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Abstract

Harmful Algal Blooms (HABs) have been a rising issue not only due to environmental concerns, but

also public health due to possible shellfish contamination. In Portugal, frequent analysis are ran by

Instituto Português do Mar e Atmosfera (IPMA) to assess the quality of the water and its fauna, such

as the shellfish and subsequently allow (or stop) its gathering and commercialization. These analyses,

however, could be complemented and the swiftness of the fishing activity interdiction could be improved.

For this, machine learning methods can be used to analyse temporal data (in the form of time series)

in order to forecast the contamination of shellfish. This temporal data is gathered and compiled from

the historical data present on IPMA’s website which is released periodically at equal intervals, allowing

a consistent time slices of the built time series. Several methods are presented and reviewed in this

paper, which will be applied to collected data (that extend from the above mentioned time series to other

environmental variables) in order to complement existing analysis work, which will also be extended

through the usage of MAESTRO - an online tool for multivariate time series analysis. With this report

and subsequent work - data collection, processing and forecasting, we will develop methods to support

the prediction of shellfish contamination in Portugal’s shoreline.
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Resumo

A proliferação de algas nocivas tem sido um problema crescente, não só devido a consequências am-

bientais, mas também de saúde pública devido à possı́veis contaminações de marisco. Em Portugal,

análises frequentes são efetuadas pelo Instituto Português do Mar e Atmosfera (IPMA) para avaliar a

qualidade da água e da sua fauna, tal como o marisco e subsequentemente permitir (ou impedir) a sua

colheita e comercialização. Isto dito, estas análises podiam ser complementadas e consequentemente,

a celeridade da interdição da atividade de pesca podia ser melhorada. Para isto, métodos de aprendiza-

gem automática podem ser usados para analisar os dados temporais (sob a forma de séries temporais)

para poder prever a contaminação do marisco. Estes dados são obtidos e compilados a partir dos

dados históricos presentes no website do IPMA, que lança estes dados periodicamente em intervalos

iguais, permitindo que os dados temporais da série sejam equidistantes entre si. Vários métodos são

aqui apresentados e estudados neste documento, que serão seguidamente aplicados aos dados obti-

dos de forma a complementar o material de análise existente, que também será fundamentado com

o uso do MAESTRO - uma ferramenta online para análise de séries temporais multivariadas através

de redes bayesianas dinâmicas. Com este documento e o trabalho incluı́do - obtenção de dados e

respetivo processamento, análise e previsão, os métodos desenvolvidos deverão suportar a previsão

de contaminação tóxica de marisco na costa portuguesa de forma a permitir a proteção do comércio e

assegurar a saúde pública relativamente ao consumo de marisco.

Palavras Chave

Algas Nocivas; Biotoxinas Marinhas; Saúde Pública; Séries Temporais; Aprendizagem Automática; Pre-

visão; Análise.

v





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Data Collection and Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Concepts 5

2.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Autocorrelation Function (ACF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Partial Autocorrelation Function (PACF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.7 Information Criteria Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.7.1 Akaike Information Criterion (AIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.7.2 Bayesian Information Criterion (BIC) . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 Performance Measuring Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8.1 Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8.2 Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8.3 Mean Absolute Percentage Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.9 Autorregressive Model (AR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.10 Moving Average Model (MA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.11 Autorregressive Moving Average Model (ARMA) . . . . . . . . . . . . . . . . . . . . . . . 10

2.12 Autor regressive Integrated Moving Average - ARIMA . . . . . . . . . . . . . . . . . . . . 11

2.13 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.14 Bayesian Networks (BN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.15 Dynamic Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.16 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.17 Gradient Boosting and XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.17.1 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



3 Time Series Analysis 18

3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Joining the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results and Evaluation 27

4.1 Wedge Clam L8 Dataset - Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Autorregressive - Auto-ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Random Forests Regressor- RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.3 Gradient Boosting Trees - XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.4 Evaluation Through Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Complementary Study (including Multivariate Time Series) using MAESTRO . . . . . . . 32

4.2.1 RIAV1 Dataset Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 RIAV2 Dataset Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3 RIAV3 Dataset Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.4 Combination of RIAV Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion and Future Work 52

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Zone information and respective geographical coordinates 59

B Zones and respective species captured 63

C Zones evolution since the start of data logging 67

D Sample count of each species in each region 69

E MAESTRO generated conditional probability tables for RIAV 1 zone 73

F MAESTRO generated conditional probability tables for RIAV 2 zone 76

G MAESTRO generated conditional probability tables for RIAV 3 zone 79

H MAESTRO generated conditional probability tables for RIAV2 and RIAV3 timeseries (com-
bined) 82

viii



List of Figures

1.1 The 9 main areas of Portugal’s coastline (with some respective subdivisions - totaling 40). 2

1.2 Main hazardous biotoxins in the portuguese coastline and their respective maximum legal

rates per kilogram of shellfish. Adapted and translated from IPMA [1]. . . . . . . . . . . . 3

1.3 Small example of the data presented publicly by IPMA on their website about biotoxin

rates in different shellfish in the various areas of the portuguese coastline. [2] . . . . . . . 4

2.1 An example of a portion of a Bayesian Network Graph. . . . . . . . . . . . . . . . . . . . . 13

2.2 Typical representation of an ANN [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 GUA region (small region pointed by the red arrow), one of the new zones added halfway

into the analysis process throughout the years. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 First 4 data points of the L8 Wedge Clam dataset, including the SST (oC) and Chlorophyll

values (mg/m3), the final 5 attributes are the ones being studied and are, from left to right,

the three studied toxins (Lipophilic, Amnesic and Paralytic), Chlorophyll and the SST. . . . 21

3.3 Sea Surface Temperature (degrees celsius) in the L8 area across all datapoints. . . . . . 23

3.4 Chrolophyll (mg/m3 - milligrams per cubic meter) values detected in the L8 area across

all datapoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Toxin rates in Wedge Clam shellfish in the L8 area. Lipophilic can be see in blue, Amnesic

in green and Paralytic in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Decomposition of the Wedge Clam collection in the L8 area time series. The Series is

decomposed into the Original value (at the top) and respectively lowers into the Trend,

Seasonality and Remainder components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 ARIMA performance on the Wedge Clam-L8 time series. . . . . . . . . . . . . . . . . . . . 28

4.2 Random Forest Regressor applied to the Wedge Clam-L8 time series. . . . . . . . . . . . 28

4.3 XGBoost forecasting performance on the dataset. . . . . . . . . . . . . . . . . . . . . . . 29

ix



4.4 MAE metric results for each model trained with the Wedge Clam dataset on the L8 area. . 30

4.5 MSE metric results for each model trained with the Wedge Clam dataset on the L8 area. . 31

4.6 RMSE metric results for each model trained with the Wedge Clam dataset on the L8 area. 31

4.7 Location and relative position of RIAV subgroups in Portugal’s Coastline . . . . . . . . . . 32

4.8 Vertical comparison of the lipophilic biotoxin data of the RIAV1 dataset, MAESTRO (above)

and a built plot with the interdition restriction threshold in red (below). . . . . . . . . . . . 33

4.9 Vertical comparison of the amnesic biotoxin data of the RIAV1 dataset, MAESTRO (above)

and a built plot with the interdition restriction threshold in red (below). . . . . . . . . . . . 34

4.10 Vertical comparison of the paralytic biotoxin data of the RIAV1 dataset, MAESTRO (above)

and a built plot with the interdition restriction threshold in red (below). . . . . . . . . . . . 34

4.11 Vertical comparison of the chlorophyll data of the RIAV1 dataset, MAESTRO (above) and

a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.12 Vertical comparison of the sea surface temperature data of the RIAV1 dataset, MAESTRO

(above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.13 Below Threshold (ND and NQ) value counts in the RIAV1, RIAV2 and RIAV3 time series,

with respective rate percentage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.14 Below Threshold (LD) value counts in the RIAV1, RIAV2 and RIAV3 time series, with

respective rate percentage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.15 Vertical comparison of the DSP producing phytoplankton data of the RIAV1 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.16 Vertical comparison of the ASP producing phytoplankton data of the RIAV1 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.17 Vertical comparison of the PSP producing phytoplankton data of the RIAV1 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.18 Resulting DBN model of the RIAV1 time series. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.19 Vertical comparison of the lipophilic toxin data of the RIAV2 dataset, MAESTRO (above)

and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.20 Vertical comparison of the amnesic toxin data of the RIAV2 dataset, MAESTRO (above)

and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.21 Vertical comparison of the paralytic toxin data of the RIAV2 dataset, MAESTRO (above)

and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.22 Vertical comparison of the chlorophyll data of the RIAV2 dataset, MAESTRO (above) and

a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.23 Vertical comparison of the sea surface temperature data of the RIAV2 dataset, MAESTRO

(above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

x



4.24 Vertical comparison of the DSP producing phytoplankton data of the RIAV2 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.25 Vertical comparison of the ASP producing phytoplankton data of the RIAV2 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.26 Vertical comparison of the PSP producing phytoplankton data of the RIAV2 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.27 Resulting DBN model of the RIAV2 time series. . . . . . . . . . . . . . . . . . . . . . . . . 44

4.28 Vertical comparison of the lipophilic toxin data of the RIAV3 dataset, MAESTRO (above)

and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.29 Vertical comparison of the amnesic toxin data of the RIAV3 dataset, MAESTRO (above)

and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.30 Vertical comparison of the paralytic toxin data of the RIAV3 dataset, MAESTRO (above)

and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.31 Vertical comparison of the chlorophyll data of the RIAV3 dataset, MAESTRO (above) and

a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.32 Vertical comparison of the sea surface temperature data of the RIAV3 dataset, MAESTRO

(above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.33 Vertical comparison of the DSP producing phytoplankton data of the RIAV3 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.34 Vertical comparison of the ASP producing phytoplankton data of the RIAV3 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.35 Vertical comparison of the PSP producing phytoplankton data of the RIAV3 dataset, MAE-

STRO (above) and a built plot (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.36 Resulting DBN model of the RIAV3 time series. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.37 MAESTRO’s resulting DBN model for the joined time series of RIAV 2 and RIAV3 . . . . . 50

xi



xii



List of Tables

3.1 Overall statistics of the Time Series data with the percentage of missing values for each

toxin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 SST and Chlorophyll general statistics over the 4 year span study of the L8 area. . . . . . 22

3.3 Overall statistics of the L8 Wedge Clam dataset. There are a grand total of 166 data

points across the 4 years studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xiii



Acronyms

HAB Harmful Algal Bloom

IPMA Instituto Português do Mar e Atmosfera

DSP Diarrhetic Shellfish Poisoning

ASP Amnesic Shellfish Poisoning

PSP Paralytic Shellfish Poisoning

SST Sea Surface Temperature

TS Time Series

MTS Multivariate Time Series

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

MSE Mean Squared Error

MAPE Mean Absolute Percentage Error

RMSE Root Mean Squared Error

ACF Autocorrelation Function

PACF partial Autocorrelation Function

ADF Augmented Dickey-Fuller

MA Moving Average

ARMA Autorregressive Moving Average

ARIMA Autorregressive Integrated Moving Average

xiv



AR Autorregressive

RF Random Forests

iRF Iterative Random Forests

GI Gini Importance

BN Bayesian Network

DBN Dynamic Bayesian Network

DAG Directed Acyclic Graph

NN Neural Network

ANN Artificial Neural Network

CSV Comma Separated Values

NQ Non-Quantifiable

ND Non-Detectable

NR Not-Done

MAESTRO Dynamic Bayesian Networks Online.

xv



xvi



1
Introduction

Harmful Algal Blooms (HAB) are a worldwide concern becoming more frequent (and discovered, as

some are still unknown and being found) and occurring in larger areas. Multiple poisoning syndromes

exist and are derived from the consumption of shellfish contaminated with HABs - paralytic, diarrhetic,

neurotoxic, amnesic and azaspiracid [4]. Most marine toxins are produced by dinoflagellates. An excep-

tion is the domic acid, the amnesic poisoning toxin, which is produced by diatoms of the Pseudo-nitzschia

genus. [5]. The main species reported by the Portuguese monitoring program of HABs belong to the

genera Pseudo-nitzschia, Dinophysis, Gymnodinium and more recently Ostreopsis and Karenia - all

these have different oceanographic preferences that then allow them to display different life-form (mor-

photype) characteristics and adaptive strategies [5]. Portugal’s national monitoring of HAB’s is done by

the Portuguese Institute of the Sea and Atmosphere (IPMA - Instituto Português do Mar e Atmosfera)

. The monitoring is done through various methods of biotoxin level surveys which lead to the different

result bulletins published all over the world (complexity can even be different); these reports rely on a

large amount observed data, from satellite imagery of ocean colour and historical trends to forecasts of

bloom progression and even public health reports [5]. The portuguese HAB report is a weekly bulletin

released in order to (in a concise and simple manner) inform on the harvestability of shellfish in the

1



multiple zones of Portugal’s coastline, which is divided in 9 main areas (L1-L9) as shown in Figure 1.1

some of which are subdivided into smaller areas.

