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Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract

Clustering is one of the most important tasks in the unsupervised learning field, and traditional methods
(like k-means) struggle when dealing with high-dimensional data. For this reason, many researchers have
successfully attempted to use deep learning techniques to map the data into a lower dimensional, cluster
friendly space. The process usually consists of using an autoencoder-based structure to find a meaningful
latent space and then using traditional clustering algorithms on it.

In this dissertation, I developed a novel approach to clustering by using a generative hierarchical au-
toencoder containing multiple latent groups (the vanilla autoencoder has just one) that are regularized
by latent relativistic discriminators in an adversarial manner. These latent groups are then clustered
by the density-based clustering algorithm HDBSCAN, which automatically estimates the number of
clusters. The resulting model is named Hierarchical and Relativistic Wasserstein Autoencoder GAN
(HRWAE-GAN) and this work will show that utilizing multiple latent spaces does not offer any
advantages when it comes to the task of clustering image datasets.

Keywords: Deep Clustering; Deep Learning; Generative Models; Hierarchical Models; Adver-
sarial models; Relativistic discriminators.

1. Introduction

Clustering data is one of the fundamental problems
in the unsupervised learning realm. Its goal is to
identify data points that are similar to each other
in an unsupervised manner (the data is unlabeled)
based on some distance/similarity measure. A large
number of clustering algorithms have been proposed
[25] [3], but more traditional methods struggle when
dealing with high-dimensional data due its under-
lying complexity [25].

One way to tackle this issue is to reduce the di-
mensionality of the data, mapping it to a new and
more clustering friendly latent space. This is where
deep learning techniques (deep clustering, in this
case) have come into play. Although some non deep
learning methods have been created, such as PCA
[14] and UMAP [16], deep clustering has proved
to greatly improve clustering performance and can
even be combined with these aforementioned meth-
ods [15]. Several deep clustering algorithms have
been proposed [12], and they usually consist of two
parts: a latent representation finding (often Au-
toencoder based) and a clustering objective (where
traditional clustering is commonly used). Their op-
timization can either be done jointly or separately.

Following this line of though, I will take on a
novel approach to deep clustering using a hierarchi-
cal architecture with adversarial training. In deep
learning autoencoders, a hierarchical architecture
differs from a non-hierarchical one because it can
include hierarchical groups between every pair of
encoder-decoder hidden layers. In theory, this al-
lows the model to capture both low level and high
level details about the data at the different latent
groups, thus holding a possible advantage over non-
hierarchical models. The adversarial training is in-
cluded to give the model generative abilities. It
utilizes the well known GAN framework [6], which
turns the training process into a competition be-
tween the generator (the model) and a Discrimina-
tor, who tries to tell generated samples apart from
real samples. This results in the model being able
to generate realistic looking samples.

2. Background
Deep clustering can be split into several categories.
In this section, we’ll discuss Autoencoder and
GAN based clustering.

Autoencoder based clustering was first pro-
posed in 2016 by Xie et al. with the paper “Un-
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supervised deep embedding for clustering analysis”
[24], where they formulated the architecture for
Deep Embedding Clustering (DEC). DEC is
widely considered as a deep clustering baseline and
has been improved upon by many other researchers.

The main idea of AE based clustering is to per-
form clustering on the AE’s latent space, optimizing
both the network’s loss as well as a clustering loss
L = λLn + (1− λ)Lc where λ ∈ [0, 1] is a hyperpa-
rameter to balance the two losses.

DEC couples the standard AE loss with a KL
divergence based loss that tries to minimize the dis-
tance between the soft assignments Q and a target
distribution P (that depends on Q). The soft as-
signments can be defined as follows:

qij =
(1+||zi−µj ||2/α)−

α+1
2∑

j′ (1+||zi−µ′
j ||2/α)

−α+1
2

where zi is the embedding of an input xi, α are
the degrees of a Student’s t-distribution and qij
is the probability of a data point i belonging to
cluster j. In this model, the training process mini-
mizes Ln and Lc in two separate phases. DCN [26]
came shortly after claiming that minimizing the two
losses simultaneously would be beneficial.

