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Resumo

A descoberta do bosao de Higgs em 2012 foi um feito importante na fisica de particulas. Esta particula
escalar é essencial no Modelo Padrao para explicar a massa das outras particulas. No entanto, ndo
existe nada na teoria que restrinja o setor escalar do Modelo Padrdo a ter apenas uma particula fisica.

Nesta tese, consideramos um modelo geral com um ndmero arbitrario de singletos escalares de
SU(2) com hipercargas Y = 0,1,2; um namero arbitrario de dubletos escalares de SU(2) com hiper-
carga Y = 1/2 e um numero arbitrario de tripletos escalares de SU(2) com hipercargas Y = 0,1. Os
escalares deste modelo podem misturar-se de forma arbitraria.

Para este modelo geral, comegamos por calcular os parametros obliquos S, T, U, V, W e X.
Encontramos uma prescricdo para que os parametros obliquos S e U sejam finitos e mostramos que
essa prescrigao € valida para um modelo com qualquer contetdo escalar.

Ainda neste modelo geral, calculamos as corregdes a um loop ao vértice Zbb.

Aplicamos entdo os nossos resultados a um modelo concreto: o modelo de Georgi-Machacek, cal-
culando para este modelo os parametros obliquos e as correcdes a um loop ao vértice Zbb.

Finalmente, comparamos os resultados das corregdes a um loop ao vértice Zbb para o modelo de
Georgi-Machacek com resultados experimentais e descobrimos que ndao obtemos maior concordancia

do que no Modelo Padrao.

Palavras-Chave

Tripletos Escalares, Nova Fisica, Parametros Obliquos, Vértice Zbb, Modelo de Georgi-Machacek



Abstract

The discovery of the Higgs boson in 2012 was an important achievement in particle physics. This scalar
particle is essential in the Standard Model to explain the mass of the other particles. However, there
is nothing in the theory that restricts the scalar sector of the Standard Model to have only one physical
particle.

In this thesis, we consider a general model with an arbitrary number of scalar SU(2) singlets with
hypercharges Y = 0, 1,2; an arbitrary number of scalar SU(2) doublets with hypercharge Y = 1/2 and
an arbitrary number of scalar SU(2) triplets with hypercharges Y = 0,1. We let the scalars with the
same electric charge mix arbitrarily.

For this general model, we start by computing the oblique parameters S, T, U, V, W and X. We find
a prescription for the oblique parameters S and U to be finite and show that this prescription is valid in a
model with any scalar content.

Still in this general model, we compute the one-loop corrections to the Zbb vertex.

We apply then our results to a concrete model: the Georgi-Machacek model, computing for this
model both the oblique parameters and the one-loop corrections to the Zbb vertex.

We compare the results for the one-loop corrections to the Zbb vertex in the Georgi-Machacek model

with experimental results and find that we do not get a better agreement than in the Standard Model.
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Scalar triplets, New Physics, Oblique parameters, Zbb vertex, Georgi-Machacek Model
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Chapter 1

Introduction

Richard Feynman once said [1] "We do not know what the rules of the game are; all we are allowed to
do is to watch the playing. Of course, if we watch long enough, we may eventually catch on to a few of
the rules. The rules of the game are what we mean by fundamental physics.” In particle physics we are
interested in these “rules of the game” and we search them by studying the basic constituents of nature
and their interactions.

The most successful theory in particle physics nowadays is the Standard Model (SM) [2-4]. The [SMI
isa SU(3) x SU(2) x U(1) gauge theory that describes every fundamental particle observed until now
and the way they interact with each other.

The[SMlis one of the theories in science with the best predictive power. As an example, the anoma-
lous magnetic moment of the electron was theoretically predicted — using the [SM|— to be [5] a. (theory) =
1159.652181643(763) x 10~°, while it was measured to be [6] a. (experiment) = 1159.65218091(26) x 10~6,
which means that the theoretical value agrees with the experimental value to 9 significant figures which
is a remarkable result. Some of the discoveries that supported the [SM were the discovery of neutral cur-
rents in 1973 [7,[8], the discovery of the charm quark in 1974 [9l[10], the discovery of the bottom quark in
1977 [11], the discovery of the W [12l|13] and the Z [14}/15] bosons in 1983 and the discover of the top
quark in 1995 [16l|17] and the discovery of the Higgs boson at the CERN Large Hadron Collider
in 2012 [18L|19] which had first been theoretically predicted in 1964 [20,21].

There are, however, some things that the cannot explain. Some examples of these are dark
matter, the matter-antimatter asymmetry, why are there three generations of fermions or why do the
masses of the elementary particles have such distinct values between them.

Having the [SM] such a big predictive power, the approach of theoretical particle physicists nowadays
is not to discard the [SMland formulate a new theory only because the [SM fails to explain some phenom-
ena. Theoretical particle physicists are trying to improve the [SMlby adding to it new features that could

help explaining what the [SM cannot without compromising its admiring results.



The scalar sector of the[SM| contains only one scalar SU(2) doublet. There is not, however, anything
in the theory that requires its scalar sector sector to have only one doubleﬂ As such, theoretical particle
physicists have been proposing additions to the scalar sector of the The most common addition
to this part of the is to add another scalar SU(2) doublet, such that we get a two-Higgs-doublet
model (2HDM). A review of this kind of models can be found in [22]. We can also add to the Standard
Model more than one doublet, such that we get multi-Higgs-doublet model (MHDM) or also add scalar
multiplets with other dimensions. A formalism has been developed to work with models with an arbitrary
number of scalar SU(2) singlets and doublets [23-25].

In this thesis, we will extend this formalism such that it can include scalar triplets and will then, for a
generic model with an arbitrary number of scalar singlets, doublets and triplets, try to find a prescription
for computing the oblique parameters and the one-loop corrections to the Zbb vertex. We will then use
our results to compute these quantities in the Georgi-Machacek model [27], which is a model which con-
tains one SU(2) doublet with hypercharge Y = 1 and two SU(2) triplets, one of them with hypercharge
Y = 0 and the other one with hypercharge Y = 1.

This thesis is outlined as follows. In chapter |2, we describe custodial symmetry, a feature of the
[SM that will be important in the rest of the thesis. In chapter [3] we enlarge the formalism presented
in [23-25] for it to include also scalar triplets. In chapter |4, we find a prescription for computing the
oblique parameters for a general model with an arbitrary number of scalar singlets, doublets and triplets,
show that the photon propagator is transverse at one-loop level and make some remarks on the divergent
parts of the oblique parameters S and U in models with multiplets of any dimension. In chapter 5| we
compute the one-loop corrections to the Zbb vertex for a general model with an arbitrary number of
scalar singlets, doublets and triplets. In chapter [6] we apply the results of chapters [4| and [5] to compute
the oblique parameters and the one-loop corrections to the Zbb vertex in the Georgi-Machacek (GM)
model. In this chapter, we also make a fit of the results obtained for the one-loop corrections to the Zbb
vertex to the experimental results. Finally, in chapter[7|we make a conclusion about the work done and

the results obtained.

"In fact, the theory must have at least one scalar doublet such that the fermions acquire mass.



Chapter 2

Custodial Symmetry

The of particle physics describes the behaviour of elementary particles and how they interact with
each other through strong, weak and electromagnetic interactions. The part of the that describes
the strong interaction is called Quantum Chromodynamics (QCD). [QCDIpredicts the existence of quarks
and gluons. The quarks are fermions which carry color charge. The gluons are the bosons that mediate
the strong interaction between particles that carry color charge. The gluons themselves also carry color
charge. The remaining parts of the [SM| describe the electroweak interactions, which are a unification of
the electromagnetic and weak interactions. The electroweak interactions will be the main focus of this
thesis. In appendix[A] we present a short review of the [SM] focusing mainly on its electroweak part.
The scalar potential of the[SM can be written as V = p2 Tr (1) + /\Tr(<I>T<I>)2, where

=512 %)

This potential is invariant under a global SU(2);, x SU(2)r symmetry with ® transforming as & —
UL<I>UIT%, where Uy, and Uy are matrices of SU(2)., and SU(2) g, respectively.
The group SU(2) x SU(2) is isomorphic to SO(4). It can be seen that the scalar potential is invariant

under SO(4) as we can write it as

V=12 (Rep™)? + (Imp*)? + (Re p?)? + (Im ¢°)?)
+ A ((Reg™)? + (Im )2 + (Re ) + (Im ¢°)%),
which means that it is a function of the square of the norm of the SO(4) quadruplet

Rep™

Im ™
Re ¥ |- (2.3)
Im ¢°

3



The vacuum expectation value (VEV) of & is given by

(0|®]0) = % [g 2} . (2.4)

Thus, the vacuum is not invariant under the full group SU(2);, x SU(2)g. However, as (0|®|0) is pro-
portional to the identity matrix, it preserves a group SU(2)y corresponding to Uy, = Ug. This symmetry
preserved by the vacuum under the group SU(2)y is called custodial symmetry [30]. This custodial
symmetry is the reason behind the relation my, = mzcy between the masses of the gauge bosons.
However, this SU(2), x SU(2)g is not a symmetry of the whole Lagrangian. This symmetry is
violated by the Yukawa Lagrangian and by the terms involving the weak hypercharge coupling ¢’. For
example, the Yukawa Lagrangian for the quarks breaks this symmetry if we have up- and down-type
quarks with different masses and if we have quark mixing (i.e., if Voxar # 1lsxs). In fact, we can write

EYukawa quarks as

3 3
1 o _ +
Lyukawa quarks = — " Z Z(Md)jk (UrVekm); Drj) Dre (Z()) (2.5a)
J=1 k=1
1 3 3 - o @0*
_ ; Z (Mu)jk ((Z/[L)] (DLVCT‘KM)]) Z/[Rk (_@_) + H.C., (25b)
J=1 k=1

where H.c. stands for Hermitian conjugate. If we had My; = M,, = M and Voiar = 13«3, then we could

write

1 - (0F3 + U
Lyuawa auarks =~ > > My (Uz; Dry) < f(p_ (Po) (DZZ > +He.. (2.6a)

j=1k=1

Thus, by transforming the quark fields under SU(2); x SU(2)r as

Uy, Uy, Un; Un;
U i i U i 27
(DLj> o (DLj> ’ (DRj> R (DRJ) ’ @)

we would get an invariant Yukawa Lagrangian for the quarks. As experience tells us we do not have
My = M, and Vog = 13x3, then the Yukawa Lagrangian for the quarks breaks the SU(2);, x SU(2)g
symmetry.

Therefore, custodial symmetry is only an approximate symmetry of the [SML That is why the relation

my = mzcy is only valid at tree-level.



Chapter 3

Formalism

3.1 Field Content

We consider an SU(2) x U(1) electroweak model in which the scalar sector includes ny SU(2) doublets

with hypercharge Y = 1,

ny, SU(2) triplets with hypercharge Y = 1,

&
Ep = ({;), p=1,..
&

ny, SU(2) real triplets with hypercharge Y = 0,

AT
Ay = )\é , g=1,..
_/\q_

ey Ny

5 Ny

'7nt07

where )\ is a real scalar field, ns, complex SU(2) singlets with hypercharge Y =1,

+ i
Xj? ]—17...,TL51,

ns, real SU(2) singlets with hypercharge Y = 0,

0 _
Xis =1,..,ng,

and n,, complex SU(2) singlets with hypercharge Y = 2,

(3.5)



Xt o r=1,..,n,,. (3.6)

Alternatively, we could have considered doublets with hypercharge ¥ = —% instead of doublets with

hypercharge Y = 1 and triplets with hypercharge Y = —1 instead of triplets with hypercharge Y =1 as

the complex conjugate of a representation of SU(2) is equivalent to that representation.

We have then a total of n; = ng + ny, + ny, + ns, complex scalar fields with electric charge +1,
ng = 2nq + 2ny, + ny, + s, real scalar fields with electric charge 0 and ny = ny, + n,, complex scalar

fields with electric charge +2.

The neutral fields are allowed to have non-zero [VEVk, such that

<wm=%, WM=%7 (3.7a)
(01X2[0) = a2, (0110} = s, (3.7b)

where the[VEVE v, and w, are in general complex and the VEVE =, and v, are real. We can then expand
the neutral fields around their VEVEs as

1 1
oh = ﬁ(vk +¢i), & = ﬁ(wp +&), (3.82)
Ao =g+ AY, X = +xY. (3.8b)

If we have in our model a general complex multiplet of isospin 7' and hypercharge Y, with a[VEV %
in the component with T3 = —Y (which is the component with zero electric charge, such that the U(1)¢

symmetry remains unbroken), then the contributions to the masses of the gauge bosons will be given by

21,12 2|2
my = L5y = @ - ) (39)
W

If we have a real multiplet, as the product of its covariant derivative by the respective conjugate
transpose appears in the Lagrangian multiplied by a factor of 1, then its contributions to the masses
of the gauge bosons will also be multiplied by a factor of 3. Alternatively, if we define the VEV] on the
neutral component of the real multiplet to be v (without the factor of %), as we did in equation then

we get contributions to the masses of the gauge bosons with the same form as in equation

Thus, in our model, the masses of the W+ and Z bosons are given in terms of the VEV of the scalar

fields as



2:97(12 2) 2 _ 2(12 1, 2) 3.10
my = i + w* ), my = g°( 7V +2w + %), (3.10)
where we defined v = pl vl w = /300 Jwy|? and @ = /370 22. We note that the relation

mw = my cos Oy is, in general, no longer verified due to the introduction of triplets in the model.
These scalar fields will mix according to their mass matrices. We call the fields that are eigenstates
of the mass matrices with electric charges +2, +1 and 0, S/ (¢ = 1,...,n2), S (a = 1,...,n1) and S?

(b=1,...,n0), respectively. The neutral fields Sy are reals fields. We can then write

‘PZ_ = i(Ul)kaS;ry X;r = i(UQ)jaS(ja >‘q+ = i(US)an;ra (3.11a)
a=1 a=1 a=1

& =3 (W), A =S sl ) (3.11b)
a=1 b=1 b=1

N = i(Rl)qu}? : Xt = i(Rz)wS,?, g = i(Tl)pcSﬁ, (3.11c)
b=1 b=1 c=1

= i(Tg)mSjﬂ (3.11d)

c=1

where the matrices Uy, Us, Us, Uy, Vi, Va, R1, Re, T1 and T have dimensions ng X ny, ng, X ni, ny, X nq,
Ny, X N1, Ng X Mo, Ny X No, Ngy X Mo, N X Ng, Ny, X Ng @Nd ng, X ng, respectively. The matrices R, and

R are real, while the others are complex. The matrix

Uy
- U2
U= (3.12)

Uy

is n1 x ny unitary and it diagonalizes the mass matrices of the scalars with charge +1. The matrix

ReV;
Im V1
Re 'V,
Im V5
Ry
Ry

V= (3.13)

is real and is ng x ng orthogonal. It diagonalizes the mass matrix of the real components of the neutral

scalar fields. The matrix

= (%) (3.14)

is ns X ng unitary and it diagonalizes the mass matrices of the scalars with charge +2.



Due to the unitarity of the matrix U we can write the relations

4
Z UZTUL = 1n1 XMy UIUI = 1nd><nd7 UQUQT = 1n31 XMy
=1

UsUS = Lo, xnsg UsUJ = L, xny, UU = 0Vi #j.

Similarly, we can write due to the unitarity of the matrix 7

2
Zz;TTz = 1n2 X1ng ) T1T1T - 1nt1 XMty s

=1

T3 = 1n,, xn., T\T§ = 0.
Due to the orthogonality of the matrix V we can write
2
(ReV;" ReV; + Im V" Im Vi) + >~ R} Ri = Ly x>

i=1 i=1

ReViRe Vil =ImViIm V[T = 1,5,

2

ReVaRe V) =ImVaIm V) =1, wp,,
RiR{ =1, xn,,»

RoR3 =1, xn,s

RiR} =0,

Re Vi ImV}" =0V, 3,

ReViR] =0V4,j,

ImV;R] =0Y4,j,

ReViRe V) =0,

ImV; Im V' = 0.

(3.15a)

(3.15b)

(3.16a)

(3.16b)

(3.17a)

(3.17b)
(3.17¢)
(3.17d)
(3.17¢)
(3.17f)
(3.17g)
(3.17h)
(3.17i)
(3.17))
(3.17K)

In this theory, where the gauge group SU(2) x U(1) is broken to U (1), we will have three Goldstone

bosons, G* and G°. We will identify them as S and S?, respectively:

st=a*,  SY=q@"

(3.18)

This means that only the S with a > 2 and the S? with b > 2 will be physical particles, as well as

the S+ or S~ for all values of c. We will denote the mass of the scalars S by m,, the mass of the

8



scalars Sy by p, and the mass of the scalars S+ by M..

3.2 Covariant Derivatives

We can write the covariant derivative for a gauge theory with SU(2) x U(1) as gauge group as[]

D = Ol 4 jeQAH — @'ci(:r3 —Qs%) 2" — ig(WHT, + WHT_). (3.19)
w
Applying it to the doublets we get
. . 52 762 .
Dy = (0L FieAuei + ig SR 2 zjiw,fqo%) | (3.20)
Oupy +ig=Zup) — Z%W;gok

Applying it to the triplets with hypercharge Y = 0, we get

OuN; +ieA NS —igew Z N —igW A
DA, = DAY +ig(WiEN, — W AF) : (3.21)
—0uA; +ieA N, —igew ZuA; — igWH_)\g
Applying it to the triplets with hypercharge Y = 1, we get
DuEt + 2ieA 6 +igT S Z et _ignter

Du=p = | 0,8 +ieAu&; N ig.z—VVXZ“{% —ig(Wieg+Woght) |- (3.22)
Outy + gy Zuty —1gW, &)

Applying it to the singlets with charge +1, we get
2
. .S
D“Xj' = “Xj' + zeAﬂxj + zgﬁZuxj'. (3.23)

Applying it to the singlets with charge +2, we get

2
) s
D/LX:TJF = aquJr + 226/1/,,)(j+ + ngﬁZ/ijJr. (3.24)

3.3 Goldstone Bosons

The gauge group of this model is SU(2) x U(1), which has 4 generators. These 4 generators can be
written as @, T3, T and T',. The [VEVk of the neutral fields break this symmetry to a U(1) symmetry
generated by @. This means that when we apply the operator @ to the vacuum it gives 0, such that an

element of the group, which has the form €%, leaves the vacuum invariant. In the case of the other

"Here and in the rest of the thesis, we will use the sign conventions of [28] which correspond to setting nz = 1, = —1 and
ne = 1in [29).



three generators, which are the generators of the broken symmetry, their action on the vacuum will give
the Goldstone bosons. In fact, if T is a generator of a group, then T is an element of that group. If 6 is
an infinitesimal parameter we can write e?” ~ 1 + 9T Therefore, acting with this element of the group
on the vacuum will give us the vacuum plus an additional term that will correspond to the Goldstone
boson.

