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Resumo

A descoberta do bosão de Higgs em 2012 foi um feito importante na fı́sica de partı́culas. Esta partı́cula

escalar é essencial no Modelo Padrão para explicar a massa das outras partı́culas. No entanto, não

existe nada na teoria que restrinja o setor escalar do Modelo Padrão a ter apenas uma partı́cula fı́sica.

Nesta tese, consideramos um modelo geral com um número arbitrário de singletos escalares de

SU(2) com hipercargas Y = 0, 1, 2; um número arbitrário de dubletos escalares de SU(2) com hiper-

carga Y = 1/2 e um número arbitrário de tripletos escalares de SU(2) com hipercargas Y = 0, 1. Os

escalares deste modelo podem misturar-se de forma arbitrária.

Para este modelo geral, começamos por calcular os parâmetros oblı́quos S, T , U , V , W e X.

Encontramos uma prescrição para que os parâmetros oblı́quos S e U sejam finitos e mostramos que

essa prescrição é válida para um modelo com qualquer conteúdo escalar.

Ainda neste modelo geral, calculamos as correções a um loop ao vértice Zbb̄.

Aplicamos então os nossos resultados a um modelo concreto: o modelo de Georgi-Machacek, cal-

culando para este modelo os parâmetros oblı́quos e as correções a um loop ao vértice Zbb̄.

Finalmente, comparamos os resultados das correções a um loop ao vértice Zbb̄ para o modelo de

Georgi-Machacek com resultados experimentais e descobrimos que não obtemos maior concordância

do que no Modelo Padrão.

Palavras-Chave

Tripletos Escalares, Nova Fı́sica, Parâmetros Oblı́quos, Vértice Zbb̄, Modelo de Georgi-Machacek



Abstract

The discovery of the Higgs boson in 2012 was an important achievement in particle physics. This scalar

particle is essential in the Standard Model to explain the mass of the other particles. However, there

is nothing in the theory that restricts the scalar sector of the Standard Model to have only one physical

particle.

In this thesis, we consider a general model with an arbitrary number of scalar SU(2) singlets with

hypercharges Y = 0, 1, 2; an arbitrary number of scalar SU(2) doublets with hypercharge Y = 1/2 and

an arbitrary number of scalar SU(2) triplets with hypercharges Y = 0, 1. We let the scalars with the

same electric charge mix arbitrarily.

For this general model, we start by computing the oblique parameters S, T , U , V , W and X. We find

a prescription for the oblique parameters S and U to be finite and show that this prescription is valid in a

model with any scalar content.

Still in this general model, we compute the one-loop corrections to the Zbb̄ vertex.

We apply then our results to a concrete model: the Georgi-Machacek model, computing for this

model both the oblique parameters and the one-loop corrections to the Zbb̄ vertex.

We compare the results for the one-loop corrections to the Zbb̄ vertex in the Georgi-Machacek model

with experimental results and find that we do not get a better agreement than in the Standard Model.

Keywords

Scalar triplets, New Physics, Oblique parameters, Zbb̄ vertex, Georgi-Machacek Model
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Chapter 1

Introduction

Richard Feynman once said [1] ”We do not know what the rules of the game are; all we are allowed to

do is to watch the playing. Of course, if we watch long enough, we may eventually catch on to a few of

the rules. The rules of the game are what we mean by fundamental physics.” In particle physics we are

interested in these ”rules of the game” and we search them by studying the basic constituents of nature

and their interactions.

The most successful theory in particle physics nowadays is the Standard Model (SM) [2–4]. The SM

is a SU(3) × SU(2) × U(1) gauge theory that describes every fundamental particle observed until now

and the way they interact with each other.

The SM is one of the theories in science with the best predictive power. As an example, the anoma-

lous magnetic moment of the electron was theoretically predicted – using the SM – to be [5] ae(theory) =

1159.652181643(763)×10−6, while it was measured to be [6] ae(experiment) = 1159.65218091(26)×10−6,

which means that the theoretical value agrees with the experimental value to 9 significant figures which

is a remarkable result. Some of the discoveries that supported the SM were the discovery of neutral cur-

rents in 1973 [7,8], the discovery of the charm quark in 1974 [9,10], the discovery of the bottom quark in

1977 [11], the discovery of the W [12,13] and the Z [14,15] bosons in 1983 and the discover of the top

quark in 1995 [16, 17] and the discovery of the Higgs boson at the CERN Large Hadron Collider (LHC)

in 2012 [18,19] which had first been theoretically predicted in 1964 [20,21].

There are, however, some things that the SM cannot explain. Some examples of these are dark

matter, the matter-antimatter asymmetry, why are there three generations of fermions or why do the

masses of the elementary particles have such distinct values between them.

Having the SM such a big predictive power, the approach of theoretical particle physicists nowadays

is not to discard the SM and formulate a new theory only because the SM fails to explain some phenom-

ena. Theoretical particle physicists are trying to improve the SM by adding to it new features that could

help explaining what the SM cannot without compromising its admiring results.
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The scalar sector of the SM contains only one scalar SU(2) doublet. There is not, however, anything

in the theory that requires its scalar sector sector to have only one doublet1. As such, theoretical particle

physicists have been proposing additions to the scalar sector of the SM. The most common addition

to this part of the SM is to add another scalar SU(2) doublet, such that we get a two-Higgs-doublet

model (2HDM). A review of this kind of models can be found in [22]. We can also add to the Standard

Model more than one doublet, such that we get multi-Higgs-doublet model (MHDM) or also add scalar

multiplets with other dimensions. A formalism has been developed to work with models with an arbitrary

number of scalar SU(2) singlets and doublets [23–25].

In this thesis, we will extend this formalism such that it can include scalar triplets and will then, for a

generic model with an arbitrary number of scalar singlets, doublets and triplets, try to find a prescription

for computing the oblique parameters and the one-loop corrections to the Zbb̄ vertex. We will then use

our results to compute these quantities in the Georgi-Machacek model [27], which is a model which con-

tains one SU(2) doublet with hypercharge Y = 1
2 and two SU(2) triplets, one of them with hypercharge

Y = 0 and the other one with hypercharge Y = 1.

This thesis is outlined as follows. In chapter 2, we describe custodial symmetry, a feature of the

SM that will be important in the rest of the thesis. In chapter 3, we enlarge the formalism presented

in [23–25] for it to include also scalar triplets. In chapter 4, we find a prescription for computing the

oblique parameters for a general model with an arbitrary number of scalar singlets, doublets and triplets,

show that the photon propagator is transverse at one-loop level and make some remarks on the divergent

parts of the oblique parameters S and U in models with multiplets of any dimension. In chapter 5, we

compute the one-loop corrections to the Zbb̄ vertex for a general model with an arbitrary number of

scalar singlets, doublets and triplets. In chapter 6, we apply the results of chapters 4 and 5 to compute

the oblique parameters and the one-loop corrections to the Zbb̄ vertex in the Georgi-Machacek (GM)

model. In this chapter, we also make a fit of the results obtained for the one-loop corrections to the Zbb̄

vertex to the experimental results. Finally, in chapter 7 we make a conclusion about the work done and

the results obtained.

1In fact, the theory must have at least one scalar doublet such that the fermions acquire mass.
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Chapter 2

Custodial Symmetry

The SM of particle physics describes the behaviour of elementary particles and how they interact with

each other through strong, weak and electromagnetic interactions. The part of the SM that describes

the strong interaction is called Quantum Chromodynamics (QCD). QCD predicts the existence of quarks

and gluons. The quarks are fermions which carry color charge. The gluons are the bosons that mediate

the strong interaction between particles that carry color charge. The gluons themselves also carry color

charge. The remaining parts of the SM describe the electroweak interactions, which are a unification of

the electromagnetic and weak interactions. The electroweak interactions will be the main focus of this

thesis. In appendix A, we present a short review of the SM, focusing mainly on its electroweak part.

The scalar potential of the SM can be written as V = µ2 Tr
(
Φ†Φ

)
+ λTr

(
Φ†Φ

)2, where

Φ =
1√
2

[
φ0∗ φ+

−φ− φ0

]
. (2.1)

This potential is invariant under a global SU(2)L × SU(2)R symmetry with Φ transforming as Φ →

ULΦU
†
R, where UL and UR are matrices of SU(2)L and SU(2)R, respectively.

The group SU(2)×SU(2) is isomorphic to SO(4). It can be seen that the scalar potential is invariant

under SO(4) as we can write it as

V =µ2
(
(Reφ+)2 + (Imφ+)2 + (Reφ0)2 + (Imφ0)2

)
+ λ

(
(Reφ+)2 + (Imφ+)2 + (Reφ0)2 + (Imφ0)2

)2
,

(2.2)

which means that it is a function of the square of the norm of the SO(4) quadruplet


Reφ+

Imφ+

Reφ0

Imφ0

 . (2.3)

3



The vacuum expectation value (VEV) of Φ is given by

⟨0|Φ|0⟩ = 1√
2

[
v 0
0 v

]
. (2.4)

Thus, the vacuum is not invariant under the full group SU(2)L × SU(2)R. However, as ⟨0|Φ|0⟩ is pro-

portional to the identity matrix, it preserves a group SU(2)V corresponding to UL = UR. This symmetry

preserved by the vacuum under the group SU(2)V is called custodial symmetry [30]. This custodial

symmetry is the reason behind the relation mW = mZcW between the masses of the gauge bosons.

However, this SU(2)L × SU(2)R is not a symmetry of the whole SM Lagrangian. This symmetry is

violated by the Yukawa Lagrangian and by the terms involving the weak hypercharge coupling g′. For

example, the Yukawa Lagrangian for the quarks breaks this symmetry if we have up- and down-type

quarks with different masses and if we have quark mixing (i.e., if VCKM ̸= 13×3). In fact, we can write

LYukawa quarks as

LYukawa quarks =− 1

v

3∑
j=1

3∑
k=1

(Md)jk
(
(ULVCKM )j DLj

)
DRk

(
φ+

φ0

)
(2.5a)

− 1

v

3∑
j=1

3∑
k=1

(Mu)jk
(
(UL)j (DLV

†
CKM )j

)
URk

(
φ0∗

−φ−

)
+H.c., (2.5b)

where H.c. stands for Hermitian conjugate. If we had Md = Mu ≡ M and VCKM = 13×3, then we could

write

LYukawa quarks =− 1

v

3∑
j=1

3∑
k=1

Mjk

(
ULj DLj

)( φ0∗ φ+

−φ− φ0

)(
URk

DRk

)
+H.c.. (2.6a)

Thus, by transforming the quark fields under SU(2)L × SU(2)R as

(
ULj

DLj

)
→ UL

(
ULj

DLj

)
,

(
URj

DRj

)
→ UR

(
URj

DRj

)
, (2.7)

we would get an invariant Yukawa Lagrangian for the quarks. As experience tells us we do not have

Md = Mu and VCKM = 13×3, then the Yukawa Lagrangian for the quarks breaks the SU(2)L × SU(2)R

symmetry.

Therefore, custodial symmetry is only an approximate symmetry of the SM. That is why the relation

mW = mZcW is only valid at tree-level.
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Chapter 3

Formalism

3.1 Field Content

We consider an SU(2)×U(1) electroweak model in which the scalar sector includes nd SU(2) doublets

with hypercharge Y = 1
2 ,

ϕk =

(
φ+
k

φ0
k

)
, k = 1, ..., nd, (3.1)

nt1 SU(2) triplets with hypercharge Y = 1,

Ξp =

ξ++
p

ξ+p
ξ0p

 , p = 1, ..., nt1 , (3.2)

nt0 SU(2) real triplets with hypercharge Y = 0,

Λq =

 λ+q
λ0q

−λ−q

 , q = 1, ..., nt0 , (3.3)

where λ0 is a real scalar field, ns1 complex SU(2) singlets with hypercharge Y = 1,

χ+
j , j = 1, ..., ns1 , (3.4)

ns0 real SU(2) singlets with hypercharge Y = 0,

χ0
l , l = 1, ..., ns0 , (3.5)

and ns2 complex SU(2) singlets with hypercharge Y = 2,

5



χ++
r , r = 1, ..., ns2 . (3.6)

Alternatively, we could have considered doublets with hypercharge Y = − 1
2 instead of doublets with

hypercharge Y = 1
2 and triplets with hypercharge Y = −1 instead of triplets with hypercharge Y = 1 as

the complex conjugate of a representation of SU(2) is equivalent to that representation.

We have then a total of n1 = nd + nt1 + nt0 + ns1 complex scalar fields with electric charge +1,

n0 = 2nd + 2nt1 + nt0 + ns0 real scalar fields with electric charge 0 and n2 = nt1 + ns2 complex scalar

fields with electric charge +2.

The neutral fields are allowed to have non-zero VEVs, such that

⟨0|φ0
k|0⟩ =

vk√
2
, ⟨0|ξ0p|0⟩ =

wp√
2
, (3.7a)

⟨0|λ0q|0⟩ = xq, ⟨0|χ0
l |0⟩ = ul, (3.7b)

where the VEVs vk and wp are in general complex and the VEVs xq and ul are real. We can then expand

the neutral fields around their VEVs as

φ0
k =

1√
2
(vk + φ0′

k ), ξ0p =
1√
2
(wp + ξ0′p ), (3.8a)

λ0q = xq + λ0′q , χ0
l = ul + χ0′

l . (3.8b)

If we have in our model a general complex multiplet of isospin T and hypercharge Y , with a VEV v√
2

in the component with T3 = −Y (which is the component with zero electric charge, such that the U(1)Q

symmetry remains unbroken), then the contributions to the masses of the gauge bosons will be given by

m2
Z =

g2|v|2

c2W
Y 2, m2

W =
g2|v|2

2
(T (T + 1)− Y 2). (3.9)

If we have a real multiplet, as the product of its covariant derivative by the respective conjugate

transpose appears in the Lagrangian multiplied by a factor of 1
2 , then its contributions to the masses

of the gauge bosons will also be multiplied by a factor of 1
2 . Alternatively, if we define the VEV on the

neutral component of the real multiplet to be v (without the factor of 1√
2
), as we did in equation 3.8, then

we get contributions to the masses of the gauge bosons with the same form as in equation 3.9.

Thus, in our model, the masses of the W± and Z bosons are given in terms of the VEVs of the scalar

fields as

6



m2
Z =

g2

c2W

(1
4
v2 + w2

)
, m2

W = g2
(1
4
v2 +

1

2
w2 + x2

)
, (3.10)

where we defined v =
√∑nd

k=1 |vk|2, w =
√∑nt1

p=1 |wp|2 and x =
√∑nt0

q=1 x
2
q. We note that the relation

mW = mZ cos θW is, in general, no longer verified due to the introduction of triplets in the model.

These scalar fields will mix according to their mass matrices. We call the fields that are eigenstates

of the mass matrices with electric charges +2, +1 and 0, S++
c (c = 1, ..., n2), S+

a (a = 1, ..., n1) and S0
b

(b = 1, ..., n0), respectively. The neutral fields S0
b are reals fields. We can then write

φ+
k =

n1∑
a=1

(U1)kaS
+
a , χ+

j =

n1∑
a=1

(U2)jaS
+
a , λ+q =

n1∑
a=1

(U3)qaS
+
a , (3.11a)

ξ+p =

n1∑
a=1

(U4)paS
+
a , φ0′

k =

n0∑
b=1

(V1)kbS
0
b , ξ0′p =

n0∑
b=1

(V2)pbS
0
b , (3.11b)

λ0′q =

n0∑
b=1

(R1)qbS
0
b , χ0′

l =

n0∑
b=1

(R2)lbS
0
b , ξ++

p =

n2∑
c=1

(T1)pcS
++
c , (3.11c)

χ++
r =

n2∑
c=1

(T2)rcS
++
c , (3.11d)

where the matrices U1, U2, U3, U4, V1, V2, R1, R2, T1 and T2 have dimensions nd×n1, ns1 ×n1, nt0 ×n1,

nt1 × n1, nd × n0, nt1 × n0, nt0 × n0, nn × n0, nt1 × n2 and ns2 × n2, respectively. The matrices R1 and

R2 are real, while the others are complex. The matrix

Ũ =


U1

U2

U3

U4

 (3.12)

is n1 × n1 unitary and it diagonalizes the mass matrices of the scalars with charge +1. The matrix

Ṽ =


ReV1
ImV1
ReV2
ImV2
R1

R2

 (3.13)

is real and is n0 × n0 orthogonal. It diagonalizes the mass matrix of the real components of the neutral

scalar fields. The matrix

T̃ =

(
T1
T2

)
(3.14)

is n2 × n2 unitary and it diagonalizes the mass matrices of the scalars with charge +2.
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Due to the unitarity of the matrix Ũ we can write the relations

4∑
i=1

U†
i Ui = 1n1×n1 , U1U

†
1 = 1nd×nd

, U2U
†
2 = 1ns1

×ns1
, (3.15a)

U3U
†
3 = 1nt0

×nt0
, U4U

†
4 = 1nt1

×nt1
, UiU

†
j = 0∀ i ̸= j. (3.15b)

Similarly, we can write due to the unitarity of the matrix T̃

2∑
i=1

T †
i Ti = 1n2×n2

, T1T
†
1 = 1nt1

×nt1
, (3.16a)

T2T
†
2 = 1ns2×ns2

, T1T
†
2 = 0. (3.16b)

Due to the orthogonality of the matrix Ṽ we can write

2∑
i=1

(ReV T
i ReVi + ImV T

i ImVi) +

2∑
i=1

RT
i Ri = 1n0×n0

, (3.17a)

ReV1 ReV
T
1 = ImV1 ImV T

1 = 1nd×nd
, (3.17b)

ReV2 ReV
T
2 = ImV2 ImV T

2 = 1nt1
×nt1

, (3.17c)

R1R
T
1 = 1nt0×nt0

, (3.17d)

R2R
T
2 = 1nn×nn

, (3.17e)

R1R
T
2 = 0, (3.17f)

ReVi ImV T
j = 0∀ i, j, (3.17g)

ReViR
T
j = 0∀ i, j, (3.17h)

ImViR
T
j = 0∀ i, j, (3.17i)

ReV1 ReV
T
2 = 0, (3.17j)

ImV1 ImV T
2 = 0. (3.17k)

In this theory, where the gauge group SU(2)× U(1) is broken to U(1), we will have three Goldstone

bosons, G± and G0. We will identify them as S±
1 and S0

1 , respectively:

S±
1 ≡ G±, S0

1 ≡ G0. (3.18)

This means that only the S±
a with a ≥ 2 and the S0

b with b ≥ 2 will be physical particles, as well as

the S++
c or S−−

c for all values of c. We will denote the mass of the scalars S±
a by ma, the mass of the
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scalars S0
b by µb and the mass of the scalars S++

c by Mc.

3.2 Covariant Derivatives

We can write the covariant derivative for a gauge theory with SU(2)× U(1) as gauge group as 1

Dµ = ∂µ + ieQAµ − i
g

cW
(T3 −Qs2W )Zµ − ig(Wµ+T+ +Wµ−T−). (3.19)

Applying it to the doublets we get

Dµϕk =

(
∂µφ

+
k + ieAµφ

+
k + ig

(s2W−c2W )
2cW

Zµφ
+
k − i g√

2
W+

µ φ
0
k

∂µφ
0
k + i g

2cW
Zµφ

0
k − i g√

2
W−

µ φ
+
k

)
. (3.20)

Applying it to the triplets with hypercharge Y = 0, we get

DµΛq =

 ∂µλ
+
q + ieAµλ

+
q − igcWZµλ

+
q − igW+

µ λ
0
q

∂µλ
0
q + ig(W+

µ λ
−
q −W−

µ λ
+
q )

−∂µλ−q + ieAµλ
−
q − igcWZµλ

−
q − igW−

µ λ
0
q

 . (3.21)

Applying it to the triplets with hypercharge Y = 1, we get

DµΞp =

 ∂µξ
++
p + 2ieAµξ

++
p + ig

s2W−c2W
cW

Zµξ
++
p − igWµ+ξ+p

∂µξ
+
p + ieAµξ

+
p + ig

s2W
cW
Zµξ+p − ig(W+

µ ξ
0
p +W−

µ ξ
++
p )

∂µξ
0
p + i g

cW
Zµξ

0
p − igW−

µ ξ
+
p

 . (3.22)

Applying it to the singlets with charge +1, we get

Dµχ
+
j = ∂µχ

+
j + ieAµχ

+
j + ig

s2W
cW

Zµχ
+
j . (3.23)

Applying it to the singlets with charge +2, we get

Dµχ
++
r = ∂µχ

++
r + 2ieAµχ

++
r + 2ig

s2W
cW

Zµχ
++
r . (3.24)

3.3 Goldstone Bosons

The gauge group of this model is SU(2) × U(1), which has 4 generators. These 4 generators can be

written as Q, T3, T− and T+. The VEVs of the neutral fields break this symmetry to a U(1) symmetry

generated by Q. This means that when we apply the operator Q to the vacuum it gives 0, such that an

element of the group, which has the form eiθQ, leaves the vacuum invariant. In the case of the other

1Here and in the rest of the thesis, we will use the sign conventions of [28] which correspond to setting ηZ = 1, η = −1 and
ηe = 1 in [29].
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three generators, which are the generators of the broken symmetry, their action on the vacuum will give

the Goldstone bosons. In fact, if T is a generator of a group, then eiθT is an element of that group. If θ is

an infinitesimal parameter we can write eiθT ≃ 1 + iθT . Therefore, acting with this element of the group

on the vacuum will give us the vacuum plus an additional term that will correspond to the Goldstone

boson.

