional component because there is a yaw rate in the 

mass centre of the car with distance 𝑎  and 𝑎  has can be seen in Figure 4. 

 

Figure 4 - Two-wheel model for a vehicle moving with no roll [5] 
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Taking equation 13 and applying for the front and rear wheel, it is written 

as: 

𝛼 = 𝛽 − 𝛿 (22) 

𝛼 = 𝛽 +
𝑎 𝑟

𝑣
− 𝛿  

(23) 

𝛼 = 𝛽 −
𝑎 𝑟

𝑣
  

(24) 

𝐹  and 𝑀  only depend on the forces in the 𝑦 axis that are functions of 

the wheel sideslip (𝛼 ,𝛼 ). As such, these equations can be approximated as: 

𝐹 = −
𝑎

𝑣
𝐶 +

𝑎

𝑣
𝐶 𝑟 − 𝐶 + 𝐶 𝛽 + 𝐶 𝛿 (25) 

𝑀 = −
𝑎

𝑣
𝐶 −

𝑎

𝑣
𝐶 − 𝑎 𝐶 − 𝑎 𝐶 𝛽 + 𝑎 𝐶 𝛽 (26) 

The implemented state space is given by [5]: 

�̇�

�̈�
=

⎣
⎢
⎢
⎢
⎡ −

𝐶 + 𝐶

𝑚𝑣

−𝑎 𝐶 + 𝑎 𝐶

𝑚𝑣
− 𝑣

−
𝑎 𝐶 − 𝑎 𝐶

𝐼 𝑣
−

𝑎 𝐶 + 𝑎 𝐶

𝐼 𝑣 ⎦
⎥
⎥
⎥
⎤

𝑣

�̇�
+

⎣
⎢
⎢
⎡

𝐶

𝑚
𝑎 𝐶

𝐼 ⎦
⎥
⎥
⎤

𝛿 (27) 

The longitudinal dynamic used is also presented by [5]: 

�̇�
�̈�

=
0 1

0
𝑘𝑣

𝑚

𝑥
�̇�

+

0
𝑃

𝑚𝑅 𝑤
𝑝𝑝 (28) 

where 𝑃 is the electric motor power, 𝑅  is the wheel radius, 𝑤 the wheel 

angular velocity, 𝑘 = 𝜌𝐶 𝐴  and 𝑝𝑝 is the pedal position. 

3.4 Implementation of torque differential in rear wheels 

The goal with the torque vectoring is to generate yaw moment based on 

controlling the torque (longitudinal force) in each wheel. For this it will be 

necessary to introduce a new term 𝑀  that will represent the additional yaw 

moment generated by the torque distribution [6], so the new state space is: 

�̇�

�̈�
=

⎣
⎢
⎢
⎢
⎡ −

𝐶 + 𝐶

𝑚𝑣

−𝑎 𝐶 + 𝑎 𝐶

𝑚𝑣
− 𝑣

−
𝑎 𝐶 − 𝑎 𝐶

𝐼 𝑣
−

𝑎 𝐶 + 𝑎 𝐶

𝐼 𝑣 ⎦
⎥
⎥
⎥
⎤

𝑣

�̇�
+

⎣
⎢
⎢
⎡

𝐶

𝑚
𝑎 𝐶

𝐼 ⎦
⎥
⎥
⎤

𝛿 +

0
1

𝐼
𝑀  (29) 
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and the car linear model is shown in Figure 5, 

 
Figure 5 - Vehicle linear model with additional moment [6] 

where CG is the centre of gravity, 𝑡  corresponds to 𝑤 2⁄ , 𝑇  is the 

torque, 𝐹  is the tire lateral force, 𝐼  is the inertia moment around the 𝑧 axis,m is 

the mass of the car, Cf and Cr are the cornering stiffness constants, front and 

rear respectively. 

This added moment resulted from the difference between the left and the 

right wheel torque, 𝑇 , 𝑇 is given by [6] 

𝑀 = 𝛥𝑇 ∗ 𝑡 = (𝑇 − 𝑇 ) ∗ 𝑡  (30) 

In this dissertation, the torque at the wheel is the same as the torque at 

the motor because it is direct drive. To obtain the force on the ground the torque 

is divided by the wheel radius 𝑅 . 

𝛥𝑇 =
𝑅

2𝑡
𝑀  (31) 

Thus, the 𝑀  can be replaced by 𝛥𝑇 in equation 29. In case of 4-wheel 

torque vectoring there is one more moment to be added due to the torque 

difference of the front wheels. In [7], an approach is presented using a Linear 

Parameter-Varying controller (LPV) but in this dissertation, due to the loss of the 

front motors, only The Ackerman Geometry described in [6] will be considered. 
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3.5 Front wheel differential 

To simulate mechanical differential in front wheels the steering angle 

should be known. Knowing the desired steering angle, the angles of the inner 

and outer wheel can be calculated as equations (32) and (33), using the 

Ackermann Geometry [6] theory. The Ackerman condition says that to have all 

wheels turning freely on a curved road, the normal line to the center of each 

tire-plane must intersect at a common point. This condition is needed when the 

speed of the vehicle is small and slip angles are zero because there is no lateral 

and centrifugal force to balance each other. The Ackerman Geometry is shown 

in Figure 6. 

 
Figure 6 - Ackermann geometry [5] 

𝛿 = tan
𝑙

𝑙 cot(𝛿) −
 

(32) 

𝛿 = tan
𝑙

𝑙 cot(𝛿) +
 (33) 

To compute inner and outer radius: 

𝛿 = sin
𝑎 + 𝑎

𝑅
 (34) 
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𝛿 = sin
𝑎 + 𝑎

𝑅
 (35) 

Resulting in equations (36) and (37) 

𝑅 =
𝑎 + 𝑎

sin (𝛿 )
 (36) 

𝑅 =
𝑎 + 𝑎

sin (𝛿 )
 (37) 

After describing a curve, the inner and outer wheels must travel different 

distances due to the different arcs of their trajectories, meaning that the outer 

wheel must rotate faster than the inner one. As the wheels are attached to the 

same axle, in order to comply with that, they must rotate at different speeds. 

The following equations demonstrate the relation between the inner and outer 

wheels considering a turning of 360° in a certain amount of time: 

𝑑

𝑡
=

2𝜋𝑅

𝑡
 (38) 

𝑑

𝑡
=

2𝜋𝑅

𝑡
 (39) 

where 𝑑  is the distance travelled by the inner wheel in relation to the centre of 
rotation, 𝑑  is the distance travelled by the outer wheel in relation to the centre 
of rotation and 𝑡 is the time. 

