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ABSTRACT 

Of the many current challenges that the increasing availability of data poses to society and organizations, the 
ability to collect, store, process, analyze and extract knowledge in a helpful time frame stands out. 

This dissertation focuses on the processing of highly dimensioned datasets, such as those generated by High-
throughput sequencing (HTS) techniques, which are increasingly common in areas of knowledge such as 
bioinformatics. 

Among the dimensionality reduction techniques, feature selection has become crucial since it reduces the high 
dimensionality of large datasets. 

A possible approach to perform the feature selection that considerably reduces the dimension without increasing 
the inconsistency of the data is the use of Logical Analysis of Inconsistent Data (LAID). Several studies in recent 
years have demonstrated its potential in solving this problem and highlighted its advantages as a systematic 
methodology, robust, easy to interpret, and capable of dealing with inconsistent data [1], [2]. 

The same studies revealed processing times longer than desired for full utilization and pointed out the solution for 
executing the algorithms using parallel processing and mobilization of a high-performance computing (HPC) 
installation. 

This work represents another contribution to this effort by addressing dataset storage methods suitable for 
parallel processing, algorithm parallelization solutions, high-performance environment configuration. Finally, it 
tests in the HPC environment of the Infraestrutura Nacional de Computação Distribuída (INCD). What allowed us 
to describe a fit-for-purpose dataset storage solution as well as parallel processing in an HPC environment can 
reduce processing times for the end-user, achieving a satisfactory 82% reduction relative to best sequential time. 
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1. Introduction 

Our way of life is increasingly driven by data [3], and dependent on our capacity to collect, store, process, analyze 
and extract knowledge from a constantly increasing amount of data in a useful time. The same phenomenon can 
be observed in scientific environments [4]. The exponential growth of data generated by scientific experiments, 
instruments, and sensors, considering their volume, complexity, and even scale of distribution, has become a 
critical factor in several science disciplines, which induces the need to analyze ever-increasing volumes of data on 
time. Some authors identified this need as a new paradigm in scientific production and adopted the term coined 
by Jim Gray, “The Fourth Paradigm” [5]. According to them, Science started empirically, then theoretical, in the last 
few decades, computational and, recently, became data-driven. Another author [6], call this trend a “Data-
intensive science”, Whether in the scientific, business, or governmental sphere the same need led to the creation of 
new ways to manage distributed data, processing it, and mainly analyzing it to obtain information and useful 
knowledge. 

This processing and analysis are usually called knowledge discovery from data or KDD and one essential stage [7] 
is known as Data mining that can be defined as the process of discovering patterns and extracting knowledge from 
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large amounts of data [8]. Patterns on data is a generic expression that aggregates concepts like identifying 
groupings of data not previously known, detecting unusual records, or finding unknown dependencies. This 
process can be automatic or, very often, semi-automatic [9]. 

As it is often impracticable to analyze the entire Dataset, it is necessary to know how to choose which features the 
analysis should focus on, to the detriment of all others. It is on this scope that this work focuses, specifically in 
situations where this feature selection becomes essential, as in the case of highly dimensioned data sets, as the 
called Omics datasets. Omics is a neologism associated with biology suffixes such as genomics, transcriptomics, [1] 
and usually refers to biological parameters commonly called biomarkers. 

In this sense, dimensions reduction is the specialty in the scope of data mining, and one of the possible ways to 
accomplish it is through feature selection, which is mandatory on highly dimensioned datasets for which the 
analysis of all the dimensions is impractical and counterproductive. This task becomes even more necessary when 
the number of observations is low, the data matrix is sparse, and the analysis of row classification reveals 
inconsistencies. The problem addressed in the present work is an example of that. Considering that a feature 
selection problem with a dataset involving one million attributes was solved in [1], using partitions of the problem 
and a new method called Logical Analysis of Inconsistent Data (LAID) proposed by [10], this present research 
aims to continue this effort. 