N2D [15] uses a different approach. Instead of
a joint optimization, it learns the embedded rep-
resentations and, separately, performs a shallow
clustering technique. Before starting the clustering
phase, N2D uses UMAP to obtain a more cluster-
ing friendly latent space (keeping the same latent
dimensionality). The authors claim that, after hav-
ing tried different techniques, they found UMAP is
able to find the more clusterable manifold. As dis-
cussed before, UMAP has the interesting property
of providing well separated and compact clusters.

One clear advantage for N2D is the low level of
complexity, since there is no joint optimization and
UMAP is a fast algorithm.

SPICE [17], a Semantic Pseudo-labeling Frame-
work for Image Clustering, utilizes self-learned
pseudo-labels of high confidence in the embedded
space to train a deep-clustering network. Initially, a
latent space representation is constructed by a con-
volutional autoencoder SPICE-self. Based on this
initial clustering, a set of reliable data points (a re-
liable data point will be assigned to its cluster with
high certainty by some fuzzy clustering algorithm)
are used to train a second network SPICE-semi.
This network is trained directly with a loss func-
tion derived from the self-learned pseudo-labels.
Consequently, SPICE is a semi-supervised classifi-
cation model trained with pseudo-labels obtained
from representation learning.

SPICE is a state-of-the-art model and currently
ranks number one in unsupervised classification of

several colored image datasets such as CIFAR-10,
ImageNet-10 and Tiny-ImageNet.

SPC [13], which stands for Selective Pseudo-
label clustering, is another semi-supervised learn-
ing deep clustering model. The general idea is sim-
ilar to SPICE, but the two differ in what they con-
sider to be confident pseudo labels and in the overall
training procedure. While SPICE uses a confidence
threshold, SPC pre trains a group of K autoen-
coders and then only uses the agreed points, which
are points that received the same label from the
clustering algorithm (HDBSCAN or GMM) applied
to all K autoencoders’ latent space, for classifica-
tion training. An MLP is then trained with these
agreed points for classification. This autoencoder
and MLP training cycle is repeated until the num-
ber of agreed points stops increasing.

SPC is the current state-of-the-art model for
unsupervised classification of the black and white
numbers image datasets MNIST and USPS.

GAN based clustering uses the GAN’s adver-
sarial training framework in a few different ways.

Deep Adversarial Clustering (DAC) [8] uses
an adversarial Autoencoder with a discriminator in
the latent space to enforce a GMM prior. DAC
has a similar architecture to WAE-GANs, except it
is clustering oriented and uses an AE instead of a
VAE.

3. Proposed method

Figure 1: Simplified architecture of HRWAE-GAN
(see Figure 2 for more details). The Encoder pro-
duces L latent variables, which are each judged
by the discriminator during training and clustered
when training is complete.

The Hierarchical and Relativistic Wasserstein Au-
toencoder GAN is comprised of two essential com-
ponents: the Hierarchical and Relativistic Wasser-
stein GAN Autoencoder (HRWAE-GAN) and the
clustering box (HDBSCAN paired with UMAP) ap-
plied to the latent space. These components will be
described in the following sub subsections.
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3.1. Autoencoder structure
This work can be divided in two big chunks: (1)
building a generative framework, where the WAE-
GAN [21] was adapted to make its training more
stable, and (2) incorporating a hierarchical struc-
ture into the model. These chunks will be respec-
tively explained in subsections 3.1.1 and 3.1.2.

3.1.1 Relativistic Wasserstein GAN

When comparing the Beta-VAE [9] and WAE-GAN
[21] models, the latter has a better reconstruction
ability but a more unstable training (Beta-VAE’s
training is completely stable). Reconstruction qual-
ity is of great importance as it allows us to infer how
much information is retained in the latent space (in
a fully unsupervised setting, at least), and so it cor-
relates to its quality. The goal thus became to en-
able the usage of WAE-GAN by making its training
more stable.
The training instability of GANs is a well known

issue which has been addressed in many different
works like [20], [10], [7] and [2]. While the label
smoothing technique [20] is helpful but not com-
pletely effective, the Relativistic GAN’s modified
loss function [10] proved to completely solve train-
ing instability (with regards to the adversarial train-
ing) with minimal changes to the model and was
therefore adopted (it is only required to make a
small change in the adversarial loss function).
First, let us recall Generative Adversarial Net-