Therefore, the relation between the outer and inner wheel velocity is given by: 

𝑣

𝑣
=

2𝜋𝑅

2𝜋𝑅
=

𝑅

𝑅
 (40) 

and the radius described by the CG is gyven by: 

  

𝑅 = 𝑎 + 𝑙 (cot 𝛿)  (41) 

 

 

3.6 Controllability 

The controllability matrix allows to evaluate if the system is controllable.  

Controllability is defined as the capability to transfer the system from any 

initial state, 𝑥(𝑡 ), to any other state in a finite interval of time.  
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The results that are shown in this section are obtained in a similar way of 

the study developed in [8] and [9], but with the characteristics of the new car. 

Controllability matrix is defined as: 

[𝐵 𝐴𝐵 𝐴 𝐵] (42) 

where A and B being the state and input matrix, respectively. Using the 

car characteristics presented above, it can be seen that the rank of the 

controllability matrix is 2, thus it is full rank and this MATLAB result is shown in 

Figure 7. 

 
Figure 7 - Controllability matrix 

 

3.7 Stability 

To study the stability of the system, the root locus method was used, 

allowing to evaluate the system and the stability zone. 

For better understanding of the system, the transformation from State 

Space to Transfer Function was performed using MATLAB commands. This 

way we can better evaluate the location of the poles and the zeros of the 

system. The transfer function obtained is given by: 

 𝑡𝑓 =
162.3𝑠 + 2238

𝑠 + 41.22𝑠 + 378.8
 

where the zeros were (-13.79) and poles were ( -27.39, -13.83). This way, the 

root locus of the system is shown in Figure 8. 
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Figure 8 - Root Locus 

As could be seen, the pole and the zero close to each other were on the 

shaded area and the other pole goes to minus infinity proving that the stability 

exist because all the poles and zero are in the negative side of the real axis. 
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4. Proposed Controller 

To control the torque in each wheel, a Linear Quadratic Regulator (LQR) 

and a Proportional-Integral-Derivative (PID), using the linear model, will be used 

assuming it is enough. The system requirements are presented in Table 1. 

 
Table 1 - System requirements 

 Specs required 

𝑀  (%) 0 

𝑡  (𝑠) <1 

𝑒  (%) 0 

 

The method to be used is to distribute the left and right torque, 

proportional to the amount of steering input 𝛥𝑇 = 𝑓(𝛿). 

4.1 Data acquisition hardware 

To control the car, at least 2 sensors are needed: Inertial Measurement 

Unit (IMU) and encoders. Using an IMU, while a lot of telemetric data could be 

obtained, for this dissertation only acceleration and gyroscope data were used. 

Having the acceleration of all the axes, the speed of the centre of gravity of the 

car can be estimated. The most important parameters would be the yaw since it 

will be the reference to the control loop. With encoders, the speed of each 

wheel can be estimated by differentiating its values in time.  

To close the control loop, Qualisys system was used to have the real yaw 

angle. This architecture joined with the code implemented in Arduino Due was 

the best configuration found. The memory and processing capacity were the 

main reasons in choosing an Arduino Due as the main microcontroller. The 

differential controller will be all coded and implemented inside the Arduino to try 

avoiding major communications with Simulink, while Simulink was only 

responsible for processing the received car telemetry and the Qualisys data, 

applying the trajectory controllers. 
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A failsafe system to stop the motors in case of emergency was 

implemented in the RC transmitter. This failsafe was implemented in a switch, 

which will allow the user to change from direct drive mode, where the Arduino 

will be a bypass from the receiver for the motors just doing data conditioning, to 

torque vectoring control, lighting up a small LED implemented in the remote 

controller or activating the failsafe. 

4.2 Arduino differential control 

To implement control, a reference signal must be created. The chosen 

signal is the yaw rate and it should be a function of the steering 𝛿. This signal is 

adapted to the characteristics of the car’s behaviour. It can be defined by the 

ratio between front and rear masses and between the front and rear tire 

cornering stiffness 

𝐾 =
𝑎 𝑚

𝐶 (𝑎 + 𝑎 )
−

𝑎 𝑚

𝐶 (𝑎 + 𝑎 )
 (43) 

If 𝐾  is positive (𝐾 > 0), the car is said to have an under-steer behaviour. 

In case of 𝐾 < 0, the car has a oversteer behaviour. When 𝐾 = 0, it means the 

car has a neutral steer (ideal yaw rate). Being the latter the ideal, it is chosen as 

the reference. However, this can take to over-steer instability [6] and the under-

steered vehicle is chosen. 

The desired yaw rate can be defined by the velocity and the radius of 

curve: 

�̇� =
𝑣

𝑅
 (44) 

Giving the velocity and steering angle of the car, with known steer 

gradient and wheelbase, the radius is computed has: 

1

𝑅
=

𝛿

(𝑎 + 𝑎 ) + 𝐾 𝑣
 (45) 

With equation (44) and (45), a function of 𝛿 to find yaw rate desired is 

computed as: 

�̇� =
𝛿

(𝑎 + 𝑎 ) + 𝐾 𝑣
 (46) 



17 
 

The under steer 𝐾 can be tuned for driver preference. The bigger the 𝐾 , 

the bigger the difference between the desired and actual yaw rate, the car will 

have near under-steer characteristics and it will be harder to drive. 

4.3 Linear Quadratic Regulator (LQR) 

LQR is an optimal control solution for linear systems. To design this type 

of controller an optimal gain K is calculated to minimize the energy function J. 

The state space will have 𝑣 , �̇� and 𝜓 as state variables. For 2 motorized 

wheels, 𝛿 will be the only control input, since the 𝛿 will be imposed by the driver 

[6]. To estimate the lateral velocity, an integration of the acceleration acquired 

from the IMU should be done.  

The performance index to design the LQR controller is written in equation 

(46). It is a quadratic cost function and the main objective is to find a state-

feedback law 𝑢 = −𝐾𝑥 that minimizes this function. 

𝐽(𝑢) =
1

2
[(𝑋 − 𝑋) 𝑄(𝑋 − 𝑋) + 𝑢 𝑅𝑢]𝑑𝑡 (47) 

Since the velocity was imposed to be constant, the longitudinal dynamics 

ended up being neglected too. It is necessary to add a state variable to the 

system to have an output which is the yaw 𝜓 and the new state space is given 

by: 

�̇�

�̈�

�̇�

=

⎣
⎢
⎢
⎢
⎢
⎡ −

𝐶 + 𝐶

𝑚𝑣

−𝑎 𝐶 + 𝑎 𝐶

𝑚𝑣
− 𝑣 0

−
𝑎 𝐶 − 𝑎 𝐶

𝐼 𝑣
−

𝑎 𝐶 + 𝑎 𝐶

𝐼 𝑣
0

0 1 0⎦
⎥
⎥
⎥
⎥
⎤ 𝑣

�̇�
𝜓

+

⎣
⎢
⎢
⎢
⎡

𝐶

𝑚
𝑎 𝐶

𝐼
0 ⎦

⎥
⎥
⎥
⎤

𝛿 (48) 

MATLAB was used to design the controller gains. Using the command 

[K,S,e]=LQR(A,B,Q,R), it returns not only the gains K, but also the solution for 

the Riccati equation (49) and the closed-loop eigen values 𝑒 [10]. 

