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Abstract

The geometry of tree space Tn introduced by Billera, Holmes, and Vogtmann provides an effective way

of comparing phylogenetic trees in the form of the geodesic distance, i.e. the length of the shortest

path from one tree to another. We study and implement the first polynomial-time algorithm for finding

geodesic paths in tree space Tn, proposed by Owen and Provan. We focus on other graph problems

and algorithms related to the Geodesic Treepath Problem, namely the maximum flow problem. Our

results show that the geodesic distance can be efficiently computed in practice with the correct choice

of algorithms and data structures, confirming the theoretical results we derived.
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Resumo

A geometria do espaço de árvores Tn introduzida por Billera, Holmes e Vogtmann possibilita a comparação

de árvores filogenéticas através da distância geodésica, i.e. o comprimento do caminho mais curto en-

tre duas árvores. Nesta tese estudamos e implementamos o primeiro algoritmo de tempo polinomial

para encontrar geodésicas em Tn, que foi proposto por Owen e Provan. Estudamos outros problemas

e algoritmos relacionados com o problema de encontrar geodésicas em Tn (o Geodesic Treepath Prob-

lem), nomeadamente no problema do fluxo máximo numa rede. Os nossos resultados demonstram que

a distância geodésica pode ser eficientemente calculada em tempo útil com as escolhas corretas de

algoritmos e estruturas de dados, confirmando a nossa análise teórica.

Palavras Chave

Distância geodésica, Árvore filogenética, Geodesic Treepath Problem, Complexidade, Teoria de Grafos
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Introduction
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1.1 Motivation

Phylogenetic trees are trees which depict evolutionary relationships between entities, which are typi-

cally biological species or strains. These trees are often constructed by algorithms which compare DNA

sequences from selected parts of the genome using some distance measure (e.g.: the Hamming dis-

tance). However, the resulting trees change depending not only on the selection of genes or coding

regions for the DNA sequences but also on the choice of the tree-building algorithm. From this uncer-

tainty arises the need for comparing phylogenetic trees, and to this effect several measures have been

proposed [1]. The geometry of tree spaces proposed by Billera et al. [2] indeed provides us with one

such distance measure, which is the length of a geodesic path in a defined tree space Tn, a quantity that

shall henceforth be called geodesic distance. The geodesic distance seems to be the most appropriate

quantitative comparison, since it incorporates aspects of tree topology and numerical edge lengths in a

single measure, whereas other measures often lose information by focusing exclusively on tree topology

and cannot be computed efficiently.

1.2 Problem

The Geodesic Treepath Problem (GTP) is the problem of finding the geodesic path between two trees

in tree space Tn. The first polynomial-time algorithm able to solve this problem was presented by Owen

and Provan [3], seeing as two previous algorithms by Owen [4] and by Kupczok et al. [5], had exponential

time complexity. In this thesis we intend to examine and implement this polynomial-time algorithm, to

be referred to as the GTP algorithm. We will also perform experimental analysis of the time and space

complexity of different versions of the algorithm, and verify whether our implementation is consistent

with the theoretical analysis.

1.3 Organization

This thesis is divided into 5 chapters, including the current introductory chapter. The second chapter

aims to provide the necessary knowledge to understand the workings of the GTP algorithm, focusing on

the maximum-flow problem and its relevance to the problem of finding geodesic paths in Tn. Chapter

3 presents the GTP algorithm itself and discusses its time complexity as well as the concrete choices

made in our Python implementation to ensure consistency with the theoretical algorithm. Experimental

analysis of this implementation was done in Chapter 4 alongside other useful simulations which intend
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to interpret and explain the results. The concluding chapter sums up the results obtained and offers

suggestions for further research.
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Background
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In this chapter we outline the main characteristics of tree space Tn, and the conditions which describe

geodesic paths. It also includes further explanation on how these conditions relate to solving the mini-

mum weight vertex cover problem in bipartite graphs, which itself is efficiently computed by performing

a reduction to the maximum flow problem. We refer to [2] for the detailed construction of tree space Tn
and the study of its properties.

2.1 Tree Space and Geodesic Paths

Let Tn be the set of trees which have exactly n leaves. Any tree T ∈ Tn has at maximum n − 2 internal

edges, i.e. edges whose endpoints are not leaves. Therefore, a given tree with variable internal edge

lengths can be represented as a point in n − 2 dimensional space with positive coordinates, which we

call an orthant of Rn−2.

Definition 1. Given an edge e belonging to a tree T a split σe = Xe|Xe is defined as a partition of the

tree’s leafset into two disjoint subsets Xe and its complement Xe, resulting from the removal of edge e

from T . Given two edges e, f (from the same or from two different trees with n leaves each), the splits

σe and σf are said to be compatible if at least one of the following

Xe ∩Xf , Xe ∩Xf , Xe ∩Xf , Xe ∩Xf

is the empty set. Let X ,Y be distinct sets of splits. X is said to be a compatible set of splits if any two

splits in X are compatible. X is said to be compatible with Y if x is compatible with y for any x ∈ X and

y ∈ Y.

It can be shown that there are exactly (2n − 3)!! non-identical trees in Tn, [1, 6] non-identical trees

being trees which do not have the exact same set of splits.

Tn is path-connected [2], which means that through continuous contraction and expansion of these

unique edges one can transform any T1 ∈ Tn into a different T2 ∈ Tn, along a continuous path Γ =

{T (λ) ∈ Tn : 0 ≤ λ ≤ 1}. For any given tree T ∈ Tn the set of its n − 2 splits is compatible, and any

set of n − 2 compatible splits (of a leafset of n elements) defines a valid tree. In other words, two splits

are compatible if and only if they can coexist in the same tree. If two trees each have an internal edge

corresponding to the same split we say that this edge is common between the two trees. If there are

no common edges we say the trees are disjoint. Geometrically, the tree space Tn can be seen as a

collection of (2n− 3)!! orthants of dimension n− 2.

Example 1. Given T1, T2 ∈ Tn, the cone path between these trees corresponds to uniformly contracting

6



all edges in T1 until their lengths are zero and then uniformly expanding them until arriving at tree T2.

This path may or may not be the geodesic path, as evidenced in Figure 2.1, adapted from [3].

Figure 2.1: Embedding of T4 on R3. Path P is the cone path between T1 and T2 while P ′ is the geodesic path.

2.1.1 Geodesic Path properties

We now give a rundown of the conditions for determining a geodesic path between two trees. These

conditions were introduced and explained in [4] by formulating the problem of finding the geodesic path

as a touring problem, i.e. a problem of finding a shortest path in Euclidean space that visits an ordered

sequence of regions. They were subsequently summarized in [3], where the Extension Problem and

its formulation as a bipartite graph problem were first made known. We start by defining the first of the

three conditions, and by formalizing the notion of a path space.

Definition 2. Given T = (L, E), T ′ = (L′, E ′) ∈ Tn with disjoint set of splits and A = (A1, ..., Ak) and

B = (B1, ..., Bk) partitions of E and E ′ respectively, assume that

(P1) For each i > j, Ai and Bj are compatible sets.

ThenB1∪...∪Bi∪Ai+1∪Ak is a compatible set for all 1 ≤ i ≤ k, and therefore defines a tree Ti belonging

to the orthant generated by this set, denoted by Oi = O(B1 ∪ ... ∪ Bi ∪ Ai+1 ∪ ... ∪ Ak). P = ∪ki=1Oi

forms a connected space and we call P a path space with support (A,B). The shortest path from T to

T ′ in P is called a path space geodesic for P.

It is known that the geodesic in Tn between any two trees T, T ′ ∈ Tn is a path space geodesic
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for some path space between T and T ′. [3] We now present a necessary condition for a path space

geodesic to be the geodesic between T and T ′.

Theorem 1. [3] Given T = (L, E), T ′ = (L′, E ′) ∈ Tn and the geodesic Γ between them, Γ can be

represented as a path space geodesic with support A = (A1, ..., Ak) of E and B = (B1, ..., Bk) of E ′ if

(A,B) satisfies (P1) and the following additional property:

(P2)
||A1||
||B1||

≤ ||A2||
||B2||

≤ ... ≤ ||Ak||
||Bk||

.

where ||Ai|| =
√∑

e∈Ai
|e|. A path space satisfying (P1) and (P2) is called a proper path space, and the

respective path space geodesic is called a proper path.

Notice that if any of the inequalities in (P2) is not strict the sets in question can be merged to form a

new proper path, which means that there exists a support pair such that all inequalities are strict. The

following theorem is needed in order to provide a necessary and sufficient set of conditions for a proper

path to be a geodesic between two trees.

