
1

Feature Selection using LAID and its Implementation on High-

Performance Computing Systems

Paulo Morgado
Instituto Superior Técnico, Lisboa, Portugal

paulo.morgado@tecnico.ulisboa.pt

.

ABSTRACT

Of the many current challenges that the increasing availability of data poses to society and organizations, the
ability to collect, store, process, analyze and extract knowledge in a helpful time frame stands out.

This dissertation focuses on the processing of highly dimensioned datasets, such as those generated by High-
throughput sequencing (HTS) techniques, which are increasingly common in areas of knowledge such as
bioinformatics.

Among the dimensionality reduction techniques, feature selection has become crucial since it reduces the high
dimensionality of large datasets.

A possible approach to perform the feature selection that considerably reduces the dimension without increasing
the inconsistency of the data is the use of Logical Analysis of Inconsistent Data (LAID). Several studies in recent
years have demonstrated its potential in solving this problem and highlighted its advantages as a systematic
methodology, robust, easy to interpret, and capable of dealing with inconsistent data [1], [2].

The same studies revealed processing times longer than desired for full utilization and pointed out the solution for
executing the algorithms using parallel processing and mobilization of a high-performance computing (HPC)
installation.

This work represents another contribution to this effort by addressing dataset storage methods suitable for
parallel processing, algorithm parallelization solutions, high-performance environment configuration. Finally, it
tests in the HPC environment of the Infraestrutura Nacional de Computação Distribuída (INCD). What allowed us
to describe a fit-for-purpose dataset storage solution as well as parallel processing in an HPC environment can
reduce processing times for the end-user, achieving a satisfactory 82% reduction relative to best sequential time.

KEYWORDS

Data mining, High dimensionality, Feature selection, Logical Analysis of Inconsistent Data (LAID), Parallel
computing

1. Introduction

Our way of life is increasingly driven by data [3], and dependent on our capacity to collect, store, process, analyze
and extract knowledge from a constantly increasing amount of data in a useful time. The same phenomenon can
be observed in scientific environments [4]. The exponential growth of data generated by scientific experiments,
instruments, and sensors, considering their volume, complexity, and even scale of distribution, has become a
critical factor in several science disciplines, which induces the need to analyze ever-increasing volumes of data on
time. Some authors identified this need as a new paradigm in scientific production and adopted the term coined
by Jim Gray, “The Fourth Paradigm” [5]. According to them, Science started empirically, then theoretical, in the last
few decades, computational and, recently, became data-driven. Another author [6], call this trend a “Data-
intensive science”, Whether in the scientific, business, or governmental sphere the same need led to the creation of
new ways to manage distributed data, processing it, and mainly analyzing it to obtain information and useful
knowledge.

This processing and analysis are usually called knowledge discovery from data or KDD and one essential stage [7]
is known as Data mining that can be defined as the process of discovering patterns and extracting knowledge from

2

large amounts of data [8]. Patterns on data is a generic expression that aggregates concepts like identifying
groupings of data not previously known, detecting unusual records, or finding unknown dependencies. This
process can be automatic or, very often, semi-automatic [9].

As it is often impracticable to analyze the entire Dataset, it is necessary to know how to choose which features the
analysis should focus on, to the detriment of all others. It is on this scope that this work focuses, specifically in
situations where this feature selection becomes essential, as in the case of highly dimensioned data sets, as the
called Omics datasets. Omics is a neologism associated with biology suffixes such as genomics, transcriptomics, [1]
and usually refers to biological parameters commonly called biomarkers.

In this sense, dimensions reduction is the specialty in the scope of data mining, and one of the possible ways to
accomplish it is through feature selection, which is mandatory on highly dimensioned datasets for which the
analysis of all the dimensions is impractical and counterproductive. This task becomes even more necessary when
the number of observations is low, the data matrix is sparse, and the analysis of row classification reveals
inconsistencies. The problem addressed in the present work is an example of that. Considering that a feature
selection problem with a dataset involving one million attributes was solved in [1], using partitions of the problem
and a new method called Logical Analysis of Inconsistent Data (LAID) proposed by [10], this present research
aims to continue this effort.

