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Abstract

We propose a new method to calculate the valence light-front wavefunction of a system of two interacting particles. It is based on the
use of the contour deformation method for the solution of the Bethe-Salpeter equation, combined with analytic continuation methods for
the projection of the obtained Bethe-Salpeter wavefunction to the light-front. In this proof-of-concept study, we employ a scalar toy model
and find excellent agreement between the results obtained with the new contour deformation method and the Nakanishi method used in the
literature. We also demonstrate that the contour deformation method is able to handle two extensions to the scalar model that mimic some
features that might be present in future applications of this method to Quantum Chromodynamics.

I Introduction

Understanding hadrons has been one of the major undertakings
of modern physics. Hadrons are composed of strongly interacting
quarks and gluons described byQuantumChromodynamics (QCD)
and make up almost all of the visible matter in the universe.
Even though they are very abundant, there are still many ques-

tions about their properties, namely how momentum and spin is
distributed among the partons— the particles thatmake a hadron.
Many experiments have explored these matters, for instance at
HERA, RHIC and the LHC,while newones are proposed and in con-
struction, such as the EIC at the Brookhaven National Laboratory
[1] and COMPASS/AMBER at CERN [2].
These experiments probe the partons inside the hadrons at

lightlike distances and encode their spatial, momentum, spin and
flavor structure. In this work, we focus on one of them: the parton
distribution functions (PDFs), which can be extracted form deep
inelastic scattering (DIS), which is studied in highly energetic 𝑒−𝑁
scattering experiments [3].

𝑒− 𝑒−
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Figure 1: Schematic diagram of a Deep Inelastic Scattering event

The PDF 𝑓𝑖(𝑥, 𝑄2) is the probability distribution for a parton of
species 𝑖 to carry a fraction 𝑥 of the total longitudinal momentum
of the hadron, at some energy scale 𝑄2 [4]. These functions are
very important in the description of the hadronic interaction with
other particles.
Apart from the knowledge obtained from experiments, there

have also been theoretical efforts in the calculation of the PDFs
(and other structure functions) from Lattice QCD [5–7] and from
continuum methods like the ones based on the Nakanishi repre-
sentation [8–12].

Theoretically, the PDFs are defined on the light-front, by a spe-
cific overlap of the light-frontwavefunctions (LFWFs) of the hadron
[13]. In the light-front, the hadron state can be expanded in
definite particle number Fock states, whose coefficients are the
LFWFs [8]. To calculate the LFWFs, one needs to project the
hadronic Bethe-Salpeter wavefunction (BSWF), which is the result
of the bound-state equation inQCD— theBethe-Salpeter equation
(BSE), onto the light-front.

One way of performing this calculation is via the Nakanishi rep-
resentation, which defines a smooth weight function 𝑔 to derive
the BSWF and the LFWF to handle the numerical complications
brought by the analytic structure of the interaction [8, 9]. This
method requires the knowledge of the full complicated analytic
structure of the problem, which might not be available in practical
QCD calculations. A review of other methods is given in [14].

Here we present a newmethod based on contour deformations
which calculates the BSWF directly from the BSE while dealing
with the analytic structure by deforming the needed integration
paths such that the singularities are avoided [15]. The information
which is needed from the BSWF to define the LFWF is then extrap-
olated from the BSE result through analytic continuationmethods.

Wefirst use a scalar toymodel as a proof-of-concept, comparing
the results obtained with the contour deformations to the Nakan-
ishi method to demonstrate its validity.

This work begins with a brief overview of the needed theory of
bound states in quantum field theory, followed by an overview of
light-front dynamics and a description of the Nakanishi method
and the contour deformation method. Afterwards, the obtained
results are presented.

Wefinishwith the introduction of twomodifications to the scalar
model that will help to bridge the gap for future QCD calculations
and demonstrate that the contour deformation method is also ca-
pable of handling them.
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II Bound states

II.A Bethe-Salpeter Wavefunction

The study of bound states in quantumfield theories starts with the
observation that the correlation functions 𝐺(𝑝1, … , 𝑝𝑛) of the the-
ory will produce poles when 𝑃 2 → 𝑚2

𝜆, where 𝑚2
𝜆 is the squared

mass of the 𝜆 state. For example, in a four-body correlation func-
tion, 𝐺 factorizes to [16]:

𝐺(𝑃 2 → 𝑚2
𝜆) = 𝑖Ψ({𝑥𝑖}, 𝑃 )Ψ†({𝑦𝑖}, 𝑃 )

𝑃 2 − 𝑚2
𝜆 + 𝑖𝜖

+ finite terms.
(1)

𝑥1

𝑥2

𝑥3
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𝐺
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𝜆
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Figure 2: Schematic view of the appearance of poles and of the
BSWF in correlation functions in the limit 𝑃 2 → 𝑚2

𝜆.

The residues of the poles in 𝐺 are the Bethe-Salpeter WFs Ψ
[17], which can be viewed as the relativistic field theory analogs of
the wavefunctions of the Schrödinger equation, in non-relativistic
quantum mechanics. The Bethe-Salpeter WF does not carry a
probability interpretation, however, as finite-dimensional repre-
sentations of the Poincaré group are not unitary.
Poincaré covariance implies that translation operators only in-

duce a global phase factor. In the BSWF, after removing the phase
factor, the remainder can be written as:

Ψ(𝑥, 𝑃 ) = ⟨0|T𝜙(0)𝜙∗(𝑥) |𝑃 ⟩ , (2)

Ψ(𝑞, 𝑃 ) = ∫ 𝑑4𝑥𝑒𝑖𝑞⋅𝑥Ψ(𝑥, 𝑃 ). (3)

The calculation of theBethe-SalpeterWFsproceeds through the
analog of the Schrödinger equation in relativistic quantum field
theory: the Bethe-Salpeter equation [17]. The focus of this work
is the two-particle BSE, which can be written as follows (with im-
plicit integrations over the loopmomentum on the right-hand side
of both equations):

Ψ = 𝐺0𝐾Ψ ⇔ 𝜓 = 𝐾𝐺0𝜓. (4)

The Bethe-Salpeter amplitude 𝜓 is defined such that Ψ = 𝐺0𝜓. A
diagramatic representation is shown in figure 3.