Theorem 2. [3] A proper path Γ from T to T ′ with support (A,B) satisfying (P1) and (P2) is a geodesic

if and only if the following condition also applies:

(P3) For each pair (Ai, Bi) there is no partition C1 ∪ C2 of Ai and D1 ∪D2 of Bi such that

C1, C2, D1, D2 are all non-empty, C2 is compatible with D1 and ||C1||
||D1|| <

||C2||
||D2|| .

2.1.2 The Extension Problem

Of the necessary and sufficient conditions for finding the geodesic path between two trees, (P3) suggests

a procedure for iteratively improving upon a starting proper path, such as the cone path. The condition

is only satisfied if for each support pair no such partition exists in the conditions described by (P3).

In order to explain how this can be formulated as a graph problem, let us provide the definition of the

incompatibility graph G(A,B).

Definition 3. The incompatibility graph G(A,B) is a bipartite graph G = (A ∪ B,E) such that A ⊆ E ,

B ⊆ E ′ correspond to node sets on the left and right sides ofG(A,B) respectively, and an edge (a, b) ∈ E

exists if a ∈ A and b ∈ B are incompatible edges, i.e. the splits they induce in their respective tree are

incompatible.

Recall also that an independent set in a graph G = (V,E) is a set U ⊆ V such that (u1, u2) /∈ E for

any u1, u2 ∈ U . The Extension Problem restates (P3) as a problem to be solved in the context of the

incompatibility graph.
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Definition 4. The Extension Problem in an incompatibility graph G = (A ∪ B,E) is to find non-trivial

partitions C1 ∪ C2 of A and D1 ∪D2 of B such that:

1. C2 ∪D1 corresponds to an independent set in G(A,B);

2. ||C1||
||D1|| <

||C2||
||D2|| .

Consider the following lemma, which will allow us to recast the Extension Problem as a minimum

weight vertex cover problem.

Lemma 1. A vertex cover of a graph G = (V,E) is a set C ⊂ V such that for every e = (u, v) ∈ E either

u ∈ C or v ∈ C. In a graph G = (V,E), I ⊆ V is an independent set in G if and only if V \ I is a vertex

cover of G.

Proof. Let I be an independent set in G. By definition, if u ∈ I and v ∈ I then it must be that (u, v) /∈ E.

The equivalent contrapositive is that if (u, v) ∈ E then either u /∈ I or v /∈ I i.e., u ∈ V \ I or v ∈ V \ I,

meaning V \ I is a vertex cover.

If weights are assigned to the vertices, the minimum weight vertex cover problem is to determine a

vertex cover with the smallest possible weight. The previous result illustrates the relationship between

an independent set and a vertex cover in a graph, and it leads us to the following theorem (adapted

from [3]), which reinterprets the Extension Problem as a minimum weight vertex cover problem.

Theorem 3. Let weights be assigned to vertices in G(A,B) according to the following:

we =


|e|2
‖A‖2 if e ∈ A
|e|2
‖B‖2 if e ∈ B

Then, a solution to the Extension Problem in G(A,B) exists if and only if the minimum weight vertex

cover has weight less than 1.

Proof. Consider the following equivalent expressions to the second condition in the definition of the

9



Extension Problem:

||C1||
||D1||

<
||C2||
||D2||

⇐⇒ ||C1||/||A||
||D1||/||B||

<
||C2||/||A||
||D2||/||B||

⇐⇒ (||C1||/||A||)2

(||D1||/||B||)2
<

(||C2||/||A||)2

(||D2||/||B||)2

⇐⇒ (||C1||/||A||)2

1− (||D2||/||B||)2
<

1− (||C1||/||A||)2

(||D2||/||B||)2

⇐⇒ ||C1||2

||A||2
+
||D2||2

||B||2
< 1

⇐⇒
∑
e∈C1

|e|2

||A||2
+
∑
e∈D2

|e|2

||B||2
< 1

Since C2 ∪D1 must be an independent set, the last expression simply states that the total weight of the

vertex cover C1 ∪ D2 is less than 1. In other words, a solution to the problem exists if and only if the

minimum weight vertex cover satisfies this requirement.

2.2 Max flow, min-cut and vertex cover

We will now demonstrate how the minimum weight vertex cover problem in a bipartite graph can be

solved by converting it into a maximum flow problem, with the crucial intermediate step supported by the

max-flow min-cut theorem. We start by defining the maximum flow problem and its related concepts:

Definition 5. Let G = (V,E) be a directed network with s, t ∈ V chosen to be source and sink nodes

respectively. It can be assumed without loss of generality that s has only outgoing edges and t has only

incoming edges. Define c : V × V → R+
0 as the capacity function. Let c(u, v) = 0 for any (u, v) /∈ E. A

flow f : V × V → R is a map such that:

• f(u, v) ≤ c(u, v) for all (u, v) ∈ E;

•
∑

u:(u,v)∈E f(u, v) =
∑

u:(v,u)∈E ; f(v, u) for any v ∈ V \ {s, t};

• f(v, u) = −f(u, v) for any (u, v) ∈ E.

The value of this flow is given by |f | =
∑

v:(s,v)∈E f(s, v). The max-flow problem is to find a flow g for the

network G such that |g| ≥ |f | for any other flow f . Given a flow f in the network G the residual network

Gf is defined as Gf = (V,Ef ) where Ef = {(u, v) ∈ V × V : cf (u, v) > 0} where the residual capacity

cf (u, v) is given by cf (u, v) = c(u, v)− f(u, v) for any (u, v) ∈ V × V .

Note that the previous definition of the residual network Gf makes it possible for Gf to have edges

which were not present in G, if these edges are the reverse edge of some edge in G. The notion of a
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minimum capacity cut presented below will be needed in order to establish the relationship between the

minimum weight vertex cover and the solution to the maximum flow problem.

Definition 6. Given a directed graph G = (V,E), s, t ∈ V source and sink nodes respectively, capacity

c : E → R+
0 and C ⊂ V we define an s − t cut (S, T ) to be a partition of V such that s ∈ S and t ∈ T .

The capacity of this cut is given by

c(S, T ) =
∑
{c(u, v) : (u, v) ∈ E, u ∈ S, v ∈ T};

Let XS ⊂ E be the edge set induced by the cut (S, V \ S) i.e:

XS = ((S × (V \ S)) ∪ ((V \ S)× S)) ∩ E;

The min-cut problem is to find an s − t cut (S, T ) such that c(S, T ) ≤ c(S′, T ′) for any other s − t cut

(S′, T ′).

For introducing the max-flow min-cut theorem we now give our proof of a statement relating the value

of a given flow in a network G = (V,E) to the flow of a certain cut in the same network.

Lemma 2. Define the flow of a cut (S, T ) of V to be:

f(S, T ) =
∑

(x,y)∈(S×T )∩E

f(x, y)−
∑

(y,x)∈(T×S)∩E

f(x, y)

If f is any flow in graph G = (V,E) with value |f | then f(S, V \ S) = |f |, for any cut (S, V \ S) of V .

Proof. If S = {s} then the statement is obvious from the definition of |f |. We now proceed by induction

on S. Assuming the statement is true for any cut (A, V \ A) such that |A| ≤ k, pick some set S with

|S| = k. Let S′ ⊂ V be such that |S′| = k + 1 and S′ = S ∪ v for some v ∈ V . We now only need to

consider the flow contribution of outgoing and ingoing edges from/to v. Notice that to obtain f(S′, V \S′)

outgoing edges flow is added to f(S, V \ S) and ingoing edges flow is subtracted from f(S, V \ S). By

conservation of flow this means that the flow of the cut remains unchanged, and using the induction

hypothesis we get f(S′, V \ S′) = f(S, V \ S) = |f |.

An adapted proof of the max-flow min-cut theorem is given ahead, for an alternative proof please see

Section 6.5 of [7]. Having provided that proof it will finally be possible to demonstrate the relationship

between the maximum flow problem and the minimum weight vertex cover problem.

Theorem 4 (max-flow min-cut theorem). The maximum value of an s − t flow is equal to the minimum

capacity over all s− t cuts.
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Proof. Suppose f is the maximum flow for a given graph G = (V ∪ {s, t}, E), and the corresponding

residual graph is Gf = (V,Ef ). Let S ⊂ V be set of vertices that are reachable from the source

s ∈ V in the residual graph Gf . From the previous lemma we know that f(S, V \ S) = |f | in G. For

|f | = f(S, V \S) = c(S, V \S) to be true it is necessary that all outgoing edges from S are fully saturated

and all ingoing edges have zero flow, by definition of flow and capacity of a cut. We prove that this is the

case by way of contradiction.

Suppose there is an outgoing edge e = (u, v) ∈ E with u ∈ S, v /∈ S such that f(u, v) < c(u, v). Then

cf (u, v) > 0 which implies v is also reachable from s in Gf , i.e. v ∈ S which contradicts our assumption.