Figure 1.1: The 9 main areas of Portugal’s coastline (with some respective subdivisions - totaling 40).

1.1 Motivation

Despite only 0.02% of phytoplankton species are capable of producing marine biotoxins, these toxins are

a serious public health hazard. Moreover, due to global warming and general weather condition changes

along the years, HAB rates have been increasing [6] and changing at alarming enough rates [7] [8]

to warrant more care and the development of more accurate studies in order to avoid the harvest of

potentially contaminated shellfish and subsequently commercialize it, causing a public health issue that

could have been avoided.

There are a lot of sectors affected by this issue that are not obvious at first glance. Not only is

this a complex concern that tackles many sectors and needs to be further researched by the scientific

community over time, but a simple error in the analysis that deems a contaminated shellfish sample

as marketable and consumable is a serious public health hazard that should be avoided at all costs

[9] [10]. These incorrect assessments do not end at a public health level but also on a production

2



Figure 1.2: Main hazardous biotoxins in the portuguese coastline and their respective maximum legal rates per
kilogram of shellfish. Adapted and translated from IPMA [1].

and market level - economic sectors, especially related to shellfish and marine food in general can

have serious repercussions [11] and profit reductions due to a bad reputation with the general public.

Likewise zones that are frequently detected with toxin levels above the acceptable levels will have their

regional fish sectors prohibited from doing their work, hindering the mentioned sector as well as the

resulting economy in that region, even if only temporarily [12]; in 2015, a record-breaking concentration

of Domoic Acid was found on the western coastline of the United States, shutting down the fish and

shellfish industries temporarily, leading to many (53%, n=197) in the fishing industry surveyed in Ekstrom

et al. [13] declaring not being able to recoup their losses as of 2017 - roughly 2 years after the event. US

Congress only supplied $26 Million USD to support the economic losses which was less than a quarter

of the requested amount, which showcases the huge economic consequences HAB proliferation can

cause [13].

Timing is essential and as such, early warning of HABs presence and its statistics - time, location

(within the coastline areas) and magnitude is crucial information in order to control the coastal zones

and the respective aquacultures and fishing practises in them; this allows to enhance business plan

practises and ensures the best possible benefit for public welfare health wise [14]. Despite being a

big concern, other factors must be collected and studied in order to accomplish the task of forecast-

ing seafood contamination [15]. With this work, the collection of all the necessary factors/variables and

respective studying in the form of time series should provide the desired results in order to assist the var-

ious affected sectors (ranging from economical to public health) in the resolution of the issues mentioned

above.

1.2 Data Collection and Sources

The data was obtained from two key sources: IPMA’s website itself which presents on a weekly basis

a bulletin of the toxin levels in the shellfish in each area of the coast, the respective shellfish species

3



Figure 1.3: Small example of the data presented publicly by IPMA on their website about biotoxin rates in different
shellfish in the various areas of the portuguese coastline. [2]

and where the samples were taken. Copernicus is European Union’s Earth observation programme;

it studies the planet and its environment and offers information drawn from satellite observations and

in-situ (non-space) data [16]. Copernicus will thus, be a valuable source of information to extract further

data such as Chlorophyll and Sea Surface Temperature (SST).

Due to the high volume of data captured from these different sources, not all of them were used but

due to the growing nature of this project and future work, they were still found worth mentioning.
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2
Concepts

This thesis has a broad scope and is open to several different methods and applications that can be

combined into the single overall purpose of forecasting hazardous biotoxin rates in shellfish in shoreline

waters. As such, many concepts (from the basic time series and its properties to forecasting and classi-

fication methods) need to be properly introduced with, if possible, related papers and scientific studies

about said concepts.

2.1 Time Series

Time Series (TS) are a series/collection of data points recorded through time in constant intervals, which

are then modelled in order to determine patterns and the evolution of the series through time so as to

forecast and predict future values [17]. A common notation to represent TS is the following:

X = {Xt : t ∈ T}, (2.1)

where T is the index set.
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Time series to be worked within this thesis will be both univariate and multivariate, with a focus on

the former. Multivariate Time Series (MTS) consist of a time series where multiple variables change over

time [18]. This differs from a Univariate Time Series where only one variable changes through time, as

the name suggests [19].

2.2 Stationarity

A time series is stationary if its statistical properties (mean and variance) do not change in regular time

intervals - there is no variable distribution over time [20]. This is a property very useful for analyzing

and modelling, so much that even most models assume this property in order to give a more complete

analysis result.

2.3 Seasonality

Seasonality concerns certain patterns that occur frequently over time (called seasonal variation) [21].

Seasonality is important for the analysis of time-series because it can be removed or studied, the latter

of which is preferable in this case, as it can give new (and more) information to improve the applied

model’s performance [22]. In the case of this project, there are certain variables that can be grouped

into certain seasonal clusters: temperature and moon phases (and consequently the tides of the sea),

for example. Stationarity is correlated with seasonality in the sense that a seasonal time series is not

stationary due to the seasonal aspect’s presence causing the time series to change values at different

times and thus, stripping it of its stationary property.

2.4 Lag

The n-th lag at a certain data point (at a specific time n) represents the data point observed at the

moment rn. The lag serves to allow the assessment of the evolution of certain attributes over time and

study patterns in the time-series (such as the seasonality) as well as to enhance the forecasting accuracy

of certain models with the help of other characteristics such as the trend. They are also crucial when

studying certain analysis methods that depend on lagged data points like the Autocorrelation Functions

(and its partial variant). [23]
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2.5 Autocorrelation Function (ACF)

Represents variability in the attributed by measuring and comparing observations with a lagged version

of themselves and thus, determining pattern changes with the progression of time. It will be an important

metric in this thesis to measure how accuracy measures should be applied to evaluate the quality of

the models that will be reviewed further in this section. Autocorrelation is usually represented through a

graphic to better help visualize how the time series works [24]. Eq.2.2 showcases how ACF is calculated,

essentially being the result of the division between the covariance and variance for any lag of value k

time steps preceeding time step i ∈ T .

rk =

∑T
i=k+1(yi − y

′
)(yi−k − y

′
)∑T

i=1(yi − y′)2
(2.2)

2.6 Partial Autocorrelation Function (PACF)

Is similar to the ACF above, but partial autocorrelation only compares observations among time series

variables and their lagged values without the correlation between all lags in between, so for example,

the partial autocorrelation of a certain lag k is the equivalent of the autocorrelation between a variable yi

and the lagged value yi−k that does not have values for lags 1 through k−1 - those linear dependencies

are not accounted for [24]. Eq.2.3 showcases this mathematically.

rk =

∑T
i=k+1(yi − y

′
)(yi−k − y

′
)∑T

i=k+1(yi − y′)2
∑T

i=k+1(yt−k − y′)2
(2.3)

2.7 Information Criteria Methods

2.7.1 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) is one of the most commonly used information criteria - it is an

estimator of model selection based on out-of-sample prediction error [25]. It focuses on selecting a

model (out of the given set - a cadidate set) that minimises the relative amount of lost information; this

criterion is defined by the following formula:

AIC = −2 ln(L) + 2p, (2.4)

where L represents the likelihood under the evaluated model and p is the model’s number of parameters.
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2.7.2 Bayesian Information Criterion (BIC)

Another commonly used information criteria is the Bayesian Information Criterion - similar to AIC, it

differs in the second component of its representation:

BIC = −2ln(L) + pln(n), (2.5)

where L and p are, respectively, the same as the ones in AIC - the likelihood under the evaluated model

and the number of parameters of the model [26]. BIC adds a new variable into account - n, which

represents the sample size (number of instances of the train set the model is fitted for).

This model also aims for the model that minimises its criterion result. It has been attempted to com-

bine these models but they have aspects that were impossible to reconcile, as Yang (2005) [25] showed.

Studies to compare these were done and Acquah (2006) [27] and Markon et al. (2004) [28] have shown

that AIC tends to perform better with small sample sizes but has inconsistencies and ends up perform-

ing similarly with bigger samples; BIC in contrast is more consistent and improves its performance with

the increase of sample size. For this reason, AIC will be the preferred criteria used in model selection

whenever possible.

2.8 Performance Measuring Methods

2.8.1 Mean Squared Error

The Mean Squared Error (MSE) is a loss function that measures the average of the squared difference

between the forecast observations and the actual ones (the error). It is measured through the following

formula:

MSE =
1

n

n∑
i=1

(xi − x′i)2, (2.6)

where xi is the observed value, x′i is the predicted value and n represents the length of the time-series.

Due to it being a mean ( 1n
∑n

i=1) of the square of the error (((xi − x′i)2)), its aim is to select models that

have the lower difference for each datapoint, thus a smaller MSE represents smaller average errors and

thus, a better performing model [29].

2.8.2 Root Mean Squared Error

The Root Mean Squared Error (RMSE) is another metric that measures differences between sample

values and their predicted versions by the trained model. It is written as:

8



RMSE = [
1

n

n∑
i=1

(xi − x′i)2]
1
2 =

√√√√ 1

n

n∑
i=1

(xi − x′i)2. (2.7)

2.8.3 Mean Absolute Percentage Error

The MAPE - Mean Absolute Percentage Error expresses the prediction accuracy of a model through the

following ratio:

MAPE =
1

n

n∑
i=1

(|yi − y
′
i

yi
|). (2.8)

2.9 Autorregressive Model (AR)

An Autorregressive model (AR) is a regressive model that has its observations (values) depend on

previous (lagged) observations - the variable is modeled through a linear combination of lagged values

of that variable.

As such, an AR(p) model can be defined as:

xt = c+ ϕ1xt−1 + ϕ2xt−2 + ...+ ϕpxt−p + at (2.9)

Where ϕ1, ϕ2, ..., ϕp stand for coefficient parameters, p stands for the number of lagged values used

and at is the random term of the data (or white noise) which follows a white noise process (WN): at ∼

WN(0, σ2). c represents a constant, named Intercept Term [30].

This can also be written as:

xt = c+

p∑
i=1

(ϕixt−i) + at =

p∑
i=1

(ϕixt−i) + at (2.10)

2.10 Moving Average Model (MA)

The MA model (or Moving Average Process) defines the output variable using a regression model on

the past value errors - the lagged white noise values. An MA(q) model can be written as:

xt = c+ θ1at−1 + θ2at−2 + ...+ θpat−p + εt (2.11)

Where q is the number of lagged values used (much like p for the AR model), θ1, θ2, ...θq are coef-

ficient parameters, at, at−1, ..., at−q are the white noise error terms [31]. Like the AR model, it can be

re-written as:
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xt = c+

q∑
j=1

(θjat−j) + at (2.12)

2.11 Autorregressive Moving Average Model (ARMA)

The Autorregressive Moving Average (ARMA) model mixes both an AR(p) model and an MA(q) model

and is thus usually written as ARMA(p,q). As it logically implies, it is a composition between the two

previously mentioned and described models and can be expressed as:

xt = δ +

p∑
i=1

(φixt−i) +

q∑
j=1

(θjεt−j) + εt (2.13)

Where δ is the constant term of the model, φi represents the autorregressive coefficient, θj is the

moving average coefficient, εt illustrates the error term at time t and Xt is the observed value at time

t [32].