Applying iθT3 to the vacuum gives

iθT3

(
0
vk√
2

)
=

(
0

−iθ vk
2
√
2

)
⇒ (V1)k1 = i

A

2
√
2
vk, (3.25a)

iθT3

 0
0
wp√
2

 =

 0
0

−iθ wp√
2

⇒ (V2)p1 = i
A√
2
wp, (3.25b)

iθT3

 0
xq
0

 = 0 ⇒ (R1)q1 = 0, (3.25c)

iθT3ul = 0 ⇒ (R2)l1 = 0, (3.25d)

where A is a normalization constant. Using equation 3.17a, we get that A = 2
√
2√

v2+4w2
, where we chose

the phase of A to be real. Thus, we can write

(V1)k1 = i
vk√

v2 + 4w2
, (V2)p1 = 2i

wp√
v2 + 4w2

. (3.26)

If now we apply iθT+ to the vacuum, we get

iθT+

(
0
vk√
2

)
=

(
iθ vk

2
0

)
⇒ (U1)k1 = i

B

2
vk (3.27a)

iθT+

 0
xq
0

 =

iθxq0
0

⇒ (U3)q1 = iBxq, (3.27b)

iθT+

 0
0
wp√
2

 =

 0
iθ

wp√
2

0

⇒ (U4)p1 = i
B√
2
wp, (3.27c)

where B is a normalization constant. As the fields χ+
j have no VEV, then we have (U2)j1 = 0. Using the

first equation from 3.15a, we get B = − 2i√
v2+2w2+4x2

, where we chose the phase of the normalization

constant to be −π
2 . Thus, we can write

(U1)k1 =
vk√

v2 + 2w2 + 4x2
, (3.28a)
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(U3)q1 = 2
xq√

v2 + 2w2 + 4x2
, (3.28b)

(U4)p1 =
√
2

wp√
v2 + 2w2 + 4x2

. (3.28c)

3.4 Lagrangian

Taking into consideration everything that was presented earlier in this chapter, the gauge-kinetic La-

grangian becomes

nd∑
k=1

(Dµϕk)
†(Dµϕk) +

nt1∑
p=1

(DµΞp)
†(DµΞp) +

1

2

nt0∑
q=1

(DµΛq)
†(DµΛq) +

ns1∑
j=1

(Dµχ+
j )

†(Dµχ
+
j )

+
1

2

ns0∑
l=1

(∂µχ0
l )(∂µχ

0
l ) +

ns2∑
r=1

(Dµχ++
r )†(Dµχ

++
r )

=

n1∑
a=1

(∂µS−
a )(∂µS

+
a ) +

1

2

n0∑
b=1

(∂µS0
b )(∂µS

0
b ) +

n2∑
c=1

(∂µS−−
c )(∂µS

++
c ) (3.29a)

+m2
WWµ−W+

µ +
m2

Z

2
ZµZ

µ (3.29b)

+ imW (W−
µ ∂

µG+ −W+
µ ∂

µG−) (3.29c)

+mZZµ∂
µG0 (3.29d)

− emWAµ(W
µ−G+ +Wµ+G−) (3.29e)

− g
mW

cW
Zµ

n1∑
a=1

(
(s2W δ1a + (U†

4U4)1a − (U†
3U3)1a)W

µ−S+
a

+ (s2W δa1 + (U†
4U4)a1 − (U†

3U3)a1)W
µ+S−

a

)
(3.29f)

+ ieAµ

n1∑
a=1

(S+
a ∂

µS−
a − S−

a ∂
µS+

a ) (3.29g)

+ i
g

cW
Zµ

n1∑
a,a′=1

(
s2W δaa′ − 1

2
(U†

1U1)a′a − (U†
3U3)a′a

)
(S+

a ∂
µS−

a′ − S−
a′∂

µS+
a ) (3.29h)

+
g

2cW
Zµ

n0∑
b,b′=1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)
(S0

b∂
µS0

b′ − S0
b′∂

µS0
b ) (3.29i)

+ ig

n1∑
a=1

n0∑
b=1

((1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
W−

µ (S0
b∂

µS+
a − S+

a ∂
µS0

b )

−
(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
W+

µ (S0
b∂

µS−
a − S−

a ∂
µS0

b )

)
(3.29j)

+ 2gmWW+
µ W

µ−
n0∑
b=2

S0
b

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)
(3.29k)
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− g
mZ

cW

ZµZ
µ

2

n0∑
b=2

S0
b (Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b) (3.29l)

+ 2ieAµ

n2∑
c=1

(S++
c ∂µS−−

c − S−−
c ∂µS++

c ) (3.29m)

+ i
g

cW
Zµ

n2∑
c,c′=1

(2s2W δcc′ − (T †
1T1)c′c)(S

++
c ∂µS−−

c′ − S−−
c′ ∂µS++

c ) (3.29n)

+ ig

n1∑
a=1

n2∑
c=1

((T †
1U4)caW

+
µ (S−−

c ∂µS+
a − S+

a ∂
µS−−

c )− (U†
4T1)acW

−
µ (S++

c ∂µS−
a − S−

a ∂
µS++

c )) (3.29o)

+ gmW

n2∑
c=1

(
(U†

4T1)1cW
−
µ W

µ−S++
c + (T †

1U4)c1W
+
µ W

µ+S−−
c

)
(3.29p)

− egAµ

n1∑
a=1

n0∑
b=1

S0
b

(
Wµ+S−

a

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
+Wµ−S+

a

(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

))
(3.29q)

− g2

cW
Zµ

n1∑
a=1

n0∑
b=1

S0
b

(
W+

µ S
−
a

(s2W
2

(U†
1V1)ab +

1 + s2W√
2

(U†
4V2)ab − c2W (U†

3R1)ab

)
+W−

µ S
+
a

(s2W
2

(V †
1 U1)ba +

1 + s2W√
2

(V †
2 U4)ba − c2W (RT

1 U3)ba

))
(3.29r)

+ g2W+
µ W

µ−
n0∑

b,b′=1

S0
bS

0
b′

(1
4
(V †

1 V1)b′b +
1

2
(V †

2 V2)b′b + (RT
1 R1)b′b

)
(3.29s)

+
g2

2c2W
ZµZ

µ
n0∑

b,b′=1

S0
bS

0
b′

(1
4
(V †

1 V1)b′b + (V †
2 V2)b′b

)
(3.29t)

+ g2W+
µ W

µ−
n1∑

a,a′=1

S+
a S

−
a′

(1
2
(U†

1U1)a′a + (U†
3U3)a′a + 2(U†

4U4)a′a

)
(3.29u)

+ e2AµA
µ

n1∑
a=1

S−
a S

+
a (3.29v)

+
eg

cW
AµZµ

n∑
a,a′=1

(
2s2W δaa′ − (U†

1U1)a′a − 2(U†
3U3)a′a

)
S−
a′S

+
a (3.29w)

+
g2

c2W
ZµZ

µ
n1∑

a,a′=1

(
s4W δaa′ +

(1
4
− s2W

)
(U†

1U1)a′a + (c2W − s2W )(U†
3U3)a′a

)
S−
a′S

+
a (3.29x)

+ 4e2AµAµ

n2∑
c=1

S++
c S−−

c (3.29y)

+ 4
eg

cW
ZµA

µ
n2∑

c,c′=1

(2s2W δc′c − (T †
1T1)c′c)S

++
c S−−

c′ (3.29z)

+
g2

c2W
ZµZ

µ
n2∑

c,c′=1

(4s4W δc′c + (1− 4s2W )(T †
1T1)c′c)S

++
c S−−

c′ (3.29aa)
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+ g2W−
µ W

µ+
n2∑

c,c′=1

(T †
1T1)c′cS

++
c S−−

c′ (3.29ab)

−
(
3egAµ + g2

(2s2W − c2W )

cW
Zµ
) n1∑

a=1

n2∑
c=1

((T †
1U4)caW

+
µ S

−−
c S+

a + (U†
4T1)acW

−
µ S

++
c S−

a ) (3.29ac)

+
g2√
2

n0∑
b=1

n2∑
c=1

((V †
2 T1)bcW

−
µ W

µ−S++
c S0

b + (T †
1V2)cbW

+
µ W

µ+S−−
c S0

b ) (3.29ad)

− g2

2

n1∑
a,a′=1

((UT
3 U3)a′aW

−
µ W

µ−S+
a S

+
a′ + (U†

3U
∗
3 )a′aW

+
µ W

µ+S−
a S

−
a′). (3.29ae)

Note that, for term 3.29d to be real, the normalization constant A from equation 3.25 had to be real.

Thus, we could only have chosen it to be positive or negative. We chose it to be positive and recovered

the usual term mixing the Z boson and the neutral Goldstone boson. If we had chosen it to be negative

it would have no consequences on the results of physically meaningful quantities as we can change the

phase of the neutral Goldstone boson field arbitrarily. The normalization constant B from equation 3.27

could have also been the symmetric of the one we chose but we also chose it like this so that the term

3.29c would have its usual form. As before, this choice would not have add any consequence to the

results of physically meaningful quantities.

The Feynman rules resulting from the Lagrangian in equation 3.29 can be found in Appendix B. The

vertex in B.2a corresponds to 3.29e, the vertices in B.2b and B.2c correspond to 3.29f, the vertex in B.2d

corresponds to 3.29g, the vertex in B.2e corresponds to 3.29h, the vertex in B.2f corresponds to 3.29i,

the vertices in B.2g and B.2h correspond to 3.29j, the vertex in B.2i corresponds to 3.29k, the vertex

in B.2j corresponds to 3.29l, the vertex in B.2k corresponds to 3.29m, the vertices in B.2m and B.2n

correspond to 3.29o, the vertices in B.2o and B.2p correspond to 3.29p, the vertices in B.3a and B.3b

correspond to 3.29q, the vertices in B.3c and B.3d correspond to 3.29r, the vertex in B.3e corresponds

to 3.29s, the vertex in B.3f corresponds to 3.29t, the vertex in B.3g corresponds to 3.29u, the vertex in

B.3h corresponds to 3.29v, the vertex in B.3i corresponds to 3.29w, the vertex in B.3j corresponds to

3.29x, the vertex in B.3k corresponds to 3.29y, the vertex in B.3l corresponds to 3.29z, the vertex in

B.3m corresponds to 3.29aa, the vertex in B.3n corresponds to 3.29ab, the vertices in B.3o, B.3p, B.3q

and B.3r correspond to 3.29ac, the vertices in B.3s and B.3t correspond to 3.29ad, the vertices in B.3u

and B.3v correspond to 3.29ae.
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Chapter 4

Oblique Parameters

4.1 Definition of the Oblique Parameters

When the following criteria are satisfied [31]

• The electroweak gauge group is SU(2)× U(1);

• The New Physics (NP) particles have suppressed couplings to the light fermions with which exper-

iments are performed and couple mainly to the SM gauge boson;

• The relevant measurements are those made at energy scales q2 ≈ 0, q2 = m2
Z and q2 = m2

W ;

then, the NP effects can be parametrized by six quantities. These quantities are the oblique parameters.

Three of them were defined by Peskin and Takeuchi [32,33], are called S, T and U and are given by [33]

αT =
1

m2
Z

( 1

c2W
δAWW (0)− δAZZ(0)

)
, (4.1a)

α

4s2W c2W
S =

∂ δAZZ(q
2)

∂q2

∣∣∣∣∣
q2=0

− ∂ δAAA(q
2)

∂q2

∣∣∣∣∣
q2=0

+
c2W − s2W
cW sW

∂ δAAZ(q
2)

∂q2

∣∣∣∣∣
q2=0

, (4.1b)

α

4s2W
U =

∂ δAWW (q2)

∂q2

∣∣∣∣∣
q2=0

− c2W
∂ δAZZ(q

2)

∂q2

∣∣∣∣∣
q2=0

− s2W
∂ δAAA(q

2)

∂q2

∣∣∣∣∣
q2=0

+ 2cW sW
∂ δAAZ(q

2)

∂q2

∣∣∣∣∣
q2=0

, (4.1c)

where α is the fine-structure constant and δAV V ′(q2) = AV V ′(q2)|NP−AV V ′(q2)|SM , where theAV V ′(q2)

are the coefficients of gµν in the vacuum polarization tensors Πµν
V V ′(q) = gµνAV V ′(q2) + qµqνBV V ′(q2),

where V V ′ may be either AA, AZ, ZZ or WW and q is the four-momentum of the gauge boson.
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Altarelli and Barbieri defined parameters ϵ1, ϵ2 and ϵ3 [34,35] which are related to S, T and U by

ϵ1 = αT, ϵ2 = − α

4s2W
U, ϵ3 =

α

4s2W
S. (4.2)

The other three parameters were defined by Maksymyk, Burgess and London [36], are called V , W

and X and are given by [36]

αV =
∂ δAZZ(q

2)

∂q2

∣∣∣∣∣
q2=m2

Z

− δAZZ(m
2
Z)− δAZZ(0)

m2
Z

, (4.3a)

αW =
∂ δAWW (q2)

∂q2

∣∣∣∣∣
q2=m2

W

− δAWW (m2
W )− δAWW (0)

m2
W

, (4.3b)

α

sW cW
X =

∂ δAAZ(q
2)

∂q2

∣∣∣∣∣
q2=0

− δAAZ(m
2
Z)− δAAZ(0)

m2
Z

. (4.3c)

4.2 Vacuum Polarization Tensors

The Feynman diagrams that contribute to the vacuum polarization tensors can be found in appendix C.

To compute the vacuum polarization tensors, we use dimensional regularization and use the integrals

Ir,m defined as

Ir,m(∆) ≡
∫

ddk

(2π)d
(k2)r

(k2 −∆+ iϵ)m
. (4.4)

We can then write the contributions of each of the diagrams in C.1 to AZZ as

AZZ 1 = i
g2

2c2W

n0∑
b=1

(1
2
(V †

1 V1)bb + 2(V †
2 V2)bb

)
M4−dI01(∆ = µ2

b), (4.5a)

AZZ 2 = 2i
g2

c2W

n1∑
a=1

(
s4W +

(1
4
− s2W

)
(U†

1U1)aa + (c2W − s2W )(U†
3U3)aa

)
M4−dI01(∆ = m2

a), (4.5b)

AZZ 3 = 2i
g2

c2W

n2∑
c=1

(
4s4W + (1− 4s2W )(T †

1T1)cc

)
M4−dI01(∆ =M2

c ), (4.5c)

AZZ 4 = −i g
2

c2W

n0−1∑
b=1

n0∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
M4−d

∫ 1

0

dx
4

d
I12(∆ = D(q2, µ2

b , µ
2
b′)),

(4.5d)

AZZ 5 = −i g
2

c2W

n0∑
b=2

(Im(V †
1 V1)1b + 2 Im(V †

2 V2)1b)
2M4−d

∫ 1

0

dx
(
− 1

d
I12(∆ = D(q2, µ2

b , µ
2
1))

−m2
ZI02(∆ = D(q2, µ2

b ,m
2
Z)) +

1

d
I12(∆ = D(q2, µ2

b ,m
2
Z))
)
, (4.5e)
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AZZ 6 = −i g
2

c2W

n1∑
a,a′=1

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)a′a − (U†
3U3)a′a

)
M4−d

∫ 1

0

dx
4

d
I12(∆ = D(q2,m2

a,m
2
a′)), (4.5f)

AZZ 7 = −i g
2

c2W

n1∑
a=1

(s2W δa1 + (U†
4U4)a1 − (U†

3U3)a1)(s
2
W δ1a + (U†

4U4)1a − (U†
3U3)1a)×

×M4−d

∫ 1

0

dx
(
− 1

d
I12(∆ = D(q2,m2

a,m
2
1))−m2

W I02(∆ = D(q2,m2
a,m

2
W ))

+
1

d
I12(∆ = D(q2,m2

a,m
2
W ))

)
, (4.5g)

AZZ 8 = AZZ 7, (4.5h)

AZZ 9 = −i g
2

c2W

n2∑
c,c′=1

(2s2W δcc′ − (T †
1T1)cc′)(2s

2
W δc′c − (T †

1T1)c′c)M
4−d

∫ 1

0

dx
4

d
I12(∆ = D(q2,M2

c ,M
2
c′)),

(4.5i)

whereD(q2, A,B) ≡ q2x2−q2x+A(1−x)+Bx andM is an unphysical parameter with mass dimensions.

The expression for AZZ 1 was multiplied by a symmetry factor of 1
2 because in that diagram we have a

real internal particle.

We can write the contributions of each of the diagrams in C.2 to AWW as

AWW 1 = i
g2

2

n0∑
b=1

(1
2
(V †

1 V1)bb + (V †
2 V2)bb + 2(RT

1 R1)bb

)
M4−dI01(∆ = µ2

b), (4.6a)

AWW 2 = ig2
n1∑
a=1

(1
2
(U†

1U1)aa + (U†
3U3)aa + 2(U†

4U4)aa

)
M4−dI01(∆ = m2

a), (4.6b)

AWW 3 = ig2
n2∑
c=1

(T †
1T1)ccM

4−dI01(∆ =M2
c ), (4.6c)

AWW 4 = −ig2
n1∑
a=1

n0∑
b=1

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
×

×
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
M4−d×

×
∫ 1

0

dx
4

d
I12(∆ = D(q2, µ2

b ,m
2
a)), (4.6d)

AWW 5 = −4ig2
n0∑
b=2

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)2
×

×M4−d

∫ 1

0

dx
(
− 1

d
I12(∆ = D(q2, µ2

b ,m
2
1))−m2

W I02(∆ = D(q2, µ2
b ,m

2
W ))

+
1

d
I12(∆ = D(q2, µ2

b ,m
2
W ))

)
, (4.6e)

AWW 6 = −ig2
n1∑
a=1

n2∑
c=1

(T †
1U4)ca(U

†
4T1)acM

4−d

∫ 1

0

dx
4

d
I12(∆ = D(q2,m2

a,M
2
c )), (4.6f)
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AWW 7 = −i g
2m2

W

c2Wm2
Z

n1∑
a=1

(s2W δa1 + (U†
4U4)a1 − (U†

3U3)a1)(s
2
W δ1a + (U†

4U4)1a − (U†
3U3)1a)M

4−d×

×
∫ 1

0

dx
(
− 1

d
I12(∆ = D(q2,m2

a, µ
2
1))−m2

ZI02(∆ = D(q2,m2
a,m

2
Z))

+
1

d
I12(∆ = D(q2,m2

a,m
2
Z))
)
, (4.6g)

AWW 8 = −4ig2
n2∑
c=1

|(U†
4T1)1c|2M4−d

∫ 1

0

dx
(
− 1

d
I12(∆ = D(q2,M2

c ,m
2
1))

−m2
W I02(∆ = D(q2,M2

c ,m
2
W )) +

1

d
I12(∆ = D(q2,M2

c ,m
2
W ))

)
. (4.6h)

The expression for AWW 1 was also multiplied by a symmetry factor of 1
2 because in that diagram we

have a real internal particle.

We can write the contributions of each of the diagrams in C.3 to AAA as

AAA 1 =2ie2M4−d
n1∑
a=1

I01(∆ = m2
a), (4.7a)

AAA 2 =8ie2M4−d
n2∑
c=1

I01(∆ =M2
c ), (4.7b)

AAA 3 =− ie2M4−d
n1∑
a=1

∫ 1

0

dx
4

d
I12(∆ = D(q2,m2

a,m
2
a)), (4.7c)

AAA 4 =− 4ie2M4−d
n2∑
c=1

∫ 1

0

dx
4

d
I12(∆ = D(q2,M2

c ,M
2
c )). (4.7d)

We can write the contributions of each of the diagrams in C.4 to AAZ as

AAZ 1 =i
eg

cW

n1∑
a=1

(2s2W − (U†
1U1)aa − 2(U†

3U3)aa)M
4−dI01(∆ = m2

a), (4.8a)

AAZ 2 =4i
eg

cW

n2∑
c=1

(2s2W − (T †
1T1)cc)M

4−dI01(∆ =M2
c ), (4.8b)

AAZ 3 =− i
eg

cW

n1∑
a=1

(
s2W − 1

2
(U†

1U1)aa − (U†
3U3)aa

)
M4−d

∫ 1

0

dx
4

d
gµνI12(∆ = D(q2,m2

a,m
2
a)), (4.8c)

AAZ 4 =− 2i
eg

cW

n2∑
c=1

(2s2W − (T †
1T1)cc)M

4−d

∫ 1

0

dx
4

d
gµνI12(∆ = D(q2,M2

c ,M
2
c )). (4.8d)

4.3 Parameter T

To compute the oblique parameter T we need the part proportional ot gµν of the vacuum polarization

tensors Πµν
ZZ and Πµν

WW at q2 = 0. For that, we use the results of the integrals I01, I02 and I12 at q2 = 0,
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expanded up to order ϵ0, where ϵ = 4− d given by [25]

M4−dI01(∆) =
i

(4π)2
∆(div − log∆), (4.9a)

M4−d

∫ 1

0

dx I02(∆ = D(0, B,A)) =
i

(4π)2
1

A

(
A(div − logA)− A+B

2
+ F (A,B)

)
, (4.9b)

4

d
M4−d

∫ 1

0

dx I12(∆ = D(0, B,A)) =
i

(4π)2

(
A(div − logA) +B(div − logB) + F (A,B)

)
, (4.9c)

where div = 2
ϵ −γ+1+log

(
4πM2

)
, being γ the Euler-Mascheroni constant and the function F is defined

as

F (x, y) ≡

{
x+y
2 − xy

x−y log
(

x
y

)
x ̸= y,

0 x = y.
(4.10)

This function is symmetric under exchange of variables, making the integrals I02 and I12 also symmetric

under the exchange A↔ B.

Using the definition from 4.1a, equation 4.9, the relations from equations 3.15 – 3.17, we get for T 1

αT =
( g

4πcWmZ

)2( n1∑
a=2

n0∑
b=2

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
×

×
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
F (m2

a, µ
2
b) (4.11a)

+

n0∑
b=2

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)2
×

×
(
2(m2

W + µ2
b)− 3F (m2

W , µ2
b)
)

(4.11b)

+

n1∑
a=2

n2∑
c=1

|(T †
1U4)ca|2F (M2

c ,m
2
a) (4.11c)

+
m2

W

4c2Wm2
Z

n1∑
a=2

(
(U†

4U4)1a − (U†
3U3)1a

)(
(U†

4U4)a1 − (U†
3U3)a1

)
×

×
(
− 3F (m2

Z ,m
2
a) + 2(m2

Z +m2
a)
)

(4.11d)

+

n2∑
c=1

|(U†
4T1)1c|2

(
− 2(m2

W +M2
c )− 3F (m2

W ,M2
c )
)

(4.11e)

− 1

2
(m2

h +m2
W ) +

3

4
F (m2

h,m
2
W ) (4.11f)

−
n0−1∑
b=2

n0∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
F (µ2

b , µ
2
b′) (4.11g)

1To compute the vacuum polarization tensors in the SM, we used, for some vertices, Feynman rules that are different from the
usual SM Feynman rules. The Feynman rules for those vertices can be found in appendix D. For the vertices that are not present
in appendix D, we used the usual SM Feynman rules that can be found in [28] or [29].
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− 1

4

n0∑
b=2

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)2
(2(m2

Z + µ2
b)− 3F (m2

Z , µ
2
b)) (4.11h)

− 2

n1−1∑
a=2

n1∑
a′=a+1

(1
2
(U†

1U1)aa′ + (U†
3U3)aa′

)
×

×
(1
2
(U†

1U1)a′a + (U†
3U3)a′a

)
F (m2

a,m
2
a′) (4.11i)

− 1

2

n1∑
a=2

((U†
4U4)1a − (U†

3U3)1a)((U
†
4U4)a1 − (U†

3U3)a1)×

× (2(m2
W +m2

a)− 3F (m2
W ,m2

a)) (4.11j)

− 2

n2−1∑
c=1

n2∑
c′=c+1

|(T †
1T1)cc′ |2F (M2

c ,M
2
c′) (4.11k)

+
1

2
(m2

h +m2
Z)−

3

4
F (m2

h,m
2
Z) (4.11l)

−m2
1(div − logm2

1)
(m2

Zc
2
W

4m2
W

− 1

4

− 3

4
(U†

3U3)11 +
7

4
(U†

4U4)11 + 2s2W

(
1− m2

Zc
2
W

m2
W

))
(4.11m)

− 3

4
m2

W (div − logm2
W )
(
(U†

3U3)11 − 3(U†
4U4)11

+ 2((U†
3U3)11 − (U†

4U4)11)
2
)

(4.11n)

+M2
1 (div − logM2

1 )
m2

W

m2
Zc

2
W

(U†
4U4)11 (4.11o)

− 3

4
m2

Z(div − logm2
Z)
(
1− m2

W

c2Wm2
Z

(
1− 2(U†

3U3)11

+ 6(U†
4U4)11 +

(
1− m2

Zc
2
W

m2
W

)2)))
. (4.11p)

Thus, in a model with triplets, the T parameter has a divergent result. This was expected because

parameter T is divergent for models that violate custodial symmetry at one-loop level [26, 37], as is the

case of the models with triplets whose neutral components have a non-zero VEV.

4.4 Parameter S

To compute the oblique parameter S (as well as the oblique parameter U ) we need the derivatives with

respect to q2 of the part proportional to gµν of the vacuum polarization tensors Πµν
ZZ and Πµν

WW at q2 = 0.