Ψ = 𝐺0 𝐾 Ψ

Figure 3: Schematic picture of the Bethe-Salpeter Equation

The BSE depends on two main ingredients:

• 𝐺0, which is the product of the disconnected propagators of
the two particles. These are the dressed propagators, that is,
the ones with quantum corrections resulting from the quan-
tum equations of motion - the Dyson-Schwinger equations
[18, 19].

• 𝐾, which is the interaction kernel with all irreducible 2-
particle diagrams — that is, the ones that do not fall apart by
cutting one quark and anti-quark line.

Equation (4) amounts to an eigenvalue equation for Ψ, with an
eigenvalue equal to one. In practice, one adds an artificial eigen-
value 𝜆(𝑃 2) which depends on the total momentum:

𝜆(𝑃 2)𝜓 = 𝐾𝐺0𝜓. (5)

The mass of the bound state is then determined by the condition
𝜆(𝑃 2 → 𝑚2) = 1. Other excited states can be found in the same
way, by obtaining the eigenvalue spectrum 𝜆𝑖(𝑃 2) and finding the
points 𝑃 2

𝑖 = 𝑚2
𝑖 where 𝜆(𝑃 2

𝑖 = 𝑚2
𝑖 ) = 1.

II.B Light-front Wavefunction

As discussed in section I, the PDFs can be calculated via the over-
lap of light-front WFs, which are projections of the Bethe-Salpeter
WFs onto the light-front. To do so, in light-front dynamics quanti-
ties are defined on an hypersurface which is determined by [20]:

𝑥0 + 𝑥3 = 0, (6)

assuming a Minkowski four-vector 𝑥𝜇 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) and the
usualmetric signature (+, −, −, −). One defines the light-front co-
ordinates 𝑥+ and 𝑥− as

𝑥+ = 𝑥0 + 𝑥3, 𝑥− = 𝑥0 − 𝑥3, (7)

so that equation (6) amounts to 𝑥+ = 0. The two remaining coor-
dinates 𝑥⟂ = {𝑥1, 𝑥2} are transverse to the surface.
A four-momentum integration changes to:

∫ 𝑑4𝑞 = 1
2

∫ 𝑑2𝑞⟂ ∫ 𝑑𝑞+ ∫ 𝑑𝑞−. (8)

Using light-front dynamics has some advantages. It can be
shown that in light-front dynamics, 𝑝− ≥ 0 implies 𝑝+ ≥ 0 for phys-
ical states. The vacuum |0⟩ only contains 𝑝+ = 0 states, in contrast
to the equal-time case where |0⟩ is an infinite sum of definite par-
ticle number states [9].
The simpler vacuum allows one to write hadronic states as a

sumof definite particle number states. The coefficients of the said
sum are the 𝑛-particle wavefunctions Ψ(𝑛)

𝐿𝐹, which have a prob-
abilistic interpretation. The minimal particle number wavefunc-
tions are the leading terms in the expansion and are known as the
light-front valence WF Ψ(2)

𝐿𝐹[8, 9].
One can now focus on the two-body valence WF and drop the

superscript (2).
Taking the Bethe-Salpeter WF Ψ(𝑞, 𝑃 ) as a function of the total

momentum𝑃 and the relativemomentum 𝑞 between the particles,
the light-front WF is defined as its Fourier transform with respect
to 𝑞−, up to a normalization factor 𝒞:

Ψ𝐿𝐹(𝛼, 𝑘⟂) =

= 𝒞 ∫ 𝑑𝑞−Ψ (𝑞−, 𝑞+ = 𝛼
2

𝑃 +, 𝑞⟂ = 𝑘⟂, 𝑃) ,
(9)

The 𝑘+ component is written as a fraction 𝛼
2 of the 𝑃 + component,
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with 𝛼 ∈ [−1, 1] which will be related to the longitudinal momen-
tum fraction below.
One further defines the parton distribution amplitude (PDA)

𝜙(𝛼) through an integration over 𝑘⟂:

𝜙(𝛼) = ∫ 𝑑2𝑘⟂Ψ𝐿𝐹(𝛼, 𝑘⟂). (10)

III Calculation of Light-Front Wavefunctions

III.A Euclidean conventions

In the remainder of this text, Euclidean conventions are used,
which amounts to a change of the metric to (+, +, +, +). This
transformation is done by defining a new coordinate 𝑥4 = 𝑖𝑥0 such
that a generic four-vector 𝑥 can be written as follows, with square
brackets denoting Euclidean vectors from now on:

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] . (11)

As a consequence, scalar products, acquire a minus sign when
compared with their Minkowski counterpart,

𝑝 ⋅ 𝑞 = −𝑝𝐸 ⋅ 𝑞𝐸, (12)

where 𝑝𝐸 ⋅ 𝑞𝐸 is related to the light-front coordinates through

𝑝𝐸 ⋅ 𝑞𝐸 = 𝑝⟂ ⋅ 𝑞⟂ − 1
2

(𝑥−𝑦+ + 𝑥+𝑦−) . (13)

A four-vector 𝑥𝐸 is spacelike if 𝑥2
𝐸 > 0 and timelike if 𝑥2 < 0. On

mass-shell particles have 𝑝2
𝐸 = −𝑚2. From now on, the subscript

𝐸 is dropped.