Applying i6T3 to the vacuum gives

0 0 A

1013 (f/%) = (—i92%> = (Vl)kl = ’LT\/?’U]C, (3.253)
IREALLE

013 0 = 0 = (Vg)pl = ’L.pr, (325b)
g —~i0% V2
0

013 (ZCq) =0= (Rl)ql =0, (325C)
0

i0T5u = 0 = (Ra)i = 0, (3.25d)

where A is a normalization constant. Using equation , we get that A = \/%, where we chose

the phase of A to be real. Thus, we can write

. Vk . Wy
g1 = i——, Va)p1 = 2i———. 3.26
( 1)k1 \/m ( Q)Pl \/m ( )
If now we apply 07, to the vacuum, we get
0 U B
T, ( ) _ (w : ) S U =i D, (3.272)
5 0 2
0 10z,
0T, |zq | = 0 | = (Us)y = iBxy, (3.27b)
0 0
0 0 3
0T wOp =[i0% ) = U)p = iﬁwp, (3.27¢)
72 0

where B is a normalization constant. As the fields x;” have no[VEV] then we have (U;);, = 0. Using the

first equation from , we get B = —ﬁ, where we chose the phase of the normalization
constant to be — 7. Thus, we can write
Ui = i (3.28a)

10



Lq

(US)ql = 2\/m7 (3-28b)
Uiy = V2 U . (3.28¢)

V2 4 2w? + 42

3.4 Lagrangian

Taking into consideration everything that was presented earlier in this chapter, the gauge-kinetic La-

grangian becomes

nd Tty 1 Ttq sy
Z(Dﬂ(bk)T(DM@C) + Z(DMEP)T(DHEP) + 2 Z(Dqu)T(DHAq) + Z(DHXj)T(DMX;F)
k=1 p=1 g=1 j=1

1 Mg Mgy
+ 5 2@ X @) + D (D" (Dux )
=1

r=1
=> (0"S)(0,S5) + ! Z(@Hsb)(a S9) +Z (0"S77)(0,84) (3.29a)
a=1 b 1 c=1
2 n— + mzZ 1%
+mi W+ 22,2 (3.29b)
+ imw (W, 9 G — WorG™) (3.29¢)
+ mzZ,0"GO (3.29d)
— emw A, (WHGF + WHG) (3.29¢)
_ W S 2 T _ (it b= o+
e 2o 2 ((ehybra 4 U]U10 = TS,
+ (53 bar + (UL Us)ar — (U U3)ar) W5 (3.29f)
tied, S (SFo"ST — SToSH) (3.299)
a=1
+z— ; Z (swéaa = LUt e — (UJUs)ara ) (550" — S,0"SF) (3.29h)
a,a’=1
Z, Z ( m(V{ V3 )y + Im(V Vg)bb,)(sga#sg, — 80.0189) (3.29i)
b,b'=1
. ni no 1 B
+ ’g; ; <(2<V1*U1>ba + 75 (VaUsha + (BT Us)oa | W,, (S50 — 5 0"S7)
( (U Vi) ap + I(Um)aw(UgRl)ab)WﬂSbaﬂs——S ausb)> (3.29))
+ 2gmw W Z S0 ( Re(UVi)1s + 7 Re(U[Va)1s + Re(U] R1)15> (3.29K)

11



mzZZ

—9 Z SY(Im (VI Vi) 4 2Im(Vy Va) 1) (3.291)
b=2
+2ied, Y (SHTorS; ™ — S, morST) (3.29m)
c=1
+ z—Z > @80 — (T1T1)ere)(STHOMS, ™ — Sy 0mSHT) (3.29n)
c,c/’=1
+ig Y > (THUL)ca W, (S5 70" ST — SFo"S7™) = (UST)acW,, (SET0"S, — S;0S)) (3.290)
a=1c=1
+gmw > (U)W W SH 4 (T U)W Wt S 7) (3.29p)
c=1
—egA, >3 (W’“Sa ( (U Vi)as + f(U41/2)ab+ (U3 R1)as)
a=1b=1
1
+WHmSE (i(vlTUl)ba T(VQ Us)ba + (RlTU:a)ba)) (3.299)
ni no 2 1+ 2
£ D DO B (W*s (3 IVia + =W Va)as = ey (U] R
a=1b=1
o+ (St L+ sfy ot T
+ W SE (U + 75 VU — & (] Us)a) (3.29r)
+ W W SbSb/( ViV + 5 (V2 Va)py + (R Ry)wp ) (3.29s)
b,b'=1
g - 0go (1 v 1 i
+ a2l bbz/; S08 (5 (Vi Vo + (Vf V2o (3.291)
ny 1
+ Wi S S (ST ara + (UUs)ara + 2001 U ) ) (3.29u)
a,a’=1
+e?A, AR S ST (3.29v)
a=1
€g _
oA, Z (2sw<5aa/ — (UU)ara — 2(US Ug)a/a)Sa,Sj (3.29w)
a,a’=1
2 1 1 _
+ CgTWZ,LZ“ > (stvbow + (7 = 5 ) LU wa + (el = 55 (UIUs)ra ) 55 (3.29%)
a,a’=1
+AePARA, Y SIS (3.29y)
c=1
+49 7,403 (263 60e — (TiT)ee)SEHS,™ (3.292)
‘w c,c’'=1
Z A Z (458 0cre + (1 — 453 ) (T T) o) SFES, ™ (3.29aa)
W c,c’'=1
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n2

+ W, WS N (T T 0SS, (3.29ab)

c,c/=1
962 ny na
- <3egA“ + gQ(SWTZM) SN (T U)W S 5F + (UIT1) oW, SHFS;) (3.29ac)
a=1c=1
2 no no
f SN (VT )W, W SEES) + (T{ V)W, WHT S~ SP) (3.29ad)
b=1 c=1
7 (UL Us)ara W, WHSESE 4+ (USUS) ara WHEWHS1S2). (3.29ae)
a,a’=1

Note that, for term [3.29dto be real, the normalization constant A from equation [3.:25] had to be real.
Thus, we could only have chosen it to be positive or negative. We chose it to be positive and recovered
the usual term mixing the Z boson and the neutral Goldstone boson. If we had chosen it to be negative
it would have no consequences on the results of physically meaningful quantities as we can change the
phase of the neutral Goldstone boson field arbitrarily. The normalization constant B from equation [3.27]
could have also been the symmetric of the one we chose but we also chose it like this so that the term
[3:29¢| would have its usual form. As before, this choice would not have add any consequence to the
results of physically meaningful quantities.

The Feynman rules resulting from the Lagrangian in equation[3.29 can be found in Appendix [B] The
vertex in[B.2a]corresponds to the vertices in and correspond to the vertex in
corresponds to the vertex in corresponds to the vertex in corresponds to
the vertices in [B-2g] and [B:2h| correspond to [3:29]} the vertex in [B.2] corresponds to [3.29K, the vertex
in [B:2] corresponds to [3:29]] the vertex in [B.2K corresponds to [3.29m] the vertices in [B.2m] and [B:2n|
correspond to [3.290] the vertices in and [B:2p| correspond to [3.29p] the vertices in [B.3a] and [B-3b]
correspond to [3.29q] the vertices in[B.3c|and [B.3d| correspond to [3.291] the vertex in [B.3€| corresponds
to [3:29s] the vertex in [B.3f| corresponds to the vertex in [B.3g] corresponds to the vertex in
[B:3h| corresponds to the vertex in [B:3i corresponds to the vertex in [B:3j corresponds to
the vertex in [B:3K corresponds to [3:29y] the vertex in [B:3]| corresponds to the vertex in
B-3m| corresponds to[3.29aa] the vertex in[B.3n| corresponds to [3.29ab)] the vertices in[B.30} [B-3p, [B-3q]
and [B:3r correspond to [3.29a¢ - the vertices in [B.3s| and [B.3{ correspond to [3.29ad|, the vertices in[B.3y]
and [B:3v|correspond to

13



Chapter 4

Oblique Parameters

4.1 Definition of the Oblique Parameters

When the following criteria are satisfied [31]
+ The electroweak gauge group is SU(2) x U(1);

« The New Physics (NP) particles have suppressed couplings to the light fermions with which exper-

iments are performed and couple mainly to the [SM|gauge boson;

« The relevant measurements are those made at energy scales ¢ ~ 0, ¢> = m% and ¢* = mi;;

then, the NPl effects can be parametrized by six quantities. These quantities are the oblique parameters.

Three of them were defined by Peskin and Takeuchi [32,/33], are called S, T"and U and are given by [33]

1 1
ol =—5 (TMww(O) - (SAZZ(O)), (4.12)
mz Ny
0 o _00Azz(c*)|  05Aaala®) Ay — siv 094az(¢’) (4.1b)
2 2 2 2 2 ’ '
4523, dq o dq oo CWIW dq 42=0
a  06Aww(q®) o 004A72(4%)
7 U= 2 TTW T 52
dsy;, Jdq 42=0 dq =0
90AAA(G 00Aaz(q?
— s%%w) + ZCWSW;(JZQ(Q) ) (4.1c)
q ¢2=0 q%>=0

where « is the fine-structure constant and 6 Ay (¢%) = Ay (¢?)|np—Avv (¢%)|sar, Wwhere the Ayv (¢2)
are the coefficients of g#~ in the vacuum polarization tensors 11}/, (¢) = ¢"* Avv+(¢?) + ¢"¢” Bvv(¢?),
where VV' may be either AA, AZ, ZZ or WW and ¢ is the four-momentum of the gauge boson.

14



Altarelli and Barbieri defined parameters ¢y, €2 and e3 [34,35] which are related to S, T"and U by

« «

U, €3 S. (4.2)

=aT - -
a=ab € 453, 4s%,
The other three parameters were defined by Maksymyk, Burgess and London [36], are called V, W

and X and are given by [36]

2 2y
oy ~004z2@)| _ 0Azz(m) —34z5(0) (4.32)
0q¢? N my
q==my
2 2y —
aw ~00Aww(@)| - dAww (miy) — dAww (0) (4.30)
dq o s myy
qe=my,
2 2y
o . :a(sAAi(q )| 0Aaz(m3) - dAaz(0) (4.3c)
Swew Jq 42=0 myz

4.2 Vacuum Polarization Tensors

The Feynman diagrams that contribute to the vacuum polarization tensors can be found in appendix [C]
To compute the vacuum polarization tensors, we use dimensional regularization and use the integrals

I, , defined as

B ddk (k2)r
Ir,m(A) = / (27.‘.)(1 (kQ —_ A + ie)m' (4'4)

We can then write the contributions of each of the diagrams in[C.1]to Az~ as

1 _
Agzi =izm (Vi) ob + 2(Vyf Va ) ) MA= 00 (A = 143), (4.5a)
2 2
‘w
2 ™ 1
Agzoe = 22’97 str+ (5 = % ) (UTU ) aa + (B — s3) (UdUs) g0 ) MA =01 (A = m2), (4.5b)
c 4
w a=1
2 n2
Agys = 21':; (43% +(1—4s3)(T] Tl)CC)M4‘d101(A = M?), (4.50)
w c=1

. 1 2 (4
Azz4 = i (§Im(V1TV1)bb' +Im(V2TV2)bb/) M* d/ d$gf12(A =D(¢* 1y, 1)),
0

(4.5d)
2 Mo 1 1
Agzs = —i% 3 (Im(Vi Vi) + 2 Im(Vy Vo)1) 2 M* | da( — ~1a(A = D(¢, 13, 13)
wis 0 d
1
—mIn2(A = D(¢*, uj, m%y)) + E—’lz(A = D((J?,M%,m%))), (4.5e)
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2 n1

. 1
AZZG = _ZgT Z (S%V(saa’ - i(UIUl)aa/ - (UBTUS)aa’> X

‘w a,a’=1
2 Lo t aa [t 4 2 9 o
x (swéa/a — 5 U0 wa = (U] Ug)a/a)M do—T1a(A = D(g?,m?,m)). (4.5f)
0
2 M
Azz7 = —ngT Z(S%/V(Sal + (UUL) a1 — (U3TU3)¢11)(8%/V5111 + (UU) 14 — (U:IUS)I(L)X
W a=1

1
1
<M [ da(( = LhalA = DG m ) = iy Toa(A = Dig? m2 miy)
0

+ S1a(8 = D m2 k). (4.50)

Azzs =Azz7, (4.5h)
Azzo =~ 3 (5 — (AT 25 b — AT [ 1als = DI 32 002)),
o (4.5i)

where D(¢?, A, B) = ¢*2%—q¢*v+ A(1—x)+ Bz and M is an unphysical parameter with mass dimensions.
The expression for Az, was multiplied by a symmetry factor of % because in that diagram we have a

real internal particle.

We can write the contributions of each of the diagrams in[C.2to Ay w as

no

Aww1 = Z% Z ( (ViVi)es + (Vi Va)us + 2(RT Ry ) >M4 Uor (A = p?), (4.63)
b=1
Aww 2 = ig® (i(UfUl)aa + (U Us)aa + 2(UIU4)aa)M4*d101(A = m2), (4.6b)
a=1
Awws = ig? S (TIT e~ (& = 012), (4.60)
c=1
ni no
Awwa=—ig®» Y ( (UIVA)a + \[(UT‘@)ab + (U3R1)ab)
a=1b=1
X (E(VTUl)b + i(v*m)b + (RTU3), >M4’d><
9 1 a \/§ 2 a 1 a
1
4
></ da:fIm(A = D(¢% u3, m2)), (4.6)
2
Aww 5 = —4dig? Z ( Re( U1V1)1b + — \/i Re(UI‘/Q)lb + Re(UgRl)lb) X
1
x M4_d/0 dl‘( - 8112(A = D(¢*, i, mi)) — miyloa(A = D(q%, pi, miy))
1
+ 5 ha(A = D(¢%, utomiy), (4.6€)
Awwe = —ig” Y > (T1U2)ca(UfT)acM* ™1 / da df12(A D(q*,m2, M2)), (4.6f)
a=1c=1 0
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PmE, o _
Awwr = =% S (shy b + (UUn)ar = (UUs)an) (3 01a + (UjUs)ra = (U3 Us)1a) M~ x
W2 q=1

1
1
< [ da( = Gha(d = Dt md ) = mbTon (& = Dl k)

1
+ 2T(A = D(g? m2 m3))). (4.60)

no 1
. - 1
Awws = —4ig> Y [(UIT1) 1> M* d/ dx( — ~La(A = D(*, MZ,m})
c=1 0

1
— miy Ioa(& = D(q%, M2, miy) + < Li2(A = D(g?, M2, my)) ). (4.6h)

The expression for Ay 1 was also multiplied by a symmetry factor of  because in that diagram we
have a real internal particle.

We can write the contributions of each of the diagrams in[C.3|to A4 4 as

ny

Agar =2i’ MY " I (A = m3), (4.7a)
a=1
Apaz =8ieM*=*> "I (A = M), (4.7b)
c=1
ni 1 4
AAA3 - _7;€2M4_d2/ deIIQ(A = D(QQamiami))v (470)
a=170
ng 1 4
Apng = — 4ie> MA=1 Z/ dnglz(A = D(¢* M?, M?)). (4.7d)
c=1 0

We can write the contributions of each of the diagrams in to Ayz as

ni

. € _
Aaza =z$ > sty = (U[U)aa = 2(U§Us)aa) MY Tor (A = m7), (4.8a)
a=1
g > _
Aaze :42% 3 @83 — (TITh)e) M* T (A = M2), (4.8b)
c=1
eg = 1 a4
Anzs==i 03 (st = 5 U1V aa — (U§Us)aa) M / dz—g" ha(A = D¢, m, my)),  (4.8¢)
a=1 0
na 1
. € — 4 v
Aazs=— QZi > (st - (TFT1) o) M* d/ dl‘ggl La(A = D(¢%, M7, M2)). (4.8d)
c=1 0

4.3 Parameter T

To compute the oblique parameter T' we need the part proportional ot g** of the vacuum polarization

tensors 115, and 11}/, at ¢> = 0. For that, we use the results of the integrals Iy, Io2 and I at ¢> = 0,
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expanded up to order €, where € = 4 — d given by [25]

M (A) = A(div — log A), (4.9a)

(4m)?

! 1 A+ B
4—d _ — v — _
M /0 dx Ipa(A = D(0, B, A)) = A (A(dlv log A)

+ F(A, B)), (4.9b)

1
éMH/ dx I;s(A = D(0, B, A))

: 0 B, A)) = @ (A(div ~log A) + B(div — log B) + F(A, B)), (4.90)

where div = 2 —~ 4 1+log(4mM?), being ~ the Euler-Mascheroni constant and the function F is defined

as

THy 2y T
F(ﬂw/):{o2 vy Og(y) TEY (4.10)
r=y.

This function is symmetric under exchange of variables, making the integrals Iy, and I, also symmetric

under the exchange A < B.
Using the definition from[4.1a] equation[4.9] the relations from equations —[3.17] we get for T[]

1  no

ol = <M>2<ZZ< U Vi)ab + \f(UT‘/Q)ab+(U R1)ab>

a=2b

=2
1
% (57U + 7(% U)o + (R U)o ) F(m?, 1) (4.11a)

Re(U]Vi)1s +

DN | =

0 1 1 T 2
+ ( \/QRG(U4V2)15 +R€(U3R1)1b) X

=2
x (20miy + 1i3) = 3F (miy, 1) (4.11b)
+ZZ|(T1JTU4)ca|2F(Mc27mi) (4.11¢)

a=2c=1
2 n1

3 (U010 = (UfT)1a) (U1 U)ar = (UFUs)ar )

deyymy, =

@‘

x (= 3F(mg,m2) +2(m¥ +m?)) (4.11d)
+ SN el (= 20miy + M2) = 3F(miy, M2)) (4.11e)
1 2 2 3 2 2
no—1 no
-y (fIm (Vi Vi) + Im(V; Vg)bb,) F(i2, u2) (4.11g)
b=2 b/=b+1

"To compute the vacuum polarization tensors in the[SM| we used, for some vertices, Feynman rules that are different from the
usual [SMlIFeynman rules. The Feynman rules for those vertices can be found in appendix For the vertices that are not present
in appendix D} we used the usual[SM| Feynman rules that can be found in [28] or [29].
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1 2
= 2> (Vi Vi) + 21V Va)us ) (20m + ) = BF(m, i) (411h)

b=2
ni—1 ni
-2 Z Z ( UTUl aa’ (UgUg)aa/)X
a=2 a'=a+1
Lot T 2 2 .
% (7(U1 Ul)a,a + (U3U3>a/a)F(ma’ ma’) (411')
-5 Z (USUn)1a = (U3U3)10) (UfUs)a1 — (U3 Us)a1) X
X (2(mW+ma) _3F(m12/V7m3)) (411J)
no—1 No
=23 > () e PF(MZ, M) (4.11K)
c=1 c¢’=c+1
1 3
+5(mi+m2z) - ZF(mi,m?Z) (4.111)
2 2
. 1
— m?2(div — logm?) (7251%‘: -1
3 7 m2c2
(U3U3)11 + - (U4U4) 11+ 283y (1 n%{/w) ) (4.11m)

3 .
- zm%v(d'v — log miy) ((UgUs)n —3(U{Us)11
+2(UfUs)1 — UU)1)?) (4.11n)

2
+ M?(div — log M?) W2 (UIU) 1 (4.110)
myciy

3
—Zmz(dlv—logmz)(l o iy ( 2ULUs)11

: )Z))> (4.11p)

Thus, in a model with triplets, the T' parameter has a divergent result. This was expected because

+ 6(UZIU4)11 + (

parameter 7' is divergent for models that violate custodial symmetry at one-loop level [26/37], as is the

case of the models with triplets whose neutral components have a non-zero VEV]

4.4 Parameter S

To compute the oblique parameter S (as well as the oblique parameter U) we need the derivatives with
respect to ¢* of the part proportional to g** of the vacuum polarization tensors 1147, and I15;/;;, at ¢> = 0.
For that we use the expansion of the derivatives with respect to ¢ of the integrals Ip; and I, at ¢> = 0,
expanded up to order €, where € = 4 — d given by

M4—d/ dmfi (112(A =D(Q,1, J))) (1 —div + K(I,.J)), (4.12)

doQ Q=0 4872
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where we defined

5
KL J) = =5+ I—J2 (I-J)p3

207 _
20) GBI J)lg(§>+logf. (4.13)

This function is symmetric under the exchange I + J. When J = I, we have K(I,I) = log I and thus,
equation [4.72] becomes [31]

[t 40 i .
A d/o dxg@(lm(A:D(Q,I,I)))Q:O: 5 (1 —div+log 1), (4.14)

We will also need

K(I,J), (4.15)

M4d/01 dx% (foa(a = D@, T, J)))Q =

where

12~ 2~ 217 log (4)
(I—J)>?