1.1. Motivation and scope

The 2018 experiment [1] uses a computer cluster running at the Portuguese National Infrastructure for
Distributed Computing (INCD), for parallel processing while also using the dataset in memory. As a final remark,
the authors consider three major aspects: data, algorithm, and computer environment. Since large datasets with
many dimensions are becoming the new normal, they advocate that:

• In‐memory data access should be replaced by on‐disk data access.

• The new algorithms need low time complexity and problem decomposition to allow parallelizing the
problem. Therefore, the intense use of computationally expensive algorithms, such as metaheuristics,
should be reduced.

• And last, the desired environment should be in the cloud, running the programs in parallel in High‐
Performance Computing (HPC).

This is in line with the new trends for compute-intensive algorithms [11]. and constitutes a paradigm shift in
scientific environments, [1], illustrated in Figure 1.

Figure 1 - The paradigm shift in scientific environments

Later [2] revisited this problem using LAID and a different computational approach: sequential processing on a
single machine and the dataset stored in high-performance data management and storage suite (HDF5) on disk.
Both experiments concluded that the high processing time remains an additional problem that limits its
application. The challenge and motivation for this new approach to the described problem are to reduce the
processing time, using the computational paradigm: parallel processing, on‐disk data access, and cloud/HPC
environment.

The purpose of this research following a Design Science Research Methodology (DSRM), with a Design &
Development centered approach, is to discover how parallel processing can reduce processing times for the end-
user and describe how this new computational paradigm applies to this problem. The remainder of this document
is structured around the mentioned tree concepts, Section 2 presents the environment, Section 3 introduces the
dataset used and Storage strategy on HDF5 format, Section 4 describes the parallelization of the LAID algorithms,
Section 5 presents the results of the experiment performed and Section 6 presents the conclusions.

3

2. The HPC environment on INCD cloud

HPC, also known as supercomputing, refers to computing systems with extremely high computational power that
can solve hugely complex and demanding problems [12],[13], performance is commonly measured in floating-
point operations per second (FLOPS).

INCD is a digital infrastructure supporting research, provides computing and storage services to the Portuguese
scientific and academic community. And kindly provided computational resources in the Cirrus-A HPC cluster,
that allowed the execution and testing of the code that constitutes the artifact of this work. On this cluster, there
are 5 compute nodes AMD EPYC 7501 available, running CentOS 7, with 64 cores per node, interconnected by FDR
InfiniBand 56Gbps [14]. The INCD filesystems are based on the Lustre distributed filesystem. Figure 2a) presents
a view of the Technology usage of the Cirrus-A cluster and the main components used. The highlight for
components essentials for this work such as HDF5 a data model, library, and file format for storing and managing
data. [15] And the Message-Passing Interface (MPI), [16], addresses the message-passing parallel programming
model and MPI-I/O that provide routines for file manipulation and data access by multiple processes. Figure 2b)
presents an application cooperation diagram of the full component stack for parallelization. A significant part of
the choice of software modules and versions used resulted from the excellent support and knowledge of the team
that manages this facility.

Figure 2 - Technology usage of Cirrus-A HPC Cluster and Application cooperation

3. The Dataset, Storage strategy on HDF5 format

3.1. The Dataset used

The Source-Dataset used contains a total of 2k observations x 1000k features of synthetic data representing Omic
data, all observations are labeled according to binary classification. was received in the form of text files. So, a
python program was developed to extract data from text files and load them into the dataset in the HDF5 file.

Figure 3 - Sample of distributions patterns found on Source-Dataset

4

After the dataset loaded in HDF5, an exploratory analysis was performed, allowing us to conclude that only
19.57% of the cells contain a value, which means a sparse matrix. Also, the sparsity is not uniform across the
columns, because there are two different distribution patterns interspersed between blocks of 100k columns
where a random distribution pattern a) alternates with a more concentrated pattern b), and in the latter, 31% of
the columns do not contain any value.

