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Abstract 
 

 

Of the many current challenges that the increasing availability of data poses to society and organizations, the 

ability to collect, store, process, analyze and extract knowledge in a helpful time frame stands out. 

This dissertation focuses on the processing of highly dimensioned datasets, such as those generated by High-

throughput sequencing (HTS) techniques, which are increasingly common in areas of knowledge such as 

bioinformatics. 

Among the dimensionality reduction techniques, feature selection has become crucial since it reduces the high 

dimensionality of large datasets. 

A possible approach to perform the feature selection that considerably reduces the dimension without increasing 

the inconsistency of the data is the use of Logical Analysis of Inconsistent Data (LAID). Several studies in recent 

years have demonstrated its potential in solving this problem and highlighted its advantages as a systematic 

methodology, robust, easy to interpret, and capable of dealing with inconsistent data, (Cavique et al., 2018), 

(Apolónia and Cavique, 2019a). 

The same studies revealed processing times longer than desired for full utilization and pointed out the solution 

for executing the algorithms using parallel processing and mobilization of a high-performance computing (HPC) 

installation. 

This work represents another contribution to this effort by addressing dataset storage methods suitable for 

parallel processing, algorithm parallelization solutions, high-performance environment configuration. Finally, it 

tests in the HPC environment of the Infraestrutura Nacional de Computação Distribuída (INCD). What allowed us 

to describe a fit-for-purpose dataset storage solution as well as parallel processing in an HPC environment can 

reduce processing times for the end-user, achieving a satisfactory 82% reduction relative to best sequential time. 
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Resumo 
 

 

Dos muitos desafios atuais que a crescente disponibilidade de dados lança à sociedade e as organizações destaca-

se a capacidade de coletar, armazenar, processar, analisar e extrair conhecimento em tempo útil. 

Nesta dissertação o foco é o processamento de datasets altamente dimensionados, como os gerados pelas 

técnicas de High-throughput sequencing (HTS), cada vez mais comuns em áreas do conhecimento como a 

bioinformática. 

De entre as técnicas de redução de dimensionalidade a seleção de atributos tornou-se crucial ao permitir reduzir 

a alta dimensionalidade de grandes quantidades de dados, que sem esse tratamento permaneceriam com 

utilidade limitada. 

Uma possível abordagem para realizar a seleção de atributos que permite reduzir consideravelmente a dimensão 

sem aumentar a inconsistência dos dados é a utilização de Análise Lógica de Dados Inconsistentes (LAID). Vários 

estudos nos últimos anos, demostraram as suas potencialidades na resolução deste problema e evidenciaram as 

suas vantagens como uma metodologia sistemática, robusta, de fácil interpretação e capaz de lidar com dados 

inconsistentes, (Cavique et al., 2018), (Apolónia and Cavique, 2019a). 

Os mesmos estudos revelaram tempos de processamento acima do desejado para uma utilização plena e 

apontaram a solução para a execução dos algoritmos usando processamento paralelo e a mobilização de recursos 

de uma instalação de computação de alto desempenho (HPC). 

Este trabalho representa mais um contributo nesse esforço ao abordar formas de armazenamento dos datasets 

com vista ao seu processamento paralelo, soluções de paralelização dos algoritmos, configuração do ambiente de 

alto desempenho e finalmente os testes no ambiente HPC da Infraestrutura Nacional de Computação Distribuída 

(INCD). O que permite descrever uma solução de armazenamento do dataset adequada à finalidade, bem como o 

processamento paralelo em um ambiente HPC, pode reduzir os tempos de processamento para o utilizador final, 

alcançando uma redução satisfatória de 82% relativa ao melhor tempo sequencial. 
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1. Introduction 
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1.1 Motivation 

Our lives, as individuals and collectives where we belong, as well as our way of life in society, is increasingly 

driven by data (Pentland, 2013), and dependent on our capacity to collect, store, process, analyze and extract 

knowledge from a constantly increasing amount of data in a useful time. 

The same phenomenon can be observed in parallel in the scientific world (J. Zhang et al., 2020). The 

exponential growth of data generated by scientific experiments, instruments, and sensors, considering their 

volume, complexity, and even scale of distribution, has become a critical factor in several science disciplines, 

which induces the need to analyze ever-increasing volumes of data on time. Some authors identified this need 

as a new paradigm in scientific production and adopted the term coined by Jim Gray, “The Fourth Paradigm” 

(Hey, Tansley and Tolle, 2009). According to them, Science started empirically, then theoretical, in the last few 

decades, computational and, recently, became data-driven. Presented in Figure 1-1 from (Agrawal and 

Choudhary, 2016), these authors call this trend a “Data-intensive science”, consisting of three basic activities: 

capture, curation, and analysis. 