K(I,J)= (4.16)

Using the definition from equations —[4.15] the relations from equations -B8.17] we
get for S

a —
45%‘,0%,[, B
g2 nofl no 1 2
=T92.2.2 | > (glm(VfVl)bb/ +Im(V2TV2)bb’) K (up, i) (4.17a)
w b=2 b'=b+1
no 2 _
+ 3 (Vi) + 20V Vo) ) (K (3, m3) — 6mE K (i3, m3) (4.17b)
b=2
ni 1
+ 4 Z (5%/[/60.0.’ - §(UIU1)MZ/ - (USTU?))GU/) X
a,a’=2
2 Lot T 2 2
% (stybura = 5 (U0 = (U Us)ara ) K (2, m2) (4.17¢)

+2 3 (0o~ W) (002 — WIU)10) %

x (K(m2,m¥,) — 6m¥, K(m2, m¥)) (4.17d)
+4 i (2880 — (T T1) eer) (283 0ere — (THT1) o) K (M2, M2) (4.17¢)
=1
— K(mj, m%) + 6m%K(mj, m%) (4.17f)
— 4s3,c3, i logm? — 1653, ¢y i log M? (4.179)
a=2 =1
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n1

1
4Gy )Y (S%V — 5 (U UD)aa (UgUg)aa) log m? (4.17h)

a=2
+8(cly — siy) Y _ (2t — (T T1)cc) log M (4.17i)
c=1
2 2 \ 2
- <1 - mzjvv) (1—div) ). (4.17)
My

where we have used e = g sy .
Thus, we get a gauge invariant result for the oblique parameters S. However, this result is divergent
for models with my, # mzcew (which is the case of a general model with scalar SU(2) triplets). This

divergence can be cancelled if we multiply the Feynman rules for the [SMlvertices ZG°H and ZZ H F|by

2
\/1 - (C%Vnizm% - 1) (which is equal to 1 in models where my, = myzcw, as is the case of the[SM). This
w
is true for models with any scalar multiplets, as we show in section After the multiplication of these

Feynman rules by this factor we get

a —
482,27
g XS (L t ’
2 2
102722, 4 Z Z (5 Im(V}'V1)ppr + Im (V) V2)bb’) K (g, 1) (4.18a)
w b=2 b'=b+1
no 2 _
+ 3 (Vi) + 2m(Vi Vo), ) (K (i, m3) — 6m3 K (i, m3)) (4.18b)
b=2

ni 1
+4 Z (S%/V(Saa’ - i(UlTUl)aa’ - (U§U3)aa’) X

a,a’=2

1
% (stbara = 5 (U0 = (UFUs)ara ) K (2, m2) (4.18¢)

+ Qi ((UIU4)G1 - (U?TUs)ru) ((UIU4)1a - (U§U3)1a) x
a=2

x (K (m2, miy) — 6miy K (m}, miy)) (4.18d)
+4 Z (25%/1/5%/ - (Tle)CC’)(QS%/Vdc/c - (TlTTl)c’c)K(va ME/) (4.18¢)
c,c/=1
chrm? 2 chrm? 2 -
- 1—<W22—1) K(m2,m%)+6 1—( s —1) mZK(m7,m%) (4.18f)
My My
— 4st,c3, Z logm?2 — 1653, ¢y Z log M2 (4.189)
a=2 c=1
ni 1
+4(ck, — s) GZZQ (s%,v - §(U1TU1)aa - (U;Ug)aa) logm? (4.18h)

2These two vertices are related by gauge invariance. If we multiply their Feynman rules by different factors, the result for S
becomes gauge dependent.
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no

+8(cy — st > (283 — (Tancc)long). (4.18i)

4.5 Parameter U

Using the definition from equations —[4.15] the relations from equations —-[B8.17] we get
for U

a ni no T
s 192772 <4a 2;( Uiwn) ab+f(U4V2)ab+(U3R1) )

1
% (5 U)o + f<v2 U)o + (BT Us)oa ) K (3, m2) (4.19a)
no 9
+4b2=;( NUAD 1b+\/ERe(UIVg)lb—i—Re(UgRl)lb) x
x (K (g, myy) — 6miy Ky, miy)) (4.19D)
+43" S (T UL) e (U T1)ac K (2, M2) (4.19¢)
a=2c=1
+ mW2 Z ( UiUs)ar (U§U3)a1) ((UIUO(A - (UgTUS)la)X
chym Z
x (K (mg mz)—6mzK(mi,mQZ)) (4.19d)
+4Z|<UJT1)MI2( (MZ,miy) — 6miy K (M2, miy)) (4.19)
c=1
- (K(mi,m%v) - Gm%/f((m}i,m%v)) (4.19f)
no—1 no 9
—4Y > (G Vi + TV V) K ik (4.199)

b=2 b'=b+1

no 2
=3 (Vi) + 2V Vo)) x

b=2
X (K(uimzz) - Gm%ff(u%,m:’z)) (4.19h)
-4 Z (SW(Saa’ - U1 Ul)aa’ - (UgUS)aa’) X
a,a’=2
1 .
x (sivaa,a — 5 (U U0 = (UgUg)a/a>K(m§7m§,) (4.19i)

-2 i ((UIU4)a1 - (U§U3)a1) ((UIU4)Q1 - (U§U3)1a) x

x (K(m2,miy) — 6miy K (m3, miy,)) (4.19))

—4 Z (252 0cer — (THTY) e ) (2530 — (T Ty ) eer ) KK (M2, M2) (4.19K)
c,c/’=1

+ (K(mg, m%) — 6m22f((mg,m2z>) (4.19])
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n1 na
— 4syy, Z logm? — 1653 Z log M? (4.19m)

a=2 c=1
+ 8siy Z ( -5 UTUl) (U§U3)aa) log m;, (4.19n)
ne
+16s7y > (28 — (T{T1)ce) log M2 (4.190)
c=1

2
+ ((1 - mﬂ%?) +3 (1 n%g?)) (1 —div)). (4.19p)

Similarly to what happened to the oblique parameter S, we get a result for the oblique parameter
U which is gauge invariant but divergent for models with my, # mzcw (which is the case of a general

model with scalar SU(2) triplets). This divergence can also be cancelled if, besides multiplying the

Feynman rules for the vertices ZG°H and ZZH by \/1 - (C%;g% - 1)2 (as was done to obtain a
finite result for S), we also multiply the [SM) vertices W*GTH and W*WTH (which are also related by
gauge invariance) by 4 /4 — 3% (which is also equal to 1 in models where my, = mzcw ). This is also
true for models with any scalar multiplets and we will also show it in section After the multiplication

of these [SM| Feynman rules by this factor we get

a ni no
— 4 UV ap + —=(UVa)ap + (UIR
453‘/ 1927r2<a:2b ( Vab \f(42)b ( 1))
1
< (GO0 e+ (VUi + (R ) K ) (4.202)
no 1 2
+4 ( Re(U1 V1 )15 + —= Re(U]Va )1y + Re(U Ry )y ) x
b 2 V2
x (K (ug, miy) — 6miy K (ug, miy)) (4.20b)
+4Y N (TUL)ea(ULT1)ac K (m, M) (4.20c)
a=2c=1
2 n1
m
ey ((UIU4)G1 - (U§U3)a1) ((UIU4)a1 - (U§U3)1a>><
CWmZ a=2
x (K(m2,m%) — 6m% K (m2,m%)) (4.20d)
+ 4D ((UIT) 1P (K (M2, m3y) — 6miy K (M2, m3,)) (4.20¢)
c=1
mQZC%V 2 2 2 2 2
— (a-322 (K(mh,mw)—6mWK(mh,mW)) (4.20f)
My
no—1 ng 2
A Y (I Ve + TV Vo ) K2 ) (4.20g)
b=2 b/=b+1

no 2 5
= (Vi) + 2V Vo) ) (K (i m) — 6m3 K (43, m3))  (4.200)
b=2
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—4 Z <5%/V5aa/ - %(UfUl)aa/ - (U§U3)aa/> X

a,a’=2

1
= (3%/[/511’& - i(UIUl)aa’ - (U;{US)a’a>K(mivmi’)

=2 ((UfUDar = (UVs)ar ) (U1 V)1 = (U Us)1a) x
< (B (2, miy) = 6miy K (m2, miy )

n2
—4 Z (25%4/5@’ - (Tl]LTl)CC’)@s%/V(sCC’ - (TlTTl)CC’)K(MEa Mc2’)

c,c’=1
clym? ? -
# (1= (B 1)) (mm) — G )
w

ni n2
— 4siy Z logm?2 — 165y Z log M2

a=2 c=1

ny 1
+ 85ty Y (b = 5(UU1)aa = (UIUs)aa ) og m?

a=2

72
+16s%y > (287 — (T{T1)cc) log Mf) :

c=1

4.6 Parameter V

To compute parameters V and W we will need [31]

O ([ aad [ _
2 (=t [ s = p@.1))
MU [ deDia(A = D(Q.1,J)) = M4 [ de La(A = D(0,1,.]))
| Q
7
:WH(I,J,Q),
where
o JItT (=)
H(I,J,Q)=2-9 0 +6 02
3 [ P+ P (=00, T
I—J)%\ 3f(t,
+<I+J—( Q)> ézT)'

(4.20i)

(4.20j)

(4.20K)

(4.201)

(4.20m)

(4.20n)

(4.200)

(4.21)

(4.22a)

In the definition of H (I, J,Q), we used a function f(¢,7),beingt = I+J—-Q,r = Q*—2Q(I+J)+(I—J)?

and
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/T log Z\/fi , r >0,

ft,r) =14 o, r=0, (4.23)
2y/—rarctan ‘/7, r <0.

We will also need [31]

0
aQ (M4 d/ dl‘]og A= D(Q I J)))
MO [ de (A = D(Q,1,J)) — M [ da Ip(A = D(0,1, 7)) (4.24)
Q
R
= g AU 1Q)
where
A gQ =4+ (LEL 1=y, £+_Q2+3Q(I+J)_2(I_J)2f(t r) (4.25)
SRIEETTST T ) 8T rQ o '

Using the definition from [4.3a] equations [4.21]and [4.24] the relations from equations [3.15|—[3.17] we
get for vV

no—1 no 2
av = 3847r2 ( > ¥ (fIm‘/Vl bb,+1m(v2vg)bb,) H(2, 2, m%) (4.26a)
b=2 b'=b+1
+ Z(Im(v1*v1>1b +2Tm(Vy Va)1)? (12H (13, m%, m%) + H (i, m%, m%)) (4.26b)
b=2
1Y (e = H(U]Y ) — (U0 )
a,a’=2
2 1o it 2 2 9
X | 83 0aa 2(U1U1)a’a (U3U3)ara ) H(mz, ms,,m%) (4.26¢)
+2> (USUs)a1 = (U3U3)a1) (UfUs)1a — (U3U3)1a) %
a=2
x (12ﬁ(m§,mgv,m2z) +H(m3,mav,m22)) (4.26d)
+4 3 (28% e — (TTT1)eer) (283 0ere — (T4 T )ere) H(MZ, M2, m%) (4.26¢)
c,c’'=1
—12H(m3,m%,m%) — H(m?,m%, m22)> : (4.26f)

This result is both gauge indenpendent and finite.
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4.7 Parameter W

Using the definition from equations and[4.24], the relations from equations —[3.37] we get

for W

ni no

oW :ﬁ (422 (1(U1V1)ab + \[(U4V2)ab + (UgRl)ab)

a=2 b=2

1 1
% (SO + 5 (VU + (B Ushoa ) L oy )

2
+4Z( Re(U Vi) + TRe(U4V2)1b+Re(U Rl)lb) X

X (12H(;¢b7 miy,my) + H(ug, myy, m%v))

ny N2

+42Z(TEU@ca(UiTl)acH(mZaMfam%/v)
a=2c=1
2
myy
- 2 Z (UIU)a1 — (U§Us)a1)(UUs)1a — (U§Us3)1a) %
zCw a=2

x (1201 (m2, m%, my) + H(m?,m¥, méy))
na

A (U (12 (M2, miy, mby) + H(ME, mby,miy) )

—12H (m?, m¥,,m%,) — H(m%7m%,v,m‘2,v)> .

4.8 Parameter X

(4.27a)

(4.27b)

(4.27¢)

(4.27d)

(4.27¢)

(4.27f)

To compute the parameter X we will need equation |4.14] which is a specific case of [4.12, when J = I.

We will also need [31]

M40 4 [V de Lo (A = D(Q,1,J)) — M*44 [V daI15(A = D(0,1,J))

Q

L (2—2div+logI +logJ + G(I,7,Q)),

9672
and
M4 [y delog(A = D(Q.1,J)) = M4 [] daTos(A = D(0,1,T)) i
Q 327 2@
where
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G(1,J.Q),

(4.28)

(4.29)



16 _I+J  (I-J)?
3 (IP+J% I2—-J% (I-J)3 I -
and
: _ 1-J I+J\, I f(tr)
G(]’J’Q):_2+(Q_”>1°gj+ 0 (4.312)

Using the definition from equations and[4.29] the relations from equations —[3.37] we
get for X

ni
< =9 o _ Lot (7t 2 2 2
swew - 96r2ew > (s 5 (U1U1)aa (U}Us)aa ) G(m2, m2, m3) (4.32a)
a=2
T2
+2) (2S§V - (TlTTl)Cc>G(Mf, Mf,mQZ)> , (4.32b)
c=1

4.9 Noteson A,y

Due to the Ward-Takahashi identities of Quantum Electrodynamics [38;39], the photon propagator

must be transverse to all orders. This means that we can write

H/“V — iz qllq’/ A 2 433
aa=\g - e Aa(q°), (4.33)

being (g‘“’ — Q‘;—g) the transverse projector. The fact that we are able to write the photon propagator as
in has the consequence that we must have 4 44(¢*> = 0) = 0. We will compute here A44(¢? = 0)
to check that it is in fact equal to 0.

At ¢ = 0 we get then

2 N1
A 2 _y=_ 2 (div — 2 _
Aai(? =0)=— ; mg (div — logm?), (4.34a)
2 M2
A 2_g)=- 2 2(div — 2 _
an2(@® =0)=—— ; MZ(div — log M?2), (4.34b)
2
2 _ ¢ 2/ M, 2
AAAS(q - O) _871'2 (; ma(dlv ]“Og ma)7 (4340)
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2 n2
Asaalg® =0) =5 > MZ(div —log M), (4.34d)

c=1

2
e . .
Aaas(@®> =0) =512 (—m%(dlv —logm?) — 3m3,(div — logm¥,) + 2(m¥, +m?) — 3F(m?, m%V)) ,
(4.34€)
Aane(q® =0) =Aaas(q® =0), (4.34f)
2 2
2 _m__ _°© my 3. o 2 i
Apar(g® =0) = o ((m%‘/ 1) (4(m1 + 2m3;, ) (1 — div)
—5m8 + 9mImyy, — 4m$, — 6(3mImy, — 2mS,) log m?, + 6mS log m%)
8(mF — miy,)?
1 s3/1 .
mb, —m§ + 3m§logm? — 3m$;, log m%,[,)
A(mF —miy)
39 27 . 27
2 4
gy (B e (5 Y e
Aaas(g _0)_1671'2 <2m%‘, (6 le—Hogml) +mW( 1 2dlv+ 210gmw> (4.34h)
2 2
2oy =_% "1 (4iy — 2 .
Aaao(g® =0) =75 (dlv log ml), (4.34i)
Aaaro(g® =0) =Aaao(q® =0). (4.34))

We can see that Ax41(¢?> = 0) + Ax43(¢> =0) =0and Aaa2(¢®> = 0) + Asa4(¢®> = 0) = 0. The

other diagrams cancel each other such that

Aaas(®> =0)+ Aaae(q> =0) + Aaaz(g* =0)

(4.35)
+ Aaas(@® =0) = Aaao(q> =0) — Asaio(g® =0) = 0.

Therefore, we get A44(¢? = 0) = 0 as expected.

4.10 Notes on the divergent parts of S and U

In this section we will show that if we multiply the usual Feynman rules (which can be found, for
example, in [28] or in [29]) for the vertices ZG°H and ZZH by \/1 — (K —1)* and for the vertices
W*GTH and WHWTH by V4 — 3K, where K = % then we get a finite result for the oblique
parameters S and U for a model with any scalar content.

We use the SU(2) representation with weak isospin J:

(T3),. = Ore(J+1-r1), (4.36a)
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r(2J+1—r
I

(T-),e = Or-1e \/(r —V@I+2-r) (4.36¢)

(4.36D)

2 )

where r stands for the row of the matrix and ¢ stands for the column of the matrix, with 0 < r,¢ < 2J + 1.

Consider an SU(2) x U(1) electroweak model, in which the scalar sector includes SU(2) multiplets
My labeled by their weak isospin J and their weak hypercharge Y, such that J +Y € Ny. Each
multiplet M ;v has[VEVl vy in its component with electric charge zero, i.e., in the component with third
component of weak isospin 753 = —Y. Writing the multiplets as column vectors, we will denote by M9,
the component in row J 4+ 1 + Y, which has electric charge 0, by M}ﬁ (@ > 0) the component in row
J +Y + 1+ @ which has electric charge —@Q and by Mjg? (@ > 0) the componentinrow J+Y +1—-@Q
which has electric charge +@Q. We will consider only complex multiplets, such that M}”{;2 #* (MJYQ>*.

We can then write

DM7E = 0,M;% —ieQA,ME +i i Z, M3 (Y +Qc2) (4.37a)
—ig W M8 \/(‘”YH”;) (=Y -Q) (4.37b)
—ig W M2 \/(‘”Y*Q) (‘;*Y*QH), (4.37¢)
D,MYy = 9,MYy —i % Z,M0% (-Y) (4.37d)
—igW M3y \/(‘] ¥ +21) (J-Y) (4.37¢)
—ig W My \/(‘”Y) (‘;*}q D (4.37f)
D.MIE = 9,MI2 +icQA,MHS —i % Z,M7E (Y + Q) (4.379)
—igW MFE! \/(']+Y_Q+21> =Y +Q) (4.37h)
—ig W MG+ \/(‘”YQ) (‘;*Y+Q“). (4.37i)

A scalar multiplet with weak isospin J and weak hypercharge Y has a component with zero electric
charge ifand only if —J <Y < J. Let Q be a non-negative number. A scalar multiplet with weak isospin
J and weak hypercharge Y has a component with electric charge +Q ifandonlyif Q — J <Y < Q + J.
A scalar multiplet with weak isospin J and weak hypercharge Y has a component with electric charge
—Qifandonlyif —-Q —J <Y <J-Q.

3If some of the multiplets are real, the same conclusions are still valid but there are some modifications in the intermediate
steps.

29



The masses of the gauge boson are given in terms of the VEVk of the scalar fields by

L syl (2Y?), (4.38a)

9 2[ Z |vJy|2(J+Y+1)(J7Y)

2
—J<Y<J-1
J+Y)(J-Y +1
Y Y )] (4.380)
—J+1<Y<J
J+Y+1)(J-Y
S |W|z( 2)( )
—J<Y<J
J+Y)(J-Y +1
+ ) |W|2( )<2 )] (4.38c)
—J<Y<J
= > P (P-Y2+). (4.38d)
—J<Y<J
We can then write
579 579
5S¢ . 559
MpP=rS || (M) =S| | (4.39)
e Si&

where ng, is the total number of charge-Q scalars, R, and S, are 1 x ng mixing matrices, S}
(@ = 1,...,n0) are the eigenstates of the mass matrix of the scalars with charge @ and S = G* is
the charged Goldstone boson. We will denote by m$ the mass of the S2 scalar. We form the ng x ng
matrices U? by stacking all the rows R%, and 5%, for a fixed Q on top of each other; those matrices

are unitary.

