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Abstract

Clustering is one of the most important tasks in the unsupervised learning field, and traditional methods

(like k-means) struggle when dealing with high-dimensional data. For this reason, many researchers

have successfully attempted to use deep learning techniques to map the data into a lower dimensional,

cluster friendly space. The process usually consists of using an autoencoder-based structure to find a

meaningful latent space and then using traditional clustering algorithms on it.

In this dissertation, I developed a novel approach to clustering by using a generative hierarchical

autoencoder containing multiple latent groups (the vanilla autoencoder has just one) that are regularized

by latent relativistic discriminators in an adversarial manner. These latent groups are then clustered by

the density-based clustering algorithm HDBSCAN, which automatically estimates the number of clusters.

The resulting model is named Hierarchical and Relativistic Wasserstein Autoencoder GAN (HRWAE-

GAN) and this work will show that utilizing multiple latent spaces does not offer any advantages when it

comes to the task of clustering image datasets.

Keywords

Deep Clustering; Deep Learning; Generative Models; Hierarchical Models; Adversarial models; Rela-

tivistic discriminators.
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Resumo

O clustering (agrupamento de dados) é uma das áreas mais importantes dentro do mundo da aprendiza-

gem não supervisionada, e os métodos tradicionais (como o k-means) têm dificuldades em lidar com

dados de alta dimensionalidade. Por esta razão, muitos investigadores têm utilizado (com sucesso)

técnicas de aprendizagem profunda (deep learning) para mapear os dados para um espaço de dimen-

sionalidade reduzida, onde será mais fácil aplicar algoritmos de clustering. Normalmente, o processo

consiste em usar um modelo baseado na arquitetura de autoencoders para encontrar um espaço latente

de dimensionalidade reduzida e, de seguida, aplicar-lhe um algoritmo tradicional de clustering.

Nesta dissertação criei um método inovador de deep clustering que inclui um autoencoder gener-

ativo hierárquico que contém vários grupos latentes (um autoencoder simples tem apenas um) que

são regularizados por discriminadores relativistas num cenário de treino adversarial. O algoritmo de

densidade HDBSCAN, que estima automaticamente o número de clusters, é depois aplicado em cada

um dos espaços latentes. O modelo resultante chama-se Hierarchical and Relativistic Wasserstein

Autoencoder GAN (Autoencoder GAN de Wasserstein hierárquico e relativı́stico), ou HRWAE-GAN, e

este trabalho irá mostrar que a utilização de múltiplos espaços latentes não traz vantagens à tarefa de

clustering em datasets de imagens.

Palavras Chave

Clustering profundo; Aprendizagem profunda; Modelos generativos; Modelos hierárquicos; Modelos

adversariais; Discriminadores relativı́sticos.
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1.1 Motivation

Clustering data is one of the fundamental problems in the unsupervised learning realm. Its goal is to

identify data points that are similar to each other in an unsupervised manner (the data is unlabeled)

based on some distance/similarity measure. A large number of clustering algorithms have been pro-

posed [Xu and Wunsch, 2005] [Bishop, 2006], but more traditional methods struggle when dealing with

high-dimensional data due its underlying complexity [Xu and Wunsch, 2005].

One way to tackle this issue is to reduce the dimensionality of the data, mapping it to a new and

more clustering friendly latent space. This is where deep learning techniques (deep clustering, in this

case) have come into play. Although some non deep learning methods have been created, such as

PCA [Martinez and Kak, 2001] and UMAP [McInnes et al., 2018], deep clustering has proved to greatly

improve clustering performance and can even be combined with these aforementioned methods [Mc-

Conville et al., 2021]. Several deep clustering algorithms have been proposed [Litjens et al., 2017], and

they usually consist of two parts: a latent representation finding (often Autoencoder based) and a clus-

tering objective (where traditional clustering is commonly used). Their optimization can either be done

jointly or separately.

Following this line of though, I will take on a novel approach to deep clustering using a hierarchical

architecture with adversarial training. In deep learning autoencoders, a hierarchical architecture differs

from a non-hierarchical one because it can include hierarchical groups between every pair of encoder-

decoder hidden layers. In theory, this allows the model to capture both low level and high level details

about the data at the different latent groups, thus holding a possible advantage over non-hierarchical

models. The adversarial training is included to give the model generative abilities. It utilizes the well

known GAN framework [Goodfellow et al., 2014], which turns the training process into a competition

between the generator (the model) and a Discriminator, who tries to tell generated samples apart from

real samples. This results in the model being able to generate realistic looking samples.

1.2 Goals

The goal of this thesis is to build a generative deep clustering model using state of the art techniques. It’s

important to mention that this project is a continuation of Pedro Távora Santos’ master thesis, who used

a mixture of experts (MoE) framework to tackle image clustering problems. On this work, I will develop

an alternative framework that, unlike MoE, does not need a pre-training phase. This is discussed in

more detail in section 3.

What is most important, however, is to explore an unprecedented path and evaluate how it compares

to the current state-of-the-art deep clustering models.

3



1.3 Outline

This thesis consists of three main sections - Background & related work, Proposed method and Experi-

ments. In section 2 (Background & related work), traditional clustering and deep learning methodologies

will be reviewed.Them, we’ll move on to explore variational and deep clustering frameworks. In section

3 (Proposed method), the attained model will be thoroughly described and illustrated. In section 4 (Ex-

periments), all of the experiments that were conducted in order to both analyze and optimize the model

will be reported.
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Clustering is a form of unsupervised learning which attempts to cluster unlabeled data according to

some criteria. The general goal is to achieve internal homogeneity (data points in the same cluster

should be similar) and external separation (data points in different clusters should not be similar). In

hard clustering algorithms, each data point belongs to only one cluster, while with soft clustering they

can have a degree of membership to different clusters.

Many clustering techniques have been invented in the last few decades [Xu and Wunsch, 2005]

[Bishop, 2006]. In this section, some of them will be briefly described and compared.

2.1 Traditional Clustering

Since clustering is based on the distance between data points, it’s important to do a quick overview of

distance itself. By definition, a distance d(x, y) meets the following criteria:

• It’s positive, so d(x, y) ≥ 0;

• It’s equal to 0 when y = x;

• It’s symmetric, so d(x, y) = d(y, x)

• It meets the triangle inequality d(x, y) ≤ d(x, z) + d(z, y)

For numeric data, the most common distance metrics are the Euclidean and the Manhattan distances,

which are specific cases of the more general Minkowski distance. The latter can be defined as:

d(x, y) = q
√
|x1 − y1|q + ...+ |xd − yd|q

where x = (x1, ..., xd) and y = (y1, .., yd) represent d-dimensional data points. The Euclidean and

Manhattan distances are specific cases where q = 2 and q = 1, respectively.

For categorical data, one can use the Hamming distance, which returns the number of different

feature values between two data points.

Moving on to actual clustering techniques, only the more commonly used approaches will be dis-

cussed: Partitioning, Hierarchical, Model-based and density-based approaches.

2.1.1 Partitioning Approaches

Partitioning approaches create partitions which are then iteratively updated. The most well known case

of partitioning clustering is k-means, which will be described next.

A – k-means is a very simple squared error based algorithm. It tries to minimize the following metric:

J(Γ,M) =
∑K
i=1

∑N
j=1 γij‖xj −mi‖2

7



where γ = γij is a membership matrix. Note that
∑K
i=1 γij = 1∀j (each data point belongs only to one

cluster); M = [m1, ...mK ] contains the cluster centroids; mi is a centroid (centroids are the mean of all

data points in a cluster); Ni is the number of data points in cluster i and K is the predefined number of

clusters.

The k-means algorithm runs as follows:

1. Partition objects into K non-empty subsets and calculate centroids M = [m1, ...mK ]. This can be

done randomly or based on prior knowledge;

2. Reassign each object to the cluster with the nearest centroid;

3. Recompute the centroids;

4. Go back to step 2 until reassignments don’t change or a given number of iterations is reached.

The k-means algorithm is very simple, but it has quite a few problems: it depends on initialization; it’s

susceptible to noise and outliers (one way to tackle this problem is by using some other metric different

than the mean to compute centroids. k-medoids, for instance, uses the median); K is a parameter that

has to be defined in advance; it’s biased towards globular shapes and it has no guarantee of a global

optimum.

2.1.2 Hierarchical Approaches

Hierarchical Approaches organize data in a hierarchical structure using a distance or similarity matrix.

The final result is usually shown in a dendogram. Below, I will describe the two main types of Hierarchical

clustering: agglomerative and divisive.

A – Divisive clustering starts out with a lone cluster that includes all the data. Then, it iteratively

divides this cluster until each cluster is a single data point. The number of clusters can be chosen a

posteriori by selecting a cut off level in the dendogram.

An important issue with this method is the time complexity because, for each cluster with N data

points, there are 2N−1 − 1 possible two-subset divisions.

B – Agglomerative clustering goes the other way around (making it less complex, although it still

runs in cubic time and uses quadratic memory). In a dataset with N data points, it starts out with N

clusters and successively merges them until there in only one cluster. It runs as follows:

1. Initialize N singleton clusters and calculate the distance matrix;

2. Find the minimal distance between all clusters; merge those two clusters C1 and C2 into C1,2;

3. Update the proximity matrix by removing C1 and C2, inserting C1,2 and calculating its distance to

all other clusters;

4. Go back to step 2 until there is only one cluster.
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When it comes to finding the distance between a cluster Cx and a merged cluster C1,2, these are the

most well known approaches:

• Single link, shortest distance between points. This distance is susceptible to noise and outliers but

can find different sized and non-globular clusters.

• Complete link, longest distance between points. This distance has the opposite strengths and

weaknesses to single link, it’s less susceptible to noise but is biased towards globular clusters.

Other distances, such as centroid link and average link, are also commonly used.

Apart from its lack of robustness, hierarchical clustering techniques have another big issue: lack of

dynamism. Once a cluster is formed, there is no going back.

2.1.3 Model based approaches

Model based approaches assume the data is generated by a mixture of probability distributions (typically

a Gaussian) where data points that are generated by the same probability distribution belong to the same

cluster [Xu and Wunsch, 2005] [Bishop, 2006]. These distributions are often gaussian, but can be of

other types.

Assuming that there are K clusters and that θ = [θ1, ..., θK ] represents the probability distribution’s

parameters (each θi is a parameter vector), the mixture probability density for the whole data set is

p(x|θ) =

K∑
i=1

p(x|Ci, θi)P (Ci)

where P (Ci) is a prior probability for cluster i and p(x|Ci, θi) is the likelihood of that cluster generating the

data. Here, the Maximum Likelihood estimation (finding the model that is most likely to have generated

the data) is obtained with the EM algorithm (Expectation Maximization). This algorithm generates a

series of θ parameters until convergence like so:

1. initialize θ0;

2. e-step: assign points to clusters by computing the estimation of the data log-likelihood, i.e., com-

puting the log-likelihood of each data point having been generated by each cluster;

3. m-step: adjust the parameters, maximizing the previous log-likelihood;

4. go back to step 2 until convergence of θ

The main disadvantages of this algorithm are its dependence on this initial guess for θ0, the need to

define K in advance, its slow convergence and the possibility of converging to a local optimum.
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Figure 2.1: DBSCAN example from [Bishop, 2006]. Blue and Red areas identify the clusters.