 

Figure 1-1 - The Fourth Paradigm 

 

Plenty of examples can be chosen to illustrate this trend, considering particles collide in Large Hadron Collider 

(LHC) detectors approximately 1 billion times per second, generating about one petabyte of collision data per 

second. However, such quantities of data are impossible for current computing systems to record, and they 

are hence filtered by the experiments, keeping only the most “interesting” ones. Even after the drastic data 

reduction performed by the experiments, the CERN DC processes on average one petabyte (PB) of data per 

day (Gaillard, 2017). Also, the next-generation nuclear fusion device, ITER’s individual experimental runs will 

have a much longer duration than the current generation of tokamaks and will generate up to 0.4 petabytes 

(PB) of data per day (Brett, 2016). 
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Whether in the scientific, business, or the governmental sphere the same need led to the creation of new ways 

to manage distributed data, processing it, and mainly analyzing it to obtain information and useful knowledge. 

This processing and analysis are usually called knowledge discovery from data or KDD and one essential stage 

of the KDD process (Azevedo and Santos, 2008) is usually known as Data mining that can be defined as the 

process of discovering patterns and extracting knowledge from large amounts of data (Han, Kamber and Pei, 

2012). Patterns on data is a generic expression that aggregates concepts like identifying groupings of data not 

previously known, detecting unusual records, or finding unknown dependencies. This process can be automatic 

or, very often, semi-automatic (Witten et al., 2017). 

As it is often impracticable to analyze the entire Dataset, it is necessary to know how to choose which features 

the analysis should focus on, to the detriment of all others. It is on this scope that this work focuses, specifically 

in situations where this feature selection becomes essential, as in the case of highly dimensioned data sets, as 

the called Omics datasets. Omics is a neologism associated with biology suffixes such as genomics, 

transcriptomics, proteomics, or metabolomics (Cavique et al., 2018) and usually refers to biological parameters 

commonly called biomarkers. 

Different types of technologies can be used in functional genomics experiments ranging from real-time PCR, 

nowadays so used, due to the COVID-19 pandemic to high-throughput technologies such as microarrays and 

next-generation sequencing (NGS). The output of these technologies denotes a "great challenge for 

computational techniques, because of their large dimensionality (up to several tens of thousands of genes) 

and their small sample sizes" (Saeys, Inza and Larrañaga, 2007). 

The potential of these technologies is huge “This high-throughput DNA sequencing technology can sequence 

an entire human genome within a few hours at a cost of just around one thousand US dollars (USD). Only 18 

years ago, this feat took the International Human Genome Sequencing Consortium 13 years and three billion 

USD to accomplish using Sanger sequencing” (Savelieff, 2019). 

All these technological advances lead to the creation of more data, greater responsiveness, lower costs, 

massification of use, probably personalized medicine, and more data to handle. It is in one of these examples 

that this work focuses on. 

 

1.2 Scope 

In data mining one of the relevant tasks is dimensions reduction. One possible way to accomplish it is through 

feature selection, which is mandatory on highly dimensioned datasets for which the analysis of all the 

dimensions is impractical and counterproductive. This task becomes even more necessary when the number 

of observations is low, the data matrix is sparse, and the analysis of row classification reveals inconsistencies. 

Because the negative impact of high dimensionality and a low number of observations on learning models is 

well known, what Richard Bellman called “the curse of dimensionality”, (Verleysen and François, 2005) these 

authors also remind us that “the number of learning data should grow exponentially with the dimension”, the 
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reduction of dimensions is, therefore, a way to obtain the proper proportion between the number of 

observations and dimensions. 

The problem addressed in the present work is an example of that. Considering that a feature selection problem 

with a dataset involving one million attributes was solved in (Cavique et al., 2018), using partitions of the 

problem and a new method called Logical Analysis of Inconsistent Data (LAID) proposed by (Cavique, Mendes 

and Funk, 2011), this present research aims to continue this effort.  

This method arises from the combination of Rough Sets Theory (Pawlak, 1991) and Logical Analysis of Data 

(LAD) methodology (Boros et al., 1997). Both approaches are a subset of filter models, which goal is to reduce 

the number of dataset attributes using two phases: problem transformation and optimization. Their specificity 

is to keep the semantics of the data by removing only the redundant data. 

According to the author (Cavique, Mendes and Funk, 2011), LAID summarizes the best qualities of each of 

these theories: being able to deal with inconsistent data and non-dichotomized classes, characteristics of 

Rough Sets, (Rissino and Lambert-Torres, 2009)  as well as the computational effectiveness of LAD. 

The 2018 experiment (Cavique et al., 2018) uses a computer cluster running at the Portuguese National 

Infrastructure for Distributed Computing (INCD), for parallel processing while also using the dataset in memory. 

As a final remark, the authors consider three major aspects: data, algorithm, and computer environment. Since 

large datasets with many dimensions are becoming the new normal, they advocate that: 

• In‐memory data access should be replaced by on‐disk data access.  

• The new algorithms need low time complexity and problem decomposition to allow parallelizing 

the problem. Therefore, the intense use of computationally expensive algorithms, such as 

metaheuristics, should be reduced. 

• And last, the desired environment should be in the cloud, running the programs in parallel in 

High‐Performance Computing (HPC). 