works (GANs): GANs are game theory based gen-
erative models. They use the concept of adversar-
ial training to minimize a minimax loss function.
As the name indicates, there are two adversaries:
the Generator (G) and the Discriminator (D). Suc-
cinctly, G picks up a randomly generated variable
z that is mapped to the dataset space and tries to
generate a realistic data object G(z). Then, both
real and generated data objects are fed to the dis-
criminator D, who tries to correctly identify them
as real or fake. This game proceeds as G tries to
fool D and D tries to avoid that from happening.
This can be expressed as:

minGmaxDL(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

(1)
The first half of the equation can be interpreted as
the discriminator trying to maximize its ability to
identify real data. The second part can be inter-
preted as the discriminator trying to maximize its
ability to classify data generated by G as fake, while
G tries to minimize it.
Wasserstein GANs (WAE-GANs) move the

discriminator to the Autoencoder’s latent space,
where it will be tasked with distinguishing data
points sampled from the prior distribution pz (real
points) and from the encoder’s approximation qx(z)

(fake points). Consequently, in WAE-GANs, the
encoder serves as the GAN’s generator. Equation
1 can be adapted to this use case as:

minGmaxDL(D,G) = Ez∼pz [logD(z)] + Eẑ∼qx(z)[log(1−D(ẑ))]

(2)
where D is the latent discriminator and G is the
encoder.

In [10], the author argues that standard GANs
are missing a key property: the probability of real
data being real should decrease as the probability
of fake data being real increases. This makes use
of the a priori knowledge that half of the dataset
is fake. To fix this issue, a relativistic discriminator
(RD) is used. The RD, instead of trying to clas-
sify single data points as being real or fake, takes
pairs of points (zreal, zfake) and outputs the prob-
ability of zreal being more realistic than zfake. As
the game progresses and G becomes more compe-
tent, D might even consider fake points to be more
realistic than real ones, allowing G to generate sam-
ples of higher quality than before.

The loss functions for the RGAN’s Discriminator
and Generator are, respectively:

LD = E(z,ẑ)∼(pz,qx(z))[−log(f(D(z)−D(ẑ)))] (3)

LG = E(z,ẑ)∼(pz,qx(z))[−log(f(D(ẑ)−D(z)))] (4)

where f is generally the sigmoid function. In equa-
tion 3, the Discriminator tries to maximize the dif-
ference in realism between real and fake images; in
equation 4, the Generator tries to maximize the op-
posite difference, thus trying to generate realisti-
cally looking fake samples.

Notice that while in equation (2) G only has in-
fluence in the rightmost part, in equations 3 and 4
it has full influence.

Experimentally, I found that the RD greatly im-
proves the stability of adversarial training. Al-
though it may require some tuning of the Discrimi-
nator’s VC dimension, stable adversarial training is
easily achievable.

3.1.2 Hierarchical structure

One of the main challenges with Autoencoder mod-
els is fully capturing both the global structure of
data (such as general shape and color) as well as
local structure (finer details such as lettering on an
image of a shirt). The hierarchical latent struc-
ture presented in NVAE [22] was used to tackle this
challenge to great effect. Instead of a single latent
variable z, with a hierarchical Autoencoder we have
a set of latent variables {z0, ..., zL−1}, where z0 cor-
responds to the latent variable at the top of the
hierarchy, zL−1 is positioned at the bottom and L
is the number of latent groups. If we consider N
to be the number of layers in the model, note that
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L ∈ [1, N ], so L ≤ N . In this setting, the latent
groups at the top of the hierarchy are supposedly
able to capture global structure whilst the bottom
ones capture local structure.
Considering this hierarchical structure, the total

Discriminator and Generator losses become:

LD = α0E(z,ẑ)∼(pz,qx(z))[−log(f(D(z)−D(ẑ)))] +
∑L−1

l=1 αlE(z,ẑ)∼(p(zl|z<l)
,(qx(z|z<l))[−log(f(D(z)−D(ẑ)))]

(5)
LG = α0E(z,ẑ)∼(pz,qx(z))[−log(f(D(ẑ)−D(z)))] +

∑L−1
l=1 αlE(z,ẑ)∼(p(zl|z<l)

,(qx(z|z≤l))[−log(f(D(ẑ)−D(z)))]

(6)
where {α0, ..., αL−1} are balancing terms with de-

creasing value and qx(z|z<l) =
∏l−1

i=0 qx(zi|z<i) are
the approximate posteriors the lth group.
Regarding the priors, the top layer prior

p(z0) corresponds to a simple normal distribution
N (µ, σ) with µ being a zero vector and σ being
the identity covariance matrix with whatever di-
mensionality dlatent the top latent space may have.
For the remaining priors p(zl|z<l) of the lower latent
groups, they correspond to normal distributions as
well but their parameters are computed by trainable
parameter cells.