2.1.4 Density based approaches

Density based approaches see clusters as areas of higher density [Bishop, 2006]. I will describe two of

these approaches: DBSCAN and the more recent HDBSCAN.

A – DBSCAN [Ester et al., 1996], Density Based Spatial Clustering of Applications with Noise, is a

popular density based clustering algorithm. It uses a minimum density level estimation, which is based

on a minimum number of neighbors within a radius ε threshold (minPts), to identify areas with high

density of objects. If a data point satisfies the minPts threshold, it is considered a core point and both

him and his neighbors (border points) will belong to a cluster. If one of these neighbors is also found to

be a core point, then his neighborhood will be added to the cluster by transitivity, and so on. It’s worth

noting that data points in more sparse areas (neither core or border points) are considered noise and

won’t belong to any cluster. Intuitively, this makes sense because these points will have high degrees of

uncertainty associated to them.

B – HDBSCAN [Campello et al., 2013] [Campello et al., 2015] is a more recent hierarchical approach

to DBSCAN. It performs DBSCAN with a range of decreasing ε values and integrates the result to find

the clusters with the most persistence, i.e., the clusters that take longer to be broken apart (with the

constraint that when you select one cluster, you cannot select any of their children). In other words, we

are trying to maximize the sum of the lengths of the orange marked branches in figure 2.2.

Its two main advantages over DBSCAN are the fact that it allows to find clusters with different densities

and it’s less dependent on parameter selection. Although the original HDBSCAN ran in O(n2), it has

since then been tweaked and can now run in O(nlog(n)).
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Figure 2.2: HDBSCAN dendogram. Highlighted branches correspond to the desired clusters.

One of the main strengths of density based clustering is the non necessity to specify the number

of clusters K in advance. It also has the big advantage of noise identification, not needing to include

every data point in a cluster. However, their main weakness is their inability to effectively cluster highly

dimensional data. This problem can be addressed with dimensionality reduction, which will be discussed

in more detail later on.

2.2 Deep Learning based clustering

As said before, traditional clustering techniques struggle as the dimensionality of the data increases.

This struggle is known as the curse of dimensionality. Deep Clustering models solve this issue by

mapping some original dataset to a latent space, which usually has a much lower dimensionality, with

deep learning networks. This enables classical clustering algorithms (such as density based clustering

algorithms) to cluster more effectively. In the next section, we will begin with a quick deep learning

overview and then move on to several deep learning models that can be used for deep clustering.

2.2.1 Deep Learning overview

Supervised Learning methods, generally speaking, take a dataset D = {x, y}Nn=1 where x is a data

point and y is its label, and try to find a set of parameters Θ that can accurately predict the data points’

labels by minimizing a loss function L(y, ŷ), where ŷ is the label predicted by the model [Litjens et al.,
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Figure 2.3: MLP architecture https://media.condenast.io/photos/59f25bf95443e85a6c66c865/master/w_

768/unnamed0.png

2017].

On this section, we will solely focus on describing deep learning methods, which have a greater

ability to manipulate the original space before predicting ŷ.

A – Neural Networks are composed by multiple layers of sets of neurons. Each neuron has a set of

parameters θ = {W, b}, where W is a weight vector and b is a bias, and an activation function a. The

output of a neuron is computed as

output = a(WTx+ b)

These neurons are combined to produce a final output ŷ. Multiple layer perceptrons (MLP), the most

common neural networks, have several of these multiple neuron layers (hence deep learning).

When y is not binary, the probability for each class can be found using a cross-entropy loss, which

assesses the difference between the predicted probabilities and a one hot vector with the real label.

Roughly speaking, MLPs minimize the cost function L(y, ŷ) by computing its gradient relative to the

parameters Θ. The parameters of the last layer are updated as such [Bishop, 2006]:

W l = W l − η ∂L
∂W l

Where l represents the index of the last layer and η is the learning rate. The same update is applied to

the Bias. Then, the chain rule is used to successively update the parameters of the other layers, going

from the last to the first. This backwards directed algorithm is called the Backpropagation algorithm.

B – CNNs have a similar architecture to MLPs but are more appropriate when the dataset consists

of image objects.

CNNs, generally speaking, have two key operations: convolutions and poolings. A CNNs has a set of

filters, or kernels, per layer (each filter of size k, smaller than the image) which are used to perform the

convolutions across the input. An important aspect is that every filter is used across the whole image.
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Figure 2.4: AE architecture. https://miro.medium.com/max/3148/1*44eDEuZBEsmG_TCAKRI3Kw@2x.png

This way, the model doesn’t need to learn separate detectors for the same object occurring at different

positions in the image [Litjens et al., 2017]. It also decreases the number of parameters, since it will not

depend on the input size.

At each layer, the result of the convolution operations (plus a bias b) are subjected to an element-wise

non linear transform, producing a new feature map Xk. This is when the pooling comes into play. This

operation aggregates neighborhood pixel values of Xk, thus reducing its size by some factor (commonly

to half its original size). Some of the most common pooling operations include max pooling (result is the

max of the neighborhood) and average pooling.

At the end of the network, it’s typical to flatten out the current Xk and pass it through fully connected

layers to get a prediction of the input image’s label.

2.2.2 Models for Deep Clustering

Deep learning models for dimensionality reduction try to learn a latent representation z, with dimen-

sionality dlatent, of the input X, with dimensionality doriginal (dlatent << doriginal). Then, they attempt

to reconstruct z back to X. The loss function (called the Reconstruction Loss) assesses the difference

between X and the reconstruction X̂, so, ideally, X̂ = X. In this section, several variations of dimen-

sionality reduction models will be analyzed. The Autoencoder is the simplest and will be described

first.

A – Auntoencorders (AE) are a simple form of unsupervised deep learning techniques [Litjens et al.,

2017]. They are formed by two components: The enconder, which is responsible for learning a (usually)

dimensionality reduced latent representation z of the original data, and the decoder, which learns to

reconstruct z back to its original representation (see figure 2.4).

A key aspect is that the decoder does not ever see X - it must be able to reconstruct it only by

looking at z.
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B – Variational Autoencoders (VAE) can be thought of as probabilistic and generative Autoen-

coders.

Instead of outputting single point z, the encoder outputs the parameters for a distribution. In the case

of a normal distribution, the output is a mean µ and a covariance matrix σ. The Decoder will then sample

from the distribution N (µ, σ), and attempt to reconstruct the input.

The Decoder can be defined as p(x|z), where x is the input and z is the sampled latent variable.

This expression describes the distribution of the decoded reconstruction given the encoded variable.

Similarly, the Encoder can be defined as p(z|x), which describes the distribution of the latent variable

given the input. Note that we’re assuming z follows a distribution p(z).

Bayesian theory tells us that we can compute p(z|x) as

p(z|x) = p(x|z)p(z)
p(x) = p(x|z)p(z)∫

p(x|u)p(u)du

but the computation of p(x) is often intractable, so p(z|x) cannot be computed directly. Instead, we can

use variational inference to approximate p(z|x). This approximation is denoted qx(z).

This approximation equates to maximizing the likelihood p(x|z) (1) and minimizing KL(qx(z), p(z))

(2), where the second term denotes the KL divergence between qx(z) and p(z). In other words, the

goal is to minimize

1. The reconstruction loss RL(x, x̂).

2. The difference between the distributions of our encoded variable z and the prior p(z). When p(z)

is normal distribution (with µ and σ respectively being a 0 vector and an identity matrix), we are

trying to force our distribution qx(z) to be as close to that as possible.

The point of having this probabilistic framework is to regularize our Variational Autoencoder’s latent

space, enabling it to be generative. The regular Autoencoder’s latent space is irregular, since the de-

coder doesn’t have to know how to extract information from all areas, but of specific areas where the

encoded variables lie. On the contrary, the variational Decoder has to be able to extract information from

larger areas, since the encoded variables are sampled from distributions and are not single points. For

this reason, the decoder can sample points from p(z) and generate realistically looking data.

The Beta-VAE [Higgins et al., 2016] uses a hyperparameter β that balances the importance given to

the KL term, resulting in the minimization of:

L = RL(x, x̂) + βKL(qx(z), p(z))

In the experiments section, Beta-VAEs are used instead of the regular VAE.

C – Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] will be introduced as they

are relevant for understanding the next type of model.
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GANs are game theory based generative models. They use the concept of adversarial training to

minimize a minimax loss function. As the name indicates, there are two adversaries: the Generator (G)

and the Discriminator (D). Succinctly, G picks up a randomly generated variable z that is mapped to the

dataset space and tries to generate a realistic data object G(z). Then, both real and generated data

objects are fed to the discriminator D, who tries to correctly identify them as real or fake. This game

proceeds as G tries to fool D and D tries to avoid that from happening. This can be expressed as:

minGmaxDL(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

The first half of the equation can be interpreted as the discriminator trying to maximize its ability to

identify real data. The second part can be interpreted as the discriminator trying to maximize its ability

to classify data generated by G as fake, while G tries to minimize it.

GANs gained a lot of recognition because they are capable of generating very realistic data, more so

than VAEs. Their training is, however, much more unstable.

D – Relativistic GANs (RGANs) [Jolicoeur-Martineau, 2018] makes an interesting change in the

GAN’s discriminator. Instead of trying to determine if a certain input is real or fake, the new relative

discriminator takes a pair of real and fake data points (xr, xf ) and measures the probability p that the

real data point is more realistic than the fake one. This way, as the generated data becomes more

realistic, p will decrease with the ultimate goal being p = 0.5 (fake data is as realistic as real data).

RGANs have the interesting properties of providing a more stable training and having the ability to learn

with smaller datasets.

E – InfoGANs [Chen et al., 2016] are information theory inspired GANs. The goal of the InfoGAN

is to have a generative model that is capable of using additional information to create more specific

synthetic data. To do this, the generator takes as input the latent variable z (just like any other generative

model) and additional coded information c, so the generator function becomes G(z, c). This information

is supposed to have some control of the output (if we are generating numbers, for example, it can be an

integer identifying which number we want to generate).

To achieve this, the authors propose to use an auxiliary neural network Q(G(z, c)). Q takes as input

the generated data and produces ĉ - thus its goal is to recover the information c. Theoretically, the idea

is to maximize the mutual information between c and ĉ, but, in practise, the penalty is computed with a

cross entropy function. Note that to minimize this penalty, the generator has to produce a disentangled

output that reflects c. If not, Q won’t be able to recover it.

InfoGAN’s optimizing objective can be formulated as:

minGmaxDVI(D,G) = V (D,G)− λI(c;G(z, c))
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Where V (D,G) is the normal GAN’s objective and the second term represent the mutual information

goal between c and the generated data G(z, c). Again, this is approximated by:

minG,QmaxDVInfoGAN (D,G) = V (D,G)− λL1(G,Q)

F – Wasserstein Autoencoders (WAEs) [Tolstikhin et al., 2017] are a variation of VAEs that try to

improve the regularization of the latent space, thus allowing a better reconstruction of z . Figure 2.5

illustrates this and is taken from WAE’s original paper. While VAEs individually enforce qx(z) to match

p(z) on all points, WAEs enforce a continuous mixture q :=
∫
qx(z)dPx to match p(z) across the whole

latent space. This allows latent representations of different inputs to stay further away from each other

(more separation while still enforcing the prior p(z)), promoting better reconstruction.