This is in line with the new trends for compute-intensive algorithms (Talia, 2019). and constitutes a paradigm 

shift in scientific environments, (Cavique et al., 2018), illustrated in Figure 1-2 

 

Figure 1-2 – A paradigm shift in scientific environments 

 

datasets algorithms environment

before in-memory sequential workstation

now on-disk parallel cloud
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Later (Apolónia and Cavique, 2019a) revisited this problem again using LAID and a different computational 

approach: sequential processing on a single machine and the introduction of a major difference which was that 

the dataset was stored in high-performance data management and storage suite (HDF5) on disk. 

Both experiments concluded that the high processing time remains an additional problem that limits its 

application. 

The challenge and motivation for this new approach to the described problem is to reduce the processing time, 

using the computational paradigm: parallel processing, on‐disk data access, and cloud/HPC environment. 

The purpose of this research is to discover how parallel processing can reduce processing times for the end-

user and describe how this computational paradigm applies to this problem. 

 

1.3 Research Methodology 

1.3.1 General 

The choice for the research methodology fell upon Design Science Research Methodology (DSRM), a scientific 

methodology applied in problem-solving, with increasing use in Information Systems research (Hevner et al., 

2004), since it is a pragmatic methodology, aware of the practical utility of the "outcome" and indicated for 

applied science. 

This methodology fits in what the author calls doubt-propelled curiosity, in which the acquisition of a new 

piece of knowledge instigates new doubts, hence more curiosity, in an infinite cycle, whose only brakes are the 

scope of this work and the physical limits of these pages, but which undoubtedly persist beyond them. 

Through DSRM, new knowledge arises from the creation and evaluation of innovative artifacts, (constructs, 

models, methods, and applications) or processes, that address the research challenges and constitutes a 

solution to a relevant and real-world problem. 

According to (Hevner, 2007) Design Science Research is structured in three interactive cycles: 

• Relevance Cycle, which refers to the environment, namely the domain comprising people, 

organization, and technological systems, as well as problems and opportunities 

• Design Cycle: in charge of the core activities of construction and evaluation of the Artifacts / Processes 

developed in the research 

• Rigor Cycle: which associates activities and conclusions with scientific foundations, state-of-the-art 

experience, and knowledge 

 

Recognizing the potential of this methodology in IS research, (Hevner, 2007) also proposes a set of seven 

guidelines to support its application: Design as an artifact, the relevance of the problem, the evaluation of the 
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design, the research contributions, the rigor of the Research, the design constituting itself as a research process 

and finally communication of the research and its results. 

A related work (Peffers et al., 2007) proposed, with examples, how DSRM can be operationalized in six steps; 

Problem identification and motivation, Defining the objectives for a solution, Design and development, 

Demonstration, Evaluation, and finally Communication. These six steps will be used as guidelines for this 

research. 

1.3.2 The framework: design science research 

 

Annex 11.1 presents how the work packages of this research align with the three cycles; Relevance, Design and 

Rigor and guidelines described by (Hevner, 2007) and also with the six-stage process of DSR preconized by 

(Peffers et al., 2007) 

In this work, the artifact is constituted by: 

• A model and a set of guidelines of the best suited and optimized way of storing the dataset on the 

HDF5 aiming parallelization. 

• All the code of the parallelized version of the algorithms constituting LAID.  

• The processing orchestration methods. 

 

The entry point for this study is a Design & Development centered approach illustrated in Figure 1-3 adapted 

from (Peffers et al., 2007). 

 

 
Figure 1-3 - Design Science Research Methodology 
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1.4 Document Structure 

 

Figure 1-4 - Major topics of this work 

 

Figure 1-4 illustrates the major topics of this work described on the remainder of the document and  structured 

as follows: 

Section 2 contains the theoretical background as an outcome of the execution of the Systematic Literature 

Review. including related work. Section 3 is introduced the Logical Analysis of Inconsistent Data (LAID) 

methodology and its framing in the Feature Selection techniques. Parallel computation and HPC are presented 

in Section 4 which also includes a detailed description of all the “pieces” of the HPC environment used in this 

work. Section 5 presents the Parallel Code of LAID’s algorithms used. Section 6 introduces The Dataset used in 

the computational experiment and in Section 7 the analysis performed on dataset storage options in HDF5 

format files is described. Section 8 contains the Computational Experiments and Results and finally, Section 9 

presents the Conclusions. 
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2. Theoretical Background 
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2.1 Systematic Literature Review 

To compile a theoretical background that summarizes and mobilizes existent knowledge about the main goal 

of this work and to answer the research questions, a systematic literature review (SLR) was conducted, This 

was performed according to the guidelines proposed by Kitchenham's (Kitchenham, 2004): planning the SLR 

(phase one), execution (phase two), and result analysis (phase three). 

 

2.1.1 Research questions 

To achieve this purpose, the following research questions (RQ) were formulated: 

• RQ1. What is the most suitable computational paradigm for this problem? 

• RQ2. Is the HDF5 format suitable for use in distributed computing and parallel processing 

environments? 

The final development is expected to result in a kind of service where end users can load and parameterize 

their own problems and receive results in an acceptable timeframe. So, the main goal of the present research 

project is to find out how this will be possible and build it. 

Though this is a well-defined and delimited problem, the search for potential solutions covers some disciplines 

of computer and data sciences, therefore, the final contribution of this effort will not only be the final 

development but also the lessons learned, and all the knowledge obtained during the process. 