1.1. Motivation and scope 

The 2018 experiment [1] uses a computer cluster running at the Portuguese National Infrastructure for 
Distributed Computing (INCD), for parallel processing while also using the dataset in memory. As a final remark, 
the authors consider three major aspects: data, algorithm, and computer environment. Since large datasets with 
many dimensions are becoming the new normal, they advocate that: 

• In‐memory data access should be replaced by on‐disk data access.  

• The new algorithms need low time complexity and problem decomposition to allow parallelizing the 
problem. Therefore, the intense use of computationally expensive algorithms, such as metaheuristics, 
should be reduced. 

• And last, the desired environment should be in the cloud, running the programs in parallel in High‐
Performance Computing (HPC). 

This is in line with the new trends for compute-intensive algorithms [11]. and constitutes a paradigm shift in 
scientific environments, [1], illustrated in Figure 1. 

 

Figure 1 - The paradigm shift in scientific environments 

Later [2] revisited this problem using LAID and a different computational approach: sequential processing on a 
single machine and the dataset stored in high-performance data management and storage suite (HDF5) on disk. 
Both experiments concluded that the high processing time remains an additional problem that limits its 
application. The challenge and motivation for this new approach to the described problem are to reduce the 
processing time, using the computational paradigm: parallel processing, on‐disk data access, and cloud/HPC 
environment. 

The purpose of this research following a Design Science Research Methodology (DSRM), with a Design & 
Development centered approach, is to discover how parallel processing can reduce processing times for the end-
user and describe how this new computational paradigm applies to this problem. The remainder of this document 
is structured around the mentioned tree concepts, Section 2 presents the environment, Section 3 introduces the 
dataset used and Storage strategy on HDF5 format, Section 4 describes the parallelization of the LAID algorithms, 
Section 5 presents the results of the experiment performed and Section 6 presents the conclusions. 
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2. The HPC environment on INCD cloud 

HPC, also known as supercomputing, refers to computing systems with extremely high computational power that 
can solve hugely complex and demanding problems [12],[13], performance is commonly measured in floating-
point operations per second (FLOPS). 

INCD is a digital infrastructure supporting research, provides computing and storage services to the Portuguese 
scientific and academic community. And kindly provided computational resources in the Cirrus-A HPC cluster, 
that allowed the execution and testing of the code that constitutes the artifact of this work. On this cluster, there 
are 5 compute nodes AMD EPYC 7501 available, running CentOS 7, with 64 cores per node, interconnected by FDR 
InfiniBand 56Gbps [14]. The INCD filesystems are based on the Lustre distributed filesystem. Figure 2a) presents 
a view of the Technology usage of the Cirrus-A cluster and the main components used. The highlight for 
components essentials for this work such as HDF5 a data model, library, and file format for storing and managing 
data. [15] And the Message-Passing Interface (MPI), [16], addresses the message-passing parallel programming 
model and MPI-I/O that provide routines for file manipulation and data access by multiple processes. Figure 2b) 
presents an application cooperation diagram of the full component stack for parallelization. A significant part of 
the choice of software modules and versions used resulted from the excellent support and knowledge of the team 
that manages this facility. 

 

Figure 2 - Technology usage of Cirrus-A HPC Cluster and Application cooperation 

3. The Dataset, Storage strategy on HDF5 format 

3.1. The Dataset used 

The Source-Dataset used contains a total of 2k observations x 1000k features of synthetic data representing Omic 
data, all observations are labeled according to binary classification. was received in the form of text files. So, a 
python program was developed to extract data from text files and load them into the dataset in the HDF5 file. 

  

Figure 3 - Sample of distributions patterns found on Source-Dataset 
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After the dataset loaded in HDF5, an exploratory analysis was performed, allowing us to conclude that only 
19.57% of the cells contain a value, which means a sparse matrix. Also, the sparsity is not uniform across the 
columns, because there are two different distribution patterns interspersed between blocks of 100k columns 
where a random distribution pattern   a) alternates with a more concentrated pattern   b), and in the latter, 31% of 
the columns do not contain any value. 