Figure 2.5: Comparison between the VAE’s and the WAE’s enforcing of the prior p(z) [Tolstikhin et al., 2017]

WAE’s paper proposes two different formulations: a Generative Adversarial Network based WAE

(WAE-GAN) and a Maximum Mean Discrepancy based WAE (WAE-MMD).

WAE-MMD uses a positive-definite reproducing kernel k : Z × Z → R to calculate the maximum

mean discrepancy:

MMDk(PZ , QZ) = ||
∫

Z

k(z, ·)dPZ(z)−
∫

Z

k(z, ·)dQZ(z)||H(k)

where H(k) is the reproducing kernel Hilbert space real valued function mapping Z to R. It serves as

a regularizer.

WAE-GAN is a combination of a VAE and a GAN. It moves the GAN’s discriminator to the VAE’s

latent space. There, the discriminator is trained to distinguish samples from the prior distribution p(z)

and from the encoder’s distribution qx(z).

WAE-GAN is able to achieve better results and has a better time complexity. However, since it is

GAN based, its training is not as stable as WAE-MMD’s, which is as stable as the original VAE.
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Figure 2.6: NVAE’s architecture. The r blocks are
residual networks and h is a learnable
parameter. [Vahdat and Kautz, 2020]

G – Nouveau Variational Autoencoder [Vahdat and

Kautz, 2020] (NVAE) is, essentially, a VAE with a hierar-

chically structured latent space. Figure 2.6 is taken from

the original paper and shows the architecture of NVAE.

Instead of having just one latent representation z, it com-

putes a series of latent representations {z1, ..., zn}. The

authors argue that this method allows NVAE to better

capture the global structure at the top of the hierarchy

(zn) and local structure at the bottom (z1). When dealing

with pictures of faces, for example, the top embeddings

would capture things like skin tone and overall symme-

try, while the lower embeddings would capture more low-

level details.

It could be interesting to perform clustering on the

different levels {z1, ..., zn} and identify which would yield

the best results.

Here are some key aspects of the implementation of NVAE:

• Both the encoder and the decoder use deep residual networks (one per hierarchical layer);

• Enlarged kernel sizes and depth wise separable convolutions (more convolutional layers with less

filters each);

• Modified batch normalization that tackles the noise caused by regular BN;

• Squeeze and Excitation layers in each residual network.

All of these techniques make small contributions towards improving the performance of NVAE.

2.3 Deep clustering

Deep clustering can be split into several categories. In this section, we’ll discuss Autoencoder, VAE

and GAN based clustering. Most of the models presented in this section can be found in [Litjens et al.,

2017]. Although some work has been done with semi-supervised learning [Lim et al., 2020] (using the

known labels to forcibly reorganize the latent space), I will only focus on fully unsupervised approaches.

A – Autoencoder based clustering was first proposed in [Xie et al., 2016], where they formulated

the architecture for Deep Embedding Clustering (DEC). DEC is widely considered as a deep clustering

baseline and has been improved upon by many other researchers.

The main idea of AE based clustering is to perform clustering on the AE’s latent space, optimizing
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both the network’s loss as well as a clustering loss L = λLn + (1 − λ)Lc where λ ∈ [0, 1] is a hyperpa-

rameter to balance the two losses.

DEC couples the standard AE loss with a KL divergence based loss that tries to minimize the distance

between the soft assignments Q and a target distribution P (that depends on Q). The soft assignments

can be defined as follows:

qij =
(1+||zi−µj ||2/α)−

α+1
2∑

j′ (1+||zi−µ′j ||2/α)
−α+1

2

where zi is the embedding of an input xi, α are the degrees of a Student’s t-distribution and qij is the

probability of a data point i belonging to cluster j. In this model, the training process minimizes Ln and

Lc in two separate phases. DCN [Yang et al., 2017] came shortly after claiming that minimizing the two

losses simultaneously would be beneficial.

Deep Multi-Manifold Clustering (DMC) [Chen et al., 2017] is a multi-manifold clustering model

where Ln is a locality preserving loss function. DMC considers that each cluster lies on a different

manifold. Consequently, the loss function includes both a regular AE reconstruction loss and a locality

preserving loss. It’s considered to be a state of the art multi-manifold clustering approach.

Deep Embedding Regularized Clustering (DEPICT) [Ghasedi Dizaji et al., 2017] has a similar

approach to DEC but makes some improvements. Like DCN, it also performs a joint optimization of Ln

and Lc. Instead of utilizing just one regular encoder, DEPICT adds a noisy encoder to the architecture. It

also uses two softmax layers, one for each of the encoders’ latent spaces. This layer acts as a predictor

to perform soft cluster assignment, but only the noisy encoder’s layer is used to compute Lc. The regular

encoder is used to compute Ln and its weights are tied to the decoder’s. According to the authors, this

technique improves reconstruction capability and latent space interpretation.

Deep Continuous Clustering (DCC) [Shah and Koltun, 2018] also uses joint optimization and is

based on Robust Continuous Clustering, a clustering formulation with a continuous objective and no

need to specify the number of clusters a priori. This is a clear benefit when compared to the previous

approaches.

N2D [McConville et al., 2021] uses a different approach. Instead of a joint optimization, it learns the

embedded representations and, separately, performs a shallow clustering technique. Before starting the

clustering phase, N2D uses UMAP to obtain a more clustering friendly latent space (keeping the same

latent dimensionality). The authors claim that, after having tried different techniques, they found UMAP

is able to find the more clusterable manifold. As discussed before, UMAP has the interesting property of

providing well separated and compact clusters.

One clear advantage for N2D is the low level of complexity, since there is no joint optimization and

UMAP is a fast algorithm.

MIXAE [Zhang et al., 2017], Deep Unsupervised Clustering Using Mixture Of Experts, assumes that

each cluster is sampled from a different manifold and consists of two parts: a set of autoencoders (the
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experts), where each one learns the representation of a different manifold, and a Mixture Assigning

Network (MAN) that takes the latent representations formulated by the experts [z1, ..., zK ] and outputs

a set of probabilities P = [p1, ..., pK ] that are used for soft clustering assignment, so pk = Pr(x ∈ ck|z)

where ck represents the kth cluster.

MIXAE performs a joint optimization of the experts and the MAN. The goal is for the Ps to be one-hot

vectors, with the value 1 corresponding to the expert with minimum reconstruction loss.

In order to achieve one-hot vector like Ps, a sample-wise entropy penalty (which will approximate 0

as P approximates a one-hot vector) is added to the cost function. Additionally, to motivate the equal

usage of all experts, the authors also use a batch-wise entropy term that should be maximized.

The downsides of this model are the need to specify the number of experts in advance, a somewhat

high complexity (which increases with the number of experts needed) and performance that is not state

of the art.

SPICE [Niu and Wang, 2021], a Semantic Pseudo-labeling Framework for Image Clustering, utilizes

self-learned pseudo-labels of high confidence in the embedded space to train a deep-clustering network.

Initially, a latent space representation is constructed by a convolutional autoencoder SPICE-self. Based

on this initial clustering, a set of reliable data points (a reliable data point will be assigned to its cluster

with high certainty by some fuzzy clustering algorithm) are used to train a second network SPICE-

semi. This network is trained directly with a loss function derived from the self-learned pseudo-labels.

Consequently, SPICE is a semi-supervised classification model trained with pseudo-labels obtained

from representation learning.

SPICE is a state-of-the-art model and currently ranks number one in unsupervised classification of

several colored image datasets such as CIFAR-10, ImageNet-10 and Tiny-ImageNet.

SPC [Mahon and Lukasiewicz, 2021], which stands for Selective Pseudo-label clustering, is another

semi-supervised learning deep clustering model. The general idea is similar to SPICE, but the two differ

in what they consider to be confident pseudo labels and in the overall training procedure. While SPICE

uses a confidence threshold, SPC pre trains a group of K autoencoders and then only uses the agreed

points, which are points that received the same label from the clustering algorithm (HDBSCAN or GMM)

applied to all K autoencoders’ latent space, for classification training. An MLP is then trained with these

agreed points for classification. This autoencoder and MLP training cycle is repeated until the number

of agreed points stops increasing.

SPC is the current state-of-the-art model for unsupervised classification of the black and white num-

bers image datasets MNIST and USPS.

DynAE [Mrabah et al., 2020] utilizes the novel concept of a dynamic autoencoder, which is essentially

a regular autoencoder with a dynamic loss function, in a self-learned semi-supervised setting. More

specifically, this dynamism consists of steadily reducing the importance of the reconstruction objective
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in favor of the clustering one. The authors argue that this method increases the model’s ability to better

and more carefully integrate the uncertain knowledge acquired during training.

Like the two previous works SPICE and SPC, DynAE’s training also starts with a pre-training phase.

A vanilla autoencoder is trained with augmented data [Guo et al., 2018] (some of the images are ro-

tated and shifted) and adversarially constrained interpolation [Berthelot et al., 2018] (similar to regular

adversarial training except the fake data points fed to the discriminator are latent interpolations of two

randomly sampled data points x1 and x2, which has the effect of regularizing the latent space by incen-

tivizing interpolations to look realistic).

After the pre-training is complete, the dynamic loss function is introduced to optimize cluster and

centroid construction.

B – VAE based clustering uses the VAE framework, as the name suggests. For this reason, the

models described in this section are generative.

Variational Deep Embedding (VaDE) [Jiang et al., 2016] couples a VAE with a gaussian mixture

model as a prior (GMM) instead of a single gaussian. The authors argue that, since GMMs assume the

data comes from a Mixture of Gaussians (MoG), they are more suitable for clustering tasks.

The GMM also has the advantage that its parameters can be optimized with a EM type algorithm, so

this is a more flexible approach when compared to using a single gaussian with fixed parameters.

DGG [Yang et al., 2019], Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph

Embedding, uses a VAE with a GMM prior and pairs it with graph embedding. This model combines

model-based (GMM) and similarity-based (graph embedding) approaches with the goal of achieving

good local (with the GMM) and global (with graph embedding) structure.

Since GMMs are probabilistic and graph embeddings are not, the authors propose a stochastic

extension of graph embedding where data points are seen as nodes of a sample similarity graph. The

idea behind graph embedding is to build a graph where connected data points should be similar, and

thus should have similar latent representations and cluster assignments. The optimal latent features are

found by:

{z∗n} = argminZZT=I

N∑
i=1

N∑
j=1

wij ||zi − zj ||22

Where Z = [z1, ..., zn] and wij is the (i, j) entry of the similarity matrix W . It’s required that
∑
j wi,j = 1

In this framework, similarity is measured with the Jenson-Shannon divergence.

C – GAN based clustering uses the GAN’s adversarial training framework in a few different ways.

Deep Adversarial Clustering (DAC) [Harchaoui et al., 2017] uses an adversarial Autoencoder with

a discriminator in the latent space to enforce a GMM prior. DAC has a similar architecture to WAE-GANs,

except it is clustering oriented and uses an AE instead of a VAE.
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Mixture of Experts Deep Clustering (MoEDC) is the product of Pedro Távora Santos’ master thesis.

As mentioned before, this project is a continuation of (or an alternative to) Pedro’s work. Hence, a brief

description of his model follows.

MoEDC has two main components, which are the manager and the experts. The manager is pre-

trained during the pre-training stage (see figure 2.7), while the experts are only trained afterwards.