 

2.1.2 SLR Planning and Execution 

In this planning phase, a review protocol was defined with a focus on research in scientific databases, and not 

on specific books or technical reports. The following sources were elected to run the SLR research process: 

▪ IEEE Xplore (http://www.ieee.org/web/publications/xplore/) 
▪ Science Direct – Elsevier (http://www.elsevier.com) 
▪ Springer Link (http://www.springerlink.com) 
▪ Sage Journals (https://journals.sagepub.com) 
▪ Web of Science (https://mjl.clarivate.com/) 
▪ ACM Digital Library (https://dl.acm.org/) 

 
The following search keywords were used to find relevant papers in the title, keywords, or abstract: large 

dimensions datasets, feature selection, logical analysis inconsistent data, parallel hdf5 io, parallel, grid, 

computing, evaluate. 

Given the high number of results obtained with some of the keywords while comparing them with the scarce 

number of results in others and the broad scope of our research questions, it was necessary to carry out several 

separate searches, using different sets of keywords to maximize the relevant results. As an example, “hdf5” 

https://dl.acm.org/
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AND (“parallel” OR “grid”) AND “computing”. On the other hand, the list of keywords grew with the analysis of 

the preliminary results, which required new searches containing the new keywords. 

Inclusion and exclusion criteria were considered. The purpose of these criteria is to facilitate the discovery of 

studies that are relevant to this research. The main option was to focus on full articles from peer-reviewed 

journals, conferences, workshops, and book chapters. Avoided masters and doctoral theses.  

The option of not defining an interval of years of publication was also followed, assuming that implementing 

this limit could exclude relevant studies for this work. 

In situations where the same content is captured in different versions, we chose to include the most complete 

version of the study. Below is a summary of the inclusion and exclusion criteria: 

Inclusion criteria: 
▪ English, French, Spanish, or Portuguese peer-reviewed studies that answer the research questions.  
▪ Studies with focus on Parallel computing scenarios, with emphasis on scientific experiments 

including measurement and evaluation of results. 
▪ Studies that focus on the use of parallel disk-based file formats such as HDF5. 

 
Exclusion criteria: 

▪ Studies in a language other than English, French, Spanish, or Portuguese. 
▪ Studies where it is not possible to access the full text. 
▪ Studies that are not related to the research questions.  
▪ Duplicated studies 

 

 

For the selection of studies, after applying keywords in databases searches to identify candidates, the exclusion 

criteria were applied based on the analysis of their titles and abstracts, and, next, they were evaluated based 

on the reading the full text as to its real relevance to this work. as illustrated in Figure 2-1. 

 

Figure 2-1 - SLR Review Protocol 

 

The feedback collected during the execution of the protocol was also used to improve and refine the search, 

new terms e.g. HPC, MPI, NetCDF, have been added to the keywords list. 

It should also be noted that the quality assessment of the selected studies was not carried out, as if they were 

approved in the peer review and managed to be published, it was considered that this is sufficient evidence of 

their quality and therefore adequate for this work. 

 

Dataset searching 

with search strings

Apply inclusion and 

exclusion criteria

Title and abstract 

screened

Full-text 

assesment

Final document 

set
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Apply the review protocol described early with the results described in Table 2.1 

 

Table 2-1 - SLR Results 

Papers on dataset Count 

Papers found 468 

Considered after exclusion criteria 398 

Effectively used in this work 58 

 

Figure 2-2 represent the distribution of paper screened and selected over the years,  

 
Figure 2-2 - Distribution of the papers screened and selected over the years 

 
 
Table 2-2 shows that the most common type of publication among selected papers is Journal that reaches 

almost 80 percent of the set, the other two types represent just 10 percent each. 

 
Table 2-2 - Publication Type of the selected papers 

Study Count Percentage 

Journal paper 46 79,3% 

Conference Proceedings and workshops 6 10,3% 

Book chapters 6 10,3% 

 

  



 

 

12 
 

2.1.3 SLR contributes towards answering the research questions. 

 
RQ1. What is the most suitable computational paradigm for this problem? 

 
Parallel computing became a dominant paradigm in the early years of this millennium for High-Performance 

Computing (HPC) as a reaction to reaching the physical limits of the increased speed of microprocessors. 

(Dongarra, 2004),(Pacheco, 2011) and also the unstoppable need for more power and computational speed to 

solve increasingly complex problems, either by the introduction of new algorithms (Agrawal and Srikant, 1994) 

or by the amount of digital information involved. 

Parallel computing means the process of decomposing major problems into smaller ones, where independent 

parts can be executed simultaneously by several processors and whose results are combined after completion 

as part of a general algorithm. The main purpose of this paradigm is to increase the computing power available 

for faster application processing and problem-solving. 

In all the studies analyzed it is not always clear whether the approach refers to highly dimensioned datasets 

(columns) or high amounts of records (rows), or even massive amounts of unstructured data. however, in all 

analyzed scenarios there is a notable convergence on the solution to follow parallel processing and distributed 

computing. 