Since ARMA is made of an AR(p) and MA(q) model combination, it is possible to generate its two

counterparts due to the formula compositions:

• ARMA(p,0) is written as follows:

xt = δ +

p∑
i=1

(φixt−i) +

0∑
j=1

(θjεt−j) + εt (2.14)

= δ +

p∑
i=1

(φixt−i) + εt (2.15)

= δ +

p∑
i=1

(φixt−i) = AR(p) (2.16)

• ARMA(0, q) leads to the following equation:

xt = δ +

0∑
i=1

(φixt−i) +

q∑
j=1

(θjεt−j) + εt (2.17)

= δ +

q∑
j=1

(θjεt−j) + εt (2.18)

= δ +

q∑
i=j

(θjεt−j) + εt = MA(q) (2.19)
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2.12 Autor regressive Integrated Moving Average - ARIMA

ARIMA - Autorregressive (AR) Integrated (I) Moving Average (MA) model takes the core Autorregressive

Moving Average model and combines both autorregressive and moving average processes building a

model that also differences a time series in order to achieve its stationarity [32]. An ARIMA model is

typically described as ARIMA(p,d,q) as it showcases all the elements of the model:

• AR (Autorregression) - the regressive model shows the variable changing by regressing on its own

lagged observations (p).

• I (Integrated) - applies differencing between the values in order to allow the series to become

stationary (d).

• MA (Moving Average) - takes into consideration the dependency between observations and a

residual error from a MA model applied to lagged observations (q).

An ARIMA model ARIMA(p,d,q) is then written as such:

xt − α1xt−1 − ...− αpxt−p = εt + θ1εt−1 + ...+ θqεt−1 (2.20)

Which is equivalent to:

(1−
p∑

i=1

αiL
i)xt = (1 +

q∑
i=1

θiL
i)εt (2.21)

2.13 Random Forests

Random Forests (RF) are an ensemble learning algorithm that build a set of decision trees that are then

trained and are then used for classification or regression. They originated in 1995 by Tin Kam Ho and

[33] were then extended and popularized through Breiman [34]. Breiman’s algorithm complemented Ho’s

through the introduction of bagging and random feature selection - by training each tree with a random

set of data samples, the learnt results are the multiple uncorrelated trees built during training [34]. The

trees will use a fixed value of features, randomly picked, to split the nodes and help with classification

and/or prediction. By using a subset of the total features, combined with the usage of multiple trees, this

minimizes the chances of overfitting (like a single tree would be more subject too) and thus, prediction

errors associated with it [35]. The learnt smaller models (the trees) are then combined into a single

prediction result using Breiman’s bagging idea - by combining the predictions given by each tree, the

final result will compile them and apply a method to the returned combination of results to give the

overall prediction value [34]. These methods can go from a majority voting for categorical attributes

or an average for numerical attributes. In this work, Random Forests were used as regressors - each
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node splits into two other nodes until it reaches the leaves (the final node, determined by the RF’s depth

value - determined by the user), which have the average of the observations in them. Naturally this

leads to an extrapolation problem - because the values in all leaves are averages of previously seen

samples/observations, Random Forest Regressors cannot predict and extrapolate values outside of the

range present in the training set as the resulting values (for both the trees and the Forest itself) result from

an average, which can never sit outside of the set’s minimum and maximum values; this consequence

leads to its inability to predict possible trends that put the value range outside of the training set’s range

so choosing to use RF’s can have dire consequences if the data samples prove to be too volatile in its

value ranges over time as there’s no guarantee those values stay the same in the future [36]; in contrast,

its ability to minimize overfitting was a strong argument for its usage in this work. The motivation to use

RF’s in this work was also helped by existing research in this theme - Cheng et al. [37] used an Interative

Random Forest (iRF) [38] to determine the impact of nutrient conditions on algal abundance and also

explore the interactions between microbial abundances and phytoplankton in order to better understand

how bacteria and HABs interact with one another. This iRF algorithm aims to grow iteratively an N

number of re-weighted RF’s. This re-weighting is done through the Gini Importance (GI) index, which

measures and re-calibrates feature-importance during the decision process. After obtaining the decision

rulings from the built RF outputs, the generalization of the built trees is done and results in the above

mentioned re-weighted Random Forests. The iRF used in this study was applied to a Santa Cruz Wharf

weekly dataset that ranged from 2011 to 2019 with nearly the entirety of 2018 dismissed due to missing

values. The conclusions drawn proved inland nutrient fluxes were more relevant as the oceanic fluxes

proved more volatile due to climate oscilations (and adding the variability of precipitation and upwelling).

There were also detected quantifiable stable interactions between Phytoplankton OTU’s (Operational

Taxonomic Unit), among them the Pseudo-nitzschia group. Other RF studies also proved fruitful: Valbi

et al. [39] used an RF model to forecast paralytic toxin concentrations (Alexandrium minutum) in the

Adratic Sea. By forecasting one week ahead of time and including upwards of 18 variables (among them

nutrients, SST and salinity), the results were satisfying: the model correctly classified more than 85%

cases of presence (or absence) of the (Alexandrium minutum) dinoflagellate. Furthermore, a second

test was used where the nutrient features of the dataset were discarded, reducing the dataset attributed

from 18 to 12. This new study had more variability in the predictions but the best model with the smaller

subset of variables was just as good and even slightly better than the best model obtained with the full

feature set - this lead to the conclusion that nutrient concentrations are not needed to ensure an a high-

performing model so the second model was preferred during the study for practical issues (since nutrient

samples weren’t needed anymore) and its variables were computed using the z-score (calculated by

dividing their raw scores by the respective standard error [34] ) to determine their importance for the

studied model.
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2.14 Bayesian Networks (BN)

BN’s are statistical models that represent attributes and their conditional dependencies in a directed

acyclical graph (DAG) [40]. Bayesian Networks are very effective in the prediction of the likelihood of

specific attributes triggering a certain outcome in an event as they use Bayesian inference to model

conditional dependence through edges that connect the related variables through nodes thus creating a

DAG that models causation between the variables of a dataset [41]

Figure 2.1: An example of a portion of a Bayesian Network Graph.

From Figure 2.1, we can conclude that D and E are conditionally independent, given C. They are

not totally independent as they have originated from the same variable (C), but the expressions to obtain

both D and E and different from one another. For this graph, we have a set of variables, represented by

nodes N = {A,B, ..., I, ...} which are connected by edges (representing the dependencies) in a set E

and a set P representing the probability distribution function for each variable in N.

Taking the example with nodes C, D and E again, we can see an edge connecting C and D so,

P (D|C) is a probability to be taken into account in joint probability distributions - this way, probabilities

associated with B and A must be known to calculate any inferences related to these attributes.

To give a simple example using the Figure 2.1 above, we can write the Bayes rule of posterior

probability, P (D|C), given P(D) and the likelihood P (C|D):

P (D|C) =
P (C|D)P (D)

P (C)
(2.22)
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Which can be simplified into one of the fundamental rules of probability:

P (D|C) =
P (D,C)

P (C)
(2.23)

In the case of conditional independence, such as D and E, then we can simplify certain probabilities

that involve these conditionally independent variables:

P (D|C,E) = P (D|C). (2.24)

This way, we can define the whole structure of a BN by specifying the probability distributions of all

nodes with parents and the probabilities of the root node (or nodes, should there be more than one).

2.15 Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) are a generalization of Hidden Markov Models which can be rep-

resented as the simplest form of a DBN [42] [43]. Due to the time properties of the data of this work,

Bayesian Networks do not work very well in representing these temporal dependencies that are so char-

acteristic of time series; they are, however, a good base for Dynamic Bayesian Networks which can

actually model and work with data that is time dependent (that evolves over time and can be called

dynamic as a result of that, thus the name).

DBNs extend the regular BN notion to allow modelling of time influences, ergo, modelling dynamic

systems/data such as the time series in this work. Similar to a BN, comprised on nodes and edges, the

DBN formally introduces time slices into the network’s architecture, as now there’s a temporal connection

between variables and thus, conditional probabilities exist between variables at different time slice points.

it is worth noting DBNs follow the first order Markov property of only the immediate past affects the state

of a system at any time slice t. So, for any node x in the network’s node set, a transition from time slice

t-1 to t has the probability

P (xt|xt−1) (2.25)

for any node x in the network’s node set. It is, intuitively, well suited to represent markov processes.

we can represent the join distribution through a chain of time slices for a certain variable X:

P (X1:T ) = P (XT |X1:T−1) (2.26)

Where X1:T is a sequence X1, ..., Xt, ..., XT

Overall, a DBN is a factorisation of a probability distribution where time slices are present, through
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composite states at each time slice t. Variables in different time slices can have relations between them,

thus originating more edges in the network. A DBN factorisation can be written as:

P (X1:T ) =
∏
t

∏
i

P (Xt,i|pa(Xt,i)) (2.27)

Where i groups variables in a same time slice and pa(X) represents the parents of X in the network

[40]. In the field of medical data analysis, it is frequent to adopt the simpler first order Markov property in

order to simplify the model, making the future dependent only on the present. Intuitively, it makes sense

as the present health status gives the better information about the future status, and not the past ones.

A similar approach will be used for the context of the data analysis required in this thesis.

2.16 Artificial Neural Networks

Artificial Neural Networks (ANN) are an architecture loosely inspired by how the brain works through

neurons and their connectivity and characteristics [44]. ANN implementations were originally aimed at

solving problems in a similar manner to the human brain but over time they have proven excellent in

certain fields, such as biology and speech recognition. Neurons are represented by nodes and are

connected between edges. The output of a neuron travels through an edge and becomes the input of

the receiving neuron, until the final output is emitted. Neurons and edges usually have weights assigned

to them that are adjusted the further the NN is trained. Neurons are aggregated into layers and thus,

ANN’s typically have three main layers: the input layer, the hidden layer and the output layer - Figure

2.2 represents an ANN described in Jain et al. (2006) [3] and perfectly showcases the above mentioned

three layers.

The input received in the first layer is processed in the hidden layer which is made of several neurons,

possibly spread between several sub-layers; each value is affected by an activation function present in

the hidden layer’s neurons, which can be a sigmoid for example, among many others; different layers

can have different input transformations and are then sent through the connected edge to the next set

of neurons to repeat the process.

Figure 2.2: Typical representation of an ANN [3]
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There have been researches done in this field, namely in Recknagel et al. (1997) where ANNs were

trained to forecast and try to prevent or detect in time an algal bloom [45]. Three lakes and one river

were studied, each with their own ANN system based on the time series data for each; one of the lakes,

Lake Kasumigaura, obtained great results, having its ANN predict the timing, magnitude and succession

of algal blooms, even using independent data not used in the training process [45].

2.17 Gradient Boosting and XGBoost

2.17.1 Gradient Boosting

Gradient Boosting is a technique that works for both classification and regression alike - it essentially

ensembles weak prediction models (such as decisions trees, which will be used here) into stronger

ones by optimizing the model performance [46]. The ensemble part is similar to the one seen in a

Random Forest Regressor already approached - it builds a final model from the combination of learnt

smaller/individual models.

The gradient component derives from the typical Gradient Descent seen in Neural Networks - multiple

model predictions are combined in order to iterate improvements on following assembled trees.

Chen, et al.(2016) [47] studied Friedman’s Gradient Boosting documentation [46] and developed

XGBoost, achieving a state-of-the-art machine learning method that has proven vastly effective in both

regression and classification supervised problems.

Describing their algorithm, it uses K additive functions are used to predict an output through a tree

ensemble model:

y′i =

K∑
k=1

fk(xi), fk ∈ F, (2.28)

where F is the space of regression trees (CART). XGBoost proceeds to learn the functions used by

minimizing a regularized function:

L =
∑
i

l(y′i, yi) +
∑
k

Ω(fk), (2.29)

where l is a differentiable convex loss function that measures the difference between the prediction

and the actual value (y′i and yi respectively) - this is the case because it’s easier to use a convex loss

function to find global optimums (since we’re speaking of loss functions, these optimums are generally

represented as minimums). A property of these functions is that local minimums are global minimums

thus optimization algorithms like the gradients used here, can be used to find optimal results globally. Ω

is the model complexity that serves to regularize trees. It is defined as:

16



Ω(f) = γT +
λw2

2
, (2.30)

Here, γ represents a gain threshold - should the calculated gain surpass γ’s value, then that branch

can be generated (partition of a leaf node) as it has sufficient gain. λ portrays a regularization parameter

(L2) and helps to avoid over-fitting.