𝐴 𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅 𝐵 𝑃 + 𝑄 = 0 (49) 

K is then derived by P using: 

𝐾 = 𝑅 𝐵 𝑃 (50) 

The Q matrix used is: 
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𝑄 =
1 0 0
0 1 0
0 0 1

 
 

And 𝑅 = 1 × 10 . 

4.4 LQR Simulation 

To test all the assembly of the car and the communications system the 

simple state space from equation (48) was used. With this state only the yaw 

reference must be followed. 

To simulate the system and design the controller, all the car parameters 

must be taken into account. These characteristics were shown previously in 

Figure 5. 

The step response of the system for a step of 40° (approximately 0.7 rad) 

is shown in Figure 9. 

 

 
Figure 9 - Step response 

As can be seen, the step response is very slow with these first 

parameters. By manipulating the values of Q matrix and evaluate the response 

again, it is possible to improve it. This was made iteratively until a reasonable 

response was obtained. The new Q matrix was: 
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𝑄 =
100 0 0

0 1 0
0 0 100

 
 

The 𝑅 value was the same, 𝑅 = 1 × 10 . The gains of the controller 

were: 

𝐾 = [6.796 3.194 31.623] 

And the results are shown in Figure 10. 

 
Figure 10 - LQR Step response 

It is important to refer that, for the previous results, only the system 

response was considered, no physical limitations were considered. Further 

ahead, on the laboratorial implementation section, such limitations will be 

considered because the maximum steering angle for each side is approximately 

30°. 

 

4.5 PID Simulation 

The state space from equation (48) was used in the following simulation 

as well, allowing for the comparison between the two control methods. The 

results presented below, were obtained using Simulink PID block knowing that it 

has the following structure: 

𝑃 + 𝐼
1

𝑠
+ 𝐷

𝑁

1 + 𝑁
 

 

The values of each part of the PID used were manually adjusted until 

had:  
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𝑃 = 50 

𝐼 = 0.5 

𝐷 = 5  

Note that similar response, identical rise time, settling time and no 

overshoot were the goals for the step response in the same conditions. The 

step response is presented in Figure 11. 

 

 
Figure 11 - PID Step response 
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5. Hardware implementation 

To implement Torque vectoring in a RC car, if the car only had one motor 

it should have a braking system that allows to brake each wheel independently. 

The solution presented is to build, from sketch, a car with a motor in each 

wheel, independently controllable.  

The first thing is to implement a switch in the remote controller to choose 

car modes as will be explained in section 5.2, in which a simple finite state 

machine can be controlled. 

After implementing this switch, the signal sent from the controller to the 

receiver, must be configured using Arduino Due to make the motors rotate in 

the same direction. The differential of the car must be implemented 

electronically, this is presented in section 5.3. 

5.1 Car Assembly 

From an original base of a RC car, it was built new supports for rear and 

front axles in order to make the new motors fit, the result is shown in Figure 12. 

 
Figure 12 - Supports for motor fitting 

The important characteristics of the motors, the model being Turnigy 

4206 530kv Brushless Multi-Rotor Motor, are presented in Table 2. 
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Table 2 - Motor characteristics 

Power 130W 

Weight 68g 

Max Currents 20A 

Max Voltage 16V 

Kv 530rpm/v 

 

For each motor it is used an electronic speed controller (ESC). In each 

wheel is installed an encoder to control wheel position and estimate the wheel 

velocity. Two slave ATMEGA328 were needed to be used as counters, and the 

Arduino DUE was used as Master to control the RC car, sending information to 

the laptop wirelessly using an ESP 8266. The communication between each 

component will be explained on chapter 6. 

To maintain the suspension geometry performance the axles were made 

shorter as shown in Figure 13. 

 
Figure 13 - Axle shortened 

To reinforce the top part of the suspensions, an aluminium sheet was cut 

and modelled. This reinforcement allows to separate all the sensitive electronics 

from the motors that work with AC current, avoiding noise capturing. 

All the wiring went through a hole made on the sheet and a connector 

was assembled on the bottom part, allowing future disconnection for 

maintenance or replacement of parts without resoldering components. On the 

bottom part, the steering servo was attached too, as well as two switches that 

allow turning the motors on and off and another switch for the electronics. 

These characteristics are shown in Figure 14. 
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Figure 14 - Bottom part (left) Top part (right) 

It is possible to see that the IMU was attached approximately in the 

centre of the car to avoid more data treatment. 

One of the most critical and important parts of this dissertation was the 

continuous development of the proto-board responsible for connecting all 

components between each-other. The proto-board allows some versatility to 

modify a few things and create new ones. The first prototype of this board is 

shown in Figure 15. 

 
Figure 15 - Developed proto-board 

During the development of the work, the board suffered some changes in 

order to improve the quality and stability of the whole platform. With this 

configuration it is possible to enumerate some advantages/changes: 

 Eliminate one of the Logic-Level-Converters (LLC); 

 Create a speed limiter using a jumper; 

 Create pull-up resistor for the new encoders; 

 Easy troubleshooting; 
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 Easy access to program the different Arduinos; 

 Reduce hanging wires; 

Due to malfunction, probably caused by trying to brake the car, one ESC 

burnt out, leaving the car with only 3 powered motors. At that point, the best 

choice was using only rear wheel drive configuration, letting more space 

available to future modifications. 

One of the biggest changes performed in the car was the assembly of 

two new encoders with more resolution. The explanation for this change is 

explained in more detail showing results in Section 7.1.2. 

The assembly of the new encoders led to a reorganization of the 

components location. New mounts for the encoders were built and attached to 

the car, as well as new customized belts and pulleys. These changes are 

shown in Figure 16. 

 
Figure 16 - New encoders assembly 
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The final overall configuration of the car without the protective body is 

shown in Figure 17. 

 

 
Figure 17 - Final configuration 

 

5.2 Remote Controller Modification 

In the remote controller, a switch for three different modes was 

implemented. The left position activates the mode where the car has the torque 

vectoring control on. In the middle is the mode where the Arduino is just 

bypassing the signal from the controller to the motors. Finally, the right position 

stands for the failsafe position, where the power from the motors was cut. This 

switch sent a PWM signal for the Arduino. The implemented circuit inside the 

remote is shown in Figure 18. 
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Figure 18 - Implemented circuit in the controller 

5.3 Arduino algorithm 

The following flowcharts illustrate how the Arduino code works. The two 

first ones can be considered as the main, Figure 19 and Figure 20. The 

following ones are the blocks for the differential in Figure 21 and to calculate the 

desired angular velocity in Figure 22. The Arduino Uno flowchart responsible for 

the interrupt count is shown in Figure 23. 