3.2. HDF5 Storage Layout: Chunking Analyses 

The default storage layout of HDF5 files is contiguous storage, “data of a multidimensional array is serialized along 
the fastest-changing dimension and is stored as a contiguous block in the file. This storage mechanism is 
recommended if the size of a dataset is known and the storage size for the dataset is acceptable to the user” [17]. 
Datasets may also be created using HDF5’s chunked storage layout. This means the dataset is divided up into 
regularly sized pieces which are stored haphazardly on disk and indexed using a B-tree. This storage also makes it 
possible to resize datasets. For these reasons, choosing the storage layout and internal organization of the HDF5 
file requires analysis and testing to allow for conclusions. To perform it, a test protocol was defined considering 
three subsets of the source dataset, based on the number of columns: L, XL, and XXL indicated in Table 1. The 
different options tested are described in  

Table 2. An additional explanation is needed as to “Best Fit chunk” which depends on prior knowledge of the read 
cache size defined at HDF5 installation. 

Table 1 - Datasets used in the read/write test protocol 

Dataset Rows x Columns. GB 

200K (L) 2k x 200k 0,37 

600K (XL) 2k x 600k 1,12 

1000K (XXL) 2k x 1000k 1,86 

 

Table 2 - Chunking layout tested 

Layout Meaning 

Row chunk Equals the dimension of the entire row, regardless of its dimension 
Best-Fit chunk Is a chunk whose dimension perfectly fits the defined HDF5's read cache size 
Contiguous Don't use chunks 
Auto-chunk Gives HDF5 the responsibility for choosing the dimension 

 

3.2.1. Write Operations over the HDF5 Source-Dataset 

These tests were carried out at the expense of successive parallel write operations over the Source-Dataset and all 
times presented are the average of the runs performed. The noteworthy fact is that of the total data loading time, 
about 60% of the time is spent extracting the data from the text file, 40% transforming it into memory and a 
remarkable less than 0.5% is spent preserving the dataset in the HDF5 file. This is done in a single write operation 
which has proven to be extremely efficient regardless of the data block size and chunking layout.  

It was also verified in these tests an excessive variability of the times between similar runs. the workload and I/O 
conditions of the cluster influenced the times obtained mainly in the L tests, even so, and given that in the portion 
concerning the write operation presented in Table 3, these are very low times, (all below 8 seconds), the focus has 
to be on small differences in seconds and here are two layouts that stand out negatively; Row chunk for datasets 
with less than 1000K columns and Auto-chunk with such poor performance that it was abandoned. 

Table 3 - Average time to write an entire block of data on HDF5 file in seconds 
Layout 200K (L) 600K (XL) 1000K (XXL) 

Row chunk 4,91 2,08 1,82 
Best Fit chunk 1,27 2,08 1,82 
Contiguous 3,87 1,24 5,98 

Auto-chunk 7,12     
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Regarding the use of chunking in write operations, except for Auto-Chunk, there are no major discrepancies on 
observed times considering the dataset size and the chunking used. Not using chunking at all is not heavily 
penalized on write operations and may even be faster on 600K column datasets. Best Fit chunk is the most 
difficult to use and is probably the best solution for some sizes, where it is easier to adjust the dimension to the 
HDF5 cache size. 

3.2.2 Read Operations over the HDF5 Source-Dataset 

For this research, the storage layout must be aligned with the dataset access patterns, that is, the read operations, 
which are more relevant than the analysis to the write operations. Hence the choice to perform this test using the 
code from the 2nd step of the LAID methodology, in this step, access to the Source-Dataset requires the complete 
reading of the line, as each line is compared with all others, therefore, this reading pattern is perfectly suited to 
the intended test. Figure 4 chart compares the time consumed reding over different HDF5 Storage layout options. 

 

 

Figure 4 - Average time in seconds to read operations versus HDF5 Storage layout 

About “Best Fit chunk” it practically matches the byte dimension of the XXL row, it is also possible to make a 
reasonable match with the L using 5 rows per chunk. but XL is penalized as it wastes almost half the cache value 
on each read. Still and except for the Auto-chunk option, which performs so badly even on a small dataset that was 
abandoned for the larger ones, the times between the remaining two chunking options are relatively similar. 