The pre-training stage starts with a PCA based algorithm called the Z-finder finding the optimal latent

dimensionality for a given dataset. Then, a VAE is trained with the Z-finder’s latent dimension and UMAP

is applied to the resulting latent space. In succession, HDBSCAN is used to cluster the manifold out-

putted by UMAP. Finally, the VAE is retrained without the noisy samples (recall that HDBSCAN identifies

noise).

Figure 2.7: Pre-training scheme taken from MoEDC’s arcticle.

After the pre-training is completed, the manager is capable of assigning samples to the different

experts, who will each specialize in reproducing a more refined latent space of a specific cluster.

2.4 Evaluation Metrics

2.4.1 Clustering Metrics

In this section, I’ll provide a brief overview of the most common clustering metrics.

Generally, clustering metrics can be divided into two categories: supervised (or external) and unsu-

pervised (or internal).

Supervised metrics can only be used when the data is labeled, which is often not the case. One

disadvantage of these metrics is that our clustering solution may be able to find meaningful clusters and

still perform badly because they do not necessarily reflect the data’s labeling.

Rand Index (RI) [Rand, 1971] measures the similarity between two assignments. When applied

21



to clustering, it measures how good the cluster assignment is by comparing the true clusters Ct (data

points with the same label are in the same cluster) with the predicted clusters Cp.

RI = TP+TN
TP+FP+FN+TN

where TP are the true positives (number of pairs of data points that are in the same cluster in Cp and

in Ct), TN are the true negatives (number of pairs that are in different clusters in Cp and in Ct), FP are

the false positives (number of pairs that are in the same cluster in Cp but in different clusters in Ct), and

FN are the false negatives (number of pairs that are in different clusters in Cp but in the same cluster in

Ct).

Adjusted Rand Index (ARI) is the corrected-for-chance version of RI, meaning that it takes into

account the expected RI for a random model.

Clustering Accuracy (ACC) [Cai et al., 2010] is similar to random index, as it measures the per-

centage of data points that can be mapped to their correct class by using their cluster assignments.

ACC(ypred, ytrue) = maxT (

∑N
i=1 1(ytrue(i) = T (ypred(i)))

N
)

where ypred are the predicted labels, ytrue are the ground truth labels and T is the function that maxi-

mizes the mapping between cluster assignments and ground truth labels.

Purity assesses each cluster’s purity by computing what percentage of the cluster is composed by

the majority class of that cluster.

purity(C) =
1

N

∑
k

maxi|ck ∩ li|

where li is the majority class of cluster ck. A problem with this measure is that its value is maximized

when K = N .

Normalized Mutual Information (NMI) [Strehl and Ghosh, 2002] is an information-theoretic mea-

sure. It assesses the quality of a clustering solution by computing the mutual information between ypred

and yreal and then normalizes it with the their individual entropies.

NMI(ypred, yreal) =
I(ypred,yreal)

1
2 (H(ypred)+H(yreal))

Unsupervised metrics do not use the ground truth labels. The big disadvantage with these metrics

is that it is very hard to understand if the clusters found have any real meaning. When there is no overall

idea of how the algorithm should cluster, it’s hard to interpret the results in an intuitive way. Generally

speaking, unsupervised metrics are based on two measures: cohesion and separation.

Cohesion assesses how close points in the same cluster are. In a way, it can be thought of as the

density of the cluster (in a denser cluster, points are more similar to each other on average).
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Separation assesses how different points in different clusters are. In a good clustering solution,

different clusters should contain dissimilar data.

Silhouette coefficient combines both cohesion and separation. It’s calculated for each data point xi

and is given by:

s(xi) = 1− a

b

where a is the average distance between xi and the other points in its cluster, and b is the average

distance between xi and the points in all other clusters. If a > b, then b is divided by a, but that’s not

usually the case. Silhouette ranges from -1 to 1 (closer to 1 is better).

2.4.2 Image quality metrics

Image quality metrics can be very useful to assess the quality of image reconstruction and generation,

which will be necessary in section 3. There are two main types of image quality metrics: subjective and

objective methods [Thung and Raveendran, 2009].

Subjective methods use humans to assess the quality of images by rating them or by trying to dis-

tinguish real from fake images [Chen et al., 2005]. Objective methods assess image quality using

numerical criteria and can be split into full-reference (FR), reduced-reference (RF), and no-reference

(NR), depending on the availability of reference images [Thung and Raveendran, 2009]. The focus will

be solely on FR methods because model training will only occur in such conditions. FR metrics assess

the similarity between generated images and real target images.

Since subjective methods are not even an option, I will exclusively resort to FR methods. FR options

include SSIM [Hore and Ziou, 2010], PSNR [Hore and Ziou, 2010] FID [Heusel et al., 2017], and others

[Thung and Raveendran, 2009]. For simplicity’s sake, only the more recent FID will be described.

FID [Heusel et al., 2017], or Frechet Inception Distance, evaluates the similarity between generated

and real images and it was proposed to assess GAN image generation quality. It uses the previously

conceived inception v3 model [Szegedy et al., 2016] to calculate the difference in statistics of computer

vision features between a real and a fake dataset. The goal is to achieve a score as close to 0 as

possible (the FID score between two identical datasets is 0).

FID can be formulated as:

FID = ||µreal − µfake||2 + Trace(σreal + σfake − 2
√
σrealσfake)

where µ and σ refer to the mean and variance of the real and fake datasets.

23



2.5 Data Visualization Techniques

Data visualization is extremely important for model interpretation. When creating a latent space, for

example, it’s useful to visualize it in two dimensions in order to not only understand what the model

is doing, but also to visually assess the separation of data points from different classes. Below, three

data visualization methods will be construed: PCA [Pearson, 1901], t-SNE [Van der Maaten and Hinton,

2008] and UMAP [McInnes et al., 2018].

A – PCA [Pearson, 1901] is a very well know linear Matrix Factorization technique and it tries to find

a new coordinate system that describes most of the variation of the data by computing the eigenvectors

of the data’s covariance matrix [Bishop, 2006]. The eigenvectors with the larger eigenvalues are called

the principle components, and the idea is to pick only the most important ones. A key fact is that these

principle components are always orthogonal, making PCA less flexible than other methods. However,

according to [Martinez and Kak, 2001], PCA can more appropriate when dealing with small datasets.

B – t-SNE [Van der Maaten and Hinton, 2008] is a non-linear Neighbor Graph technique and is mostly

used for 2D data visualization. The goal, of course, is to maintain the structure of the data in the 2D

visualization. It operates as follows:

1. Calculate the similarity between all pairs of points. The similarity between points xi and xj is

proportional to the probability of generating xj from gaussian centered in xi. After doing so, we’ll

end up with a similarity matrix P .

2. Project the points in a lower dimension (with a random initialization) in such a way that the new

similarity matrix Q is as similar to P as possible. Here, a t distribution is used instead of a gaussian

to avoid clumping the data in a lone cluster.

In more mathematical terms, it tries to minimize a cost function C:

C =

N∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|ilog
pj|i

qj|i

where Pi is the conditional probability distribution over all other data points, given xi of dimensionality

doriginal, and Qi the conditional probability distribution over all other data points, given yi of dimension-

ality dprojection (dprojection << doriginal, usually dprojection = 2). pj|i and qj|i represent the similarity of

points xi and xj for both distributions.

This cost function can be interpreted as t-SNE trying to find a lower dimensional distribution Q that

is as close as possible to P , based on the similarity between points.

Although it maps data to a two dimensional space, t-SNE has several issues that can make its

projection unreliable [Wattenberg et al., 2016]:
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• Its highly dependent its perplexity hyperparameter. Perplexity’s value reflects how much impor-

tance t-SNE gives to local proximities versus the global structure of the data;

• It has high variance, meaning that running the algorithm twice with the same data may yield dif-

ferent results. This is, at least in part, caused by the random initialization of the lower dimension

projection;

• It may change the distance between clusters, their sizes, densities and shape;

• It runs in quadratic time, making its use impractical for large datasets.

Basically, the reduced dimensionality visualization may not be so reliable (and it can take a long time to

compute). Still, it can be useful to find structure in the data.

C – UMAP [McInnes et al., 2018] is a more recently developed non-linear manifold Neighbor Graph

technique. For it to work, UMAP makes the key assumption that the data is evenly distributed across

the manifold. Because this is not usually the case, it defines a Riemannian metric on the manifold

that makes the assumption true. This can be seen as UMAP defining different euclidean scales on

different regions of the manifold (so, depending on where you are, euclidean distances are different).

Another important assumption is the notion that the manifold is, at least, locally connected (there are

no isolated data points). This is a safer assumption because that’s usually the case for real data.

After building the original dimension nearest neighbor fuzzy graph, UMAP derives a lower dimension

one by minimizing a cross entropy cost function:

∑
x∈X

µ(x)log(
µ(x)

ν(x)
) + (1− µ(x))log(

1− µ(x)

1− ν(x)
)

where µ and ν are membership functions to the fuzzy sets (X,µ) and (X, ν), which correspond to

the original and lower dimension fuzzy sets, respectively. The first part of the function enforces the

correctness of the clumps of data (local structure), while the second enforces the correct separation

between them (global structure).

UMAP has a few hyperparameters. Because the number of nearest neighbors is unknown in the

lower dimension, it’s passed onto the algorithm. This number will determine UMAP’s concern with local

structure versus global structure. Another hyperparameter is the minimum distance between points.

When small, clusters will be more compact. If it’s too small, however, clusters can collapse into single

points. UMAP also has a metric hyperparameter, so it can work with many different distance metrics.

The final hyperparameter is the number of components, which defines the desired dimensionality.

The advantages of UMAP in comparison to t-SNE are:

• The usage of the Cross Entropy (instead of KL divergence) allows UMAP to capture the global

structure a lot better;

• Its scalable, running a lot faster for larger datasets.
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2.5.1 Summary

In this section, I presented and discussed both the fundamentals and the state of the art work that has

been done in the deep clustering area, as well as some techniques for evaluating and visualizing results.

The section follows this logical order:

1. Presenting the existing traditional clustering methods;

2. Discussing why they struggle with more complex datasets (such as image datasets) with high

feature dimensionality;

3. Unveiling several types of deep clustering models that attempt to address this issue through deep

learning.

Table 2.1 shows both the accuracy and the Normalized Mutual Information (NMI) on the MNIST

dataset for many of the deep clustering models that have been developed in recent years. In this table

we can see that there is a considerable heterogeneity when it comes to the type of architecture used,

which I believe shows how the problem of deep clustering is quite open. It is also important to notice

that many papers don’t report exactly how they obtained their results (whether it’s an average, median,

or the best result obtained). This is certainly unfortunate as it makes it much harder to compare results.

Even so, and although what is considered state of the art currently depends on the dataset in question,

the best performing models (at the time of the writing of this dissertation) are SPICE [Niu and Wang,

2021], SPC [Mahon and Lukasiewicz, 2021], ASPC-DA [Guo et al., 2019] and DynAE [Mrabah et al.,

2020].
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Table 2.1: Comparison of state-of-the-art methods based on results achieved on the MNIST dataset. AE - Au-
toencoder; RBM - Restricted Boltzman Machine; AAE - Adversarial Autoencoder; GAN - Generative
Adversarial Network; MLP - Multi-Layer Perceptron; CNN - Convolutional Neural Network; CAE - Convo-
lutional Autoencoder; VAE - Variational Autoencoder; SAE - Stacked Autoencoder.