III.B Scalar toy model

For this study, a scalar toy model will be used. It contains two
scalar particles, a particle 𝜙 of mass 𝑚 and a particle 𝜒 of mass 𝜇.
The model is defined by a very simple interaction Lagrangian:

ℒ𝑖𝑛𝑡 = 𝑔𝜙𝜙𝜒. (14)

The coupling constant 𝑔 has amass dimension. Two dimension-
less variables can be defined so that the mass scale 𝑚 drops out
of the calculations, a coupling strenght 𝑐 and a mass ratio 𝛽:

𝑐 = 𝑔2

(4𝜋𝑚)2 , 𝛽 = 𝜇
𝑚

. (15)

To write down the Bethe-Salpeter equation for this model two
approximations are made:

• In principle,𝐺0 from section II.A is constructed from the par-
ticles’ propagators which are obtained by solving their Dyson-
Schwinger equation. In this model the dressing effects are
assumed small enough so that the tree-level propagators are
a good approximation [15].

• The interaction kernel 𝐾 is taken to be a single ladder ex-
change - that is, two 𝜙 particles interact by exchanging a 𝜒
particle. For 𝛽 → 0 this model is known as the Wick-Cutkosky
model, which has an analytical solution [21, 22].

The Bethe-Salpeter equation for the amplitude 𝜓 is written ex-
plicitly as:

𝜓(𝑞, 𝑃 ) = ∫ 𝑑4𝑞′

(2𝜋)4 𝐾(𝑞, 𝑞′)𝐺0(𝑞′, 𝑃 )𝜓(𝑞′, 𝑃 ), (16)

where the kernel 𝐾 and 𝐺0 can be written respectively as:

𝐾(𝑞, 𝑞′) = 𝑔2

(𝑞 − 𝑞′)2 + 𝜇2 , (17)

𝐺0(𝑞, 𝑃 ) = 1
𝑞2

1 + 𝑚2
1

𝑞2
2 + 𝑚2 . (18)

𝑃 is the total momentum, 𝑞 is the external relative momentum
and 𝑞′ is the loop momentum. In view of the light-front dynamics
to be implemented shortly, an additional vector 𝑘 with 𝑘+ = 0 is
defined [8, 9]:

𝑞 = 𝑘 + (𝜉 − 1 + 𝜀
2

) 𝑃 , (19)

𝑞1 = 𝑞 + 1 + 𝜀
2

𝑃 = 𝑘 + 𝜉𝑃 , (20)

𝑞2 = −𝑞 + 1 − 𝜀
2

𝑃 = −𝑘 + (1 − 𝜉)𝑃 . (21)

Here, 𝜀 ∈ [−1, 1] is an arbitrary momentum partitioning parameter
and 𝜉 ∈ [0, 1] is the longitudinalmomentum fraction. A comparison
with equation (9) shows that

𝑞1 = 𝜉𝑃 +, 𝑞2 = (1 − 𝜉)𝑃 +, 𝜉 = 1 + 𝛼
2

, (22)

that is, the particles carry a fraction 𝜉 and (1 − 𝜉), respectively, of
the longitudinal momentum 𝑃 + of the bound state.

III.C Nakanishi Method

From the definitions of 𝐾 and 𝐺0 in equations (17) and (18), re-
spectively, one can see that there are singularities that require at-
tention when performing the calculations numerically.

One method to avoid these complications is based on the
Nakanishi method [23]. The main idea is to represent the Bethe-
Salpeter WF as an integral over a non-singular weight-function -
the Nakanishi weight function - multiplied by a denominator that
carries the analytic structure. The desired quantities such as the
light-front WF and the PDA are then extracted from the weight
function.

The light-front WF can then be written as an integral over the
weight function [8, 9]:

Ψ𝐿𝐹(𝑥, 𝑧) = 1
4
√

2
∫

∞

0
𝑑𝑥′ (1 − 𝑧2)2ℎ(𝑥′, 𝑧)

[𝑥′ + 𝑥 + 1 + 𝑡(1 − 𝑧2)]2
. (23)

To access all these quantities it is first necessary to determine
the weight function ℎ from the Bethe-Salpeter equation, now as
an equation for ℎ:
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∫
∞

0
𝑑𝑥′ ℎ(𝑥′, 𝑧)

[𝑥′ + 𝒩(𝑥, 𝑧)]2
= ∫

∞

0
𝑑𝑥′ ∫

1

−1
𝑑𝑧′𝑉 (𝑥, 𝑧, 𝑥′, 𝑧′)1 − 𝑧′2

1 − 𝑧2 ℎ(𝑥′, 𝑧′), (24)

𝒩(𝑥, 𝑧) = 𝑥 + 1 + 𝑡(1 − 𝑧2), (25)

𝑉 (𝑥, 𝑧, 𝑥′, 𝑧′) = 𝑐
2

1
𝒩(𝑥, 𝑧)

∫
1

0
𝑑𝑣 [𝐾(𝑣, 𝑧, 𝑧′, 𝑥, 𝑥′) + 𝐾(𝑣, −𝑧, −𝑧′, 𝑥, 𝑥′)] , (26)

𝐾(𝑣, 𝑧, 𝑧′, 𝑥, 𝑥′) = 𝜃(𝑧′ − 𝑧)(1 + 𝑧)2𝑣2

[𝑣(1 − 𝑣)(1 + 𝑧′)𝒩(𝑥, 𝑧) + 𝑣2(1 + 𝑧)𝒩(𝑥′, 𝑧′) + (1 − 𝑣)(1 + 𝑧)(𝛽 + 𝑣𝑥′)]2
. (27)

To calculate the light-front WF from the Nakanishi method it is
necessary to know the full details of the analytic structure of the
ingredients. In practical dynamical calculations, this may not be
the case.

III.D Contour deformations

The method proposed in this work tries to overcome these diffi-
culties by integrating equation (16) directly, and dealing with the
analytic structure by avoiding the singularities through deforma-
tions of the integration path [15].

In the case of the scalar toymodel, the locations of the singular-
ities are already known. In principle one only needs to know the
integration regions that are free of singularities so that the inte-
gration path can be deformed, allowing its application to problems
where this information is only available, for example, numerically.