3.2. HDF5 Storage Layout: Chunking Analyses

The default storage layout of HDF5 files is contiguous storage, “data of a multidimensional array is serialized along
the fastest-changing dimension and is stored as a contiguous block in the file. This storage mechanism is
recommended if the size of a dataset is known and the storage size for the dataset is acceptable to the user” [17].
Datasets may also be created using HDF5’s chunked storage layout. This means the dataset is divided up into
regularly sized pieces which are stored haphazardly on disk and indexed using a B-tree. This storage also makes it
possible to resize datasets. For these reasons, choosing the storage layout and internal organization of the HDF5
file requires analysis and testing to allow for conclusions. To perform it, a test protocol was defined considering
three subsets of the source dataset, based on the number of columns: L, XL, and XXL indicated in Table 1. The
different options tested are described in

Table 2. An additional explanation is needed as to “Best Fit chunk” which depends on prior knowledge of the read
cache size defined at HDF5 installation.

Table 1 - Datasets used in the read/write test protocol

Dataset Rows x Columns. GB

200K (L) 2k x 200k 0,37

600K (XL) 2k x 600k 1,12

1000K (XXL) 2k x 1000k 1,86

Table 2 - Chunking layout tested

Layout Meaning

Row chunk Equals the dimension of the entire row, regardless of its dimension
Best-Fit chunk Is a chunk whose dimension perfectly fits the defined HDF5's read cache size
Contiguous Don't use chunks
Auto-chunk Gives HDF5 the responsibility for choosing the dimension

3.2.1. Write Operations over the HDF5 Source-Dataset

These tests were carried out at the expense of successive parallel write operations over the Source-Dataset and all
times presented are the average of the runs performed. The noteworthy fact is that of the total data loading time,
about 60% of the time is spent extracting the data from the text file, 40% transforming it into memory and a
remarkable less than 0.5% is spent preserving the dataset in the HDF5 file. This is done in a single write operation
which has proven to be extremely efficient regardless of the data block size and chunking layout.

It was also verified in these tests an excessive variability of the times between similar runs. the workload and I/O
conditions of the cluster influenced the times obtained mainly in the L tests, even so, and given that in the portion
concerning the write operation presented in Table 3, these are very low times, (all below 8 seconds), the focus has
to be on small differences in seconds and here are two layouts that stand out negatively; Row chunk for datasets
with less than 1000K columns and Auto-chunk with such poor performance that it was abandoned.

Table 3 - Average time to write an entire block of data on HDF5 file in seconds
Layout 200K (L) 600K (XL) 1000K (XXL)

Row chunk 4,91 2,08 1,82
Best Fit chunk 1,27 2,08 1,82
Contiguous 3,87 1,24 5,98

Auto-chunk 7,12

5

Regarding the use of chunking in write operations, except for Auto-Chunk, there are no major discrepancies on
observed times considering the dataset size and the chunking used. Not using chunking at all is not heavily
penalized on write operations and may even be faster on 600K column datasets. Best Fit chunk is the most
difficult to use and is probably the best solution for some sizes, where it is easier to adjust the dimension to the
HDF5 cache size.

3.2.2 Read Operations over the HDF5 Source-Dataset

For this research, the storage layout must be aligned with the dataset access patterns, that is, the read operations,
which are more relevant than the analysis to the write operations. Hence the choice to perform this test using the
code from the 2nd step of the LAID methodology, in this step, access to the Source-Dataset requires the complete
reading of the line, as each line is compared with all others, therefore, this reading pattern is perfectly suited to
the intended test. Figure 4 chart compares the time consumed reding over different HDF5 Storage layout options.