Conclusions can be drawn from this reading pattern, chunking is an option to be considered in no way an 
obligation. Even for the best chunking option, given the read cache size defined in the HDF5 installation and the 
read pattern used by the algorithm, it is observed that the contiguous storage layout systematically allows greater 
speed and access. This speed is hardly distinctive in smaller datasets (L) but gradually becomes more significant. 

From all the above, the preferred layout strategy for Source-Dataset is not to use chunking at all. Also, for the DM-
Dataset obtained in the 2nd step of LAID, because it is accessed via row and column, using any form of chunking is 
an error. 

4. Parallel LAID 

4.1. LAID methodology 

This method arises from the combination of Rough Sets Theory [18] and Logical Analysis of Data (LAD) 
methodology [19]. Both approaches are a subset of filter models, which goal is to reduce the number of dataset 
attributes using two phases: problem transformation and optimization. Their specificity is to keep the semantics 
of the data by removing only the redundant data. 

Logical Analysis of Inconsistent Data (LAID) was proposed in 2011 by [10] in the scope of a Paremiologic Study 
and described by the authors as a blend of the best qualities of each of former methodologies, being able to deal 
with inconsistent data and non-dichotomized classes, characteristics of Rough Sets, [20]  as well as the 
computational effectiveness of LAD. Also allows integer attributes, with associated costs. [21] which allows for a 
greater range of selection strategies. A detailed description with examples can be found in [22]. 
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4.3. Coding the LAID algorithms 

Given the prior availability of a codebase for the LAID algorithms written in the C and Python programming 
languages, from previous work [1] and [2], these source codes were used here with an emphasis on the Python 
version that already used HDF5, so part of this work consisted of adapting the sequential code and in the further 
developments needed, such as code improvements, changes in the execution flow, the introduction of a 
configuration file, different use of files, and HDFS datasets, and introduction of techniques aimed at parallelization. 

According to [1],[2], the Logical Analysis of Inconsistent Data Algorithm consists of the following steps: 

• Input: dataset D = {O, X∪C} with binary variables 

• Output: (number of features, accuracy) 

• check data inconsistencies and add dummy variable “jnsq” as a discriminant feature to remove any 
inconsistency in addition check and remove all redundant observations. 

• disjoint matrix generation [Ai,j] this is a O(n2) in the Big O notation 

• number of features = Minimum Set Covering Problem. In this third step of LAID, a heuristic is applied to 
solve the set covering problem. This is an O(log n) problem. 

• accuracy = Cross-validation 

Step 1 is fast, even without parallelization, and the algorithms are complex to parallelize, so the following was 
given priority and not covered in this work. Step 4 consists of validating the obtained solution, so it does not 
require parallelization at all. 

Step 2 - Disjoint Matrix Generation 

This step consists of reading all the Source-Dataset's rows and comparing them with all those that have a different 
class value, the disjoint rows found are written in a destination dataset, which for operational reasons has been 
decided to be stored in a separate HDF5 file, this new derived dataset has been named DM-Dataset. 

Because there are no dependencies between each iteration of the algorithm used, i.e., each observation of the 
Source-Dataset is treated independently, its parallelization appears to be simply requiring only a few adaptations 
to the serial code. Technically it is only necessary to distribute the rows of the source-Dataset by the processors 
assigned to the run, in a horizontal data partition. However, it was not so simple. All parallel tasks on the run write 
the generated rows to the same HDF5 dataset. If this recording could be sequential, something like adding new 
rows to the dataset, the process would be simple, but it can't, the HDF5 datasets used are all fixed length. This 
implies, to avoid overwriting, strictly controlling, and segregation of the write-row index, as is done for reading. 