The first step in this method is to define the kinematics of the
problem, based on the definitions of III.B. The rest frame of the
hadron will be used as reference, thus writing 𝑃 and 𝑘:

𝑃 = 2𝑚
√

𝑡
⎡
⎢
⎢
⎢
⎣

0
0
0
1

⎤
⎥
⎥
⎥
⎦

, 𝑘 = 𝑚
√

𝑥
⎡
⎢
⎢
⎢
⎣

0
0√

1 − 𝜔2

𝜔

⎤
⎥
⎥
⎥
⎦

. (28)

The condition 𝑘+ = 0will be implemented later when projecting
the Bethe-Salpeter WF onto the light-front. Equation (28) defines
the following three Lorentz invariants:

𝑥 = 𝑘2

𝑚2 , 𝜔 = 𝑘̂ ⋅ ̂𝑃 , 𝑡 = 𝑃 2

4𝑚2 , (29)

and 𝑃 2 = −𝑀2, with 𝑀 is the mass of the bound state.

In the following analysis, the parameter 𝜂 is taken to be 𝜂 = 1
2 .

According to equation (22), the light-frontmomentumpartitioning
parameter 𝛼 = 2𝜉 − 1 is introduced, such that:

𝑞1 = 𝑘 + (1 + 𝛼
2

) 𝑃 , 𝑞2 = −𝑘 + (1 − 𝛼
2

) 𝑃 , (30)

and the product of the propagators, 𝐺0, becomes

𝑚4𝐺0(𝑥, 𝜔, 𝑡, 𝛼) = (31)
1

(𝑥 + 1 + 𝑡 + 𝛼2𝑡 + 2𝛼𝜔
√

𝑥
√

𝑡)2 − 4𝑡(𝛼
√

𝑡 + 𝜔
√

𝑥)2
.

Beforewriting the kernel𝐾, the loopmomentum 𝑘′ is expressed

in hyperspherical coordinates:

𝑘′ = 𝑚
√

𝑥′

⎡
⎢
⎢
⎢
⎣

√
1 − 𝜔′2√1 − 𝑦2 sin𝜗√
1 − 𝜔′2√1 − 𝑦2 cos𝜗√

1 − 𝜔′2𝑦
𝜔′

⎤
⎥
⎥
⎥
⎦

. (32)

With these definitions, the kernel 𝐾 becomes:

𝑚2𝐾(𝑥, 𝜔,𝑥′, 𝜔′, 𝑦) = (33)
1

𝑥 + 𝑥′ + 𝛽2 − 2
√

𝑥
√

𝑥′Ω(𝜔, 𝜔′, 𝑦)
,

Ω(𝜔, 𝜔′, 𝑦) = 𝜔𝜔′ +
√

1 − 𝜔2√1 − 𝜔′2𝑦. (34)

After collecting all elements the final formof the Bethe-Salpeter
equation can then be written:

𝜓(𝑥, 𝜔, 𝑡, 𝛼) =

= 𝑔2

𝑚2
1

(2𝜋)3
1
2

∫
∞

0
𝑑𝑥′𝑥′

× ∫
1

−1
𝑑𝜔′ √1 − 𝜔′2𝐺0(𝑥′, 𝜔′, 𝑡, 𝛼)

× ∫
1

−1
𝑑𝑦 𝐾(𝑥, 𝜔, 𝑥′, 𝜔′, 𝑦)𝜓(𝑥′, 𝜔′, 𝑡, 𝛼).

(35)

The integration in 𝑦 can be done analytically using

∫
1

−1
𝑑𝑦 1

𝐴 − 𝐵𝑦
= log (𝐴 + 𝐵) − log (𝐴 − 𝐵)

𝐵
. (36)

III.E Projection onto the light-front

To obtain the light-front WF from the calculated Bethe-Salpeter
WF it is necessary to transform (9) to Euclidean kinematics.
The first step is to understand the integration in 𝑞− in the kine-

matics of (28) and implement the condition 𝑘+ = 0. This is done
by considering 𝑘 and 𝑃 in a moving frame:

𝑃 = 2𝑚
√

𝑡
⎡
⎢
⎢
⎢
⎣

0
0√

1 − 𝑍2

𝑍

⎤
⎥
⎥
⎥
⎦

, (37)

𝑘 = 𝑚
√

𝑥
⎡
⎢
⎢
⎢
⎣

√
1 − 𝑧2√1 − 𝑦2 sin𝜗√
1 − 𝑧2√1 − 𝑦2 cos𝜗√

1 − 𝑧2𝑦
𝑧

⎤
⎥
⎥
⎥
⎦

. (38)
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The momentum 𝑃 gains an extra parameter 𝑍, and the condition
𝑘+ = 0 implies 𝑦 = 𝑖𝑧/

√
1 − 𝑧2 with 𝜔 = 𝑘̂ ⋅ ̂𝑃 as in (29). This

entails 𝑘2
⟂

𝑚2 = 𝑥 — the 𝑥 variable plays the role of the transverse
momentum squared. One can now write 𝑞− as a function of the
new variables:

𝑞− = −2𝑚2

𝑃 + (2
√

𝑥
√

𝑡𝜔 + 𝛼𝑡) . (39)

For the light-frontWF in (9), 𝛼, 𝑡, 𝑥 are fixed and𝜔 is the integration
variable. As the original domain in 𝑞− is (−𝑖∞, 𝑖∞) and

√
𝑡 = 𝑖𝑀

2𝑚 ,
then 𝜔 ∈ (−∞, ∞). The final form of the light-front WF, written in
its dimensionless form Ψ̃𝐿𝐹, is then given by

Ψ̃𝐿𝐹(𝛼, 𝑥, 𝑡) = 2
√

𝑥
√

𝑡
𝑖𝜋

∫
∞

−∞
𝑑𝜔 Ψ(𝑥, 𝜔, 𝑡, 𝛼)|𝑘+=0. (40)

In the moving frame, the solution of the Bethe-Salpeter WF is
Ψ(𝑥, 𝑧, 𝑦, 𝑍, 𝑡, 𝛼), where

𝑘̂ ⋅ ̂𝑃 = 𝑧𝑍 + 𝑦
√

1 − 𝑧2
√

1 − 𝑍2. (41)

Because the Bethe-Salpeter WF is Lorentz invariant, its solution
in themoving frame and in the rest framemust be the same, there-
fore the rest frame solution (40) can be equally used for Ψ in (9).
The Bethe-Salpeter equation, however, only provides the WF in

the domain 𝜔 ∈ [−1, 1], so, to be able to access 𝜔 ∈ ℝ, numerical
analytic continuation methods will be used.