For that we use the expansion of the derivatives with respect to q2 of the integrals I02 and I12 at q2 = 0,

expanded up to order ϵ0, where ϵ = 4− d given by

M4−d

∫ 1

0

dx
4

d

∂

∂Q

(
I12(∆ = D(Q, I, J))

)
Q=0

=
i

48π2
(1− div +K(I, J)), (4.12)
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where we defined

K(I, J) = −5

6
+

2IJ

(I − J)2
− J2(3I − J)

(I − J)3
log
( I
J

)
+ log I. (4.13)

This function is symmetric under the exchange I ↔ J . When J = I, we have K(I, I) = log I and thus,

equation 4.12 becomes [31]

M4−d

∫ 1

0

dx
4

d

∂

∂Q

(
I12(∆ = D(Q, I, I))

)
Q=0

=
i

48π2
(1− div + log I). (4.14)

We will also need

M4−d

∫ 1

0

dx
∂

∂Q

(
I02(∆ = D(Q, I, J))

)
Q=0

=
i

2(4π)2
K̃(I, J), (4.15)

where

K̃(I, J) =
I2 − J2 − 2IJ log

(
I
J

)
(I − J)3

. (4.16)

Using the definition from 4.1b, equations 4.12 – 4.15, the relations from equations 3.15 – 3.17, we

get for S

α

4s2W c2W
S =

=
g2

192π2c2W

(
4

n0−1∑
b=2

n0∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
K(µ2

b , µ
2
b′) (4.17a)

+

n0∑
b=2

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)2
(K(µ2

b ,m
2
Z)− 6m2

ZK̃(µ2
b ,m

2
Z)) (4.17b)

+ 4

n1∑
a,a′=2

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)a′a − (U†
3U3)a′a

)
K(m2

a,m
2
a′) (4.17c)

+ 2

n1∑
a=2

(
(U†

4U4)a1 − (U†
3U3)a1

)(
(U†

4U4)1a − (U†
3U3)1a

)
×

× (K(m2
a,m

2
W )− 6m2

W K̃(m2
a,m

2
W )) (4.17d)

+ 4

n2∑
c,c′=1

(2s2W δcc′ − (T †
1T1)cc′)(2s

2
W δc′c − (T †

1T1)c′c)K(M2
c ,M

2
c′) (4.17e)

−K(m2
h,m

2
Z) + 6m2

ZK̃(m2
h,m

2
Z) (4.17f)

− 4s2W c2W

n1∑
a=2

logm2
a − 16s2W c2W

n2∑
c=1

logM2
c (4.17g)
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+ 4(c2W − s2W )

n1∑
a=2

(
s2W − 1

2
(U†

1U1)aa − (U†
3U3)aa

)
logm2

a (4.17h)

+ 8(c2W − s2W )

n2∑
c=1

(2s2W − (T †
1T1)cc) logM

2
c (4.17i)

−
(
1− m2

Zc
2
W

m2
W

)2

(1− div)

)
. (4.17j)

where we have used e = g sW .

Thus, we get a gauge invariant result for the oblique parameters S. However, this result is divergent

for models with mW ̸= mZcW (which is the case of a general model with scalar SU(2) triplets). This

divergence can be cancelled if we multiply the Feynman rules for the SM vertices ZG0H and ZZH 2 by√
1−

(
c2Wm2

Z

m2
W

− 1
)2

(which is equal to 1 in models where mW = mZcW , as is the case of the SM). This

is true for models with any scalar multiplets, as we show in section 4.10. After the multiplication of these

SM Feynman rules by this factor we get

α

4s2W c2W
S =

=
g2

192π2c2W

(
4

n0−1∑
b=2

n0∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
K(µ2

b , µ
2
b′) (4.18a)

+

n0∑
b=2

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)2
(K(µ2

b ,m
2
Z)− 6m2

ZK̃(µ2
b ,m

2
Z)) (4.18b)

+ 4

n1∑
a,a′=2

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)a′a − (U†
3U3)a′a

)
K(m2

a,m
2
a′) (4.18c)

+ 2

n1∑
a=2

(
(U†

4U4)a1 − (U†
3U3)a1

)(
(U†

4U4)1a − (U†
3U3)1a

)
×

× (K(m2
a,m

2
W )− 6m2

W K̃(m2
a,m

2
W )) (4.18d)

+ 4

n2∑
c,c′=1

(2s2W δcc′ − (T †
1T1)cc′)(2s

2
W δc′c − (T †

1T1)c′c)K(M2
c ,M

2
c′) (4.18e)

−

(
1−

(
c2Wm2

Z

m2
W

− 1

)2
)
K(m2

h,m
2
Z) + 6

(
1−

(
c2Wm2

Z

m2
W

− 1

)2
)
m2

ZK̃(m2
h,m

2
Z) (4.18f)

− 4s2W c2W

n1∑
a=2

logm2
a − 16s2W c2W

n2∑
c=1

logM2
c (4.18g)

+ 4(c2W − s2W )

n1∑
a=2

(
s2W − 1

2
(U†

1U1)aa − (U†
3U3)aa

)
logm2

a (4.18h)

2These two vertices are related by gauge invariance. If we multiply their Feynman rules by different factors, the result for S
becomes gauge dependent.
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+ 8(c2W − s2W )

n2∑
c=1

(2s2W − (T †
1T1)cc) logM

2
c

)
. (4.18i)

4.5 Parameter U

Using the definition from 4.1c, equations 4.12 – 4.15, the relations from equations 3.15 – 3.17, we get

for U

α

4s2W
U =

g2

192π2

(
4

n1∑
a=2

n0∑
b=2

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
×

×
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
K(µ2

b ,m
2
a) (4.19a)

+ 4

n0∑
b=2

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)2
×

× (K(µ2
b ,m

2
W )− 6m2

W K̃(µ2
b ,m

2
W )) (4.19b)

+ 4

n1∑
a=2

n2∑
c=1

(T †
1U4)ca(U

†
4T1)acK(m2

a,M
2
c ) (4.19c)

+
m2

W

c2Wm2
Z

n1∑
a=2

(
(U†

4U4)a1 − (U†
3U3)a1

)(
(U†

4U4)a1 − (U†
3U3)1a

)
×

× (K(m2
a,m

2
Z)− 6m2

ZK̃(m2
a,m

2
Z)) (4.19d)

+ 4

n2∑
c=1

|(U†
4T1)1c|2(K(M2

c ,m
2
W )− 6m2

W K̃(M2
c ,m

2
W )) (4.19e)

−
(
K(m2

h,m
2
W )− 6m2

W K̃(m2
h,m

2
W )
)

(4.19f)

− 4

n0−1∑
b=2

n0∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
K(µ2

b , µ
2
b′) (4.19g)

−
n0∑
b=2

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)2
×

× (K(µ2
b ,m

2
Z)− 6m2

ZK̃(µ2
b ,m

2
Z)) (4.19h)

− 4

n1∑
a,a′=2

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)aa′ − (U†
3U3)a′a

)
K(m2

a,m
2
a′) (4.19i)

− 2

n1∑
a=2

(
(U†

4U4)a1 − (U†
3U3)a1

)(
(U†

4U4)a1 − (U†
3U3)1a

)
×

× (K(m2
a,m

2
W )− 6m2

W K̃(m2
a,m

2
W )) (4.19j)

− 4

n2∑
c,c′=1

(2s2W δcc′ − (T †
1T1)cc′)(2s

2
W δcc′ − (T †

1T1)cc′)K(M2
c ,M

2
c′) (4.19k)

+
(
K(m2

h,m
2
Z)− 6m2

ZK̃(m2
h,m

2
Z)
)

(4.19l)
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− 4s4W

n1∑
a=2

logm2
a − 16s4W

n2∑
c=1

logM2
c (4.19m)

+ 8s2W

n1∑
a=2

(
s2W − 1

2
(U†

1U1)aa − (U†
3U3)aa

)
logm2

a (4.19n)

+ 16s2W

n2∑
c=1

(2s2W − (T †
1T1)cc) logM

2
c (4.19o)

+

((
1− m2

Zc
2
W

m2
W

)2

+ 3

(
1− m2

Zc
2
W

m2
W

))
(1− div)

)
. (4.19p)

Similarly to what happened to the oblique parameter S, we get a result for the oblique parameter

U which is gauge invariant but divergent for models with mW ̸= mZcW (which is the case of a general

model with scalar SU(2) triplets). This divergence can also be cancelled if, besides multiplying the

Feynman rules for the SM vertices ZG0H and ZZH by

√
1−

(
c2Wm2

Z

m2
W

− 1
)2

(as was done to obtain a

finite result for S), we also multiply the SM vertices W±G∓H and W±W∓H (which are also related by

gauge invariance) by
√
4− 3

c2Wm2
Z

m2
W

(which is also equal to 1 in models where mW = mZcW ). This is also

true for models with any scalar multiplets and we will also show it in section 4.10. After the multiplication

of these SM Feynman rules by this factor we get

α

4s2W
U =

g2

192π2

(
4

n1∑
a=2

n0∑
b=2

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
×

×
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
K(µ2

b ,m
2
a) (4.20a)

+ 4

n0∑
b=2

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)2
×

× (K(µ2
b ,m

2
W )− 6m2

W K̃(µ2
b ,m

2
W )) (4.20b)

+ 4

n1∑
a=2

n2∑
c=1

(T †
1U4)ca(U

†
4T1)acK(m2

a,M
2
c ) (4.20c)

+
m2

W

c2Wm2
Z

n1∑
a=2

(
(U†

4U4)a1 − (U†
3U3)a1

)(
(U†

4U4)a1 − (U†
3U3)1a

)
×

× (K(m2
a,m

2
Z)− 6m2

ZK̃(m2
a,m

2
Z)) (4.20d)

+ 4

n2∑
c=1

|(U†
4T1)1c|2(K(M2

c ,m
2
W )− 6m2

W K̃(M2
c ,m

2
W )) (4.20e)

−
(
4− 3

m2
Zc

2
W

m2
W

)(
K(m2

h,m
2
W )− 6m2

W K̃(m2
h,m

2
W )
)

(4.20f)

− 4

n0−1∑
b=2

n0∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
K(µ2

b , µ
2
b′) (4.20g)

−
n0∑
b=2

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)2
(K(µ2

b ,m
2
Z)− 6m2

ZK̃(µ2
b ,m

2
Z)) (4.20h)
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− 4

n1∑
a,a′=2

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)aa′ − (U†
3U3)a′a

)
K(m2

a,m
2
a′) (4.20i)

− 2

n1∑
a=2

(
(U†

4U4)a1 − (U†
3U3)a1

)(
(U†

4U4)a1 − (U†
3U3)1a

)
×

× (K(m2
a,m

2
W )− 6m2

W K̃(m2
a,m

2
W )) (4.20j)

− 4

n2∑
c,c′=1

(2s2W δcc′ − (T †
1T1)cc′)(2s

2
W δcc′ − (T †

1T1)cc′)K(M2
c ,M

2
c′) (4.20k)

+

(
1−

(
c2Wm2

Z

m2
W

− 1

)2
)(

K(m2
h,m

2
Z)− 6m2

ZK̃(m2
h,m

2
Z)
)

(4.20l)

− 4s4W

n1∑
a=2

logm2
a − 16s4W

n2∑
c=1

logM2
c (4.20m)

+ 8s2W

n1∑
a=2

(
s2W − 1

2
(U†

1U1)aa − (U†
3U3)aa

)
logm2

a (4.20n)

+ 16s2W

n2∑
c=1

(2s2W − (T †
1T1)cc) logM

2
c

)
. (4.20o)

4.6 Parameter V

To compute parameters V and W we will need [31]

∂

∂Q

(
M4−d 4

d

∫ 1

0

dx I12(∆ = D(Q, I, J))

)
−
M4−d 4

d

∫ 1

0
dx I12(∆ = D(Q, I, J))−M4−d 4

d

∫ 1

0
dx I12(∆ = D(0, I, J))

Q

=
i

96π2
H(I, J,Q),

(4.21)

where

H(I, J,Q) ≡2− 9
I + J

Q
+ 6

(I − J)2

Q2

+
3

Q

[
−I

2 + J2

I − J
+ 2

I2 − J2

Q
− (I − J)3

Q2

]
log

I

J

+

(
I + J − (I − J)2

Q

)
3f(t, r)

Q2
. (4.22a)

In the definition ofH(I, J,Q), we used a function f(t, r), being t ≡ I+J−Q, r ≡ Q2−2Q(I+J)+(I−J)2

and
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f(t, r) =


√
r log

∣∣∣ t−√
r

t+
√
r

∣∣∣ , r > 0,

0, r = 0,

2
√
−r arctan

√
−r
t , r < 0.

(4.23)

We will also need [31]

∂

∂Q

(
M4−d

∫ 1

0

dx I02(∆ = D(Q, I, J))

)
−
M4−d

∫ 1

0
dx I02(∆ = D(Q, I, J))−M4−d

∫ 1

0
dx I02(∆ = D(0, I, J))

Q

=− i

32π2

1

Q
H̃(I, J,Q),

(4.24)

where

H̃(I, J,Q) ≡ 4 +

(
I + J

I − J
− 2

I − J

Q

)
log

I

J
+

−Q2 + 3Q(I + J)− 2(I − J)2

rQ
f(t, r). (4.25)

Using the definition from 4.3a, equations 4.21 and 4.24, the relations from equations 3.15 – 3.17, we

get for V

αV =
g2

384π2c2W

(
4

n0−1∑
b=2

n0∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
H(µ2

b , µ
2
b′ ,m

2
Z) (4.26a)

+

n0∑
b=2

(Im(V †
1 V1)1b + 2 Im(V †

2 V2)1b)
2
(
12H̃(µ2

b ,m
2
Z ,m

2
Z) +H(µ2

b ,m
2
Z ,m

2
Z)
)

(4.26b)

+ 4

n1∑
a,a′=2

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)a′a − (U†
3U3)a′a

)
H(m2

a,m
2
a′ ,m2

Z) (4.26c)

+ 2

n1∑
a=2

((U†
4U4)a1 − (U†

3U3)a1)((U
†
4U4)1a − (U†

3U3)1a)×

×
(
12H̃(m2

a,m
2
W ,m2

Z) +H(m2
a,m

2
W ,m2

Z)
)

(4.26d)

+ 4

n2∑
c,c′=1

(2s2W δcc′ − (T †
1T1)cc′)(2s

2
W δc′c − (T †

1T1)c′c)H(M2
c ,M

2
c′ ,m

2
Z) (4.26e)

− 12H̃(m2
h,m

2
Z ,m

2
Z)−H(m2

h,m
2
Z ,m

2
Z)

)
. (4.26f)

This result is both gauge indenpendent and finite.
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4.7 Parameter W

Using the definition from 4.3b, equations 4.21 and 4.24, the relations from equations 3.15 – 3.17, we get

for W

αW =
g2

384π2

(
4

n1∑
a=2

n0∑
b=2

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
×

×
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
H(µ2

b ,m
2
a,m

2
W ) (4.27a)

+ 4

n0∑
b=2

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)2
×

×
(
12H̃(µ2

b ,m
2
W ,m2

W ) +H(µ2
b ,m

2
W ,m2

W )
)

(4.27b)

+ 4

n1∑
a=2

n2∑
c=1

(T †
1U4)ca(U

†
4T1)acH(m2

a,M
2
c ,m

2
W ) (4.27c)

+
m2

W

m2
Zc

2
W

n1∑
a=2

((U†
4U4)a1 − (U†

3U3)a1)((U
†
4U4)1a − (U†

3U3)1a)×

×
(
12H̃(m2

a,m
2
Z ,m

2
W ) +H(m2

a,m
2
Z ,m

2
W )
)

(4.27d)

+ 4

n2∑
c=1

|(U†
4T1)1c|2

(
12H̃(M2

c ,m
2
W ,m2

W ) +H(M2
c ,m

2
W ,m2

W )
)

(4.27e)

− 12H̃(m2
h,m

2
W ,m2

W )−H(m2
h,m

2
W ,m2

W )

)
. (4.27f)

4.8 Parameter X

To compute the parameter X we will need equation 4.14, which is a specific case of 4.12, when J = I.

We will also need [31]

M4−d 4
d

∫ 1

0
dx I12(∆ = D(Q, I, J))−M4−d 4

d

∫ 1

0
dx I12(∆ = D(0, I, J))

Q

=
i

96π2
(2− 2div + log I + log J +G(I, J,Q)) ,

(4.28)

and

M4−d 4
d

∫ 1

0
dx I02(∆ = D(Q, I, J))−M4−d 4

d

∫ 1

0
dx I02(∆ = D(0, I, J))

Q
= − i

32π2

1

Q
G̃(I, J,Q), (4.29)

where
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G(I, J,Q) ≡− 16

3
+ 5

I + J

Q
− 2

(I − J)2

Q2

+
3

Q

(
I2 + J2

I − J
− I2 − J2

Q
+

(I − J)3

3Q2

)
log

I

J
+

r

Q3
f(t, r), (4.30a)

and

G̃(I, J,Q) ≡− 2 +

(
I − J

Q
− I + J

I − J

)
log

I

J
+
f(t, r)

Q
. (4.31a)

Using the definition from 4.3c, equations 4.28 and 4.29, the relations from equations 3.15 – 3.17, we

get for X

α

sW cW
X =− eg

96π2cW

(
n1∑
a=2

(
s2W − 1

2
(U†

1U1)aa − (U†
3U3)aa

)
G(m2

a,m
2
a,m

2
Z) (4.32a)

+ 2

n2∑
c=1

(
2s2W − (T †

1T1)cc

)
G(M2

c ,M
2
c ,m

2
Z)

)
. (4.32b)

4.9 Notes on AAA

Due to the Ward-Takahashi identities of Quantum Electrodynamics (QED) [38,39], the photon propagator

must be transverse to all orders. This means that we can write

Πµν
AA =

(
gµν − qµqν

q2

)
AAA(q

2), (4.33)

being
(
gµν − qµqν

q2

)
the transverse projector. The fact that we are able to write the photon propagator as

in 4.33 has the consequence that we must have AAA(q
2 = 0) = 0. We will compute here AAA(q

2 = 0)

to check that it is in fact equal to 0.

At q2 = 0 we get then

AAA 1(q
2 = 0) =− e2

8π2

n1∑
a=1

m2
a(div − logm2

a), (4.34a)

AAA 2(q
2 = 0) =− e2

2π2

n2∑
c=1

M2
c (div − logM2

c ), (4.34b)

AAA 3(q
2 = 0) =

e2

8π2

n1∑
a=1

m2
a(div − logm2

a), (4.34c)
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AAA 4(q
2 = 0) =

e2

2π2

n2∑
c=1

M2
c (div − logM2

c ), (4.34d)

AAA 5(q
2 = 0) =

e2

64π2

(
−m2

1(div − logm2
1)− 3m2

W (div − logm2
W ) + 2(m2

W +m2
1)− 3F (m2

1,m
2
W )
)
,

(4.34e)

AAA 6(q
2 = 0) =AAA 5(q

2 = 0), (4.34f)

AAA 7(q
2 = 0) =− e2

16π2

(( m2
1

m2
W

− 1
)(3

4
(m2

1 + 2m2
W )(1− div)

+
−5m6

1 + 9m2
1m

4
W − 4m6

W − 6(3m2
1m

4
W − 2m6

W ) logm2
W + 6m6

1 logm
2
1

8(m2
1 −m2

W )2

)
+

1

m2
W

(3
4

(1
2
− div

)
(m4

1 +m2
1m

2
W +m4

W )

+
m6

W −m6
1 + 3m6

1 logm
2
1 − 3m6

W logm2
W

4(m2
1 −m2

W )

)
+m2

W

(39
8

− 27

4
div +

27

4
logm2

W

))
, (4.34g)

AAA 8(q
2 = 0) =

e2

16π2

(
3

2

m14

m2
W

(1
6
− div + logm2

1

)
+m2

W

(15
4

− 9

2
div +

9

2
logm2

W

))
(4.34h)

AAA 9(q
2 = 0) =

e2

16π2

m2
1

2

(
div − logm2

1

)
, (4.34i)

AAA 10(q
2 = 0) =AAA 9(q

2 = 0). (4.34j)

We can see that AAA 1(q
2 = 0) + AAA 3(q

2 = 0) = 0 and AAA 2(q
2 = 0) + AAA 4(q

2 = 0) = 0. The

other diagrams cancel each other such that

AAA 5(q
2 = 0) +AAA 6(q

2 = 0) +AAA 7(q
2 = 0)

+AAA 8(q
2 = 0)−AAA 9(q

2 = 0)−AAA 10(q
2 = 0) = 0.

(4.35)

Therefore, we get AAA(q
2 = 0) = 0 as expected.

4.10 Notes on the divergent parts of S and U

In this section we will show that if we multiply the usual SM Feynman rules (which can be found, for

example, in [28] or in [29]) for the vertices ZG0H and ZZH by
√
1− (K − 1)

2 and for the vertices

W±G∓H and W±W∓H by
√
4− 3K, where K ≡ m2

Zc2W
m2

W
then we get a finite result for the oblique

parameters S and U for a model with any scalar content.

We use the SU(2) representation with weak isospin J :

(T3)rc = δrc (J + 1− r) , (4.36a)
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(T+)rc = δr+1,c

√
r (2J + 1− r)

2
, (4.36b)

(T−)rc = δr−1,c

√
(r − 1) (2J + 2− r)

2
, (4.36c)

where r stands for the row of the matrix and c stands for the column of the matrix, with 0 ≤ r, c ≤ 2J +1.

Consider an SU(2) × U(1) electroweak model, in which the scalar sector includes SU(2) multiplets

MJY labeled by their weak isospin J and their weak hypercharge Y , such that J + Y ∈ N0. Each

multiplet MJY has VEV vJY in its component with electric charge zero, i.e., in the component with third

component of weak isospin T3 = −Y . Writing the multiplets as column vectors, we will denote by M0
JY

the component in row J + 1 + Y , which has electric charge 0, by M−Q
JY (Q > 0) the component in row

J + Y + 1+Q which has electric charge −Q and by M+Q
JY (Q > 0) the component in row J + Y + 1−Q

which has electric charge +Q. We will consider only complex multiplets, such that M+Q
JY ̸=

(
M−Q

JY

)∗
. 3

We can then write

DµM
−Q
JY = ∂µM

−Q
JY − ieQAµM

−Q
JY + i

g

cw
ZµM

−Q
JY

(
Y +Qc2w

)
(4.37a)

−igW+
µ M

−Q−1
JY

√
(J + Y +Q+ 1) (J − Y −Q)

2
(4.37b)

−igW−
µ M

−Q+1
JY

√
(J + Y +Q) (J − Y −Q+ 1)

2
, (4.37c)

DµM
0
JY = ∂µM

0
JY − i

g

cw
ZµM

0
JY (−Y ) (4.37d)

−igW+
µ M

−
JY

√
(J + Y + 1) (J − Y )

2
(4.37e)

−igW−
µ M

+
JY

√
(J + Y ) (J − Y + 1)

2
, (4.37f)

DµM
+Q
JY = ∂µM

+Q
JY + ieQAµM

+Q
JY − i

g

cw
ZµM

+Q
JY

(
−Y +Qc2w

)
(4.37g)

−igW+
µ M

+Q−1
JY

√
(J + Y −Q+ 1) (J − Y +Q)

2
(4.37h)

−igW−
µ M

+Q+1
JY

√
(J + Y −Q) (J − Y +Q+ 1)

2
. (4.37i)

A scalar multiplet with weak isospin J and weak hypercharge Y has a component with zero electric

charge if and only if −J ≤ Y ≤ J . Let Q be a non-negative number. A scalar multiplet with weak isospin

J and weak hypercharge Y has a component with electric charge +Q if and only if Q− J ≤ Y ≤ Q+ J .

A scalar multiplet with weak isospin J and weak hypercharge Y has a component with electric charge

−Q if and only if −Q− J ≤ Y ≤ J −Q.

3If some of the multiplets are real, the same conclusions are still valid but there are some modifications in the intermediate
steps.
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The masses of the gauge boson are given in terms of the VEVs of the scalar fields by

m2
Z =

g2

c2W

∑
−J≤Y≤J

|vJY |2
(
2Y 2

)
, (4.38a)

m2
W =g2

 ∑
−J≤Y≤J−1

|vJY |2
(J + Y + 1) (J − Y )

2

+
∑

−J+1≤Y≤J

|vJY |2
(J + Y ) (J − Y + 1)

2

 (4.38b)

=g2

 ∑
−J≤Y≤J

|vJY |2
(J + Y + 1) (J − Y )

2

+
∑

−J≤Y≤J

|vJY |2
(J + Y ) (J − Y + 1)

2

 (4.38c)

=g2
∑

−J≤Y≤J

|vJY |2
(
J2 − Y 2 + J

)
. (4.38d)

We can then write

M+Q
JY = RQ

JY


S+Q
1

S+Q
2
...

S+Q
nQ

 ,
(
M−Q

JY

)∗
= SQ

JY


S+Q
1

S+Q
2
...