XGBoost has shown excellent performance in both forecasting, such as with crude oil prices(Gumus

et al. [48]) and classification, such as Torlay et al. [49] which managed to classify patients with epilepsy

with an AUC (Area-Under-Curve) mean score of 91%.
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3
Time Series Analysis

3.1 Challenges

The process of data collection proved to be a bigger challenge than expected and took a considerably

larger amount of time to get it to a valid state ready to train and evaluate and (consequently) forecast.

The data provided is publicly available at ”https://www.ipma.pt/pt/bivalves/docs/index.jsp” and each

data file has all samples collected in a given month of a given year; these samples are ordered by

date and contain all species and respective zones of collection. Species differ depending on the data

collected: biotoxin files are made of shellfish species and their respective contamination values of DSP

(Diarrhetic), ASP (Amnesic) and PSP (Paralytic). Phytoplankton data files are comprised of cell counts

(through the Utermohl method) in a water sample.

The data files were originally in a PDF format and thus, a conversion to a Comma Separated Value -

CSV format was chosen due to its readability and versatility when using different libraries and languages.

Furthermore, the time series changed over time for numerous reasons (this following list will refer to

values seen in the Lipophilic Toxin values of the biotoxins as they were the ones mainly studied in this

work):
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Figure 3.1: GUA region (small region pointed by the red arrow), one of the new zones added halfway into the
analysis process throughout the years.

• Zones changed names over the years and some were even introduced throughout the years. The

GUA zone is an instance of this as it was only introduced in 2017 and is situated very closely to

the Guadiana river in the south of Portugal - see Figure 3.1. This is logically also present in the

phytoplankton data and had to be accounted for too.

• Toxin value thresholds changed over time - earlier in 2015/2016 being 850 (any value above it

was simply referenced as 850 µg per kilogram of okadaic acid and equivalent toxins. In 2017

that value was lowered to 625 and since 2018 it has stayed at an even lower value of 550 (with

no changes regarding units and measures). These value changes do not affect the study of the

series in a major manner but it is worth noting that valuesof previous thresholds, such as 625 or

even 800 would be accounted for originally while now, those values will be regarded as the much

lower value of 550, which can affect some model performance due to the reduced range of values,

leading to possible missing value fluctuations that we could observe in 2015’s threshold value of

850.

These changes proved an interesting challenge to tackle as the series used in this work needed

more pre-processing to be homogenized and better prepared to be studied by the models devel-

oped, though there is room to further explore these challenges in other ways in future work.

Regarding the phytoplankton data, other challenges needed to be taken into account, such as:

• Other species of Phytoplankton have started being accounted for and quantified in the monthly

IPMA report. Inititally (in 2014) the reports approached quantifications of specific species which

were replaced since late 2014 by a generalization - DSP producing phytoplankton were all bundled

into a single variable (no information on which species were studied are present) and the same
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applied to ASP and PSP producing species. In early 2017, 2 new categories were added: Yesso-

toxin and Azaspiracid producing species. Starting 2018, the Azaspiracid category was removed

and later in May 2018 was added back, alongside 5 new variables. The existing variables were

altered and split as the monthly data changed into 10 total variables that now mention the class of

phytoplankton and the respective toxins they produce.

• Also starting in May 2018, data values also changed. Before, values were frequently marked as

zero in the tabular data, signifying that an area has no toxin-producing algae of that category. After

May 2018, however, data became frequently marked as < LD which means Below Threshold ,

replacing the zeroes seen in the data until that point.

Biotoxin data also has values that are categorical instead of numerical and had to be replaced in the

data; these values are:

• ND represents a value that is deemed Not-Detected as the analysis devices couldn’t detect the

little to no amount present in the collected shellfish sample.

• NQ dictates the analysis sample has a toxin rate that was detected but was too low to be quantified

(thus, NQ stands for Not-Quantifiable).

• NR is the final categorical value that means Not-Done, meaning the sample wasn’t analysed and

as such, this logically represents a missing value in our data.

3.2 Joining the Data

To get the data to a stable and consistent point ready to be analysed, trained and forecasted, several

procedures had to be done first to allow it to be joined into a single DataFrame ready to be pre-processed

and worked with afterwards.

Firstly, the ND and NQ values were replaced by different values, depending on the toxin measured:

for ASP toxins, the value 1.8 was considered, 28 for DSP toxins and 71 for PSP toxins. These were the

recommended values to be used for the time series when IPMA were inquired about the values ND and

NQ took in their analysis.

NR values adopted a missing-value approach and as such, different methodologies could be used.

For this work, three simple approaches were used - the first two were using the mean and median of the

remaining values of the time series dataset, while the third and final one used the mean of the values of

the two closest data points.

For the PDF data available online, an automatic extraction tool was developed to allow the user,

through a simple command line, to extract any data file directly from the IPMA website and save it locally
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- an added feature of conversion from PDF to CSV format is also present to not only download the data,

but download it in a format easier to process.

For biotoxin data, the zones in older data files were changed to their new names and the new ones

were also included (a time series in that zone will obviously have less data points on average). As for

contamination thresholds, values above them were not explicitly input so they were replaced by their

threshold value (for instance, >850 was replaced by 850 and this for each respective threshold change

(meaning the same procedure was done for thresholds 625 and 550).

For phyotplankton data, the changes in analysed species proved easy to homogenize as only DSP,

ASP and PSP values were to be accounted for in this work so all other columns were removed and

as a consequence, were not a part of this study. Furthermore, the procedure was similar to the one

done for the categorical data in the biotoxin dataset: after inquiring about this change in the data start-

ing mid-2018, the returning information recommended that the previous zero values should be instead

considered Below Threshold as well and afterwards converted to a value of 20.

All the above information was related to the data collection and treatment process of IPMA’s data

files but more work was dedicated to acquiring further data related to missing (but possibly meaningful

and correlated) features and as such, throughout development Copernicus data was also gathered. The

features extracted were the chlorophyll and Sea Surface Temperature (SST) values which were then

appended to the various time series used in this study.

The Copernicus data is presented in a NetCDF format which is rich in information but requires pack-

ages to be read and processed - for this, the Python xarray package was used. The time series could

then be extracted and even visualized as the Copernicus data always contains the geographical coordi-

nates of the collected data, thus allowing their SST and chlorophyll data to be adequately added to the

zone-specific time series in this work (see Annex B ).

Figure 3.2: First 4 data points of the L8 Wedge Clam dataset, including the SST (oC) and Chlorophyll values
(mg/m3), the final 5 attributes are the ones being studied and are, from left to right, the three studied
toxins (Lipophilic, Amnesic and Paralytic), Chlorophyll and the SST.

After this brief description of the changed made to have a consistent dataset (the first values can be

seen in Figure 3.2), pre-processing and analysis could begin.
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3.3 Pre-Processing

For pre-processing, the first thing required was filling the missing values as mentioned above and the

following graphics and analysis will have its missing values replaced by the mean of the remaining values

in the dataset. The missing value rate is presented in Table 3.1 for all 3 toxins that IPMA is currently

providing information for.

Toxins

Lipophilic TA TP

Missing Values (%) 2.9 17.6 21.8

Data Points (total) 9136

Table 3.1: Overall statistics of the Time Series data with the percentage of missing values for each toxin.

This image only serves to represent overall data because there is no logic is working with a dataset

containing all species and all areas at the same time. As such, the pre-processing and overall analysis

process will be done to smaller datasets that encapsulate a single species on a specific capture area.

One of the first things was to see how the toxin rates evolved over time. Additionally, more attention

was given to the Lipophilic toxins as they are the most predominant in Portugal and suffered the most

changes over time - Amnesic and Paralytic had very few noticeable variations over the course of the 4

year dataset that was studied as Figure 3.5 showcases, proving to be much less fruitful datasets to work

with.

The Copernicus data was also plotted to see how values evolved over time. Figures 3.3 and 3.4

showcase this.

Copernicus Data

SST (ºC) Chlorophyll (mg.m−3)

Count (Data Points) 166 166

Mean 17.58 0.95

Standard Deviation 2.46 0.76

Minimum Value Recorded 13.94 0.05

Maximum Value Recorded 23.97 4.26

Table 3.2: SST and Chlorophyll general statistics over the 4 year span study of the L8 area.

Using the time series statistics present in Table 3.2 as a starting point for further studies, the Wedge

Clam information on the L8 area will be used for the forecasting study of this dissertation, among a few

other series used for further analysis. As such, it’s worth mentioning the overall statistics of this dataset,

similarly to Table 3.3:
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Figure 3.3: Sea Surface Temperature (degrees celsius) in the L8 area across all datapoints.

Figure 3.4: Chrolophyll (mg/m3 - milligrams per cubic meter) values detected in the L8 area across all datapoints

Toxins

Lipophilic TA TP

Count (Data Points) 166

Mean 204.50 2.16 83.22

Standard Deviation 181.70 1.73 111.68

Minimum Value Recorded 21 1.8 11

Maximum Value Recorded 850 16 1491

Table 3.3: Overall statistics of the L8 Wedge Clam dataset. There are a grand total of 166 data points across the 4
years studied.
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Figure 3.5: Toxin rates in Wedge Clam shellfish in the L8 area. Lipophilic can be see in blue, Amnesic in green and
Paralytic in orange.

From this point onward, Python packages proved useful thanks to their added functionality that en-

abled studying other, more specific components of the dataset.

Using the statsmodels package, a function titled seasonal decompose was made available to de-

compose any time series into its various components. When applying it to the above mentioned dataset,

the time series values were decomposed as shown in Figure 3.6.

Figure 3.6: Decomposition of the Wedge Clam collection in the L8 area time series. The Series is decomposed
into the Original value (at the top) and respectively lowers into the Trend, Seasonality and Remainder
components.

We can see that the Trend was relatively consistent throughout the first three years, noticeably rising

at the end of 2018 and staying high throughout 2019 which fits the noticeably higher average values

witnessed throughout the same time periods in the original data.

There is no seasonal pattern in the series, however, as there does not seem to be a consistent

pattern among the value variations in the decomposed section that represents the seasonal component
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of the time series.

After this analysis, it was important to check on how attribute values correlated with lagged versions

of themselves and thus better comprehend models to be applied and study the series. For this purpose,

Autocorrelation and Partial Autocorrelation plots were generated to better see this.

Figure 3.7: Caption

Figure 3.8: Caption

As we can see, there is not a very significant correlation between values and their lagged versions.

At point zero, the value is 1 as the correlation is measured between the value and itself, meaning it

is obviously the maximum achievable. The same applies to the Partial Autocorrelation plot. The first

7 lagged values seem to be consistently the highest but it is still a very small value - there is no real
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exponential or consistent drop of any sort to represent a significant autocorrelation.

Another concept important in time series analysis that was discussed in the previous chapter is sta-

tionarity. For this, an Augmented Dickey-Fuller (ADF) test was made through Python’s adfuller function

of the statsmodels package. This Unit Root test was preferred to the other typical test, Phillips-Perron,

due to the latter’s tendency to underperform in comparison with ADF in finite time series samples (like

the ones being dealt with in this work).

After this analysis and pre-processing phase, we will discuss model results in the next chapter for

this dataset.
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4
Results and Evaluation

4.1 Wedge Clam L8 Dataset - Forecasts

The Wedge-Clam L8 dataset suffered a train/test split on the start of November 2019 - November and

December consisted of seven total data points the models would be evaluated on - the remaining time

period before that is the training set and is comprised of the remaining 159 data points.

In this chapter, a brief explanation of how the models were used (language, libraries/packages and

functions, plus their respective main parameter values) and an image to showcase the final result on the

forecasting of the above-mentioned dataset. In the end of the chapter, a table and plot of the evaluation

metrics will be presented (previously described in Chapter 2). Overall conclusion and result discussion

will be in Chapter 5.

4.1.1 Autorregressive - Auto-ARIMA Model

For the ARIMA model development, due to the several values to be tuned, a package named pmdarima

was used - it wraps the classic statsmodels library, enabling easy usage for Python developers. Specific
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Figure 4.1: ARIMA performance on the Wedge Clam-L8 time series.

to this package is the auto arima function that automatically picks the best version of the ARIMA model

which was (0,1,1) for the respective (p,d,q) parameter tuple. This function was run with both the AIC and

BIC information criteria methods - both yielding the same ARIMA model.