IV Analytic Structure

IV.A Propagators

By equating the denominator of the propagator product𝐺0 to zero,
one can find its singularities. There are two singularities in the
complex 𝜔 plane:

𝜔+ = −𝑥 + 1 + (1 + 𝛼)2𝑡
2(1 + 𝛼)

√
𝑥

√
𝑡

,

𝜔− = 𝑥 + 1 + (1 − 𝛼)2𝑡
2(1 − 𝛼)

√
𝑥

√
𝑡

.
(42)

After the integration in 𝜔, these will become cuts in the complex
√

𝑥plane. The cuts depend on𝛼 and are parametrized by the value
of 𝜔 ∈ [−1, 1]. There are four cuts, labeled by two parameters, 𝜒
and 𝜆, that can take on the values, ±1. The cuts have a generic
form, written as:

√
𝑥𝜆

𝜒 = 𝐴
√

𝑡 [𝜔 + 𝑖𝜆√𝜔2 − 1 − 1
𝑡(1 + 𝜒𝛼)2 ] , (43)

where the prefactor 𝐴 is written as a function of 𝜒 and 𝛼:

𝐴(𝜒, 𝛼) =
⎧{
⎨{⎩

−(1 + 𝛼), 𝜒 = +

(1 − 𝛼), 𝜒 = −
. (44)

An example configuration of the cuts in the complex
√

𝑡 plane is
shown in figure 4.
To be able to do the integration without crossing any branch

cuts, the path in
√

𝑥must go through the green line in figure 4 until
reaching the outermost point, which, for any 𝛼 ∈ [−1, 1], is given

−2

−1

0

1

2

3

4

−2 −1 0 1 2 3 4 5

=
{√

x
}

<{
√
x}

√
x(+,+)

√
x(+,−)

√
x(−,+)

√
x(−,−)

√
t

(1 − α)
√

t

(1 + α)
√

t

Figure 4: Branch cuts
√

𝑥𝜆
𝜒 ≡

√
𝑥(𝜒, 𝜆) of 𝐺0 in the complex

√
𝑥

plane, for 𝛼 = 0.3 and
√

𝑡 = 1 + 2𝑖. The real axis is intersected
by one of the cuts generated by 𝐺0 thus requiring contour defor-
mations. The shaded areas indicate the regions of the

√
𝑥 plane

where there might be branch cuts.

by:
max (1 + 𝛼, 1 − 𝛼)

√
𝑡. (45)

For a purely imaginary
√

𝑡, the branch cuts close on themselves,
making it impossible to create a viable contour deformation. For
numerical calculations, it is necessary to add a real part to

√
𝑡,

which amounts to working with a complex mass 𝑀.
The cuts do not cross the real axis, and therefore one can use

the usual path
√

𝑥 ∈ (−∞, ∞) without contour deformations, if
the following condition holds:

ℑ{
√

𝑡} < 1
1 − 𝛼

∧ ℑ{
√

𝑡} < 1
1 + 𝛼

. (46)

IV.B Kernel

Repeating the same proceeding as for the propagator product𝐺0,
one can derive the branch cuts in the

√
𝑥′ complex plane gener-

ated by the kernel. These cuts have a very similar structure to the
propagator cuts, and can be written as

√
𝑥′

𝜒 =
√

𝑥 (Ω + 𝑖𝜒√Ω2 − 1 − 𝛽2

𝑥
) . (47)

Following the convention of (35), the primed variable corresponds
to the loop momentum and the non-primed corresponds to the
external momentum.
For 𝜔, 𝜔′ and 𝑦 inside the usual range [−1, 1] Ω is also bounded

in the same interval Ω ∈ [−1, 1].
Although these cuts look very similar to the ones from the prop-

agators, there is an additional caveat, related to the structure of
the Bethe-Salpeter equation as an integral equation. In practi-
cal calculations, it is needed to iterate the obtained solution until
convergence, which requires the path in the external

√
𝑥 to be the

same as the loop path in
√

𝑥′.
But the cuts (47) in

√
𝑥′ also depend on the external variable

√
𝑥. A path that avoids the kernel cuts for a specific value of

√
𝑥
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must also avoid the cuts for all other previous values of
√

𝑥. When
constructing a path for the

√
𝑥′ integration, one is always bounded

by one vertical line and a circle, which delimit the safe region to
proceed, as shown in figure 5.

−2

−1

0

1

2

3

−2 −1 0 1 2 3 4

=
{√

x
′ }

<{
√
x′}

√
x′
+

√
x′
−

√
x

Figure 5: Kernel cuts
√

𝑥′
𝜒 for 𝛽 = 2 and

√
𝑥 = 1 + 2𝑖. The red

shaded regions mark the possible locations where cuts can ex-
ist, while the green region marks a safe region for the subsequent
value of

√
𝑥.

The vertical line and the circle translate to the requirement that
the path in

√
𝑥′ must always increase in both the real part, and in

the absolute value.