S+Q
nQ

 , (4.39)

where nQ is the total number of charge-Q scalars, RQ
JY and SQ

JY are 1 × nQ mixing matrices, S+Q
a

(a = 1, . . . , nQ) are the eigenstates of the mass matrix of the scalars with charge Q and S+
1 ≡ G+ is

the charged Goldstone boson. We will denote by mQ
a the mass of the SQ

a scalar. We form the nQ × nQ

matrices UQ by stacking all the rows RQ
JY and SQ

JY for a fixed Q on top of each other; those matrices

are unitary.

The unitarity of UQ implies

∑
Q−J≤Y≤Q+J

(RQ
JY )1a(R

Q
JY )

∗
1a′ +

∑
−Q−J≤Y≤J−Q

(SQ
JY )1a(S

Q
JY )

∗
1a′ = δaa′ (4.40a)

nQ∑
a=1

(RQ
JY )1a(R

Q
J′Y ′)

∗
1a = δJJ ′δY Y ′ (4.40b)

nQ∑
a=1

(SQ
JY )1a(S

Q
J′Y ′)

∗
1a = δJJ ′δY Y ′ (4.40c)

nQ∑
a=1

(RQ
JY )1a(S

Q
J′Y ′)

∗
1a = 0 (4.40d)
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We can also write

M0
JY = vJY +

AJY + iBJY√
2


G0

S0
2
...
S0
n0

 , (4.41)

where n0 is the total number of neutral scalars and AJY and BJY are real 1 × n0 matrices. We will

denote by µb the mass of the S0
b scalar. We form the n0 × n0 matrix V by stacking all the rows AJY and

BJY on top of each other. The matrix V is real and orthogonal.

The orthogonality of V implies

∑
−J≤Y≤J

((AJY )1b(AJY )1b′ + (BJY )1b(BJY )1b′) = δbb′ , (4.42a)

n0∑
b=1

(AJY )1b(AJ′Y ′)1b = δJJ ′δY Y ′ , (4.42b)

n0∑
b=1

(BJY )1b(BJ′Y ′)1b = δJJ ′δY Y ′ , (4.42c)

n0∑
b=1

(AJY )1b(BJ′Y ′)1b = 0. (4.42d)

We get for the mixing of the W boson with the charged scalars

LW±G∓ =
∑

−J≤Y≤J−1

[
−igW−

µ vJY

√
(J + Y + 1) (J − Y )

2
∂µ
(
M−

JY

)∗] (4.43a)

+
∑

−J+1≤Y≤J

[
igW−

µ v
∗
JY

√
(J + Y ) (J − Y + 1)

2
∂µM+

JY

]
+H.c. (4.43b)

≡imW

(
W−

µ ∂
µG+ −W+

µ ∂
µG−) . (4.43c)

Therefore, the charged Goldstone boson is given by

G+ =
g

mW

− ∑
−J≤Y≤J−1

vJY

√
(J + Y + 1)(J − Y )

2
(M−

JY )
∗ (4.44a)

+
∑

−J+1≤Y≤J

v∗JY

√
(J + Y )(J − Y + 1)

2
M+

JY

 , (4.44b)

such that
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(RJY )
∗
11 =

g

mW

√
J2 − Y 2 + J + Y

2
v∗JY , (SJY )

∗
11 = − g

mW

√
J2 − Y 2 + J − Y

2
vJY . (4.45)

We get for the mixing of the Z boson with the neutral scalars

LZG0 = i
g

cW
Zµ

∑
−J≤Y≤J

Y vJY ∂
µ
(
M0

JY

)∗
+H.c. ≡ mZZµ∂

µG0. (4.46)

Therefore, the neutral Goldstone boson is given by

G0 = i
g

cwmZ

∑
−J≤Y≤J

Y
[
vJY ∂

µ
(
M0

JY

)∗ − v∗JY ∂
µM0

JY

]
, (4.47)

such that

(AJY )11 =
−
√
2g

cWmZ
Y Im vJY , (BJY )11 =

√
2g

cWmZ
Y Re vJY . (4.48)

As we saw for the model with triplets, the diagrams for which ∂AV V ′ (q2)
∂q2

∣∣∣
q2=0

(where V V ′ may be

eitherAA, AZ, ZZ orWW ) is divergent are those for which the internal particles are two scalar particles.

The ones which have as internal particles one gauge boson and one scalar are finite. The tadpole

diagrams do not contribute for ∂AV V ′ (q2)
∂q2

∣∣∣
q2=0

as they do not depend on the momentum q of the external

gauge boson. Thus, we need the Feynman rules for the vertices with one gauge boson and two scalars.

The AS+QS−Q interaction terms in the Lagrangian are

LAS+QS−Q =ieQAµ
∑

−J−Q≤Y≤J−Q

(
(M−Q

JY )∗∂µM
−Q
JY −M−Q

JY ∂µ(M
−Q
JY )∗

)
+ ieQAµ

∑
Q−J≤Y≤J+Q

(
(M+Q

JY )∂µ(M
+Q
JY )∗ − (M+Q

JY )∗∂µM
+Q
JY

)
(4.49a)

=ieQAµ
∑

−J−Q≤Y≤J−Q

nQ∑
a,a′=1

(SQ
JY )

∗
1a′(S

Q
JY )1a

(
S+Q
a ∂µS

−Q
a′ − S−Q

a′ ∂µS
+Q
a

)

+ ieQAµ
∑

Q−J≤Y≤J+Q

nQ∑
a,a′=1

(RQ
JY )

∗
1a′(R

Q
JY )1a

(
S+Q
a ∂µS

−Q
a′ − S−Q

a′ ∂µS
+Q
a

)
(4.49b)

=ieQAµ

nQ∑
a=1

(
S+Q
a ∂µS

−Q
a − S−Q

a ∂µS
+Q
a

)
. (4.49c)

The ZS+QS−Q interaction terms in the Lagrangian are
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LZS+QS−Q =− i
g

cW
Zµ

∑
−J−Q≤Y≤J−Q

(
Y +Qc2W

) (
(M−Q

JY )∗∂µM
−Q
JY −M−Q

JY ∂µ(M
−Q
JY )∗

)
− i

g

cW
Zµ

∑
Q−J≤Y≤J+Q

(
−Y +Qc2W

) (
(M+Q

JY )∂µ(M
+Q
JY )∗ − (M+Q

JY )∗∂µM
+Q
JY

)
(4.50a)

=− igcWQZµ

nQ∑
a=1

(
S+Q
a ∂µS

−Q
a − S−Q

a ∂µS
+Q
a

)
− i

g

cW
Zµ

∑
Q−J≤Y≤J−Q

nQ∑
a,a′=1

Y
(
(SQ

JY )1a(S
Q
JY )

∗
1a′ − (RQ

JY )1a(R
Q
JY )

∗
1a′

)
×

×
(
S+Q
a ∂µS

−Q
a′ − S−Q

a′ ∂µS
+Q
a

)
(4.50b)

− i
g

cW
Zµ

∑
Y≥−Q−J∧Y≤J−Q∧Y <Q−J

nQ∑
a,a′=1

Y (SQ
JY )1a(S

Q
JY )

∗
1a′

(
S+Q
a ∂µS

−Q
a′ − S−Q

a′ ∂µS
+Q
a

)
(4.50c)

+ i
g

cW
Zµ

∑
Y≥Q−J∧Y >J−Q∧Y≤Q+J

nQ∑
a,a′=1

Y (RQ
JY )1a(R

Q
JY )

∗
1a′

(
S+Q
a ∂µS

−Q
a′ − S−Q

a′ ∂µS
+Q
a

)
.

(4.50d)

The ZS0S0 interaction terms in the Lagrangian are

LZS0S0 = i
g

cW
Zµ

∑
−J≤Y≤J

Y
(
(M0

JY )∂µ(M
0
JY )

∗ − (M0
JY )

∗∂µM
0
JY

)
(4.51a)

= i
g

2cW
Zµ

∑
−J≤Y≤J

n0∑
b,b′=1

Y ((AJY )1b + i(BJY )1b) ((AJY )1b′ − i(BJY )1b′)×

×
(
S0
b∂µS

0
b′ − S0

b′∂µS
0
b

)
(4.51b)

= − g

2cW
Zµ

∑
−J≤Y≤J

n0∑
b,b′=1

Y ((AJY )1b′(BJY )1b − (AJY )1b(BJY )1b′)×

×
(
S0
b∂µS

0
b′ − S0

b′∂µS
0
b

)
. (4.51c)

The W±S∓S0 interaction terms in the Lagrangian are

LW±S∓S0 =ig
∑

−J≤Y≤J−1

√
(J + Y + 1)(J − Y )

2

(
Wµ+(M0

JY )
∗∂µM

−
JY

−Wµ−M0
JY ∂µ(M

−
JY )

∗ +Wµ−(M−
JY )

∗∂µM
0
JY −Wµ+M−

JY ∂µ(M
0
JY )

∗

)
(4.52a)

+ ig
∑

−J+1≤Y≤J

√
(J + Y )(J − Y + 1)

2

(
Wµ+(M+

JY )
∗∂µM

0
JY
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−Wµ−M+
JY ∂µ(M

0
JY )

∗ +Wµ−(M0
JY )

∗∂µM
+
JY −Wµ+M0

JY ∂µ(M
+
JY )

∗

)
(4.52b)

=i
g

2

∑
−J≤Y≤J−1

n1∑
a=1

n0∑
b=1

√
(J + Y + 1)(J − Y )

(
Wµ+(AJY − iBJY )1b(S

1
JY )

∗
1a×

× (S0
b∂µS

−
a − S−

a ∂µS
0
b ) +Wµ−(AJY + iBJY )1b(S

1
JY )1a(S

+
a ∂µS

0
b − S0

b∂µS
+
a )

)
(4.52c)

+ i
g

2

∑
−J+1≤Y≤J

n1∑
a=1

n0∑
b=1

√
(J + Y )(J − Y + 1)

(
Wµ+(AJY + iBJY )1b(R

1
JY )

∗
1a×

× (S−
a ∂µS

0
b − S0

b∂µS
−
a ) +Wµ−(AJY − iBJY )1b(R

1
JY )1a(S

0
b∂µS

+
a − S+

a ∂µS
0
b )

)
.

(4.52d)

The W±S±QS∓Q∓1 interaction terms in the Lagrangian are

LW±S±QS∓Q∓1 =i
g√
2

∑
−Q−J≤Y≤J−Q−1

nQ∑
a=1

nQ+1∑
a′=1

√
(J + Y +Q+ 1)(J − Y −Q)×

×

(
Wµ−(SQ

JY )
∗
1a(S

Q+1
JY )1a′(SQ+1

a′ ∂µS
−Q
a − S−Q

a ∂µS
Q+1
a′ )

+Wµ+(SQ+1
JY )∗1a′(S

Q
JY )1a(S

Q
a ∂µS

−Q−1
a′ − S−Q−1

a′ ∂µS
Q
a )

)
(4.53a)

+ i
g√
2

∑
Q−J+1≤Y≤J+Q

nQ∑
a=1

nQ+1∑
a′=1

√
(J + Y −Q)(J − Y +Q+ 1)×

×

(
Wµ+(RQ+1

JY )∗1a′(R
Q
JY )1a(S

−Q−1
a′ ∂µS

Q
a − SQ

a ∂µS
−Q−1
a′ )

+Wµ−(RQ+1
JY )1a′(RQ

JY )
∗
1a(S

−Q
a ∂µS

Q+1
a′ − SQ+1

a′ ∂µS
−Q
a )

)
. (4.53b)

Besides using the Feynman rules required by gauge invariance for the triple vertices with gauge and

Goldstone bosons, we will use the following Feynman rules to compute the SM amplitudes:

p

q

H

G0

Zµ =
g

2cW

√
X(q − p)µ, (4.54a)
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Zν

Zµ

H = i
g

cW
mZ

√
X gµν , (4.54b)

p

q

H

G∓

W±µ = ∓ig
2

√
Z(q − p)µ, (4.54c)

W− ν

W+µ

H = igmW

√
Z gµν . (4.54d)

Gauge invariance requires that the vertices ZG0H and ZZH are multiplied by the same factor
√
X. The

same happens with the vertices W±G∓H and W±W∓H that are both multiplied by
√
Z. In the SM

we have X = Z = 1. Here we are assuming that X and Z can be different from 1 in a model where

mW ̸= mZcW .

Therefore, we get

∂δAZZ

∂q2

∣∣∣∣
q2=0

=
g2

192π2c2W

(
2

n0∑
b,b′=1

 ∑
−J≤Y≤J

Y ((AJY )1b′(BJY )1b − (AJY )1b(BJY )1b′)

2

(4.55a)

+ 4
∑
Q

nQ∑
a,a′=1

(
Qc2W δaa′ +

∑
Q−J≤Y≤J−Q

Y ((SQ
JY )1a(S

Q
JY )

∗
1a′ − (RQ

JY )1a(R
Q
JY )

∗
1a′)

+
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y (SQ
JY )1a(S

Q
JY )

∗
1a′

−
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y (RQ
JY )1a(R

Q
JY )

∗
1a′

)
×

×
(
Qc2W δa′a +

∑
Q−J≤Y≤J−Q

Y ((SQ
JY )1a′(SQ

JY )
∗
1a − (RQ

JY )1a′(RQ
JY )

∗
1a)

+
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y (SQ
JY )1a′(SQ

JY )
∗
1a
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−
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y (RQ
JY )1a′(RQ

JY )
∗
1a

)
(4.55b)

−X − 4

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))2
)
(1− div) + finite terms (4.55c)

=
g2

192π2c2W

(
4

∑
−J≤Y≤J

Y 2 + 4
∑
Q

(
Q2c4WnQ + 2

∑
Q−J≤Y≤J−Q

Y 2

+ 2Qc2W
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y − 2Qc2W
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y

+
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y 2 +
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y 2
)

−X − 4

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))2
)
(1− div) + finite terms, (4.55d)

∂δAAZ

∂q2

∣∣∣∣
q2=0

=− eg

48π2cW

(∑
Q

nQ∑
a=1

Q
(
Qc2W +

∑
Q−J≤Y≤J−Q

Y
(
(SQ

JY )1a(S
Q
JY )

∗
1a − (RQ

JY )1a(R
Q
JY )

∗
1a

)
+

∑
Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y (SQ
JY )1a(S

Q
JY )

∗
1a

−
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y (RQ
JY )1a(R

Q
JY )

∗
1a

)
(4.56a)

+

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

)))
(1− div) + finite terms (4.56b)

=− eg

48π2cW

(∑
Q

(
Q2nQc

2
W +Q

∑
Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y

−Q
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y
)

(4.56c)

+

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

)))
(1− div) + finite terms, (4.56d)

∂δAAA

∂q2

∣∣∣∣
q2=0

=
e2

48π2

∑
Q

Q2nQ − 1

 (1− div) + finite terms, (4.57a)

∂δAWW

∂q2

∣∣∣∣
q2=0

=
g2

192π2

(
n1∑
a=1

n0∑
b=1

( ∑
−J≤Y≤J−1

√
(J + Y + 1)(J − Y )((AJY )1b − i(BJY )1b)(S

1
JY )

∗
1a−

−
∑

−J+1≤Y≤J

√
(J + Y )(J − Y + 1)((AJY )1b + i(BJY )1b)(R

1
JY )

∗
1a

)
×
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×
( ∑

−J≤Y≤J−1

√
(J + Y + 1)(J − Y )((AJY )1b + i(BJY )1b)(S

1
JY )1a−

−
∑

−J+1≤Y≤J

√
(J + Y )(J − Y + 1)((AJY )1b − i(BJY )1b)(R

1
JY )1a

)
(4.58a)

+ 2
∑
Q

nQ∑
a=1

nQ+1∑
a′=1

( ∑
−J−Q≤Y≤J−Q−1

√
(J + Y +Q+ 1)(J − Y −Q)(SQ+1

JY )∗1a′(S
Q
JY )1a−

−
∑

Q−J+1≤Y≤Q+J

√
(J + Y −Q)(J − Y +Q+ 1)(RQ+1

JY )∗1a′(R
Q
JY )1a

)
×

×
( ∑

−J−Q≤Y≤J−Q−1

√
(J + Y +Q+ 1)(J − Y −Q)(SQ+1

JY )1a′(SQ
JY )

∗
1a−

−
∑

Q−J+1≤Y≤Q+J

√
(J + Y −Q)(J − Y +Q+ 1)(RQ+1

JY )1a′(RQ
JY )

∗
1a

)
(4.58b)

− Z − m2
Zc

2
W

m2
W

)
(1− div) + finite terms (4.58c)

=
g2

192π2

(
2

∑
−J≤Y≤J−1

(J + Y + 1)(J − Y ) + 2
∑

−J+1≤Y≤J

(J + Y )(J − Y + 1)

+ 2
∑
Q

( ∑
−Q−J≤Y≤J−Q−1

(J + Y +Q+ 1)(J − Y −Q)

+
∑

Q−J+1≤Y≤J+Q

(J + Y −Q)(J − Y +Q+ 1)
)
− Z − m2

Zc
2
W

m2
W

)
× (4.58d)

× (1− div) + finite terms. (4.58e)

Using equations 4.55, 4.56 and 4.57, we can write

α

4s2W c2W
S =

g2

192π2c2W

(
4

∑
−J≤Y≤J

Y 2 + 4
∑
Q

(
Q
( ∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y −
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y
)

+ 2
∑

Q−J≤Y≤J−Q

Y 2 +
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y 2 +
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y 2
)
(4.59a)

−X − 4

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))2

+ 4s2W c2W

− 4(c2W − s2W )

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

)))
(1− div) + finite terms. (4.59b)

Let us define
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γ ≡
∑

−J≤Y≤J

Y 2 +
∑
Q

(
Q
( ∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y −
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y
)

+ 2
∑

Q−J≤Y≤J−Q

Y 2 +
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y 2 +
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y 2
)
.

(4.60)

We will now prove that γ is equal to 0.

Given a multiplet (J, Y ), the maximum value forQ is J+|Y | and the minium value forQ is max(1, |Y |−

J).

Consider the case where we have a multiplet with J = Y . In this case we have

γ = Y 2 − (1 + 2 + . . .+ 2Y )Y + (2Y )Y 2 (4.61a)

= (2Y + 1)Y 2 − (2Y ) (2Y + 1)

2
Y = 0. (4.61b)

Consider the case where we have a multiplet with J = −Y . In this case we have

γ = Y 2 + (1 + 2 + . . .− 2Y )Y + (−2Y )Y 2 (4.62a)

= (−2Y + 1)Y 2 +
(−2Y ) (−2Y + 1)

2
Y = 0. (4.62b)

Consider the case where we have a multiplet with Y > 0 and J > Y . In this case we have

γ = Y 2 − ((J − Y + 1) + (J − Y + 2) + . . .+ (J + Y ))Y

+2 (J − Y )Y 2 + ((J + Y )− (J − Y ))Y 2 (4.63a)

= (2J + 1)Y 2 − (2Y ) (J − Y + 1 + J + Y )

2
Y = 0. (4.63b)

Consider the case where we have a multiplet with Y < 0 and J > −Y . In this case we have

γ = Y 2 − ((J + Y + 1) + (J + Y + 2) + . . .+ (J − Y ))Y

+2 (J + Y )Y 2 + ((J − Y )− (J + Y ))Y 2 (4.64a)

= (2J + 1)Y 2 +
(−2Y ) (J + Y + 1 + J − Y )

2
Y = 0. (4.64b)

Consider the case where we have a multiplet with Y > 0 and J < Y . In this case we have

γ = − ((Y − J) + (Y − J + 1) + . . .+ (J + Y ))Y

+((J + Y )− (Y − J) + 1)Y 2 (4.65a)

= (2J + 1)Y 2 +
(2J + 1) (2Y )

2
Y = 0. (4.65b)
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Consider the case where we have a multiplet with Y > 0 and J < Y . In this case we have

γ = − ((Y − J) + (Y − J + 1) + . . .+ (J + Y ))Y

+((J + Y )− (Y − J) + 1)Y 2 (4.66a)

= (2J + 1)Y 2 +
(2J + 1) (2Y )

2
Y = 0. (4.66b)

Consider the case where we have a multiplet with Y < 0 and J < −Y . In this case we have

γ = − ((−Y − J) + (−Y − J + 1) + . . .+ (−Y + J))Y

+((−J − Y )− (J − Y ) + 1)Y 2 (4.67a)

= (−2J + 1)Y 2 +
(−2J + 1) (−2Y )

2
Y = 0. (4.67b)

We conclude that γ = 0 for all multiplets. This means that we get

α

4s2W c2W
S =

g2

192π2c2W

(
−X − 4

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))2

+ 4s2W c2W

− 4(c2W − s2W )

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

)))
× (4.68a)

× (1− div) + finite terms. (4.68b)

Thus, we get a finite result for S in a model with any scalar multiplets if X = 1−
(

m2
Zc2W
m2

W
− 1
)2

.

Using 4.55, 4.56, 4.57 and 4.58 we get for parameter U

α

4s2W
U =

g2

192π2

(
2

∑
−J≤Y≤J−1

(J + Y + 1)(J − Y ) + 2
∑

−J+1≤Y≤J

(J + Y )(J − Y + 1) (4.69a)

+ 2
∑
Q

( ∑
−Q−J≤Y≤J−Q−1

(J + Y +Q+ 1)(J − Y −Q)

+
∑

Q−J+1≤Y≤J+Q

(J + Y −Q)(J − Y +Q+ 1)
)
− Z − m2

Zc
2
W

m2
W

(4.69b)

− 4
∑

−J≤Y≤J

Y 2 − 4
∑
Q

(
Q2c4WnQ + 2

∑
Q−J≤Y≤J−Q

Y 2

+ 2Qc2W
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y − 2Qc2W
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y

+
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y 2 +
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y 2
)

+X + 4

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))2

(4.69c)
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− 4s4W

∑
Q

Q2nQ − 1

− 8s2W
∑
Q

(
Q2nQc

2
W+

+Q
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y −Q
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y
)

(4.69d)

− 8s2W

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

)))
(1− div) + finite terms (4.69e)

=
g2

192π2

(
2

∑
−J≤Y≤J−1

(J + Y + 1)(J − Y ) + 2
∑

−J+1≤Y≤J

(J + Y )(J − Y + 1) (4.69f)

+ 2
∑
Q

( ∑
−Q−J≤Y≤J−Q−1

(J + Y +Q+ 1)(J − Y −Q)

+
∑

Q−J+1≤Y≤J+Q

(J + Y −Q)(J − Y +Q+ 1)
)

(4.69g)

− 4
∑

−J≤Y≤J

Y 2 − 4
∑
Q

(
Q2nQ + 2

∑
Q−J≤Y≤J−Q

Y 2

+ 2Qc2W
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y − 2Qc2W
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y

+
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y 2 +
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y 2
)

(4.69h)

− 8s2W
∑
Q

Q
( ∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y −
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y
)

(4.69i)

− Z − m2
Zc

2
W

m2
W

+X + 4

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))2

(4.69j)

− 8s2W

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))
+ 4s4W

)
(1− div) + finite terms. (4.69k)

Let us define

θ ≡2
∑

−J≤Y≤J−1

(J + Y + 1)(J − Y ) + 2
∑

−J+1≤Y≤J

(J + Y )(J − Y + 1) (4.70a)

+ 2
∑
Q

( ∑
−Q−J≤Y≤J−Q−1

(J + Y +Q+ 1)(J − Y −Q)

+
∑

Q−J+1≤Y≤J+Q

(J + Y −Q)(J − Y +Q+ 1)
)
− 4

∑
−J≤Y≤J

Y 2 (4.70b)

− 4
∑
Q

(
Q2nQ + 2

∑
Q−J≤Y≤J−Q

Y 2 + 2Qc2W
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y

− 2Qc2W
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y +
∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y 2

+
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y 2
)

(4.70c)
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− 8s2W
∑
Q

Q
( ∑

Y≥−Q−J∧Y≤J−Q∧Y <Q−J

Y −
∑

Y≥Q−J∧Y >J−Q∧Y≤Q+J

Y
)
. (4.70d)

We will now prove that θ is equal to 0.