 
Figure 19 - Finite State Machine for the car modes 
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Figure 20 - Arduino Due (Master) flow chart 
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Figure 21 - Electronic differential flow chart 

 
Figure 22 - Desired angular velocity flow chart 

 
Figure 23 - Arduino Uno (Slave) flow chart 
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5.4 Electric diagram 

The importance of the wiring diagram in this type of platform is so high 

because it allows to spend less time in troubleshooting in case of crash, 

maintenance or changing parts. Once only rear motors were used, it is possible 

to see the red cross over the two front motors. The wiring diagram is shown in 

Figure 24. 

 

 
Figure 24 - Wiring diagram 
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6. Communications 

6.1 Communication cycle 

It’s very important to correctly establish communications technologies 

and protocols, since all the telemetry data should be sent to computer with near 

zero delay. Using Wi-Fi connection, UDP protocol was established to send 

telemetric data from the car to the computer. The converter board NI USB 6008 

was used to send commands of steering and power to the car. This 

communication from the computer to the car was established using the D2A 

converter. 

In the next sub-sections, the different used protocols and type of 

technologies used will be explained in further detail. 

Most of the invested time in communications was in the car side due to 

the use of several different microcontrollers connected between each other’s 

requiring different protocols. The communication diagram between Qualisys, 

computer, remote control and the car is shown in Figure 25. 

 
Figure 25 - Communication diagram 
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The data from the IMU and encoders were obtained using Arduino 

libraries such as “GY80” [11] and "Wire" library to get data using I2C 

communications [12]. To read the encoders were used two ATMEGA328 as 

slaves to get data from two encoders each and send it, by I2C, to the Arduino 

Due working as master to implement the controller. 

It is important to explain that due to the assembly of the two new 

encoders the Arduino responsible for the front wheels was reconfigured to read 

the new ones. With that upgrade, it was possible to compare the results 

between old encoders and the new ones, this will be explained in section 7.1.2. 

New code was developed to connect and receive the IMU data allowing 

versatility in data treatment. The available library code was adapted to fulfil 

some requirements and be able to receive and measure accurately all 

pretended values. A validation of the values was made and is presented in 

section 7.1.1. 

An issue was detected originating a persistent freezing of the Due and 

causing a big amount of crashes. The responsible for this issue was the ESP 

power supply and it was solved using one IN4007 diode on the ESP power wire 

and connecting the IMU in a dedicated I2C channel. This diode is visible in the 

wiring diagram shown in Figure 24. 

The UDP protocol was already used in [2] but now is used with upgraded 

Simulink toolboxes to receive data. In this case the data sent by ESP8266 is 

transformed in one string and then decoded on Simulink. The ESP8266 send 

UDP messages taking advantage of the AT Commands [13]. This AT 

Commands are part of the AT Firmware of the ESP8266 and they allow a large 

variety of customization and uses. To flash the memory, “flash_download_tools 

v3.6.8” program was used. 

Qualisys connection to the laptop was the same one used in [16]. First 

the config.txt file must be configured saving the changes. The configuration 

used is presented in Table 3. 
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Table 3 - Qualisys configurations 

Config.txt 

Qualisys Computer information: 

QualisysIP=169.254.54.27 

QualisysPort=22223 

NumberOfObjects=1 

 Local Computer information: 

Port to use=9091 

 Communication Type (0-TCP; 1-

UDP): 

Comms=1 

Host Computer information (only for 

UDP): 

HostIP=192.168.1.40 

HostPort=9089 

 Debug Information (Flags): 

Messages in queue=1 

Print message bytes=1 

 

After save the previous file, the “Qualisys UDP Receiver.exe” file must be 

open. If everything is good, a black screen appears changing values quickly. To 

properly exit the program, press simultaneously the keys: 

A+S+ENTER. 

It is important to mention that randomly the Qualisys required special 

attention when gathering data because often system reboots were needed due 

to delays in the communication. To improve the results and accurate 

validations, a new calibration of the system was made. 

6.2 Raspberry Pi 

A Raspberry Pi 3 model B was implemented on the car trying to receive 

and control directly the data from the Qualisys system, however and after a 
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large amount of attempts this configuration revels a higher delay in the 

communication compared with previous configuration. 

The use of this solution was abandoned. However, all the connections 

and devices were left in the car being available for future works. The 

adjustments needed are to change the Arduino code, replacing it by the 

appropriate code to work with the Raspberry. The code is already developed 

allowing to receive PWM commands from the Raspberry and is attached with all 

the technical information that is commented inside the Arduino Due. To connect 

the IMU to the Raspberry is necessary to disconnect it from Due to avoid crash 

of the state machine when Raspberry is running. 

It is important to remind that a new shutdown switch was implemented on 

the Raspberry Pi to avoid corruption of the system when the car switch is turned 

off. When the button is pressed once, it makes the shutdown program run. 

Then, when the blue light turns off, the green light of the Raspberry shows a 

steady green and then goes off, it is secure to shut down the car. Note that 

sometimes when Simulink is running and the button is pressed for the first time, 

the Raspberry restart and the process must be repeated in order to properly 

shutdown. 

6.3 ESP8266 AT Commands 

The Wi-Fi module ESP8266 was used to send the telemetry data from 

the car to the computer. In order to be able to use the AT Commands a flash of 

the memory with the original firmware was performed. 

AT Commands allows to configure the working environment of the 

ESP8266 according to the main objectives of the desired work. To configure the 

connection between the ESP and the Router, the Monitor Series on Arduino 

IDE, was used following the next steps: 

 AT 

 AT+CWMODE = 1 

 AT+CWJAP = ”ASUS”,”latraxcar” 
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 AT+CIPSTART = ”UDP”,”192.168.1.40”,25001 

 AT+CIPSEND = (STRING) 

After the test was concluded with success, the steps of this 

communication were made implementing the code in Arduino DUE. The main 

structure of this communication code was from [15] with some specific 

modifications accordingly to the network connection. The string was responsible 

for transport the telemetry from ESP to Simulink. 

More AT Commands exist, and some were used to test the hardware 

reliability. 

To be able to understand how connections were made and how the 

diode was implemented in the circuit, the wiring diagram is shown in Figure 26. 