By affinity with our theme, we started this analysis with (Zhou et al., 2014) that describes a parallel feature 

selection method for classification which scales up to very high dimensions and large data sizes, using a method 

inspired by group testing theory, where the authors conclude that only by parallelizing algorithms is it possible 

to obtain results in an acceptable time. 

Domenico Talia, (Talia, 2002), considered that data mining and knowledge discovery on large amounts of data 

can benefit from the use of parallel computers both to improve performance and quality of data selection. To 

achieve this goal, the author presents and describes different forms of parallelism that can be used in data 

mining techniques and algorithms. Also stipulates three main strategies of parallelism: independent, task, 

Single Program Multiple Data (SPMD), and hybrid or mixed approaches with the combination of diverse 

strategies. Also presents possible ways to exploit parallelism, in some data mining techniques, such as “rule 

induction, clustering algorithms, decision trees, genetic algorithms, and neural networks”. The author 

concludes that  “Knowledge discovery is an area in which parallel computing can be used in a very profitable 

way”. 

According to (Kubica, Singh and Sorokina, 2011), the “problem of feature selection continues to grow in both 

importance and difficulty as extremely high-dimensional data sets become the standard in real-world machine 

learning tasks” and describes a Parallel Full Forward Feature Selection approach and a Single Feature 

Optimization (SFO) heuristic applied to a map-reduce framework among others algorithms. 

An adaptable parallel algorithm for direct numerical simulation (DNS) is used to simulate complex laminar and 

turbulent flow problems on time and space (3D). was demonstrated by (Bolis et al., 2016). This type of 
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experiment, which can only be performed using parallel processing, requires various parallel strategies and the 

need to carefully analyze the different possibilities, because some strategies may not perform efficiently, and 

inefficiency means more time spent, more energy consumed, and therefore more costs. 

ShakeMap is a software package used by U.S. Geological Survey (USGS), to estimate median ground shaking in 

conjunction with observed seismic data. Where the wish for near real-time speeds requires the utilization of 

parallel processing demonstrated by (Verros et al., 2017). 

The need for parallel processing is not a scientific exclusive. (Edosio, 2014) demonstrates the use of Hadoop 

Architecture and Hadoop distributed storage file system (HDFS) for MapReduce programming model running 

in a cluster of machines enable organizations with advanced means of analyzing large amounts of data. 

The most extreme example is the implementation of scalable data analysis applications at Exascale computing 

systems such as the ones required to handle data from ATLAS detector at the Large Hadron Collider at CERN, 

which is a very complex job and it “requires high-level fine-grain parallel models, appropriate programming 

constructs and skills in parallel and distributed programming”. (Talia, 2019) At this massive scale, the author 

preconizes distributed memory as a programming model and the use of parallel APIs such as Message Passing 

Interface (MPI), Bulk Synchronous Parallel (BSP), or Pig Latin a language integrated into Apache Pig, among 

others. 

This author raises yet another interesting topic: currently, commercial “cloud computing platforms and parallel 

computing systems represent two different technological solutions for addressing the computational and data 

storage needs of big data mining and parallel knowledge discovery applications”. In addition to the notorious 

confluence of opinions of all the studies about the absolute need to use parallel computing to address the 

challenges posed to science today, we can find a surprising trend: the "intrusion" of commercial cloud 

platforms and the growing adoption of cloud services at the expense of HPC scientific infrastructures. All of 

the following papers somehow pinpoint in that direction. 

An interesting comparison between HPC and commercial (big data) paradigms. Was carried out by (Asaadi, 

Khaldi and Chapman, 2016). These authors argue that to meet the specialized needs of scientists, there is a 

need for convergence between HPC and Big Data ecosystems, and they present a data-supported, comparative 

survey of the main current HPC and Big Data programming interfaces. 

In the same line, (Vecchiola, Pandey and Buyya, 2009), presents two practical applications of scientific 

computing in the Cloud. Both case studies have been implemented on top of the Amazon EC2 infrastructure 

using Aneka architecture containers. The results of both experiments (classification of gene expression data 

and Functional magnetic resonance imaging workflows) are compared to the results from a scientific grid and 

the authors conclude that, after pondering the trade-offs between cost and performance, the public cloud 

model could be an effective alternative. 

Another interesting comparative study between a scientific HPC environment and a private cloud environment 

built on top of OpenNebula is carried out by (Coutinho, Paillard and De Souza, 2014), in the task of running 

different scientific experiments, which allowed to determine the differences between the performance, cost, 

and flexibility of the two environments. In the study, they do not use real data and real problems, which limits 
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the conclusions, but still highlights the advantage of the characteristic elasticity of the cloud, with satisfactory 

results regarding the setup of the infrastructure and running the experiments. 

Also (Iosup et al., 2011) performed a similar analysis of cloud computing services for many scientific tasks and 

concluded that they became an alternative for scientists to clusters, grids, and parallel production 

environments. However, they also indicate that the current commercial offer needs performance 

improvement to be useful to the scientific community. 