Consider the case where we have a multiplet with J = Y . In this case we have

θ = 4Y + 2

2Y−1∑
Q=1

(2Y −Q)(Q+ 1)

− 4Y 2 − 4

2Y∑
Q=1

Q2

+8c2WY

2Y∑
Q=1

Q− 8Y 3 + 8s2WY

2Y∑
Q=1

Q (4.71a)

= 4Y +
4

3

(
−2Y + 3Y 2 + 2Y 3

)
− 4Y 2 − 4

3
Y (1 + 2Y )(1 + 4Y )

+8c2WY 2(1 + 2Y )− 8Y 3 + 8s2WY 2(1 + 2Y ) = 0. (4.71b)

Consider the case where where we have a multiplet with J = −Y . In this case we have

θ = −4Y + 2

2Y−1∑
Q=1

(Q+ 1)(−2Y −Q)

− 4Y 2 − 4

−2Y∑
Q=1

Q2

−8c2WY

−2Y∑
Q=1

Q+ 8Y 3 − 8s2WY

−2Y∑
Q=1

Q (4.72a)

= −4Y − 4

3

(
−2Y − 3Y 2 + 2Y 3

)
− 4Y 2 +

8

3
Y (−1 + 2Y )(−1 + 4Y )

−8c2WY 2(−1 + 2Y ) + 8Y 3 − 8s2WY 2(−1 + 2Y ) = 0. (4.72b)

Consider the case where we have a multiplet with Y > 0 and J > Y . In this case we have

θ = 2(J + Y + 1)(J − Y ) + 2(J − Y + 1)(J + Y )

+2

J−Y−1∑
Q=1

(J + Y +Q+ 1)(J − Y −Q) + 2

J+Y−1∑
Q=1

(J + Y −Q)(J − Y +Q+ 1)

−4Y 2 − 8

J−Y∑
Q=1

Q2 − 4

J+Y∑
Q=J−Y+1

Q2 − 8(J − Y )Y 2 + 8c2WY

J+Y∑
Q=J−Y+1

Q

−8Y 3 + 8s2WY

J+Y∑
Q=J−Y+1

Q (4.73a)

= 2(J + Y + 1)(J − Y ) + 2(J − Y + 1)(J + Y )

+
2

3
(J − Y − 1)(J − Y )(Y + 2 + 2J) +

2

3
(J + Y − 1)(J + Y )(−Y + 2 + 2J)

−4Y 2 − 4

3
(1 + 2J − 2Y )(J − Y )(1 + J − Y )− 4

3
Y (1 + 6J + 6J2 + 2Y 2)

−8(J − Y )Y 2 + 8c2WY 2(2J + 1)− 8Y 3 + 8s2WY 2(2J + 1) = 0. (4.73b)
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Consider the case where we have a multiplet with Y < 0 and J > −Y . In this case we have

θ = 2(J + Y + 1)(J − Y ) + 2(J − Y + 1)(J + Y )

+2

J−Y−1∑
Q=1

(J + Y +Q+ 1)(J − Y −Q) + 2

J+Y−1∑
Q=1

(J + Y −Q)(J − Y +Q+ 1)

−4Y 2 − 8

J+Y∑
Q=1

Q2 − 4

J−Y∑
Q=J−Y+1

Q2 − 8(J + Y )Y 2 − 8c2WY

J−Y∑
Q=J+Y+1

Q

+8Y 3 − 8s2WY

J−Y∑
Q=J+Y+1

Q (4.74a)

= 2(J + Y + 1)(J − Y ) + 2(J − Y + 1)(J + Y )

+
2

3
(J − Y − 1)(J − Y )(Y + 2 + 2J) +

2

3
(J + Y − 1)(J + Y )(−Y + 2 + 2J)

−4Y 2 − 4

3
(1 + 2J + 2Y )(J + Y )(1 + J + Y ) +

4

3
Y (1 + 6J + 6J2 + 2Y 2)

−8(J + Y )Y 2 + 8c2WY 2(2J + 1) + 8Y 3 + 8s2WY 2(2J + 1) = 0. (4.74b)

Consider the case where we have a multiplet with Y > 0 and J < Y . In this case we have

θ = 2

J+Y−1∑
Q=Y−J

(J + Y −Q)(J − Y +Q+ 1)− 4

J+Y∑
Q=Y−J

Q2

+8c2WY

J+Y∑
Q=Y−J

Q− 4(2J + 1)Y 2 + 8s2WY

J+Y∑
Q=Y−J

Q (4.75a)

=
4

3
J(1 + J)(1 + 2J)− 4

3
(1 + 2J)(J + J2 + 3Y 2)

+8c2WY 2(1 + 2J)− 4(2J + 1)Y 2 + 8s2WY 2(1 + 2J) = 0. (4.75b)

Consider the case where we have a multiplet with Y < 0 and J < −Y . In this case we have

θ = 2

J−Y−1∑
Q=−Y−J

(J + Y +Q+ 1)(J − Y −Q)− 4

J−Y∑
Q=−Y−J

Q2

−8c2WY

J−Y∑
Q=−Y−J

Q− 4(2J + 1)Y 2 − 8s2WY

J−Y∑
Q=−Y−J

Q (4.76a)

=
4

3
J(1 + J)(1 + 2J)− 4

3
(1 + 2J)(J + J2 + 3Y 2)

+8c2WY 2(1 + 2J)− 4(2J + 1)Y 2 + 8s2WY 2(1 + 2J) = 0. (4.76b)

Therefore, we can conclude that θ = 0 for all multiplets. This means that we get
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α

4s2W
U =

g2

192π2

(
− Z − m2

Zc
2
W

m2
W

+X + 4

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))2

(4.77a)

− 8s2W

(
s2W − 1

2
− 1

2

(
1− m2

Zc
2
W

m2
W

))
+ 4s4W

)
(1− div) + finite terms (4.77b)

=
g2

192π2

(
X − Z +

(
m2

Zc
2
W

m2
W

− 1

)2

+ 3

(
1− m2

Zc
2
W

m2
W

))
(1− div) + finite terms. (4.77c)

Thus, if we put X = 1−
(

m2
Zc2W
m2

W
− 1
)2

(the value that makes S finite), then we get a finite result for U

in a model with any scalar multiplets by putting Z = 4− 3m2
Zc2W

m2
W

.

4.11 Comparison with results from the literature

In reference [40], a model is considered with one complex SU(2) scalar doublet with hypercharge Y = 1
2

ϕ =

(
φ+

φ0

)
(4.78)

and one real SU(2) scalar triplet with hypercharge Y = 0

Λ =

 λ+

λ0

−λ−

 . (4.79)

In this model, the field φ0 acquires a VEV v/
√
2 (where v ∈ R), such that we can write φ0 = 1√

2
(v +

Reφ0′ + i Imφ0′), and the field λ0 acquires a VEV equal to 1
2v tanβ, such that we can write λ0 =

1
2v tanβ + λ0′. The masses of the W and Z bosons can then be written as

mW =
gv

2 cosβ
, mZ =

gv

2cW
. (4.80)

The neutral fields are assumed to have no mixing, such that S0
1 = Imφ0′ is the neutral Goldstone

boson, S0
2 = Reφ0′ and S0

3 = λ0′. The field S0
2 = Reφ0′ is the SM Higgs boson field. The charged fields

are assumed to mix by an angle β (which is the same that appears on the quotient between the VEVs

of φ0 and λ0), such that

(
S±
1

S±
2

)
=

(
cosβ sinβ
− sinβ cosβ

)(
φ±

λ±

)
. (4.81)

We can then write the mixing matrices as
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U1 =
(
cosβ − sinβ

)
, U3 =

(
sinβ cosβ

)
, (4.82a)

V1 =
(
i 1 0

)
, R1 =

(
0 0 1

)
, (4.82b)

while the matrices U2, U4, V2, R2, T1 and T2 are not present in this model.

Using these mixing matrices, we can compute the oblique parameters S and U for this model using

our results from equations 4.18 and 4.20. For parameter S we get

α

4s2W c2W
S =

=
g2

192π2c2W

(
4
(
s2W − 1

2
s2β − c2β

)2
logm2

2 + 2c2βs
2
β(K(m2

2,m
2
W )− 6m2

W K̃(m2
2,m

2
W )) (4.83a)

+ s4βK(µ2
2,m

2
Z)− 6s4βm

2
ZK̃(µ2

2,m
2
Z)− 4s2W c2W logm2

2 (4.83b)

+ 4(c2W − s2W )
(
s2W − 1

2
s2β − c2β

)
logm2

2

)
(4.83c)

=
g2

192π2c2W
β2

(
− 2 logm2

2 + 2(K(m2
2,m

2
W )− 6m2

W K̃(m2
2,m

2
W ))

)
+O(β3). (4.83d)

where sβ and cβ stand for sinβ and cosβ, respectively. For parameter U we get

α

4s2W
U =

g2

192π2

(
4

(
1

4
s2βK(µ2

2,m
2
2) + c2βK(µ2

3,m
2
2)

)
(4.84a)

+ 4
(1
4
c2β(K(µ2

2,m
2
W )− 6m2

W K̃(µ2
2,m

2
W ))

+ s2β(K(µ2
3,m

2
W )− 6m2

W K̃(µ2
3,m

2
W ))

)
(4.84b)

+
m2

W

c2Wm2
Z

c2βs
2
β(K(m2

2,m
2
Z)− 6m2

ZK̃(m2
2,m

2
Z)) (4.84c)

− (1 + 3s2β)(K(µ2
2,m

2
W )− 6m2

W K̃(µ2
2,m

2
W )) (4.84d)

− 4
(
s2W − 1

2
s2β − c2β

)2
logm2

2 (4.84e)

− 2c2βs
2
β(K(m2

2,m
2
W )− 6m2

W K̃(m2
2,m

2
W )) (4.84f)

− s4β(K(µ2
2,m

2
Z)− 6m2

W K̃(µ2
2,m

2
Z))− 4s4W logm2

2 (4.84g)

+ 8s2W

(
s2W − 1

2
s2β − c2β

)
logm2

2

)
(4.84h)

=
g2

48π2

(
K(µ2

3,m
2
2)− logm2

2

)
(4.84i)
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+
g2

192π2
β2

(
K(µ2

2,m
2
2)− 4K(µ2

3,m
2
2) (4.84j)

+ 4
(
− 1

4
(K(µ2

2,m
2
W )− 6m2

W K̃(µ2
2,m

2
W ))

+ (K(µ2
3,m

2
W )− 6m2

W K̃(µ2
3,m

2
W ))

)
(4.84k)

+ (K(m2
2,m

2
Z)− 6m2

ZK̃(m2
2,m

2
Z)) (4.84l)

− 3(K(µ2
2,m

2
W )− 6m2

W K̃(µ2
2,m

2
W )) + 4 logm2

2 (4.84m)

− 2(K(m2
2,m

2
W )− 6m2

W K̃(m2
2,m

2
W ))

)
+O(β3). (4.84n)

For both parameter S and parameter U , we expanded the result up to second order in β. In equation 26

of [40] they have

S = 0, (4.85a)

U = − 1

3π

(
m2

k log

(
m2

k

m2
c

)
(3m2

c −m2
k)

(m2
k −m2

c)
3
+

5(m4
k +m4

c)− 22m2
km

2
c

6(m2
k −m2

c)
2

)
+O

(
mZ

mc

)
, (4.85b)

where we have mc ≡ m2 and mk ≡ µ3. These results are only in zeroth order in β.

Comparing our results with the ones from [40], we can see that the result for S agrees up to order

β0. The result for U agrees up to order β0 and (mZ/mc)
0. The fact that the results agree only to zeroth

order in mZ/mc was to be expected as in [40] a different definition is used for the oblique parameters.

Where, in the definition for the oblique parameters in equations 4.1, a derivative with respect to q2 is

used, in the definition used in [40], they use

A(m2
V )−A(0)

m2
V

, (4.86)

where mV is either the mass of the Z or of the W bosons. When mZ approaches 0 (and, consequently,

mW approaches 0 too as they are related by mW = mZcW
cβ

) the expression in 4.86 becomes equal

to ∂A
∂q2

∣∣∣
q2=0

and, therefore, the two definitions coincide. Thus, we should expect that the two results

coincide to zeroth order in mZ/mc, as they do.

For parameter T , reference [40] presents a finite result in zeroth order in β. This result coincides with

the result from this thesis in the same conditions. However, as for higher order in β we get a divergent

result for this parameter, then this result has no physical meaning.
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Chapter 5

One-loop corrections to the Zbb̄ vertex

5.1 Introduction

Another way to indirectly detect heavy scalars can be through radiative corrections to the Zbb̄ vertex.

The coupling of the Z boson with the b quark and its anti-particle can be written as

LZ b b =
g

cW
Zλb̄γ

λ(gLbPL + gRbPR)b, (5.1)

where PL,R = (1± γ5)/ 2 are the chirality projectors and, at tree level, g0Lb =
s2W
3 − 1

2 and g0Rb =
s2W
3 .

By considering the one-loop corrections to the Zbb̄ vertex in our model with scalar particles in singlets,

doublets and triplets of SU(2)L, then the corrected couplings can be written as gℵb = gSM
ℵb + δgℵb (ℵ =

L,R), where gSM
ℵb is the coupling computed in the Standard Model and δgℵb are the New Physics con-

tributions to the coupling. The two observables which are influenced by these correction due to New

Physics are the hadronic branching ratio of Z to b quarks:

Rb =
Γ(Z → bb̄)

Γ(Z → hadrons)
, (5.2)

and the b quark asymmetry (measured in the process e−e+ → bb̄),

Ab =
σ(e−L → bF )− σ(e−L → bB) + σ(e−R → bB)− σ(e−R → bF )

σ(e−L → bF ) + σ(e−L → bB) + σ(e−R → bB) + σ(e−R → bF )
, (5.3)

where e−L,R are left and right handed initial-state electrons and bF,B are final-state b-quarks moving in

the forward and backward directions with respect to the direction of the initial-state electrons [41].
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5.2 Couplings

We will use the approximation where the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vtb = 1,

which means that we will only have to consider quarks bottom and top. We will also neglect the mass of

the bottom quark mb.

We will use

LZ t t =
g

cW
Zλt̄γ

λ(gLtPL + gRtPR)t, (5.4)

LW t b =
g√
2
(t̄γλPLbW

+
λ + b̄γλPLtW

−
λ ), (5.5)

where, at tree level, g0Lt =
1
2 − 2s2W

3 and g0Rt = − 2s2W
3 .

The terms in the Lagrangian for the interaction of the scalars with the quarks can be written as

LS± t b =

n1∑
a=1

(S+
a t̄(c

∗
aPL − daPR)b+ S−

a b̄(caPR − d∗aPL)t), (5.6)

LS0 b b =

n0∑
l=1

S0
l b̄(rlPR + r∗l PL)b. (5.7)

The terms in the Lagrangian for the interaction of the scalars with the Z boson can be written as

LZ S+ S− = − g

cW
Zλ

n1∑
a,a′=1

Xaa′(S+
a i∂

λS−
a′ − S−

a′i∂
λS+

a ), (5.8)

LZ S0 S0 = − ig

cW
Zλ

n0∑
l,l′=1

Yll′(S
0
l i∂

λS0
l′ − S0

l′i∂
λS0

l ), (5.9)

LZ W S± = −gmW

cW
Zλ

n1∑
a=1

(
saW

λ−S+
a + s∗aW

λ+S−
a

)
, (5.10)

where ca, da, rl and sa are coefficients that are, in general, complex. The matrix X is n1 × n1 Hermitian

and the matrix Y is n0 × n0 real and antisymmetric.

5.3 Feynman Diagrams

In figures 5.1 and 5.2, there are the diagrams that contribute at one-loop level to the Zbb̄ vertex that

contain charged and neutral scalars, respectively.
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Figure 5.1: Diagrams with charged scalars contributing to the Zbb vertex at one loop
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Figure 5.2: Diagrams with neutral scalars contributing to the Zbb vertex at one loop

As argued in [42], the diagrams in 5.3 which contain neutral scalars are proportional to mb, because

the coupling of the Z boson to the b quarks preserves chirality, while the coupling of the neutral scalar

to the b quarks changes their chirality. Thus, in these diagrams there must be a mass insertion in the b

quark propagator in order to change the chirality of the b quark once again. As we are neglecting mb,

then we will not consider these diagrams. The diagrams in 5.3 which contain charged scalars do not give

contributions beyond the Standard Model in models with only scalar singlets and doublets, as in these

models the only ZW±S∓ couplings are the ZW±S∓ couplings present in the Standard Model. However,

in our model, which also contains scalar triplets, these diagrams will give a New Physics contribution.

We follow the on-shell renormalization scheme from Hollik [43, 44]. We are looking for terms that

change the tree-level couplings, which, after renormalization may be written as

iΓZbb
µ = iγµ

g

cW

(
(g0Lb +∆gL)PL + (g0Rb +∆gR)PR

)
, (5.11)

where ∆gℵ (ℵ = L,R) are the one-loop corrections after renormalization, including the ones that are
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Figure 5.3: Diagrams with virtual gauge bosons

present in the Standard Model. Thus, we are not interested in terms proportional to pµi , being pi, with

i = 1, 2, 3, the momenta of each of the external particles in the vertex. To perform renormalization, we

need to evaluate the contributions of both the charged and the neutral scalars to the self-energy of the

b quark. These diagrams are in figure 5.4. We will be interested on the part of the self-energy iΣ(p)

proportional to /p, which we may write as Σ(p) = /p
(
ΩL(p

2)PL +ΩR(p
2)PR

)
.

According to Hollik’s renormalization scheme [43,44], the self-energy produces contributions to ∆gLb

and ∆gRb given by ∆gLb = −g0LbΩL(p
2 = m2

b) and ∆gRb = −g0RbΩR(p
2 = m2

b).

b

t

b

S+
a

(a)

b

b

b

S0
l

(b)

Figure 5.4: Diagrams containing scalars that contribute to the self energy of the b quark
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5.4 Results for the one-loop diagrams

To compute the correction for the couplings at one-loop we will use the Passarino-Veltman functions [45]

defined by

M ϵ

∫
ddk

(2π)d
1

k2 −m2
0

1

(k + r)2 −m2
1

kλ =
i

16π2
rλB1(r

2,m2
0,m

2
1), (5.12a)

M ϵ

∫
ddk

(2π)d
1

k2 −m2
0

1

(k + r1)2 −m2
1

1

(k + r2)2 −m2
2

=

=
i

16π2
C0(r

2
1, (r1 − r2)

2, r22,m
2
0,m

2
1,m

2
2), (5.12b)

M ϵ

∫
ddk

(2π)d
1

k2 −m2
0

1

(k + r1)2 −m2
1

1

(k + r2)2 −m2
2

kλkν

=
i

16π2
(gλνC00 + rλ1 r

ν
1C11 + rλ2 r

ν
2C22

+ (rλ1 r
ν
2 + rλ2 r

ν
1 )C12)(r

2
1, (r1 − r2)

2, r22,m
2
0,m

2
1,m

2
2). (5.12c)

5.4.1 Diagrams with charged scalars

In the following results, the terms involving /p1 and /p2, being p1 and p2 the momenta of the b quarks

were not considered because applying them to the b quark spinors would give, according to the Dirac

equation, a term proportional to mb which we are neglecting.

The diagrams in 5.1a lead to [42] 1

∆gLb(1a) = − 1

8π2

n1∑
a,a′=1

caXaa′c∗a′C00(m
2
Z , 0, 0,m

2
a′ ,m2

a,m
2
t ), (5.13a)

∆gRb(1a) = ∆gLb(1a)(ca → d∗a). (5.13b)

The diagrams in 5.1b lead to [42]

∆gLb(1b) =
1

16π2

n1∑
a=1

|ca|2
(

−m2
t g

0
LtC0(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t )

+ g0Rt

(
2C00(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t )

− 1

2
−m2

ZC12(0,m
2
Z , 0,m

2
a,m

2
t ,m

2
t )
))

, (5.14a)

∆gRb(1b) =∆gLb(1b)(ca → d∗a, g
0
Lt ↔ g0Rt). (5.14b)

1There is a sign difference in our result compared to the result from [42] as we use a different convention. The physically
meaningful quantities must, however, give the same result.
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The diagrams in 5.4a lead to [42]

∆gLb(4a) =
g0Lb

16π2

n1∑
a=1

|ca|2B1(0,m
2
t ,m

2
a), (5.15a)

∆gRb(4a) =∆gLb(4a)(ca → da, g
0
Lb → g0Rb). (5.15b)

The diagrams in 5.3a and 5.3b in an arbitrary gauge lead to

∆gLb(3a, b) =− gmWmt

8
√
2π2

n1∑
a=1

Re(saca)
(
C0(m

2
Z , 0, 0,m

2
W ,m2

a,m
2
t )

− 1

m2
W

(
C00(m

2
Z , 0, 0,m

2
W ,m2

a,m
2
t )− C00(m

2
Z , 0, 0,m

2
1,m

2
a,m

2
t )
))
, (5.16a)

∆gRb(3a, b) =0. (5.16b)

Among the Passarino-Veltman functions used here, only B1 and C00 are divergent. We have for

those functions

B1(r
2,m2

0,m
2
1) = −div

2
+ finite terms, (5.17a)

C00(r
2
1, (r1 − r2)

2, r22,m
2
0,m

2
1,m

2
2) =

div
4

+ finite terms. (5.17b)

Therefore, the divergent terms in 5.13, 5.14, 5.15 and 5.16 are

∆gLb(1a) + ∆gLb(1b) + ∆gLb(4a) + ∆gLb(3a, b) =

=
div
32π2

−
n1∑

a,a′=1

caXaa′c∗a′ + (g0Rt − g0Lb)

n1∑
a=1

|ca|2
+ finite terms, (5.18a)

∆gRb(1a) + ∆gRb(1b) + ∆gRb(4a) + ∆gRb(3a, b) =

=
div
32π2

−
n1∑

a,a′=1

d∗aXaa′da′ + (g0Lt − g0Rb)

n1∑
a=1

|da|2
+ finite terms. (5.18b)

Thus, as g0Rt − g0Lb =
c2W−s2W

2 and g0Lt − g0Rb =
c2W−s2W

2 , in a consistent theory we must have

n1∑
a,a′=1

caXaa′c∗a′ =
c2W − s2W

2

n1∑
a=1

|ca|2,
n1∑

a,a′=1

d∗aXaa′da′ =
c2W − s2W

2

n1∑
a=1

|da|2. (5.19a)
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5.4.2 Diagrams with neutral scalars

The diagrams in 5.2a lead to [42]

∆gLb(2a) =− i

4π2

n0∑
l,l′=1

rlYll′r
∗
l′C00(0,m

2
Z , 0, 0, µ

2
l′ , µ

2
l ), (5.20a)

∆gRb(2a) =∆gLb(2a)(rl → r∗l ). (5.20b)

The diagrams in 5.2b lead to [42]

∆gLb(2b) =
g0Rb

16π2

n0∑
l=1

|rl|2
(
2C00(0,m

2
Z , 0, µ

2
l , 0, 0)−

1

2

−m2
ZC12(0,m

2
Z , 0, µ

2
l , 0, 0)

)
, (5.21a)

∆gRb(2b) =∆gLb(2b)(g
0
Rb → g0Lb). (5.21b)

The diagrams in 5.4b lead to [42]

∆gLb(4b) =
g0Lb

16π2

n0∑
l=1

|rl|2B1(0, 0, µ
2
l ), (5.22a)

∆gRb(4b) =∆gLb(4b)(g
0
Lb → g0Rb). (5.22b)

Using again equations 5.17, we have

∆gLb(2a) + ∆gLb(2b) + ∆gLb(4b) =

=
div
32π2

−2i

n0∑
l,l′=1

rlYll′r
∗
l′ + (g0Rb − g0Lb)

n0∑
l=1

|rl|2
+ finite terms, (5.23a)

∆gRb(2a) + ∆gRb(2b) + ∆gRb(4b) =

=
div
32π2

−2i

n0∑
l,l′=1

r∗l Yll′rl′ + (g0Lb − g0Rb)

n0∑
l=1

|rl|2
+ finite terms. (5.23b)

Thus, as g0Rb − g0Lb =
1
2 , in a consistent theory we must have

n0∑
l,l′=1

rlYll′r
∗
l′ = − i

4

n0∑
l=1

|rl|2. (5.24)
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5.5 Results for the model with triplets

Similarly to what happens for the singlets, the scalar triplets have no Yukawa couplings. Thus, the

Yukawa Lagrangian can be written as

LYukawa = −
(
tL bL

) nd∑
k=1

(
fk

(
φ+
k

φ0
k

)
bR + ek

(
φ0∗
k

−φ−
k

)
tR

)
+ H.c., (5.25)

where ek and fk (k = 1, ..., nd) are the Yukawa coupling constants. Developing this expression and

comparing it with equations 5.6 and 5.7, we get the following relations

da =

nd∑
k=1

fk(U1)ka, ca =

nd∑
k=1

ek(U1)
∗
ka, rl = − 1√

2

nd∑
k=1

fk(V1)kl. (5.26)

Using the relations above and equations 3.15 and 3.17 we get
∑n1

a=1 |ca|2 =
∑nd

k=1 |ek|2,
∑n1

a=1 |da|2 =∑nd

k=1 |fk|2 and
∑n0

l=1 |rl|2 =
∑nd

k=1 |fk|2.