 

 
Figure 26 - ESP8266 Wiring diagram 

 

6.4 UDP (Data Sent and Received) 

The UDP is one of the most powerful protocol in this communication 

environment because it allows wireless data transmission between the car, 

computer and Qualisys. This protocol relies on two steps: send data to 

computer and receive data in the computer. To send the data the Due needs to 

create a string with the values in a specific layout for the computer to be able to 

read it on Simulink. The AT Commands were used to create and constantly 

send the data string. The format of the string sent was: 
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rpm0, rpm1, rpm2, rpm3, pitch, roll, yaw, ch1, ch2, packet, accx, accy 

where 8bit string need to be specified and only after that give order to 

send, accordingly AT Commands specifications. 

To receive the data on Simulink the Data Acquisition toolbox was used, 

having the UDP receive block configured, the message should be received with 

almost no delays. It was noticed that for the Simulink to read the configured 

UDP port it is imperative that the Windows firewall stay disconnected, or the 

permissions of the MATLAB to see over the firewall must be reviewed.  

Once the message was received, decoding the message was the priority. 

With the help of the toolbox mentioned this job was done with success, the main 

blocks used were to convert from ASCII to string and to read the string 

converting to double values. 

To prevent any more delays or external influence in the control, a 

dedicated router was used and configured. The configuration of the router was 

made associating the same IP address to each Mac address of the ESP8266 

and of the computer. This was necessary because if the IP of any of them 

changes, the message will not be successfully transferred between the devices, 

resulting in extra time to configure the connection every time when connecting 

to the Simulink. The stablished connection diagram is shown in Figure 27. 

 

 
Figure 27 - Network Diagram 

 

6.5 Send Control Action 

The RF transmission used by the original Traxxas controller was 

considered because of the almost inexistent delay in its transmission. To use 

this controller, many hardware modifications were necessary and performed. 



36 
 

The signal emitted and the voltage values associated were studied in order to 

replicate them with the NI USB 6008. The first step was a deep study of the 

limits of the voltage values and which wires were responsible for send the PWM 

signal to the receiver in the car. One IN4007 diode was used to protect the 

batteries against the input voltage of the NI USB 6008. The inside connections 

are shown in Figure 28. 

 
Figure 28 - Remote inside connections 

It was noticed that the signal oscillates between approximately 0V and 

3.3V (left or right/forward or back), and that the neutral position was around the 

mean of the values 1.65V. In the case of the steering, the physical limitation 

was the maximum steering angle of 30º for each side. Associating the voltage 

with the PWM and steering angle it was possible to achieve the relation of 

0.056V/deg. Having a steering signal of 0.8V on the remote means that the 

steering angle will be -14.29 degrees. 

To read the values, Simulink was used with NIDAQmx AddOn installed. 

In other hand to send the control action some details had to be taken into 

account, such as: saturation of the signal in order to prevent the physical failure 

of the remote, the first start of the program needs to be adjusted in order to 
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allow the controller to be paired with the receiver, and for that the neutral 

position of the channels must be settled. 

Finally, the independency of the system was achieved with the supply of 

the working voltage (5.0V) to the controller, allowing to automatically be turned 

on when connected to laptop, not depending on his own batteries. Special care 

was taken in a way to make it look clean and useful and the controller is shown 

in Figure 29. 

 
Figure 29 - Remote and NI USB 6008 

. The diagram of this layout is shown in Figure 30. 

 
Figure 30 - Remote outside connections 
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6.6 Simulink Project 

A Simulink project was built to communicate with the car and computing 

the data received from it and send commands back again. This was achieved 

working in small parcels with different objectives and then joining all the blocks 

together in one single project.  

The NI USB 6008 must be connected before running the MATLAB, as 

have been said before the firewall must be disabled because of the UDP 

connection with the ESP8266.  

To prevent equipment failure, the project needs to run at least one time 

without connecting the remote to let the NI interface assume the reference 

values. 

The project was able to record trajectories created manually or program 

time functions. A fail-safe mechanism is available to prevent accidents, noting 

that the state machine fail safe is always the best way to cut power immediately 

because it is the master of the system. A sketch of the program developed in 

Simulink is shown in Figure 31.  

The trajectories were described by time-based functions and show small 

errors, affirming the good communication between car and Simulink. 

 

 
Figure 31 - Simulink project 
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7. Tests and Validation 

Along this chapter all the hardware implemented was tested and 

validated. Some upgrades were made to improve the resolution of the existing 

encoders. The wire connections of the IMU were improved to eliminate a 

consistent crash of the hardware leading to incoherent data. These 

improvements were documented in section 5.1. 

7.1 Hardware validation 

7.1.1 IMU validation 

The code implemented on the Arduino DUE allows the IMU to reset its 

values to zero once the car is switched on. To test the sensor, one platform of 

test was developed so that the car could rotate and stop all times in each 

defined angle in the most accurate and possible way. For the following 

experiment the sequence of angles defined was 0º 30º 60º 90º 60º 

30º 0º and the schematic of the platform used is shown in Figure 32. 

 

 
Figure 32 - Angle platform 
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The results acquired allow to understand the yaw variations during the 

sequence mentioned before. For a better evaluation a graph was created, and it 

is shown in Figure 33. 

 
Figure 33 - Yaw comparison 

From the graph interpretation, with the car stopped and in a rest state, 

the values of the IMU had oscillations making the reference values diverge from 

zero (blue plot), the obtained values are presented on Table 4 - IMU. 

Table 4 - IMU 

 
IMU 

Angle Test 1 Test 2 Test 3 Test 4 Test 5 Mean Diff. Error 

0º -3,40 -1,26 -1,28 -1,41 -1,16 -1,70 1,70 0,47 

30º 19,00 22,65 24,74 22,82 22,57 22,36 7,64 25,48 

60º 41,95 51,54 48,37 47,09 46,80 47,15 12,85 21,42 

90º 66,74 73,38 74,95 74,02 72,53 72,32 17,68 19,64 

60º 36,68 43,65 46,30 44,74 43,71 43,02 16,98 28,31 

30º 7,08 15,63 19,43 16,02 16,15 14,86 15,14 50,46 

0º -22,87 -13,91 -10,83 -12,65 -13,60 -14,77 14,77 4,10 

 

A filter composed by a saturation and a gain was successfully 

implemented to clean the signal and acquire more reasonable data. The filtered 
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telemetry (red plot) is clearly more accurate and it is also presented on Table 5 - 

IMU Adjusted. 