Aligned with the same line of reasoning (Saif and Wazir, 2018) presents a survey for performance-based 

comparative analysis of cloud-based big data frameworks from leading players like such as Microsoft Azure, 

IBM Cloud, Google Cloud Platform (GCP), or Amazon Web Services (AWS). This is presented from a business 

point of view rather than a scientific one. 

Finally (El-Seoud et al., 2017) agree that enterprises started moving the data and the workloads towards the 

cloud and parallel processing, following the scientific community, the beginning of the millennium when the 

"scientific simulations began using massively parallel processing (MPP) systems". 

Because of these indications, we can conclude that the computational paradigm to be followed in this work is 

parallel computing, but it should preferably be carried out in an HPC infrastructure, such as the one of the 

INCD, although a commercial cloud service can be considered as an alternative. 

 
RQ2. Is the HDF5 format suitable for use in distributed computing and parallel processing environments? 

 
Since the beginning of the 1990s, the HDF (www.hdfgroup.org) and NetCDF (www.unidata.ucar.edu) file 

formats “have become de facto standards for storing, managing, and exchanging data in science and 

engineering communities” (Pourmal, Cheng and Aydt, 2009). With the introduction of HDF5 (The HDF Group, 

no date) in 1998, NASA agreed to the unification between the two formats, which happened in 2007 with the 

release of a new version of netCDF‐4 that was built on top of HDF5. In the next year, NASA endorsed HDF5 as 

a data standard for Earth Science Data. 

Currently, bioinformatics applications use HDF5 for storage and management of huge DNA sequencing data, 

but this is just one example. Several scientific and engineering disciplines such as physics, cosmology, medicine, 

meteorology, seismology, or behavioral neurobiology rely on HDF5's capacity and robustness, coupled with 

the existence of open source and commercial tools for analyzing and visualizing data stored in HDF5 format, 

that together have made HDF5 ecosystem “an attractive standard data format for companies and government 

organizations concerned with reducing data management costs.” (Pourmal, Cheng and Aydt, 2009). 

Over the years, the number of applications that use HDF5 successfully in areas outside the scientific and 

engineering fields has increased, being one of the most notable, the use in the production of visual effects for 

the “Lord of the Ring” film trilogy. 

According to (The HDF Group, no date) HDF5 is a user-defined format like XML and also a binary format 

allowing compression to help reduce the size of data files. It is also a cross-platform parallel I/O library that is 
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used by a wide variety of HPC applications for the flexibility of its hierarchical object-database representation 

of scientific data (Howison et al., 2010). But there are more elements in this equation since the HDF5 

technology suite consists of a data model, a library, and a file format for storing and managing data. (Folk et 

al., 2011) It supports an unlimited variety of data types and is designed for flexible and efficient I/O and high-

volume and complex data. HDF5 is portable and is extensible, and also includes tools and applications for 

managing, manipulating, viewing, and analyzing data in the HDF5 format, either directly addressed or through 

an intermediate layer sitting between the applications and the underlying storage systems (Aaron et al., 

2020)(Mehta et al., 2012) Figure 2-3 presents a schematic view of the HDF5 software architecture. According 

to the HDF5 intro (The HDF Group, no date). 

 

 

The list of usage examples is vast and diverse but grouped into two base scenarios: a) porting existing formats 

to HDF5 or b) creating new formats from scratch. In both these scenarios built on top of HDF5, we have chosen 

some relevant and exemplary ones that we present below. 

The CADISHI software package, which calculates histograms of pair-distances of ensembles of particles with 

parallel processing on CPUs and GPUs. The calculation of radial distribution functions via distance binning 

requires the evaluation of O(N2) particle-pair distances and data input and output are performed efficiently via 

HDF5. As described by (Reuter and Köfinger, 2019). 

Also (Incardona et al., 2019) present OpenFPM as a software library that implements a scalable open 

framework for particle and particle-mesh codes on parallel computers. It uses parallel and distributed HDF5 

files for data archiving. 

Figure 2-3 - Schematic of the HDF5 software architecture 
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A high-throughput data compression scheme for astronomical radio data that obtains a very high compression 

ratio stored on HDF5 was presented by (Masui et al., 2015). Also (Price, Barsdell and Greenhill, 2015) describe 

how the FITS (Flexible Image Transport System) data format has been the de facto data format for astronomy-

related data products since 1979 and can be ported to HDF5 in a “straightforward manner” that allowed the 

faster reading of data (up to 100x of FITS in some use cases), and improved compression (higher compression 

ratios and higher throughput). 

Hence one of the primary barriers to exploratory investigation is simply manipulating the available data, 

(Hummel, 2016) presents Gadfly, a framework for analyzing particle-based astrophysical simulation data 

stored in the HDF5 format using Pandas Data Frames (The pandas development team, no date),(McKinney, 

2010). 

A data model to store datasets from geosciences in the HDF5 format was proposed by (Ritter et al., 2011), 

“which enables interdisciplinary collaborations and reuse of data processing techniques over different 

scientific domains and demonstrate how the data repository facilitates the input of new data from sensor 

networks, field data collection and the massive datasets obtained from remotely sensed Light Detection and 

Ranging (LIDAR). 