Figure 4 - Average time in seconds to read operations versus HDF5 Storage layout

About “Best Fit chunk” it practically matches the byte dimension of the XXL row, it is also possible to make a
reasonable match with the L using 5 rows per chunk. but XL is penalized as it wastes almost half the cache value
on each read. Still and except for the Auto-chunk option, which performs so badly even on a small dataset that was
abandoned for the larger ones, the times between the remaining two chunking options are relatively similar.

Conclusions can be drawn from this reading pattern, chunking is an option to be considered in no way an
obligation. Even for the best chunking option, given the read cache size defined in the HDF5 installation and the
read pattern used by the algorithm, it is observed that the contiguous storage layout systematically allows greater
speed and access. This speed is hardly distinctive in smaller datasets (L) but gradually becomes more significant.

From all the above, the preferred layout strategy for Source-Dataset is not to use chunking at all. Also, for the DM-
Dataset obtained in the 2nd step of LAID, because it is accessed via row and column, using any form of chunking is
an error.

4. Parallel LAID

4.1. LAID methodology

This method arises from the combination of Rough Sets Theory [18] and Logical Analysis of Data (LAD)
methodology [19]. Both approaches are a subset of filter models, which goal is to reduce the number of dataset
attributes using two phases: problem transformation and optimization. Their specificity is to keep the semantics
of the data by removing only the redundant data.

Logical Analysis of Inconsistent Data (LAID) was proposed in 2011 by [10] in the scope of a Paremiologic Study
and described by the authors as a blend of the best qualities of each of former methodologies, being able to deal
with inconsistent data and non-dichotomized classes, characteristics of Rough Sets, [20] as well as the
computational effectiveness of LAD. Also allows integer attributes, with associated costs. [21] which allows for a
greater range of selection strategies. A detailed description with examples can be found in [22].

6

4.3. Coding the LAID algorithms

Given the prior availability of a codebase for the LAID algorithms written in the C and Python programming
languages, from previous work [1] and [2], these source codes were used here with an emphasis on the Python
version that already used HDF5, so part of this work consisted of adapting the sequential code and in the further
developments needed, such as code improvements, changes in the execution flow, the introduction of a
configuration file, different use of files, and HDFS datasets, and introduction of techniques aimed at parallelization.

According to [1],[2], the Logical Analysis of Inconsistent Data Algorithm consists of the following steps:

• Input: dataset D = {O, X∪C} with binary variables

• Output: (number of features, accuracy)

• check data inconsistencies and add dummy variable “jnsq” as a discriminant feature to remove any
inconsistency in addition check and remove all redundant observations.

• disjoint matrix generation [Ai,j] this is a O(n2) in the Big O notation

• number of features = Minimum Set Covering Problem. In this third step of LAID, a heuristic is applied to
solve the set covering problem. This is an O(log n) problem.

• accuracy = Cross-validation

Step 1 is fast, even without parallelization, and the algorithms are complex to parallelize, so the following was
given priority and not covered in this work. Step 4 consists of validating the obtained solution, so it does not
require parallelization at all.

Step 2 - Disjoint Matrix Generation

This step consists of reading all the Source-Dataset's rows and comparing them with all those that have a different
class value, the disjoint rows found are written in a destination dataset, which for operational reasons has been
decided to be stored in a separate HDF5 file, this new derived dataset has been named DM-Dataset.

Because there are no dependencies between each iteration of the algorithm used, i.e., each observation of the
Source-Dataset is treated independently, its parallelization appears to be simply requiring only a few adaptations
to the serial code. Technically it is only necessary to distribute the rows of the source-Dataset by the processors
assigned to the run, in a horizontal data partition. However, it was not so simple. All parallel tasks on the run write
the generated rows to the same HDF5 dataset. If this recording could be sequential, something like adding new
rows to the dataset, the process would be simple, but it can't, the HDF5 datasets used are all fixed length. This
implies, to avoid overwriting, strictly controlling, and segregation of the write-row index, as is done for reading.

