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Abstract

The geometry of tree space Tn introduced by Billera, Holmes, and Vogtmann provides an effective
way of comparing phylogenetic trees in the form of the geodesic distance, i.e. the length of the shortest
path from one tree to another. We study and implement the first polynomial-time algorithm for finding
geodesic paths in tree space Tn, proposed by Owen and Provan. We focus on other graph problems
and algorithms related to the Geodesic Treepath Problem, namely the maximum flow problem. Our
results show that the geodesic distance can be efficiently computed in practice with the correct choice of
algorithms and data structures, confirming the theoretical results we derived.
Keywords: Geodesic distance, phylogenetic trees, Geodesic Treepath Problem, Complexity, Graph
Theory

1. Introduction

Phylogenetic trees are trees which depict evolu-
tionary relationships between entities, which are
typically biological species or strains. These trees
are often constructed by algorithms which compare
DNA sequences from selected parts of the genome
using some distance measure (e.g.: the Hamming
distance). However, the resulting trees change de-
pending not only on the selection of genes or cod-
ing regions for the DNA sequences but also on the
choice of the tree-building algorithm. From this
uncertainty arises the need for comparing phylo-
genetic trees, and to this effect several measures
have been proposed [6]. The geometry of tree
spaces proposed by Billera et al. [1] indeed pro-
vides us with one such distance measure, which
is the length of a geodesic path in a defined tree
space Tn, a quantity that shall henceforth be called
geodesic distance. The geodesic distance seems
to be the most appropriate quantitative compari-
son, since it incorporates aspects of tree topology
and numerical edge lengths in a single measure,
whereas other measures often lose information by
focusing exclusively on tree topology and cannot
be computed efficiently.

The Geodesic Treepath Problem (GTP) is the
problem of finding the geodesic path between two
trees in tree space Tn. The first polynomial-time
algorithm able to solve this problem was presented
by Owen and Provan [5], seeing as two previous
algorithms by Owen [4] and by Kupczok et al. [3],
had exponential time complexity. In this thesis we
intend to examine and implement this polynomial-

time algorithm, to be referred to as the GTP algo-
rithm. We will also perform experimental analysis
of the time and space complexity of different ver-
sions of the algorithm, and verify whether our im-
plementation is consistent with the theoretical anal-
ysis.

The GTP algorithm relies on an iterative ap-
proach that aims to optimize path length at each
step, given some adequate initial path. The con-
ditions for a path between two trees to be the
geodesic path were introduced in [4], and in [5]
they were formulated as the problem of finding a
minimum weight vertex cover in subgraphs of a
specially defined bipartite graph called the incom-
patibility graph. In our thesis we describe the de-
tails of reducing the minimum weight vertex cover
problem in a bipartite graph to a maximum flow
problem in a flow-equivalent network. From there
we introduce and explore some exact maximum
flow algorithms and their worst-case time complex-
ities for our specially defined networks, which is dif-
ferent than the worst-case time complexity in gen-
eral networks. The exact algorithms we study are
Dinitz’s algorithm and Edmonds-Karp, two algo-
rithms that derive from the Ford-Fulkerson method.
Assuming that the input G = (V,E) is a flow-
equivalent network of some incompatibility graph,
we derive a bound of O(|V ||E|) for the time com-
plexity of both these algorithms. In addition, we
briefly overview some (1 − ε)-approximation algo-
rithms which improve this time complexity at the
expense of a relative error.
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2. Background
2.1. Tree Space
Let Tn be the set of trees which have exactly n
leaves. Any tree T ∈ Tn has at maximum n − 2
internal edges, i.e. edges whose endpoints are not
leaves. Therefore, a given tree with variable inter-
nal edge lengths can be represented as a point in
n− 2 dimensional space with positive coordinates,
which we call an orthant of Rn−2.