Identically, if there is an ingoing edge e = (v, u) ∈ E with u ∈ S, v /∈ S such that f(v, u) > 0 then this

means f(u, v) = −f(v, u) < 0 which implies cf (u, v) = c(u, v)− f(u, v) > 0 since c(u, v) ≥ 0. Therefore

(u, v) ∈ Ef , which means that v is reachable from s in Gf , contradicting v /∈ S.

Now observe that |f | ≤ c(S, V \ S) for any flow f and any cut (S, V \ S):

|f | = f(S, V \ S) =
∑

(x,y)∈(S×(V \S))∩E

f(x, y)−
∑

(y,x)∈((V \S)×S)∩E

f(x, y)

≤
∑

(x,y)∈(S×(V \S))∩E

f(x, y)

≤
∑

(x,y)∈(S×(V \S))∩E

c(x, y)

= c(S, V \ S).

This means that the previously described cut S of all reachable nodes from s in Gf must be the min-cut

if f corresponds to the maximum possible flow value.

Theorem 5. Suppose G = (L ∪R,E) is an undirected bipartite graph with weighted vertices. Then the

minimum weight weight vertex cover can be found by solving a maximum flow problem in a related flow

network.

Proof. To construct the related flow network G′ a source node s is added which links to all nodes in L,

and a sink node t to which all nodes in R link to. Capacities for outgoing edges from s are set to the

weights of corresponding vertices in L and similarly for the sink t and vertices in R. All original edges

of G which link nodes in L to nodes in R are oriented from L to R and given infinite capacity. This

construction for bipartite graphs will be referred to as the flow-equivalent network of G, an example of

which can be seen in Figure 2.2. Consider the residual graph Gf produced by the max flow computation

in G′. The set of reachable nodes from s in Gf form a min-cut C and the minimum weight vertex cover

is then given by S = ((L \ C) ∪ (R ∩ C)), as shall now be seen: First note that the weight of this vertex

12



Figure 2.2: Flow network reduction of a bipartite graph with weighted vertices.

cover is equal to the capacity of the corresponding cut because, given i ∈ L and j ∈ R:

i ∈ S ⇐⇒ i /∈ C ⇐⇒ (s, i) ∈ XC ; j ∈ S ⇐⇒ j ∈ C ⇐⇒ (j, t) ∈ XC

Now assume that (i, j) ∈ Ef but i /∈ S,j /∈ S. This means that i ∈ C and j /∈ C which contradicts the

fact that (i, j) ∈ Ef , i.e. j is reachable from s in Gf so it should be the case that j ∈ C. By contradiction

S must then be a vertex cover.

2.3 Maximum flow algorithms

Several algorithms exist for solving the max-flow problem in polynomial time, and for now we shall restrict

our attention to two such algorithms: the Edmonds-Karp algorithm [8] and Dinitz’s algorithm [9]. These

two algorithms incorporate the principles of the Ford-Fulkerson algorithm, but unlike Ford-Fulkerson

are guaranteed to terminate in networks with irrational capacities [10]. These algorithms were also

chosen because they are relatively efficient, namely Dinitz’s algorithm, itself an improvement of the

Edmonds-Karp algorithm. Other maximum flow algorithms include the push-relabel method and the

method introduced by Orlin that builds upon the work of King et al. to find an O(|V ||E|)-time maximum

flow algorithm. These methods are less practical to implement, and their time complexity in the general

case does not provide improvements over the execution of Dinitz’s algorithm or the Edmonds-Karp

algorithm on flow-equivalent networks of bipartite graphs, as we will demonstrate. For an overview of

maximum flow algorithms, including those mentioned here, we refer to [11]. To close off this chapter

we will also go over some approximation algorithms that attempt to improve the time complexity of the

maximum flow problem at the expense of a relative error.

13



2.3.1 Edmonds-Karp algorithm

Definition 7. Given a flow network G = (V,E) with corresponding flow f , an augmenting path in Gf is

a path from source s to sink t in Gf that contains no cycles and along which minimum capacity is strictly

positive. A shortest augmenting path is an augmenting path of minimum possible length.

The Edmonds-Karp algorithm [8] works by finding a shortest augmenting path on which to send

additional flow at each iteration, until this path no longer exists. The path is found by performing a

breadth-first search starting on the source node, sending flow through the augmenting path and then

repeating the procedure until the sink is no longer accessible in the residual graph.

Algorithm 2.1: Edmonds-Karp max-flow algorithm.

Input: G = (V,E) with capacity c : E → R+
0 ,s, t ∈ V

Output: R residual network;
F := n× n zero flow matrix;
C := n× n capacity matrix;
while True do

Use BFS to find shortest augmenting path P with flow m;
if m=0 then

return C − F
else

for ( i < |P | ) {
F [P [i]][P [i+ 1]]+ = m;
F [P [i+ 1]][P [i]]− = m;

In order to find the time complexity of this algorithm consider the following results.

Theorem 6. [12] The total number of flow augmentations performed on a general flow network G =

(V,E) by the Edmonds-Karp algorithm is O(|V ||E|).

This bound can be improved in flow networks arising from the minimum weight vertex cover problem,

whose construction was detailed in the proof of 5. Our proof of this result is provided in the following

theorem.

Theorem 7. Let G = (L ∪ R ∪ {s, t}, E) be the flow network constructed from a bipartite graph, fol-

lowing the procedure detailed in the proof of Theorem 5. Then, given input G, the total number of flow

augmentations performed by the Edmonds-Karp algorithm is O(|V |).

Proof. Let G = (L ∪ R ∪ {s, t}, E) be a flow network in the conditions described. An edge (u, v) in a

residual network Gf of G is said to be critical on an augmenting path p if the residual capacity of (u, v)

is the minimum residual capacity of edges in path p. An augmenting path has at least one critical edge,
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and any critical edge belonging to an augmenting path disappears from the residual network after a

flow augmentation along that path. Since we have restricted our attention to networks arising from the

min-weight vertex cover reduction to max-flow, it shall be seen that O(|V |) edges can become critical,

as opposed to O(|E|) in the general case. These edges are precisely those which link s to nodes in

L and t to nodes in R. Suppose that f1, ..., fn is the sequence of flow augmentations performed up to

and including the nth iteration of the outer loop of 1. The sum of these flows is obviously also a flow

which is valid in the original network G. It is known that c(s, u) < c(u, v) for any (u, v) ∈ E and we assert

that additionally f(u, v) ≤ f(s, u), where f =
∑n

i=1 fi. The latter assertion is supported by the flow

conservation property, because any u ∈ L has only one incoming edge in the initial flow network G, and

may have more than one outgoing edge. It follows that c(s, u)−f(s, u) < c(u, v)−f(u, v), i.e. at no point

in the execution of the algorithm can (u, v) become a critical edge along an augmenting path. Note also

that originally G does not contain reverse edges, so only edges of the form (s, u) or (v, t) can become

critical, which amounts to |V | − 2 edges.

As previously stated, for each augmenting path that is found, at least one critical edge is also found.

In addition, once an edge is found to be critical it is reversed in the residual graph. Since only edges

containing source or sink can be critical, no augmenting path can be found containing the reverse of

these edges in the subsequent residual graph, because the search for this path is done by a breadth-

first search. Reversing an edge (u, s) would mean revisiting s, the starting node of the BFS. Similarly,

the BFS cannot reverse any edge of the form (t, v) because this would mean visiting the sink t first, at

which point the BFS would end.

Because augmenting paths are found using BFS, each iteration of the outer loop takes time O(|E|).

If |E| = Θ(|V |2), time complexity is O(|V ||E|) = O(|V |3) for flow networks resulting from the reduction

of the minimum weight vertex cover problem to the maximum flow problem. By the same token, the

time complexity of Edmonds-Karp for general flow networks is O(|V ||E|2), because in this case there

are O(|V ||E|) augmenting paths (as stated in Theorem 6) and each corresponds to one iteration of the

outer loop.

2.3.2 Dinitz’s algorithm

Dinitz’s algorithm uses a depth-first search to find a flow which disconnects the source from the sink in

a graph constructed from the residual graph at the beginning of each iteration [9]. This graph is called a

level graph and its definition is as follows:

Definition 8. Given the residual flow network Gf = (V,Ef ) of some flow network G = (V,E) with source
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s, sink t and flow function f , the level function level : V → N0 of Gf is defined for each v ∈ V as the

length of the shortest path from s to v in Gf , i.e. the number of edges in a path from s to v with the

minimum number of edges. The level graph GL = (V,EL) of Gf is a flow network where

EL = {(u, v) ∈ Ef : level(v) = level(u) + 1}

A blocking flow is a flow f ′ in GL such that the residual graph of GL with f ′ contains no path from s to t.