Method Arch. MNIST

Acc NMI Type of result

CatGAN [Springenberg, 2015] GAN 95.7% - -
DEC [Xie et al., 2016] MLP 84.3% - best 20 trials
JULE [Yang et al., 2016] CNN - 0.91 avg 3 trials
InfoGAN [Chen et al., 2016] GAN 95% - -
GMVAE [Dilokthanakul et al., 2016] VAE 96.9% - best
DMC [Chen et al., 2017] AE - 0.86 avg
DAC [Harchaoui et al., 2017] AAE 94.1% - median 10 trials
IMSAT [Hu et al., 2017] MLP 98.4% - avg 12 trials
DCN [Yang et al., 2017] AE 83% 0.81 -
VaDE [Jiang et al., 2016] VAE 94.5% - best 10 trials
DEPICT [Ghasedi Dizaji et al., 2017] CAE 96.5% 0.92 avg 5 trials
IDEC [Guo et al., 2017a] AE 88.1% 0.87 -
DAC [Chang et al., 2017] CNN 97.8% 0.94 -
DCEC [Guo et al., 2017b] CAE 89% 0.89 -
MIXAE [Zhang et al., 2017] AE 85.6% - -
LRAE [Chen et al., 2018] AE 60.7% 0.62 -
CCNN [Hsu and Lin, 2017] CNN - 0.88 -
DCC [Shah and Koltun, 2018] AE 97.4% - -
SpectralNet [Shaham et al., 2018] MLP 97.1% 0.92 -
[Tzoreff et al., 2018] AE 97.4% - -

DEC-DA [Guo et al., 2018] AE 98.5% 0.96 -
DBC [Li et al., 2018a] CAE 96.4% 0.92 -
ClusterGAN [Mukherjee et al., 2019] GAN 95% 0.89 best 5 trials
ASPC-DA [Guo et al., 2019] AE 98.8% 0.94 avg 5 trials
LTVAE [Li et al., 2018b] VAE 86.3% 0.83 best 10 trials
ClusterGAN [Ghasedi et al., 2019] VAE 96.4% 0.92 avg 5 trials
[Yang et al., 2019] AE 97.8% 0.94 avg 10 trials

BAE [Chen and Huang, 2019] CAE,SAE,AAE 83.7% 0.81 -
N2D [McConville et al., 2021] AE 97.9% 0.94 -
DAMIC [Chazan et al., 2019] AE 89% 0.87 avg 5 trials
IIC [Ji et al., 2019] CNN 98.7% - -
DGG [Yang et al., 2019] VAE 97.6% - -
DynAE [Mrabah et al., 2020] AE 98.7% 0.96 -
MoE-SIM-VAE [Kopf et al., 2019] VAE 97.5% 0.94 -
VIB-GMM [Uğur et al., 2020] VAE 96.1% - best 10 trials
DERC [Yan et al., 2020] AE 97.5% 0.93 -
S3VDC [Cao et al., 2020] VAE 93.6% - avg 5 trials
SPC [Mahon and Lukasiewicz, 2021] AE 99% 0.97 avg 5 trials
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Figure 3.1: Simplified architecture of HRWAE-GAN (see Figure 3.2 for more details). The Encoder produces L
latent variables, which are each judged by the discriminator during training and clustered when training
is complete.

The Hierarchical and Relativistic Wasserstein Autoencoder GAN is comprised of two essential com-

ponents: the Hierarchical and Relativistic Wasserstein GAN Autoencoder (HRWAE-GAN) and the clus-

tering box (HDBSCAN paired with UMAP) applied to the latent space. These components will be de-

scribed in the following sub sections.

3.1 Autoencoder structure

This work can be divided in two big chunks: (1) building a generative framework, where the WAE-

GAN [Tolstikhin et al., 2017] was adapted to make its training more stable, and (2) incorporating a

hierarchical structure into the model. These chunks will be respectively explained in sections 3.1.1 and

3.1.2.

3.1.1 Relativistic Wasserstein GAN

When comparing the Beta-VAE [Higgins et al., 2016] and WAE-GAN [Tolstikhin et al., 2017] models,

the latter has a better reconstruction ability (see section 2.2 and figure 2.5) but a more unstable training

(Beta-VAE’s training is completely stable). Reconstruction quality is of great importance as it allows us

to infer how much information is retained in the latent space (in a fully unsupervised setting, at least),

and so it correlates to its quality. The goal thus became to enable the usage of WAE-GAN by making its

training more stable.

The training instability of GANs is a well known issue which has been addressed in many different

works like [Salimans et al., 2016], [Jolicoeur-Martineau, 2018], [Gulrajani et al., 2017] and [Arjovsky and

Bottou, 2017]. While the label smoothing technique [Salimans et al., 2016] is helpful but not completely

effective, the Relativistic GAN’s modified loss function [Jolicoeur-Martineau, 2018] proved to completely
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solve training instability (with regards to the adversarial training) with minimal changes to the model and

was therefore adopted (it is only required to make a small change in the adversarial loss function).

First, let us recall Generative Adversarial Networks (GANs) as they were explained in section 2.2:

GANs are game theory based generative models. They use the concept of adversarial training to min-

imize a minimax loss function. As the name indicates, there are two adversaries: the Generator (G)

and the Discriminator (D). Succinctly, G picks up a randomly generated variable z that is mapped to the

dataset space and tries to generate a realistic data object G(z). Then, both real and generated data

objects are fed to the discriminator D, who tries to correctly identify them as real or fake. This game

proceeds as G tries to fool D and D tries to avoid that from happening. This can be expressed as:

minGmaxDL(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

The first half of the equation can be interpreted as the discriminator trying to maximize its ability to

identify real data. The second part can be interpreted as the discriminator trying to maximize its ability

to classify data generated by G as fake, while G tries to minimize it.

Wasserstein GANs (WAE-GANs) move the discriminator to the Autoencoder’s latent space, where it

will be tasked with distinguishing data points sampled from the prior distribution pz (real points) and from

the encoder’s approximation qx(z) (fake points). Consequently, in WAE-GANs, the encoder serves as

the GAN’s generator. Equation 3.1 can be adapted to this use case as:

minGmaxDL(D,G) = Ez∼pz [logD(z)] + Eẑ∼qx(z)[log(1−D(ẑ))] (3.2)

where D is the latent discriminator and G is the encoder.

In [Jolicoeur-Martineau, 2018], the author argues that standard GANs are missing a key property: the

probability of real data being real should decrease as the probability of fake data being real increases.

This makes use of the a priori knowledge that half of the dataset is fake. To fix this issue, a relativistic

discriminator (RD) is used. The RD, instead of trying to classify single data points as being real or fake,

takes pairs of points (zreal, zfake) and outputs the probability of zreal being more realistic than zfake. As

the game progresses and G becomes more competent, D might even consider fake points to be more

realistic than real ones, allowing G to generate samples of higher quality than before.

The loss functions for the RGAN’s Discriminator and Generator are, respectively:

LD = E(z,ẑ)∼(pz,qx(z))[−log(f(D(z)−D(ẑ)))] (3.3)

LG = E(z,ẑ)∼(pz,qx(z))[−log(f(D(ẑ)−D(z)))] (3.4)

where f is generally the sigmoid function. In equation 3.3, the Discriminator tries to maximize the
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difference in realism between real and fake images; in equation 3.4, the Generator tries to maximize the

opposite difference, thus trying to generate realistically looking fake samples.

Notice that while in equation 3.2 G only has influence in the rightmost part, in equations 3.3 and 3.4

it has full influence.

Experimentally, it was found that the RD greatly improves the stability of adversarial training. Although

it may require some tuning of the Discriminator’s VC dimension, stable adversarial training is easily

achievable.

3.1.2 Hierarchical structure

One of the main challenges with Autoencoder models is fully capturing both the global structure of data

(such as general shape and color) as well as local structure (finer details such as lettering on an image

of a shirt). The hierarchical latent structure presented in NVAE [Vahdat and Kautz, 2020] was used to

tackle this challenge to great effect. Instead of a single latent variable z, with a hierarchical Autoencoder

there is a set of latent variables {z0, ..., zL−1}, where z0 corresponds to the latent variable at the top of

the hierarchy, zL−1 is positioned at the bottom and L is the number of latent groups. If we consider N to

be the number of layers in the model, note that L ∈ [1, N ], so L ≤ N . In this setting, the latent groups at

the top of the hierarchy are supposedly able to capture global structure whilst the bottom ones capture

local structure.

Considering this hierarchical structure, the total Discriminator and Generator losses become:

LD = α0E(z,ẑ)∼(pz,qx(z))[−log(f(D(z)−D(ẑ)))] +

L−1∑
l=1

αlE(z,ẑ)∼(p(zl|z<l),(qx(z|z<l))
[−log(f(D(z)−D(ẑ)))]

(3.5)

LG = α0E(z,ẑ)∼(pz,qx(z))[−log(f(D(ẑ)−D(z)))] +

L−1∑
l=1

αlE(z,ẑ)∼(p(zl|z<l),(qx(z|z≤l))
[−log(f(D(ẑ)−D(z)))]

(3.6)

where {α0, ..., αL−1} are balancing terms with decreasing value and qx(z|z<l) =
∏l−1
i=0 qx(zi|z<i) are

the approximate posteriors the lth group.

Regarding the priors, the top layer prior p(z0) corresponds to a simple normal distribution N (µ, σ)

with µ being a zero vector and σ being the identity covariance matrix with whatever dimensionality

dlatent the top latent space may have. For the remaining priors p(zl|z<l) of the lower latent groups, they

correspond to normal distributions as well but their parameters are computed by trainable parameter

cells.
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3.1.3 Dynamic architecture

The generic architecture of HRWAE-GAN can be visualized in Figure 3.2, where each cell is composed

of convolutional and deconvolutional layers for the encoder and decoder structures, respectively. How-

ever, because images of larger dimensions are usually more complex, there is a need for the model

depth to be data dependent. To account for this, the number of encoder cells N is determined by:

N = log2(d)− 1 (3.7)

where d =
√
D with D being the dimensionality of each data point from some dataset (disregarding the

number of channels C). This way, for 32x32xC images (of dimensionality D = 32x32), the model will

form log2(32) − 1 = 4 layers and output a feature map with dimensions 2x2xF (as it will for any other

dimension whose square root is a square of 2), where F is the number of filters of the final layer. In

order to fully reconstruct the input, the decoder must also have N cells.

3.1.4 Additional details

The implementation of HRWAE-GAN was additionally inspired by the work of [Radford et al., 2015],

where the authors propose several techniques that improve the performance of deep convolutional

GANs. Hence, the following strategy was employed:

• Replacement of pooling layers with strided convolutions because while pooling layers force the

down-sizing artificially, strided convolutions allow the generator to learn it more naturally.