The unitarity of U? implies

Z (R‘C]?Y)la(R'C]QY)Ta, + Z (S?Y)la(S?Y)Ta/ = 5aa/ (4408)
Q—-JLY<Q+J —Q-J<Y<J-Q
nQ
Z(R?Y)la(R?’Y’)Ta = dypdyy (4.40Db)
a=1
nq
Z(S?Y)la(sgy/)ia = 0y 0yy (4.40c)
a=1
nQ
S (B )1a(SFy )i = 0 (4.40d)
a=1
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We can also write

GO
A iB SO

M9Y =vjy + % :2 )
50

no

(4.41)

where ng is the total number of neutral scalars and A;y and By are real 1 x ng matrices. We will

denote by y;, the mass of the S scalar. We form the ng x ny matrix V by stacking all the rows A4 ;3 and

By on top of each other. The matrix V is real and orthogonal.

The orthogonality of V implies

> ((Am) (A )w + (Biy)u(Baw) = dw,
_J<y<J

no

S (A (A = S550vy,
b=1

no

> By wBry)w = S500yvy,
b=1
no

Z(AJY)Ib(BJ’Y’)lb = 0.
b=1

We get for the mixing of the W boson with the charged scalars

Lyw+gs = Z [ig W vy \/(J+ Y+)J -1 0" (M)

2
—J<Y<J-1
s J+Y)(J-Y+1
+ Z igW, vy \/( )(2 ) oM}y | +Hee.
—J+1<Y<J

=imw (W, "G+ — W}o"G™).

Therefore, the charged Goldstone boson is given by

agt="9_ {— Z UJY\/(J+Y+ D7~ Y) (My)"

mw _J<Y<J—-1 2
 [TeV) T —Y 1)
+ Z UJY\/ 5 My |
_Jf1<Y<J

such that
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(4.42a)

(4.42b)

(4.42c)

(4.42d)

(4.43a)

(4.43b)

(4.43c)

(4.442)

(4.44b)



g \/JQ—Y2+J+Y .

N g J2-Y24+J-Y
B Uiy (SJY)H = - \/

(Ryy)i1 = 5

vyy.  (4.45)
mw

We get for the mixing of the Z boson with the neutral scalars

Lo =127, S Yoo (M) +He =myzZ,0"CO. (4.46)
cw

—J<Y<J

Therefore, the neutral Goldstone boson is given by

=i 3 vy [UJY o (M9y)" = vy 9" MYy | (4.47)
CuwMz _J<v<s
such that
_v@' Vi
(Asy)y = Y Y musy, (Byy)y = Iy Rewyy. (4.48)
cwmz cwmz

As we saw for the model with triplets, the diagrams for which %ﬂ oo (where VV' may be
either AA, AZ, ZZ or WW) is divergent are those for which the internal particles are two scalar particles.
The ones which have as internal particles one gauge boson and one scalar are finite. The tadpole
diagrams do not contribute for %q;(qz) 2o as they do not depend on the momentum ¢ of the external

gauge boson. Thus, we need the Feynman rules for the vertices with one gauge boson and two scalars.

The AST? S~ interaction terms in the Lagrangian are

Lasras-a =ieQA" 3 (M2 9,M 57 = MpP0,(M?)")
—J-QY<J-Q
+ieQar 3 (M0, (MIE) — (MfE) 0,07 (4.492)
Q—-JSY<J+Q
nQ
—ieQAr Y > (SG i (5K (590,559 — 5,%0,559)
—J—Q<Y<J-Qa,a'=1
TLQ
+ieQAr 3N (R (B (S590.8,° - 5,00,559)  (4.49D)
Q-J<Y<J+Qa,a'=1
nQ
=ieQA" Y " (S790,5,9 — 5;90,559) . (4.49¢)

a=1
The ZS+% S~ interaction terms in the Lagrangian are
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. g — * — *
Lzs+es-a :_ZTZM Z (Y +Qcly) ((MJYQ) 0uMy? — My20, (M) )
W —Je<v<i-Q

. g9 * *
—ilzr Y (Y +Qdy) (A)0.(MG2) = (MY 9, M[F)  (450a)
W qeusy<iQ

nQ
= —igewQZ" Y (8590,8,;9 — 5,90,559)
a=1

—iiZ” Z Z Y( JY la S?Y)la (R?Y)la(R?Y)Ta’) X

cw
Q-JLY<J-Qa,a’=1
% (8590,5,° — $,%0,55°) (4.50D)
nQ
. g * - -
— itz 3 > V(SH)a(5H i (590,52 — 5,°00,8:9)
W y> _Q-JAY<I-QAY<Q—Jaa'=1
(4.50c)
nQ
. 9 * - -
+iz 3 > V(RS )RS )i (490,85, - 5,°0,519) .
W Y >Q-JAYST—QAY<Q+JT a.a’ =1
(4.50d)
The ZS°S9 interaction terms in the Lagrangian are
Lzsogo = Zfzu Z Y ((M3y)8(M3y )" — (M3y)*8,Mjy) (4.51q)
—J<Y<J
= iiz“ Z Z Y ((Asy)w +i(Biy)w) (Ary) i — i(Byy)w) X
—J<Y<Jbb'=1
x (Sy0,Sy — Sb,a Sy) (4.51b)
= - g Z’L Z Z ((Asy) i (Bry )i — (Asy)n(Biy )w) X
—J<Y<Jbb' =1
x (550, — Sp0,Sy) - (4.51c)
The W*S¥ S0 interaction terms in the Lagrangian are
, J+Y+0)J-Y) [, e
Ly +szs0 =ig Z ( 9 ) ) (Wl +(M9Y) My
—J<Y<J-1
— WH MYy 0, (M) + WH (My) 0, MGy — Wﬂ*M;Ya#(ng)*> (4.52a)

) J+Y)(J-Y +1
tg Z \/ (2 ) <WH+(M}FY) 8, My
—J+1<Y<J
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= WH My 0,(My )" + WH (My )"0, M7y — W”+M9Y3M(ij)*> (4.52b)

ni no

:i% > ZZ\/(J+Y+1)(J—Y)<W“+(AJY—iBJy)lb(S}y)*{ax

—J<Y<J—la=1b=1

X (S{,’@,LS; - 5;8“52) + W’ui(AJy + iBJy)lb(S}Y)la(S;rauSg — S,?@MSCT)> (4.52c)

ni no

—|—i% > ZZ\/(J+Y)(J—Y+1)<W“+(AJY+z‘BJy)1b(R5y)i‘a><

—J+1<Y<J a=1b=1

% (87 0uSy = $)0uS3) + W (Ayy — iBy)w(Ryy)1a(Sy 0,55 — 55[5#51?))

(4.52d)
The W*5+Q §FRF! interaction terms in the Lagrangian are
g nQ nNQ+1
ﬁwisicgs;cg;l :Zﬁ Z ZZ \/(J+Y+Q+1)(J—Y—Q)X
—Q-J<Y<J-Q-1la=1 a’'=1
" (W“<s?y>ia<s?;1>1af<S§%“8usaQ - 579,59
W (SUY (89 )1a(528,8,9 71 — S;Q_18MS§)> (4.53a)
g nQ nN+1
+i== > N VU+Y-QU-Y +Q+1)x
V2 Q-J+1<Y<J+Qa=1 a'=1
- (W“(R%l);‘w (B9 )1a(S79710,52 — 520,5,97)
+ W (RY ) 10 (RY )14 (S5 28,891 — sﬁ*laﬂS;Q)> . (4.53b)

Besides using the Feynman rules required by gauge invariance for the triple vertices with gauge and

Goldstone bosons, we will use the following Feynman rules to compute the [SM amplitudes:

:'\JWV zr = —\/)?(g —p)H, (4.54a)
2ew

34



———m = icimzx/)?g#", (4.54b)
w

Zl/

GT
\

\
\
q\\
\
/
p///
/

/
H

A~ ER = :Fi%\/?(q —p)H, (4.54c)

Wt
---- H = ing\/Zg‘“’. (4.54d)

W—v
Gauge invariance requires that the vertices ZG°H and Z Z H are multiplied by the same factor v X. The
same happens with the vertices W*GFH and W*W¥H that are both multiplied by v/Z. In the
we have X = Z = 1. Here we are assuming that X and Z can be different from 1 in a model where

mw 75 mygcCw.

Therefore, we get

2
004zz) 9 (55 [ S v (A )i Bov )i — (Ao )i (B ) (4.552)
an q2=0 1927_[_20%/[/ JY )1b JY )1b JY )1b JY )1b .
b,b'=1 —J<Y<J
TLQ
Y Y (Qddw + Y YUSHIS R (BB i)
Q aa’=1 Q-JLY<J-Q
+ > Y (5% ) 1a(SH )i
Y>—-Q—-JNY<J-QANY<Q—-J
- > Y (R 1a(RSy )iar) X

Y>Q-JAY >J—QAY <Q+J

< (Qcdwat X YUSEIw(SR)ie — (B ) (B 1)
Q-J<Y<J-Q

+ > Y (5P )10 (SH )i

Y>—Q-JAY <J—QAY <Q—J
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- > V(R 1 (RS, 1) (4.55D)

Y>Q-JAY >J-QAY <Q+J

11 2¢2,\\’
—X—4(£V—2—2(1—mﬁmj> >ﬂ—mw+ﬂMemmm (4.55¢)

myy

1927r202< 2 Y2+4Z(QQC ng+2 ), Y

—J<Y<J Q-J<Y<JI-Q

+2Qc%, > —2Qc%, > Y

Y>—Q-JAY<J-QAY <Q—J Y2Q—-JANY >J-QAY <Q+J

+ 3 Y24 3 v?)

Y>—Q-JAY<J-QAY<Q—J Y>Q—-JAY >J-QAY <Q+J

2 .2 2
_x_4 (sgv _ é _ % (1 - mZ,fW)) >(1 — div) + finite terms, (4.550)

My

90Aaz Q Q \x Q Q
5|, " Tty (Z S+ X Y (8RRt — (BB i)
Q a=1 Q-J<Y<J-Q
+ > Y (S3)1a(55 )i
Y>—Q-JAY<J—QAY<Q—J
- > Y (RS 10 (RS )1, ) (4.562)
Y>Q—-JAY >J—-QAY <Q+J
9 1 1 7n%car . -
+lsw—s—5(1-—=5 (1 — div) + finite terms (4.56b)
2 2 miy,

- R o

Y>—Q-JAY<J—QAY <Q—J

-Q 3 Y) (4.560)

Y>Q-JAY >J—-QAY <Q+J

1 1 m%c?
+ (32 - (1 -2 W)) (1 — div) + finite terms, (4.56d)
o2 2 m2;
3514,4,4 62 2 . .
=—— Q°ng — 1| (1 —div) + finite terms, (4.57a)
aqz q2=0 487T2 (%:

06 Aww

- 19%2 (iZ( Y VY 1) =) (An ) — i(Bry)1)(Shy)ia—

a=1b=1 —-J<Y<J-1

- Y VUFU =Y DA+ i(Boy ) (Rhy )i ) %
—J+1<Y<J
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x (_K;J ) VI+Y +1)(J = Y)((Asy)s + i(Bry) i) (Shy )1a

— Y VTENT =Y DA — By ) 1) (R )1a) (4.58a)
—J+1<Y<J

2SN (Y VU RN Y — QSR (SR -

Q a=la'=1 —J-—Q<Y<J—Q-1
- Y VU -QU Y @+ DERF i (B )a ) x

Q-J+1<Y<Q+J

(Y VU QDT Y — QSH (5% )i
—J-Q<Y<J-Q-1

- Y VU QU Y Q@+ DR i (B (4.58b)
Q-JH+ISY<Q+J]
2 .2
—Z— mZQCW (1 — div) + finite terms (4.58c)
my

g° (2 Yo YU -v+2 Y (JEY)(J Y +1)

19272
—J<Y<J-1 —J+1<Y<J

+2§Q:( Y (Y QDI -Y -Q)

—Q-J<Y<J-Q-1

2 2

+ 3 (J+Y—Q>(J—Y+Q+1))—Z—mZ§W>x (4.58d)
Q—-J+1<Y<J+Q M

x (1 — div) + finite terms. (4.58¢e)

Using equations [4.55] [4.56|and [4.57] we can write

e AUP RS D SUNEC N SIN)

dsyciy

J<Y<J Y>—Q-JAY<J—QAY <Q—J Y>Q-JAY >J—QAY<Q+J
+2 Y vy 3 Y2+ 3 v?)
Q-J<Y<J—Q Y>—Q-JAY<J—QAY <Q—J Y>Q-JAY>J—QAY <Q+J
(4.59a)
1 1 m2c? 2
—X—4<5%,V——(1— ZW)> + 4siyciy
2 2 m,
11 22 o
— (el — %) (sh — = — = (1= 22 ) ) (1 - div) + finite terms. (4.59b)
2 2 miyy

Let us define
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J).

v= >
J<Y <

—J

Y2+ZQ:(Q( 3 Y — S Y)

J Y>—Q-JAY<J—QAY <Q—J Y>Q-JAY >J—QAY <Q+J

+

D D 3 v? 4+ 3> YQ).
Q-J<Y<J-Q Y>—QoJAY<J—QAY<Q—J Y>QoJAY >J—QAY <Q+J

We will now prove that ~ is equal to 0.

(4.60)

Given a multiplet (J,Y"), the maximum value for @ is J+|Y'| and the minium value for @ is max(1,|Y |-

Consider the case where we have a multiplet with J = Y. In this case we have

yo= Y2 (142+...4+2Y)Y +(2Y)Y?
= (2Y+1)Y2—(2Y)(227Y+1)Y:0.

Consider the case where we have a multiplet with J = —Y". In this case we have

vo= Y24 (1424... —2Y)Y 4+ (-2Y)Y?
(—2Y) (2 + 1)

= (2Y+1)Y?*+ 5

Y =0.

Consider the case where we have a multiplet with Y > 0 and J > Y. In this case we have

yo= Y (J-Y+D)+(J-Y+2)+...+(J+Y))Y

R2J-YV)Y2 4+ ((J+Y)-(J-Y))Y?
2Y)(J =Y +1+J+Y)

Y =0.
2

(2J +1)Y? —

Consider the case where we have a multiplet with Y < 0 and .J > —Y. In this case we have

¥y o= Y2 (J+Y+ D)+ J+Y +2)+... +(J-Y))Y

+F2(J+Y)Y?+((J-Y) = (J+Y))Y?
(=2Y)(J+Y +1+J-Y)
2

= 2J+1)Y*+ Y =0.

Consider the case where we have a multiplet with Y > 0 and J < Y. In this case we have

vy = —(Y-D+Y-J+1)+...+(J+Y))Y

+(J+Y)= (Y =J)+1)Y?
(2J +1) (2Y)

= 2J+1)Y?+ 5

Y =0.
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Consider the case where we have a multiplet with Y > 0 and J < Y. In this case we have

vy = (Y -DND+¥-J+1)+...+(J+Y))Y
+((J+Y) = (Y —J)+1)Y? (4.66a)
= (2J+1)Y2+w}/:0. (4.66b)

Consider the case where we have a multiplet with Y < 0 and J < —Y. In this case we have

v = (Y -+ Y —-J+1)+...+(-Y+J)Y
+ (=T -Y)=(J-Y)+1)Y? (4.67a)
_ (caenyre & +;) =2Y)y _, (4.67b)

We conclude that v = 0 for all multiplets. This means that we get

& g9’ 2 1 1 m2ZCIQ/V ? 2 2
45%‘/0%4/521927r2c‘2,v XA Wy Ty 1= m, + s

1 1 m2c?
—4(ck, — st )(82 - === <1— Z W)) X (4.68a)
Womwa W g 9 m2y

x (1 —div) + finite terms. (4.68b)

2
Thus, we get a finite result for .S in a model with any scalar multiplets if X =1 — (";%75% — 1) .

w
Using [4.55] [4.56] [4.57|and [4.58 we get for parameter U

2
o g
= U= 2 Y+1)(J-Y)+2 Y)(J-Y +1 4.
s 19%2( Yo (JHY+D)IT-Y)+ Y (J+Y)(J-Y +1) (4.69a)
—J<Y<J-1 —J+1<Y<J
+2Z( > J+Y+Q+1)(J-Y -Q)
Q —-Q-JSY<J-Q-1
m%c
+ Y (J+Y—Q)(J7Y+Q+1))—Z— W (4.69b)
Q—J+1<Y <J+Q My
—4 Y VoY (Q@ne+2 > v
—J<Y<J Q Q—-JLY<J-Q
+2Qc%, > Y —2Qc%, > Y
Y>—Q-JAY<J-QAY<Q—J Y>Q—-JAY >J-QAY <Q+J
+ - Y24 3 Y2>
Y>—Q-JAY<J-QAY<Q—J Y>Q—-JAY >J—-QAY <Q+J
xqa(sy o Lo L (oM 2 (4.69¢)
W9 m2, '
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— 453, (ZQ nQ — 1) — 8s7y ( Q*ngcyy+

Q
+Q > Y —Q > Y

Y>> Q-JAY<J-QAY <Q—J Y>Q-JAY >J—QAY <Q+J
1 1
— 8s%, (S%V 2 2 ( mZCW ) (1 — div) + finite terms

T 19272
—J<Yy<J-1 —J+1<Y<J

+2XQ:( Y (Y +Q+ (I -Y Q)

—Q-J<Y<J-Q-1

+ 3 (J+Y—Q)(J—Y+Q+1))

Q-J+1<Y<J+Q

4 Y v e 4Z(Q2nQ+2 Yooy

_J<Y<J Q-J<Y<J-Q

+2Qc%, Z —2Qcty Z

Y>—Q-JAY<J-QAY <Q—J Y>Q-JAY >J—-QAY <Q+J

+ 3 Y2+ 3 v?)

Y>—Q-JAY<J-QAY<Q—J Y>Q—-JAY >J—-QAY <Q+J

8s€V§Q( 3 Y - 3 Y)

Y>—Q-JAY<J-QAY<Q—J Y>Q—-JAY >J-QAY <Q+J
2 2 2 2 2
msc 1 1 msc
—Z—ZQW—l—X—f—él(s%V——(l— ZQW>>
My 2 2 miy

11 e . .
— 8t sty —=—=(1— mZQCW + 453, | (1 — div) + finite terms.
2 2 myy,

Let us define

=2 >  (J+Y+DI-Y)+2 DY (J+Y)J-Y+1)
—J<Y<J-1 —J+1<Y <J

+2§Q:( Y Y HQ+ D -Y -Q)

—Q-J<Y<J-Q-1

+ Z (J+Y—Q)(J—Y+Q+1))—4 Z y?

Q—-J+1<Y<J+Q —J<Y<J
—4y (QQnQ 2> YPi2dy 3 Y
Q Q-J<Y<J-Q Y>—Q—-JAY<J—QAY<Q—J
—2Qc%, > Y + > y?2
Y>Q-JAY >J—QAY <Q+J Y>—Q-JAY<J-QAY <Q—J

+ 3 Y2)

Y>Q—-JAY>J—QAY <Q+J
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(4.69d)

(4.69¢)

(4.69f)

(4.699)

(4.69h)

(4.69i)

(4.69j)

(4.69Kk)

(4.70a)

(4.70b)

(4.70c)



—8s% Y Q( 3 Y — 3 Y). (4.70d)

Y>—Q-JAY<J—QAY <Q—J Y>Q-JAY >J—QAY <Q+J

We will now prove that 6 is equal to 0.