IV.C Integration path

The collection of the constraints from the propagators 𝐺0 and the
kernel 𝐾 result in a path for the integration in

√
𝑥′ that must al-

ways increase in both real part and absolute value, while also go-
ing through the green dashed line in figure 4.
One can then identify three separate segments of the integra-

tion path:

1. The first segment proceeds from the origin to the outermost
point in the dashed green line of figure 4, given by (45). This
outermost point will be called

√
𝜏 in what follows.

2. The second segment returns back to the real axis, following a
circle centered in the origin that increases its radius along the
way, in order to comply with the requirement that the path
must always increase in the absolute value.

3. Finally, the last segment connects to the previous one on the
real axis and then continues to +∞, with no further cuts to
avoid.

One can write the three segments as three different connected
paths, parametrized by one variable 𝑧 ∈ [−1, 1]. The domain was
selected such as to simplify the numerical implementation. The
paths, named 𝛾𝑖(𝑧) are:

𝛾1(𝑧) =
√

𝜏𝑧+ (48)

𝛾2(𝑧) = |
√

𝜏| (𝑟𝑚𝑎𝑥𝑧+ + 𝑧−) 𝑒𝑖 arg(
√

𝜏)𝑧− , (49)

𝛾3(𝑧) = 1 + 𝑧 + 2𝑟𝑚𝑎𝑥|
√

𝜏|
1 − 𝑧

, (50)

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5

=
{√

x
}

<{
√
x}

γ1

γ2

γ3

(1 + α)
√

t

rmax|
√

t|

Figure 6: Integration path for
√

𝑡 = 1 + 𝑖, 𝛼 = 0.4 and 𝑟𝑚𝑎𝑥 = 1.5.
The red and orange lines are the propagator cuts.

ℑ{
√

𝑡} 0.20 0.80 1.20

ℜ{1/𝜆} 10.815 8.694 6.341
ℑ{1/𝜆} 0.267 1.431 3.853

Table 1: Inverse eigenvalue 1/𝜆, of the Bethe-Salpeter equation,
for three values of ℑ{

√
𝑡}.

where 𝑟𝑚𝑎𝑥 > 1 to avoid the kernel cuts. The quantities 𝑧+ and 𝑧−

are defined as:

𝑧+ = 1 + 𝑧
2

, 𝑧− = 1 − 𝑧
2

. (51)

An example path is shown in figure 6.
The integration in the

√
𝑥 variable is finally written as a sum of

the contribution of the three paths:

∫
∞

0
ℱ(𝑥′)𝑑𝑥′ →

3
∑
𝑖=1

∫
1

−1
𝛾′

𝑖(𝑧)ℱ(𝛾𝑖(𝑧)) 𝑑𝑧, (52)

where 𝛾′
𝑖(𝑧) is the derivative of 𝛾𝑖(𝑧) with respect to 𝑧.

V Results

In this section, the numerical results obtained from the contour
deformations method are presented and compared with the re-
sults obtained from an implementation of the Nakanishi method,
following section III.C.

V.A Bethe-Salpeter amplitude

This section starts with the discussion of the properties of the
Bethe-Salpeter amplitude obtained from its BSE. The results dis-
cussed in the following were obtained by numerical integration
with Gaussian quadrature [24], of equation (35), with 𝑁𝑥 = 96
points in 𝑥 and 𝑁𝜔 = 95 points in the 𝜔 integration. Three val-
ues of

√
𝑡 = 0.20 + 0.20𝑖, 0.20 + 0.80𝑖 and 0.20 + 1.20𝑖, as well as

𝛽 = 4 were chosen. 𝛼 ∈ [−1, 1] is an external variable in the BSE.
Firstly, the focus is on the inverse eigenvalue 1/𝜆 as in equa-

tion (5). In this work, only the ground state (highest eigenvalue)
was calculated, however, it is equally possible to obtain the whole
spectrum. The results are displayed in table 1.
A three-dimensional plot of the amplitude for

√
𝑡 = 0.20 + 0.20𝑖

is shown in figure 7, as a function of 𝑥 and 𝜔 and for a value of
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𝛼 = −0.602. Figure 7 highlights the main features of the Bethe-
Salpeter amplitude. There is a strong 𝑥 dependence, i.e., the am-
plitude falls off with 𝑥 (which corresponds to 𝑘2

⟂), but almost no
variation in 𝜔. Figure 8 shows the 𝜔 dependence for one value of
𝑥 = 11 and two opposite values of 𝛼.

One can see that the Bethe-Salpeter has a symmetry under the
combined transformation

𝜔 → −𝜔, 𝛼 → −𝛼. (53)

This symmetry is just a manifestation of the fact that the two con-
stituents are indistinguishable and as such, the labeling of themo-
mentum four-vectors 𝑞1 and 𝑞2 is arbitrary. Equation (53) is equiv-
alent to relabeling the two particles.

The dependence of the Bethe-Salpeter amplitude on 𝑥 is shown
in figure 9. The main difference between the three values of

√
𝑡

appears mainly in the imaginary part of the amplitude.

Finally, the eigenvalues of the BSEwere also calculated as func-
tions of

√
𝑡, for different values of ℜ{

√
𝑡}. Figure 10 displays the

results which are in perfect agreement with figure 11 of [15] and
the Nakanishi results [8, 9], plotted as red dots in figure, 10 for
ℜ{

√
𝑡} = 0.20.

V.B Light-front WF and PDA

After having calculated the Bethe-Salpeter amplitude 𝜓, we pro-
ceed to the calculation of the light-front WF via the solution of
equation (40).