Algorithm 2.2: Dinitz’s max-flow algorithm.
Input: G = (V,E) with capacity matrix C
Output: R residual network;

f := 0 for all edges in E; // flow function

GL := level graph of residual graph Gf ;
while sink is reachable in Gf do

f := blocking flow of GL found using DFS;
Update level graph GL of new Gf ;

return C − F

In order to find the time complexity of this algorithm consider the following result about the number

of iterations performed by Dinitz’s algorithm, adapted from [13].

Theorem 8. Given any flow network G = (V,E) the number of iterations of Dinitz’s algorithm is at most

|V | − 1.

Proof. Consider an arbitrary iteration i and a vertex v 6= s, and let Ri = (V,Ei) be the residual graph

obtained after the ith iteration, Li = (V,E′i) the level graph of Ri and leveli : V → N the corresponding

level function. If P is any shortest path from s to v in Ri+1, then leveli+1(v) denotes the length of

P , by definition of the level function itself. Note also that any edge in Ri+1 either belongs to Ri or

is the reverse of some edge in Ri. If all edges in the path P already belong to Ri, then P is also a

path from s to v in Ri, but not necessarily the shortest one, i.e. leveli+1(v) ≥ leveli(v). Alternatively,

if P contains an edge (u,w) /∈ Ei then surely (w, u) ∈ Ei. Assuming (u,w) is the first such edge

occurring in the traversal of path P let P ′ be the path from s to u contained in P . Since every edge

in P ′ belongs to Ri the previous case applies and leveli+1(u) ≥ leveli(u). Having (u,w) /∈ Ei and

(u,w) ∈ Ei+1 allows us to state that the algorithm sent some flow through (w, u) between iterations i

and i+ 1, meaning that (w, u) belonged to Li and leveli(u) = leveli(w) + 1 from the definition of the level

graph. Similarly, it is also the case that leveli+1(w) = leveli+1(u) + 1, because (u,w) belongs to P , the

shortest path from s to v in Ri+1. From the last two equations and leveli+1(u) ≥ leveli(u) we can infer

that leveli+1(w) ≥ leveli(w) + 2 > leveli(w). We have thus showed that leveli+1(v) ≥ leveli(v) for any

v ∈ V \{s}. In particular we have leveli+1(t) ≥ leveli(t) and it is straightforward to see that this inequality

is strict, otherwise this would mean that there must be a shortest path from s to t which is shared between
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Ri and Ri+1. This contradicts the fact that a blocking flow was found at iteration i because then at least

one of the edges in this path would have been reversed. The fact that leveli+1(t) > leveli(t) for any

i implies that there can be at most |V | − 1 iterations, because the level of t is upper bounded by this

number.

The time complexity of Dinitz’s algorithm for a general network G = (V,E) is O(|V |2|E|). [9] As in the

case of the Edmonds-Karp algorithm, this bound can be improved for the types of networks which are of

interest in our case. Our proof of this improved time complexity relies on the fact that while the Edmonds-

Karp algorithm only finds a single shortest augmenting path at each iteration, Dinitz’s algorithm finds a

blocking flow which consists of all current shortest augmenting paths.

Theorem 9. Let G = (L∪R∪{s, t}, E) be the flow network constructed from a bipartite graph, following

the procedure detailed in the proof of Theorem 5. Then, given input G, time complexity of Dinitz’s

algorithm is O(|V ||E|) if |E| = Ω(|V |).

Proof. At each of the N = O(|V |) phases of Dinitz’s algorithm, the level graph is constructed with a

BFS in O(|E|) time. We have seen that there are O|V | augmenting paths in total found by executing the

Edmonds-Karp algorithm with input G. Augmenting paths of the same length found by Edmonds-Karp

form a blocking flow, which is found in each phase for Dinitz’s algorithm. For each path that is found by

a depth-first search in the level graph, there exists at least one critical edge of the form (s, u) or (v, t)

for u, v ∈ V which remains critical until the algorithm terminates, as previously shown in the proof of

Theorem 7. Suppose there are ni such paths found by the blocking flow at phase 1 ≤ i ≤ N , and each

of them has length O(|V |). Hence each path takes time O(|V |) to find and therefore the time for finding

a blocking flow is O(|V |ni). Because
∑N

i=1 ni = O(|V |), the total time complexity of Dinitz’s algorithm

becomes O(|V ||E|+ |V |2)) = O(|V ||E|) if |E| = Ω(|V |).

2.3.3 Maximum flow approximation algorithms

Algorithms for approximating the maximum flow of a network use various techniques. One such algo-

rithm uses the approach suggested by Christiano et al. [14] based on electrical flows and Laplacian

linear system solvers. This approach covers undirected graphs, but it is possible to reduce the directed

maximum flow problem into the undirected maximum flow problem to obtain a (1 − ε)-approximation of

maximum flow in 0 < ε < 1/2 in Õ(|E|4/3ε−3) time [15], where Õ(f(n)) is equivalent to O(f(n) logc(n))

for some constant c. The authors of these methods also suggest using smoothing and sampling tech-

niques to obtain an Õ(|E||V |1/3ε−11/3)-time algorithm for directed maximum flow. If |E| = O(|V |2) then
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these bounds become Õ(|V |8/3ε−3) and Õ(|V |7/3ε−11/3) respectively, which in either case is asymptot-

ically faster than the O(|V ||E|) = O(|V |3) time complexity of Dinitz’s algorithm and the Edmonds-Karp

algorithm for the flow-equivalent networks of bipartite graphs. However, it is important to recall that the

time complexities of the latter exact algorithms are of O(|V ||E|2) = O(|V |5) and O(|V |2|E|) = O(|V |4)

for general networks, and so it is entirely feasible that there exist better worst-case bounds for the time

complexity of the (1 − ε)-approximation algorithms mentioned. Later we will theoretically explore how

these approximation algorithms can be integrated in the GTP algorithm.
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3
The GTP Algorithm
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In this chapter we present the Geodesic Tree Path algorithm, [3] an algorithm which given two trees

is meant to determine the length of the geodesic path between them. We begin by describing the

whole procedure and its components and then move on to analyse the worst-case time and space

complexities theoretically achievable. Finally we explain some important aspects of our implementation

of this algorithm in Python and the choices made in order to make our implementation comply with the

theoretical boundaries that resulted from our analysis.

3.1 Description

3.1.1 The GTP algorithm for disjoint trees

As explained in the section relating to the Extension problem, the (P3) condition hints at a procedure

for iteratively improving upon a chosen initial proper path, until the length is minimal. Provided that two

given trees are disjoint (the corresponding set of splits is disjoint), the procedure detailed in Algorithm

?? does precisely this.

Given input T1, T2 ∈ Tn such that T1 = (L, E) and T2 = (R, E ′), the procedure begins by building a

simple path between the two trees, represented as a support pair (A,B) where A and B are ordered

vectors representing partitions of E and E ′ respectively. Initially A = (E) and B = (E ′) represent the cone

path, and the incompatibility graph G of T1 and T2 is built.

The algorithm enters a loop that will partition the sets E and E ′ depending on the existence of so-

lutions to the Extension Problem, modifying the contents of the support pair (A,B) in the process.

Suppose that A and B are elements of A and B indexed by the same position at a given point in the

execution of the algorithm. The algorithm builds the subgraph G(A,B) of G induced by A ⊂ E and

B ⊂ E ′. It then tries to find a solution to the Extension Problem, in the way described by Theorem 5. In

summary, this implies:

1. Building a flow-equivalent network G′ of G(A,B);

2. Applying a maximum flow algorithm to obtain a residual network R of G′;

3. Determining the set of reachable nodes from the source that forms cut C;

4. Computing the vertex cover C1 ∪D2 where C1 = L \ C and D2 = R ∩ C.

Assuming C2 = L \ C1 and D1 = R \ D2, if neither of the sets C1, C2, D1, D2 are empty then we have
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non-trivial partitions of A and B forming a solution to the Extension Problem. If no such partition exists,

the algorithm simply moves on to a next pair that is yet to visit. This is repeated until we have reached

A = (A1, ..., Ak) and B = (B1, ..., Bk) where there does not exist a solution to Extension Problem for any

pair (Ai, Bi).

Example 2. This example illustrates the computations performed by the disjoint GTP algorithm when

given trees T1, T2 ∈ T4 of Figure 2.1 as input. Assume that |e4|T1
= 2, |e5|T1

= 1, |e3|T2
= 2, |e1|T2

= 1 ,

where |e|T denotes the length of edge e in tree T . The splits associated with these edges are as follows:

σe4 = {2, 3|0, 1, 4}; σe5 = {0, 1|2, 3, 4};

σe3 = {1, 2, 3|0, 4}; σe1 = {1, 2|0, 3, 4}.