3.1.3 Dynamic architecture

The generic architecture of HRWAE-GAN can be
visualized in Figure 2, where each cell is composed
of convolutional and deconvolutional layers for the
encoder and decoder structures, respectively. How-
ever, because images of larger dimensions are usu-
ally more complex, there is a need for the model
depth to be data dependent. To account for this,
the number of encoder cells N is determined by:

N = log2(d)− 1 (7)

where d =
√
D with D being the dimensionality

of each data point from some dataset (disregarding
the number of channels C). This way, for 32x32xC
images (of dimensionality D = 32x32), the model
will form log2(32)− 1 = 4 layers and output a fea-
ture map with dimensions 2x2xF (as it will for any
other dimension whose square root is a square of 2),
where F is the number of filters of the final layer.
In order to fully reconstruct the input, the decoder
must also have N cells.

3.1.4 Additional details

The implementation of HRWAE-GAN was addi-
tionally inspired by the work of [18], where the au-
thors propose several techniques that improve the
performance of deep convolutional GANs. Hence,
the following strategy was employed:

• Replacement of pooling layers with strided con-
volutions because while pooling layers force the
down-sizing artificially, strided convolutions al-
low the generator to learn it more naturally.

• Usage of batch normalization in both the gen-
erator and the discriminator. This method pre-
vents mode collapse, which happens when the
generator’s outputs collapse to a single point
that reliably fools the discriminator.

3.2. Clustering methodology
Considering the task of assigning N data points
X = [x0, ..., xN−1] to K clusters, we start by de-
riving the embeddings of each latent group Z =
{[z00 , ..., zN−1

0 ], ..., [z0L−1, ..., z
N−1
L−1 ]}, where L is the

number of latent groups. Then, we may apply some
clustering function to each group in Z.
In a fully unsupervised setting it’s ideal to let the

model identify the number of clusters on its own.
For this reason, density based approaches can be
extremely useful in such settings as they do not re-
quire the number of clusters K as a hyperparam-
eter. In this work, HDBSCAN [4, 5] was used as
the main clustering algorithm to cluster on the la-
tent space. Because it is density based, HDBSCAN
also has the useful feature of noise identification.
Any point x1 that does not have a neighbor x2

with d1,2 < ϵ, where d1,2 is the distance between
two points and ϵ is some distance determined by
HDBSCAN, is considered as noise. The hierarchi-
cal aspect of HDBSCAN allows this distance ϵ to
vary between clusters, thus allowing for clusters of
different densities.

However, density based approaches are known to
struggle with high feature dimensionality. For some
image datasetX with moderate dimensions, such as
32x32x1, the original dimensionality D is too large
for effective clustering. This is why it is key to
derive a lower dimensionality latent space Z from
X where HDBSCAN is capable of operating effec-
tively.

3.2.1 UMAP cluster separator and com-
pactor

UMAP [16] is a manifold neighbor graph technique
that can be used to visualize data in lower dimen-
sions, just like PCA [14] and t-SNE [23], but has the
interesting properties of maintaining both global
and local structures while providing more compact
sub spaces. In [15], the authors took advantage of
UMAP by applying it to the Autoencoder’s latent
space. As a result, they achieved a better clustering
performance.

In this work, UMAP improved the clustering per-
formance as well. In figure 3, we can see that the la-
tent space becomes better separated and with more
compact clusters after applying a UMAP transform.

As previously mentioned, UMAP is highly de-
pendent on its number of neighbors hyperparam-
eter. This hyperparameter controls how much at-
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Figure 2: Detailed architecture of HRWAE-GAN. The input x is passed through N = log2(d)− 1 convo-
lutional cells, where d =

√
D and D is the dimensionality of x (disregarding the number of channels C.