Consider the case where we have a multiplet with J = Y. In this case we have

2Y -1 2Y
0 = 442> QV-Q)Q+1)| -4v>-4>" @
Q=1 Q=1
2Y 2Y
8 Y > Q—-8Y 4857 Y > Q (4.71a)
Q=1 Q=1
4 4
= WWig (—-2Y +3Y? +2Y?) —4Y? — §Y(l +2Y)(1 +4Y)
+8ci Y2 (1 +2Y) — 8Y? + 853, Y2(1 +2Y) = 0. (4.71b)

Consider the case where where we have a multiplet with J = —Y'. In this case we have

2Y -1 -2Y
o = 4Y+2(Z(Q+1)(2YQ))4Y24ZQ2

Q=1 Q=1
-2 -2Y
—8ciyY Y Q+8Y? — 85,V Y Q (4.72a)
Q=1 Q=1

4 8
= AV -2 (—2Y —3Y? +2Y?) —4v? + 3V (-1+2Y) (-1 +4Y)

—8¢2, Y23 (~142Y) +8Y3 — 852, V?(—1+2Y) = 0. (4.72b)

Consider the case where we have a multiplet with Y > 0 and J > Y. In this case we have

0 = 20J+Y+D)(J-Y)+2(J =Y +1)(J+Y)
J-Y -1 J+Y -1
+2 3 (JHY 4R+ -Y -Q)+2 Y (J+Y-Q)(J-Y+Q+1)
Q=1 Q=1
J-Y J+Y J+Y
—AY? -8 Q-4 > Q-8 -Y)V 48qY > Q
Q=1 Q=J-Y+1 Q=J-Y+1
J+Y
-8V 4853 Y Q (4.73a)
Q=J-Y+1
= 2J4+Y+)(J=Y)+2(J =Y +1)(J+Y)

2

3
4 4

—4Y? — §<1 +2J -2V (J-Y)1+J -Y) — gY(l +6J +6J% 4 2Y?)

+§(J—Y—1)(J—Y)(Y+2—|—2J)+ (J+Y = 1)(J+Y) (=Y +2+2J)

—8(J = Y)Y? 4+ 8c5 Y?(2J 4+ 1) — 8Y3 4+ 8s%,Y2(2J +1) = 0. (4.73b)
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Consider the case where we have a multiplet with Y < 0 and .J > —Y. In this case we have

0 = 2J+Y+1D)(J-Y)+2(J-Y +1)(J+Y)
J=Y -1 J+Y -1
+2 > (JHY+Q+ 1) =Y =Q)+2 > (J+Y-Q)(J-Y+Q+1)
Q=1 Q=1
J+Y J-Y J=Y
—AY?-8) Q-4 > QP-8(J+Y)V' -8 Y > Q
Q=1 Q=J-Y+1 Q=J+Y+1
J=Y
+8YP —8sh, Y Y Q (4.74a)
Q=J+Y+1

= 2JJ4+Y+)(J-Y)+2(J Y +1)(J+Y)
+§(J—Y— DJ =YY +242J) + %(JJFY— D(J+Y) (=Y +2+42J)
—4y? — %(1+2J+2Y)(J+Y)(1+J+Y) - %Y(1+6J+6J2+2Y2)

—8(J + Y)Y + 8¢, Y2(2J + 1) +8Y3 + 853, YZ(2J + 1) = 0. (4.74Db)

Consider the case where we have a multiplet with Y > 0 and J < Y. In this case we have

J+Y -1 J+Y
0 =2 > (J+Y-QU-Y+Q+1)—-4 Y @
Q=Y —-J Q=Y —-J
J+Y J+Y
8 Y > Q-ARJ+ 1Y +8sHY Y Q (4.75a)
Q=Y —-J Q=Y —-J

4 4
= 3J0+ J)(1+2J) - S+ 2J)(J + J* 4+ 3Y?)

+8c3, Y2(1+2J) — 4(2J + 1)Y? + 8s3,Y2(1 +2J) = 0. (4.75b)

Consider the case where we have a multiplet with Y < 0 and J < —Y. In this case we have

J-Y -1
6 =2 > (J+Y+Q+1)(J-Y-Q)— Z Q?
Q=-Y—-J Q=-Y—-J
J-Y J-Y
—8ctyY Y Q-4@J+ Y-85 Y Y Q (4.76a)
Q=—Y—-J Q=-Y—-J

4 4
= /AN +20) - (1 +2))(J + J? +3Y?)

+8¢iy Y2(1 +2J) — 4(2J + 1)Y? + 853, V(1 + 2J) = 0. (4.76b)

Therefore, we can conclude that 8 = 0 for all multiplets. This means that we get
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2 2 2 2 2 2
@ g myCy 9 1 1 mscyy
—U=—""—\| —-2-— X+4 ————=(1- 4.77a
Ay 192 < my A (SW 2 2 ( myy )) ( )
1 1 2 .2
— 853, (S%V - (1 - mZ§W>) +4s%, | (1 — div) + finite terms (4.77b)
2 2 miy,

2 2 2 2 2 2
=9 x—z+ (22w 1) 43(1-2ZW) )1 —div)+finite terms. (4.77¢)
19272 miy miyy,

2 2 2
Thus, ifweput X =1— (":5% — 1) (the value that makes S finite), then we get a finite result for U
w

in a model with any scalar multiplets by putting Z =4 — %

’H’LW

4.11 Comparison with results from the literature

In reference [40], a model is considered with one complex SU(2) scalar doublet with hypercharge ¥ = 1
+
¥
= 4.78
o=(%) (4.78)

and one real SU(2) scalar triplet with hypercharge Y =0

)\+
A= ( A0 ) . (4.79)
"

In this model, the field ©° acquires alVEV]v/+/2 (where v € R), such that we can write ¢° = %(v +

Rey” + iIm "), and the field A\ acquires a VEVI equal to ivtan 3, such that we can write \° =

1vtan 8+ AY. The masses of the W and Z bosons can then be written as

gv gv
_ _ v 4.80
w5 cos 3’ mz 2cw ( )

The neutral fields are assumed to have no mixing, such that S = Im ¢" is the neutral Goldstone
boson, S§ = Rep” and S§ = \”. The field S = Re ¢ is the [SM| Higgs boson field. The charged fields
are assumed to mix by an angle 3 (which is the same that appears on the quotient between the VEVls
of ¢¥ and \%), such that

Sft [ cosfB  sing o*
(S§E> - (— sinB cosB) \\F )" (4.81)
We can then write the mixing matrices as
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U, = (cosﬂ fsinﬂ) , U; = (sinB Cosﬂ) , (4.82a)
Vi=(i 1 0), Ri=(0 0 1), (4.82b)

while the matrices Us, Uy, Vo, Rs, T1 and T5 are not present in this model.

Using these mixing matrices, we can compute the oblique parameters S and U for this model using

our results from equations and For parameter S we get

(07

P
g9 2 Lo 5 9 9 9 =~ 5 o
T1927%32, 4<SW 9% Cﬁ) logm3 + 2¢5s3(K (m3, miy) — 6miy K (m3, miy)) (4.83a)
+ 85K (13, m%) — GSBmZK(Mgva) 4s%,c% logms (4.83b)
A — st (% — 353 — &) logmi3 4.83
+4(cy — SW)(SW — §Sﬂ — cﬁ) 0og ms (4.83c)
2 ~
19% 109,202 ﬁQ(— 2logmj + 2(K (m3, miy) — 6m%VK(m§,m%V))> +0(8%). (4.83d)

where sg and cg stand for sin 8 and cos 3, respectively. For parameter U we get

e . (4 (Laxamd + s md) (4.842)
+4(JAEGB, ) — 6miy K (i3, miy))

+ 3K (i, miy) — 6miy K (13, miy ) ) (4.84b)

¥ %c%szaam;m) 6m, K (m3,m3)) (4.840)

— (14 382) (K (13, m3y) — 6m3y K (13, m3)) (4.84d)

— 4(5%,[, — %s% — c%)2 log m? (4.84e)

— 2353 (K (m3, my) — 6miy K (m3, m¥) (4.84)

— SHK (13.m3) — 6mby K (13, m3)) — dsty log m3 (4.849)

+8s2, (s%V - %s% - C%) log m§> (4.84h)

9° .

T (K(ug,m2) long) (4.84i)
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2
L 8 (ma,m@ KGR, ) (@.84)

19272
4 = (K3 miy) — 6miy K (i3, m3y)
+ (K (13, miy) — 6mby K (43, miy)) ) (4.84K)
+ (K (m3, m%) — 6m% K (m3,m3)) (4.84])
= 3(K (3, miy) — 6miy K (3, miy)) + 4logm3 (4.84m)
— 2(K(m3, miy) — 6miy K (m3, m%m) +0(5%). (4.84n)

For both parameter S and parameter U, we expanded the result up to second order in 8. In equation 26
of [40] they have

. (4.85a)
2 2 2 4 4\ 2,,2
g1 (mi o (mk) (3mg —m}) | 5(mj +my) 22mkmc> Lo (mZ) , (4.85b)
Y

m?2 ) (mi —m2)3 6(m3 — m2)? Me

where we have m. = msy and my = us. These results are only in zeroth order in .

Comparing our results with the ones from [40], we can see that the result for S agrees up to order
9. The result for U agrees up to order 8° and (mz/m.)°. The fact that the results agree only to zeroth
order in mz/m. was to be expected as in [40] a different definition is used for the oblique parameters.
Where, in the definition for the oblique parameters in equations a derivative with respect to ¢? is

used, in the definition used in [40], they use

A(m2)— A
(my) ; (0) (4.86)
WLV
where my is either the mass of the Z or of the W bosons. When mz approaches 0 (and, consequently,
myy approaches 0 too as they are related by my = %) the expression in becomes equal
to g—q‘; .y and, therefore, the two definitions coincide. Thus, we should expect that the two results

q =
coincide to zeroth order in mz/m., as they do.

For parameter T', reference [40] presents a finite result in zeroth order in 5. This result coincides with
the result from this thesis in the same conditions. However, as for higher order in 5 we get a divergent

result for this parameter, then this result has no physical meaning.
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Chapter 5

One-loop corrections to the Zbb vertex

5.1 Introduction

Another way to indirectly detect heavy scalars can be through radiative corrections to the Zbb vertex.

The coupling of the Z boson with the b quark and its anti-particle can be written as

Lzvy = iZAEW’\(QLbPL + groPr)b, (5.1)

2 2
where Pp, g = (1 £ +5)/ 2 are the chirality projectors and, at tree level, g%b = “)TW — % and g%b = STW

By considering the one-loop corrections to the Zbb vertex in our model with scalar particles in singlets,
doublets and triplets of SU(2),, then the corrected couplings can be written as gn, = g +dgne (R =
L, R), where gg is the coupling computed in the Standard Model and dgy;, are the New Physics con-
tributions to the coupling. The two observables which are influenced by these correction due to New

Physics are the hadronic branching ratio of Z to b quarks:

_ T(Z —bb)
By = I'(Z — hadrons)’ (5-2)

and the b quark asymmetry (measured in the process e~et — bb),

A — o(e; = br)—o(ef = bg)+o(egp —=bp)—o(er = br) (5.3)
’ ole; = br)+o(e; = bg)+olep —bg)+oleg —br) '

where e} 5 are left and right handed initial-state electrons and by 5 are final-state b-quarks moving in

the forward and backward directions with respect to the direction of the initial-state electrons [41].

46



5.2 Couplings

We will use the approximation where the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V;;, = 1,
which means that we will only have to consider quarks bottom and top. We will also neglect the mass of

the bottom quark m,.

We will use
Lzt = iZ,\ﬁ)‘(thPL + grePr)t, (5.4)
Ly oo = (B PLoWE + by PLtvy), (5.5)
V2
0 _ 1 _ 2sh 0o _  2s%
where, at tree level, g;, = 5 — =* and g%, = —=3*.

The terms in the Lagrangian for the interaction of the scalars with the quarks can be written as

Lstey =Y _(Sqt(ciPL — daPr)b+ S, b(caPr — d;PL)t), (5.6)

a=1

no
Lsopy, = > S b(riPr+7i PL)b. (5.7)
=1

The terms in the Lagrangian for the interaction of the scalars with the Z boson can be written as

Lysts- = —%ZA S Xuw(SFi07S,, - 5,i0°S7), (5.8)
a,a’=1
Z. no ' '
Lososo == 2x 3 Yir(S)id" P — Spid*sy), (5.9)
L,l'=1
Lowge = —QZVW 203 (saWASF + ssWS7) (5.10)
a=1

where ¢, d,, r; and s, are coefficients that are, in general, complex. The matrix X is n; x n; Hermitian

and the matrix Y is ng x ng real and antisymmetric.

5.3 Feynman Diagrams

In figures [5.1] and there are the diagrams that contribute at one-loop level to the Zbb vertex that

contain charged and neutral scalars, respectively.
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Figure 5.1: Diagrams with charged scalars contributing to the Zbb vertex at one loop
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Figure 5.2: Diagrams with neutral scalars contributing to the Zbb vertex at one loop

As argued in [42], the diagrams in[5.3|which contain neutral scalars are proportional to m;, because
the coupling of the Z boson to the b quarks preserves chirality, while the coupling of the neutral scalar
to the b quarks changes their chirality. Thus, in these diagrams there must be a mass insertion in the b
quark propagator in order to change the chirality of the b quark once again. As we are neglecting my,
then we will not consider these diagrams. The diagrams in[5.3which contain charged scalars do not give
contributions beyond the Standard Model in models with only scalar singlets and doublets, as in these
models the only ZW*S¥ couplings are the ZIW+ ST couplings present in the Standard Model. However,

in our model, which also contains scalar triplets, these diagrams will give a New Physics contribution.

We follow the on-shell renormalization scheme from Hollik [43}/44]. We are looking for terms that

change the tree-level couplings, which, after renormalization may be written as

. g
Zrﬁbb = VY#J ((Q%b + Agr)Pr + (9% + AQR)PR) ) (5.11)
where Agx (R = L, R) are the one-loop corrections after renormalization, including the ones that are
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(a) (b)

(c) (d)

Figure 5.3: Diagrams with virtual gauge bosons

present in the Standard Model. Thus, we are not interested in terms proportional to p!', being p;, with
i = 1,2, 3, the momenta of each of the external particles in the vertex. To perform renormalization, we
need to evaluate the contributions of both the charged and the neutral scalars to the self-energy of the
b quark. These diagrams are in figure We will be interested on the part of the self-energy iX(p)
proportional to p, which we may write as X(p) = p (QL(p?*) P + Qr(p?)Pr)-

According to Hollik’s renormalization scheme [43(44], the self-energy produces contributions to Agrp

and Agry, given by Agry, = —g7,Q.(p* = mj) and Agry, = — g, Qr(p* = m3).

S+ Sp
R~ -~
b // \\ b b // \\ b
t b

(a) (b)

Figure 5.4: Diagrams containing scalars that contribute to the self energy of the b quark
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5.4 Results for the one-loop diagrams

To compute the correction for the couplings at one-loop we will use the Passarino-Veltman functions [45]
defined by

. dik 1 1 A b 2 92 2 12
M (27r)dk:2—m%(k:+7”)2—mfk ~ 16n2" Bu(r?, mg, m1), (5.122)

/ k1 1 1 _
(2m)4 k2 —m2 (k+711)2 —m? (k+7r9)2 —m3
7

=162 Co(r, (r = r2)* 3, mg, mi, m3), (5.12b)
ME/ dik 1 1 1 A
(2m)d k2 —mg (k +71)? —m3 (k +72)? —m3
= 16171'2 (g™ Coo + 7Y Chy + 1975 Cag
+ (rirs + ) Cia) (rf, (r1 — r2)%, 75, md, m3, m3). (5.12c)

5.4.1 Diagrams with charged scalars

In the following results, the terms involving p1 and p, being p; and p, the momenta of the b quarks
were not considered because applying them to the b quark spinors would give, according to the Dirac

equation, a term proportional to m; which we are neglecting.
The diagrams in lead to [42]T]

ny

1

Agrp(la) = —c— > caXaachCoo(m%,0,0,m2, m2,ms), (5.13a)
a,a’=1

Agry(la) = Agrp(la)(cq — dY). (5.13b)

The diagrams in lead to [42]

1 &
Agry(1b) =162 Z lcal? ( — mg?,Co(0,m%,0,m?, m{, mf)
a=1

+ g (2C00(0,m%, 0,m2, m, m?)

1
- 5 _m2Z012(03m%voam‘iam‘f7m?))>a (5148)
Agrp(1b) =Agry(1b)(ca — di, 974 <> Ghe)- (5.14b)

"There is a sign difference in our result compared to the result from [42] as we use a different convention. The physically
meaningful quantities must, however, give the same result.
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The diagrams in lead to [42]

ng
Agry(4a) =1 Z|ca\ By (0,m?,m?), (5.15a)
Agry(4a) :Ang(4a)(Ca — da, 91 = h)- (5.15b)

The diagrams in and in an arbitrary gauge lead to

ni
gmwmy

Ang(Sa”b) = 8\/57'('2 ZRG(SGCQ) (Co(m2Z7O7Oam12/V7mZ7m?)
a=1
1
- m—Q(C’oo(mQZ,O,O,m%‘,,m2 m?) — Coo(m%,0,0,m3 m?2, mf))), (5.16a)
w
Agry(3a,b) =0. (5.16b)

Among the Passarino-Veltman functions used here, only B; and Cy, are divergent. We have for

those functions

Bi(r?,mé,m?) = —d—;v + finite terms, (5.17a)
Coo(r?, (r1 —1r9)%, 72, m2, m3,m3) = dTIIV -+ finite terms. (5.17b)

Therefore, the divergent terms in[6.13] [6.14}, [5.15]and [5.16] are

Agrp(la) + Agry(1b) + Agrp(4a) + Ang(3a b)

32772 ( ag:lca aa’ Cor + gRt —g%b) |Ca| ) + finite terms, (5.18a)
Agrp(la) + Agrp(10) + Agry(4a) + AgRb(?)a, b) =
div ni

T 3272 ( ag:ld o Xaardar + (974 — IRy ;Id |2) + finite terms. (5.18b)

2 .2 2 g2 . .
Thus, as g%, — ¢, = 5" and ¢9, — g%, = 9“5, in a consistent theory we must have

2, — §2 i « 2, — §2 s
Z CaXaaCly = = WZ|ca|2 > i Xewde = W2 d [ (5.19a)
a=1

a,a’=1 a,a’=1
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5.4.2 Diagrams with neutral scalars

The diagrams in[5.23]lead to [42]

. no
4 2 *
Ang(za) = - ﬁ Tl}/ll'rl/COO(O,WQZ0a07H12'7M12)7
IL,U'=1

Agry(2a) =Agrs(2a)(ry — 7]).