Given an edge e belonging to a tree T a split
σe = Xe|Xe is defined as a partition of the tree’s
leafset into two disjoint subsets Xe and its comple-
ment Xe, resulting from the removal of edge e from
T . Given two edges e, f (from the same or from
two different trees with n leaves each), the splits σe

and σf are said to be compatible if at least one of
the following

Xe ∩Xf , Xe ∩Xf , Xe ∩Xf , Xe ∩Xf

is the empty set. Let X ,Y be distinct sets of splits.
X is said to be a compatible set of splits if any two
splits in X are compatible. X is said to be compat-
ible with Y if x is compatible with y for any x ∈ X
and y ∈ Y.

A tree can therefore be defined by a set of leaves
and by a correspondence between splits and the
respective edge length. Hence we shall denote a
tree T ∈ Tn as T = (X, E), where X is the set of
leaf labels and E is a set of splits/edges, with the
addition of a function |.|T : E → R+ that assigns
a positive length to each edge. It can be shown
that there are exactly (2n− 3)!! non-identical trees
in Tn,[6, 2] non-identical trees being trees which do
not have the exact same set of splits.
Tn is path-connected [1], which means that

through continuous contraction and expansion of
these unique edges one can transform any T1 ∈ Tn
into a different T2 ∈ Tn, along a continuous path
Γ = {T (λ) ∈ Tn : 0 ≤ λ ≤ 1}. For any given tree
T ∈ Tn the set of its n− 2 splits is compatible, and
any set of n − 2 compatible splits (of a leafset of n
elements) defines a valid tree. In other words, two
splits are compatible if and only if they can coexist
in the same tree. If two trees each have an inter-
nal edge corresponding to the same split we say
that this edge is common between the two trees. If
there are no common edges we say the trees are
disjoint. Geometrically, the tree space Tn can be
seen as a collection of (2n−3)!! orthants of dimen-
sion n− 2.

Given T1, T2 ∈ Tn, the cone path between
these trees corresponds to uniformly contracting all
edges in T1 until their lengths are zero and then
uniformly expanding them until arriving at tree T2.
This path may or may not be the geodesic path, as
evidenced in Figure 1, adapted from [5].

Figure 1: Embedding of T4 on R3. Path P is the cone path
between T1 and T2 while P ′ is the geodesic path.

2.2. Geodesic Path properties
Given T = (L, E), T ′ = (L′, E ′) ∈ Tn with dis-
joint set of splits and A = (A1, ..., Ak) and B =
(B1, ..., Bk) partitions of E and E ′ respectively, as-
sume that

(P1) For each i > j, Ai and Bj are compatible
sets.

Then B1 ∪ ... ∪ Bi ∪ Ai+1 ∪ Ak is a compatible set
for all 1 ≤ i ≤ k, and therefore defines a tree Ti

belonging to the orthant generated by this set, de-
noted by Oi = O(B1 ∪ ... ∪ Bi ∪ Ai+1 ∪ ... ∪ Ak).
P = ∪k

i=1Oi forms a connected space and we call
P a path space with support (A,B). The short-
est path from T to T ′ in P is called a path space
geodesic for P. Gamma is a path space geodesic
with support (A,B) if Γ satisfies (P1) and the fol-
lowing property:

(P2)
||A1||
||B1||

≤ ||A2||
||B2||

≤ ... ≤ ||Ak||
||Bk||

.

where ||Ai|| =
√∑

e∈Ai
|e|. A path space satis-

fying (P1) and (P2) is called a proper path space,
and the respective path space geodesic is called a
proper path. Furthermore, if all the inequalities in
the above equation are strict, Γ is assured to be the
geodesic path between T and T ′. In other words,
Γ is the geodesic between T and T ′ if it satisfies
(P1), (P2) and the following condition:

(P3) For each pair (Ai, Bi), there is no partition
C1 ∪ C2 of Ai and D1 ∪D2 of Bi such that

C1, C2, D1, D2 are all non-empty, C2 is compatible
with D1 and ||C1||

||D1|| <
||C2||
||D2|| .