The final convolutional cell will consequently and necessarily output a feature map of dimensions 2x2xF ,
where F is the number of filters of this last cell. Then, the latent variable z0 is judged by the latent
relativistic discriminator Discriminator0, which will compute how realistic z0 is compared to the prior
pz. The latent variable is then passed trough the N deconvolutional cells and combined with the inter-
mediate feature maps of the encoder. The encoder combiner cells output the remaining latent variables
{z1, ..., zL}, which are judged by their respective discriminators {Disciminator1, ..., DiscriminatorL}.
These remaining latent variables are reintegrated in the Decoder with the Decoder combiners. Caption
continues in the next page.
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In each convolutional and deconvolutional cell, the feature maps may be passed through n and m non-
reducing layers, which, as the name suggests, do not reduce the dimensions. Although this should
increase the model’s ability to understand the input and overall expressiveness in theory, it showed to
be unpractical because it increases the instability beyond what allows training to be completed. For
this reason, both hyperparameters were set to zero. During training, and as a refinement measure, the
latent space at the top latent group (Z0) is transformed by UMAP and then clustered by HDBSCAN,
which identifies noisy points. These noisy points will then receive increased attention during the following
epochs. After training, each latent group {Z0, ..., ZL} can be independently clustered by some clustering
algorithm (usually with HDBSCAN or a GMM).

tention is given to local versus global structure. For
low values, it will be more focused on capturing lo-
cal structure; for high values it will be focusing on
global structure. Although this is the general idea
behind this hyperparameter, what is considered as
a high or low value is dependent on the dataset’s
size. For example, if we consider a dataset with
only 100 samples per cluster, then 100 neighbors
will provide a global view of the dataset. However,
if the dataset contains 1000 samples per cluster, 100
neighbors will provide a more a more localized view.
To deal with this issue, Pedro Távora Santos de-

cided it made sense to have a data dependent num-
ber of neighbors and created the following expres-
sion:

n neighbors = min{⌊dataset size
300

⌋, 100} (8)

The 300 in the denominator was determined em-
pirically to deliver the best results, but the optimal
value is often dependent on the dataset as well. The
number of neighbors is not allowed to exceed 100
due to memory constraints.
It is still important to note that while UMAP

does boost clustering performance, there may be
some variance in its transforms. This variance may
be more or less noticeable depending on the dataset
and its properties. For the large image datasets
used in this work, the variance is not problematic.

3.3. Loss function
The resulting loss function has 4 components and
can be written as:

L = LR + αLG + κLI + βLN (9)

where LR is the reconstruction loss, LG is the GAN
loss, LI is the intermediate loss, LN is the noise at-
tention and α, β and κ are balancing hyperpareme-
ters. LG has already been discussed in subsection
3.1.1; the remaining three losses will be described in
the following sub subsections. The objective is op-
timized using the reparameterization trick [11] [19].

3.3.1 Reconstruction Loss

An Autoencoder is composed by an encoder, which
takes some data point x ∈ Rdx and generates an

Figure 3: Visualizing MNIST’s latent space with
TSNE: raw (left) and after UMAP transform
(right). It is visually clear that UMAP increases
the separation and compactness of the clusters.

embedding z ∈ Rdz with dz << dx, and a decoder,
which reconstructs z to an approximation of x. The
similarity between x and the reconstruction x̂ is of
great importance because it is a way of assessing
how meaningful the latent embedding z is (if it’s not
meaningful, then the decoder cannot reconstruct ef-
fectively).

To guarantee this similarity, the reconstruction
loss LR is introduced. This loss measures the dis-
similarity between x and x̂ and is dependent on the
dataset. For black and white images the binary
cross-entropy can be used because the pixel values
are approximately binary, while for more complex
colored images the Mean Squared Error (MSE) is
preferred.

3.3.2 Intermediate Loss

Experimentally, I found that cluster separation was
only being achieved at some of the latent groups
in Z. This indicates that the model does not nat-
urally make use of all layers when the number of
latent groups L is greater than some amount. I em-
pirically verified that this effect is noticeable when
L > 2. As discussed in [?], this issue was solved
through layer matching. Layer matching consists
of adding a restraint to ensure that the mid-level
feature maps produced by the decoder cells match
the ones produced by the encoder cells of their re-
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spective level. Formally, this can be written as:

LI =

L−1∑
l=1

D(ilencoder, i
l−1
decoder) (10)

where l denotes some latent group (the top group,
L is the total number of latent groups, D is some
error function such as the Cosine Dissimilarity, and
iencoder and idecoder are the intermediate feature
maps.
The effect of this constraint will be demonstrated
in the experiments subsection.