The diagrams in lead to [42]

Agry(2b) gRb Z|m| (2000 0,m%,0,12,0,0) —

- mZ012(OamZ707Mla070))7

Agry(2b) =Agrs(20) (95 — 92)-

The diagrams in[5.4b]lead to [42]

Agrs(4b) = ng Z|n| B1(0,0, 43),

Agry(4b) :Ang(4b) (QLb — 9Rb)~

Using again equations|5.17} we have

Ang(Qa) + Ang(Qb) + Ang(4b) =

LI'=1 =1
Agry(2a) + Agrs(2b) + Agry(4b) =

L'=1

ng
327T2 ( 2i Z Yy + (g9, g%b)zmz) + finite terms.
=1

Thus, as ¢%, — ¢%, = 1, in a consistent theory we must have

> rviery = - Z el

ILlI'=1
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div R . S L
322 (—21 Z Y + (g% —g%b)2|m|2) + finite terms,

(5.20a)

(5.20b)

(5.21a)
(5.21b)

(5.22a)

(5.22b)

(5.23a)

(5.23b)

(5.24)



5.5 Results for the model with triplets

Similarly to what happens for the singlets, the scalar triplets have no Yukawa couplings. Thus, the

Yukawa Lagrangian can be written as

(053
Lyukawa = — tL br Z < < ) br + ek (SO:;_) tR) +H.c, (5.25)
k=1

k

where e, and f; (k = 1,...,nq4) are the Yukawa coupling constants. Developing this expression and
comparing it with equations [5.6/and [5.7] we get the following relations

o= [0k o= Ui ri=—= S FVin (5.26)
k=1 \/5 k=1

k=1
Using the relations above and equations[3.15/and[3.17jwe get 302 [eq|? = Y202 fexl?, o0k, |dal? =
k:l |fk|2 and 21:1 |Tl|2 = k:l |fk|2-
Due to an arbitrariness on the phase of the fields by and ¢ g, we can choose ¢; and d; to be real such
that

gmy _ 9™y ool
1 — ~ Y, 1 — ~
\@mw ’ \/imw 2cwmz

Comparing equation with equation [3.29h, equation with equation and equation
with equation [3.291, we get that for this class of models

(5.27)

C1 =

1 1 .
Yir =7 Im(V; Vi) + 3 Im(Vy Va)ur, (5.28a)
1
Xaa’ = *812/1/5(1(1/ + i(UfUl)a’a —+ (U§U3)a’a =
1 1
= (2 — S%) daa’ — 3 ((U2TU2)a’a — (ULU3)ara + (UIU4)a,a) , (5.28b)
Sq — S‘Q/V(Sla + (UIU4)1Q — (U§U3)1a- (5280)

Using again equations[3.15and[3.17]together with equations[5.26|and[5.28] we verify equations[5.19
and[5.24] Therefore, in this model with triplets, the divergences cancel, as they should.

Using equation we get the following results for the contribution from the diagrams with charged

scalars to Agry and Agps:

Ags, =Agrp(la) + Agry(1b) + Agrp(4a) + Agry(3a,b) = (5.29a)
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16’/T2 (Zl a‘ fL

a=1
ni

+ > i (Uf02)ara = (UUs)ara + (UU)ara ) aCoo(m, 0,0, m2, m?, m?)

a,a’=1
2
—9 SWmt (CO(mZ70 0 mW7m17mt)

1
- — (COO(mZ,O 0, mW,mf,mt) Coo(m%,0,0, ml,mf,mf)))

w

ny
—V2gmwm; Y Re (UU4)1a — (U§Us)1a)ca) (CO(mQZa 0,0, mjy, m2, mj)
=1

1
m—Q(COO(mQZ,O,O,m%V,m2 m?) — Coo(m%,0,0 ml,m2 mf)))),
w

Aghy =Agrp(la) + Agrp(1b) + Agre(4a) + Agry(3a,b) =

1 [ & .

a=2

+ Z da (UJU2 (U§U3)a/a+(UlU4)a/a) dZCOO(mQZ,O,O,mz,,mg,mf)>.

a,a’=2

where we defined

fi (mi) = g%tme’o(O, mQZv 0, mi? mt27 m%) + g%t (2000(Ov m2Z7 0, mi, mf, mt2)

1
-5 m2Z012(07m2270’m mfvmt)) +9LbBl(O mta 2)

2
+ (253, — 1)Coo(m%,0,0,m?, m2, m?),
flc{(mi) - g(l)%tm?CO(Ov mzza 07 mg? m?a mtz) + g%t (QCOO(Oa m2Zv 0, mczu mf, m?)
1 2

Py _mQZCH(O’mQZvam mt7mt)) +gRbBl(0 mt7 2)

2
+ (28‘2/1/ — 1)Coo(m22,0,0,mg,mg,mf).

For the contribution from the diagrams with neutral scalars to Agr, and Agg, we get

Agzb :Ang(Za) + Ang(2b) + Ang(4b) =

1 20 .
=162 <Z IrfE (i)

=2
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(5.29b)

(5.29¢)

(5.29d)

(5.29)

(5.30a)

(5.30Db)

(5.30c)

(5.31a)

(5.31b)

(5.32a)

(5.32b)



no
-4 Z T (Im(VlTVl)”/ + ZIm(V;Vg)u/) 7 Coo(0,m%,0,0, 1, u?)) , (56.32c)
Ll=2

Agry, = Agry(2a) + Agrs(20) + Agrs(4b) = Agry (fL — fRom1 = 71)- (5.33)

where we defined

1
S (1) =g, (2000(0777122, 0, 4i,0,0) = 5 = mzC12(0,m7, 0, i, 0, 0)> +92,B1(0,0,117),  (5.34a)

n 1
fR(MlZ) :g%b (2000(03 m2Z7 0, :ul2a 0, 0) - 5 - m2Z012(O7 mQZ7 0, M127 0, O)) + g%bBl (Oa 0, ,ulz) (534b)

Until now we have been working with gx;, (X = L, R) parametrized as gw, = g%, + Agne, being g2,
the tree-level coupling and Agy, the one-loop contribution. To get a gauge independent result it is now
convenient to switch to a parametrization that splits the and the New Physics parts. We will write it
as gxp = 95! + dgns, Where g is the part and dgy; is the [NP| part. To obtain dgy;,, we subtract
from equations [5.29] [6.30] [6.32] and [6.33] the one-loop contribution to gy, in the In the limit of
my — 0, we get 9%, = Ag%,, 097, = Agy, and dg7, = Agh, because the [SMiresults for these one-loop

contributions to the couplings are proportional to m?. Thus, the results for 6¢%,, d¢7, and dg%, are finite

(as we have shown before) and, from equations [5.30} [5.32] and [5.33] are also gauge independent. For
395, we getf]

095y = Z [cal” ( 0,B1(0,m?,m?) — g%,m%C12(0,m%,0,m2, m?, m?)

1
— 92:miCo(0,m%,0,m2,m;, m}) + 29%,Coo(0,m%,0,m2, mi, m7) — 2g%t> (5.35a)
_ Z Cq aa'Ca Coo(mZ’O O,WZ/,mi,mf) (5.35b)
ni
gmw 2 2 2 2 1 2 2 9 o
_ Re(saca) | Co(m2,0,0,m?%,, m2,m2) — ——Coo(m%,0,0,m2,, m2, 5.35¢
8v/2n? Z_: e(sac )< o(mz myy, my, my) w2, oo(my myy, m mt)) ( )
a=2
N 2,002 2 02
__dv g Znt I—CWTZ + finite terms. (5.350)
12872 my, m,

Thus, we get a divergent result for d¢¢, for models with my # mzew .

2To compute the [SM contribution to the coupling we used the Feynman rules from appendix@]
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Chapter 6

The Georgi-Machacek Model

In this chapter we will apply the results from the previous chapters to a specific model containing scalar
triplets: the Georgi-Machacek model to which we will impose an additional Z, symmetry which will
eliminate the cubic terms, making the model simpler without changing significantly the physics [26].
Namely, we will compute for this model the oblique parameters and the one-loop corrections to the Zbb

vertex and we will make a fit of 6gr, and dgrs to the experimental data.

6.1 The model

In 1985, Georgi and Machacek proposed a model [27] which contains one complex doublet with hyper-

charge Y = 1,

b= (‘g) , 6.1)

one real triplet with hypercharge Y = 0,

These fields can be written in the matrix form
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0s N 50* AT §++
@:(‘p %), U=|—¢ A et ], (6.4)
S
These matrices transform under a global SU(2);, x SU(2)g symmetry as & — UL2<I>U,?22 and ¥ —
UL3\I/U,§3, where Ug 1,2 = exp (itQG‘i,R) and Ug 13 = exp (z‘T“GgR), being t* and T the two and three
dimensional generators of SU(2), respectively.
The most general potential which is invariant under the global SU(2),, x SU(2)r symmetry and also
under a Z; symmetry ¥ — — U is [46]

% :%g Tr(@1®) + %g Tr(VI0) + 6y (Tr(@76)) + 52 Tr(27@) Tr(¥1 ) (6.5)

+ B3 Tr(UT W) + By (Tr(¥TW))? — g5 Tr(Tt*®t?) Tr(WITWT?),

where «o; for i € {2,3} and g; for j € {1,...,5} are all real parameters because each trace term is also
real.
This potential admits a vacuum structure such that (0]¢°|0) = a/v/2, (0|A°|0) = b and (0[£°[0) = b,

where a,b € R and are related to the parameters couplings of the model by

2
% +2a°By + 3b* B — ;Iﬂﬁs =0, a3 + 2a” By + 4b% B3 + 120° B4 — a?B5 = 0. (6.6)

This means that, in our notation, we have ng; =1, n;, =1, n, =1, ng, =0, ng, =0, ng, =0, Ny =5,
ny = 3,ny = 1. We also have v = v; = a, z = ¥1 = b, w = w; = +/2b. We can then write the masses of
the W and Z bosons as m¥, = %(a2 +8b%) and m% = 492; (a? + 8b?), such that we have my = mzcyy .
The fact that we have my, = mzcy at tree-level in the [GM model is due to a custodial SU(2) symmetry
that remains unbroken by the VEVs in equation

Using equations and[3.28] we can write for the [GM model

a 2b 2b
U S U . U . 6.7a
( 1)11 \/m ( 3)11 \/m ( 4)11 \/m ( )
a 2v/2b
Vi) = i——— Vo)uy = i—Y2 6.7b
Viu =i—m—s Vahu =i (6.70)

We also have that the matrix 71, defined in[3.11c] is a 1 x 1 matrix that obeys |T1|? = 1. Thus, T} is
given by ¢, where 6 is an arbitrary real parameter which we choose to be 0, such that we get T} = 1.
Changing the value of § would only change the phase of the field St but this phase is arbitrary as it
does not have consequences in the physical predictions of the model.

We can write the mass terms for the double charged scalars in the potential as
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VMes = (86362 + 25502> Erre. (6.8)

Thus we have M7 = 8330 + 254

We can write the mass terms for the single charged scalars in the potential as

ot
Vg = (o= A~ &) M: ()\Jr) ) (6.9)
et
where
40 Bs —abfs —abfs
M3 = [ —abBs  4b’B3+a’Bs  —4B3b® — 1Bsa’ (6.10)

—abBs —4PBsb* — $P85a®  4b?B3 4 a®Bs

This matrix can be written as M? = XtD, X, where

a 2b 2b
\/aQ—\i}ng Va2+8b2 Va2 +8b2
_ 2v/2b a a
X = - a2+8b2 V2 a21+8b2 V2 a12+8b2 (61 1)
0 ~ ]
and
0 0 0
Dy =10 1B5(a®+8b%) 0 . (6.12)
0 0 8b? B3 + Sa?fs

We can then write the mass terms for the single charged scalars in the potential as

ot Sy
Vi = (¢~ A7 &)XTDLX | M| =(S7 Sy S;)Di|Sy]. (6.13)
&t Sy

We thus have m3 = 185(a? + 8b%) and m? = 8b? 33 + 3a?B5. We can also identify matrix X with matrix
U defined in equation[3.12] such that

— a 2v/2b _ 2b a _ 1
Uy = (\/a2+862 T Va2+3b2 0) ) U3 - ( 12182 V2v/a2+8b2 \/5) ) (6143)
2b 1
Uy = (\/a2+8b2 \/5\/:2+8b2 ﬁ) . (6.14b)

This confirms equation|6.7a

We can write the mass terms for the neutral scalars in the potential as
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Re %00/

Im 4,00/
Ve = (Re?” Img” Re&” Imé&” A) Mg [ Rec” |, (6.15)
Im{O/
)\0/
where
8(1261 0 4\/5&[)52 — 2\/?@()65 0 4ab62 — 2@()65
0 4b2 B35 0 —v/2abfs 0
M2 = | 4v2abB; — 2v/2abB; 0 8b?B3 + 16b% B4 + 2a?Bs 0 82026, — %a265
0 —v/2abps 0 $a%Bs 0
4abpBy — 2abfs 0 8ﬁb2ﬁ4 — %a265 0 8b2ﬁ3 + 8b254 + CL2B5
(6.16)
This matrix can be written as Mg = Y7 DY, where
0 a 0 2v/2b 0
Va?+8b2 va?+8b2
0 — 2 0 o 0
Va2+8b2 va2+8b2
_ V3 V6
. 0 2 0 > 6.17
Rl B/ 0 /) 0 J3) - (617)
Vi (k=K 2)? 81/ (k—/k?152)? 3/ 77+ (k= /K2 452)?
kt+yk2452 0 V6j 0 V3j
VR 12)2 8\/32 (b +\/k2 1 52)? 8/32 4 (h+ /K24 2)?
where k = 2a%3; — 2b%(B3 + 334) and j = v/3ab(232 — B5) and
O 0 0 o0 o0
02 0 0 0
Do=]0 0 p2 0 0], (6.18)
00 0 2 0
00 0 0 u
with
1
1 = 555(a2 +8b%), (6.19a)
3 = 875 + aBs, (6.19b)
(s = 4a® By + 4> (B + 3B4) — 21/(202B1 — 20%(B3 + 3B4))2 + 3a26?(B5 — 22)2, (6.19¢c)
13 = 4a>B1 + 46> (B + 3B4) + 2v/(2a2B1 — 2b2(B5 + 3B4))% + 3a2b2(B5 — 262)>. (6.19d)

We can then write the mass terms for the single charged scalars in the potential as
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Re SOO,

ImQDO/
Viry = (Re” Ime” Re&” Imé&” A")YTDyY | Re¢” | =
Ime/
)\O/
Sy
S3
=(SY S 8§ SY SO)Dy|SY
S9
Sg

We can also identify matrix Y7 with matrix V from equation(3.13} such that

k2+j k+4/k2452
ReVi— (0 0 0 —toV/iEir )
( ViR i /A 12)2
V/8b
ImV <\/ 24 8b2 \/a2+8b2 O 0 0) ’
RelVp= (0 0 =% — i
> R Y R e S AN LA RV v
V/8b
Ve = (78 vatm 0 0 0),
R, = 0 0 T6 V3j V3j .
3V (h— /B2 122 3\/52 4 (kR 1572
This confirms equation

The Boundedness From Below (BEB) conditions for the [GM model are [47,/48]

Bl>07

1
7553) ﬂS > O,
B4 ~ {_Bi’n ﬂd < 07

Bs — 24/ B1(3Ps + Ba), and 3 > 0,

305 Bs >0
B2 > w (O)Bs — 21/Bi(CPs + B), Bs>0and Bs <0,
w-(¢) Bs <0

Bs — 2+/B1(¢B3 + Ba),

where
1 \/5 1 1/2
=-1-B)+t>=(1-B)(z+B
@ =g0-m)= % (0= (5+8)) .
and B = /2 (( — 3). These conditions must be satisfied for all values ¢ € [1,1].

Defining the quantities [49]
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(6.20a)

(6.20b)

(6.21a)
(6.21b)
(6.21c)
(6.21d)

(6.21¢)

(6.22a)

(6.22b)

(6.22c)

(6.23)



o =128 + 226, + 1485 £ /(1261 — 2285 — 14552 + 144, (6.24)

5F = 4By + 48, — 265 % [ (481 — 464 + 2B)2 + 462, (6.24p)
wd = 48 + 4By £ \/(4Bs — 481) + 462, (6.24c)
ot = 80, + 48, — 265 £ \/(Sﬁl 48, + 283)% + 852, (6.24d)
oF =128, + 1465 + 2\/453 + 48485 + 1762, (6.24€)
Y1 = 864 + 168s, (6.24f)
ys = 864 + 455, (6.24)
ys = 4582 — Bs, (6.24h)
ya = 45a + 20, (6.24i)
Ys = 4(B2 — Bs), (6.24))
Yo = 8P4 + 4(2 4+ V/2)5s, (6.24k)
yr = 804 + 4(2 — V/2)Bs, (6.241)

the unitarity conditions for the model are [49]

|=L'it‘7 |x§t|a |:E::3t|a ‘xit|7 |$5j,t|7 |y1|7 |y2|7 |y3|7 |y4|7 |y5|7 |y6|7 |y7| < 8. (625)

6.2 Oblique parameters

Using the results presented in the previous section we can compute the oblique parameters in this
model.

The oblique parameter T in the [GM model becomes

5
_ g
= ) (S 0« Gis i)
1
X (5 (ViU )ba + (v U + (RlTUg)ba>F(mZ,u§) (6.26a)
5
1

+Z; (5 Re(WiVi) + \TRe(U4V2)1b+Re(U Rl)lb) x
x (20miy + 1i3) = 3F (miy, 1) (6.26b)
3

+ ) |(UdhaPF(MF,m?) (6.26¢)
a=2
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b2

2 2 2 2
+ 2z (3F(mz,m3) + 2(m3 +m3)) (6.26d)
+ i ( —2(m3y + M7) — 3F(mj MQ)) (6.26€)
a2 + 8p2 w 1 W i1
1
— §(m,% +miy) + gF(m,QL, mi,) (6.26f)
4 5
-3 > ( Im(V, V4 )y + Tm(V3 V2)bb') F(u, piy) (6.269)
b=2 b’ =b+1
5
1 2
=12 (Vi + 2V Va)n) (2m% + ) — 3F(m3,1i8))  (6.26h)
b=2
2
a o 9 .
2(a2 +8b2)F(m2,m3) (6.26i)
b2 2 2 2 2 1 2 2 .
3 b? ,
- ZF(m,Ql, m%) — 47a2 e m?(div — logm?) (6.26k)
B, ) B, ,
6 g v (A —log miy) + 45— i (div — log 417 (6.261)
b? . 5
+ 37a2 IRTEL (div — log mz)> . (6.26m)

The oblique parameter S in the [GM model becomes

«
ms =
4 5 5
T (42 2 ( (VI VA oy + I(Vf Voo ) K (1 1) (6.27a)
b=2b'=b+
5 9 i
37 (V) + 20V Va)uo ) (K (i, m) — 6mE K (1, m3)) (6.27b)

o
[
)

+4 Z (3W5,m ~ LYoy, /—(UgUg)aa/>><

x (S%Vaa,a - 5(UlT U)aar = (UUs)ara ) K (2, m?) (6.27¢)
bt (K 3y ) — O R i) (6.270)
a? + 8b?
3
— K(m?,m%) +6m%K(m3,m%) — 4chWZlogm (6.27¢)
a=2
3
1
+ 4(012/[/ - 812/[/) Z (8%/[/ - i(UlTUl)aa - (UZ;rU?))aa) IOngL - 410g M12> . (627f)
a=2

Thus, we get (as expected) a gauge independent and finite result for oblique parameter S in the [GMI
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model.