It can easily be seen that the only split compatibility that exists is between σe4 and σe3 i.e. only e3 and

e4 are simultaneously present in some orthant, and the incompatibility graph will therefore have edges

(e4, e1), (e5, e3), (e5, e1). Vertex weights will be given by:

we4 = we3 =
22

22 + 12
=

4

5
; we5 = we1 =

12

22 + 12
=

1

5
.

Translating these weights to capacities in the incompatibility graph gives the following flow-equivalent

network:

Figure 3.1: Flow-equivalent network to the incompatibility graph of T1 and T2

A maximum flow of 0.4 can be achieved if we send 0.2 flow units along the path s → e4 → e1 → t

and another 0.2 units of flow along the path s → e5 → e3 → t. The set of nodes reachable from

s in the residual network will then be C = {e4, e1}, producing a vertex cover S = {e5, e1} that is of

minimum weight in the incompatibility graph. Therefore we would obtain the path support pair (A,B)

such that A = ({e5}, {e4}) and B = ({e3}, {e1}). Since the sets in A and B cannot be partitioned

further we have arrived at the geodesic path. This path traverses the orthants formed by the sets

{e4, e5}, {e3, e4}, {e1, e3} in that order, according to Definition 2. The length of this path would then be:

||(|e5|T1 + |e3|T2 , |e4|T1 + |e1|T2)|| =
√

(1 + 2)2 + (2 + 1)2 = 3
√

2
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Algorithm 3.1: The GTP Algorithm for disjoint trees.
Input: T1 = (L, E), T2 = (R, E ′) ∈ Tn disjoint n-trees

Output: Geodesic distance between T1 and T2

G := incompatibility graph of T1 and T2;

w := dictionary of vertex weights;

A := (E),B := (E ′);

while True do

for ( i = 0; i < |A|; i+ + ) {
A := i’th element of A;

B := i’th element of B;

G(A,B) := subgraph of G induced by A and B;

for ( e ∈ A ) {
w[e] = |e|2

‖A‖2

for ( e ∈ B ) {
w[e] = |e|2

‖E′‖2 ;

G′ := flow-equivalent network of G; R := residual matrix of applying max flow algorithm to

G′;

C1 ∪D2 := min. weight vertex cover of G(A,B) computed from R;

// (C1 ⊆ A,D2 ⊆ B)

C2 = A \ C1, D1 = B \D2;

w′ := total weight of C1 ∪D2;

if w′ < 1 then
Replace A with C1, C2 in A;

Replace B with D1, D2 in B;

break;

if w ≥ 1 then
return [‖A1‖+ ‖B1‖, ..., ‖Ak‖+ ‖Bk‖];
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3.1.2 Common edge handling

Algorithm 3.2: The GTP Algorithm admitting common splits.
Input: T1, T2 ∈ Tn
Output: The geodesic distance between T1 and T2

C := E1 ∩ E2 //T1(i), T2(i) are subtrees of T1, T2 indexed by the same e ∈ C

r := |C|;

P1 := {T1(i)}ri=1;

P2 := {T2(i)}ri=1;

v := empty list;

for ( i = 1; i < r; i+ + ) {
p := result of Algorithm ?? applied to T1(i) and T2(i);

Concatenate list v with list p;

if ei is not the root edge of T1 and T2 then
diff := ||ei|T1

− |ei|T2
|;

Append diff to list v;

L := length of list v;

return
√∑L

i=1 v[i]2

The procedure for dealing with pairs of trees whose edge sets are not necessarily disjoint is done

by splitting each tree at those common edges to form two forests of disjoint subtrees, where subtrees in

each forest are indexed by their parent edge. This parent edge can be the root edge of the respective

tree, which is always present in the set of common edges between any two trees. This allows us to form

a collection of pairs of disjoint subtrees P = {(T1(e), T2(e)) : e ∈ E ∩ E ′}, and we apply the previously

explained disjoint trees version of the GTP algorithm for each of these pairs. The support pairs of the

geodesic path between each pair of subtrees is then used to form the full geodesic path between T1 and

T2, and the corresponding distance. Assuming |E ∩E ′| = r, let (A1(l), ..., Akl
(l)),(B1(l), ..., Bkl

(l)) be the

support for the geodesic path bewteen a given subtree pair (T1(e), T2(e)) ∈ P. Then the length of the

geodesic path between T1 and T2 is given by:

L(Γ) = ||(||A1(1)||+ ||B1(1)||, ..., ||Ak1(1)||+ ||Bk1(1)||,

...,

||A1(r)||+ ||B1(r)||, ..., ||Akr
(r)||+ ||Bkr

(r)||,

|e1|T1
− |e1|T2

, ..., |er|T1
− |er|T2

)||

where |e|T denotes the length of edge e in tree T . [3] The pseudo-code for this complete version of the

GTP algorithm can be seen in Algorithm 3.2.
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3.2 Theoretical Analysis

We now present the theoretical space and time complexities for each of the steps underlying the execu-

tion of the GTP algorithm. A similar proof of this time complexity is presented in [3].

Theorem 10. Taking T1, T2 ∈ Tn as input, the GTP algorithm has worst-case time complexity in O(n4)

and space complexity in O(n2).

Proof. Taking T1, T2 ∈ Tn as input, the algorithm first determines the set of splits belonging to both trees.

Each tree has n−2 internal edges, and so the time for computing each split set is O(n). Set intersection

can then be implemented in linear time using hash tables. Each tree is partitioned according to the

common split set, and the version of the GTP algorithm for disjoint trees is applied afterwards to each

pair of subtrees indexed by a given split. Assume that the partitions induced by slicing the trees at their

common edges are given respectively by {T1(i)}ri=1 and {T2(i)}ri=1. Let ni be the number of leaves of

T1(i) and T2(i), other than a possible root node of degree 1.

Given T1(i) and T2(i), the disjoint trees version of the GTP algorithm determines their incompatibility

graph. Since they both have ni − 2 internal edges each, the worst case is when O(n2i ) pairs of corre-

sponding splits are incompatible. Determining the compatibility of two splits using bitwise operations on

the split bitmasks we describe in the implementation details takes time O(ni), meaning that the worst

case time complexity for the construction of these graphs is of O(n3i ). On the other hand, space needed

to perform the relevant computations is just O(n2i ) in the worst case, which is the space needed to store

a representation of the resulting incompatibility graph along with the respective vertex weights. Thus the

flow-equivalent network should also take space O(n2i ) in the worst case. Since our implementation rep-

resents this network as an adjacency list and a matrix of capacities, it is expected that space complexity

will be O(n2i ).

Entering the main while loop in the disjoint version of GTP, given A ∈ A and B ∈ B, the incompat-

ibility graph G(A,B) is a subgraph of G, and its adjacency list can be constructed simply by scanning

the entries of the adjacency list of G corresponding to the nodes in A ∪B, taking O(n2i ) time.

In the flow-equivalent network, we have that |V | = O(ni) and |E| = O(n2i ) and thus time complexity

of maximum-flow algorithms we studied is O(|V ||E|) = O(n3i ) for the case of the flow-equivalent network

of the bipartite graphs. However, the space needed is also the space taken by the representation of the

flow network given as input. Since we chose to represent edge capacities in a capacity matrix, the space

needed in our case is of O(n2i ).

The vertex cover is then found by the method detailed in the proof of Theorem 5. Determining the
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set of reachable nodes from the source in the residual graph is done with a BFS in time O(|E|) = O(n2i ),

and computing the vertex cover from this cut takes time O(|V |) = O(ni).

If this vertex cover forms a valid solution to the Extension Problem the support pair is reconstructed

accordingly, and since the number of internal edges of T1(i) and T2(i) is ni−2, there existO(ni) solutions

of the Extension Problem throughout the execution of the disjoint trees GTP algorithm in the worst-case.

Therefore each execution of the disjoint trees version of the GTP algorithm should have worst-case

time complexity in O(n4i ). Observe that
∑r

i=1 ni = n + (r − 1) < 2n, since there are r − 1 common

edges between T1 and T2 and r < n− 2. Due to these constraints the complexity of the GTP algorithm

remains unaltered when applied to all pairs of subtrees. In other words, if the execution time of the

disjoint GTP algorithm with T1(i), T2(i) ∈ Tni
as input is given by f(n) = an4 + ω(n4) for some a > 0

then the complexity of GTP will be given by:

r∑
i=1

f(ni) = a

r∑
i=1

n4i +

r∑
i=1

ω(n4i ) ≤ a

(
r∑

i=1

ni

)4

+ ω(n4) = an4 + ω(n4) = O(n4)

Using a similar argument, space complexity of the GTP algorithm should be of O(n2), which is the

space needed to store and represent the capacity matrices of the incompatibility graphs needed for

computations at any given point in the execution of algorithm. What is meant by this is that even though

the total size of data structures built and used can be greater than O(n2), they can be written over and

replaced as they cease to be useful.