As discussed in section III.E, the BSE result for the amplitude
𝜓 is only available in the domain 𝜔 ∈ [−1, 1], whereas the LFWF
requires the knowledge ofΨ over the whole domain 𝜔 ∈ (−∞, ∞).
To this end, an analytic continuation using the Schlessinger point
method is employed [25]. It takes 𝑁 points of the target function
𝑓 as input and returns an approximation 𝑅 of 𝑓 in the form of a

10−8
10−4

100 104 108
−1

−0.5
0

0.5
1

0

0.5

1

1.5

α ≈ −0.602

x

ω

Figure 7: Bethe-Salpeter amplitude for
√

𝑡 = 0.20 + 0.20𝑖, as a
function of 𝑥 and 𝜔.
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Figure 8: 𝜔 dependence of the Bethe-Salpeter amplitude 𝜓 for
𝛼1 = −0.602, 𝛼2 = 0.602 and 𝑥 = 11.

0.00

0.20

0.40

0.60
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=
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Figure 9: 𝑥 dependence of the Bethe-Salpeter amplitude 𝜓 for
𝛼1 = −0.602 and 𝑥 = 11.

continued fraction:

𝑅(𝑥) =
𝑓(𝑥1)

1 +
𝑎1(𝑥 − 𝑥1)

1 +
𝑎2(𝑥 − 𝑥2)

1 + ⋯

(54)
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Figure 10: Eigenvalues of the Bethe-Salpeter equation as a func-
tion of

√
𝑡.
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Figure 11: Absolute value of the light-front wavefunction (not nor-
malized)as a function of 𝑥 and 𝛼.

The coefficients 𝑎𝑖 of the fraction are determined by enforcing
the requirement that 𝑅(𝑥𝑖) = 𝑓(𝑥𝑖) at the input points.
The following results for the light-front wavefunction were ob-

tained with the Bethe-Salpeter amplitudes calculated in the pre-
vious section, and by using 24 points as input to the Schlessinger
method. The Nakanishi method results used for comparison were
obtained with 𝑁𝑥 = 40 and 𝑁𝑧 = 30. The light-front wavefunction
as a function of

√
𝑡 = 0.20 + 0.80𝑖 is shown in figure 11.

To allow for a comparison between the contour deformation and
Nakanishi results, the light-front WFs are normalized as follows
(inspired by the probabilistic interpretation as discussed in II.B):

1 = ∫ 𝑑𝑥 ∫ 𝑑𝛼 Ψ̃𝐿𝐹(𝑥, 𝛼). (55)

Figure 11 shows all the expected features of the light-front WF:
it vanishes for large values of 𝑥 so that the integral over 𝑥 is finite

[8]. It also vanishes at the endpoints 𝛼 = ±1, as those cases cor-
respond to one of the constituents having all of the longitudinal
momentum of the particle. It is also symmetric in 𝛼, which is a
consequence of the particle exchange symmetry of (53).

Figures 12 and 13 show the dependence of the light-front WF
in 𝑥 and 𝛼, respectively, as well as an overlay with the Nakanishi
results for comparison.

Finally, from the calculated light-front WF we calculate the PDA
𝜙(𝛼), which gives the probability of finding the constituents in a
configuration with a given value of 𝛼.
The results are again normalized in a similar way as for the light-

front WF:
1 = ∫ 𝑑𝛼 𝜙(𝛼). (56)

Figure 14 shows the PDA results from the contour deforma-
tion method, which are in excellent agreement with the Nakanishi
method. The PDAs also carry the same properties in 𝛼 that were
expected from the light-front WFs.

The good agreement of the results with the Nakanishi method
demonstrate that it is possible to calculate light-front WFs using
the contour deformation method.

VI Extensions of the scalar model

To help bridge the gap toQCD, the scalar toymodel of section III.B
was extended in two directions:

1. One can implement particleswith unequalmasses, as the dif-
ferent quark flavours have different masses (see [26]);

2. One can implement propagators with complex conjugate
poles, (to mimic typical results for the quark propagator in a
rainbow ladder truncation [16]).
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Figure 12: 𝛼 dependency of the light-front WF for a fixed value of
𝑥 = 0.33.
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Figure 13: 𝑥 dependency of the light-front WF for a fixed value of
𝛼 = −0.67.

VI.A Unequal masses

The study of this case starts with the parameter 𝜀, whose purpose
is to maximize the domain in

√
𝑡. For an optimal value of

𝜀 = 𝑚1 − 𝑚2
𝑚1 + 𝑚2

, (57)

the−𝑀2 = −(𝑚1 +𝑚2)2 threshold is at
√

𝑡 = 1. Defining themass
scale 2𝑚 = 𝑚1 +𝑚2, and setting 𝜀 to the optimal value, one writes
the two masses of the two particles as functions of 𝜀 and 𝑚:

𝑚1 = (1 + 𝜀)𝑚 𝑚2 = (1 − 𝜀)𝑚. (58)
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Figure 14: Calculated parton distribution amplitudes 𝜙(𝛼).

The parameter 𝜀 sets themass ratio and the parameter𝑚 sets the
scale that can be taken out of the equations.

The kernel𝐾 of (33) does not depend on the mass, and as such
remains invariant. The only difference from the equalmasses case
comes from the propagators 𝐺0, which, using the definitions of
(29) can be written as:

𝑚4𝐺0(𝑥, 𝜔, 𝑡, 𝛼, 𝜀) = (59)
1

(𝑥 + 1 + 𝑡 + 𝛼2𝑡 + 2𝛼𝜔
√

𝑥
√

𝑡 + 𝜀2)2 − 4 (𝛼𝑡 +
√

𝑥
√

𝑡𝜔 + 𝜀)2 .

The resulting branch cuts are the same as the ones from the
equal mass case, except that there is a dependence on 𝜀,

√
𝑥𝜆

𝜒 = 𝐴(𝜒, 𝛼) ⎡⎢
⎣

√
𝑡𝜔 + 𝑖𝜆√𝑡(1 − 𝜔2) + ( 1 + 𝜒𝜀

1 + 𝜒𝛼
)

2
⎤⎥
⎦

, (60)

where all the quantities are defined as for the equal masses case.