It is obviously possible to define a formula to calculate rows index, but only if the Source-Dataset does not have
redundant rows and if it is sorted by the value of the class(es) and this effectively is. But this sort, despite good
practice, is not a requirement of LAID and it cannot be considered an assumption. Which makes this an unsolvable
problem, because before the execution of the algorithm it is not possible to know how many, and in which index
the rows should be written. This insolubility inspired the solution, not elegant but effective, the algorithm will run
twice. In the first pass, it identifies the source and destination rows, without spending time writing to disk. With
this valuable information, the second pass knows exactly what and where to write. The bet is that parallelization
allows not only to recover the time spent on the first pass but also to save more time because it avoids
unnecessary comparisons.

The code was also changed to include a buffer, which allowed the number of write operations to be reduced by
writing more data at a time. The introduction of this buffer has proved so useful that even the serial version
benefits from it, (29% from the initial time).

Step 3 – Find a solution with the minimum set covering algorithm

This is the bottleneck at all steps of the LAID methodology. The algorithm of this step is inherently serial. there is a
clear dependence between interactions given that the computation performed in any iteration depends on the
result of the previous iteration. The approach followed was to perform the vertical partition of the DM-Dataset
columns and their distribution by parallel tasks. But the different solutions found must be compared and the best
one chosen. which requires communication and cooperation between processors/parallel tasks, so, in this work,
the approach for a parallel solution was limited to the first iteration. For this reason, the goal of parallelizing this

7

step was suspended. Literature reveals various other potential parallel solutions [23],[24]. There is a common
point in all of them relying on some form of communication between processors. In conclusion, the next approach
will have to make use of MPI point-to-point or collective communication modes via shared-memory or external
memory that allows coordination between parallel tasks/processors.

4.4. Performance Metrics for Parallel Systems

Whereas the main objective of parallel computing is increasing speed and reducing time complexity is necessary
to measure the result. for this purpose, two performance metrics are usually used [1],[25], to measure the
efficiency of an algorithm in terms of the time complexity factor. N computers working simultaneously can
increase the speed up to N times, or an approximation of N as other factors can influence the time spent, such as
bottlenecks communications. Parallel execution (run) time is usually defined as the time that elapses from the
moment a parallel calculation starts until the moment the last processor finishes execution. The Speedup Sp factor
is defined as the ratio of the serial runtime of the best sequential algorithm for solving a problem to the time taken
by the parallel algorithm to solve the same problem on p processors.

𝑆𝑝 =

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑜𝑛𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑝 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
=

𝑡𝑠

𝑡𝑝

(1)

Where ts (Tserial) is the execution time on a single processor or serial run time. tp (Tparallel) is the execution
time on a multiprocessor or parallel run time and Sp is the increase in speed by using multiprocessor.

Efficiency E is defined as the ratio of speedup Sp to the number of processors P. Efficiency measures the fraction of
time for which a processor is usefully utilized.

𝐸 =

Speedup 𝑆𝑝

number of processors 𝑃

(2)

5. Computational Experiments and Results

All Python code has been provided with performance counters for benchmarking whose information was cross-
referenced with the start and end date-time of each job. therefore, there is high confidence in the observed time,
however, some caution is needed in analyzing the reported times. As referred above, on several occasions, the
same code and data running in different periods return the same result but with discrepancies in the time spent
which indicates that the job environment is not fully isolated and is affected by cluster operational conditions
probably associated with the distributed file system.

5.1. Serial, Hybrid, and Parallel Runs

Figure 5 - Serial, Hybrid, and Parallel Runs

Figure 5 synthesizes the three forms of runs used in this work. The simplest model follows the sequential
execution, is represented on the left side of the figure, the center represents a hybrid form, where part of the
processing is serial, and part parallelized, and the parallel model is represented on the right side.