Due to an arbitrariness on the phase of the fields bR and tR, we can choose c1 and d1 to be real such

that

c1 =
gmt√
2mW

, d1 =
gmb√
2mW

≈ 0, r1 =
−igmb

2cWmZ
≈ 0. (5.27)

Comparing equation 5.8 with equation 3.29h, equation 5.9 with equation 3.29i and equation 5.10

with equation 3.29f, we get that for this class of models

Yll′ =
1

4
Im(V †

1 V1)ll′ +
1

2
Im(V †

2 V2)ll′ , (5.28a)

Xaa′ = −s2W δaa′ +
1

2
(U†

1U1)a′a + (U†
3U3)a′a =

=

(
1

2
− s2W

)
δaa′ − 1

2

(
(U†

2U2)a′a − (U†
3U3)a′a + (U†

4U4)a′a

)
, (5.28b)

sa = s2W δ1a + (U†
4U4)1a − (U†

3U3)1a. (5.28c)

Using again equations 3.15 and 3.17 together with equations 5.26 and 5.28, we verify equations 5.19

and 5.24. Therefore, in this model with triplets, the divergences cancel, as they should.

Using equation 5.28 we get the following results for the contribution from the diagrams with charged

scalars to ∆gLb and ∆gRb:

∆gcLb =∆gLb(1a) + ∆gLb(1b) + ∆gLb(4a) + ∆gLb(3a, b) = (5.29a)
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=
1

16π2

(
n1∑
a=1

|ca|2f cL(m2
a) (5.29b)

+

n1∑
a,a′=1

c∗a′

(
(U†

2U2)a′a − (U†
3U3)a′a + (U†

4U4)a′a

)
caC00(m

2
Z , 0, 0,m

2
a′ ,m2

a,m
2
t ) (5.29c)

− g2 s2Wm2
t

(
C0(m

2
Z , 0, 0,m

2
W ,m2

1,m
2
t )

− 1

m2
W

(
C00(m

2
Z , 0, 0,m

2
W ,m2

1,m
2
t )− C00(m

2
Z , 0, 0,m

2
1,m

2
1,m

2
t )
))

(5.29d)

−
√
2gmWmt

n1∑
a=1

Re
(
((U†

4U4)1a − (U†
3U3)1a)ca

)(
C0(m

2
Z , 0, 0,m

2
W ,m2

a,m
2
t )

− 1

m2
W

(
C00(m

2
Z , 0, 0,m

2
W ,m2

a,m
2
t )− C00(m

2
Z , 0, 0,m

2
1,m

2
a,m

2
t )
)))

, (5.29e)

∆gcRb =∆gRb(1a) + ∆gRb(1b) + ∆gRb(4a) + ∆gRb(3a, b) = (5.30a)

=
1

16π2

(
n1∑
a=2

|da|2f cR(m2
a) (5.30b)

+

n1∑
a,a′=2

da′

(
(U†

2U2)a′a − (U†
3U3)a′a + (U†

4U4)a′a

)
d∗aC00(m

2
Z , 0, 0,m

2
a′ ,m2

a,m
2
t )

)
. (5.30c)

where we defined

f cL(m
2
a) =− g0Ltm

2
tC0(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t ) + g0Rt

(
2C00(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t )

− 1

2
−m2

ZC12(0,m
2
Z , 0,m

2
a,m

2
t ,m

2
t )
)
+ g0LbB1(0,m

2
t ,m

2
a)

+ (2s2W − 1)C00(m
2
Z , 0, 0,m

2
a,m

2
a,m

2
t ), (5.31a)

f cR(m
2
a) =− g0Rtm

2
tC0(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t ) + g0Lt

(
2C00(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t )

− 1

2
−m2

ZC12(0,m
2
Z , 0,m

2
a,m

2
t ,m

2
t )
)
+ g0RbB1(0,m

2
t ,m

2
a)

+ (2s2W − 1)C00(m
2
Z , 0, 0,m

2
a,m

2
a,m

2
t ). (5.31b)

For the contribution from the diagrams with neutral scalars to ∆gLb and ∆gRb we get

∆gnLb =∆gLb(2a) + ∆gLb(2b) + ∆gLb(4b) = (5.32a)

=
1

16π2

(
n0∑
l=2

|rl|2fnL(µ2
l ) (5.32b)
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− i

n0∑
l,l′=2

rl

(
Im(V †

1 V1)ll′ + 2 Im(V †
2 V2)ll′

)
r∗l′C00(0,m

2
Z , 0, 0, µ

2
l′ , µ

2
l )

)
, (5.32c)

∆gnRb = ∆gRb(2a) + ∆gRb(2b) + ∆gRb(4b) = ∆gnLb(f
n
L → fnR, rl → r∗l ). (5.33)

where we defined

fnL(µ
2
l ) =g

0
Rb

(
2C00(0,m

2
Z , 0, µ

2
l , 0, 0)−

1

2
−m2

ZC12(0,m
2
Z , 0, µ

2
l , 0, 0)

)
+ g0LbB1(0, 0, µ

2
l ), (5.34a)

fnR(µ
2
l ) =g

0
Lb

(
2C00(0,m

2
Z , 0, µ

2
l , 0, 0)−

1

2
−m2

ZC12(0,m
2
Z , 0, µ

2
l , 0, 0)

)
+ g0RbB1(0, 0, µ

2
l ). (5.34b)

Until now we have been working with gℵb (ℵ = L,R) parametrized as gℵb = g0ℵb + ∆gℵb, being g0ℵb

the tree-level coupling and ∆gℵb the one-loop contribution. To get a gauge independent result it is now

convenient to switch to a parametrization that splits the SM and the New Physics parts. We will write it

as gℵb = gSM
ℵb + δgℵb, where gSM

ℵb is the SM part and δgℵb is the NP part. To obtain δgℵb, we subtract

from equations 5.29, 5.30, 5.32 and 5.33 the one-loop contribution to gℵb in the SM. In the limit of

mb → 0, we get δgcRb = ∆gcRb, δg
n
Lb = ∆gnLb and δgnRb = ∆gnRb because the SM results for these one-loop

contributions to the couplings are proportional to m2
b . Thus, the results for δgcRb, δg

n
Lb and δgnRb are finite

(as we have shown before) and, from equations 5.30, 5.32 and 5.33, are also gauge independent. For

δgcLb we get 2

δgcLb =

n1∑
a=2

|ca|2

16π2

(
g0LbB1(0,m

2
t ,m

2
a)− g0Rtm

2
ZC12(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t )

− g0Ltm
2
tC0(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t ) + 2g0RtC00(0,m

2
Z , 0,m

2
a,m

2
t ,m

2
t )−

1

2
g0Rt

)
(5.35a)

−
n1∑

a,a′=2

caXaa′c∗a′

8π2
C00(m

2
Z , 0, 0,m

2
a′ ,m2

a,m
2
t ) (5.35b)

− gmWmt

8
√
2π2

n1∑
a=2

Re(saca)

(
C0(m

2
Z , 0, 0,m

2
W ,m2

a,m
2
t )−

1

m2
W

C00(m
2
Z , 0, 0,m

2
W ,m2

a,m
2
t )

)
(5.35c)

=
div

128π2

g2m2
t

m2
W

(
1− c2Wm2

Z

m2
W

)
+ finite terms. (5.35d)

Thus, we get a divergent result for δgcLb for models with mW ̸= mZcW .

2To compute the SM contribution to the coupling we used the Feynman rules from appendix D.
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Chapter 6

The Georgi-Machacek Model

In this chapter we will apply the results from the previous chapters to a specific model containing scalar

triplets: the Georgi-Machacek model to which we will impose an additional Z2 symmetry which will

eliminate the cubic terms, making the model simpler without changing significantly the physics [26].

Namely, we will compute for this model the oblique parameters and the one-loop corrections to the Zbb̄

vertex and we will make a fit of δgLb and δgRb to the experimental data.

6.1 The model

In 1985, Georgi and Machacek proposed a model [27] which contains one complex doublet with hyper-

charge Y = 1
2 ,

ϕ =

(
φ+

φ0

)
, (6.1)

one real triplet with hypercharge Y = 0,

Λ =

 λ+

λ0

−λ−

 , (6.2)

and one complex triplet with hypercharge Y = 1,

Ξ =

ξ++

ξ+

ξ0

 . (6.3)

These fields can be written in the matrix form
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Φ =

(
φ0∗ φ+

−φ− φ0

)
, Ψ =

 ξ0∗ λ+ ξ++

−ξ− λ0 ξ+

ξ−− −λ− ξ0

 . (6.4)

These matrices transform under a global SU(2)L × SU(2)R symmetry as Φ → UL2ΦU
†
R2 and Ψ →

UL3ΨU
†
R3, where UR,L 2 = exp

(
itaθaL,R

)
and UR,L 3 = exp

(
iT aθaL,R

)
, being ta and T a the two and three

dimensional generators of SU(2), respectively.

The most general potential which is invariant under the global SU(2)L × SU(2)R symmetry and also

under a Z2 symmetry Ψ → −Ψ is [46]

V =
α2
2

2
Tr
(
Φ†Φ

)
+
α2
3

2
Tr
(
Ψ†Ψ

)
+ β1(Tr

(
Φ†Φ

)
)2 + β2 Tr

(
Φ†Φ

)
Tr
(
Ψ†Ψ

)
+ β3 Tr

(
Ψ†ΨΨ†Ψ

)
+ β4(Tr

(
Ψ†Ψ

)
)2 − β5 Tr

(
Φ†taΦtb

)
Tr
(
Ψ†T aΨT b

)
,

(6.5)

where αi for i ∈ {2, 3} and βj for j ∈ {1, ..., 5} are all real parameters because each trace term is also

real.

This potential admits a vacuum structure such that ⟨0|φ0|0⟩ = a/
√
2, ⟨0|λ0|0⟩ = b and ⟨0|ξ0|0⟩ = b,

where a, b ∈ R and are related to the parameters couplings of the model by

α2
2

2
+ 2a2β1 + 3b2β2 −

3

2
b2β5 = 0, α2

3 + 2a2β2 + 4b2β3 + 12b2β4 − a2β5 = 0. (6.6)

This means that, in our notation, we have nd = 1, nt1 = 1, nt0 = 1, ns1 = 0, ns0 = 0, ns2 = 0, n0 = 5,

n1 = 3, n2 = 1. We also have v = v1 = a, x = x1 = b, w = w1 =
√
2b. We can then write the masses of

the W and Z bosons as m2
W = g2

4 (a2 + 8b2) and m2
Z = g2

4c2W
(a2 + 8b2), such that we have mW = mZcW .

The fact that we have mW = mZcW at tree-level in the GM model is due to a custodial SU(2) symmetry

that remains unbroken by the VEVs in equation 6.6.

Using equations 3.26 and 3.28, we can write for the GM model

(U1)11 =
a√

a2 + 8b2
, (U3)11 =

2b√
a2 + 8b2

, (U4)11 =
2b√

a2 + 8b2
, (6.7a)

(V1)11 = i
a√

a2 + 8b2
, (V2)11 = i

2
√
2b√

a2 + 8b2
. (6.7b)

We also have that the matrix T1, defined in 3.11c, is a 1× 1 matrix that obeys |T1|2 = 1. Thus, T1 is

given by eiθ, where θ is an arbitrary real parameter which we choose to be 0, such that we get T1 = 1.

Changing the value of θ would only change the phase of the field S++
1 but this phase is arbitrary as it

does not have consequences in the physical predictions of the model.

We can write the mass terms for the double charged scalars in the potential as
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VM±± =

(
8β3b

2 +
3

2
β5a

2

)
ξ++ξ−−. (6.8)

Thus we have M2
1 = 8β3b

2 + 3
2β5a

2.

We can write the mass terms for the single charged scalars in the potential as

VM± =
(
φ− λ− ξ−

)
M2

±

φ+

λ+

ξ+

 , (6.9)

where

M2
± =

 4b2β5 −abβ5 −abβ5
−abβ5 4b2β3 + a2β5 −4β3b

2 − 1
2β5a

2

−abβ5 −4β3b
2 − 1

2β5a
2 4b2β3 + a2β5

 (6.10)

This matrix can be written as M2
± = X†D±X, where

X =


a√

a2+8b2
2b√

a2+8b2
2b√

a2+8b2

− 2
√
2b√

a2+8b2
a√

2
√
a2+8b2

a√
2
√
a2+8b2

0 − 1√
2

1√
2

 (6.11)

and

D± =

0 0 0
0 1

2β5(a
2 + 8b2) 0

0 0 8b2β3 +
3
2a

2β5

 . (6.12)

We can then write the mass terms for the single charged scalars in the potential as

VM± =
(
φ− λ− ξ−

)
X†D±X

φ+

λ+

ξ+

 =
(
S−
1 S−

2 S−
3

)
D±

S+
1

S+
2

S+
3

 . (6.13)

We thus have m2
2 = 1

2β5(a
2 + 8b2) and m2

3 = 8b2β3 +
3
2a

2β5. We can also identify matrix X† with matrix

Ũ defined in equation 3.12, such that

U1 =
(

a√
a2+8b2

− 2
√
2b√

a2+8b2
0
)
, U3 =

(
2b√

a2+8b2
a√

2
√
a2+8b2

− 1√
2

)
, (6.14a)

U4 =
(

2b√
a2+8b2

a√
2
√
a2+8b2

1√
2

)
. (6.14b)

This confirms equation 6.7a.

We can write the mass terms for the neutral scalars in the potential as
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VM0
=
(
Reφ0′ Imφ0′ Re ξ0′ Im ξ0′ λ0′

)
M2

0


Reφ0′

Imφ0′

Re ξ0′

Im ξ0′

λ0′

 , (6.15)

where

M2
0 =


8a2β1 0 4

√
2abβ2 − 2

√
2abβ5 0 4abβ2 − 2abβ5

0 4b2β5 0 −
√
2abβ5 0

4
√
2abβ2 − 2

√
2abβ5 0 8b2β3 + 16b2β4 +

1
2a

2β5 0 8
√
2b2β4 − 1√

2
a2β5

0 −
√
2abβ5 0 1

2a
2β5 0

4abβ2 − 2abβ5 0 8
√
2b2β4 − 1√

2
a2β5 0 8b2β3 + 8b2β4 + a2β5

.
(6.16)

This matrix can be written as M2
0 = Y TD0Y , where

Y =



0 a√
a2+8b2

0 2
√
2b√

a2+8b2
0

0 − 2
√
2b√

a2+8b2
0 a√

a2+8b2
0

0 0 −
√
3
3 0

√
6
3

k−
√

k2+j2√
j2+(k−

√
k2+j2)2

0
√
6j

3

√
j2+(k−

√
k2+j2)2

0
√
3j

3

√
j2+(k−

√
k2+j2)2

k+
√

k2+j2√
j2+(k+

√
k2+j2)2

0
√
6j

3

√
j2+(k+

√
k2+j2)2

0
√
3j

3

√
j2+(k+

√
k2+j2)2


, (6.17)

where k = 2a2β1 − 2b2(β3 + 3β4) and j =
√
3ab(2β2 − β5) and

D0 =


0 0 0 0 0
0 µ2

2 0 0 0
0 0 µ2

3 0 0
0 0 0 µ2

4 0
0 0 0 0 µ2

5

 , (6.18)

with

µ2
2 =

1

2
β5(a

2 + 8b2), (6.19a)

µ2
3 = 8b2β3 +

3

2
a2β5, (6.19b)

µ2
4 = 4a2β1 + 4b2(β3 + 3β4)− 2

√
(2a2β1 − 2b2(β3 + 3β4))2 + 3a2b2(β5 − 2β2)2, (6.19c)

µ2
5 = 4a2β1 + 4b2(β3 + 3β4) + 2

√
(2a2β1 − 2b2(β3 + 3β4))2 + 3a2b2(β5 − 2β2)2. (6.19d)

We can then write the mass terms for the single charged scalars in the potential as
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VM0
=
(
Reφ0′ Imφ0′ Re ξ0′ Im ξ0′ λ0′

)
Y TD0Y


Reφ0′

Imφ0′

Re ξ0′

Im ξ0′

λ0′

 = (6.20a)

=
(
S0
1 S0

2 S0
3 S0

4 S0
5

)
D0


S0
1

S0
2

S0
3

S0
4

S0
5

 . (6.20b)

We can also identify matrix Y T with matrix Ṽ from equation 3.13, such that

ReV1 =

(
0 0 0

k−
√

k2+j2√
j2+(k−

√
k2+j2)2

k+
√

k2+j2√
j2+(k+

√
k2+j2)2

)
, (6.21a)

ImV1 =
(

a√
a2+8b2

−
√
8b√

a2+8b2
0 0 0

)
, (6.21b)

ReV2 =

(
0 0 −

√
3
3

√
6j

3

√
j2+(k−

√
k2+j2)2

√
6j

3

√
j2+(k+

√
k2+j2)2

)
, (6.21c)

ImV2 =
( √

8b√
a2+8b2

a√
a2+8b2

0 0 0
)
, (6.21d)

R1 =

(
0 0

√
6
3

√
3j

3

√
j2+(k−

√
k2+j2)2

√
3j

3

√
j2+(k+

√
k2+j2)2

)
. (6.21e)

This confirms equation 6.7b.

The Boundedness From Below (BFB) conditions for the GM model are [47,48]

β1 > 0, (6.22a)

β4 >

{
− 1

3β3, β3 ≥ 0,

−β3, β3 < 0,
(6.22b)

β2 >


1
2β5 − 2

√
β1(

1
3β3 + β4), β5 ≥ 0 and β3 ≥ 0,

ω+(ζ)β5 − 2
√
β1(ζβ3 + β4), β5 ≥ 0 and β3 < 0,

ω−(ζ)β5 − 2
√
β1(ζβ3 + β4), β5 < 0,

(6.22c)

where

ω±(ζ) =
1

6
(1−B)±

√
2

3

(
(1−B)

(
1

2
+B

))1/2

, (6.23)

and B ≡
√

3
2

(
ζ − 1

3

)
. These conditions must be satisfied for all values ζ ∈

[
1
3 , 1
]
.

Defining the quantities [49]
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x±1 = 12β1 + 22β4 + 14β3 ±
√

(12β1 − 22β4 − 14β3)2 + 144β2
2 , (6.24a)

x±2 = 4β1 + 4β4 − 2β3 ±
√
(4β1 − 4β4 + 2β3)2 + 4β2

5 , (6.24b)

x±3 = 4β1 + 4β4 ±
√
(4β4 − 4β1)2 + 4β2

5 , (6.24c)

x±4 = 8β1 + 4β4 − 2β3 ±
√
(8β1 − 4β4 + 2β3)2 + 8β2

5 , (6.24d)

x±5 = 12β4 + 14β3 ± 2
√

4β2
4 + 4β4β3 + 17β2

3 , (6.24e)

y1 = 8β4 + 16β3, (6.24f)

y2 = 8β4 + 4β3, (6.24g)

y3 = 4β2 − β5, (6.24h)

y4 = 4β2 + 2β5, (6.24i)

y5 = 4(β2 − β5), (6.24j)

y6 = 8β4 + 4(2 +
√
2)β3, (6.24k)

y7 = 8β4 + 4(2−
√
2)β3, (6.24l)

the unitarity conditions for the GM model are [49]

|x±1 |, |x
±
2 |, |x

±
3 |, |x

±
4 |, |x

±
5 |, |y1|, |y2|, |y3|, |y4|, |y5|, |y6|, |y7| < 8π. (6.25)

6.2 Oblique parameters

Using the results presented in the previous section we can compute the oblique parameters in this

model.

The oblique parameter T in the GM model becomes

αT =
( g

4πcWmZ

)2( 3∑
a=2

5∑
b=2

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
×

×
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
F (m2

a, µ
2
b) (6.26a)

+

5∑
b=2

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)2
×

×
(
2(m2

W + µ2
b)− 3F (m2

W , µ2
b)
)

(6.26b)

+

3∑
a=2

|(U4)1a|2F (M2
1 ,m

2
a) (6.26c)
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+ 2
b2

a2 + 8b2
(
−3F (m2

Z ,m
2
3) + 2(m2

Z +m2
3)
)

(6.26d)

+
4b2

a2 + 8b2

(
− 2(m2

W +M2
1 )− 3F (m2

W ,M2
1 )
)

(6.26e)

− 1

2
(m2

h +m2
W ) +

3

4
F (m2

h,m
2
W ) (6.26f)

−
4∑

b=2

5∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
F (µ2

b , µ
2
b′) (6.26g)

− 1

4

5∑
b=2

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)2
(2(m2

Z + µ2
b)− 3F (m2

Z , µ
2
b)) (6.26h)

− a2

2(a2 + 8b2)
F (m2

2,m
2
3) (6.26i)

− 4
b2

a2 + 8b2
(
−3F (m2

W ,m2
3) + 2(m2

W +m2
3)
)
+

1

2
(m2

h +m2
Z) (6.26j)

− 3

4
F (m2

h,m
2
Z)− 4

b2

a2 + 8b2
m2

1(div − logm2
1) (6.26k)

+ 6
b2

a2 + 8b2
m2

W (div − logm2
W ) + 4

b2

a2 + 8b2
µ2
1(div − logµ2

1) (6.26l)

+ 3
b2

a2 + 8b2
m2

Z(div − logm2
Z)

)
. (6.26m)

The oblique parameter S in the GM model becomes

α

4s2W c2W
S =

=
g2

192π2c2W

(
4

4∑
b=2

5∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
K(µ2

b , µ
2
b′) (6.27a)

+

5∑
b=2

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)2
(K(µ2

b ,m
2
Z)− 6m2

ZK̃(µ2
b ,m

2
Z)) (6.27b)

+ 4

3∑
a,a′=2

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)aa′ − (U†
3U3)a′a

)
K(m2

a,m
2
a′) (6.27c)

+
16b2

a2 + 8b2
(K(m2

3,m
2
W )− 6m2

W K̃(m2
3,m

2
W )) (6.27d)

−K(m2
h,m

2
Z) + 6m2

ZK̃(m2
h,m

2
Z)− 4s2W c2W

3∑
a=2

logm2
a (6.27e)

+ 4(c2W − s2W )

3∑
a=2

(
s2W − 1

2
(U†

1U1)aa − (U†
3U3)aa

)
logm2

a − 4 logM2
1

)
. (6.27f)

Thus, we get (as expected) a gauge independent and finite result for oblique parameter S in the GM
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model.