Of the necessary and sufficient conditions for
finding the geodesic path between two trees, (P3)
suggests a procedure for iteratively improving upon

2



a starting proper path, such as the cone path. The
condition is only satisfied if for each support pair no
such partition exists in the conditions described by
(P3).

The incompatibility graph G(A,B) is a bipartite
graph G = (A ∪ B,E) such that A ⊆ E , B ⊆ E ′

correspond to node sets on the left and right sides
of G(A,B) respectively, and an edge (a, b) ∈ E
exists if a ∈ A and b ∈ B are incompatible edges,
i.e. the splits they induce in their respective tree
are incompatible.

In essence, the Extension Problem rewrites con-
dition (P3) as the problem of finding an indepen-
dent set in the incompatibility graph. We show that
this can be solved by performing a maximum flow
computation in a related graph, with a crucial in-
termediary step provided by the max-flow min-cut
theorem.

3. The GTP Algorithm
3.1. Overview
As explained in the previous section, the (P3) con-
dition hints at a procedure for iteratively improving
upon a chosen initial proper path, until the length is
minimal. Provided that two given trees are disjoint
(the corresponding set of splits is disjoint), the pro-
cedure detailed in Algorithm 1 does precisely this.

Given input T1, T2 ∈ Tn such that T1 = (L, E)
and T2 = (R, E ′), the procedure begins by building
a simple path between the two trees, represented
as a support pair (A,B) where A and B are ordered
vectors representing partitions of E and E ′ respec-
tively. Initially A = (E) and B = (E ′) represent the
cone path, and the incompatibility graph G of T1

and T2 is built.
The algorithm enters a loop that will partition

the sets E and E ′ depending on the existence of
solutions to the Extension Problem, modifying the
contents of the support pair (A,B) in the process.
When the sets cannot be partitioned further, the
algorithm terminates returning (A,B)

The procedure for dealing with pairs of trees
whose edge sets are not necessarily disjoint is
done by splitting each tree at those common edges
to form two forests of disjoint subtrees, where sub-
trees in each forest are indexed by their parent
edge. This parent edge can be the root edge of
the respective tree, which is always present in the
set of common edges between any two trees. This
allows us to form a collection of pairs of disjoint
subtrees P = {(T1(e), T2(e)) : e ∈ E ∩ E ′}, and we
apply the previously explained disjoint trees ver-
sion of the GTP algorithm for each of these pairs.
The support pairs of the geodesic path between
each pair of subtrees is then used to form the full
geodesic path between T1 and T2, and the cor-
responding distance. Assuming |E ∩ E ′| = r, let
(A1(l), ..., Akl

(l)),(B1(l), ..., Bkl
(l)) be the support

Algorithm 1: The GTP Algorithm for disjoint
trees.
Input: T1 = (L, E), T2 = (R, E ′) ∈ Tn disjoint

n-trees
Output: Geodesic distance between T1 and

T2

G := incompatibility graph of T1 and T2;
w := dictionary of vertex weights;
A := (E),B := (E ′);
while True do

for ( i = 0; i < |A|; i++ ) {
A := i’th element of A;
B := i’th element of B;
G(A,B) := subgraph of G induced by
A and B;

for ( e ∈ A ) {
w[e] = |e|2

∥A∥2

for ( e ∈ B ) {
w[e] = |e|2

∥E′∥2 ;

G′ := flow-equivalent network of G;
R := residual matrix of applying max
flow algorithm to G′;
C1 ∪D2 := min. weight vertex cover
of G(A,B) computed from R;
// (C1 ⊆ A,D2 ⊆ B)

C2 = A \ C1, D1 = B \D2;
w′ := total weight of C1 ∪D2;
if w′ < 1 then

Replace A with C1, C2 in A;
Replace B with D1, D2 in B;
break;

if w ≥ 1 then
return
[∥A1∥+ ∥B1∥, ..., ∥Ak∥+ ∥Bk∥];
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for the geodesic path beteen a given subtree pair
(T1(e), T2(e)) ∈ P. Then the length of the geodesic
path between T1 and T2 is given by the following
value:

||(||A1(1)||+ ||B1(1)||, ..., ||Ak1(1)||+ ||Bk1(1)||,
...,

||A1(r)||+ ||B1(r)||, ..., ||Akr (r)||+ ||Bkr (r)||,
|e1|T1 − |e1|T2 , ..., |er|T1 − |er|T2)||