Table 5 - IMU Adjusted 

 
IMU Adjusted 

Angle Test 1 Test 2 Test 3 Test 4 Test 5 Mean Diff. Error 

0º 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

30º 31,02 29,74 31,92 30,37 29,46 30,50 -0,50 1,67 

60º 59,62 59,44 60,12 59,55 58,78 59,50 0,50 0,83 

90º 90,26 90,19 91,95 91,61 89,89 90,78 -0,78 0,87 

60º 59,05 58,66 61,42 60,00 59,56 59,74 0,26 0,44 

30º 28,82 28,95 32,87 28,96 30,36 29,99 0,01 0,03 

0º -0,73 -1,32 2,24 0,05 0,74 0,20 -0,20 0,05 

 

Besides the platform of rotation, the Qualisys system was used to 

confirm and validate the data received from the IMU (green plot). This data is 

presented on Table 6 - IMU Qualisys. 

Table 6 - IMU Qualisys 

 
IMU Qualisys 

Angle Test 1 Test 2 Test 3 Test 4 Test 5 Mean Diff. Error 

0º -0,49 0,18 0,05 0,46 0,59 0,16 -0,16 0,04 

30º 30,22 29,88 30,73 29,45 30,72 30,20 -0,20 0,67 

60º 59,61 59,43 59,21 59,37 59,62 59,45 0,55 0,92 

90º 90,00 90,43 89,44 90,32 89,05 89,85 0,15 0,17 

60º 60,14 60,28 59,55 59,72 60,02 59,94 0,06 0,10 

30º 29,76 30,73 31,02 30,23 30,30 30,41 -0,41 1,36 

0º 0,20 0,05 0,47 0,58 1,35 0,53 -0,53 0,15 

 

Once only the yaw data is needed to the study, the next tables show the 

results of the tests only for the yaw angle. 

Complementary information showing that the IMU could have accurate 

results with the applied filter are presented on Table 7 - IMU Comparison. 

With the acquired values read from the telemetry in each test, it was 

possible to evaluate data, first the mean values are given by: 

𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑒𝑠𝑡 1 + 𝑇𝑒𝑠𝑡 2 + 𝑇𝑒𝑠𝑡 3 + 𝑇𝑒𝑠𝑡 4 + 𝑇𝑒𝑠𝑡 5

5
 (50) 
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where Test 1, Test 2, Test 3, Test 4, Test 5 are the angle values 

obtained for each different test. 

The relative error is given by: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑛𝑔𝑙𝑒 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑛𝑔𝑙𝑒

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝐴𝑛𝑔𝑙𝑒
 

(51) 

where desired angle corresponds to the angle pre-established for each 

test and the measured angle is the value given by the IMU and Qualisys. 

Table 7 - IMU Comparison 

 
IMU IMU Adjusted IMU Qualisys 

Angle Mean Diff. Error Mean Diff. Error Mean Diff. Error 

0º 1,70 1,70 0,47 0,00 0,00 0,00 0,16 -0,16 0,04 
30º -22,36 7,64 25,48 30,50 -0,50 1,67 30,20 -0,20 0,67 
60º -47,15 12,85 21,42 59,50 0,50 0,83 59,45 0,55 0,92 
90º -72,32 17,68 19,64 90,78 -0,78 0,87 89,85 0,15 0,17 
60º -43,02 16,98 28,31 59,74 0,26 0,44 59,94 0,06 0,10 
30º -14,86 15,14 50,46 29,99 0,01 0,03 30,41 -0,41 1,36 
0º 14,77 14,77 4,10 0,20 -0,20 0,05 0,53 -0,53 0,15 

 

In spite of not being useful for control purposes the roll and pitch angles 

were tested to verify if they were consistent with the data already obtained for 

yaw. Similar results to the yaw were obtained proving that the IMU is producing 

accurate data. 

The data comparison for roll and pitch is shown in Figure 34. 



44 
 

 

Interpretation of the previous figure allow to conclude that without the 

filter, the roll (green plot) is acceptable but not perfect, but the pitch (orange 

plot) is way too far from acceptable. The filter is well designed, and results could 

be seen in the purple and pink plots that shown the roll and pitch respectively. 

7.1.2 Encoders validation 

The original encoders assembled in the car were chose originally due to 

the easier implementation factor. In an early stage were used hall effect sensors 

that directly read the magnets from the rotors. This choice proved to be an 

insufficient one because of their resolution. Taking into account that the velocity 

values are important to the controller, the encoders’ resolution of only 7 pulses 

per turn of the wheel showed to be not sufficient. Some improvements were 

made to increment this resolution, using Arduino function to caption change of 

value instead rising, allowing to have 14 pulses per revolution. With this 

environment and knowing that one revolution of the wheel corresponds to 

200mm, means that per each pulse the car moves approximately 14.3 mm 

forward. 

A new pair of encoders improved the resolution to 400 pulses per 

revolution. This means that between each pulse the car moves approximately 

0.5 mm forward, allowing to have more detail in the car velocity which is 

Figure 34 - Roll and Pitch comparison 
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extremely important in the context of this dissertation. It is important to mention 

that the wheel to encoder ratio is one to one. 

The accuracy of the distance is good enough with both encoders and that 

is shown in Figure 35 and Figure 36. 

 
Figure 35 - Rear left distance comparison 
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Figure 36 - Rear right distance comparison 

The plots in green and blue represent the distance measured by the low-

resolution encoders. In purple and red it is possible to see the distance 

measured by the encoders with high resolution. 

The low resolution causes a big impact on speed values because of the 

lack of readings, as shown in Figure 37. 

 

 
Figure 37 - Speed comparison 

A visible peak described by the two encoders was caused by the car 

start, mechanical clearances, and the choice of motors with low torque. Besides 
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that, the accuracy of the speed was improved when the new encoders were 

used, it is possible to see that by evaluating the purple and red plots. 

It was possible to conclude that the speed graph had a strange shape, to 

reshape the speed graph a lowpass filter was implemented. The MATLAB 

function lowpass(x,wpass) allowed to obtain good results shown in Figure 38 

 

 
Figure 38 - Speed low-pas filter 

To validate the encoders, Qualisys system was used again. After a new 

calibration of the system good results were obtained, showing that the speed in 

both systems were identically the same. The results for straight line are shown 

in Figure 39. 

 
Figure 39 - Speed comparison 
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To be more visible, two J-shaped curves were performed to evaluate the 

difference between the speed of each wheel. The first curve consists in a 

straight line ending in a left turn. The other ended in a right turn. The results are 

shown in Figure 40. 

 
Figure 40 - Left and right turn wheel speed comparison 

7.2 Controller comparison 

On this section, the results obtained for the control methods are shown. It 

was chosen a test were the car start in a 40° angle at it was expected to drive 

until follow the 0° angle as reference, moving in straight line until the end. 

In preliminary tests, the controller values obtained before do not result as 

expected, causing crashes. 

Two control methods were used and modified trying to achieve stability 

and a more accurate controller. The LQR and PID gains were changed until the 

stability was achieved. The new gains and simulation are shown in the next two 

sub-sections. 