3.3.3 Noise attention

HDBSCAN is a density based clustering algorithm
with the particularity of noise identification (it does
not classify points which it considers as noise).
Noisy points can arguably be considered as points
that are not correctly embedded, as they are not
within reasonable distance from other points from
the same class (recall that density clustering algo-
rithms consider two data points x1 and x2 to be
from the same if d1,2 < ϵ, where d1,2 is the distance
between the two points and ϵ is some minimum dis-
tance). For this reason, it makes sense to identify
these noisy points and increase the model’s atten-
tion towards them. This results in a diminishing of
noise in the latent spaces, as will be demonstrated
in the experiments subsection.
This noise attention can be formalized as:

LN =

N−1∑
n=0

{
1 if xn ∈ Noise

0 otherwise
(11)

where Noise is the set of points that are classified
as noise by HDBSCAN. The percentage of increased
attention is determined by κ − 1, where κ is the
hyperparameter used in equation (9).

4. Results
4.1. Number of latent groups
This subsection will be used to analyse the effects of
varying the number of latent groups. This analysis
will be based on three factors: clustering perfor-
mance, quality of image reconstruction and quality
of image generation. Note that when the number of
latent groups L equals 1, the model drops its hierar-
chical structure and becomes a regular Wasserstein
Autoencoder GAN.
In table 1 we can see how adding an extra la-

tent group affects clustering performance. In latent
group 0, clustering is slightly worse than the non-
hierarchical model but without significant increase
in variance. In latent group 1, however, results are
a bit more interesting. When it comes to the av-
erage results, they are significantly worse and with
very large standard deviation. This shows how the

hierarchical architecture can have very high vari-
ance between different instances of the model. Even
though the best accuracy result was achieved in the
second latent group, the high variability makes it
unusable in a fully unsupervised environment since
there is no way of knowing how reliable an instance
of the model is.

So, at least for this particular implementation,
using a hierarchical architecture did not
present any advantages when it comes to
clustering tasks.

Nonetheless, in figure 4 it’s visible that the qual-
ity of image reconstruction increases significantly
with additional latent groups. Unfortunately, since
the only use of reconstruction quality is to have an
idea of how trustworthy the latent representations
are and we’ve determined that hierarchical models
do not increase clustering performance, this positive
aspect is basically insignificant.

Finally, we’ll take a look at the effect of multi-
ple hierarchical groups on the generative capabili-
ties of HRWAE-GAN. In figure 5, it’s apparent that
adding a latent group blurred the generated images,
even though the FID score somehow improves. This
was surprising because the authors of NVAE [22],
who used a hierarchical VAE to generate images,
obtained opposite results. Since the biggest dif-
ference between HRWAE-GAN and NVAE is the
regularization of the latent spaces (HRWAE-GAN
utilizes a GAN framework), I believe this could pos-
sibly mean that mixing GANs with a hierar-
chical architecture is either not beneficial or
requires a lot of fine tuning.

4.2. Comparison of clustering performance with
other state-of-the-art models

Table 2 shows how HRWAE-GAN compares to both
MoE and the current best performing model for
each one of the three experimented on datasets. It’s
visible that the attained model is outperformed by
a significant margin on all cases, but especially of
the CIFAR-10 dataset.

4.3. Discussion
All things considered, HRWAE-GAN’s performance
fell below expectations. After all the time I have
spent with it, I can confidently say that the added
complexity of multiple latent groups is not reward-
ing. Apart from its results not being up to par
with the current state-of-the-art, it also suffers from
three main issues:

1. As the number of latent groups L increases,
training becomes considerably more unstable
and often diverges before completion. This is
why my experiments were mostly done with
L = 2. This is unfortunate because it would
have been interesting to see what would hap-
pen with larger Ls.
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Table 1: Clustering results on the Fashion MNIST dataset for different amounts of latent groups (first
column) and for each latent group (second column). The columns tagged with ”(best)” correspond to
the values of the model with highest total clustering accuracy.