The oblique parameter U in the GM model becomes

α

4s2W
U =

g2

192π2

(
4

3∑
a=2

5∑
b=2

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
×

×
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
K(µ2

b ,m
2
a) (6.28a)

+ 4

5∑
b=2

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)2
×

× (K(µ2
b ,m

2
W )− 6m2

W K̃(µ2
b ,m

2
W )) (6.28b)

+ 4

3∑
a=2

|(U4)1a|2K(m2
a,M

2
1 ) (6.28c)

+
8b2

a2 + 8b2
(K(m2

3,m
2
Z)− 6m2

ZK̃(m2
3,m

2
Z)) (6.28d)

+
16b2

a2 + 8b2
(K(M2

1 ,m
2
W )− 6m2

W K̃(M2
1 ,m

2
W )) (6.28e)

−K(m2
h,m

2
W ) + 6m2

W K̃(m2
h,m

2
W ) (6.28f)

− 4

4∑
b=2

5∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
K(µ2

b , µ
2
b′) (6.28g)

−
5∑

b=2

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)2
(K(µ2

b ,m
2
Z)− 6m2

ZK̃(µ2
b ,m

2
Z)) (6.28h)

− 4

3∑
a,a′=2

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)aa′ − (U†
3U3)a′a

)
K(m2

a,m
2
a′) (6.28i)

− 16b2

a2 + 8b2
(K(m2

3,m
2
W )− 6m2

W K̃(m2
3,m

2
W )) (6.28j)

+K(m2
h,m

2
Z)− 6m2

ZK̃(m2
h,m

2
Z)− 4s4W

3∑
a=2

logm2
a (6.28k)

+ 8s2W

3∑
a=2

(
s2W − 1

2
(U†

1U1)aa − (U†
3U3)aa

)
logm2

a − 4 logM2
1

)
. (6.28l)

We also obtain, in this model, a gauge independent and finite result for the U parameter.

The oblique parameter V in the GM model becomes

αV =
g2

384π2c2W

(
4

4∑
b=2

5∑
b′=b+1

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)2
H(µ2

b , µ
2
b′ ,m

2
Z) (6.29a)
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+

5∑
b=2

(Im(V †
1 V1)1b + 2 Im(V †

2 V2)1b)
2
(
12H̃(µ2

b ,m
2
Z ,m

2
Z) +H(µ2

b ,m
2
Z ,m

2
Z)
)

(6.29b)

+ 4

3∑
a,a′=2

(
s2W δaa′ − 1

2
(U†

1U1)aa′ − (U†
3U3)aa′

)
×

×
(
s2W δa′a −

1

2
(U†

1U1)a′a − (U†
3U3)a′a

)
H(m2

a,m
2
a′ ,m2

Z) (6.29c)

+
16b2

a2 + 8b2

(
12H̃(m2

3,m
2
W ,m2

Z) +H(m2
3,m

2
W ,m2

Z)
)

(6.29d)

+ 4(2s2W − 1)2H(M2
1 ,M

2
1 ,m

2
Z) (6.29e)

− 12H̃(m2
h,m

2
Z ,m

2
Z)−H(m2

h,m
2
Z ,m

2
Z)

)
. (6.29f)

The oblique parameter W in the GM model becomes

αW =
g2

384π2

(
4

3∑
a=2

5∑
b=2

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
×

×
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
H(µ2

b ,m
2
a,m

2
W ) (6.30a)

+ 4

5∑
b=2

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)2
×

×
(
12H̃(µ2

b ,m
2
W ,m2

W ) +H(µ2
b ,m

2
W ,m2

W )
)

(6.30b)

+ 4

3∑
a=2

|(U4)1a|2H(m2
a,M

2
1 ,m

2
W ) (6.30c)

+
8b2

a2 + 8b2

(
12H̃(m2

3,m
2
Z ,m

2
W ) +H(m2

3,m
2
Z ,m

2
W )
)

(6.30d)

+
16b2

a2 + 8b2

(
12H̃(M2

1 ,m
2
W ,m2

W ) +H(M2
1 ,m

2
W ,m2

W )
)

(6.30e)

− 12H̃(m2
h,m

2
W ,m2

W )−H(m2
h,m

2
W ,m2

W )

)
. (6.30f)

The oblique parameter X in the GM model becomes

α

sW cW
X =− eg

96π2cW

(
s2W − 1

2

)(
G(m2

2,m
2
2,m

2
Z) +G(m2

3,m
2
3,m

2
Z) + 4G(M2

1 ,M
2
1 ,m

2
Z)
)

(6.31a)

In fact, the potential 6.5 is not the most general one invariant under SU(2)L×U(1) that we might write.

The SU(2)R symmetry is imposed by hand and will thus be violated at one-loop level. Therefore, despite

having mW = mZcW at the tree-level, when performing one-loop calculations we get divergences. That

is why we get a divergent result for the oblique parameter T . The most general scalar potential invariant
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under SU(2)L×U(1) with one scalar doublet with hypercharge Y = 1
2 , one scalar triplet with hypercharge

Y = 0 and scalar triplet with hypercharge Y = 1 (the scalar content of the GM model) that we can write

is

V =µ2
1 ϕ

†ϕ+ µ2
2 Ξ

†Ξ + µ2
3 Λ

†Λ + λ1 (ϕ
†ϕ)2 + λ2 (Ξ

†Ξ)2 + λ3 (Λ
†Λ)2 (6.32a)

+ λ4 (ϕ
†ϕ)(Ξ†Ξ) + λ5 (ϕ

†ϕ)(Λ†Λ) + λ6 (Ξ
†Ξ)(Λ†Λ) + λ7 (Ξ

†Λ)(Λ†Ξ) (6.32b)

+ λ8 θ
†Ξ + λ∗8 Ξ

†θ + λ9 γ
†Λ + λ9 Λ

†γ + λ10 ρ
†σ + λ∗10 σ

†ρ+ λ11 σ
†σ (6.32c)

+ λ12 ζ
†ζ + λ13 ω

†Λ + λ∗13 Λ
†ω + λ14 ω

†ω + λ15 γ
†ω (6.32d)

+ λ16 η
†τ + λ∗16 τ

†η + λ17 τ
†τ, (6.32e)

where

θ ≡ (ϕ⊗ ϕ)3 =

 φ+φ+
√
2φ+φ0

φ0φ0

 (6.33)

is a SU(2) triplet with hypercharge Y = 1,

γ ≡ (ϕ⊗ ϕ̃)3 =

 φ+φ0∗
1√
2
(φ0∗φ0 − φ+φ−)

−φ0φ−

 (6.34)

is a SU(2) triplet with hypercharge Y = 0,

ρ ≡ (ϕ⊗ Λ)2 =

√ 2
3λ

+φ0 −
√

1
3λ

0φ+√
1
3λ

0φ0 +
√

2
3λ

−φ+

 (6.35)

is a SU(2) doublet with hypercharge Y = 1
2 ,

σ ≡ (ϕ⊗ Ξ)2 =

−√ 2
3φ

−ξ++ −
√

1
3ξ

+φ0∗

−
√

1
3φ

−ξ+ −
√

2
3φ

0∗ξ0

 (6.36)

is a SU(2) doublet with hypercharge Y = 1
2 ,

ζ ≡ (Ξ⊗ Ξ)1 =
1√
3
(2ξ++ξ0 − ξ+ξ+) (6.37)

is a SU(2) singlet with hypercharge Y = 2,

ω ≡ (Ξ⊗ Ξ̃)3 =
1√
2

−ξ++ξ− − ξ+ξ0∗

ξ++ξ−− − ξ0ξ0∗

ξ+ξ−− + ξ0ξ−

 (6.38)
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is a SU(2) triplet with hypercharge Y = 0,

τ ≡ (Ξ⊗ Ξ̃)5 =


ξ++ξ0∗

1√
2
(ξ0∗ξ+ − ξ++ξ−)

1√
6
(ξ++ξ−− + ξ0ξ0∗ − 2ξ+ξ−)

1√
2
(ξ−−ξ+ − ξ0ξ−)

ξ−−ξ0

 (6.39)

is a SU(2) quintuplet with hypercharge Y = 0 and

η ≡ (Λ⊗ Λ)5 =


λ+λ+√
2λ+λ0√

2
3 (λ

0λ0 − λ+λ−)

−
√
2λ−λ0

λ−λ−

 (6.40)

is a SU(2) quintuplet with hypercharge Y = 0.

To obtain the GM potential (equation 6.5) from equation 6.32, we must set the coefficients λ8, λ9,

λ13, λ14, λ15, λ16 and λ17 to 0 and relate the other coefficients according to

µ2
2 =2µ2

3, λ2 =λ6 −
2
√
2

3
λ10, λ3 =

1

4
λ6 −

√
2

3
λ10, (6.41a)

λ4 =2λ5 +

√
2

3
λ10, λ11 =−

√
2λ10, λ12 =

3

2
λ6, (6.41b)

such that we can write the GM potential as

V =µ2
1 ϕ

†ϕ+ 2µ2
3 Ξ

†Ξ + µ2
3 Λ

†Λ + λ1 (ϕ
†ϕ)2 +

(
λ6 −

2
√
2

3
λ10

)
(Ξ†Ξ)2 (6.42a)

+

(
1

4
λ6 −

√
2

3
λ10

)
(Λ†Λ)2 +

(
2λ5 +

√
2

3
λ10

)
(ϕ†ϕ)(Ξ†Ξ) (6.42b)

+ λ5 (ϕ
†ϕ)(Λ†Λ) + λ6 (Ξ

†Ξ)(Λ†Λ) + λ7 (Ξ
†Λ)(Λ†Ξ) + λ10 ρ

†σ + λ∗10 σ
†ρ (6.42c)

−
√
2λ10 σ

†σ +
3

2
λ6 ζ

†ζ. (6.42d)

6.3 One-loop corrections to the Zbb̄ vertex

We will now present the results for the one-loop corrections to the Zbb̄ vertex in the GM model.

In this model we do only have one scalar doublet. This implies that we will only have one coupling

constant f and one coupling constant e, where f and e are defined in equation 5.25. We can choose

these constants to be real due to a freedom on the phase of the fields bR and tR. These constants are
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related to the VEVs of the neutral fields and to the masses of the b and t quarks by

f =

√
2mb

a
≈ 0, e =

√
2mt

a
. (6.43)

Thus, we can write the constants ca, da and rl as

ca = e(U1)
∗
1a =

√
2mt

a
(U1)

∗
1a, (6.44a)

da = f(U1)1a =

√
2mb

a
(U1)1a ≈ 0, (6.44b)

rl = − f√
2
(V1)1l = −mb

a
(V1)1l ≈ 0. (6.44c)

6.3.1 Charged scalar contribution

The contributions from the diagrams with charged scalars to the one-loop corrections to the Zbb̄ vertex

δgcLb and δgcRb can be written as

δgcLb =
m2

t

16π2

(
2

a2

3∑
a=2

|(U1)1a|2f cL(m2
a)

)
=
m2

t

π2

b2

a2
1

a2 + 8b2
f cL(m

2
2), (6.45)

δgcRb = 0. (6.46)

6.3.2 Neutral scalar contribution

As in this model we have rl = 0, then the contributions from the diagrams with neutral scalars to the

one-loop corrections to the Zbb̄ vertex δgnLb and δgnRb are equal to 0 in the approximation mb = 0.

6.4 Numerical fit to the experimental results

The Standard Model predictions for the couplings gL,R b are gSM
L = −0.420875 and gSM

R = 0.077362 [50].

We can relate the observable Ab with the couplings gL,R b by [51]

Ab =
2rb

√
1− 4µb

1− 4µb + (1 + 2µb)r2b
, (6.47)

where rb = gLb+gRb

gLb−gRb
and µb =

(mb(m
2
Z))

2

m2
Z

. We use the numerical values mb(m
2
Z) = 3 GeV and mZ =

91.1876 GeV [6]. Inverting equation 6.47, we get [52]
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gLb

gRb
≡ ϱ =

√
1− 4µb

(
1±

√
1− (1 + 2µb)A2

b

)
+ (1 + 2µb)Ab

√
1− 4µb

(
1±

√
1− (1 + 2µb)A2

b

)
− (1 + 2µb)Ab

, (6.48)

such that we have two solutions for ϱ. We can also relate the observable Rb with the couplings gL,R b

by [41,52]

Rb =
sbc

QCDcQED

sbcQCDcQED + sc + su + ss + sd
, (6.49)

where cQCD = 0.9953 and cQED = 0.99975 are QCD and QED corrections, respectively, sc+su+ss+sd =

1.3184 and [41,52]

sb = (1− 6µb)(gLb − gRb)
2 + (gLb + gRb)

2 = g2Rb

(
(2− 6µb)(1 + ϱ2) + 12µbϱ

)
. (6.50)

Using equations 6.49 and 6.50, we get

g2Rb =
sc + su + ss + sd

cQCDcQED ((2− 6µb)(1 + ϱ2) + 12µbϱ)

Rb

1−Rb
. (6.51)

This equation allows for two signs for gRb.

Using the SM predictions for the couplings we get ASM
b = 0.9347 and RSM

b = 0.21581.

An overall fit of various electroweak observables gives [6]

Rfit
b = 0.21629± 0.00066, Afit

b = 0.923± 0.020. (6.52)

We have then that Rfit
b deviates from its SM value by 0.7σ and Afit

b deviates from its SM value by 0.6σ.

However, making the average of two direct measurements of Ab done at LEP1 and SLAC in two different

ways, we get [53]

A
average
b = 0.901± 0.013. (6.53a)

We get then, a deviation of 2.6σ of Aaverage
b from the SM prediction.

Using the central values of equations 6.52 and 6.53 and equations 6.48 and 6.51, we get the values

displayed in table 6.1, where we also present δgL = gL + 0.420875 and δgR = gR − 0.077362.

We can see that in solutions 3 and 4 the value of δgLb is too large, which indicates that solutions 1

and 2 might be preferred over solutions 3 and 4. Reference [54] claims that there are already a couple

LHC points that favour solution 1 over solution 2 and that the high-luminosity-LHC can be decisive to

understand which of the solutions is the correct one. On the other hand, reference [55] claims that the

PETRA (35 GeV) data favours solution 2 over solution 1.
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solution gLb gRb δgLb δgRb

1fit −0.420206 0.084172 0.000669 0.006810

2fit −0.419934 −0.082806 0.000941 −0.160168

3fit 0.420206 −0.084172 0.841081 −0.161534

4fit 0.419934 0.082806 0.840809 0.005444
1average −0.417814 0.095496 0.003061 0.018134
2average −0.417504 −0.094139 0.003371 −0.171501
3average 0.417518 −0.095496 0.838688 −0.172858
4average 0.417504 0.094139 0.838379 0.016777

Table 6.1: Results for gLb and gRb computed from the experimental values for Ab and Rb. Solutions labelled by ”fit”
were computed using Afit

b , while solutions labelled by ”average” were computed using Aaverage
b .

To make the numerical fit to the experimental data, we will make a further simplification: we will put

β5 = 2β2 on the scalar potential. In this case, matrix M2
0 defined in 6.16 becomes

M2
0 =


8a2β1 0 0 0 0

0 8b2β2 0 −2
√
2abβ2 0

0 0 8b2β3 + 16b2β4 + a2β2 0 8
√
2b2β4 −

√
2a2β2

0 −2
√
2abβ2 0 a2β2 0

0 0 8
√
2b2β4 −

√
2a2β2 0 8b2β3 + 8b2β4 + 2a2β2

.
(6.54)

The off-diagonal elements of the first line are equal to 0, such that we get alignment. We will consider

Re(φ0) as the Higgs boson present in the SM, such that we have 8a2β1 ≡ m2
h = (125.09 GeV)2.

In this aligned version of the GM model, the matrix Y defined in 6.17 becomes

Y =


0 a√

a2+8b2
0 2

√
2b√

a2+8b2
0

0 − 2
√
2b√

a2+8b2
0 a√

a2+8b2
0

0 0 −
√
3
3 0

√
6
3

0 0
√
6
3 0

√
3
3

1 0 0 0 0

 , (6.55)

The masses of the neutral scalars become µ2
2 = β2(a

2+8b2), µ2
3 = 8b2β3+3a2β2, µ2

4 = 8b2(β3+3β4),

µ2
5 = 8a2β1, and the matrices V1, V2 and R1 become

ReV1 =
(
0 0 0 0 1

)
, ImV1 =

(
a√

a2+8b2
−

√
8b√

a2+8b2
0 0 0

)
, (6.56a)

ReV2 =
(
0 0 −

√
3
3

√
6
3 0

)
, ImV2 =

( √
8b√

a2+8b2
a√

a2+8b2
0 0 0

)
, (6.56b)

R1 =
(
0 0

√
6
3

√
3
3 0

)
. (6.56c)

The strategy used to fit the experimental data was to scan the allowed regions for the potential

parameters by the BFB conditions and the unitarity conditions and select the ones for which the deviation
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of the oblique parameters S and U from their experimental values were less than 1σ. For each of those

points, we computed δgL (δgR is equal to 0). The result, as well as the experimental points and the SM

prediction, can be seen in figure 6.1. We fitted only solution number 1 from table 6.1 as in the GM model

we have δgRb = 0, which means that we will not be able to get a good fit to the other solutions. We have

used LoopTools [56,57] to perform the numerical integration of the Passarino-Veltman functions.

Figure 6.1: Scatter plot of values of δgL and δgR. The square marks the SM prediction, the circle marks the best-
fit point of solution 1fit and the triangle marks the best-fit point of solution 1average. The orange lines
mark the 1σ (full lines) and 2σ (dashed lines) boundaries of the region determined by the experimental
value of Rfit

b , the light blue lines mark the 1σ (full lines) and 2σ (dashed lines) boundaries of the region
determined by the experimental value of Aaverage

b and the purple lines mark the 1σ (full lines) and 2σ
(dashed lines) boundaries of the region determined by the experimental value of Afit

b . The red points
are inside the 1σ region determined by the experimental value of Rfit

b , the green points are outside that
1σ region but inside the 2σ one and the dark blue points are more than 2σ away from the experimental
value of Rfit

b .

From the figure above we see that we do not get a better agreement with solution 1 than in the SM.

In fact, we cannot even reach the 2σ interval of Aaverage
b . This happens because in this model, as in any

model with only one scalar doublet (and possibly other additional SU(2) multiplets of higher dimension),

in the limit mb → 0 the Yukawa coupling f vanishes, making δgR = 0. This will make it difficult to find a

better fit to the experimental data than in the SM.

Using the points from the previous plot that are less than 2σ away from the experimental value of Rfit
b

(red and green points from figure 6.1), we made the three plots on figures 6.2, 6.3 and 6.4 showing the

masses of the scalars used to obtain those points.
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Figure 6.2: Plot of µ3 = m3 = M1 as a function of µ2 = m2 for the points less than 2σ away from the experimental
value of Rfit

b from the plot of figure 6.1. The red points are the ones for which Rb is less than 1σ away
from its experimental value.

Figure 6.3: Plot of µ4 as a function of µ2 = m2 for the points less than 2σ away from the experimental value of
Rfit

b from the plot of figure 6.1. The red points are the ones for which Rb is less than 1σ away from its
experimental value.

71



Figure 6.4: Plot of µ4 as a function of µ3 = m3 = M1 for the points less than 2σ away from the experimental value
of Rfit

b from the plot of figure 6.1. The red points are the ones for which Rb is less than 1σ away from its
experimental value.

The plots from figures 6.2, 6.3 and 6.4 show us the range of masses for each of the new scalars that

give a better fit to the experimental data.
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Chapter 7

Conclusion

In this thesis, we presented a formalism to work with models with an arbitrary number of SU(2) singlets

with hypercharges Y = 0, 1, 2; SU(2) doublets with hypercharge Y = 1/2 and SU(2) triplets with hyper-

charge Y = 0, 1. We then applied this formalism to compute some observables in general models with

this scalar content and computed then these observables in the concrete case of the GM model. The

main problem with our formalism was that the relation mW = mZcW is only valid for models whose mul-

tiplets with non-zero VEV obey the relation T (T + 1) = 3Y 2, where T is the isospin of the multiplet and

Y is its hypercharge. Thus, in a general model with triplets we have mW ̸= mZcW . The quantities we

computed required a subtraction of the result for that quantity in the SM from the result for that quantity

in our NP model. As in the SM the masses of the gauge bosons obey the relation mW = mZcW and in

a general model with triplets that relation is not verified, then this subtraction was not trivial.

In chapter 2, we described a feature of the SM (and of other models), related to its scalar sector,

which is custodial symmetry. Custodial symmetry is responsible for the relation mW = mZcW between

the masses of the Z and W gauge bosons.

In chapter 3, we presented the aforementioned formalism, defining its scalar content and the matrices

that describe the mixing of the scalars. We also wrote the gauge-kinetic Lagrangian for a model with

that scalar content and identified the relation between the fields of the Goldstone bosons and the fields

of the scalars that appear in the multiplets.

In chapter 4, we used the formalism from chapter 3 to find a prescription to compute the oblique

parameters in a model with scalar SU(2) singlets, doublets and triplets. We started by identifying the

relevant Feynman diagrams and computed then the vacuum polarization tensors and, when needed,

their derivatives with respect to the square of the momentum of the external gauge bosons. We obtained

a divergent and gauge dependent result for parameter T and finite and gauge independent results for

parameters S, U , V , W and X. In computing the oblique parameters, due to the problem mentioned in

the first paragraph of this chapter, we used some Feynman rules for the SM that do not look the same
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compared to the usual SM Feynman rules but that become the usual ones when we use the relation

mW = mZcW . In this way, we were able to obtain a finite result for the oblique parameters S and U that

we would not obtain otherwise. We proved then that, using these Feynman rules for the SM, we get a

finite result for the oblique parameters S and U in a model with any scalar content. Still in chapter 4, we

showed that the part proportional to the metric tensor of the vacuum polarization tensor of the photon at

q2 = 0 (being qµ the four-momentum of the external gauge boson) is equal to 0, which is a consequence

of the vacuum polarization tensor of the photon being transverse as required by the Ward-Takahashi

identities. We also compared our result for the oblique parameters S and U with those from [40] for a

model with one doublet with hypercharge Y = 1/2 and one triplet with hypercharge Y = 0. Our results

agreed with the ones from [40].

In chapter 5, we computed the one-loop corrections to the Zbb̄ vertex in a model with scalar singlets,

doublets and triplets. We started by identifying the two observables that are influenced by these cor-

rections. We identified the relevant Feynman diagrams and computed the contribution of each of the

diagrams to the couplings of the Z boson with the b quark and its anti-particle using the formalism from

chapter 3. The result that we obtained is divergent for models with mW ̸= mZcW . This may also be

related to the problems in the subtraction of SM quantities from the same quantities in our NP model

mentioned in the first paragraph of this chapter. In the case of the one-loop corrections to the Zbb̄ vertex

we could not fix this problem.

Finally, in chapter 6, we applied the results from the previous chapters to compute the oblique param-

eters and the one-loop corrections to the Zbb̄ vertex to the concrete case of the Georgi-Machacek model.

We started with a short description of the model. Having identified the mixing matrices between scalars

for this model, we proceeded to compute the oblique parameters for the GM model. We computed then

the one-loop corrections to the Zbb̄ vertex also for the GM model. Then, relating the corrections to the

couplings with the relevant observables that had been identified in the previous chapter, and assuming

alignment in the GM model, we compared our results with the experimental ones for different values of

the masses of the NP scalars. We did not obtain a better fit to the experimental results than the one

obtained by the SM. This happens because the GM model only contains one SU(2) scalar doublet. In

the approximation mb → 0, this will imply that the coupling gRb in the GM model will be equal to this

coupling in the SM, such that only gLb will be changed by the additional scalar content of the GM model.

However, the result for gLb in the GM model is always bigger than the SM one, such that the GM fit is

always worse than the SM one.