7.2.1 LQR implementation 

The results obtained with this controller were influenced by the physic 

limitations of the steering and the real response of the system. The best 

simulation obtained to control the car had a new Q matrix that was: 

𝑄 =
0.1 0 0
0 0.001 0
0 0 0.01

 
 

with 𝑅 = 1 × 10  and the resulting gains were: 



49 
 

𝐾 = [0.1294 0.0361 0.3162] 

The results obtained in these conditions provide the step response that is 

shown in Figure 41. 

 
Figure 41 - LQR Step response 

In comparison with the projected controller shown before, it is possible to 

see that this one is slower. In practice show low repeatability and don’t achieve 

the desired direction. The trajectory made by the car (blue plot) is shown in 

Figure 42. 

 

 
Figure 42 - LQR Trajectory 
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Despite the car’s attempts to follow the desired direction it was never 

able to finish the trajectory pointing at 0 degrees direction. Perhaps if it has 

more time and distance, the results would be better.   

7.2.2 PID implementation 

As well as the LQR, the PID had also changed configuration to improve 

control. For that new values were strategically changed until the results were 

obtained, and the values were: 

𝑃 = 14 

𝐼 = 0 

𝐷 = 6  

The achieved step response is shown in Figure 43. 

 
Figure 43 - PID Step response 

Evaluating the response, it is possible to see that this response better 

from a theoretical perspective. 

This last sentence could be confirmed considering the results obtained 

with the car using PID controller. The same test was repeated, and the results 

are shown in Figure 44. 
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Figure 44 - PID Trajectory 

Evaluating the above results, it is possible to understand that the desired 

direction was successfully obtained because the car was able to follow the 

same direction since halfway until the end.  

7.3 Torque vectoring cases of study 

To evaluate the developed code inside the Arduino Due, different cases 

were studied. The cases were: 

Case 1: Steering and yaw moment aligned (no understeering -> apply 

normal tv) 

Case 1.1: Turn right (steering & throttle position as inputs): 

Calculate the slip of the outer to the inner wheel, equation (15) written as 

slip=rpm0/rpm1. 

Case 1.1.1: Wheels are not slipping 

- Increase torque on outer wheel (ch2 > 1490) 

- Increase brake on inner wheel (ch2 < 1490) 

Case 1.1.2: Outer Wheel is slipping 

- Decrease torque on outer wheel (ch2 > 1490) 

- Decrease brake on outer wheel (ch2 < 1490) 

Case 1.1.3: Inner Wheel is slipping 
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- Decrease torque on inner wheel (ch2 > 1490) 

- Decrease brake on inner wheel (ch2 < 1490) 

Case 1.2: Turn left (steering & throttle position as inputs): 

Calculate the slip of the outer to the inner wheel equation (15) written as 

slip=rpm1/rpm0. 

Case 1.2.1: Wheels are not slipping 

- Increase torque on outer wheel (ch2 > 1490) 

- Increase brake on inner wheel (ch2 < 1490) 

  Case 1.2.2: Outer Wheel is slipping 

- Decrease torque on outer wheel (ch2 > 1490) 

- Decrease brake on outer wheel (ch2 < 1490) 

Case 1.2.3: Inner Wheel is slipping 

- Decrease torque on inner wheel (ch2 > 1490) 

- Decrease brake on inner wheel (ch2 < 1490) 

Case 2: Steering and yaw moment are not aligned (understeering) 

Case 2.1: Turn right (steering & throttle position as inputs): 

Do not turn inner wheel 

Case 2.2: Turn left (steering & throttle position as inputs): 

Do not turn inner wheel 

Case 3: No steering or no acceleration and braking, only use hackerman 

geometry configuration: 

Case 3.1: Turn right (steering & throttle position as inputs): 

Turn wheels at input speed 

Case 3.2: Turn left (steering & throttle position as inputs): 

Turn wheels at input speed 

7.4 Model validation 

To validate the torque vectoring model the code was translated in java to 

get responses of the code on the console. The model was tested on:  

- Symmetry for the right and left wheel  

- Influence of the tv-multiplier 
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- Effect of the steering and throttle input on the tv 

Case 1.1.1 & 1.2.1: Wheels are not slipping 

Vertical axis: Throttle input increase of the outer wheel in comparison to 

the inner wheel that remains constant. 

Horizontal axis: Steering angle for turning right (0 = 1640) and for turning 

left (0 = 1340) to the maximum steering angle 

The torque applied to the outer wheel depends on the steering angle, the 

throttle input, and the tv-multiplier. This data are shown in Figure 45. 

 

 
Figure 45 - TV applied to the outer wheel (no slip) 

 

Case 1.1.2 & 1.2.2: Outer Wheel is slipping 

Vertical axis: Throttle input increase of the outer wheel in comparison to 

the inner wheel 

Horizontal axis: Steering angle for turning right (0 = 1640) and for turning 

left (0 = 1340) to the maximum steering angle 

If the outer wheel is slipping in the tv operating mode, the torque on the 

outer wheel is decreased. It is still bigger than the throttle input (effect of traction 

control can be adapted). This data are shown in Figure 46. 
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Figure 46 - Traction control applied to the outer wheel 

 

Case 1.1.3 & 1.2.3: Inner wheel is slipping 

Vertical axis: Throttle input decrease of the inner wheel in comparison to 

the outer wheel 

Horizontal axis: Steering angle for turning right (0 = 1640) and for turning 

left (0 = 1340) to the maximum steering angle 

If the inner wheel is slipping in the tv operating mode, the torque on the 

inner wheel is decreased. It is smaller than the throttle input (effect of traction 

control can be adapted). 

Inverting the torque vectoring model for braking the inner wheel 

increases the braking input (Electronic Stability Control - Esc). 

Inverting the traction control model, it can be used as anti-lock braking 

system if there is slip on inner wheel, this data are shown in Figure 47. 

 

 
Figure 47 - Traction control applied to the inner wheel 
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The theoretical model could not fully be implemented on the car (the slip 

of the wheels cannot be obtained). The diagram is presented on Table 8. 

Table 8 – Theoretical model vs implemented model 

Theoretical model Implementation in the car 

  

 

Nevertheless, a torque vectoring model, which uses the steering input 

and the throttle input of the remote as well as the yaw rate of the IMU, was 

implemented in the car. 

 
Driving behavior of the car: 

- The driving behavior of the car in torque vectoring mode could be 
optimized by following aspects: 

o Smaller curve radius 
o Faster curve speed 
o Acceleration: 

 Torque vectoring (increases torque of the outer wheel) 
 Traction control (decreases torque independently for both 

wheels if there is slip) – theoretical implementation 
o Braking: 

 Electronic stability control (increases the braking of the 
inner wheel to help the car to turn) 

 Anti-lock braking system (decreases the braking 
independently for both wheels if there is slip) – theoretical 
implementation 
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7.5 Tests results 

The first step in this part was to check the telemetry measured in the car. 