• Usage of batch normalization in both the generator and the discriminator. This method prevents

mode collapse, which happens when the generator’s outputs collapse to a single point that reliably

fools the discriminator.
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Figure 3.2: Detailed architecture of HRWAE-GAN. The input x is passed through N = log2(d) − 1 convolutional
cells, where d =

√
D and D is the dimensionality of x (disregarding the number of channels C. The

final convolutional cell will consequently and necessarily output a feature map of dimensions 2x2xF ,
where F is the number of filters of this last cell. Then, the latent variable z0 is judged by the latent
relativistic discriminator Discriminator0, which will compute how realistic z0 is compared to the prior
pz. The latent variable is then passed through the N deconvolutional cells and combined with the inter-
mediate feature maps of the encoder. The encoder combiner cells output the remaining latent variables
{z1, ..., zL}, which are judged by their respective discriminators {Disciminator1, ..., DiscriminatorL}.
These remaining latent variables are reintegrated in the Decoder with the Decoder combiners. Caption
continues in the next page.
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In each convolutional and deconvolutional cell, the feature maps may be passed through n and m non-reducing
layers, which, as the name suggests, do not reduce the dimensions. Although this should increase the model’s
ability to understand the input and overall expressiveness in theory, it showed to be unpractical because it increases
the instability beyond what allows training to be completed. For this reason, both hyperparameters were set to zero.
During training, and as a refinement measure, the latent space at the top latent group (Z0) is transformed by UMAP
and then clustered by HDBSCAN, which identifies noisy points. These noisy points will then receive increased
attention during the following epochs. After training, each latent group {Z0, ..., ZL} can be independently clustered
by some clustering algorithm (usually with HDBSCAN or a GMM).

3.2 Clustering methodology

Considering the task of assigning N data points X = [x0, ..., xN−1] to K clusters, we start by deriving

the embeddings of each latent group Z = {[z00 , ..., zN−10 ], ..., [z0L−1, ..., z
N−1
L−1 ]}, where L is the number of

latent groups. Then, we may apply some clustering function to each group in Z.

In a fully unsupervised setting it’s ideal to let the model identify the number of clusters on its own. For

this reason, density based approaches can be extremely useful in such settings as they do not require

the number of clustersK as a hyperparameter. In this work, HDBSCAN [Campello et al., 2013,Campello

et al., 2015] was used as the main clustering algorithm to cluster on the latent space. Because it is

density based, HDBSCAN also has the useful feature of noise identification. Any point x1 that does not

have a neighbor x2 with d1,2 < ε, where d1,2 is the distance between two points and ε is some distance

determined by HDBSCAN, is considered as noise. The hierarchical aspect of HDBSCAN allows this

distance ε to vary between clusters, thus allowing for clusters of different densities.

However, density based approaches are known to struggle with high feature dimensionality. For

some image dataset X with moderate dimensions, such as 32x32x1, the original dimensionality D is too

large for effective clustering. This is why it is key to derive a lower dimensionality latent space Z from X

where HDBSCAN is capable of operating effectively.

3.2.1 UMAP cluster separator and compactor

UMAP [McInnes et al., 2018] is a manifold neighbor graph technique that can be used to visualize data

in lower dimensions, just like PCA [Martinez and Kak, 2001] and t-SNE [Van der Maaten and Hinton,

2008], but has the interesting properties of maintaining both global and local structures while providing

more compact sub spaces. In [McConville et al., 2021], the authors took advantage of UMAP by applying

it to the Autoencoder’s latent space. As a result, they achieved a better clustering performance.

In this work, UMAP improved the clustering performance as well. In figure 3.3, we can see that

the latent space becomes better separated and with more compact clusters after applying a UMAP

transform.
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Figure 3.3: Visualizing MNIST’s latent space with TSNE: raw (left) and after UMAP transform (right). It is visually
clear that UMAP increases the separation and compactness of the clusters.

As previously mentioned, UMAP is highly dependent on its number of neighbors hyperparameter.

This hyperparameter controls how much attention is given to local versus global structure. For low

values, it will be more focused on capturing local structure; for high values it will be focusing on global

structure. Although this is the general idea behind this hyperparameter, what is considered as a high

or low value is dependent on the dataset’s size. For example, if we consider a dataset with only 100

samples per cluster, then 100 neighbors will provide a global view of the dataset. However, if the dataset

contains 1000 samples per cluster, 100 neighbors will provide a more a more localized view.

To deal with this issue, Pedro Távora Santos decided it made sense to have a data dependent

number of neighbors and created the following expression:

n neighbors = min{bdataset size
300

c, 100} (3.8)

The 300 in the denominator was determined empirically to deliver the best results, but the optimal

value is often dependent on the dataset as well. The number of neighbors is not allowed to exceed 100

due to memory constraints.

It is still important to note that while UMAP does boost clustering performance, there may be some

variance in its transforms. This variance may be more or less noticeable depending on the dataset and

its properties. For the large image datasets used in this work, the variance is not problematic.
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3.3 Loss function

The resulting loss function has 4 components and can be written as:

L = LR + αLG + κLI + βLN (3.9)

where LR is the reconstruction loss, LG is the GAN loss, LI is the intermediate loss, LN is the noise at-

tention and α, β and κ are balancing hyperparemeters. LG has already been discussed in section 3.1.1;

the remaining three losses will be described in the following sub sections. The objective is optimized

using the reparameterization trick [Kingma and Welling, 2013] [Rezende et al., 2014].

3.3.1 Reconstruction Loss

Recalling section 2.2, an Autoencoder is composed by an encoder, which takes some data point x ∈ Rdx

and generates an embedding z ∈ Rdz with dz << dx, and a decoder, which reconstructs z to an

approximation of x. The similarity between x and the reconstruction x̂ is of great importance because it

is a way of assessing how meaningful the latent embedding z is (if it’s not meaningful, then the decoder

cannot reconstruct effectively).

To guarantee this similarity, the reconstruction loss LR is introduced. This loss measures the dis-

similarity between x and x̂ and is dependent on the dataset. For black and white images the binary

cross-entropy can be used because the pixel values are approximately binary, while for more complex

colored images the Mean Squared Error (MSE) is preferred.

3.3.2 Intermediate Loss

Experimentally, I found that cluster separation was only being achieved at some of the latent groups in

Z. This indicates that the model does not naturally make use of all layers when the number of latent

groups L is greater than some amount. I empirically verified that this effect is noticeable when L > 2.

As discussed in [Gulrajani et al., 2017], this issue was solved through layer matching. Layer matching

consists of adding a restraint to ensure that the mid-level feature maps produced by the decoder cells

match the ones produced by the encoder cells of their respective level. Formally, this can be written as:

LI =

L−1∑
l=1

D(ilencoder, i
l−1
decoder) (3.10)

where l denotes some latent group (the top group, L is the total number of latent groups, D is some

error function such as the Cosine Dissimilarity, and iencoder and idecoder are the intermediate feature

maps.
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The effect of this constraint will be demonstrated in the experiments section.

3.3.3 Noise attention

HDBSCAN is a density based clustering algorithm with the particularity of noise identification (it does

not classify points which it considers as noise). Noisy points can arguably be considered as points that

are not correctly embedded, as they are not within reasonable distance from other points from the same

class (recall that density clustering algorithms consider two data points x1 and x2 to be from the same if

d1,2 < ε, where d1,2 is the distance between the two points and ε is some minimum distance). For this

reason, it makes sense to identify these noisy points and increase the model’s attention towards them.

This results in a diminishing of noise in the latent spaces, as will be demonstrated in the experiments

section.

This noise attention can be formalized as:

LN =

N−1∑
n=0

1 if xn ∈ Noise

0 otherwise
(3.11)

where Noise is the set of points that are classified as noise by HDBSCAN. The percentage of increased

attention is determined by κ− 1, where κ is the hyperparameter used in equation (3.9).

Figure 3.4: HRWAE-GAN’s training cycle. The autoencoder and the discriminators are consecutively updated n
and m times, respectively. When n,m > 1, the adversarial training becomes more stable because both
the autoencoder and the discriminators have more time to adapt to each other. This repetitive training
was crucial to stabilize training. After e iterations of this training, the latent group Z0 is tested to find
potential noise, as was described in the previous section. Training then resumes with special attention
given to noisy data points. This entire process is repeated t times, so the total number of epochs is
given by et.
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3.4 Summary

In this section, HRWAE-GAN’s architecture was thoroughly explained. To summarize, this model is

composed of two main blocks: the Hierarchical Wasserstein Autoencoder GAN, which is essentially a

generative autoencoder with a hierarchical latent structure that is regularized with adversarial training;

and the clustering box, which applies a traditional clustering algorithm (usually HDBSCAN [Campello

et al., 2013, Campello et al., 2015]) to the obtained latent groups after a UMAP transform [McInnes

et al., 2018].

The model also has quite the complex loss function, which is described in section 3.3. Apart from the

reconstruction loss, it utilizes a relativistic adversarial loss [Jolicoeur-Martineau, 2018], which stabilizes

the adversarial training; a layer matching loss, which enforces the model to make use of all latent groups;

and a noise attention loss, which attempts to refine clustering performance by increasing attention to

noisy data points.

Finally, HRWAE-GAN also uses a custom training cycle that can be visualized in figure 3.4.
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4.1 Datasets

The experiments in this section were conducted on three distinct datasets: the MNIST dataset [Le-

Cun et al., 2010], the Fashion MNIST (FMNIST) dataset [Xiao et al., 2017] and the CIFAR-10 dataset

[Krizhevsky, 2009].

The MNIST dataset consists of 70,000 28x28 fully labeled black and white images of single hand-

written digits from zero to nine, which is usually divided into a training set of 60,000 samples and a test

set of 10,000 samples. The digits in the dataset were handwritten by 500 different writers, so the data is

varied and real world based.

The Fashion MNIST dataset has the exact same specifications as the MNIST dataset but consists

of images of clothing articles. More specifically, it contains images of t-shirts/tops, trousers, pullovers,

dresses, coats, sandals, shirts, sneakers, bags and ankle boots.

The CIFAR-10 dataset contains 60,000 32x32 fully labeled colored images of ten different types of

objects and animals, which are split into a 50,000 samples training set and a 10,000 samples training

set. The dataset’s classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

4.2 Choice of the autoencoder

Initial experiments were focused on choosing the best type of generative Autoencoder. The two variants

considered were the Beta Variational Autoencoder [Higgins et al., 2016] (which will be referred to as VAE,

for short) and the Wasserstein Autoencoder GAN (WAE-GAN). To make this comparison, I considered

their capabilities in image generation, image reconstruction, and clustering friendliness.

Training setup: to compare the two models, a 10-fold cross validation was used to train them on

the MNIST and FMNIST datasets. Both the average results and the results of each model’s best run will

then be compared. Based on previous work, a latent dimension of 23 was used for the models. This will

also make the comparison of performance easier. The β parameters are set to 30. Both models also

have the exact same structure (number of layers, hidden neurons per layer and kernel size).

In figure 4.3, where we are comparing the reconstruction ability of each model’s best run, it’s clearly

visible that the WAE-GAN is capable of reconstructing images with overall better quality and that are

more faithful to the original form. In the second column (with the number 0), for example, we can see

the WAE-GAN’s reconstruction picks up on the original image’s extra bit of girth on the left side. On the

other hand, the VAE’s reconstruction just adds some undesired blurriness to that zone. On the FMNIST

dataset, it is even more evident that WAE-GAN can reconstruct images with much better quality. It can’t,

however, pick up on certain particularities of the clothing articles (like the letters on the second column).