A possible way to continue the work of this thesis would be to find a way to get a finite and gauge

independent result for the one-loop corrections to the Zbb̄ vertex. Using the work of this thesis, we will

also try to publish a paper on an international journal with the results obtained for the oblique parameters.
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Appendix A

Short Review of the Standard Model

The Standard Model Lagrangian can be written as a sum of several terms as LSM = LQCD + Lgauge +

LDirac + Lscalar + LYukawa. As mentioned before, the SM is a gauge theory with gauge group SU(3) ×

SU(2)×SU(1). SU(3) will be the group of color charge. It is a Lie group with a Lie algebra of dimension

8. This means that SU(3) has 8 generators that will, according to the Goldstone theorem [58, 59], give

rise to 8 real gluon fields Gµ
a (a = 1, ..., 8). The mathematical description of the behaviour of the gluons

and the way they interact with the quarks is given by LQCD. This part of the SM Lagrangian will not be

examined here as we will focus on the electroweak part of the Lagrangian.

SU(2) and U(1) are Lie groups with Lie algebras of dimensions 3 and 1, respectively. This means

that, according to the Goldstone theorem, we will have 3 real gauge bosons Wµ
a (a = 1, ..., 3) due to

SU(2) and 1 real gauge boson Bµ due to U(1). The gauge group SU(2) has coupling constant −g and

the gauge group U(1) has coupling constant −g′.

However, the gauge bosons Wµ
a and Bµ will not be the physical gauge bosons. Let us define the

fields Aµ and Zµ as

(
Aµ

Zµ

)
=

(
cW −sW
sW cW

)(
Bµ

Wµ
3

)
, (A.1)

where cW and sW are, respectively, the cosine and the sine of the Weinberg angle θW . This transforma-

tion is unitary, real and orthogonal. cW and sW are given in terms of the couplings g and g′ by

cW =
g√

g2 + g′2
, sW = − g′√

g2 + g′2
. (A.2)

We define also the fields Wµ+ and Wµ− as

Wµ± =
Wµ

1 ∓ iWµ
2√

2
. (A.3)
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The fields Wµ± are complex fields and are complex-conjugate of each other.

The gauge part of the SM Lagrangian is then given by Lgauge = − 1
4

(
FY µνF

µν
Y +

∑3
i=1 FjµνF

µν
j

)
,

where FY µν = ∂µBν − ∂νBµ and Fjµν = ∂µWjν − ∂νWjµ + g
∑3

k,l=1 ϵjklWkµWlν . Using the inverse

relations of the ones from equations A.1 and A.3 we obtain the Lagrangian terms that describe the

interaction of the physical electroweak gauge bosons.

For the kinetic term for a fermion field, we would like to have a real Lorentz-invariant term. For that,

we can start by trying the usual Dirac term LDirac = ψ̄ (iγµ∂µ)ψ, where ψ is any fermion field, γµ are the

Dirac matrices and ψ̄ = ψ†A, with A being a 4 × 4 matrix defined by Aγµ = γ†µA, A† = A. In the Dirac,

Weyl and Majorana representations of the Dirac matrices (the most common representations) A = γ0.

However, the Dirac Lagrangian presented above would not be gauge invariant. To fix that, let us

define the covariant derivative Dµ as Dµ = ∂µ − ig(Wµ
1 T1 +Wµ

2 T2 +Wµ
3 T3) − ig′BµY , where Ta(a =

1, ..., 3) are the generators of the gauge group SU(2), which obey [Tj , Tk] = i
∑3

l=1 ϵjklTl and Y is the

generator of the gauge group U(1). The operators Ta(a = 1, ..., 3) are called isospin operators, while the

operator Y is hypercharge operator. Defining

e ≡ gsW = −g′cW = − gg′√
g2 + g′2

, (A.4)

and the operator Q, T+ and T− as

Q = T3 + Y, T± =
T1 ± iT2√

2
, (A.5)

and using equations A.1 and A.3 we can write the covariant derivative in terms of the physical gauge

boson fields as

Dµ = ∂µ + ieQAµ − i
g

cW
(T3 −Qs2W )Zµ − ig(Wµ+T+ +Wµ−T−). (A.6)

Let us also define the left and right chirality projection operators PL,R as PL,R = 1∓γ5

2 where γ5 =

iγ0γ1γ2γ3.

The eigenvalue of γ5 is the chirality. The operators PL,R are called projectors as they obey the usual

relations of the projectors PR + PL = 1, (PR,L)
2 = PR,L, PRPL = PLPR = 0.

The operator PR projects the fermion field ψ into its component ψR ≡ PRψ with chirality +1, such that

γ5ψR = ψR and the operator PL projects the fermion field ψ into its component ψL ≡ PLψ with chirality

−1, such that γ5ψL = −ψL.

The weak interaction is chiral, which means that right-handed and left-handed fermions of the same

type undergo different interactions. However, electromagnetism is not chiral, as right- and left-handed

fermions undergo the same electromagnetic interaction. Therefore, in the SM, right- and left-handed

fermions have different T3 and different Y but they have the same Q = T3 + Y . That can be achieved
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by putting the left-handed fermions in SU(2) doublets while the right-handed fermions are put in SU(2)

singlets.

The fermion field content of the SM is then divided into quarks and leptons. The SM leptons are(
νeL eL

)T ,
(
νµL µL

)T ,
(
ντL τL

)T , eR, µR and τR. The left-handed leptons are placed in SU(2)

doublets of hypercharge Y = −1/2, while the right-handed leptons are placed in SU(2) singlets of

hypercharge Y = −1. The SM quarks are
(
uL dL

)T ,
(
cL sL

)T ,
(
tL bL

)T , uR, cR, tR, dR, sR and bR.

The left-handed quarks are placed in SU(2) doublets of hypercharge Y = 1/6, while the right-handed

up-type quarks (u, c and t) are placed in SU(2) singlets of hypercharge Y = 2/3 and the right-handed

up-type quarks (d, s and b) are placed in SU(2) singlets of hypercharge Y = −1/3.

We can now fix our attempt to write the Dirac Lagrangian by writing it as LDirac = ψ̄L(iγ
µDµ)ψL +

ψ̄R(iγ
µDµ)ψR, where ψ can be any fermions (either lepton or quark). This Lagrangian is now invariant

under SU(2) × U(1) and it contains the terms describing the interaction of the gauge bosons with the

fermions.

Until now, we do not have mass terms for the gauge bosons and we know that the Z and the W±

bosons are massive. Furthermore, in nature, we do not observe the SU(2)×U(1)Y gauge symmetry. We

just observe the gauge symmetry U(1)Q, where Q is the electric charge. To solve both of these issues,

we introduce a scalar field which we allow to have a non-zero VEV. This scalar field cannot be a SU(2)

singlet as this would mean that SU(2) would remain unbroken. Furthermore, it must have 0 electric

charge, so that U(1)Q remains unbroken. The simplest possible choice for breaking the SU(2)× U(1)Y

gauge symmetry meeting the previous conditions is to have one, and only one, doublet of SU(2). This

is the choice used in the SM and it turns out to give good predictions of physical observables.

Let us call ϕ to the SM scalar doublet. For it to have a component with 0 electric charge, its hyper-

charge must either be +1/2 or −1/2, as the components of a doublet have T3 = ±1/2 and Q = T3 + Y .

As the representations of SU(2) are equivalent to their complex conjugate representations, then it is

arbitrary to choose between hypercharge +1/2 or −1/2. We will then choose Y = +1/2. Thus, we can

write ϕ as ϕ =
(
φ+ φ0

)T , where φ+ and φ0 are complex scalar fields.

To write a gauge invariant scalar Lagrangian we use again the covariant derivative, such that we

get Lscalar = (Dµϕ)
†(Dµϕ) − V (ϕ), where V (ϕ) is the scalar potential of the SM. The scalar potential

must be invariant under SU(2) × U(1) and must also be at most quartic in the scalar fields due to

renormalizability. Thus, the most general scalar potential that we can write with only one scalar doublet

is V = µ2ϕ†ϕ + λ(ϕ†ϕ)2, where µ2 has dimension M2 and λ is dimensionless. For the potential to be

bounded from below (which means that it does not become infinitely negative when we increase the

fields) we must have λ > 0. For spontaneous symmetry breaking to happen we must have µ2 < 0, so

that the potential has a minimum for ϕ†ϕ ̸= 0. When these conditions are met, V has a minimum at

ϕ†ϕ = v2 (where v can be chosen to be real without loss of generality), with v =
√
−µ2

2λ . As we want the
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non-zero VEV to be in the neutral component of the doublet, we can write

φ0 = v +
H + iχ√

2
, (A.7)

where H and χ are real scalar fields with zero VEV. If we develop the SM potential using A.7 we find

that the fields χ and φ± are massless and the field H has mass m2
h = −2µ2. Thus, the fields χ and

φ± are called Goldstone bosons and appear because we started with a gauge symmetry with gauge

group SU(2) × U(1)Y whose algebra has 4 generators and this symmetry was broken into a symmetry

with gauge group U(1)Q whose algebra has 1 generator, which means that we will have 3 Goldstone

bosons that will get absorbed by the gauge bosons that acquire mass and will become their longitudinal

components. The field H is the Higgs boson, which is a physical particle.

Thus, we can write Lscalar = (Dµϕ)
†(Dµϕ) − µ2ϕ†ϕ − λ(ϕ†ϕ)2. By developing this Lagrangian, we

get the terms describing the interaction of the scalars with the gauge bosons and of the scalars with

each other and we find that the Z and W± gauge bosons acquire a mass. The mass of the Z boson is

given by mZ = gv√
2cW

and the mass of the W boson is given by mW = gv√
2
. Thus, we obtain the relation

mW = mZcW .

We still do not have mass terms for the fermions. Similarly to what happens to the gauge bosons,

spontaneous symmetry breaking will be responsible for the mass of the fermions.

Let us start by the leptons. The SU(2) left-handed lepton doublets have hypercharge Y = −1/2, the

SU(2) scalar doublet ϕ has hypercharge Y = +1/2 and the SU(2) right-handed lepton singlets have

hypercharge Y = −1. Thus, we can write

LYukawa leptons = −yl
(
νlL lL

)
ϕ lR − y∗l lR ϕ

†
(
νlL
lL

)
, (A.8)

where l stands for any of the leptons and yl is a dimensionless complex constant. It is, however, possible

to rephase the field eR such that the constant yl becomes real and in this case, we find that the mass of

the lepton l is given by ml = ylv. Using A.8, we get the terms describing the interaction of the leptons

with the gauge bosons.

In the case of the quarks, the Yukawa interactions are a little different. Let us call pj (j = 1, 2, 3) to

three generic up-type quarks and nj (j = 1, 2, 3) to three generic down-type quarks. These will not be

the physical quarks. The SU(2) doublets
(
pjL njL

)T (j = 1, 2, 3) have hypercharge Y = −1/6, the

SU(2) scalar doublet
(
φ+ φ0

)T has hypercharge Y = +1/2, the SU(2) singlets pjR have hypercharge

Y = +2/3 and the SU(2) singlets njR have hypercharge Y = −1/3. We also have the SU(2) scalar

doublet
(
φ0∗ −φ−)T , which has hypercharge Y = −1/2. We can then write
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LYukawa quarks =−
3∑

j=1

3∑
k=1

Γjk

(
pjL njL

)
nkR

(
φ+

φ0

)
−

3∑
j=1

3∑
k=1

∆jk

(
pjL njL

)
pkR

(
φ0∗

−φ−

)
(A.9a)

−
3∑

j=1

3∑
k=1

Γ∗
jk

(
φ− φ0∗)nkR(pjLnjL

)
−

3∑
j=1

3∑
k=1

∆∗
jk

(
φ0 −φ+

)
pkR

(
pjL
njL

)
, (A.9b)

where Γ and ∆ are 3 × 3 matrices of Yukawa coupling constants. They are in general complex and are

not constrained by any symmetry. The mass matrices of the quarks will then be (Mp)jk = v∆jk and

(Mn)jk = vΓjk. These matrices are not, however, diagonal. Hence, we will use a theorem that says that

for any square matrix M there are two unitary matrices U and U ′ such that D = U†MU ′ is a diagonal

matrix with real and non-negative matrix elements. Using this theorem, we have the unitary matrices

Up
L, Up

R, Un
L , Un

R, such that Up†
L MpU

p
R =Mu ≡ diag(mu,mc,mt), U

n†
L MnU

n
R =Md ≡ diag(md,ms,mb).

Defining the physical fields in terms of the fields pjL, pjR, njL and njR as

UL ≡

uLcL
tL

 = Up†
L pL, UR ≡

uRcR
tR

 = Up†
R pR, (A.10a)

DL ≡

dLsL
bL

 = Un†
L nL, DR ≡

dRsR
bR

 = Un†
R nR, (A.10b)

we can write

LYukawa quarks =− 1

v

[
ULVCKMMdDRφ

+ +DLMdDRφ
0 (A.11a)

+ ULMuURφ
0∗ −DLV

†
CKMMuURφ

− (A.11b)

+DRMdV
†
CKMULφ

− +DRMdDLφ
0∗ (A.11c)

+ URMuULφ
0 − URMuVCKMDLφ

+

]
, (A.11d)

where VCKM ≡ Up†
L Un

L is the CKM matrix [60,61]. Using A.11, we get the terms describing the interac-

tion of the quarks with the gauge bosons.

To obtain the full Yukawa Lagrangian, we just need to sum the Yukawa Lagrangian for the leptons

with the Yukawa Lagrangian for the quarks, such that LYukawa = LYukawa leptons + LYukawa quarks.
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Appendix B

Feynman Rules for the General

Formalism

Here we present the Feynman rules for the general formalism computed from the gauge-kinetic La-

grangian in equation 3.29. The Feynman rules of the scalar propagators are:

S+
a

=
i

p2 −m2
a + iϵ

(B.1a)

S0
b

=
i

p2 − µ2
b + iϵ

(B.1b)

S++
c

=
i

p2 −M2
c + iϵ

(B.1c)

The Feynman rules for the three-particle vertices, where the particles indicated are entering the

vertices, are:

W±
ν

Aµ

G∓ = −iemW gµν (B.2a)
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W−
ν

Zµ

S+
a = −igmW

cW
gµν

(
s2W δ1a + (U†

4U4)1a − (U†
3U3)1a

)
(B.2b)

W+
ν

Zµ

S−
a = −igmW

cW
gµν

(
s2W δa1 + (U†

4U4)a1 − (U†
3U3)a1

)
(B.2c)

p−

p+

S−
a′

S+
a

Aµ = ieδaa′(p− − p+)µ (B.2d)

p−

p+

S−
a′

S+
a

Zµ = i
g

cW

(
s2W δaa′ − 1

2
(U†

1U1)a′a − (U†
3U3)a′a

)
(p− − p+)µ (B.2e)

q

p

S0
b′

S0
b

Zµ =
g

cW

(1
2
Im(V †

1 V1)bb′ + Im(V †
2 V2)bb′

)
(q − p)µ (B.2f)
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q

p

S+
a

S0
b

W−
µ = ig

(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
(q − p)µ (B.2g)

q

p

S−
a

S0
b

W+
µ = −ig

(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
(q − p)µ (B.2h)

W−
ν

W+
µ

S0
b = 2igmW gµν

(1
2
Re(U†

1V1)1b +
1√
2
Re(U†

4V2)1b +Re(U†
3R1)1b

)
,

for b ̸= 1 (B.2i)

Zν

Zµ

S0
b = −igmZ

cW
gµν

(
Im(V †

1 V1)1b + 2 Im(V †
2 V2)1b

)
, for b ̸= 1 (B.2j)

p−

p+

S−−
c′

S++
c

Aµ = 2ieδc′c(p− − p+)µ (B.2k)
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p−

p+

S−−
c′

S++
c

Zµ = i
g

cW

(
2s2W δc′c − (T †

1T1)c′c

)
(p− − p+)µ (B.2l)

q

p

S−−
c

S+
a

W+
µ = −ig(T †

1U4)ca(q − p)µ (B.2m)

q

p

S++
c

S−
a

W−
µ = ig(U†

4T1)ac(q − p)µ (B.2n)

W−
ν

W−
µ

S++
c = 2i g mW gµν(U

†
4T1)1c (B.2o)

W+
ν

W+
µ

S−−
c = 2i g mW gµν(T

†
1U4)c1 (B.2p)

The Feynman rules for the four-particle vertices, where the particles indicated are entering the ver-

tices, are:
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W+
ν

Aµ

S−
a

S0
b

= −ieggµν
(1
2
(U†

1V1)ab +
1√
2
(U†

4V2)ab + (U†
3R1)ab

)
(B.3a)

W−
ν

Aµ

S+
a

S0
b

= −ieggµν
(1
2
(V †

1 U1)ba +
1√
2
(V †

2 U4)ba + (RT
1 U3)ba

)
(B.3b)

W+
ν

Zµ

S−
a

S0
b

= −i g
2

cW
gµν

(s2W
2

(U†
1V1)ab

+
1 + s2W√

2
(U†

4V2)ab − c2W (U†
3R1)ab

)
(B.3c)

W−
ν

Zµ

S+
a

S0
b

= −i g
2

cW
gµν

(s2W
2

(V †
1 U1)ba

+
1 + s2W√

2
(V †

2 U4)ba − c2W (RT
1 U3)ba

)
(B.3d)

W−
ν

W+
µ

S0
b′

S0
b

= ig2gµν

(1
4
((V †

1 V1)b′b + (V †
1 V1)bb′)
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+
1

2
((V †

2 V2)bb + (V †
2 V2)bb′) + 2(RT

1 R1)b′b

)
(B.3e)

Zν

Zµ

S0
b′

S0
b

= i
g2

c2W
gµν

(1
4
((V †

1 V1)b′b + (V †
1 V1)bb′)

+ ((V †
2 V2)b′b + (V †

2 V2)bb′)
)

(B.3f)

W−
ν

W+
µ

S−
a′

S+
a

= ig2gµν

(1
2
(U†

1U1)a′a + (U†
3U3)a′a + 2(U†

4U4)a′a

)
(B.3g)

Aν

Aµ

S−
a′

S+
a

= 2ie2gµνδa′a (B.3h)

Zν

Aµ

S−
a′

S+
a

= i
eg

cW
gµν

(
2s2W δa′a − (U†

1U1)a′a − 2(U†
3U3)a′a

)
(B.3i)

Zν

Zµ

S−
a′

S+
a

= 2i
g2

c2W
gµν

(
s4W δa′a +

(1
4
− s2W

)
(U†

1U1)a′a
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+ (c2W − s2W )(U†
3U3)a′a

)
(B.3j)

Aν

Aµ

S−−
c′

S++
c

= 8ie2gµνδc′c (B.3k)

Zν

Aµ

S−−
c′

S++
c

= 4i
eg

cW
gµν

(
2s2W δc′c − (T †

1T1)c′c

)
(B.3l)

Zν

Zµ

S−−
c′

S++
c

= 2i
g2

c2W
gµν

(
4s4W δc′c + (1− 4s2W )(T †

1T1)c′c

)
(B.3m)

W−
ν

W+
µ

S−−
c′

S++
c

= ig2gµν(T
†
1T1)c′c (B.3n)

Aν

W+
µ

S−−
c

S+
a

= −3ieggµν(T
†
1U4)ca (B.3o)
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Aν

W−
µ

S++
c

S−
a

= −3ieggµν(U
†
4T1)ac (B.3p)

Zν

W+
µ

S−−
c

S+
a

= −ig2 (2s
2
W − c2W )

cW
gµν(T

†
1U4)ca (B.3q)

Zν

W−
µ

S++
c

S−
a

= −ig2 (2s
2
W − c2W )

cW
gµν(U

†
4T1)ac (B.3r)

W−
ν

W−
µ

S++
c

S0
b

= ig2
√
2gµν(V

†
2 T1)bc (B.3s)

W+
ν

W+
µ

S−−
c

S0
b

= ig2
√
2gµν(T

†
1V2)cb (B.3t)
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W−
ν

W−
µ

S+
a′

S+
a

= −2ig2
√
2gµν(U

T
3 U3)a′a (B.3u)

W+
ν

W+
µ

S−
a′

S−
a

= −2ig2
√
2gµν(U

†
3U

∗
3 )a′a (B.3v)
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Appendix C

Feynman Diagrams for the One-loop

Gauge Boson Propagators

The diagrams that contribute to Πµν
ZZ at one-loop level are 1

q q

Z Z

S0
b

µ ν 1

q q

Z Z

S+
a

µ ν 2 (C.1a)

q q

Z Z

S++
c

µ ν 3

q q

Z

S0
b′

S0
b

Z
µ ν 4 (C.1b)

1We do not include here the diagrams that have equal amplitudes to the same diagrams in the SM because we are interested
only in the New Physics part of AV V ′ (with V V ′ being either AA, AZ, ZZ or WW ), which means that these diagrams do not
contribute to our results.
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q q

Z

Z

S0
b

Z
µ ν 5

q q

Z

S−
a′

S+
a

Z
µ ν 6 (C.1c)

q q

Z

W−

S+
a

Z
µ ν 7

q q

Z

W+

S−
a

Z
µ ν 8 (C.1d)

q q

Z

S−−
c′

S++
c

Z
µ ν 9 (C.1e)

The diagrams that contribute to Πµν
WW at one-loop level are

q q

W+ W+

S0
b

µ ν 1

q q

W+ W+

S+
a

µ ν 2 (C.2a)

q q

W+ W+

S++
c

µ ν 3

q q

W+

S+
a

S0
b

W+

µ ν 4 (C.2b)
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q q

W+

W+

S0
b

W+

µ ν 5

q q

W+

S++
c

S−
a

W+

µ ν 6 (C.2c)

q q

W+

Z

S+
a

W+

µ ν 7

q q

W+

W−

S++
c

W+

µ ν 8 (C.2d)

q q

W+

A

G+

W+

µ ν 9 (C.2e)

The diagrams that contribute to Πµν
AA at one-loop level are 2

q q

A A

S+
a

µ ν 1

q q

A A

S++
c

µ ν 2 (C.3a)

q q

A

S−
a

S+
a

A
µ ν 3

q q

A

S−−
c

S++
c

A
µ ν 4 (C.3b)

2Here we include all the diagrams with internal bosons as they are used in section 4.9.
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q q

A

W+

G−

A
µ ν 5

q q

A

W−

G+

A
µ ν 6 (C.3c)

q q

A

W−

W+

A
µ ν 7

q q

A A

W+

µ ν 8 (C.3d)

q q

A

c+

A

c+

µ ν 9

q q

A

c−

A

c−

µ ν 10 (C.3e)

The diagrams 5 to 10 are equal to the same diagrams in the SM. For that reason, we discard them in

the calculation of the oblique parameters.

The diagrams that contribute to Πµν
AZ at one-loop level are

q q

A Z

S+
a

µ ν 1

q q

A Z

S++
c

µ ν 2 (C.4a)

q q

A

S−
a

S+
a

Z
µ ν 3

q q

A

S−−
c

S++
c

Z
µ ν 4 (C.4b)
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Appendix D

Standard Model Feynman Rules

In this work we compute several quantities which are subtractions of the Standard Model values from

those quantities from the values of those quantities in a New Physics model. For that purpose we need

the Feynman rules for the Standard Model. Some of the Feynman rules we use for the SM vertices are

not the same as the usual SM Feynman rules (which can be found, for example, in [28] or in [29]) as we

subtract the SM quantities from the same quantities in models for which mW ̸= mZcW and some of the

SM Feynman rules are simplifications for mW = mZcW . For that purpose, we present here the Feynman

rules used in this work for the SM vertices that are different from those from [28] or [29].

W∓
ν

Zµ

G± = −igmW cW gµν

(
m2

Z

m2
W

− 1

)
(D.1a)

p−

p+

G−

G+

Zµ = −i g cW
(
1− m2

Z

2m2
W

)
(p− − p+)µ (D.1b)
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q

p

G∓

G0

W±
µ =

g

2

mZcW
mW

(q − p)µ (D.1c)

The Feynman rule in D.1a can be obtained by requiring gauge invariance in the process e− →

νe Z W−. Knowing this Feynman rule, we can obtain the Feynman rule in D.1b by requiring gauge

invariance in the process Z → e− ν̄e µ
+ νµ and the Feynman rule in D.1c by requiring gauge invariance

in the process W− → e− ν̄e νµ ν̄µ.
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