It is obviously possible to define a formula to calculate rows index, but only if the Source-Dataset does not have 
redundant rows and if it is sorted by the value of the class(es) and this effectively is. But this sort, despite good 
practice, is not a requirement of LAID and it cannot be considered an assumption. Which makes this an unsolvable 
problem, because before the execution of the algorithm it is not possible to know how many, and in which index 
the rows should be written. This insolubility inspired the solution, not elegant but effective, the algorithm will run 
twice. In the first pass, it identifies the source and destination rows, without spending time writing to disk. With 
this valuable information, the second pass knows exactly what and where to write. The bet is that parallelization 
allows not only to recover the time spent on the first pass but also to save more time because it avoids 
unnecessary comparisons. 

The code was also changed to include a buffer, which allowed the number of write operations to be reduced by 
writing more data at a time. The introduction of this buffer has proved so useful that even the serial version 
benefits from it, (29% from the initial time). 

Step 3 – Find a solution with the minimum set covering algorithm 

This is the bottleneck at all steps of the LAID methodology. The algorithm of this step is inherently serial. there is a 
clear dependence between interactions given that the computation performed in any iteration depends on the 
result of the previous iteration. The approach followed was to perform the vertical partition of the DM-Dataset 
columns and their distribution by parallel tasks. But the different solutions found must be compared and the best 
one chosen. which requires communication and cooperation between processors/parallel tasks, so, in this work, 
the approach for a parallel solution was limited to the first iteration. For this reason, the goal of parallelizing this 
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step was suspended. Literature reveals various other potential parallel solutions [23],[24]. There is a common 
point in all of them relying on some form of communication between processors. In conclusion, the next approach 
will have to make use of MPI point-to-point or collective communication modes via shared-memory or external 
memory that allows coordination between parallel tasks/processors. 

4.4. Performance Metrics for Parallel Systems 

Whereas the main objective of parallel computing is increasing speed and reducing time complexity is necessary 
to measure the result. for this purpose, two performance metrics are usually used [1],[25], to measure the 
efficiency of an algorithm in terms of the time complexity factor. N computers working simultaneously can 
increase the speed up to N times, or an approximation of N as other factors can influence the time spent, such as 
bottlenecks communications. Parallel execution (run) time is usually defined as the time that elapses from the 
moment a parallel calculation starts until the moment the last processor finishes execution. The Speedup Sp factor 
is defined as the ratio of the serial runtime of the best sequential algorithm for solving a problem to the time taken 
by the parallel algorithm to solve the same problem on p processors. 

 
𝑆𝑝 =  

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑜𝑛𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑝 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
=  

𝑡𝑠

𝑡𝑝

 
(1) 

Where ts (Tserial) is the execution time on a single processor or serial run time. tp (Tparallel) is the execution 
time on a multiprocessor or parallel run time and Sp is the increase in speed by using multiprocessor. 

Efficiency E is defined as the ratio of speedup Sp to the number of processors P. Efficiency measures the fraction of 
time for which a processor is usefully utilized. 

 
𝐸 =  

Speedup 𝑆𝑝

number of processors 𝑃
 

(2) 

5. Computational Experiments and Results 

All Python code has been provided with performance counters for benchmarking whose information was cross-
referenced with the start and end date-time of each job. therefore, there is high confidence in the observed time, 
however, some caution is needed in analyzing the reported times. As referred above, on several occasions, the 
same code and data running in different periods return the same result but with discrepancies in the time spent 
which indicates that the job environment is not fully isolated and is affected by cluster operational conditions 
probably associated with the distributed file system. 

5.1.  Serial, Hybrid, and Parallel Runs 

 

Figure 5 - Serial, Hybrid, and Parallel Runs 

Figure 5 synthesizes the three forms of runs used in this work. The simplest model follows the sequential 
execution, is represented on the left side of the figure, the center represents a hybrid form, where part of the 
processing is serial, and part parallelized, and the parallel model is represented on the right side. 

Program Model Serial Parallel and Serial

Resources 1 task 1 task + 5 tasks + 1 task

Target Whole dataset Whole dataset D1 D2 D3 D4 D5

Number of features 1000k 1000k 200k 200k 200k 200k 200k

LAID step

1

check and remove any data 

inconsistencies and redundant 

observations

2

disjoint matrix M generation

3

find the solution with minimum 

set covering problem

Parallel Decomposition

5 tasks
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5.2. Serial Program Model 

This solution is largely a repetition of the 2019 procedure [2] and mainly serves as a reference for current 
parallelization experiments. The average time consumed by each step is described in Table 4 This is 
approximately half the time reported by [2], however, there are too many differences between the two 
experiments, different datasets, and environments, the HPC effect, etc. to draw secure conclusions. 