4.1.2 Random Forests Regressor- RF

Figure 4.2: Random Forest Regressor applied to the Wedge Clam-L8 time series.

A Random Forest Regressor was implemented through the sklearn Python package. The most

notable parameters that were tuned were:

• n estimators: the number of trees built by the regressor - this was picked as 100 due to it being a
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small value, fast to compute and because biggers values were tested and proved to yield little to

no improvement - this is consistent with the fact that the number of trees helps improve the model

until a point where the error rate improvements are negligible and are not worth the exponential

performance increase in generating and ensembling all the trees.

• max depth: chosen as 2 to allow the model to be flexible with data. Large values of tree depth

make it prone to overfitting (despite Random Forest’s randomness in tree generation and averag-

ing) and there was also no noticeable improvement after a substantial increase in this value.

• n jobs: no influence in the model itself - it unlocked all processor cores for usage to achieve faster

processing and model training.

4.1.3 Gradient Boosting Trees - XGBoost

Figure 4.3: XGBoost forecasting performance on the dataset.

For the XGBoost forecasting, a similar approach was made to the Random Forest Regressor and

the following parameters were selected (some of them were the default values but those ended up being

logically reasonable ones):

• n estimators: taking the value of 100 for the precise same reasons as the Random Forest counter-

part - even with the new features associated with XGBoost, there were no noticeable improvements

past 100.

• objective: a string value was picked squarederror meaning that the learning objective to be mini-

mized was the MSE metric already approached in Chapter 2.

• gamma: the larger this parameter is, the more conservative the algorithm would be and thus, within

the allowed range of [0,∞], the minimum value of 0 was used.
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• max depth: after testing various combinations (and also using a Python package names BayesianOp-

timization to facilitate this testing), the best result was yielded with a max depth value of 4 without

showing overfitting.

• booster : a string value was used (gbtree) to make the model use a tree based booster as was

explained in Chapter 2 (other values such as gblinear are possible too).

4.1.4 Evaluation Through Metrics

For this select dataset, the follow evaluation metrics for the models were obtained:

Figure 4.4: MAE metric results for each model trained with the Wedge Clam dataset on the L8 area.

Figure 4.4 shows that the Mean Absolute Error (MAE) was relatively low in 2 particular models, who

achieved a score of under 100, those being the XGBoost and AutoARIMA model.
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Figure 4.5: MSE metric results for each model trained with the Wedge Clam dataset on the L8 area.

As Figure 4.5 showcases, the AutoARIMA and XGBoost models obtained a respectable value that

complements their good performance on the MAE evaluation.

Figure 4.6: RMSE metric results for each model trained with the Wedge Clam dataset on the L8 area.

Finally - and similarly to the MSE results - the RMSE performance was better with the XGBoost and

AutoARIMA models.
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4.2 Complementary Study (including Multivariate Time Series) us-

ing MAESTRO

For the following analysis, an online Time Series Analysis through Dynamic Bayesian Networks was

used: MAESTRO. The same pre-processing procedures seen in Chapter 3 were applied to the RIAV

dataset for the cockle shellfish - specifically, RIAV1, RIAV2 and RIAV3 - with its respective location seen

in Figure 4.7.

Figure 4.7: Location and relative position of RIAV subgroups in Portugal’s Coastline

The reason RIAV 4 was not taken into account can be justified by looking at Appendix D, where

the number of time series datapoints are very similar among the first three RIAV zones, but the fourth

possesses far fewer samples, making its inclusion in this analysis very complicated and nigh impossible
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due to the sample size disparity that would likely cause more error-prone results.

For the RIAV datasets, these were also complemented using SST, Chlorophyll and their respec-

tive phytoplankton data, making the dataset use a total of eight variables to observe how MAESTRO’s

modeled trees linked these variables among each other (and obtain possible causal relations between

them).

Because this subsection approaches a multivariate approach, the goal in this section was to progres-

sively add more variables in order to see the evolution of MAESTRO’s generated networks and make a

final assessment of how variables interact with each other within a single time-series and also between

different time series. For this, a series of plots will be shown of each attribute of the time series, along-

side the MAESTRO counterpart, concluding with the MAESTRO-generated Dynamic Bayesian Network

modeled (and respective conditional probability tables in the Appendix sections). Once all RIAV zones

are explored, a study of how a time series comprised of two of these zones combined behaves under

MAESTRO’s Dynamic Bayesian Network modelling will be discussed.

4.2.1 RIAV1 Dataset Presentation

The images below show MAESTRO’s attribute visualization for the RIAV1 dataset with 5 variables where

red represents the lowest values and blue the highest, the colors change depending on each variable’s

value range. To ease the explanation of the following images, they are complemented with the respective

variable plot. By carefully looking at both plots of the same, variable, it can be seen that, for instance,

blue datapoints in MAESTRO coincide with the peaks seen in the respective plotted variable.

Figure 4.8: Vertical comparison of the lipophilic biotoxin data of the RIAV1 dataset, MAESTRO (above) and a built
plot with the interdition restriction threshold in red (below).
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Figure 4.9: Vertical comparison of the amnesic biotoxin data of the RIAV1 dataset, MAESTRO (above) and a built
plot with the interdition restriction threshold in red (below).

Figure 4.10: Vertical comparison of the paralytic biotoxin data of the RIAV1 dataset, MAESTRO (above) and a built
plot with the interdition restriction threshold in red (below).
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Figure 4.11: Vertical comparison of the chlorophyll data of the RIAV1 dataset, MAESTRO (above) and a built plot
(below).

Figure 4.12: Vertical comparison of the sea surface temperature data of the RIAV1 dataset, MAESTRO (above)
and a built plot (below).

As observed in Figure 4.13 , due to the high rate of values that were missing (NR) or below-threshold

(ND and NQ), the data values suffer little variation throughout the 4 year span of the dataset, as the plots

show (and MAESTRO’s color plot, where most red datapoints represent the threshold values that were

imputed to replace ND/NQ values). Whenever there is a change in the recorded values, MAESTRO’s

data records a different color (though small value fluctuations yield similar colors). This gives a better

perspective of how MAESTRO uses the time series to create its models as the time series values have

to be discretized - something this application does automatically for the user. The same figure also

exhibits the fact that PSP and ASP toxins in particular can be seen having values under the detection or
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quantifiable threshold combine for a huge portion of the time series (in the case of ASP, 91.3% for RIAV1,

87.1% for RIAV2 and 90.4% for RIAV3), something that can be corroborated by consulting Figures 4.9

and 4.10where the plot showcasing biotoxin concentrations in the Cockle shellfish very rarely fluctuate

above the minimum threshold of detection/quantification.

Figure 4.13: Below Threshold (ND and NQ) value counts in the RIAV1, RIAV2 and RIAV3 time series, with respec-
tive rate percentage.

Figure 4.14: Below Threshold (LD) value counts in the RIAV1, RIAV2 and RIAV3 time series, with respective rate
percentage.

Afterwards, RIAV1 was complemented with the phytoplankton data, adding 3 new variables to the

dataset for a total of 8. Because phytoplankton and toxin data are almost always collected in different

days of the week (sometimes in different weeks), the opted procedure was to join both dataset’s values

on the nearest respective date for each row - with a one week threshold (more than a week did not seem

productive for the bayesian network inference). Because some date differences exceeded this threshold,

imputation of missing values was needed - MAESTRO also provided assistance and the missing values

were filled using its Last Observation Carried Forward method.
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The resulting data is presented in Figures 4.15 - 4.17 for the 3 phytoplankton data collections (DSP,

ASP and PSP):

Figure 4.15: Vertical comparison of the DSP producing phytoplankton data of the RIAV1 dataset, MAESTRO
(above) and a built plot (below).

Figure 4.16: Vertical comparison of the ASP producing phytoplankton data of the RIAV1 dataset, MAESTRO
(above) and a built plot (below).
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Figure 4.17: Vertical comparison of the PSP producing phytoplankton data of the RIAV1 dataset, MAESTRO
(above) and a built plot (below).
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With the added data, MAESTRO was run in order to obtain the resulting modeled network.

Figure 4.18: Resulting DBN model of the RIAV1 time series.

Complementing this model, Appendix E possesses the conditional probability tables for the gen-

erated relations between attributes in the dataset (data already discretized into bins a through d, the

former representing low values and the latter the higher values). Unfortunately, because of the above

mentioned high lack of recorded values outside of the detection (or quantification) threshold, there’s a

very big similarity among the phytoplankton concentrations and the resulting model approaches those

relations as they are naturally far stronger than other attributes (such as temperature, chlorophyll or even

lipophilic toxin concentrations in cockles) that have a higher rate of recorded values outside any lower

(or higher) thresholds.
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4.2.2 RIAV2 Dataset Presentation

After the same procedure of processing done in RIAV1 was applied to RIAV2, the following plots were

obtained:

Figure 4.19: Vertical comparison of the lipophilic toxin data of the RIAV2 dataset, MAESTRO (above) and a built
plot (below).

Figure 4.20: Vertical comparison of the amnesic toxin data of the RIAV2 dataset, MAESTRO (above) and a built
plot (below).
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Figure 4.21: Vertical comparison of the paralytic toxin data of the RIAV2 dataset, MAESTRO (above) and a built
plot (below).

Figure 4.22: Vertical comparison of the chlorophyll data of the RIAV2 dataset, MAESTRO (above) and a built plot
(below).
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Figure 4.23: Vertical comparison of the sea surface temperature data of the RIAV2 dataset, MAESTRO (above)
and a built plot (below).

Figure 4.24: Vertical comparison of the DSP producing phytoplankton data of the RIAV2 dataset, MAESTRO
(above) and a built plot (below).
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Figure 4.25: Vertical comparison of the ASP producing phytoplankton data of the RIAV2 dataset, MAESTRO
(above) and a built plot (below).

Figure 4.26: Vertical comparison of the PSP producing phytoplankton data of the RIAV2 dataset, MAESTRO
(above) and a built plot (below).
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Figure 4.27: Resulting DBN model of the RIAV2 time series.

Referencing Figure 4.13 once more, RIAV2 does not differ much from its RIAV1 counterpart due to

an (almost) equally high rate of values assuming the lower threshold value previously defined; however,

it is worth mentioning, through observation of the conditional probability tables in Appendix F, that the

temperature seemingly has an influence on the PSP producing phytoplankton’s concentrations when

both are in a higher bin and sea surface temperatures decreases as the PSP producing phytoplankton

has a high chance of 50% of lowering their concentration rates (lowering its bin value) compared to

higher temperatures).
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4.2.3 RIAV3 Dataset Presentation

Figure 4.28: Vertical comparison of the lipophilic toxin data of the RIAV3 dataset, MAESTRO (above) and a built
plot (below).

Figure 4.29: Vertical comparison of the amnesic toxin data of the RIAV3 dataset, MAESTRO (above) and a built
plot (below).
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Figure 4.30: Vertical comparison of the paralytic toxin data of the RIAV3 dataset, MAESTRO (above) and a built
plot (below).

Figure 4.31: Vertical comparison of the chlorophyll data of the RIAV3 dataset, MAESTRO (above) and a built plot
(below).
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Figure 4.32: Vertical comparison of the sea surface temperature data of the RIAV3 dataset, MAESTRO (above)
and a built plot (below).

Figure 4.33: Vertical comparison of the DSP producing phytoplankton data of the RIAV3 dataset, MAESTRO
(above) and a built plot (below).
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Figure 4.34: Vertical comparison of the ASP producing phytoplankton data of the RIAV3 dataset, MAESTRO
(above) and a built plot (below).

Figure 4.35: Vertical comparison of the PSP producing phytoplankton data of the RIAV3 dataset, MAESTRO
(above) and a built plot (below).
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Figure 4.36: Resulting DBN model of the RIAV3 time series.