Algorithm 2: The GTP Algorithm admitting
common splits.
Input: T1, T2 ∈ Tn
Output: The geodesic distance between T1

and T2

C := E1 ∩ E2 //T1(i), T2(i) are subtrees of
T1, T2 indexed by the same e ∈ C
r := |C|;
P1 := {T1(i)}ri=1;
P2 := {T2(i)}ri=1;
v := empty list;
for ( i = 1; i < r; i++ ) {

p := result of Algorithm 1 applied to T1(i)
and T2(i);

Concatenate list v with list p;
if ei is not the root edge of T1 and T2

then
diff := ||ei|T1 − |ei|T2 |;
Append diff to list v;

L := length of list v;

return
√∑L

i=1 v[i]
2

3.2. Time and Space Complexity
Taking T1, T2 ∈ Tn as input, the algorithm first de-
termines the set of splits belonging to both trees.
Each tree has n−2 internal edges, and so the time
for computing each split set is O(n). Set intersec-
tion can then be implemented in linear time using
hash tables. Each tree is partitioned according to
the common split set, and the version of the GTP
algorithm for disjoint trees is applied afterwards to
each pair of subtrees indexed by a given split. As-
sume that the partitions induced by slicing the trees
at their common edges are given respectively by
{T1(i)}ri=1 and {T2(i)}ri=1. Let ni be the number of
leaves of T1(i) and T2(i), other than a possible root
node of degree 1.

Given T1(i) and T2(i), the disjoint trees version
of the GTP algorithm determines their incompati-
bility graph. Since they both have ni − 2 internal
edges each, the worst case is when O(n2

i ) pairs of
corresponding splits are incompatible. Determin-
ing the compatibility of two splits using bitwise op-
erations on the split bitmasks we describe in the

implementation details takes time O(ni), meaning
that the worst case time complexity for the con-
struction of these graphs is of O(n3

i ). On the other
hand, space needed to perform the relevant com-
putations is just O(n2

i ) in the worst case, which is
the space needed to store a representation of the
resulting incompatibility graph along with the re-
spective vertex weights. Thus the flow-equivalent
network should also take space O(n2

i ) in the worst
case. Since our implementation represents this
network as an adjacency list and a matrix of ca-
pacities, it is expected that space complexity will
be O(n2

i ).

Entering the main while loop in the disjoint ver-
sion of GTP, given A ∈ A and B ∈ B, the incompat-
ibility graph G(A,B) is a subgraph of G, and its ad-
jacency list can be constructed simply by scanning
the entries of the adjacency list of G corresponding
to the nodes in A ∪B, taking O(n2

i ) time.

In the flow-equivalent network, we have that
|V | = O(ni) and |E| = O(n2

i ) and thus time
complexity of maximum-flow algorithms we stud-
ied is O(|V ||E|) = O(n3

i ) for the case of the flow-
equivalent network of the bipartite graphs. How-
ever, the space needed is also the space taken by
the representation of the flow network given as in-
put. Since we chose to represent edge capacities
in a capacity matrix, the space needed in our case
is of O(n2

i ).

Determining the set of reachable nodes from the
source in the residual graph is done with a BFS
in time O(|E|) = O(n2

i ), and computing the vertex
cover from this cut takes time O(|V |) = O(ni).

If this vertex cover forms a valid solution to
the Extension Problem the support pair is recon-
structed accordingly, and since the number of in-
ternal edges of T1(i) and T2(i) is ni − 2, there exist
O(ni) solutions of the Extension Problem through-
out the execution of the disjoint trees GTP algo-
rithm in the worst-case.