3.2.1 The GTP algorithm with approximate max-flow

If one were to replace Dinitz’s algorithm or the Edmonds-Karp algorithm by an (1 − ε)-approximate

maximum flow algorithm, the complexity of the algorithm would change accordingly. The complexity of

the GTP algorithm would become Õ(n11/3ε−3) or Õ(n10/3ε−11/3) for the version that employs smoothing

and sampling techniques. However, it is not obvious how the error in the maximum flow approximation

would affect the final geodesic distance estimate. If f ′ is the approximation for the maximum flow f then

(1 − ε)|f | ≤ |f ′| ≤ |f |, and since the existence of a solution to the Extension Problem is contingent on

|f | < 1, approximation errors may lead to a sub-optimal solution of the Extension Problem and thus an

incorrect partition of the support pairs. Furthermore, if at any point in the execution of the GTP algorithm

a sub-optimal solution is found, that changes the path space to be searched from there on out, locking in

the error. To measure this error propagation we propose simulating the execution of the GTP algorithm

with an approximate max-flow algorithm, and calculating the relative error for a set of trees for each ε in
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a given range. In that case, it would be appropriate to use the jackknife resampling technique to obtain

confidence intervals for the relative distance error, and study how it behaves in relationship to ε.

3.3 Implementation details

The GTP algorithm and the maximum flow algorithms on which it relied were implemented in Python 3.

Beyond Python’s standard library, packages used include dendropy - a library for phylogenetic computing

- and numpy, a popular scientific computing package.

Listing 3.1: GTP algorithm main routine in Python.

1 def GTP(T1,T2,algorithm="EK"):

2 T1.encode bipartitions()

3 T2.encode bipartitions()

4 # determine common splits in T1 and T2

5 C = part.common internal edges(T1, T2)

6 vector = []

7 #partition trees according to common splits

8 T1P = part.tree partition(T1,C[0])

9 T2P = part.tree partition(T2,C[1])

10 for b in T1P:

11 #ensure the set of leaf node labels is the same for both trees

12 trees = part.taxon namespace migration(T1P[b],T2P[b])

13 vector += list(disjoint GTP(*trees,algorithm=algorithm))

14 # determine absolute difference of lengths of common edges

15 if b:

16 diff = T1.split bitmask edge map[b].length

17 diff -= T2.split bitmask edge map[b].length

18 vector.append(abs(diff))

19 dist = lambda x: sqrt(sum(i**2 for i in x))

20 return dist(vector)

The first thing the GTP procedure does is take inpu trees T1, T2 ∈ Tn and determine which edges

are in common. For the Tree class in dendropy one can use the method encode bipartitions1. One

of the things this does is encode a split bitmask for each edge, which is useful for determining their

compatibility. We partition the trees accordingly, representing each partition as a Python dict indexed
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by split bitmasks where values are still of the dendropy Tree type. The time and space complexity of this

sequence of operations is therefore O(n). The disjoint GTP function is then applied to pairs of trees

encoded by the same bitmask.

disjoint GTP (see code in Appendix A.1) begins by calculating the incompatibility graph using the

function incompatibility graph, which returns an adjacency list with antiparallel edges included, i.e.

for each edge the reverse edge must be present. It proceeds exactly as detailed in the theoretical analy-

sis, determining the compatibility for n2 pairs of edges. Normalized weights are then computed for each

node in the incompatibility graph, from the lengths of edges in the respective tree. The construction of

this graph only has to be done once for each execution of disjoint GTP, because subsequent incom-

patibility graphs are subgraphs of the original, resulting in changes in the normalized vertex weights,

which are then translated into a capacity matrix. Time complexity for this set of procedures is therefore

O(n3) and space complexity is O(n2).

Listing 3.2: Python implementation of Dinitz’s algorithm.

1 def Dinic(A,C):

2 '''

3 A = adjacency list

4 C = capacity matrix

5 '''

6 F = np.zeros like(C) # F is the flow matrix

7 level = levels(A,C,F)

8 B,reachable = level graph(A,C,F,level)

9 # while sink is reachable in residual graph

10 while(reachable):

11 # Find blocking flow F using a DFS

12 F = DFS(B,C,F,0,level)

13 # Rebuild level graph

14 level = levels(A,C,F)

15 B,reachable = level graph(A,C,F,level)

16 return C-F

1The source code for encode bipartitions shows that it uses a post order edge iterator to calculate split bitmasks, i.e. it

traverses an edge only after having visited its children. Each edge’s bitmask is found by performing bitwise-OR operations on its

childrens’ bitmasks. Since the size of the bitmask is the number of leaves n and in Python 3 the number of bits for an integer

is technically unlimited, the complexity of this operation is O(n) in theory, but for all practical purposes the cost is negligible as

confirmed by separate experiments.
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Maximum flow algorithms are then used to find a solution to the Extension Problem on the flow-

equivalent network of a given subgraph of the incompatibility graph. Our implementation of Dinitz’s

and Edmonds-Karp algorithms only takes an adjacency list and a capacity matrix. This adjacency list

must have antiparallel edges. The Edmonds-Karp implementation in particular made use of an optional

technique which is used if the select edges keyword is set to True. This technique simply traverses the

edges in the incompatibility graph and successively sends the maximum allowed flow along the paths of

length 3 containing those edges in the flow-equivalent network. This is meant to reduce running time,

and in some cases it already gives a good approximation of the real maximum flow without having to

perform any BFS.

Listing 3.3: Python implementation of the Edmonds-Karp algorithm.

1 def EK(A,C,select edges=True):

2 flow = 0

3 F = np.zeros like(C, dtype = float)

4 if select edges:

5 visited = np.full(len(C[0]),False)

6 for i in range(len(C[0])):

7 if C[0][i] > 0:

8 for j in A[i]:

9 if not visited[j] and C[i][j]>F[i][j]:

10 m = min(C[0][i],C[i][j],C[j][len(C)-1])

11 F[0][i] += m

12 F[i][0] -= m

13 F[i][j] += m

14 F[j][i] -= m

15 F[j][len(C)-1] += m

16 F[len(C)-1][j] -= m

17 flow += m

18 visited[j] = True

19 break

20 while True:

21 # find augmenting path P with flow m

22 m, P = BFS(A,C,F)

23 flow += m

24 if m == 0: #no augmenting path is found

25 return C-F

26 # send flow through P
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27 for node in range(len(P)-1):

28 F[P[node]][P[node+1]] -= m

29 F[P[node+1]][P[node]] += m

Capacity matrices were represented as numpy arrays, and adjacency lists as lists of list. Adjacency

lists are much more intuitive here because they allow for easy access to one node’s neighbours in

breadth-first traversals of the graph, whereas in a capacity matrix neighbours can only be found by

scanning non zero elements across a row and a column indexed by the node. Our Edmonds-Karp

implementation does not build other adjacency lists other than the one provided as input, but this is

done in Dinitz’s algorithm implementation, namely for updating the level graph at each iteration.

While the Edmonds-Karp algorithm uses an adapted breadth-first search procedure to find shortest

augmenting paths, Dinitz’s algorithm uses a BFS-like procedure to construct level graphs. Additionally,

Dinitz’s algorithm employs an adapted depth-first search procedure to find a blocking flow. Breadth-first

and depth-first searches use some kind of data structure to keep track of nodes which are yet to visit or

already visited. The use of the collection.deque type in all these procedures - exemplified in Listing

3.4 - instead of the native Python list type is due to a small but important distinction, which consists in

the fact that the popleft() operation on a deque has complexity O(1) while the equivalent operation for

a list named q is done with q.pop(0), and this has complexity O(len(q)) [16].

Listing 3.4: Auxiliary breadth-first search procedure to the Edmonds-Karp algorithm.