Program Model Serial Parallel and Serial

Resources 1 task 1 task + 5 tasks + 1 task

Target Whole dataset Whole dataset D1 D2 D3 D4 D5

Number of features 1000k 1000k 200k 200k 200k 200k 200k

LAID step

1

check and remove any data

inconsistencies and redundant

observations

2

disjoint matrix M generation

3

find the solution with minimum

set covering problem

Parallel Decomposition

5 tasks

8

5.2. Serial Program Model

This solution is largely a repetition of the 2019 procedure [2] and mainly serves as a reference for current
parallelization experiments. The average time consumed by each step is described in Table 4 This is
approximately half the time reported by [2], however, there are too many differences between the two
experiments, different datasets, and environments, the HPC effect, etc. to draw secure conclusions.

Table 4 – Average time spent running Serial LAID step by step
LAID Step T0

1 Check and remove inconsistency and redundant observations 1.254,96

2 Disjoint matrix generation
first-pass N/A
second-pass 1.352,21

3 Find solution with minimum set covering problem 6.221,88

 total in seconds: 8.829,06

 total in minutes: 147,15

5.3. Hybrid of Serial and Parallel Programming Models

In this solution, only step 2, DM-Dataset generation, is parallelized through a horizontal data partition. For this
specific dataset, 5 parallel tasks were used so, the 1700 lines were divided by 5 and each job perform 340x300
comparisons with the results described in Figure 6. As expected, for the parallel version the difference is
appreciable, a speedup of 3,04 with an efficiency of 0,6, this value can even be further improved by fine-tuning the
buffer size.

Figure 6 - DM-Dataset generation, Comparison of the serial version against 5 parallel tasks

The previous solution, although faster than the serial solution, is not practical. A much better solution is to run
several jobs in parallel of all the serial code, that is, parallelize the execution of the serial version. This way, each
job will process subsets of the entire dataset, for example, 200k column blocks. Then, after the parallel operation,
a final run could be performed to reduce the result of the various solutions found. This way the bottleneck
constituted by step 3, which was not fully resolved, has less impact.

Table 5 - Time spent running Parallel Decomposition
LAID Step T0 T1 T2 T3 T4

1 Check and remove inconsistency and redundant observations 32,28 32,60 32,81 33,11 32,98

2 Disjoint matrix generation
first-pass 211,71 212,91 206,97 211,94 212,05
second-pass 237,44 240,05 236,69 242,38 237,51

3 Find solution with minimum set covering problem 1.044,77 988,40 956,70 1.068,36 918,17

 total in seconds: 1.526,19 1.473,95 1.433,17 1.555,79 1.400,71

 total in minutes: 25,44 24,57 23,89 25,93 23,35

Comparing and evaluating the running times of LAID algorithms for 1000k features using Serial against parallel
version, where the same number of features is subdivided into 5 batches of 200k takes 147.15 minutes for serial
to solve against 25.93 minutes on parallel decomposition a Speedup of 5,67.

9

5.5. Discussion

Table 6 presents a comparative board of the three approaches described above, for the last run parallel T1 was
chosen because it has the worst (longest) performance of the third run. Some caution is needed when comparing
this outcome as parallel T1 could not be directly compared with others as only handled 200k columns. Only the
total time could be compared with no restrictions and as expected the fully parallel version is much faster than
any of the others.

Table 6 - Comparative board of three approaches Serial/Hybrid/Parallel decomposition

LAID Step Serial Hybrid Parallel T3

1
Check and remove inconsistency and redundant
observations

1.254,96 1.254,96 33,11

2
Disjoint matrix generation

first-pass N/A 407,83 211,94
 second-pass 1.352,21 444,43 242,38

3 Find solution with minimum set covering problem 6.221,88 6.221,88 1.068,36

 total in seconds: 8.829,06 8.329,11 1.555,79

 total in minutes: 147,15 138,82 25,93

The result of the solution considering all columns of the source dataset is only the column with index 100004. The
reason is that this column is exactly equal to the class column. Any quality evaluation would reveal 100% of
accuracy and then the decision was for this specific case to skip the evaluation phase.