The propagator cuts (60) are already contained in the shaded
regions of figure 4 and, as such, the path of section IV.C already
avoids them and can be used without modification.

With this, one can calculate the light-front WF for this model as
well. The following resultswere calculated for five different values
of 𝜀 = {−0.5, −0.25, 0, 0.25, 0.50}, and

√
𝑡 = 0.2+0.8𝑖. The number

of integration points used was 𝑁𝑥 = 96 and 𝑁𝜔 = 72.

Figure 15 shows the effect of the 𝜀 parameter. It introduces a
skewness in the function, making it tilt to the side of the heavier
particle, which on average has a higher fraction of themomentum.
It also shows that the particle exchange symmetry now also re-
quires switching the sign of 𝜀.

The 𝑥 dependence is similar to the equal mass case of 𝜀 = 0 and
the PDA mirrors the information in figure 15.
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Figure 15: 𝛼 dependence of the light-front WF for five values of 𝜀.
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VI.B Complex conjugate poles

In this extension, we assume that the propagators have a complex
conjugate pair of mass poles of the form:

𝐷𝜙(𝑞) = 1
𝑞2 + 𝑚2 ⟶ 1

2
( 1

𝑞2 + 𝑚2 + 1
𝑞2 + (𝑚∗)2 ) . (61)

The complex mass can be written as follows, which defines a
parameter 𝛿 :

𝑚2 → 𝑚2(1 + 𝑖𝛿). (62)

Note that inverting the sign of 𝛿 has the same effect as taking the
complex conjugate of the mass. As the propagator (61) is a sum
of both the mass and the conjugate, it is even in 𝛿 and thus, it is
sufficient to consider 𝛿 ≥ 0.

Again, the kernel𝐾 is invariant, and the only change happens in
the propagator.

Defining ΓΞ as follows, with Ξ = {+, −}:

ΓΞ = (𝑥 + 𝑡 + 1 + 𝛼2𝑡 + 2𝛼𝜔
√

𝑥
√

𝑡)
2

+ 4𝑡Ξ (𝛼
√

𝑡 + 𝜔
√

𝑥)
2

, (63)

and 𝜁 as:

𝜁 = 4
√

𝑡 (𝛼
√

𝑡 + 𝜔
√

𝑥) (𝑥 + 𝑡 + 1 + 𝛼2𝑡 + 2𝛼𝜔
√

𝑥
√

𝑡) , (64)

the propagator product 𝐺0 can be written as:

𝑚4𝐺0 = Γ−

(Γ+ + 𝛿2)2 − 𝜁2
. (65)

The propagators 𝐺0 have cuts similar to the previous case, but
with a 𝛿 dependence:

√
𝑥{𝜆,𝜈}

𝜒 = 𝐴(𝜒, 𝛼) [
√

𝑡𝜔 + 𝑖𝜆√𝑡(1 − 𝜔2) + 1 + 𝜈𝑖𝛿
(1 + 𝜒𝛼)2 ] . (66)

There are now eight cuts, that, due to the term 𝑖𝛿, will rotate and,
for |𝛿| larger that a specific value 𝛿𝑐𝑟𝑖𝑡, the cuts overlap and prevent
any contour deformation. The condition which defines the safe
region in 𝛿 is:

ℑ{
√

𝜏} < ℑ{𝑖
√

1 + 𝑖𝛿}ℜ{
√

𝜏}
ℜ{𝑖

√
1 + 𝑖𝛿}

. (67)

Note that the equation (67) applies to the case 𝜈 = +. For the case
𝜈 = − there is also a condition, and the safe region for 𝛿 is defined
as the intersection of both. The path defined in section IV.C is still
valid for this problem.

A calculation of the light-frontWF and the PDAs is also possible,
provided that the parameters arewithin the safe zone. In figure 16
the obtained PDAs are presented for three different values of 𝛿 and
√

𝑡 = 0.2+0.8𝑖. For this value of
√

𝑡, the safe region is |𝛿| < 8
15 . The

number of integration points used was 𝑁𝑥 = 128 and 𝑁𝜔 = 96.

Figure 16 shows that it is still possible to obtain the light-front
WF and the PDA for the complex mass case, provided that care
is taken to stay within the safe zone for 𝛿. One can also see that,
altough the differences between the values of 𝛿 are not very pro-
nounced, as 𝛿 approaches the limit the numerics get worse, as the
cuts get closer to the integration path in

√
𝑥.
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Figure 16: Plot of the calculated PDA for the complex conjugate
masses case, for different values of 𝛿.

VII Closing remarks

In thiswork, a newmethod for calculating light-frontWFswas pro-
posed. The main idea is to develop a method that is able to inte-
grate the Bethe-Salpeter WF directly without the having to know
its whole analytic structure, which might not even be possible in
practical calculations of QCD.
The main hurdle in this process is the fact that the amplitude

needs to be analytically continued to the entire real axis. Al-
though very powerful, amore systematic study of the Schlessinger
methodmight prove helpful in the numeric stability of themethod.
We could, nevertheless, demonstrate that the contour deforma-

tion method is capable of calculating the light-front wave func-
tions, and that its results are in agreement with the Nakanishi
method which is well established in the community. It also has
the added advantage that it can calculate resonances beyond
the threshold, and it needs fewer integrations than the Nakan-
ishi method whichmakes it very fast in comparison. These results
open the door to future calculations of the PDFs and other quanti-
ties using the contour deformation method.
As the contour deformation method was also successful in cal-

culating the light-frontWF and the PDA for extensions of the scalar
model, there is a good chance that it can be successfully applied
to QCD, opening the door to calculations of a broad number of
hadronic properties.
Finally, as discussed in section I, experiments such as the

Electron-Ion Collider [1] at Brookhaven National Laboratory and
COMPASS/AMBER at CERN [2], which are designed to study
hadronic structure properties, provide a great opportunity and
motivation for the theoretical calculation of hadron structure on
the light front.
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