The oblique parameter U in the [GM model becomes

2

o g
—U = 4 E
45W 19272 (

a=2

Mm

( (U V1)ab + —= (UAIVQ)ab"F(USRl) )

.
5 (ViU + (RTU3)u0 ) K ()

1 f 1 i i 2
(5 Re(U] Vi) + — Re(U]Va)uo + Re(U3R1)1b) X
2

( (Nbvmw) GmWK(Hb»mW))

+4Z|(U4)1a|2K(m3,M12)
a=2

<
[
)

x (= (ViU )pa +

+
=~
Mm@

o

8b2 -

o K ) — b K m)
160° 2 2 2 g2 2

+ a2 + 8b2 (K (M7, myy) — 6myy K (M, myy,))

- K(m%,miv) + 6miy K (mi, miy)

2
—42 Z ( T (V; Vi) g + Tm(V V2)bb’) K (g, pg))
b=2 b'—b+1
5

=3 (Vi 28m(V V) ) (. m) — 6m K (3, m3))

b=2
3

1
—4 Z (SW(saa/ — i(U}LUﬂaa/ - (UgUS)aa’) X
a,a’=2
1
% (stbura = 501U awr = (U Us)ara ) K (2, m2)

1652 -
T 218 (K (m3, miy) — 6miy, K (m3, miy))
3
+K(mh,mz) 6mZK(mh,mZ) 45W210gm
a=2

+852, Z (sW S (U U aa (UgUg)aa) logm?2 — 4log Mf) .

We also obtain, in this model, a gauge independent and finite result for the U parameter.

The oblique parameter V in the model becomes

aV = Z Z (f Im(V{ i)y + Im(V Vz)bb/>2H(u§,,u12,,,mQZ)

2
384w CW< P
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(6.28a)

(6.28Db)

(6.28¢)

(6.28d)

(6.28¢)
(6.28f)

(6.289)

(6.28h)

(6.28i)

(6.28)

(6.28K)

(6.28l)

(6.29a)



5
+ 3 (I (Vi V)1 + 2Im (Vi Vo)1) (12H (i3, m%, m%) + H (g, m%,m3)) (6.29b)
b=2

3
1
+4 Z (5%/[/5(1,(1/ — §(U1TU1)aa/ — (UgUg)aa/) X

1
x (sav(s — 5[0 — (U] Ug)a,a)H(mi, m2,,m%) (6.29¢)
162 -
pEREl (12H(m§»m%v»m2z) + H(mﬁ,m%wm%)) (6.29d)
+4(2s%, — 1)2H(M?, M2, m%) (6.29¢)

The oblique parameter W in the [GM model becomes

X

3 5
aW’ 3847r2< ZZ( U Vi)ab + \[(UALVQ)abJF(U Rl)ab)
1_ —
3V

(‘/2 U4)ba (R{U?))ba) H(Mgamiam%ﬁ/> (6303)

5
1 2
Z (5 (U V)1 + 7 Re(UJVa)1p + Re(UTRl)lb) x
( 2 (i iy i) + H i miy.miy ) ) (6.300)
3
+ 4 |(Un)ral*H(mZ, M7, miy) (6.30c)
a=2
8b2 [ 2 2 2 2 2 2
T e (12H(m3,m27mw) + H(mg,mz,mw)) (6.30d)
16b2 7 2 2 2 2 2 2
Z 8 (12H(M1»mWamw)+H(M1,mw,mw)) (6.30¢)
—12H(m?, m¥,, m3y,) — H(mi,m%v,m%v)) . (6.30f)

The oblique parameter X in the model becomes

« eg 1
X g (s g ) (GO )+ Gl ) + 4G M) (631a)

In fact, the potential[6.5]is not the most general one invariant under SU(2), x U (1) that we might write.
The SU(2)r symmetry is imposed by hand and will thus be violated at one-loop level. Therefore, despite
having my = mzcy at the tree-level, when performing one-loop calculations we get divergences. That

is why we get a divergent result for the oblique parameter T. The most general scalar potential invariant
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under SU(2), xU(1) with one scalar doublet with hypercharge Y = 3, one scalar triplet with hypercharge
Y = 0 and scalar triplet with hypercharge Y = 1 (the scalar content of the [GM model) that we can write

is

V=43 ¢To+ 3 ETE + pd ATA + X1 (676)% + A2 (ET2)? + A3 (ATA)? (6.32a)
+ M (670)(ETE) + A5 (670) (ATA) 4+ X6 (ETE)(ATA) + A7 (ETA)(ATE) (6.32b)
+ A8 T2+ NSET0+ Moy TA + Ao ATy + Mg pTo + Ajgolp+ Aiolo (6.32¢)
+ A2 CTC+ AswlA + X ATw 4+ Ay wiw + A5 yTw (6.32d)
+ X' T+ N I+ Ar 7l (6.32€)
where
oot
0=(p®@¢)s = [fsa* °] (6.33)
300900

is a SU(2) triplet with hypercharge Y = 1,

0, .—

+,,0%
VE(¢®éh::[}(wmwO w*wﬂ] (6.34)
—¢%p

is a SU(2) triplet with hypercharge Y = 0,

)= (60 4 M f ] 63

is a SU(2) doublet with hypercharge Y = £,

2 ,—et+t + 0%
N e
12

is a SU(2) doublet with hypercharge Y = 1,
= (= = = ++¢0 + ¢+ 6.37
(=(E®Eh= Vf(ﬁ &—-¢¢) (6.37)

is a SU(2) singlet with hypercharge Y = 2,
R Pttt %
w=(EeE)s= 5 | e - (6.38)
Ere— +¢%
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is a SU(2) triplet with hypercharge Y = 0,

£++§0*
(€0t — e+
E 400 —2cte) (6.39)
(¢t —¢%)

&¢°

1

S

75 (8

\‘
I
™
®
[1]x
&
|
Sl
S

is a SU(2) quintuplet with hypercharge Y = 0 and

ATAT
V2AT A0
n=(A®A)s = /200N~ 3*A7) (6.40)
—V/2X7\0
ATAT
is a SU(2) quintuplet with hypercharge Y = 0.
To obtain the potential (equation from equation [6.32] we must set the coefficients g, Ag,

A13, A14, A15, A6 @nd A17 to 0 and relate the other coefficients according to

2v/2 1 V2
5 =213, A2 =A¢ — T)\m, A3 :1>\6 - ?)\10, (6.41a)
2 3
Ay =2X5 + %)\10, A1 = — V2o, A12 25)\6, (6.41b)
such that we can write the potential as
t 2=tz 4 2 At t 2v2 =f=)2
V=13 9T+ 2u3Z2 4+ 3 ATA + Xy (670)% + | A6 — 7>\10 ES) (6.42a)
1 2 2
+ <4)\6 - \3[A10> (ATA)? + (2)\5 + \3[)\10> (¢Tp)(ETE) (6.42b)
+ X5 (9T d)(ATA) + X6 (EFZ)(ATA) + A7 (BTA)(ATE) + Ao plo + Mg ofp (6.42c)
— V2 ooto + g)\g ¢fe. (6.42d)

6.3 One-loop corrections to the Zbb vertex

We will now present the results for the one-loop corrections to the Zbb vertex in the model.
In this model we do only have one scalar doublet. This implies that we will only have one coupling
constant f and one coupling constant e, where f and e are defined in equation We can choose

these constants to be real due to a freedom on the phase of the fields bz and tr. These constants are
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related to the VEVs of the neutral fields and to the masses of the b and ¢ quarks by

2
- ‘/iam" ~0, e= famt. (6.43)

f

Thus, we can write the constants ¢,, d, and r; as

ca =e(Uh)ia = @(Uﬂim (6.44a)
da = f(Ul)la = \/iamb (Ul)la ~ 07 (644b)
T = —\;}(Vﬁu = —%(Vﬁu ~ 0. (6.44c)

6.3.1 Charged scalar contribution

The contributions from the diagrams with charged scalars to the one-loop corrections to the Zbb vertex

dg%, and dg%, can be written as

2

3 272
595 = 1o (222|<U1>1a|2fz<m3>> = g i) (6.45)
a=2

Tt B 2
1672 72 a2 a? + 8bH2
dg%, = 0. (6.46)

6.3.2 Neutral scalar contribution

As in this model we have r; = 0, then the contributions from the diagrams with neutral scalars to the

one-loop corrections to the Zbb vertex dg7, and §g%, are equal to 0 in the approximation m;, = 0.

6.4 Numerical fit to the experimental results

The Standard Model predictions for the couplings g;, r, are g?™ = —0.420875 and g3 = 0.077362 [50].

We can relate the observable A, with the couplings gr.r» by [51]

2/ T — A1y
Ay = It b (6.47)
T — 4y + (14273

, 21)2
where r, = 92198 gng 4y = (m2)” We use the numerical values mp(m%) = 3 GeV and m, =

grb—9gRb my

91.1876 GeV [6]. Inverting equation[6.47] we get [52]
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o ,/71_4,“,(& 1—(1+2,ub)A§)+(1+2ub)Ab
9Lb — (6.48)

9Rb N = (1 +/I-(1+ 2ub)Ag) — (14 2) Ay

such that we have two solutions for . We can also relate the observable R, with the couplings gz r»
by [411/52]

QCD .QED
spcte
Ry

= 5 6.49
spcACPCAED 4 g 5, + 55 + 54 (6.49)

where 3P = 0.9953 and ¢®P = 0.99975 are[QCD]and[QED] corrections, respectively, s. + s, + s, + 54 =
1.3184 and [41,/52]

sp=(1—6) (926 — gro)? + (906 + gr6)* = g7 (2 — 6) (1 + 0%) + 120) - (6.50)

Using equations [6.49 and [6.50] we get

R = ~acD_aED et ou Lo f S2d fo | (6.51)
cAOPAED (2 — 65 ) (1 + 0%) + 12110) 1 — Ry
This equation allows for two signs for ggs.
Using the [SM predictions for the couplings we get A7 = 0.9347 and Ry = 0.21581.
An overall fit of various electroweak observables gives [6]
Rit = 0.21629 + 0.00066, Al = 0.923 + 0.020. (6.52)

We have then that Ri" deviates from its[SM value by 0.7 and A deviates from its [SM]value by 0.60.
However, making the average of two direct measurements of A, done at LEP1 and SLAC in two different

ways, we get [53]

A% = 0.901 £ 0.013. (6.53a)

We get then, a deviation of 2.60 of A}"*"*% from the [SM] prediction.

Using the central values of equations [6.52]and [.53] and equations [6.48| and we get the values
displayed in table [6.1] where we also present dg;, = g1, + 0.420875 and dgr = gr — 0.077362.

We can see that in solutions 3 and 4 the value of dgr; is too large, which indicates that solutions 1
and 2 might be preferred over solutions 3 and 4. Reference [54] claims that there are already a couple
[LHCI points that favour solution 1 over solution 2 and that the high-luminosity-LHC can be decisive to
understand which of the solutions is the correct one. On the other hand, reference [55] claims that the

PETRA (35 GeV) data favours solution 2 over solution 1.
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[ solution | arb JRb | dgs | bgmy |

1 —0.420206 | 0.084172 | 0.000669 | 0.006810
2ft —0.419934 | —0.082806 | 0.000941 | —0.160168
3t 0.420206 | —0.084172 | 0.841081 | —0.161534
4t 0.419934 0.082806 | 0.840809 | 0.005444

javerage 1| —(0.417814 | 0.095496 | 0.003061 | 0.018134
2average |1 —0.417504 | —0.094139 | 0.003371 | —0.171501
gaverage 0.417518 | —0.095496 | 0.838688 | —0.172858
4qaverage 0.417504 0.094139 | 0.838379 | 0.016777

Table 6.1: Results for gz, and gr, computed from the experimental values for 4, and Rs. Solutions labelled by fit”
were computed using A, while solutions labelled by "average” were computed using A2'*%%°,

To make the numerical fit to the experimental data, we will make a further simplification: we will put
Bs = 23 on the scalar potential. In this case, matrix Mg defined in becomes

8a2 B, 0 0 0 0
0 8b2 5 0 —2v/2abfy 0
M2 = 0 0 8b2 B3 + 160254 + a®Bs 0 820264 — /24 Bs
0 —2v2abBs 0 a?Bs 0
0 0 82028, — /24255 0 8b% 5 + 8b% B4 + 242 B

(6.54)
The off-diagonal elements of the first line are equal to 0, such that we get alignment. We will consider
Re(¢?) as the Higgs boson present in the [SM] such that we have 84?3, = m? = (125.09 GeV)?.
In this aligned version of the model, the matrix Y defined in becomes

2v/2b

0 va2+8b2 0 Va2+8b2 0
0 ——2v2b 0 —2_ 0
va2+8b2 Va2+8b2
Y = V3 V6 |, (6.55)

0 0 / 0 /

V6 V3
0 0 El 0 5
1 0 0 0 0

The masses of the neutral scalars become 3 = B (a? +8b?), 2 = 8b%B3 +3a>fa, u3 = 8b(B3+3B4),

u? = 8a?B1, and the matrices Vi, V> and R; become

ReVi=(0 0 0 0 1), mVi= (Jotem —vllm 0 0 0), (6.56a)
Relo=(0 0 — ¥6 o),  Imlh= (s 2o 0 0 0), (6.56b)
Ri=(0 0 ¥ 5 o). (6.56¢)

The strategy used to fit the experimental data was to scan the allowed regions for the potential

parameters by the BEBlconditions and the unitarity conditions and select the ones for which the deviation
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of the oblique parameters S and U from their experimental values were less than 1¢. For each of those
points, we computed dgr. (0gr is equal to 0). The result, as well as the experimental points and the
prediction, can be seen in figure[6.1] We fitted only solution number 1 from table[6.]as in the [GM model
we have dggr, = 0, which means that we will not be able to get a good fit to the other solutions. We have

used LoopTools [56L/57] to perform the numerical integration of the Passarino-Veltman functions.

30

20

10

=
= L ]
x
. 4
o
'=] 0 » -
0 k- Rbﬁt
Abﬁt
AbEVE'EgE
T e e E
1 1 - - L -
6 4 2 0 2 4 6 8
6gx 10°

Figure 6.1: Scatter plot of values of dgr. and dgr. The square marks the SM prediction, the circle marks the best-
fit point of solution 1™ and the triangle marks the best-fit point of solution 12°®% . The orange lines

mark the 1o (full lines) and 20 (dashed lines) boundaries of the region determined by the experimental
value of Ri!, the light blue lines mark the 1o (full lines) and 20 (dashed lines) boundaries of the region

determined by the experimental value of A:°" % and the purple lines mark the 1o (full lines) and 2o
(dashed lines) boundaries of the region determined by the experimental value of Aft. The red points
are inside the 1o region determined by the experimental value of R, the green points are outside that
1o region E)ut inside the 20 one and the dark blue points are more than 2¢ away from the experimental
value of R,

From the figure above we see that we do not get a better agreement with solution 1 than in the [SML
In fact, we cannot even reach the 20 interval of A7 "%, This happens because in this model, as in any
model with only one scalar doublet (and possibly other additional SU(2) multiplets of higher dimension),
in the limit m;, — 0 the Yukawa coupling f vanishes, making dgr = 0. This will make it difficult to find a
better fit to the experimental data than in the [SML

Using the points from the previous plot that are less than 2o away from the experimental value of Rl

(red and green points from figure[6.), we made the three plots on figures and [6.4] showing the
masses of the scalars used to obtain those points.
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Figure 6.2: Plot of u3s = ms = M; as a function of u2 = mo for the points less than 20 away from the experimental

value of Rf from the plot of figure The red points are the ones for which R, is less than 1o away
from its experimental value.
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Figure 6.3: Plot of 1.4 as a function of ua = m» for the points less than 20 away from the experimental value of
R™ from the plot of figure The red points are the ones for which R, is less than 1o away from its
experimental value.
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Figure 6.4: Plot of x4 as a function of u3 = ms = M, for the points less than 20 away from the experimental value
of R from the plot of figure The red points are the ones for which Ry, is less than 1o away from its
experimental value.

The plots from figures[6.2} [6.3]and [6.4] show us the range of masses for each of the new scalars that

give a better fit to the experimental data.
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Chapter 7

Conclusion

In this thesis, we presented a formalism to work with models with an arbitrary number of SU(2) singlets
with hypercharges Y = 0,1, 2; SU(2) doublets with hypercharge Y = 1/2 and SU(2) triplets with hyper-
charge Y = 0, 1. We then applied this formalism to compute some observables in general models with
this scalar content and computed then these observables in the concrete case of the model. The
main problem with our formalism was that the relation my, = mzcyw is only valid for models whose mul-
tiplets with non-zero [VEV] obey the relation T(T + 1) = 3Y2, where T is the isospin of the multiplet and
Y is its hypercharge. Thus, in a general model with triplets we have my # mzcw. The quantities we
computed required a subtraction of the result for that quantity in the [SM) from the result for that quantity
in our[NPlmodel. As in the[SMlIthe masses of the gauge bosons obey the relation my, = mzcy and in
a general model with triplets that relation is not verified, then this subtraction was not trivial.

In chapter [2, we described a feature of the (and of other models), related to its scalar sector,
which is custodial symmetry. Custodial symmetry is responsible for the relation my, = mzcy between
the masses of the Z and W gauge bosons.

In chapter[3] we presented the aforementioned formalism, defining its scalar content and the matrices
that describe the mixing of the scalars. We also wrote the gauge-kinetic Lagrangian for a model with
that scalar content and identified the relation between the fields of the Goldstone bosons and the fields
of the scalars that appear in the multiplets.

In chapter 4, we used the formalism from chapter |3|to find a prescription to compute the oblique
parameters in a model with scalar SU(2) singlets, doublets and triplets. We started by identifying the
relevant Feynman diagrams and computed then the vacuum polarization tensors and, when needed,
their derivatives with respect to the square of the momentum of the external gauge bosons. We obtained
a divergent and gauge dependent result for parameter 17" and finite and gauge independent results for
parameters S, U, V, W and X. In computing the oblique parameters, due to the problem mentioned in

the first paragraph of this chapter, we used some Feynman rules for the [SM that do not look the same
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compared to the usual Feynman rules but that become the usual ones when we use the relation
mw = mzcw . In this way, we were able to obtain a finite result for the oblique parameters S and U that
we would not obtain otherwise. We proved then that, using these Feynman rules for the [SM| we get a
finite result for the oblique parameters S and U in a model with any scalar content. Still in chapter [4] we
showed that the part proportional to the metric tensor of the vacuum polarization tensor of the photon at
q*> = 0 (being ¢ the four-momentum of the external gauge boson) is equal to 0, which is a consequence
of the vacuum polarization tensor of the photon being transverse as required by the Ward-Takahashi
identities. We also compared our result for the oblique parameters S and U with those from [40] for a
model with one doublet with hypercharge Y = 1/2 and one triplet with hypercharge Y = 0. Our results
agreed with the ones from [40].

In chapter we computed the one-loop corrections to the Zbb vertex in a model with scalar singlets,
doublets and triplets. We started by identifying the two observables that are influenced by these cor-
rections. We identified the relevant Feynman diagrams and computed the contribution of each of the
diagrams to the couplings of the Z boson with the b quark and its anti-particle using the formalism from
chapter [3] The result that we obtained is divergent for models with my # mzcw . This may also be
related to the problems in the subtraction of quantities from the same quantities in our model
mentioned in the first paragraph of this chapter. In the case of the one-loop corrections to the Zbb vertex
we could not fix this problem.

Finally, in chapter[6] we applied the results from the previous chapters to compute the oblique param-
eters and the one-loop corrections to the Zbb vertex to the concrete case of the Georgi-Machacek model.
We started with a short description of the model. Having identified the mixing matrices between scalars
for this model, we proceeded to compute the oblique parameters for the [GM model. We computed then
the one-loop corrections to the Zbb vertex also for the model. Then, relating the corrections to the
couplings with the relevant observables that had been identified in the previous chapter, and assuming
alignment in the model, we compared our results with the experimental ones for different values of
the masses of the [NP] scalars. We did not obtain a better fit to the experimental results than the one
obtained by the[SMl This happens because the [GM model only contains one SU(2) scalar doublet. In
the approximation m; — 0, this will imply that the coupling gg; in the model will be equal to this
coupling in the [SM] such that only g7, will be changed by the additional scalar content of the [GM model.
However, the result for g, in the model is always bigger than the [SM one, such that the [GMI fit is
always worse than the [SM one.