6. Conclusions and Future work

The research work is part of a sequence of previous works produced by different authors, to contribute to the
usage of the Logical Analysis of Inconsistent Data methodology in the problem of selecting features in highly
dimensioned datasets. A contribution that constitutes yet another “brick” in the much broader construction of
knowledge for the effective solution of a current and increasingly relevant problem.

The approach followed is in line with current trends towards computationally intensive algorithms, which are
increasingly considered a paradigm shift in scientific environments, where working data is stored on HDF5 format
on disk and running the algorithms in parallel in a High-Performance Computing environment on the cloud.

The objective of discovering how parallel processing can reduce processing times for the end-user and describing
how the HPC paradigm applies to this problem led to the decomposition of the problem into several parts that we
tried to answer. To do this the Design Science Research methodology was followed and a Systematic Literature
Review was carried out to compile a theoretical background that supports this research.

The key constituent parts of the HPC environment used have been described and documented, for future use.

Also, about the sample dataset used, useful information and data insights were extracted that can be useful in
future situations to which is added a work of analysis and comparison of the best strategies and layouts for storing
information in HDF5, meeting the reading patterns required by the different steps of LAID.

It has been fully confirmed and demonstrated that HDF5 is an excellent way to store the dataset used in a LAID
analysis. It presents excellent performance for reading and writing. But even so, and especially in parallel use, it
was also demonstrated that parallel code must implement ways to avoid overload to avoid degrading
performance. The continuous layout was also indicated as the most suitable for the datasets used and the
conditions where the alternatives can be used were described.

As for the parallelization of the LAID algorithms, code developed in previous works was adapted and newly
developed as needed. This was later tested on the INCD HPC environment, following a testing protocol to produce
the results presented. It deserves to be highlighted the reduction from 140 minutes of the serial version to 24
minutes of the parallel version of a dataset with 1000k features, which represents an acceptable time and an 82%
reduction of the previous time.

Yet regarding this topic of parallelization, not all goals were achieved. It was left to do the parallelization step by
step, but still, even in this case, it was possible to describe what is believed to be the solution which will certainly
go by using the MPI collaborative mode.

10

To the constituents of the proposed artifact, which as stated is the parallel code, are the organization of HDF5 files
and datasets and the orchestration of the process, it was also added an interesting set of lessons learned and
guides that enrich it and justify the conviction about its usefulness.

It would be very interesting to continue the parallelization effort of the LAID steps. Using the MPI Collective
Communication Mode and how this use impacts the execution of LAID algorithms, with an obvious emphasis on
LAID’s step 3. It would also be interesting to search for a fast and efficient way to remove irrelevant columns.

ACKNOWLEDGMENTS
This work was produced with the support of Infraestrutura Nacional de Computação Distribuída - INCD [National
Infrastructure for Distributed Computation] funded by FCT and FEDER under the project 01/SAICT/2016 nº
022153.

REFERENCES
[1] L. Cavique, A. B. Mendes, H. F. M. C. Martiniano, and L. Correia, “A biobjective feature selection algorithm for large

omics datasets,” in Expert Systems, 2018, vol. 35, no. 4, doi: 10.1111/exsy.12301.
[2] J. Apolónia and L. Cavique, “Seleção de Atributos de Dados Inconsistentes em ambiente HDF5 + Python na cloud INCD,”

Rev. Ciências da Comput., no. 14, pp. 85–112, 2019, doi: 10.34627/rcc.v14i0.
[3] A. Pentland, “The data-driven society,” Sci. Am., vol. 309, no. 4, pp. 78–83, 2013, doi: 10.1038/scientificamerican1013-

78.
[4] J. Zhang, W. Wang, F. Xia, Y. R. Lin, and H. Tong, “Data-Driven Computational Social Science: A Survey,” Big Data Res.,

vol. 21, p. 100145, 2020, doi: 10.1016/j.bdr.2020.100145.
[5] T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm, 2009th ed. Microsoft Research, 2009.
[6] A. Agrawal and A. Choudhary, “Perspective: Materials informatics and big data: Realization of the ‘fourth paradigm’ of

science in materials science,” APL Mater., vol. 4, no. 5, 2016, doi: 10.1063/1.4946894.
[7] A. Azevedo and M. F. Santos, “KDD, semma and CRISP-DM: A parallel overview,” IADIS Eur. Conf. Data Min., pp. 182–

185, 2008, [Online]. Available:
http://recipp.ipp.pt/handle/10400.22/136%0Ahttp://recipp.ipp.pt/bitstream/10400.22/136/3/KDD-CRISP-
SEMMA.pdf.