In the case of the RIAV3 zone (and consulting Appendix G, the SST and Chlorophyll revealed an inter-

esting relation with the amnesic toxin rates detected in the cockle species. Higher values (discretized as

c) revealed a higher value of amnesic toxin contaminations detected. Likewise, and taking into consider-

ation the conclusions drawn from observing the RIAV2 DBN model and resulting conditional probability

tables, the sea surface temperature seemed another factor that influenced the resulting amnesic toxin

concentrations when paired with the chlorophyll rates. The lower the SST (for the same chlorophyll

values), amnesic toxin probabilities point to lower concentration values - this is especially noticeable

when the lagged data point of the temperature is 0, meaning the recorded temperature at the time of the

collected sample (toxin or phytoplankton).
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4.2.4 Combination of RIAV Datasets

After this study of the 3 different RIAV zones, the logical next step was to evaluate any possible correla-

tions between the data present in two zones, so the datasets needed to be combined. For this purpose,

RIAV2 and RIAV3 time series were combined using a familiar process done before: because MAESTRO

requires multiple time series to be together, the dates needed to be processed in order to allow the join-

ing process of the zone time series and thus, time series datapoints were joined on the closest date that

did not exceed a set threshold of a week. Since RIAV2 and RIAV3 data were usually collected in the

same week, likely due to their geographical proximity, this method made the most sense.

Figure 4.37: MAESTRO’s resulting DBN model for the joined time series of RIAV 2 and RIAV3
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While a big portion of the results obtained from the DBN model generated (see Figure 4.37) and the

respective conditional probability tables yields inconclusive relations, there is a considerable correlation

between RIAV2 and RIAV3’s chlorophyll rates. Higher values verified in RIAV3’s chlorophyll quantities

seem to yield higher values in RIAV2’s chlorophyll values - the exact same applies for lower values.

Given this information, paired with the other analysis performed on the single RIAV time series, we can

observe a probable correlation between chlorophyll, sea surface temperature and biotoxin or phytoplank-

ton concentrations (seen in RIAV2 with the PSP producing phytoplankton and sea surface temperature

and in RIAV3 with the pairing of chlorophyll and SST regarding amnesic toxin concentrations found in

the cockle samples.
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5
Conclusion and Future Work

5.1 Conclusion

IPMA’s analysis serves as the frontline to prevent the harvesting and subsequent commercialization

(and consumption) of contaminated shellfish. This is done through the analysis of shellfish samples (for

biotoxin concentrations in them) and HAB presence in collected water samples - should these analysis

results go over the legal limit, the affected zones (of which there are fourty across the entire portuguese

coast) are shut down temporarily until another sampling proves the contamination is no more. With

this work, the aim was to enhance the swiftness of the zone blocking through methods of forecasting

in order to determine zones that could have contaminated shellfish ahead of time. A brief revision of

some methods applied in this thesis were studied - including some related work where they were used

and proved to be effective. Furthermore, a brief examination of concepts related to time series were

presented in order to better understand the thought process in the developed set of models and data

processing. Through the development of forecasting models and with the assistance of MAESTRO, a

better understanding of the shellfish contamination and its causes were achieved - namely a correlation

that indicates sea surface temperature and chlorophyll had an influence in the amnesic toxins found in

52



cockles in the RIAV3 zone and in the PSP producing phytoplankton in the RIAV2 zone; when joining two

time series from different zones (RIAV2 and RIAV3 specifically), chlorophyll values from RIAV3 seemed

to directly correlate with the values seen in RIAV2. With the above described analysis and the pre-

processing and collection of the data provided by IPMA, it is hoped that the accessibility for further work

in this field can be done in order to enhance the analysis already done here and further reach the optimal

goal of consistently (and accurately) predicting biotoxin contamination in shellfish, no matter the species

or the region the sampling was done.

5.2 Future Work

This section will focus on possible improvements for both performance and visualization of the resulting

data analysis and forecasting. With the data collected and processed, there are time series with very few

data points (see Appendix D) which make accurate predictions far harder. For this, the development of

models optimized for these smaller time series would extend this forecasting work for more regions and

species and thus, cover more potential contamination events. Still pertaining the model suggestions,

more models could be developed to test their performance in these datasets, such as Long-Short-Term-

Memory Neural Networks or Gaussian Process Regression (or Kriging). Likewise, showcasing these

time series, paired with the respective forecast models in a possible web application would prove fruitful

for both the easiness of studying these time series, but also for accessibility to the workers of possible

affected sectors (such as fishing and commerce), and even the civilian population. Likewise, the data

obtained through Copernicus proved useful in understanding some relations between variables but it’s

worth noting more attributes could be studied - salinity, currents and rainfall are examples of possible

factors that could affect the forecasting results. An extended collection of attributes to add to the existing

time series could add valuable correlations between biotoxin contaminations, HABs and the various

factors that affect the coastal areas and their dynamic.
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Zona do país Zona de produção Código Local de Amostragem Latitude Longitude

Estuário do Lima ELM Montante da Ponte 

Eiffel
41,69164 -8,81375

Labruge 41,27802 -8,76900

Leça da Palmeira 41,19667 -8,71114

Piscicultura 40,68663 -8,71390

Costa Nova 40,61720 -8,74235

Ponte da Barra 40,63020 -8,73822

Ilha dos Puxadoiros 40,65444 -8,66833

Corte das Freiras 40,63002 -8,67679

Litoral Aveiro L3 Torreira 40,75883 -8,80100

Estuário do Mondego – Braço 

Norte

EMN1 Morraceira Norte 40,14013 -8,82693

Leirosa 40,05605 -8,89238

Pedrógão 39,91845 -8,99620

Greijau 39,42000 -9,21245

Baliza de Ferro 
2) 38,77817 -9,03867

Trafaria 
1) 38,67333 -9,25917

Cacilhas 38,68944 -9,14091

Alcochete 38,77303 -9,00108

Lisboa e Vale do 

Tejo

Lagoa de Óbidos LOB
Espichel 39,40392 -9,20923

Estuário do Tejo ETJ

Samouco 38,76259 -9,00108

Litoral Peniche – Cabo Raso L5a Praia dos Coxos 38,00468 -9,42503

Centro

Ria de Aveiro, Canal de Ílhavo RIAV4
Sul da Ponte da A25 40,62965 -8,68567

Estuário do Mondego – Braço Sul EMN2 Morraceira Sul 40,11936 -8,83060

Litoral Fig. da Foz – Nazaré L4

Centro

Ria de Aveiro, Triângulo das 

Correntes/Moacha
RIAV1

Moacha 40,69556 -8,71167

Ria de Aveiro, Canal de Mira RIAV2

Sul da Ponte da Barra 40,62160 -8,73934

Ria de Aveiro, Canal Principal 

Espinheiro
RIAV3

Canal do Espinheiro 40,67667 -8,68444

Norte

Litoral Viana L1
Carreço 41,74283 -8,87833

Litoral Matosinhos L2
Aguda 41,03335 -8,70167



Praia da Rainha 38,614473 -9,22468

Praia do Norte 38,63790 -9,24342

Costa de Caparica 38,64562 -9,24341

Jangada 38,51254 -9,17211

38,54224 -8,79039

38,54260 -8,79201

Mitrena 38,50800 -8,81199

Abul 38,42794 -8,68342

Palma 38,40878 -8,64487

Troviscais 37,67259 -8,7254

Jusante da Ponte 37,72790 -8,77173

Sines 38,08975 -8,82856

Praia da Costa do 

Norte
37,96875 -8,87341

37,13400 -8,62205

37,12475 -8,62893

Rio Arade – Montante da Ponte 

Nova

POR1 Rio Arade 37,15733 -8,50235

Rio Arade – Parchal POR3 Parchal 37,13861 -8,51218

Aljezur  – Amoreira 37,35505 -8,84654

Aljezur 37,29571 -8,87083

Litoral Offshore L7b Sagres – Cultura 37,02250 -8,88583

Offshore 37,01666 -8,86920

Ponta do Zavial 37,03423 -8,84875

Porto de Mós 37,06588 -8,68550

37,01867 -7,94833

37,00200 -7,94833

Ria Formosa – Faro- Regato de 

Azeites – Barrinha

FAR2 Largura 36,99667 -7,96597

Comporta 38,42633 -8,84762

Algarve

Ria de Alvor LAG Vale da Lama

Ria de Alvor – Povoação POR2 Povoação 37,13217 -8,59750

Litoral Aljezur – S. Vicente L7a

Litoral S. Vicente – Lagos L7c1

Litoral Lagos – Albufeira L7c2
Albufeira 37,08257 -8,18077

Ria Formosa – Faro-Cais Novo – 

Geada
FAR1 Marchil

Lisboa e Vale do 

Tejo

Litoral Cabo Raso – Lagoa de 

Albufeira
L5b

Alentejo

Lagoa de Albufeira LAL
Lagoa 38,51308 -9,17554

Estuário do Sado – Esteiro da 

Marateca
ESD1

Faralhão 38,52540 -8,79866

Canal da Vaia

Estuário do Sado – Canal de 

Alcácer
ESD2

Carrasqueira 38,42680 -8,71925

Estuário do Mira EMR

Litoral Setúbal-Sines L6



OLH3 Ilhote Negro 
b)

37,01561 -7,85518

36,99450 -7,86100

Ria Formosa – Cacela VT Cacela 37,15385 -7,55191

Rio Guadiana GUA Castro Marim 37,21413 -7,43194

Ria Formosa – Tavira TAV Quatro Águas 37,11385 -7,63050

Algarve Litoral Tavira – V.R.S.A. L9 Monte Gordo 37,17500 -7,43733

FUZ Fuzeta 37,02362 -7,44591

Litoral Faro-Olhão L8 Culatra 36,98550 -7,83383

Algarve

Ria Formosa – Olhão

OLH1
Regueira de Água 

Quente
37,03452 -7,78813

OLH2 Fortaleza 37,02550 -7,81250

OLH4 Garganta 37,00517 -7,86867

OLH5 Culatra
36,99333 -7,84667

Ria Formosa – Fuzeta



B
Zones and respective species

captured
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Zona do país Zona de produção Código Local de Amostragem Espécies Amostradas