To check if it was accurate the time and the delay was considered. Knowing 

that the trajectory was time based, and the throttle was activated when the time 

correspond to exactly five seconds, it was possible to compare the commands 

sent with the telemetry received and conclude that the maximum delay was 

around one second. Evaluating the overall system, the delay appears to be 

mostly inside of the MATLAB running program (MATLAB -> DAC) instead of the 

wireless communication system. 

For better understanding of the telemetry, the data received during the 

tests are shown in tables 9, 10, 11 and 12 explaining each relevant part. 

Table 9 - Wheel speed comparison 

Wheel 
Speed LEFT TURN RIGHT TURN 

NO 
TV 

  

TV * 
1,5 
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TV * 
1,75 

  
 

The left turn of the car starts at 12s, when the speed of the right wheel 

of the car increases. 

The right turn of the car starts at 12s, when the speed of the left wheel 

of the car increases. 

The wheel speed obtained shows that in torque vectoring mode the 

speed of the outer wheel increases more compared to the speed of the inner 

wheel. 

 

Table 10 - Steering input comparison 

STEERING 

INPUT 

LEFT TURN RIGHT TURN 

NO TV 
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TV * 1,5 

  

TV * 1,75 

  

 

The steering of the turn starts at 12s. The steering prior and after to that 

was performed by PID controller using Qualisys data to drive the car in a 

straight line. 

Although the initial conditions were different for each curve, it was 

possible to verify that in the three tests carried out on each side the behavior 

was similar. 
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Table 11 - Throtle input comparison 

THROTTLE 

INPUT 

LEFT TURN RIGHT TURN 

NO TV 

  

TV * 1,5 

  

TV * 1,75 

  

 

The steering of the turn starts at 12s and the throttle send to the car was 

constant as could be seen in the blue plot, leaving the torque management for 

the controller programed inside the Arduino Due. 

Similarly to what happened with the steering, it was possible to verify that 

the behavior of the throttle send it for the car was exactly the same in each test, 
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leaving the management of the power for the controller programed inside the 

Arduino Due. 

Table 12 - Yaw and X-speed comparison 

YAW vs 

X-Speed 

LEFT TURN RIGHT TURN 

NO TV 

  

TV * 1,5 

  

TV * 

1,75 

  

 

The steering of the turn starts at 12s. 

The yaw rate was used to verify whether the car is turning (detect 

understeering behavior). The dead zone for the yaw moment (<1 for left turns & 

> -1 for right turns) was defined as sufficient.  
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The x-speed of the car increases with the torque vectoring mode. 

Now that the controller has been chosen and the telemetry has been 

shown, the torque vectoring implemented on the state machine needed to be 

tested too. To evaluate if torque vectoring makes any difference in trajectory, 

some comparison tests were performed. 

The car was programmed to start the trajectory in a straight line and then 

perform a right or left turn. It is important to explain that in each test (right and 

left) all the conditions were maintained, the only difference between each test 

was the toggle switch in the remote controller turned on activating the torque 

vectoring. The results for each pair of tests are presented in Figure 48. 

 
Figure 48 - Left and right turn comparison 

In the environment of the laboratorial tests, sending a signal of 0.8V for 

the steering corresponding to 𝛿 = 14.29° = 0.249 𝑟𝑎𝑑 and using equation (41), it 

was expected to have a left turn with the expected radius 𝑅 ≈ 1𝑚. Evaluating 

Figure 48 it was possible to determine that the radius of the trajectory described 

was bigger than the expected, probably caused by the understeer of the car on 

the arena.  

The activation of the torque vectoring forces the car to describe the turn 

in a minor radius, improving the previous results reaching the expected curve 

radius and reducing the understeer of the car. 

 In a limited space like Qualisys arena, the starting point had to be moved 

in order to have similar trajectories.  

The major struggle was the inversion of the signal to the ESC 

responsible for speeding up the right wheel, sometimes it was not able to 

deliver the signal with efficiency and the car tends to slow down. However the 
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car ended up with good results, reducing the radius of the curve and having the 

best control of the PID in the straight part. 

Despite all the extra effort associated with communications and 

hardware, good results were successfully achieved with these controllers. 
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8. Conclusions 

Between all the setbacks during this time, the purpose of this work was 

successfully reached. 

This work provides a new platform able to be used in different control 

projects. The car was tested with the Raspberry Pi 3 but some issues related to 

the delay between Qualisys and the car were not solved in due time, so this 

configuration were set aside, but remained able to use as future 

implementation.  

The results obtained with the electric differential were good and prove 

that the torque vectoring allows the car to turn in a small radius of curvature, 

proving that the developed platform has a good capability to realise different 

tests describing the expected trajectory. 

The weakest part of all the assembly were probably the ESC’s because 

between all the setbacks, the fact that this part doesn’t allow the braking of the 

wheel left us in a situation that only the rise of power is possible. 

The Qualisys system was a very important tool to this dissertation but 

was noticed that some unexpected delays occur from time to time. In the 

beginning the calibration was very poor letting the car without reference with the 

lack of data. A new calibration of the arena proves to be enough to never lose 

sight of the car inside the arena. 

Since most of the work developed relies on the assembly and 

connections between different components, the knowledge achieved in terms of 

communications and programming languages was very satisfactory.  

With Traxxas remote, good results were achieved too, all the setup 

proves to be reliable as well avoiding the use of normal batteries. It would be 

possible to assemble a battery charger inside the remote but once that doesn’t 

affect the results achieved because in the lab the majority of the work is done 

with the remote connected to a computer and for that no batteries are needed. 

In the end the reliability of the state machine proves to be good because 

the transition from one state to other occur immediately without delay. 

One of the setbacks mentioned was the upgrade of the encoders, but the 

proto-board developed proved to be a good choice because the Pull-up resistor 
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was easily implemented. On the other hand, the most intricate part were the 

encoders’ mounts’ construction and the resizing of the belts. 

In general, the objectives were achieved with success despite all the 

setbacks that are normal in a dissertation like this. 

8.1 Future work 

To complement the work started here, it would be to upgrade even more 

the Arduino code to have a better controller to Torque vectoring and maybe 

using GPS system when it is outdoors.  

The upgrade of the ESC’s is essential because the results are better as 

well as this should increase the expected lifetime of the motors.  

To test if the Raspberry is a good solution or not, more time need to be 

invested to understand why so long delays were visualised. One possible 

solution would be set aside the state machine configuration and use only the 

Raspberry Pi, but for that other solutions are available already in laboratory and 

could also be evaluated. 
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