Therefore each execution of the disjoint trees
version of the GTP algorithm should have worst-
case time complexity in O(n4

i ). Observe that∑r
i=1 ni = n + (r − 1) < 2n, since there are

r − 1 common edges between T1 and T2 and
r < n − 2. Due to these constraints the complex-
ity of the GTP algorithm remains unaltered when
applied to all pairs of subtrees. In other words,
if the execution time of the disjoint GTP algorithm
with T1(i), T2(i) ∈ Tni as input is given by f(n) =
an4 + ω(n4) for some a > 0 then the complexity of
GTP will be given by:
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r∑
i=1

f(ni) = a

r∑
i=1

n4
i +

r∑
i=1

ω(n4
i )

≤ a

(
r∑

i=1

ni

)4

+ ω(n4)

= an4 + ω(n4) = O(n4)

Using a similar argument, space complexity of
the GTP algorithm should be of O(n2), which is the
space needed to store and represent the capacity
matrices of the incompatibility graphs needed for
computations at any given point in the execution
of algorithm. What is meant by this is that even
though the total size of data structures built and
used can be greater than O(n2), they can be writ-
ten over and replaced as they cease to be useful.

3.3. Experimental results
For our experiments we used trees generated from
a continuous time birth-death model. The birth-
death process simply starts with a root node and
has two possible events, speciation(birth) or ex-
tinction(death). The time between two consecutive
speciation events is given by an exponential dis-
tribution with some parameter λ, and likewise with
parameter µ for two consecutive extinction events.
Here λ and µ are called birth rate and death rate
respectively, as they can also be seen as the aver-
age number of births or deaths occuring within one
time unit.All pairwise comparisons were performed
between 10 randomly generated birth death trees
with n leaves, for n = 20, 40, ..., 300. The cubic
root of the average execution time for each these
pairs is plotted in Figure 2. Linear regressions in
log-log scale for the data in these plots produces
a slope of 2.64 with r2 = 0.9892 for the version
of GTP with Dinitz’s algorithm and slope of 2.68
with r2 = 0.9988 for the Edmonds-Karp version,
as expected. If one ignores the obvious outlier
for n = 280 in the graph corresponding to the
Dinitz version of GTP, the linear regression in log-
log scale produces slope 2.58 with r2 = 0.9955.

Allocated memory for the GTP algorithm was
also measured for different max-flow algorithms,
and the square root of these results are presented
in Figure 3. Log-log scale linear regression of the
original results gave slopes of 1.51 and 1.57 with
r2 = 0.9798 and r2 = 0.9903 for the version of GTP
using Dinitz’s algorithm and the Edmonds-Karp al-
gorithm respectively. Performance of our GTP im-
plementation is once again consistent to the pre-
viously established time complexity of O(n4) and
space complexity of O(n2). However, average time
complexity seems to conform to O(n3), and this
may be explained by the number of solutions to the
Extension Problem not being as much as assumed

Figure 2: Cubic roots of execution time of the GTP algorithm
using different max-flow algorithms.

Figure 3: Square root of allocated memory for the GTP algo-
rithm using different max-flow algorithms.
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in the worst-case analysis, or the fact that the den-
sity of the incompatibility graphs decreases as n
increases.

4. Conclusion
We explored the concept of geodesic paths in tree
space and their usefulness in comparing tree struc-
tures in the field of phylogenetics. We have also
explained how to solve the Geodesic Tree Path
problem in polynomial time, and have implemented
an efficient algorithm to do so. In particular, this
involved understanding the procedure for iterative
path finding in tree space and graph problems such
as the minimum weight vertex cover, and required
the knowledge of the best algorithms and data
structures to solve such problems. We theoreti-
cally analysed all the chosen algorithms, and pro-
posed original proofs of their time complexity in the
given context, while also providing extensive de-
tail and explanation of the most important parts of
our code. Throughout all of this, we suggested
the incorporation of approximation algorithms to
achieve a more desirable time complexity. Finally,
we performed exhaustive experiments with syn-
thetic datasets to demonstrate the success of our
implementation in comparison with the theoretical
analysis.
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