1 def BFS(A,C,F):

2 '''

3 A - adjacency list

4 C - capacity matrix

5 F - flow matrix

6 '''

7 q = deque([0]) #queue q of elements yet to visit

8 flow = decimal.Decimal('Infinity') #flow of the path P

9 parent = np.full(len(A),-1)

10 while q:

11 curr = q.popleft()

12 for node in A[curr]:

13 if C[curr][node] > F[curr][node] and\

14 parent[node] == -1:

15 parent[node] = curr

16 if node!=len(A)-1:
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17 q.append(node)

18 else:

19 Path = []

20 while node != 0:

21 Path.append(node)

22 par = parent[node]

23 flow = min(flow,\

24 C[par][node]-F[par][node])

25 node = parent[node]

26 Path.append(0)

27 return flow,Path

28 return 0,None

Assuming the BFS function used to find augmenting paths in the Edmonds-Karp implementation

is correct and has a time complexity of O(|E|), it follows immediately that the time complexity of EK is

O(|V ||E|), considering that the number of iterations is given by the number of augmenting paths which is

in O(|V |) (Section 7). Dinitz’s algorithm used very similar BFS-like procedures levels and level graph,

and an additional recursive function DFS (presented in Listing 3.5). Assuming all of these are correct and

conform to the established theoretical time complexities the correctness and complexity of O(|V ||E|) for

Dinitz’s algorithm is also evident.

Listing 3.5: Auxiliary depth-first search procedure to Dinitz’s algorithm.

1 def mymin(x,y):

2 return y if x<0 else min(x,y)

3

4 def DFS(A, C, F, k, level, c = -1):

5 tmp = c

6 if k == len(C)-1:

7 return c

8 for i in A[k]:

9 if F[k][i] < C[k][i]:

10 f = DFS(A, C, F, i, level,\

11 mymin(tmp, C[k][i]-F[k][i]))

12 F[k][i] += f

13 F[i][k] -= f

14 tmp -= f

15 return F if k==0 else c-tmp
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A non-trivial solution of the Extension Problem, if it exists, is calculated by determining the set of

reachable nodes from the source in the residual graph, represented by the residual capacity matrix. This

forms a cut C and the minimum weight vertex cover is given by S = (L \C) ∪ (R ∩C), as previously ex-

plained in Theorem 5. The cut is found using a BFS on the residual capacity matrix in O(|V |2) time, and

the vertex cover is found in linear time on the size of this cut, which itself is O(|V |), by representing sets

L,C,R as arrays of booleans (similar to an indicator function) and using numpy functions logical not

and logical and. Finally, the resulting sets which form a non-trivial solution to the Extension Problem

are appended to the new path support in order, and the cycle breaks.
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4
Experimental Evaluation
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In this chapter experiments were done with the intention of validating the results from the previous

chapter, as well as demonstrating that all the implemented algorithms perform significantly better than

the theoretical bounds, under a reasonable choice of a probability distribution over inputs. Separate ex-

perimental tests were carried out for the complete GTP algorithm itself and the maximum flow algorithms

on which it depends, so as to demonstrate the relationship between their space and time complexities.

4.1 Maximum flow algorithms

4.1.1 Random bipartite graphs

We decided to separately test our implementations of the maximum flow algorithms discussed in Chapter

2 in the context of the bipartite minimum weight vertex cover problem (and its corresponding reduction to

max-flow). This was done by generating bipartite random graphs according to the Erdős–Rényi model,

their corresponding weights, and then constructing the respective flow network. Given n,m ∈ N and

a probability p ∈ (0, 1), in the Erdős–Rényi model each edge from the complete bipartite graph Kn1,n2

is chosen to be part of the final graph G = (L ∪ R,E) with probability p, independently of other edges.

Since Kn1,n2
has exactly n1n2 edges, the expected value of |E| is pn1n2 edges. The probability p

is therefore the expected value for the graph density of a graph generated according to this model.

Assuming n1 = n2 = n, our graphs were generated fixing p = 0.2 or p = 0.6 for several values of n and

therefore |E| = O(|V |2), where V = L ∪R. Random weights were assigned to vertices and normalized

so that weights of vertices in L would sum to 1, and likewise for R. Finally, the appropriate flow network

reduction was performed.

4.1.2 Results

The results presented in Figure 4.1 show the cube root of the execution time of the maximum flow

algorithms taking as input 25 random bipartite graphs with varying average density p = 0.2, 0.6 and size

n = 20, 40, ..., 300, where n = |L| = |R| is the number of nodes on each side of the bipartite graph.

Linear regression was performed on a log-log scale to determine the power law which better de-

scribes the results (before applying the cubic root), producing the slopes and r2 coefficients of deter-

mination in Table 4.1. These appear to conform to the theoretical bounds we established of O(|V ||E|)

for both max-flow algorithms, since we’re assuming |E| = O(|V |2). It is also important to note that both

algorithms are faster for random graphs with smaller average densities of p = 0.2.
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Figure 4.1: Cubic roots of maximum flow algorithms execution time for random bipartite graphs. Top and bottom

rows correspond to p = 0.2 and p = 0.6 respectively.
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Figure 4.2: Elapsed execution time of maximum-flow algorithms versus the average density p of input graphs.

Table 4.1: Linear regression performed in log-log scale on time measurements in Figure 4.1, for different maximum

flow algorithms and for random bipartite graphs with average densities p = 0.2 and p = 0.6.

Dinitz Edmonds-Karp

slope r2 slope r2

p=0.2 1.82 0.9974 2.37 0.9992

p=0.6 1.90 0.9993 2.65 0.9973

Further measurements were also done to determine how these maximum-flow algorithms respond

to increasing densities while maintaining the number of nodes fixed, and they are featured in Figure

4.2. The power-law which best seems to describe the increase in time when compared to density was

once again found using log-log scale linear regression, producing slope 1.48 with r2 = 0.9027 for Dinitz’s

algorithm and slope 1.70 with r2 = 0.9923 for the Edmonds-Karp algorithm.

Tests relating to space complexity of these algorithms were also performed, by measuring allocated

memory for their execution while varying the number of nodes. An overhead was observed for both

algorithms, which might be attributable to the use of dynamic data structures in our implementation of

these algorithms, and the size of imported packages. It is interesting to note as well that the time for

experimental evaluation of Dinitz’s algorithm seems to better bounded by O(|V |2) as opposed to the

theoretical bound of O(|V ||E|) (equal to O(|V |3) with |E| = O(|V |2) ) that was determined in Chapter 3,

while the Edmonds-Karp performs closer to that same time complexity of O(|V |3).

Results in Figure 4.3 show total allocated memory for 5 executions of each max-flow algorithm, for |L|

varying between 50 and 1000 on random bipartite graphs of average density equal to 0.2. Subtracting

the aforementioned overhead of about 400MB from the original results and performing log-log scale

linear regression produced slopes of 2.33 and 2.09 and r2 of 0.9504 and 0.9978 for Dinitz’s algorithm
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Figure 4.3: Square root of allocated memory for the execution of maximum flow algorithms.

and the Edmonds-Karp algorithm respectively. These seem to conform to the space complexity bound

of O(|V |2) established in Chapter 3.

4.2 The GTP algorithm

4.2.1 The continuous birth-death tree model

Figure 4.4: A birth-death tree with 6 leaves, of which 3 are extinctions.

For our experiments we used trees generated from a continuous time birth-death model. The contin-

uous birth-death model is a continuous time Markov process, which means that given a point in time,

probability distributions of future events are exclusively dependent on the current state of the process.

In particular, the birth-death process simply starts with a root node and has two possible events, spe-

ciation(birth) or extinction(death). The time between two consecutive speciation events is given by an

exponential distribution with some parameter λ, and likewise with parameter µ for two consecutive ex-
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Figure 4.5: Cubic roots of execution time of the GTP algorithm using different max-flow algorithms.

tinction events. Here λ and µ are called birth rate and death rate respectively, as they can also be seen

as the average number of births or deaths occuring within one time unit. One can view a speciation

event as the branching of an edge into two distinct edges, where length denotes time and new edges

will comply to a birth-death model, i.e. they will branch or cut off according to the probability distribution

of births and deaths respectively. Simulations according to this model were obtained using Python’s

dendropy package, which allows for the process to stop when there are n tips in tree, where the num-

ber of tips is the total number of births. Birth and death rates were fixed and set to λ = 1 and µ = 0

respectively.

4.2.2 Results

All pairwise comparisons were performed between 10 randomly generated birth death trees with n

leaves, for n = 20, 40, ..., 300. The cubic root of the average execution time for each these pairs is

plotted in Figure 4.5. Linear regressions in log-log scale for the data in these plots produces a slope of

2.64 with r2 = 0.9892 for the version of GTP with Dinitz’s algorithm and slope of 2.68 with r2 = 0.9988

for the Edmonds-Karp version, as expected. If one ignores the obvious outlier for n = 280 in the graph

corresponding to the Dinitz version of GTP, the linear regression in log-log scale produces slope 2.58

with r2 = 0.9955.