Scientific Data Services (SDS) was introduced by (Dong, Byna and Wu, 2013), as a framework for bridging the 

performance gap between writing and reading scientific data. SDS reorganizes data to match the read patterns 

of analysis tasks and enables transparent data reads from the reorganized data. To demonstrate it the authors 

implemented an HDF5 Virtual Object Layer (VOL) plugin to redirect the HDF5 dataset read calls, to the 

reorganized data and applied it in two use cases: the first, a large-scale Data Analysis of a Vector Particle-in-

Cell (VPIC) simulation modeled magnetic reconnection and the second, Mass Spectrometry Imaging Data 

Analysis. 

Related, (Dong, Byna and Wu, 2014) notes that locating critical information in large scientific files is challenging 

because “existing solutions need significant user involvement in preparing the data, generating indexes, and 

answering queries”, and introduces the design and implementation of a parallel querying service to answer 

the queries efficiently. This new service is integrated with SDS mentioned above. 

A disruption database (DDB) was presented by (M. Zhang et al., 2020), dedicated to disruption prediction 

algorithms to predict the occurrence of disruption and try to avoid or mitigate disruption on tokamak devices. 

The DDB is built on top of HDF5. 

Geant4, described by (Barrand et al., 2019), as a platform for "the simulation of the passage of particles 

through matter" using Monte Carlo methods and new implementation of g4tools/HDF5, that “allows for an 

effective treatment/representation of statistical data within the Geant4 context, by providing a clean, light and 

portable engineering solution to this problem.” 

Also (Kurth et al., 2015) indicate how the US Department of Energy's (DOE's) Scientific Discovery Through 

Advanced Computing (SciDAC) program implements HDF5 I/O considered a “first-rate software suite” for HPC 

parallel I/O, “highly portable and easy to interface with standard scientific libraries”, with the added advantage 
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of being a non-proprietary format. Also describes its use in a lattice QCD/QFT experiment in the quantum field 

theory. 

Nektar ++ is an open-source framework that provides a flexible, high-performance, and scalable platform for 

the development of solvers for partial differential equations, which (Moxey et al., 2020) in the new version 

replaces the existing XML format for the new HDF5 based format significantly faster than the former. 

It is noteworthy that not all authors recommend the HDF5 format in their work, some of them highlight 

potential problems in use, and others even suggest improvements that can be made. For example (Sreepathi 

et al., 2013) experience indicated that parallel I/O libraries such as HDF5 that rely on Message Passing Interface 

(MPI-IO), do not scale well beyond 10K processor cores, especially on parallel file systems (like Lustre) and 

proposed an alternative called SCORPIO. 

Also, (Otoo, Nimako and Ohene-Kwofie, 2012), describe an implementation alternative of storage called 

chunked extendible dense arrays as an approach of storing multi-dimensional dense array on physical storage 

devices, that allows arbitrary extensions of the array bounds, without reorganizing previously allocated array 

elements because this extension on HDF5 has a high computational cost. 

Finally, (Ertl, Frisch and Mundani, 2017) show considerations and implementation aspects of an alternative I/O 

kernel based on HDF5 that supports fast checkpointing, restarting, and selective visualization using a single 

shared output file for an existing computational fluid dynamics (CFD) framework.  

So, from the above-mentioned literature review, we can conclude that the widely used HDF5 format is well 

suited to the purposes of this work. 

 

2.1.4 Related Work 

The performed SLR also allowed a sample of related works in this area, which are described below. 

A suite of methods and algorithms for model reduction, feature extraction, and classification, especially 

suitable for large-scale problems. Is proposed by (Phan and Cichocki, 2010). Using Tensors (i.e., multi-way 

arrays), Tensor decompositions and higher-order (multilinear) discriminant analysis (HODA), and Higher-Order 

Orthogonal Iterations (HOOI) algorithms, the paper also provide three examples illustrating the validity and 

performance of the proposed algorithms. 

A method inspired by group testing theory was proposed by (Zhou et al., 2014). According to which the FS 

procedure consists of a battery of random tests processed in parallel. Each of them corresponds to a subset of 

features, to which a scoring function is applied to measure the relevance of the feature in the classification 

task. 

A Variable Neighbourhood Search (VNS) metaheuristic was proposed by (López et al., 2015). In this approach, 

the grouping into subsets of features is performed using the Markov blanket concept. To demonstrate it, they 

conducted experiments on several high-dimensional datasets from two different domains (microarray and text 
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mining) and compared them with three FS algorithms: Fast Correlation Based Filter (FCBF), A clustering-Based 

on minimum spanning tree (MST), an algorithm called FAST, and CVNS a similar VNS algorithm. 

A One-vs-Rest (OvR)-type extension of the LAD algorithm to multi-class classification problem is presented by 

(Subasi and Avila-Herrera, 2016). The model is based on the multi-class mixed-integer linear programming 

(MILP) approach and uses parallel programming to speed up the computations and conclude that is “a very 

promising option to solve multi-class classification problems”. 

A graph-based method for FS was proposed by (Roffo and Melzi, 2017) this method “ranks features by 

identifying the most important ones in an arbitrary set of cues” by mapping the problem in an affinity graph. 