Table 4 – Average time spent running Serial LAID step by step 
LAID Step T0 

1 Check and remove inconsistency and redundant observations 1.254,96 

2 Disjoint matrix generation 
first-pass N/A 
second-pass 1.352,21 

3 Find solution with minimum set covering problem 6.221,88 

  total in seconds: 8.829,06 

  total in minutes: 147,15 

 

5.3.  Hybrid of Serial and Parallel Programming Models 

In this solution, only step 2, DM-Dataset generation, is parallelized through a horizontal data partition. For this 
specific dataset, 5 parallel tasks were used so, the 1700 lines were divided by 5 and each job perform 340x300 
comparisons with the results described in Figure 6. As expected, for the parallel version the difference is 
appreciable, a speedup of 3,04 with an efficiency of  0,6, this value can even be further improved by fine-tuning the 
buffer size. 

 

Figure 6 - DM-Dataset generation, Comparison of the serial version against 5 parallel tasks 

 

The previous solution, although faster than the serial solution, is not practical. A much better solution is to run 
several jobs in parallel of all the serial code, that is, parallelize the execution of the serial version. This way, each 
job will process subsets of the entire dataset, for example, 200k column blocks. Then, after the parallel operation, 
a final run could be performed to reduce the result of the various solutions found. This way the bottleneck 
constituted by step 3, which was not fully resolved, has less impact. 

Table 5 - Time spent running Parallel Decomposition 
LAID Step T0 T1 T2 T3 T4 

1 Check and remove inconsistency and redundant observations 32,28 32,60 32,81 33,11 32,98 

2 Disjoint matrix generation 
first-pass 211,71 212,91 206,97 211,94 212,05 
second-pass 237,44 240,05 236,69 242,38 237,51 

3 Find solution with minimum set covering problem 1.044,77 988,40 956,70 1.068,36 918,17 

  total in seconds: 1.526,19 1.473,95 1.433,17 1.555,79 1.400,71 

  total in minutes: 25,44 24,57 23,89 25,93 23,35 

 

Comparing and evaluating the running times of LAID algorithms for 1000k features using Serial against parallel 
version, where the same number of features is subdivided into 5 batches of 200k takes 147.15 minutes for serial 
to solve against 25.93 minutes on parallel decomposition a Speedup of 5,67. 
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5.5.  Discussion 

Table 6 presents a comparative board of the three approaches described above, for the last run parallel T1 was 
chosen because it has the worst (longest) performance of the third run. Some caution is needed when comparing 
this outcome as parallel T1 could not be directly compared with others as only handled 200k columns. Only the 
total time could be compared with no restrictions and as expected the fully parallel version is much faster than 
any of the others. 

Table 6 - Comparative board of three approaches Serial/Hybrid/Parallel decomposition 

LAID Step Serial Hybrid Parallel T3 

1 
Check and remove inconsistency and redundant 
observations 

1.254,96 1.254,96 33,11 

2 
Disjoint matrix generation 

first-pass N/A 407,83 211,94 
 second-pass 1.352,21 444,43 242,38 

3 Find solution with minimum set covering problem 6.221,88 6.221,88 1.068,36 

  total in seconds: 8.829,06 8.329,11 1.555,79 

  total in minutes: 147,15 138,82 25,93 

 

The result of the solution considering all columns of the source dataset is only the column with index 100004. The 
reason is that this column is exactly equal to the class column. Any quality evaluation would reveal 100% of 
accuracy and then the decision was for this specific case to skip the evaluation phase. 