Estuário do Lima ELM Montante da Ponte 

Eiffel
Ostra-portuguesa

Mexilhão

Ouriço-do-mar

Labruge Amêijoa-branca

Amêijoa-branca

Castanhola

Leça da Palmeira Ouriço-do-mar

Amêijoa-macha

Berbigão

Longueirão

Piscicultura Ostra-japonesa ou gigante

Costa Nova Ostra-japonesa ou gigante

Ponte da Barra Amêijoa-macha

Berbigão

Longueirão

Amêijoa-macha

Berbigão

Longueirão

Ilha dos Puxadoiros Ostra-japonesa ou gigante

Corte das Freiras Ostra-japonesa ou gigante

Berbigão

Longueirão

Amêijoa-macha

Litoral Aveiro L3 Torreira Amêijoa-branca

Estuário do Mondego – Braço 

Norte

EMN1 Morraceira Norte Berbigão

Berbigão

Lambujinha

Leirosa Mexilhão

Pedrógão Amêijoa-branca

Amêijoa-boa

Amêijoa-japonesa

Berbigão

Greijau Amêijoa-macha

Baliza de Ferro 
2) Amêijoa-japonesa

Trafaria 
1) Amêijoa-macha

Cacilhas Pé-de-burro

Amêijoa-japonesa

Lambujinha

Alcochete Amêijoa-japonesa

Mexilhão

Ouriço-do-mar

Norte

Litoral Viana L1
Carreço

Litoral Matosinhos L2
Aguda

Centro

Ria de Aveiro, Triângulo das 

Correntes/Moacha
RIAV1

Moacha

Ria de Aveiro, Canal de Mira RIAV2

Sul da Ponte da Barra

Ria de Aveiro, Canal Principal 

Espinheiro
RIAV3

Canal do Espinheiro

Centro

Ria de Aveiro, Canal de Ílhavo RIAV4
Sul da Ponte da A25

Estuário do Mondego – Braço Sul EMN2 Morraceira Sul

Litoral Fig. da Foz – Nazaré L4

Lisboa e Vale do 

Tejo

Lagoa de Óbidos LOB
Espichel

Estuário do Tejo ETJ

Samouco

Litoral Peniche – Cabo Raso L5a Praia dos Coxos



Praia da Rainha Conquilha

Praia do Norte Longueirão

Costa de Caparica Mexilhão

Jangada Mexilhão

Berbigão

Amêijoa-boa

Amêijoa-japonesa

Berbigão

Lambujinha

Ostra-portuguesa

Mitrena Ostra-plana

Abul Ostra-portuguesa

Palma Lambujinha

Amêijoa-japonesa

Longueirão

Troviscais Ostra-portuguesa

Jusante da Ponte Mexilhão

Sines Amêijoa-branca

Ameijola

Conquilha

Longueirão

Praia da Costa do 

Norte

Ouriço-do-mar

Amêijoa-boa

Ostra-japonesa ou gigante

Rio Arade – Montante da Ponte 

Nova

POR1 Rio Arade Amêijoa-boa

Amêijoa-boa

Mexilhão

Rio Arade – Parchal POR3 Parchal Ostra-japonesa ou gigante

Aljezur  – Amoreira Mexilhão

Aljezur Ouriço-do-mar

Litoral Offshore L7b Sagres – Cultura Ostra-japonesa ou gigante

Offshore Mexilhão

Ponta do Zavial Ostra-japonesa ou gigante

Porto de Mós Mexilhão

Amêijoa-branca

Conquilha

Pé-de-burrinho

Amêijoa-boa

Berbigão

Amêijoa-boa

Berbigão

Ostra-japonesa ou gigante

Lisboa e Vale do 

Tejo

Litoral Cabo Raso – Lagoa de 

Albufeira
L5b

Alentejo

Lagoa de Albufeira LAL
Lagoa

Estuário do Sado – Esteiro da 

Marateca
ESD1

Faralhão

Canal da Vaia

Estuário do Sado – Canal de 

Alcácer
ESD2

Carrasqueira

Estuário do Mira EMR

Litoral Setúbal-Sines L6 Comporta

Algarve

Ria de Alvor LAG Vale da Lama

Ria de Alvor – Povoação POR2 Povoação

Litoral Aljezur – S. Vicente L7a

Litoral S. Vicente – Lagos L7c1

Litoral Lagos – Albufeira L7c2
Albufeira

Ria Formosa – Faro-Cais Novo – 

Geada
FAR1 Marchil

Ria Formosa – Faro- Regato de 

Azeites – Barrinha

FAR2 Largura



Amêijoa-boa

Ostra-japonesa ou gigante

Amêijoa-boa

Amêijoa-cão

Ostra-japonesa ou gigante

OLH3 Ilhote Negro 
b)

Amêijoa-boa

Amêijoa-boa

Ostra-japonesa ou gigante

Berbigão

Ostra-japonesa ou gigante

Amêijoa-boa

Amêijoa-boa

Berbigão

Ostra-japonesa ou gigante

Amêijoa-branca

Conquilha

Pé-de-burrinho

Amêijoa-boa

Mexilhão

Ostra-japonesa ou gigante

Ria Formosa – Cacela VT Cacela Ostra-japonesa ou gigante

Rio Guadiana GUA Castro Marim Ostra-japonesa ou gigante

Amêijoa-branca

Conquilha

Pé-de-burrinho

Algarve

Ria Formosa – Olhão

OLH1
Regueira de Água 

Quente

OLH2 Fortaleza

OLH4 Garganta

OLH5 Culatra

Ria Formosa – Fuzeta FUZ Fuzeta

Litoral Faro-Olhão L8 Culatra

Ria Formosa – Tavira TAV Quatro Águas

Algarve Litoral Tavira – V.R.S.A. L9 Monte Gordo



C
Zones evolution since the start of data

logging
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2014 2015 2016 2017 2018 2019

ELM ELM ELM ELM ELM ELM

L1 L1 L1 L1 L1 L1

L2 L2 L2 L2 L2 L2

L3 L3 L3 L3 L3 L3

L4 L4 L4 L4 L4 L4

EMN1 EMN1 EMN1 EMN1 EMN1 EMN1

EMN2 EMN2 EMN2 EMN2 EMN2 EMN2

RIAV1 RIAV1 RIAV1 RIAV1 RIAV1 RIAV1

RIAV2 RIAV2 RIAV2 RIAV2 RIAV2 RIAV2

RIAV3 RIAV3 RIAV3 RIAV3 RIAV3 RIAV3

RIAV4 RIAV4 RIAV4 RIAV4 RIAV4 RIAV4

L5 L6 L7 L5a L5a L5a

ETJ ETJ ETJ L5b L5b L5b

LOB LOB LOB ETJ ETJ ETJ

- - - LOB LOB LOB

L6 L6 L6 L6 L6 L6

EMR EMR EMR EMR EMR EMR

ESD1 ESD1 ESD1 ESD1 ESD1 ESD1

ESD2 ESD2 ESD2 ESD2 ESD2 ESD2

LAL LAL LAL LAL LAL LAL

L7a L7a L7a L7a L7a L7a

L7b L7b L7b L7b L7b L7b

L7c L7c L7c L7c L7c1 L7c1

- - - - L7c2 L7c2

L8 L8 L8 L8 L8 L8

L9 L9 L9 L9 L9 L9

FAR1 FAR1 FAR1 FAR1 FAR1 FAR1

FAR2 FAR2 FAR2 FAR2 FAR2 FAR2

FUZ1 FUZ2 FUZ3 FUZ4 FUZ5 FUZ6

- - - GUA GUA GUA

LAG LAG LAG LAG LAG LAG

OLH1 OLH1 OLH1 OLH1 OLH1 OLH1

OLH2 OLH2 OLH2 OLH2 OLH2 OLH2

OLH3 OLH3 OLH3 OLH3 OLH3 OLH3

OLH4 OLH4 OLH4 OLH4 OLH4 OLH4

OLH5 OLH5 OLH5 OLH5 OLH5 OLH5

POR2 POR2 POR2 POR2 POR2 POR2

- - POR3 POR3 POR3 POR3

TAV2 TAV2 TAV2 TAV2 TAV TAV

VT1 VT1 VT1 VT1 VT VT

Norte

Centro

Lisboa e 

Vale do 

Tejo

Alentejo

Algarve



D
Sample count of each species in each

region
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Ostra-

Portuguesa
Mexilhão Amêijoa-branca Amêijoa-boa

Amêijoa-

macha
Castanhola

ELM c = 20 x x x x x

L1 x c = 137 c=27 x x x

L2 x c =156 c =156 x x c=32

RIAV1 x x x x c=45 x

RIAV2 x x x x c=45 x

RIAV3 x x x x c=45 x

RIAV4 x x x x c=13 x

L3 x x c=83 x x x

EMN1 x x x x x x

EMN2 x x x x x x

L4 x c=62 c=43 c=97 x x

LOB x x x c=9 x x

ETJ x x x x c=9 x

L5a x c=77 x x x x

L5b x c=138 x x x x

LAL x c=189 x c=28 x x

ESD1 c=1 x x x x x

ESD2 x x x x x x

EMR c=18 c=73 x x x x

L6 x x c=54 x x x

LAG x x x c=15 x x

POR1 x x x x x x

POR2 x c=152 x x x x

POR3 x x x x x x

L7a x c=94 x x x x

L7b x x x x x x

L7c1 x c=174 x x x x

L7c2 x c=160 c=2 x x x

FAR1 x x x c=11 x x

FAR2 x c=55 x x x x

OLH1 x x x c=69 x x

OLH2 x x x c=5 x x

OLH3 x x x c=5 x x

OLH4 x x x c=4 x x

OLH5 x x x c=9 x x

FUZ x x x c=97 x x

L8 x x c=24 x x x

TAV x c=176 x c=19 x x

VT x x x x x x

GUA x x x x x x

L9 x x x x x x

Norte

Centro

Lisboa e 

Vale do 

Tejo

Alentejo

Algarve



Berbigão
Longueirã

o

Ostra-

japonesa/gigante
Lambujinha Pé-de-burro Conquilha

ELM x x x x x x

L1 x x x x x x

L2 x x x x x x

RIAV1 c=206 c=42 c=26 x x x

RIAV2 c=202 c=64 c=25 x x x

RIAV3 c=199 c=11 c=20 x x x

RIAV4 c=29 c=16 c=13 x x x

L3 x x x x x x

EMN1 c=79 x x x x x

EMN2 c=35 x x c=49 x x

L4 x x x x x x

LOB c=191 x x c=1 x x

ETJ x x x x x x

L5a x x x x x x

L5b x c=37 x x x c=53

LAL c=27 x x x x x

ESD1 c=8 x x c=93 x x

ESD2 x c=3 x c=29 x x

EMR x x x x x x

L6 x x x x x x

LAG x c=75 c=11 x x c=92

POR1 x x x x x x

POR2 x x x x x x

POR3 x x c=12 x x x

L7a x x x x x x

L7b x x c=97 x x x

L7c1 x x c=1 x x x

L7c2 x x x x x c=8

FAR1 c=7 x x x x x

FAR2 c=98 x c=8 x x x

OLH1 x x c=5 x x x

OLH2 x x c=6 x x x

OLH3 x x x x x x

OLH4 x x c=3 x x x

OLH5 c=112 x c=11 x x x

FUZ c=18 x c=8 x x x

L8 x x x x x c=166

TAV x x c=13 x x x

VT x x c=95 x x x

GUA x x c=124 x x x

L9 x x x x x c=188

Norte

Algarve

Alentejo

Lisboa e 

Vale do 

Tejo

Centro



Ostra-plana Ameijola Amêijoa-japonesa Amêijoa-Cão

ELM x x x x

L1 x x x x

L2 x x x x

RIAV1 x x x x

RIAV2 x x x x

RIAV3 x x x x

RIAV4 x x x x

L3 x x x x

EMN1 x x x x

EMN2 x x x x

L4 x x x x

LOB x x c=10 x

ETJ x x x x

L5a x x x x

L5b x x x x

LAL x x x x

ESD1 c=1 x c=2 x

ESD2 x x c=102 x

EMR x x x x

L6 x c=56 x x

LAG x x x x

POR1 x x x x

POR2 x x x x

POR3 x x x x

L7a x x x x

L7b x x x x

L7c1 x x x x

L7c2 x x x x

FAR1 x x x x

FAR2 x x x x

OLH1 x x x x

OLH2 x x x c=5

OLH3 x x x x

OLH4 x x x x

OLH5 x x x x

FUZ x x x x

L8 x x x x

TAV x x x x

VT x x x x

GUA x x x x

L9 x x x x

Algarve

Norte

Centro

Lisboa e 

Vale do 

Tejo

Alentejo
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DSP Phyto (lag = 1) DSP Phyto(lag = 0)
P(Lipophilic 

Toxins = a)

P(Lipophilic 

Toxins = b)

P(Lipophilic 

Toxins = d)

P(Lipophilic 

Toxins = c)

a a 0.931 0.036 0.017 0.017

a d 1 0 0 0

d d 1 0 0 0

d a 1 0 0 0

DSP Phyto (lag = 1) DSP Phyto(lag = 0)
P(Amnesic    

Toxins = a)

P(Lipophilic 

Toxins = d)

P(Lipophilic 

Toxins = c)

d a 1 0 0

a d 1 0 0

d d 1 0 0

a a 0.990 0.003 0.007

DSP Phyto (lag = 1) DSP Phyto(lag = 0)
P(Paralytic    

Toxins = a)

P(Paralytic    

Toxins = d)

P(Paralytic    

Toxins = b)

d d 1 0 0

d a 1 0 0

a a 0.983 0.007 0.010

a d 1 0 0

Chlorophyll(lag = 1) P(Chlorophyll = a)
P(Chlorophyll = 

b)

P(Chlorophyll = 

c)

P(Chlorophyll = 

d)
d 0 0.200 0.400 0.400

b 0.149 0.784 0.061 0.007

a 0.795 0.172 0.033 0.000

c 0.094 0.312 0.531 0.062

SST (lag = 1) DSP Phyto(lag = 0) P(SST = b) P(SST = a) P(SST = c) P(SST = d)

b a 0.741 0.086 0.144 0.029

b d 0.500 0 0.500 0

d a 0.154 0 0.346 0.500

c d 1 0 0 0

d d 0.250 0.250 0.250 0.250

a d 0.250 0.250 0.250 0.250

a a 0.133 0.867 0 0

c a 0.357 0 0.482 0.161



DSP Phyto (lag = 1) DSP Phyto(lag = 0)
P(ASP Phyto = 

a)