Allocated memory for the GTP algorithm was also measured for different max-flow algorithms, and

the square root of these results are presented in Figure 4.6. Log-log scale linear regression of the

original results gave slopes of 1.51 and 1.57 with r2 = 0.9798 and r2 = 0.9903 for the version of GTP

using Dinitz’s algorithm and the Edmonds-Karp algorithm respectively. Performance of our GTP imple-

mentation is once again consistent to the previously established time complexity of O(n4) and space

complexity of O(n2). However, average time complexity seems to conform to O(n3), and this may be
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Figure 4.6: Square root of allocated memory for the GTP algorithm using different max-flow algorithms.

Figure 4.7: Average density of incompatibility graphs constructed during the execution of the GTP algorithm.

explained by the number of solutions to the Extension Problem not being as much as assumed in the

worst-case analysis done in Chapter 3, among other reasons to be seen ahead.

We simulated the density of the incompatibility graphs arising from the tree set on which the GTP

algorithm was executed, so as to provide comparison between these and the random bipartite graphs

generated for testing the maximum flow algorithms. It can be inferred from Figure 4.7 that simulation

of birth death trees of an increasing number of leaves results in a decrease in the density of the corre-

sponding incompatibility graphs. In fact, log-log scale linear regression shows that the density seems

to be inversely proportional to
√
n, resulting in slope approximately equal to -0.52 with corresponding

r2 = 0.9740.

This makes sense given that in Tn there are exactly (2n − 3)!! non-identical binary trees, and each

has n − 2 edges. As seen previously, compatibility between two internal edges simply tells us that

those edges can coexist in the same tree, i.e. there exists some orthant in Tn formed by these two

edges. Due to the comparatively disproportionate increase in the number of non-identical trees in Tn,

the likelihood of any two different edges being compatible increases when n increases. Therefore the
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density of incompatibility graphs must decrease, because this density is simply the relative proportion of

edges that are incompatible.

The results for the incompatibility graph densities in Figure 4.7 coupled with those from Figure 4.2

put the time measurements of Figure 4.5 in a new light, as they help explain why a theoretical bound of

O(n4) for the time complexity of the GTP algorithm is too pessimistic. In fact, these results appear to

give a stronger guarantee that average-case time complexity is in O(n3) for the probability distribution in

Tn given by random birth-death processes. The justification behind this conjecture lies in the theoretical

analysis made in Section 3.2 of Chapter 3, which shows that the main contributing factor to the time

complexity of the GTP algorithm is the maximum flow algorithm it employs, assuming it is either Dinitz’s

algorithm or the Edmonds-Karp algorithm.

In other words, let T1, T2 ∈ Tn and assume that the partitions induced by slicing the trees at their

common edges are given respectively by {T1(i)}ri=1 and {T2(i)}ri=1. Let ni be the number of leaves of

T1(i) and T2(i). The execution of the GTP algorithm on T1 and T2 leads to the execution of the disjoint

GTP algorithm on the pairs of disjoint trees {(T1(i), T2(i))}ri=1, which in turn performs maximum flow

computations on the flow-equivalent networks of corresponding incompatibility graphs. The maximum

flow algorithms we studied have general time complexities in O(|V ||E|). The number of internal edges

in the trees T1(i) and T2(i) is ni− 2, and therefore |V | = O(ni) in the flow-equivalent network, ultimately

resulting in |V | = O(n). If one is to believe that p = O(1/
√
n) where p is the density of the incompatibility

graph, then |E| = O( 1√
n
n2) = O(n3/2). Time complexity becomes O(n5/2) for maximum flow algorithms

and O(n7/2) for the GTP algorithm, better than the original bound of O(n4) of Theorem 10. We also add

that the disparity between 7/2 and the slopes found in log-log scale linear regression - 2.68 and 2.64 for

Dinitz and Edmonds-Karp versions of the GTP algorithm respectively - can be explained in part by the

disparity between the time complexity of O(n3) and the equivalent slopes found for time measurements

of the max-flow algorithms (presented in Table 4.1).

The usefulness of computing the geodesic distance is that it allows us to resolve the uncertainty

behind reconstructing phylogenetic trees from the genetic code of a set of species. As pointed out in the

introduction, this uncertainty is due to the choice of genes/coding regions to represent the species and

the choice of algorithm to build the trees based on that information. However, it is reasonable to predict

that different trees for a biological dataset will be clustered together, and therefore share a larger set of

splits than what would be expected for random birth-death trees. The GTP algorithm benefits from the

partition into smaller trees, which means the algorithm may perform better for real phylogenetic trees

than for our synthetic datasets.
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Conclusion
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In this thesis we have explored the concept of geodesic paths in tree space and their usefulness

in comparing tree structures in the field of phylogenetics. We have also explained how to solve the

Geodesic Tree Path problem in polynomial time, and have implemented an efficient algorithm to do

so. In particular, this involved understanding the procedure for iterative path finding in tree space and

graph problems such as the minimum weight vertex cover, and required the knowledge of the best

algorithms and data structures to solve such problems. We theoretically analysed all the chosen algo-

rithms, and proposed original proofs of their time complexity in the given context, while also providing

extensive detail and explanation of the most important parts of our code. Throughout all of this, we

suggested the incorporation of approximation algorithms to achieve a more desirable time complexity.

Finally, we performed exhaustive experiments with synthetic datasets to demonstrate the success of our

implementation in comparison with the theoretical analysis. Given the success of our experimental mea-

surements, the existence of better bounds for the time complexity of some of the algorithms discussed

is promising. For example, these measurements compare very favourably to the bound of O(|V ||E|) we

achieved for maximum flow algorithms, particularly in the case of Dinitz’s algorithm. Given the similarity

of the maximum-flow problem in bipartite flow-equivalent networks and the maximum cardinality bipartite

matching problem, the latter of which can be solved with the appropriate reductions by Dinitz’s algorithm

in time O(
√
|V ||E|) (see the Hopcroft-Karp algorithm [17]), it is justified to search for a similar bound

for the former, since the proof of that time complexity does not apply to all flow-equivalent networks of

bipartite graphs. Even more challenging is the implementation of approximate max-flow algorithms such

as the ones suggested in [14], due to the considerable theoretical background specific to them, and this

is also left as future work.
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Listing A.1: The disjoint trees version of the GTP algorithm in Python.

1 def disjoint GTP(T1,T2,algorithm="EK"):

2 '''Assuming no common edges'''

3 G,weights = incompatibility graph(T1,T2)

4 N = len(T1.taxon namespace)

5 size = len(T1.internal edges())-1

6 nodes = range(2*size+2)

7 A, B = nodes[1:size+1], nodes[size+1:-1]

8 Al,Bl = [A], [B] #support for cone path

9 iteration = 0

10 while True:

11 iteration += 1

12 weight = decimal.Decimal('Infinity')

13 new support = [],[]

14 found = False

15 for i in range(len(Al)):

16 Ai, Bi = Al[i], Bl[i]

17 if not found:

18 inA = np.full(len(G),False)

19 inB = np.full(len(G),False)

20 for j in Ai: inA[j] = True

21 for j in Bi: inB[j] = True

22 if not len(Ai) or not len(Bi):

23 new support[0].append(Ai)

24 new support[1].append(Bi)

25 continue

26 C, w = capacities(G, Ai, Bi,\

27 weights, belongsB=inB)

28 if algorithm == "EK":

29 F = EK(G, C, vb=verbose)

30 elif algorithm == "Dinic":

31 F = Dinic(G, C)

32 else:

33 raise Exception("Unknown max flow algorithm")

34 cut = reachable(F,0) #characteristic function

35 cover, curr = vertex cover(cut,inA,inB,w)

36 weight = min(weight,curr)

37 if weight < 1:
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38 C1 = np.nonzero(np.logical and(inA,cover))[0]

39 C2 = np.nonzero(np.logical and(inA,np.logical not(cover)))[0]

40 D2 = np.nonzero(np.logical and(inB,cover))[0]

41 D1 = np.nonzero(np.logical and(inB,np.logical not(cover)))[0]

42 if len(C1)==0 or len(D1)==0 or len(C2)==0 or len(D2)==0:

43 #Solution to Extension Problem not found

44 new support[0].append(Ai)

45 new support[1].append(Bi)

46 else:

47 new support[0].append(C1)

48 new support[1].append(D1)

49 new support[0].append(C2)

50 new support[1].append(D2)

51 else:

52 new support[0].append(Ai)

53 new support[1].append(Bi)

54 else:

55 new support[0].append(Ai)

56 new support[1].append(Bi)

57 no change = (len(Al) == len(new support[0]))

58 Al,Bl = list(new support[0]),list(new support[1])

59 if weight >= 1 or no change:

60 norm = lambda x: sqrt(sum(weights[i]**2 for i in x))

61 return map((lambda x,y: x+y),map(norm,Al),map(norm,Bl))

62 Al, Bl = new support

47
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