Furthermore, the FID score was evaluated for both models and for each dataset: VAE achieved an

average FID score of 11.84 and WAE-GAN outperformed it with an average of 5.63. Once again, this
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Figure 4.1: Reconstructions on MNIST

Figure 4.2: Reconstructions on FMNIST

Figure 4.3: Comparison between original images (top), VAE’s reconstruction (middle) and WAE-GAN’s reconstruc-
tion (bottom) on MNIST’s and FMNIST’s test datasets.
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reinforces WAE-GAN’s superiority regarding reconstruction ability.

Regarding image generation, the two models behaved similarly and obtained almost the exact same

FID scores. This can be verified in Figure 4.4. Poor image generation proved to be WAE-GAN’s main

weakness, as the images it generates are easily distinguishable from real ones.

Images generated by WAE-GAN on MNIST.
FID = 94.027

Images generated by VAE on MNIST.
FID = 94.0266.

Images generated by WAE-GAN on FMNIST.
FID = 41.88.

Images generated by VAE on FMNIST.
FID = 42.02.

Figure 4.4: Generated images

As for clustering friendliness, the WAE-GAN is able to produce a better separated latent space (see

Figure 4.5) which allows for better clustering results.
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Table 4.1: Clustering results with HDBSCAN on the MNIST and FMNIST datasets. In the columns displaying aver-
age results, both the average (left) and the standard deviation (right) are being shown.

#clusters

% labeled
(avg) acc labeled

(avg)

total acc
(avg)

% labeled
(best) acc labeled

(best)

total acc
(best)

M
N

IS
T WAE-GAN 10 88.4% +/-

6.42% 92.43% +/-
4.5%

85.41% +/-
6.57%

92% 96.53% 90.51%

VAE 11 77.7% +/-
6.42%

90.6% +/-
6.11% 76.63% +/-

6.11%

81% 96.05% 84.67%

FM
N

IS
T WAE-GAN 10 77.9% +/-

6.16% 66.09% +/-
2.37%

56.79% +/-
1.47%

83% 66.45% 57.95%

VAE 11 64.3% +/-
5.66% 63.89% +/-

1.95%
45.28% +/-

2.44%

84% 61.37% 50.87%

Figure 4.5: The latent spaces of WAE-GAN (left) and VAE (right) after a UMAP transform for the MNIST dataset.
It’s visible that WAE-GAN’s latent space is more separated and compact than VAE’s.

4.3 Improving training

As previously mentioned, one of the main issues with adversarial training is training instability. To ad-

dress this issue, some different training techniques were experimented with. These techniques will be

described in the following subsections.
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4.3.1 Repeated network updates

The most simple way to train a GAN is to make interleaved updates to the generator (G) and discriminator

(D) networks. However, this method can lead to instability as one of the two participants may have a

hard time adapting to the rapid changes. One way to combat this issue is by letting G and D make n

and m times in a row, respectively. Experimentally, it was apparent that setting both n and m to values

greater than 1 was extremely beneficial towards improving stability. Going even further, if we consider

rupdate as the ratio of between m and n, then finding some ideal value for this ratio is helpful in increasing

training stability.

4.3.2 Two phase adversarial training

Some works have found that, in adversarial training, it may be helpful to have two stages of training. In

the first stage, rupdate >> 1 (the Discriminator receives more updates); in the second stage rupdate is

some value closer to 1. The reasoning behind this method is to first allow D to learn what fake and real

data points look like so that in the second stage it is capable of providing helpful feedback to G. If G

begins its training without a well trained D, then its learning could result unfruitful.

Initial experiments split the training into two phases. On the first phase, the discriminator received

more updates per step (m > n); on the second phase, the generator received more updates per step

(n > m). The first problem encountered was with the hierarchical model quickly diverging when entering

the second phase. It was assumed that this issue could have been being caused by the optimizer being

used, Adam [Kingma and Ba, 2017]. Adam utilizes the concept of momentum, first proposed in [Qian,

1999], to achieve a faster yet controlled convergence to the objective function’s minimum. Momentum is

an intuitive concept that adds the concept of time to parameter updates. Apart from utilizing the gradient

of time step t, it adds a momentum term that corresponds to the gradient of the time step t − 1 and

multiplies it by some value γ, which is commonly set to 0.9 or similar. The effect of this technique is that

the updates gain momentum with time, moving faster in the direction of the previous updates (a common

analogy is to imagine a ball zig zagging down the interior of an upside down cone. As it rolls down, it

loses lateral movement and gains vertical momentum, moving faster and faster in the direction of the tip

of the cone). This is formally described in equation 4.1.

Wt = Wt − η∇L(Wt) + γvt (4.1)

vt = η∇L(Wt−1) + vt−1 (4.2)

Adam, which stands for Adaptive Moment Estimation, improves upon this concept by utilizing adap-
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tive learning rates. Simply put, adaptive learning rates consist in starting off with big steps that change

their magnitude as training progresses. This is accomplished by dividing the learning rate η by a term

that changes with time. In Adam’s case, the learning rate is divided by the exponentially decaying aver-

age of past squared gradients. Using this exponentially decaying average allows Adam to better control

the updates, slowing them down when recent gradients are very large (when variance increases).

So, Adam’s momentum is usually good as it allows for faster convergence times. However, in this

specific case where the loss landscape is dynamic (changes drastically as we move from phase 1 to

phase 2), it can prevent the model from learning. For this reason, for experiments where the values of

n and m change very drastically, the alternative optimizer RMSprop was used. RMSprop is similar to

Adam, except it does not use the first moment of momentum (corresponding to the average, described

in equations 4.1 and 4.2). Instead, it only uses the second moment (which corresponds to the variance).

Consequently, it has an easier time readjusting during the second phase.

Figure 4.6: Comparison between the generator’s loss function when using Adam (blue) and RMSprop (green).
While RMSprop is capable of a better recovery than Adam, which is unable to converge, it causes the
first phase to often diverge and it’s convergence time is comparably slower.

Although this technique is theoretically interesting, it showed to be impractical when combined with

a hierarchical autoencoder due to the latter’s highly irregular loss landscape. Because this technique

adds instability, it considerably contributes towards divergence during training time.
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4.3.3 Training with warm up

The final technique that was experimented with was to add a warm-up phase at the beginning of training.

Recall HRWAE-GAN’s loss function (equation 3.9), where the hyperparameter α is used to weight the

importance of the GAN loss. In this warm-up phase, α starts with a very low value (close to 0) and slowly

increases step wise (increases on every step of each epoch). Experimentally, I found this technique to

be of extreme use regarding the hierarchical stability as it allows the model to slowly incorporate the

adversarial training. For this reason, this technique was used for the remainder of the experiments and

it contributed towards the final results.

4.4 Choice of the clustering algorithm

Three clustering algorithms were considered for this work: HDBSCAN, Gaussian Mixture Model (GMM)

and the Agglomerative clustering algorithm.

HDBSCAN is a hierarchical density based clustering algorithm. While its antecedent DBSCAN re-

quires the minimum neighbor distance ε as a hyperparameter, HDBSCAN tries increasingly smaller

distances and keeps the more persistent clusters. Unlike what happens with DBSCAN, this may result

in clusters of varying density. However, HDBSCAN still requires the minimum cluster size as a hyper-

parameter. To properly assess its performance, initial experiments were focused on finding the most

appropriate value for this hyperparameter. Since the size of different datasets can vary, it does not make

sense to actually define a minimum cluster size. Instead, the hyperparameter becomes the denominator

that divides the number of samples N of some dataset. This is formally described in equation 4.3.

Table 4.2 shows the percentage of labeled samples (although it is not expected of HDBSCAN to

label every sample, since it is safe to assume every large enough dataset has some noisy data points,

too low of a value is undesirable as well), the accuracy among the labeled samples (according to the

real labels), the total accuracy and the silhouette. Since we are trying to simulate a fully unsupervised

environment (and because the accuracy is among the top values as well), it was decided to pick the

denominator with the highest silhouette score - 50. These results were obtained on the test set.

min cluster size =
N

denominator
(4.3)
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Table 4.2: Assessment of HDBSCAN with different denominator hyperparameters on the Fashion MNIST test set.

Denominator %labeled accuracy labeled accuracy total silhouette

20 64.06% 62.54% 48.6% 0.2

25 66.94% 62.7% 50.41% 0.24

30 67.58% 62.84% 50.92% 0.25

35 68.2% 62.74% 51.31% 0.25

40 71.92% 63.33% 49.19% 0.26

45 70.79% 63.55% 48.76% 0.25

50 71.35% 63.43% 48.91% 0.27

55 69.79% 60.42% 45.97% 0.23

As for the remaining algorithms, the default parameters were used and the number of clusters was

set to the number of clusters found by HDBSCAN. By letting HDBSCAN pick this hyperparameter for

each dataset, we are better simulating a truly unsupervised setting.

4.5 Building the loss function

4.5.1 Layer matching

To analyse the impact of the layer matching constriction (see section 3.3.2), which encourages the de-

coder to output intermediate feature maps that are similar the ones outputted by the encoder at their

respective level, an array of values was tested and evaluated through HDBSCAN’s noise identification.

The idea is that a more clusterable latent space should have a lower percentage of points being con-

sidered as noise since, realistically, only a small percentage of points actually are noise. In figure 4.7,

when can see that when L = 2 (when there are two latent groups), layer matching does not play a huge

factor. The variance of the model is also evident, with one of the runs failing completely (without having

diverged) and outputting completely unclusterable latent spaces.
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Figure 4.7: This plot shows how the percentage of labeled data points. i.e. data points that are not considered as
noise, varies in each latent group from Z as we increase the importance of the layer matching constraint
when the number of latent groups L equals two.

However, when L = 3, the effect becomes more apparent. In figure 4.8 we can see that without this

constraint, some of the latent groups have absolutely no separation between classes. After introducing

layer matching, the model fixes this issue and thus makes use of every latent group.

Be that as it may, this is not very relevant in practise because the model’s training instability is quite

problematic whenever L > 2. It consequently becomes difficult to evaluate layer matching in those

circumstances, so its effects are hard to prove empirically.

Figure 4.8: HRWAE-GAN’s latent space on the top layer without (left) and with (with) layer matching when when
the number of latent groups L equals three.
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4.5.2 Noise attention with HDBSCAN

As discussed in section 3.3.3, HDBSCAN can be used to identify noisy points (data points that don’t

belong to any cluster). By using this feature, we can increase the attention the model pays to these

points with the goal of refining their encoding.

In figure 4.9 we can see that increasing the attention up to a certain point causes the percentage of

noise to decrease in latent group z1. This is especially interesting because noisy points are identified at

z0 but the model somehow utilizes this information to refine z1, leaving z0 basically unchanged.

Figure 4.9: This plot shows how the percentage of labeled data points. i.e. data points that are not considered as
noise, varies in each latent group from Z as we increase the extra attention paid to noisy data points
when the number of latent groups L equals two. Example: when beta equals 0.15, noisy data points
receive an extra 15% attention.

4.6 Results & Discussion

4.6.1 Number of latent groups

This subsection will be used to analyse the effects of varying the number of latent groups. This analysis

will be based on three factors: clustering performance, quality of image reconstruction and quality of im-

age generation. Note that when the number of latent groups L equals 1, the model drops its hierarchical

structure and becomes a regular Wasserstein Autoencoder GAN.