#latent
groups

latent
group

#clusters
(best)

%labeled
(avg)

acc labeled
(avg)

totall acc
(avg)

%labeled
(best)

acc labeled
(best)

total acc
(best)

1 0 10
68.42%
+/- 4.6%

62.1%
+/- 2.1%

47.84%
+/- 5%

68.9% 63.4% 51.71%

0 10
56.4%

+/- 4.26%
69%

+/- 5.6%
44.2%

+/- 2.98%
60.4% 72.8% 49.6%

2
1 10

41.86%
+/-28.9%

40%
+/- 21%

29.38%
+/- 20.1%

84.3% 65.1% 56.8%

Figure 4: In this image we can see how reconstruction quality improves with the number of latent groups
L.

Images generated by HRWAE-GAN with a single
latent group (L = 1).

Average FID = 32.95 +/- 0.71

Images generated by HRWAE-GAN with two latent
groups (L = 2).

Average FID = 30.76 +/- 2.24

Figure 5: Images generated by HRWAE-GAN. FID scores were obtained by averaging 5 runs (each run
corresponds to a different instance of the model).
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Table 2: Clustering results comparison between a two latent group HRWAE-GAN, the Mixture of Experts
and the best performing model for each datataset - SPC [13], AE + SNNL [1] and SPICE [17].

#clusters
%labeled
(avg)

acc labeled
(avg)

totall acc
(avg)

%labeled
(best)

acc labeled
(best)

total acc
(best)

HRWAE-GAN
GMM (L=2)

- - -
70.37%
+/- 4.5%

- - 77%

HRWAE-GAN
HDBSCAN (L=2)

10
55.2%

+/- 10.3%
85.6%
+/- 7%

54.9%
+/- 6.6%

78.86% 94.14% 78.8%

MoE 10 - - 97.4% - - -

M
N
IS
T

SPC - - -
99.03%
+/- 0.1%

- - -

HRWAE-GAN
GMM (L=2)

- - -
60%

+/- 3.4%
- - 63.9%

HRWAE-GAN
HDBSCAN (L=2)

10
56.4%

+/- 4.6%
69%

+/- 5.6%
44.2%

+/- 2.98%
84.3% 65.1% 56.8%

MoE 10 - - 68% - - -

F
M
N
IS
T

AE + SNNL - - - 84.4% - - -
HRWAE-GAN
GMM (L=2)

- - -
14.7%

+/-2.2%
- - 16.48%

HRWAE-GAN
HDBSCAN (L=2)

2
2.9%

+/- 18.3%
22%

+/- 11.5%
15.7%

+/- 2.8%
58% 21% 17.6%

MoE 3 - - 32.8% - - -

C
IF
A
R
10

SPICE - - - 91.7%

2. The model suffers from training variance,
meaning that two models trained with the
same hyperparameters will output differently
organized latent spaces and generate images of
varying quality. This makes it very hard to
interpret how hyperparameters and different
added constraints effectively change the out-
come of training.

3. The latent space regularization through ad-
versarial training is also a hard task. While
the relativistic discriminator heavily increases
training stability, the loss evolution can be
hard to interpret because it is not a simple
minimization problem. This makes it harder
to know what to change when results are sub
par.

According to recent state-of-the-art works like
SPICE [17] and SPC [13], semi-supervised ap-
proaches easily outperform hierarchical ones such
as this one and are easier to implement and exper-
iment with (the implementation of this model was
very challenging).

5. Conclusions
In this Dissertation, I had the goal of under-
standing the current state-of-the-art deep cluster-
ing techniques and subsequently following a novel
approach to tackle this difficult task. The result
was HRWAE-GAN, a generative autoencoder with
a hierarchical latent space (it contains a set of la-
tent spaces Z = {z0, ..., zL−1}, instead of just one)

that is regularized by a set of latent relativistic dis-
criminators in an adversarial training setup.

Overall, this model is very complex and challeng-
ing to implement without the reward of state-of-
the-art performance. Although the hierarchical la-
tent structure has shown to be beneficial for data
generation [22], this did not seem to be the case
for clustering. Initially, there was hope that hav-
ing several latent spaces could possibly be used in
some advantageous way. This could happen if the
model was consistent in its way of organizing each
latent space (i.e, it always utilized the same logic in
z0, z1, etc. to organize the data points), but that
was not the case. It’s also important to mention
that the added complexity of the hierarchical archi-
tecture makes training significantly more unstable,
even when using the regularization techniques rec-
ommended in NVAE[22].

Given that much better results have been
achieved by recent works like SPC [13] with much
simpler and more intuitive architectures, the path
followed in this thesis does not seem to be recom-
mendable.
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