[8] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, Third Edit. Elsevier Inc., 2012.
[9] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edi.

Elsevier Inc., 2017.
[10] L. Cavique, A. B. Mendes, and M. Funk, “Logical Analysis of Inconsistent Data (LAID) for a Paremiologic Study,” 2011.
[11] D. Talia, “A view of programming scalable data analysis: from clouds to exascale,” J. Cloud Comput., vol. 8, no. 1, 2019,

doi: 10.1186/s13677-019-0127-x.
[12] Ec.europa.eu, “High Performance Computing,” European Commission, 2021. https://ec.europa.eu/digital-single-

market/en/high-performance-computing (accessed Mar. 27, 2021).
[13] W. Zheng, “Research trend of large-scale supercomputers and applications from the TOP500 and Gordon Bell Prize,”

Sci. China Inf. Sci., vol. 63, no. 7, pp. 1–14, 2020, doi: 10.1007/s11432-020-2861-0.
[14] INCD - Infraestrutura Nacional de Computação Distribuída, “INCD user documentation.” https://wiki.incd.pt/books

(accessed Apr. 03, 2021).
[15] The HDF Group, “HDF5 high performance data software library and file format.”

https://www.hdfgroup.org/solutions/hdf5 (accessed May 13, 2021).
[16] MPI-Forum, “MPI Standard.” https://www.mpi-forum.org (accessed Jun. 18, 2021).
[17] Andrew Collette and contributors, “h5py - HDF5 for Python.” https://docs.h5py.org/en/stable/index.html (accessed

Jul. 12, 2021).
[18] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, vol. 4, no. 5. Boston: Kluwer Academic Publishers,

1991.
[19] E. Boros, P. L. Hammer, T. Ibaraki, and A. Kogan, “Logical Analysis of Numerical Data,” Math. Program. Springer, vol. 79,

no. October, pp. 163–190, 1997.
[20] S. Rissino and G. Lambert-Torres, “Rough Set Theory - Fundamental Concepts, Principals, Data Extraction, and

Applications,” Data Min. Knowl. Discov. Real Life Appl., no. February, 2009, doi: 10.5772/6440.
[21] L. Cavique, A. B. Mendes, M. Funk, and J. M. A. Santos, “A feature selection approach in the study of azorean proverbs,”

in Exploring Innovative and Successful Applications of Soft Computing, Exploring., Hershey: IGI Global, 2013, pp. 38–58.
[22] J. Apolónia and L. Cavique, “Seleção de atributos utilizando a Análise Lógica de Dados Inconsistentes (LAID),”

Repositório institucional da Universidade Aberta (UAb), 2019. http://hdl.handle.net/10400.2/8122 (accessed May 06,
2021).

[23] G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan, “Parallel and I/O efficient set covering algorithms,” Annu. ACM
Symp. Parallelism Algorithms Archit., pp. 82–90, 2012, doi: 10.1145/2312005.2312024.

[24] S. Chakravarty and A. Shekhawat, “Parallel and serial heuristics for the minimum set cover problem,” J. Supercomput.,
vol. 5, no. 4, pp. 331–345, 1992, doi: 10.1007/BF00127952.

[25] S. Rastogi and H. Zaheer, “Significance of parallel computation over serial computation,” Int. Conf. Electr. Electron.
Optim. Tech. ICEEOT 2016, pp. 2307–2310, 2016, doi: 10.1109/ICEEOT.2016.7755106.