6. Conclusions and Future work 

The research work is part of a sequence of previous works produced by different authors, to contribute to the 
usage of the Logical Analysis of Inconsistent Data methodology in the problem of selecting features in highly 
dimensioned datasets. A contribution that constitutes yet another “brick” in the much broader construction of 
knowledge for the effective solution of a current and increasingly relevant problem. 

The approach followed is in line with current trends towards computationally intensive algorithms, which are 
increasingly considered a paradigm shift in scientific environments, where working data is stored on HDF5 format 
on disk and running the algorithms in parallel in a High-Performance Computing environment on the cloud. 

The objective of discovering how parallel processing can reduce processing times for the end-user and describing 
how the HPC paradigm applies to this problem led to the decomposition of the problem into several parts that we 
tried to answer. To do this the Design Science Research methodology was followed and a Systematic Literature 
Review was carried out to compile a theoretical background that supports this research. 

The key constituent parts of the HPC environment used have been described and documented, for future use. 

Also, about the sample dataset used, useful information and data insights were extracted that can be useful in 
future situations to which is added a work of analysis and comparison of the best strategies and layouts for storing 
information in HDF5, meeting the reading patterns required by the different steps of LAID. 

It has been fully confirmed and demonstrated that HDF5 is an excellent way to store the dataset used in a LAID 
analysis. It presents excellent performance for reading and writing. But even so, and especially in parallel use, it 
was also demonstrated that parallel code must implement ways to avoid overload to avoid degrading 
performance. The continuous layout was also indicated as the most suitable for the datasets used and the 
conditions where the alternatives can be used were described. 

As for the parallelization of the LAID algorithms, code developed in previous works was adapted and newly 
developed as needed. This was later tested on the INCD HPC environment, following a testing protocol to produce 
the results presented. It deserves to be highlighted the reduction from 140 minutes of the serial version to 24 
minutes of the parallel version of a dataset with 1000k features, which represents an acceptable time and an 82% 
reduction of the previous time. 

Yet regarding this topic of parallelization, not all goals were achieved. It was left to do the parallelization step by 
step, but still, even in this case, it was possible to describe what is believed to be the solution which will certainly 
go by using the MPI collaborative mode. 
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To the constituents of the proposed artifact, which as stated is the parallel code, are the organization of HDF5 files 
and datasets and the orchestration of the process, it was also added an interesting set of lessons learned and 
guides that enrich it and justify the conviction about its usefulness. 

It would be very interesting to continue the parallelization effort of the LAID steps. Using the MPI Collective 
Communication Mode and how this use impacts the execution of LAID algorithms, with an obvious emphasis on 
LAID’s step 3. It would also be interesting to search for a fast and efficient way to remove irrelevant columns. 

ACKNOWLEDGMENTS 
This work was produced with the support of Infraestrutura Nacional de Computação Distribuída - INCD [National 
Infrastructure for Distributed Computation] funded by FCT and FEDER under the project 01/SAICT/2016 nº 
022153. 

REFERENCES 
[1] L. Cavique, A. B. Mendes, H. F. M. C. Martiniano, and L. Correia, “A biobjective feature selection algorithm for large 

omics datasets,” in Expert Systems, 2018, vol. 35, no. 4, doi: 10.1111/exsy.12301. 
[2] J. Apolónia and L. Cavique, “Seleção de Atributos de Dados Inconsistentes em ambiente HDF5 + Python na cloud INCD,” 

Rev. Ciências da Comput., no. 14, pp. 85–112, 2019, doi: 10.34627/rcc.v14i0. 
[3] A. Pentland, “The data-driven society,” Sci. Am., vol. 309, no. 4, pp. 78–83, 2013, doi: 10.1038/scientificamerican1013-

78. 
[4] J. Zhang, W. Wang, F. Xia, Y. R. Lin, and H. Tong, “Data-Driven Computational Social Science: A Survey,” Big Data Res., 

vol. 21, p. 100145, 2020, doi: 10.1016/j.bdr.2020.100145. 
[5] T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm, 2009th ed. Microsoft Research, 2009. 
[6] A. Agrawal and A. Choudhary, “Perspective: Materials informatics and big data: Realization of the ‘fourth paradigm’ of 

science in materials science,” APL Mater., vol. 4, no. 5, 2016, doi: 10.1063/1.4946894. 
[7] A. Azevedo and M. F. Santos, “KDD, semma and CRISP-DM: A parallel overview,” IADIS Eur. Conf. Data Min., pp. 182–

185, 2008, [Online]. Available: 
http://recipp.ipp.pt/handle/10400.22/136%0Ahttp://recipp.ipp.pt/bitstream/10400.22/136/3/KDD-CRISP-
SEMMA.pdf. 