P(ASP Phyto = 

b)

P(ASP Phyto = 

c)

P(ASP Phyto = 

d)

d a 1 0 0 0

a d 1 0 0 0

d d 1 0 0 0

a a 0.987 0.003 0.007 0.003

DSP Phyto (lag = 1) Chlorophyll(lag = 0)
P(DSP Phyto = 

a)

P(DSP Phyto = 

d)

d a 0.500 0.500

a c 1 0

a b 0.993 0.007

a a 1 0

d d 0.500 0.500

d c 0.500 0.500

d b 0.333 0.667

a d 1 0

DSP Phyto (lag = 1) DSP Phyto(lag = 0)
P(PSP Phyto = 

a)

P(PSP Phyto = 

c)

P(PSP Phyto = 

d)

d a 1 0 0

a d 1 0 0

d d 1 0 0

a a 0.993 0.003 0.003
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PSP Phyto (lag = 
1)

PSP Phyto(lag = 
0)

P(Lipophilic 
Toxins = a)

P(Lipophilic Toxins = c)
P(Lipophilic 
Toxins = b)

a a 0.848 0.071 0.081
a c 1 0 0
c c 0.333 0.333 0.333
c a 1 0 0

PSP Phyto (lag = 
1)

PSP Phyto(lag = 
0)

P(Amnesic Toxins 
= a)

P(Amnesic Toxins = b)
P(Amnesic Toxins 

= c)

a c 1 0 0
a a 0.985 0.005 0.010
c c 0.333 0.333 0.333
c a 1 0 0

PSP Phyto (lag = 
1)

PSP Phyto(lag = 
0)

P(Paralytic Toxins 
= a)

P(Paralytic Toxins = c)
P(Paralytic Toxins 

= b)
c a 0 1 0
a a 0.980 0.010 0.010
a c 1 0 0
c c 0.333 0.333 0.333

Chlorophyll          
(lag = 1)

PSP Phyto       
(lag = 0)

P(Chlorophyll = a) P(Chlorophyll = b) P(Chlorophyll = c)

a c 1 0 0
a a 0.795 0.189 0.016
c c 0.333 0.333 0.333
b a 0.391 0.578 0.031
c a 0.125 0.375 0.500
b c 0.333 0.333 0.333

SST (lag = 1) P(SST = b) P(SST = a) P(SST = c)

b 0.659 0.143 0.198
a 0.150 0.850 0
c 0.621 0 0.379



ASP Phyto      
(lag = 1)

PSP Phyto      
(lag = 0)

P(ASP Phyto= a) P(ASP Phyto = c) P(ASP Phyto = b)

c c 0.333 0.333 0.333
c a 0 0 1
b a 0.333 0 0.667
a c 1 0 0
a a 0.995 0.005 0
b c 0.333 0.333 0.333

DSP Phyto     (lag 
= 1)

PSP Phyto      
(lag = 0)

P(DSP Phyto= a) P(DSP Phyto = c) P(DSP Phyto = b)

c a 0.111 0.889 0
a a 0.989 0.005 0.005
b c 0.333 0.333 0.333
b a 1 0 0
a c 1 0 0
c c 0.333 0.333 0.333

PSP Phyto       
(lag = 1)

SST(lag = 0) P(PSP Phyto = a) P(PSP Phyto = c)

a c 1 0
a b 0.989 0.011
a a 1 0
c a 1 0
c b 0.500 0.500
c c 0.500 0.500
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Amnesic Toxins (lag 

= 1)

Amnesic Toxins (lag 

= 0)

P(Lipophilic 

Toxins = a)

P(Lipophilic 

Toxins = b)

P(Lipophilic 

Toxins = c)

c a 1 0 0

a a 0.889 0.051 0.061

c c 0.333 0.333 0.333

a c 1 0 0

Amnesic Toxins (lag 

= 1)
ASP Phyto(lag = 0)

P(Amnesic 

Toxins = a)

P(Amnesic 

Toxins = c)

a c 1 0

a a 0.990 0.010

a b 1 0

c a 1 0

c c 0.500 0.500

c b 0.500 0.500

Amnesic Toxins (lag 

= 1)

Amnesic Toxins (lag 

= 0)

P(Paralytic 

Toxins = a)

P(Paralytic 

Toxins = c)

P(Paralytic 

Toxins = b)

c c 0.333 0.333 0.333

a a 0.975 0.010 0.015

a c 1 0 0

c a 1 0 0

Chlorophyll (lag = 

1)
SST (lag = 0)

P(Chlorophyll 

= a)

P(Chlorophyll 

= b)

P(Chlorophyll 

= c)

c a 0 1 0

b a 0.650 0.350 0

b b 0.342 0.605 0.053

b c 0.300 0.400 0.300

c b 0 0.400 0.600

c c 0.250 0.250 0.500

a a 0.917 0.083 0

a b 0.571 0.429 0

a c 0.400 0.600 0

SST (lag = 1)
Amnesic Toxins (lag 

= 0)
P(SST = a) P(SST = b) P(SST = c)

b a 0.212 0.600 0.188

c c 0 1 0

a c 0 1 0

b c 0.333 0.333 0.333

a a 0.804 0.185 0.011

c a 0.043 0.652 0.304



ASP Phyto (lag = 1) P(ASP Phyto = a)
P(ASP Phyto = 

b)

P(ASP Phyto = 

c)

a 0.990 0.010 0

b 0.500 0 0.500

c 0.333 0 0.667

Amnesic Toxins (lag 

= 1)

Amnesic Toxins (lag 

= 0)

P(DSP Phyto= 

a)

P(DSP Phyto = 

b)

P(DSP Phyto = 

c)

c a 0.500 0.500 0

a a 0.985 0 0.015

c c 0.333 0.333 0.333

a c 1 0 0

Amnesic Toxins (lag 

= 1)

Amnesic Toxins (lag 

= 0)

P(PSP Phyto= 

a)

P(PSP Phyto = 

c)

P(PSP Phyto = 

b)

a c 1 0 0

a a 0.980 0.005 0.015

c a 1 0 0

c c 0.333 0.333 0.333
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DSP PhytoR2 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(Lipophilic 

Toxins R2 = a)

P(Lipophilic 

Toxins R2 = b)

P(Lipophilic 

Toxins R2 = c)

P(Lipophilic 

Toxins R2 = d)

d a 1 0 0 0

a d 1 0 0 0

a a 0.806 0.056 0.102 0.036

d d 0.250 0.250 0.250 0.250

DSP PhytoR2 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(Amnesic 

Toxins R2 = a)

P(Amnesic 

Toxins R2 = b)

P(Amnesic 

Toxins R2 = d)

a d 1 0 0

d a 1 0 0

a a 0.980 0.010 0.010

d d 0.333 0.333 0.333

DSP PhytoR2 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(Paralytic 

Toxins R2 = a)

P(Paralytic 

Toxins R2 = c)

P(Paralytic 

Toxins R2 = b)

P(Paralytic 

Toxins R2 = d)

d d 0.250 0.250 0.250 0.250

d a 0 1 0 0

a a 0.975 0 0.015 0.010

a d 1 0 0 0

DSP PhytoR2 

(lag = 1)
ChlR3 (lag = 0)

P(Chlorophyll R2 

= a)

P(Chlorophyll R2 

= b)

P(Chlorophyll R2 

= c)

P(ChlorophyllR2 

= d)
a d 0 0 0.333 0.667

d a 0.250 0.250 0.250 0.250

a c 0.174 0.391 0.304 0.130

d b 0 1 0 0

d d 0.250 0.250 0.250 0.250

a a 0.778 0.222 0 0

a b 0.264 0.604 0.132 0

d c 0.250 0.250 0.250 0.250

PSP PhytoR2 

(lag = 1)
SST R3 (lag = 0) P(SST R2 = b) P(SST R2 = a) P(SST R2 = c) P(SST R2 = d)

a b 0.769 0.011 0.209 0.011

d a 1 0 0 0

d b 0.250 0.250 0.250 0.250

a d 0.048 0 0.286 0.667

d d 0.250 0.250 0.250 0.250

a a 0.132 0.868 0 0

d c 0.250 0.250 0.250 0.250

a c 0.118 0 0.765 0.118



DSP PhytoR2 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(ASP PhytoR2 = 

a)

P(ASP PhytoR2 = 

d)

P(ASP PhytoR2 = 

c)

P(ASP PhytoR2 = 

b)

a a 0.980 0.005 0.010 0.005

d a 1 0 0 0

a d 1 0 0 0

d d 0.250 0.250 0.250 0.250

DSP PhytoR2 

(lag = 1)
SST R3 (lag = 0)

P(DSP PhytoR2 = 

a)

P(DSP PhytoR2 = 

d)

d a 0.500 0.500

d b 1 0

d d 0.500 0.500

d c 1 0

a b 0.989 0.011

a a 1 0

a d 1 0

a c 0.970 0.030

DSP PhytoR2 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(PSP PhytoR2 = 

a)

P(PSP PhytoR2 = 

d
a a 0.995 0.005

d a 1 0

a d 1 0

d d 0.500 0.500

DSP PhytoR2 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(Lipophilic 

Toxins R3 = a)

P(Lipophilic 

Toxins R3 = b)

P(Lipophilic 

Toxins R3 = c)

P(Lipophilic 

Toxins R3 = d)

d a 1 0 0 0

a d 1 0 0 0

d d 0.250 0.250 0.250 0.250

a a 0.832 0.082 0.041 0.046

DSP PhytoR2 

(lag = 1)

Amnesic Toxins 

R2 (lag = 0)

P(Amnesic 

Toxins R3 = a)

P(Amnesic 

Toxins R3 = b)

P(Amnesic 

Toxins R3 = d)

a a 1 0 0

d d 0.333 0.333 0.333

d a 1 0 0

d b 0.333 0.333 0.333

a d 0 0 1

a b 0.500 0.500 0



PSP PhytoR2 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(Paralytic 

Toxins R3 = a)

P(Paralytic 

Toxins R3 = d)

P(Paralytic 

Toxins R3 = b)

P(Paralytic 

Toxins R3 = c)

a d 1 0 0 0

a a 0.975 0 0.010 0.015

d a 0 1 0 0

d d 0.250 0.250 0.250 0.250

Chlorophyll R3 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(Chlorophyll R3 

= a)

P(Chlorophyll R3 

= b)

P(Chlorophyll R3 

= c)

P(Chlorophyll R3 

= d)

b d 0 1 0 0

d d 0.250 0.250 0.250 0.250

c a 0.087 0.304 0.522 0.087

a d 0 1 0 0

c d 0.250 0.250 0.250 0.250

b a 0.207 0.717 0.065 0.011

a a 0.750 0.225 0.025 0

d a 0 0 1 0

SST R3 (lag = 1) P(SST R3 = b) P(SST R3 = a) P(SST R3 = d) P(SST R3 = c)

d 0.238 0 0.476 0.286

c 0.382 0 0.206 0.412

a 0.151 0.849 0 0

b 0.707 0.098 0.043 0.152

ASP PhytoR3 

(lag = 1)

DSP Phyto R2 

(lag = 0)

P(ASP PhytoR3 = 

a)

P(ASP PhytoR3 = 

b)

P(ASP PhytoR3 = 

d)

a a 0.990 0.010 0

d d 0.333 0.333 0.333

d a 0.250 0 0.750

a d 1 0 0

b d 0.333 0.333 0.333

b a 0.333 0.333 0.333

DSP PhytoR2 

(lag = 1)

DSP PhytoR2 

(lag = 0)

P(DSP PhytoR3 = 

a)

P(DSP PhytoR3 = 

d)

d d 0.5 0.5

a d 1 0

d a 1 0

a a 0.5 0.5

DSP PhytoR2 

(lag = 1)

PSP PhytoR2 (lag 

= 0)

P(PSP PhytoR3 = 

a)

P(PSP PhytoR3 = 

b)

P(PSPPhytoR3 = 

d)

d d 0.333 0.333 0.333

a d 0 1 0

a a 0.995 0 0.005

d a 1 0 0
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