In table 4.3 we can see how adding an extra latent group affects clustering performance. In latent

group 0, clustering is slightly worse than the non-hierarchical model but without significant increase in
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Table 4.3: Clustering results on the Fashion MNIST dataset for different amounts of latent groups (first column) and
for each latent group (second column). The columns tagged with ”(best)” correspond to the values of the
model with highest total clustering accuracy.

#latent
groups

latent
group

#clusters
(best)

%labeled
(avg)

acc labeled
(avg)

totall acc
(avg)

%labeled
(best)

acc labeled
(best)

total acc
(best)

1 0 10 68.42%
+/- 4.6%

62.1%
+/- 2.1%

47.84%
+/- 5% 68.9% 63.4% 51.71%

0 10 56.4%
+/- 4.26%

69%
+/- 5.6%

44.2%
+/- 2.98% 60.4% 72.8% 49.6%

2 1 10 41.86%
+/-28.9%

40%
+/- 21%

29.38%
+/- 20.1% 84.3% 65.1% 56.8%

variance. In latent group 1, however, results are a bit more interesting. When it comes to the average

results, they are significantly worse and with very large standard deviation. This shows how the hierar-

chical architecture can have very high variance between different instances of the model. Even though

the best accuracy result was achieved in the second latent group, the high variability makes it unusable

in a fully unsupervised environment since there is no way of knowing how reliable an instance of the

model is.

So, at least for this particular implementation, using a hierarchical architecture did not present

any advantages when it comes to clustering tasks.

Nonetheless, in figure 4.12 it’s visible that the quality of image reconstruction increases significantly

with additional latent groups. Unfortunately, since the only use of reconstruction quality is to have an

idea of how trustworthy the latent representations are and we’ve determined that hierarchical models do

not increase clustering performance, this positive aspect is basically insignificant.

Figure 4.10: In this image we can see how reconstruction quality improves with the number of latent groups L.
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Images generated by HRWAE-GAN with a single
latent group (L = 1).

Average FID = 32.95 +/- 0.71

Images generated by HRWAE-GAN with two latent
groups (L = 2).

Average FID = 30.76 +/- 2.24

Figure 4.11: Images generated by HRWAE-GAN. FID scores were obtained by averaging 5 runs (each run corre-
sponds to a different instance of the model).

Finally, we’ll take a look at the effect of multiple hierarchical groups on the generative capabilities

of HRWAE-GAN. In figure 4.11, it’s apparent that adding a latent group blurred the generated images,

even though the FID score somehow improves. This was surprising because the authors of NVAE

[Vahdat and Kautz, 2020], who used a hierarchical VAE to generate images, obtained opposite results.

Since the biggest difference between HRWAE-GAN and NVAE is the regularization of the latent spaces

(HRWAE-GAN utilizes a GAN framework), I believe this could possibly mean that mixing GANs with a

hierarchical architecture is either not beneficial or requires a lot of fine tuning.
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Figure 4.12: Latent groups of HRWAE-GAN when the number of latent groups L equals three. The left column
shows the real labels while the right column shows HDBSCAN’s labels. Data points labeled with -1
are considered as noise by HDBSCAN.

4.6.2 Comparison of clustering performance with other state-of-the-art models

Table 4.4 shows how HRWAE-GAN compares to both MoE and the current best performing model for

each one of the three experimented on datasets. It’s visible that the attained model is outperformed by

a significant margin on all cases, but especially of the CIFAR-10 dataset.
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#clusters %labeled
(avg)

acc labeled
(avg)

totall acc
(avg)

%labeled
(best)

acc labeled
(best)

total acc
(best)

HRWAE-GAN
GMM (L=1) - - - 54.3% - - 60.4%

HRWAE-GAN
HDBSCAN (L=1) 10 68.4%

+/- 4.57%
62.1%

+/- 2.1%
47.8%
+/- 5% 68.87% 63.35% 51.7%

HRWAE-GAN
GMM (L=2) - - - 60%

+/- 3.4% - - 63.9%

HRWAE-GAN
HDBSCAN (L=2) 10 56.4%

+/- 4.6%
69%

+/- 5.6%
44.2%

+/- 2.98% 84.3% 65.1% 56.8%

Table 4.4: Clustering results comparison between a two latent group HRWAE-GAN, the Mixture of Experts and the
best performing model for each datataset - SPC [Mahon and Lukasiewicz, 2021], AE + SNNL [Agarap
and Azcarraga, 2020] and SPICE [Niu and Wang, 2021].

#clusters %labeled
(avg)

acc labeled
(avg)

totall acc
(avg)

%labeled
(best)

acc labeled
(best)

total acc
(best)

HRWAE-GAN
GMM (L=2) - - - 70.37%

+/- 4.5% - - 77%

HRWAE-GAN
HDBSCAN (L=2) 10 55.2%

+/- 10.3%
85.6%
+/- 7%

54.9%
+/- 6.6% 78.86% 94.14% 78.8%

MoE 10 - - 97.4% - - -

M
N

IS
T

SPC - - - 99.03%
+/- 0.1% - - -

HRWAE-GAN
GMM (L=2) - - - 60%

+/- 3.4% - - 63.9%

HRWAE-GAN
HDBSCAN (L=2) 10 56.4%

+/- 4.6%
69%

+/- 5.6%
44.2%

+/- 2.98% 84.3% 65.1% 56.8%

MoE 10 - - 68% - - -

FM
N

IS
T

AE + SNNL - - - 84.4% - - -
HRWAE-GAN
GMM (L=2) - - - 14.7%

+/-2.2% - - 16.48%

HRWAE-GAN
HDBSCAN (L=2) 2 2.9%

+/- 18.3%
22%

+/- 11.5%
15.7%

+/- 2.8% 58% 21% 17.6%

MoE 3 - - 32.8% - - -

C
IF

A
R

10

SPICE - - - 91.7%

4.6.3 Discussion

All things considered, HRWAE-GAN’s performance fell below expectations. It’s fair to say that the added

complexity of multiple latent groups is not rewarding. Apart from its results not being up to par with the

current state-of-the-art, it also suffers from three main issues:

1. As the number of latent groups L increases, training becomes considerably more unstable and

often diverges before completion. This is why my experiments were mostly done with L = 2. This

is unfortunate because it would have been interesting to see what would happen with larger Ls.

2. The model suffers from training variance, meaning that two models trained with the same hyper-
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parameters will output differently organized latent spaces and generate images of varying quality.

This makes it very hard to interpret how hyperparameters and different added constraints effec-

tively change the outcome of training.

3. The latent space regularization through adversarial training is also a hard task. While the relativistic

discriminator heavily increases training stability, the loss evolution can be hard to interpret because

it is not a simple minimization problem. This makes it harder to know what to change when results

are sub par.

According to recent state-of-the-art works like SPICE [Niu and Wang, 2021] and SPC [Mahon and

Lukasiewicz, 2021], semi-supervised approaches easily outperform hierarchical ones such as this one

and are easier to implement and experiment with (the implementation of this model was very challeng-

ing).

I believe the most important observation I have come to realize is that a meaningful latent space

does not necessarily equate to a clusterable latent space. A priori, I would expect the reconstruction

loss (which relates to the meaningfulness of the latent space) to be highly correlated to clusterability.

Obviously, it is to some extent. If the data points are just randomly mapped to the latent space, clustering

performance will be underwhelming. However, I have found that the relationship is not linear. This can

be visualized in figure 4.13, where quite a few badly reconstructed points are clustered correctly (red

circles) while some well reconstructed ones are clustered incorrectly (green crosses).
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Figure 4.13: Visualizing how reconstruction quality relates to clustering accuracy. Greener points have better re-
construction quality. Clearly, there is not a linear relationship between reconstruction quality and
clustering accuracy.

Another aspect that is important to consider is how some data points from different classes x1 and

x2 can look more similar to each other than to other data points in their same classes. Consequently,

in an unsupervised setting, x1 and x2 may end up closer to each other than to other in the latent space

than to other points from their respective classes. This is further illustrated and discussed in figure 4.14.
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Figure 4.14: Details of the ”shoes” cluster in the latent space. Notice that each figure has an arrow pointing to
its respective data point. Lets refer to each picture, from left to right and top to bottom, as sandal1,
ankle boot1 and sandal2. Visually we can see that sandal1 is more similar to ankle boot1 than to
sandal2. For this reason, the encoder maps sandal1 to be closer to ankle boot1 than to sandal2. From
a clustering perspective, however, the accuracy measure would penalize this decision since we have
two points from different classes in the same cluster. This suggests that clustering accuracy may not
always be a fully reliable way of assessing the quality of an embedding.

4.6.4 Summary

In this section, several experiments were conducted in order to both guide the development of the model

and to evaluate it. I started by comparing two types of generative frameworks: the Beta VAE [Higgins

et al., 2016] and the WAE-GAN [Tolstikhin et al., 2017], which lead me to choose the latter as the base

for HRWAE-GAN. Then, I experimented with some training techniques with hopes of achieving greater

training stability, obtaining mixed results depending on the techniques. Having achieved a somewhat

stable training, I experimented with various clustering algorithms and optimized and analyzed the loss

function hyperparameters. Finally, I concluded the section by presenting and discussing the obtained

results, which revealed the model fell under the initial expectations.
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5.1 Revision of the work done

In this Dissertation, I had the goal of understanding the current state-of-the-art deep clustering tech-

niques and subsequently following a novel approach to tackle this difficult task. The result was HRWAE-

GAN, a generative autoencoder with a hierarchical latent space (it contains a set of latent spaces

Z = {z0, ..., zL−1}, instead of just one) that is regularized by a set of latent relativistic discriminators

in an adversarial training setup.

Overall, this model is very complex and challenging to implement without the reward of state-of-the-

art performance. Although the hierarchical latent structure has shown to be beneficial for data generation

[Vahdat and Kautz, 2020], this did not seem to be the case for clustering. Initially, there was hope that

having several latent spaces could possibly be used in some advantageous way. This could happen if

the model was consistent in its way of organizing each latent space (i.e, it always utilized the same logic

in z0, z1, etc. to organize the data points), but that was not the case. It’s also important to mention that

the added complexity of the hierarchical architecture makes training significantly more unstable, even

when using the regularization techniques recommended in NVAE [Vahdat and Kautz, 2020].

Given that much better results have been achieved by recent works like SPC [Mahon and Lukasiewicz,

2021] with much simpler and more intuitive architectures, the path followed in this thesis does not seem

to be recommendable.

5.2 Future Work

Although the hierarchical approach fell under initial expectations regarding clustering performance, its

image generation qualities are still of potential interest, as was shown in [Vahdat and Kautz, 2020]. To

this effect, I believe the most important aspect that is missing is a mechanism to control the images that

are generated.

In InfoGAN [Chen et al., 2016], the authors suggest that feeding some extra information c to the

generator G, who’s function becomes G(z, c) where z is the latent code, and having an extra neural

network Q reconstructing c based on G’s output can provide this desired functionality of controlling the

images generated (see subsection 2.2, paragraph E for more detailed information about InfoGAN). With

this in mind, it would make sense to incorporate this extra component to generative models such as

HRWAE-GAN.

To improve clustering performance, the recent state-of-the-art work like SPICE [Niu and Wang, 2021]

and SPC [Mahon and Lukasiewicz, 2021] suggests adopting a semi-supervised approach based on the

models’ pseudo-labels can highly increase clustering accuracy. Still, it’s worth noting that generating

pseudo-labels comes with the cost of increased training time.
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