A possible way to continue the work of this thesis would be to find a way to get a finite and gauge
independent result for the one-loop corrections to the Zbb vertex. Using the work of this thesis, we will

also try to publish a paper on an international journal with the results obtained for the oblique parameters.
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Appendix A

Short Review of the Standard Model

The Standard Model Lagrangian can be written as a sum of several terms as Lsy = Loep + Lgauge +
Lbirac + Lscalar + Lyukawa. AS mentioned before, the is a gauge theory with gauge group SU(3) x
SU(2) x SU(1). SU(3) will be the group of color charge. It is a Lie group with a Lie algebra of dimension
8. This means that SU(3) has 8 generators that will, according to the Goldstone theorem [58,[59], give
rise to 8 real gluon fields G¥ (a = 1, ...,8). The mathematical description of the behaviour of the gluons
and the way they interact with the quarks is given by Locp. This part of the Lagrangian will not be
examined here as we will focus on the electroweak part of the Lagrangian.

SU(2) and U(1) are Lie groups with Lie algebras of dimensions 3 and 1, respectively. This means
that, according to the Goldstone theorem, we will have 3 real gauge bosons W# (a = 1,...,3) due to
SU(2) and 1 real gauge boson B* due to U(1). The gauge group SU(2) has coupling constant —g and
the gauge group U(1) has coupling constant —g'.

However, the gauge bosons W# and B* will not be the physical gauge bosons. Let us define the

fields A* and Z* as
AH _(w  —Sw B*
(Z“) - (Sw cw ) (Wé"> ’ (A1)

where ¢y and sy are, respectively, the cosine and the sine of the Weinberg angle 0y,. This transforma-
tion is unitary, real and orthogonal. ¢y and sy are given in terms of the couplings g and ¢’ by
/

=97 sy =—L (A2)

ew = /g2+g/27 Swe= /92+g’2

We define also the fields W#+ and W*~ as

_ Wiy

WHE
V2
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The fields W*+ are complex fields and are complex-conjugate of each other.

The gauge part of the Lagrangian is then given by Lyauge = —3 (Fy,“,Fﬁ” +30 Fijjf“’),
where Fy,, = 0,B, — 8,8, and Fj., = 0,W;, — 0,Wj, + 935 1_1 €j:WikuWi,. Using the inverse
relations of the ones from equations and we obtain the Lagrangian terms that describe the
interaction of the physical electroweak gauge bosons.

For the kinetic term for a fermion field, we would like to have a real Lorentz-invariant term. For that,
we can start by trying the usual Dirac term Lpjyac = ¥ (i4#9,,) 1, where ¢ is any fermion field, v* are the
Dirac matrices and ) = /T A, with A being a 4 x 4 matrix defined by A, = v} A, AT = A. In the Dirac,
Weyl and Majorana representations of the Dirac matrices (the most common representations) A = .

However, the Dirac Lagrangian presented above would not be gauge invariant. To fix that, let us
define the covariant derivative D, as D* = 9" — ig(W{"T1 + W}'T, + W{'T5) — ig’ B"Y, where T, (a =
1,...,3) are the generators of the gauge group SU(2), which obey [T}, Ty] = iZ?:l e;wT; and Y is the
generator of the gauge group U(1). The operators T, (a = 1, ..., 3) are called isospin operators, while the
operator Y is hypercharge operator. Defining

/

e=gsw=—gcw = R — (A.4)

Vo +g”

and the operator @, T and T as

T +iTy
==

and using equations [A.1] and [A.3] we can write the covariant derivative in terms of the physical gauge

QR=T13+Y, Ty (A.5)

boson fields as

DH = 9" + ieQAM — i L (Ty — Qs2)) 2" — ig(WHT T, + WHT_). (A.6)
w

9
cw
Let us also define the left and right chirality projection operators Pr p as Pr r = “FTV where 5 =

0y ly 23,

The eigenvalue of v5 is the chirality. The operators Pr r are called projectors as they obey the usual
relations of the projectors Pg + P, = 1, (Pg,1.)* = Pr,1, PrP1, = PL,Pr = 0.
The operator Pg projects the fermion field ¢ into its component ¢z = Pry with chirality +1, such that
vs%r = g and the operator Py, projects the fermion field « into its component «; = P+ with chirality
—1, such that y5¢r, = —vp.

The weak interaction is chiral, which means that right-handed and left-handed fermions of the same
type undergo different interactions. However, electromagnetism is not chiral, as right- and left-handed
fermions undergo the same electromagnetic interaction. Therefore, in the right- and left-handed

fermions have different T3 and different Y but they have the same @Q = T3 + Y. That can be achieved
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by putting the left-handed fermions in SU(2) doublets while the right-handed fermions are put in SU(2)

singlets.

The fermion field content of the is then divided into quarks and leptons. The leptons are
(ver )’ (ur pz)’, (e 7). er, pr and 7. The left-handed leptons are placed in SU(2)
doublets of hypercharge ¥ = —1/2, while the right-handed leptons are placed in SU(2) singlets of
hypercharge Y = —1. The[SMlquarks are (ur, dL)T, (cL sL)T, (tr bL)T, UR, Cr, tr, dr, sg and bg.
The left-handed quarks are placed in SU(2) doublets of hypercharge Y = 1/6, while the right-handed
up-type quarks (u, ¢ and t) are placed in SU(2) singlets of hypercharge Y = 2/3 and the right-handed
up-type quarks (d, s and b) are placed in SU(2) singlets of hypercharge Y = —1/3.

We can now fix our attempt to write the Dirac Lagrangian by writing it as Lpiac = &L(iyﬂDH)wL +
Yr(iv" D, )R, Where 1 can be any fermions (either lepton or quark). This Lagrangian is now invariant
under SU(2) x U(1) and it contains the terms describing the interaction of the gauge bosons with the

fermions.

Until now, we do not have mass terms for the gauge bosons and we know that the Z and the W=
bosons are massive. Furthermore, in nature, we do not observe the SU(2) xU(1)y gauge symmetry. We
just observe the gauge symmetry U(1)q, where @ is the electric charge. To solve both of these issues,
we introduce a scalar field which we allow to have a non-zero [VEV!] This scalar field cannot be a SU(2)
singlet as this would mean that SU(2) would remain unbroken. Furthermore, it must have 0 electric
charge, so that U(1)o remains unbroken. The simplest possible choice for breaking the SU(2) x U(1)y
gauge symmetry meeting the previous conditions is to have one, and only one, doublet of SU(2). This

is the choice used in the[SMland it turns out to give good predictions of physical observables.

Let us call ¢ to the [SMl scalar doublet. For it to have a component with 0 electric charge, its hyper-
charge must either be +1/2 or —1/2, as the components of a doublet have 75 = +1/2and Q =75 + Y.
As the representations of SU(2) are equivalent to their complex conjugate representations, then it is
arbitrary to choose between hypercharge +1/2 or —1/2. We will then choose Y = +1/2. Thus, we can

write ¢ as ¢ = (p LpO)T, where ot and ¢° are complex scalar fields.

To write a gauge invariant scalar Lagrangian we use again the covariant derivative, such that we
get Localar = (D,0)T(DH¢) — V(¢), where V(¢) is the scalar potential of the The scalar potential
must be invariant under SU(2) x U(1) and must also be at most quartic in the scalar fields due to
renormalizability. Thus, the most general scalar potential that we can write with only one scalar doublet
is V = p2¢'e + A¢'¢)?, where 2 has dimension M?2 and X is dimensionless. For the potential to be
bounded from below (which means that it does not become infinitely negative when we increase the
fields) we must have A > 0. For spontaneous symmetry breaking to happen we must have ;2 < 0, so
that the potential has a minimum for ¢T¢ # 0. When these conditions are met, V has a minimum at

#T¢ = v (where v can be chosen to be real without loss of generality), with v = —g. As we want the
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non-zero [VEV]to be in the neutral component of the doublet, we can write
H+1ix
\/E )

where H and  are real scalar fields with zero VEVL If we develop the potential using we find
that the fields x and »* are massless and the field H has mass m? = —2u%. Thus, the fields x and

W =v+ (A.7)

T are called Goldstone bosons and appear because we started with a gauge symmetry with gauge
group SU(2) x U(1)y whose algebra has 4 generators and this symmetry was broken into a symmetry
with gauge group U(1)o whose algebra has 1 generator, which means that we will have 3 Goldstone
bosons that will get absorbed by the gauge bosons that acquire mass and will become their longitudinal

components. The field H is the Higgs boson, which is a physical particle.

Thus, we can write Lecatar = (D,0)T(DH¢) — u2¢T¢ — M(¢T¢)2. By developing this Lagrangian, we
get the terms describing the interaction of the scalars with the gauge bosons and of the scalars with
each other and we find that the Z and W* gauge bosons acquire a mass. The mass of the Z boson is
given by mz = fg—z’w and the mass of the W boson is given by my, = % Thus, we obtain the relation
mwy = MzCw.

We still do not have mass terms for the fermions. Similarly to what happens to the gauge bosons,

spontaneous symmetry breaking will be responsible for the mass of the fermions.

Let us start by the leptons. The SU(2) left-handed lepton doublets have hypercharge Y = —1/2, the
SU(2) scalar doublet ¢ has hypercharge Y = +1/2 and the SU(2) right-handed lepton singlets have

hypercharge Y = —1. Thus, we can write

»CYukawa leptons — —YI (W E) (blR - yl*g ¢T (VllLL> 5 (A8)

where [ stands for any of the leptons and y; is a dimensionless complex constant. It is, however, possible
to rephase the field er such that the constant y; becomes real and in this case, we find that the mass of
the lepton [ is given by m; = y,v. Using we get the terms describing the interaction of the leptons

with the gauge bosons.

In the case of the quarks, the Yukawa interactions are a little different. Let us call p; (j = 1,2,3) to
three generic up-type quarks and n; (j = 1,2, 3) to three generic down-type quarks. These will not be
the physical quarks. The SU(2) doublets (p;r njL)T ( = 1,2, 3) have hypercharge Y = —1/6, the
SU(2) scalar doublet (™ ch)T has hypercharge Y = +1/2, the SU(2) singlets p;r have hypercharge
Y = +2/3 and the SU(2) singlets n;r have hypercharge Y = —1/3. We also have the SU(2) scalar
doublet (% —@*)T, which has hypercharge Y = —1/2. We can then write
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(OF3

3 3 + 3 3
Lyukawa quarks = — Z Z ij? (m n]iL) nkRr (i()) - Z Z Ajkl (pJT TLJT) PkRr <<p90> (Aga)
k=1
3

j=1k=1 j=1

3 3 3
2 r e e (M) - S A e (U)o
j=1k=1 j=1k=1

where T" and A are 3 x 3 matrices of Yukawa coupling constants. They are in general complex and are
not constrained by any symmetry. The mass matrices of the quarks will then be (M,,);r = vA,; and
(My);r = vI'jx. These matrices are not, however, diagonal. Hence, we will use a theorem that says that
for any square matrix M there are two unitary matrices U and U’ such that D = UTMU’ is a diagonal
matrix with real and non-negative matrix elements. Using this theorem, we have the unitary matrices
Uy, Up, Up, Ug, such that UfTMpUIg = M, = diag(my, me, my), UZ’LMnU}% = My = diag(mg, ms, myp).

Defining the physical fields in terms of the fields p;, pjr, n;r. and n;r as

uy, UR
Ur=c | = ULprLy Ur=|cr | = UIZ;TPR, (A.10a)
tr, tr
dL dR
DL = ST, = UZTnL, DR = SR = UIT%TTLR, (A10b)
bL bR
we can write
1| -
Lyukawa quarks = — " ULVerkmMiDret + D MyDre° (A.11a)
+ UM URg® — DLV ey Mulhpp™ (A.11b)
+ DMV} e rUre™ + DrMyDry (A.11c)
+ UM ULp® — Ur M VexmuDre™ |, (A.11d)

where Vg = UPTUT is the matrix [60,61]. Using |A.11, we get the terms describing the interac-
tion of the quarks with the gauge bosons.
To obtain the full Yukawa Lagrangian, we just need to sum the Yukawa Lagrangian for the leptons

with the Yukawa Lagrangian for the quarks, such that Lyukawa = Lyukawa leptons + Lyukawa quarks-
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Appendix B

Feynman Rules for the General

Formalism

Here we present the Feynman rules for the general formalism computed from the gauge-kinetic La-

grangian in equation The Feynman rules of the scalar propagators are:

S Z.

_____ - ———— :m (B.1a)
5 ! B.1b

""""""" = Fomtie (5:10)
g++ ,
c 1

_____ ————— T MZ1ic (B.1¢)

The Feynman rules for the three-particle vertices, where the particles indicated are entering the

vertices, are:

----- GF = —iemwgu, (B.2a)
I
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_ /s
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\
\
\
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\
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/
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\
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\
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/
/
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/
/
S0
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= *ZQ%QW (S%/V(;m + (UIU4)1a — (U§U3)1a>

.m
= *ZQ%QW (S%V(;al + (UIUAI)al — (U§U3)a1>

= i€0aa’ (P— — P+ )p

. 1
= Zi (S%V‘Saa’ - §(UIU1)a/a - (UgUB)a’a) (p— _P+)u

w

-9

1
= (5 (VAo + (Vi Voo ) (g = )

w
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p \\\ . . t
- T
e Wi =g (G0 + 5 (WU + (Ve (0 = ) (B.2g)
q /’
/
/
Sa
Sy
\
\
P\ "\
\\ + . 1 t 1 t +
e W = g (GO + 5 (UVa)an + (U] Ba)an) (0 = )y (B.2h)
q /’
/
/
Sa
Wi

for b # 1 (B.2i)

.. m .
----- S0 = —zgﬁgw(lm(vf Vi)ip + 2Im(Vy v2)1b), for b # 1 (B.2))

. 1 1
> ————— SI? = Qngng, (5 Re(UfVl)lb + ﬁ Re(Ul‘/Q)lb + RB(U§R1)15>,

Zy
St
\
\
P—&-\\
N
A Ay =2iedee(p- = P ) (B.2k)
/
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So T
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)’VVV\/ Z, = zi (28%/[/5@’@ - (TlTTl)c’c) (P— = P+)u
/
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/
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Sa
\
\
b \\

)’VVV\/ WJ = *ig(TlTUzL)ca(q —DPu
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/
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\ P
A W= ig(UyT1)ac(q — D)y
/
q //
/
/
St
Wi
> ----- St = 2i gmw g (UST)1e
W,
+
W,
> _____ Sy =2igmw g (T{Us)a
wr

(B.2l)

(B.2m)

(B.2n)

(B.20)

The Feynman rules for the four-particle vertices, where the particles indicated are entering the ver-

tices, are:
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= —1g - gup(U4T1)ac
S+
Sp
= i9°V/ 20, (V3 Tt e
S+
Sp
= i9*V/2g, (T{ Va) ot
g—-
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(B.3p)

(B.30)

(B.3r)

(B.3s)

(B.31)



= 72i92ﬁguv(UgU3)a’a (BSU)

= —2ig°v/20,0 (U U3 ) ara (B.3v)
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Appendix C

Feynman Diagrams for the One-loop

Gauge Boson Propagators

nz

The diagrams that contribute to II7,7, at one-loop level areF_']

Sp Sy
0
z N\ z z N\ z
\ \
u v (1) 1 v (2) (C1a)
— — — —
q q q q
g+
¢ 0
o~ S
I\ ! A
Z \! z Z 1 N Z
I v @ [V VLN | el @ (C.1b)
— — —> \\ , —
q q g ~o__- «
S0

"We do not include here the diagrams that have equal amplitudes to the same diagrams in the[SMbecause we are interested
only in the New Physics part of Ay (with V'V’ being either AA, AZ, ZZ or WW), which means that these diagrams do not
contribute to our results.
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Sy
PN z /7
\ /
Y v @ [V VLN |
— —> —
q q q
Z
Sa
//“\\
Z 1 Z /
u S @
— —>
q q
W
S+
//»\\
Z 1 \ Z
[V VLN | /m v @
—> \\ ; —
q ~p-7 q
g

The diagrams that contribute to II{;};, at one-loop level are

Sp
/’\
\
v
w+ \ /I Wt w+
’ . @ ’
— — —
q q q
G+t
(&
n’A‘
|
\
w+ \ /I Wt wt s
U AN AANIAA U @ B~
— — —
q q q
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(C.1¢)

(C.1d)

(C.1e)

(C.2a)

(C.2b)



W+ Pt \\\ W+ w+ Pt \\\ W+
7 v @ [V, = N| [ @ (C.2¢c)
—> — — \ , —
q q - q
\y
w+ St
St S&t
//“\ /“\
wt s Nt wt s Nowt
u \ v (@) " \ v (C.2d)
—> —> —> —>
q q q q
Z W=
G+
-~
Wt s Nt
7 \ v @ (C.2¢e)
—> —>
q
A
The diagrams that contribute to II'}; at one-loop level areE]
St ST
/’*\ ’A\
. S
A\ A A ! A
L v (1) " v (2) (C3a)
— — — —
q q q q
St S&
//%\\ //“\\
A v . A A v . A
[V VN | ;m v @ [V VN | /m v @ (C.3b)
—> \\ ;7 — — \ ; —
q ~p7 q 7 g’ q
Sy S, ~

2Here we include all the diagrams with internal bosons as they are used in section
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(5) 1 «fvxéL\"~rf\ﬁ§v v (6)  (C30)
q q

A A
@) 7 v (8)  (C3d)

—> —
q q
ct c”
M A ANV @ [ e Ve Ve ¥ AN vV (CSe)
a g 4 q - g
et c

The diagrams 5 to 10 are equal to the same diagrams in the[SML For that reason, we discard them in
the calculation of the oblique parameters.

The diagrams that contribute to IT'}", at one-loop level are

S St
N P
o Vo
\
A ! Z A ! Z
u v (1) " v (2) (Caa)
— — — —
q q q q
St S
- PR i
A v N Z A/ N Z
[V VN | fa v @ [NV oV oN | I v @ (C.4b)
— — — —
¢ Mgl d ¢ gl
S Se
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Appendix D

Standard Model Feynman Rules

In this work we compute several quantities which are subtractions of the Standard Model values from
those quantities from the values of those quantities in a New Physics model. For that purpose we need
the Feynman rules for the Standard Model. Some of the Feynman rules we use for the SM vertices are
not the same as the usual SM Feynman rules (which can be found, for example, in [28] or in [29]) as we
subtract the SM quantities from the same quantities in models for which my, # mzcy and some of the
SM Feynman rules are simplifications for my, = mzcew . For that purpose, we present here the Feynman

rules used in this work for the SM vertices that are different from those from [28] or [29].

Zn
2
----- 6+ = —igmwewgy, (2 1) (D.1a)
My
W
Gt
\
\
P\ "\
K . my
K e ey Z, =—igcw (1 = g2 > (p— *p.:,-)u (D.1b)
/ w
p-/
’
/
o
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AN
\
gmzcw
)’V\f\/\/ VV/:Lt = 5W(q—p)’u (D.1c)
/
a/
/
/
GT

The Feynman rule in [D.1a] can be obtained by requiring gauge invariance in the process e~ —
v, Z W~. Knowing this Feynman rule, we can obtain the Feynman rule in by requiring gauge
invariance in the process Z — e~ . pu* v, and the Feynman rule inby requiring gauge invariance

in the process W~ — e~ 7, v, 1.
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