[8] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, Third Edit. Elsevier Inc., 2012. 
[9] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edi. 

Elsevier Inc., 2017. 
[10] L. Cavique, A. B. Mendes, and M. Funk, “Logical Analysis of Inconsistent Data (LAID) for a Paremiologic Study,” 2011. 
[11] D. Talia, “A view of programming scalable data analysis: from clouds to exascale,” J. Cloud Comput., vol. 8, no. 1, 2019, 

doi: 10.1186/s13677-019-0127-x. 
[12] Ec.europa.eu, “High Performance Computing,” European Commission, 2021. https://ec.europa.eu/digital-single-

market/en/high-performance-computing (accessed Mar. 27, 2021). 
[13] W. Zheng, “Research trend of large-scale supercomputers and applications from the TOP500 and Gordon Bell Prize,” 

Sci. China Inf. Sci., vol. 63, no. 7, pp. 1–14, 2020, doi: 10.1007/s11432-020-2861-0. 
[14] INCD - Infraestrutura Nacional de Computação Distribuída, “INCD user documentation.” https://wiki.incd.pt/books 

(accessed Apr. 03, 2021). 
[15] The HDF Group, “HDF5 high performance data software library and file format.” 

https://www.hdfgroup.org/solutions/hdf5 (accessed May 13, 2021). 
[16] MPI-Forum, “MPI Standard.” https://www.mpi-forum.org (accessed Jun. 18, 2021). 
[17] Andrew Collette and contributors, “h5py - HDF5 for Python.” https://docs.h5py.org/en/stable/index.html (accessed 

Jul. 12, 2021). 
[18] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, vol. 4, no. 5. Boston: Kluwer Academic Publishers, 

1991. 
[19] E. Boros, P. L. Hammer, T. Ibaraki, and A. Kogan, “Logical Analysis of Numerical Data,” Math. Program. Springer, vol. 79, 

no. October, pp. 163–190, 1997. 
[20] S. Rissino and G. Lambert-Torres, “Rough Set Theory - Fundamental Concepts, Principals, Data Extraction, and 

Applications,” Data Min. Knowl. Discov. Real Life Appl., no. February, 2009, doi: 10.5772/6440. 
[21] L. Cavique, A. B. Mendes, M. Funk, and J. M. A. Santos, “A feature selection approach in the study of azorean proverbs,” 

in Exploring Innovative and Successful Applications of Soft Computing, Exploring., Hershey: IGI Global, 2013, pp. 38–58. 
[22] J. Apolónia and L. Cavique, “Seleção de atributos utilizando a Análise Lógica de Dados Inconsistentes (LAID),” 

Repositório institucional da Universidade Aberta (UAb), 2019. http://hdl.handle.net/10400.2/8122 (accessed May 06, 
2021). 

[23] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan, “Parallel and I/O efficient set covering algorithms,” Annu. ACM 
Symp. Parallelism Algorithms Archit., pp. 82–90, 2012, doi: 10.1145/2312005.2312024. 

[24] S. Chakravarty and A. Shekhawat, “Parallel and serial heuristics for the minimum set cover problem,” J. Supercomput., 
vol. 5, no. 4, pp. 331–345, 1992, doi: 10.1007/BF00127952. 

[25] S. Rastogi and H. Zaheer, “Significance of parallel computation over serial computation,” Int. Conf. Electr. Electron. 
Optim. Tech. ICEEOT 2016, pp. 2307–2310, 2016, doi: 10.1109/ICEEOT.2016.7755106. 