In this graph, the features are the nodes, and the solution is obtained by evaluating the importance of nodes 

through a centrality indicator, specifically, the Centrality Autovector (EC). 

Finally, (Brankovic, Hosseini and Piroddi, 2019) present an approach suitable for classification problems with 

high data dimensionality and complex data distributions, such as DNA microarray datasets. The approach is 

based on the combination of the following three factors: 

(i) A selection criterion based on the distance correlation (dCor). 

(ii) A distributed combinatorial optimization approach. 

(iii) A randomized FS procedure. 

The proposed method has been tested on several microarray datasets, resulting “in quite compact and 

accurate models obtained at a reasonable computational cost”. 
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3. Feature Selection with Logical Analysis of 

Inconsistent Data (LAID) 
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Data mining is a step in the process of knowledge discovery and can be defined as the process of discovering 

patterns and extracting knowledge from large amounts of data (Han, Kamber and Pei, 2012). Patterns on data 

is a generic expression that aggregates concepts like identifying groupings of data not previously known, 

detection of unusual records, or finding unknown dependencies. This process can be automatic or semi-

automatic (Witten et al., 2017). The huge size of many datasets, their distribution as well as the computational 

complexity required by some data mining methods motivate the development of data-intensive algorithms to 

parallel and distributed. Technically speaking, these algorithms partition the data into "pieces". Process each 

piece in parallel, searching for patterns. With or without interaction between the various parallel processes. 

Finally, the patterns found in each partition are eventually merged to form the final pattern (Han, Kamber and 

Pei, 2012). As it is often impracticable to analyze the entire Dataset, it is necessary to know how to choose 

which features the analysis should focus on, to the detriment of others this is the purpose of dimensionality 

reduction techniques. 

3.1 Feature Selection 

 

 

Figure 3-1 - Categorization of dimension reduction methodologies 

 

Figure 3-1 adapted from (Sharma and Saroha, 2015) illustrates the logical analysis of inconsistent data (LAID) 

a method of feature selection (FS) in the context of dimensionality reduction techniques. FS is a central 

problem in machine learning. It consists in identifying a representative set of features from which to build a 

classification model for a specific problem or task. The essential problem with the learning algorithm is to select 

some subset of features to focus the attention on, given that its variability is representative of the whole set. 
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Being able to ignore the rest (Kohavi and John, 1998). FS techniques that follow the feature evaluation and 

ranking approach, are usually cataloged in three major groups: wrappers, which use classifiers to score a given 

subset of features, this approach tries to identify the best subset of features to use with a specific algorithm; 

built-in or embedded methods, which inject the selection process itself into the learning of the classifier and 

finally the filter methods, which analyze the intrinsic properties of the data, excluding the classifier from the 

process (Roffo and Melzi, 2017).  

In this work LAID a Filter approach method is used, the models that follow this approach are divided into two 

sequential steps. The feature selection step is performed before the prediction model and there is no 

interaction between the selection and the prediction model, this way the main goal is to evaluate the merits 

of the features only from the data (Kohavi and John, 1998). 

The feature relevance in the context of reducing the dimensionality of a dataset requires some definitions due 

to the approach used. It should be noted that in the Filter approach the evaluation of the merit of each feature 

uses its value in the domain and context of the dataset. 

“The optimal feature subset is a subset of all relevant features” (Kumar and Minz, 2014). These authors 

highlight that in the literature, features are usually classified by their relevance with three qualifiers: irrelevant, 

weakly relevant, and strongly relevant. For (Kohavi and John, 1997) a feature is strongly relevant if it cannot 

be removed from the subset of features without lowering the subset's evaluation. It will be weakly relevant if 

at times it contributes to increasing the subset's valuation. Finally, a feature is irrelevant if it is neither strongly 

nor weakly relevant. 

 

3.2 Feature Selection Algorithms in the genesis of LAID 

The presentation of LAID and the theoretical foundation of the theories and methodologies that are in its 

genesis were profusely and in detail described in previous works  (Cavique, Mendes and Funk, 2011), (Cavique 

et al., 2013), (Cavique et al., 2018), (Apolónia and Cavique, 2019a) and (Apolónia and Cavique, 2019b) for this 

reason only the main positive and negative characteristics that directly induced the emergence of LAID are 

listed here. 

3.2.1 Rough Sets 

Rough set theory was presented in the early 1980s by Zdzislaw Pawlak (Pawlak, 1991) and later it was also 

proposed as a tool to discover data dependencies and reduce dimensionality in the form of feature selection.  

Is limited to discrete data, but allows the existence of inconsistencies (two observations with the same 

attribute values, but belonging to different classes) because “determine a lower and an upper approximation 

for each class, rather than try to correct or exclude data inconsistencies” (Cavique et al., 2018). Also allows the 

existence of non-dichotomized class values.  
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3.2.2 LAD 

In the late 1980s, Peter Hammer and his team unveiled a new data selection and classification methodology, 

called Logical Data Analysis (LAD) (Cavique et al., 2018). Its theoretical support is discrete mathematics, with 

emphasis on the theory of Boolean functions (Boros et al., 1997), for that reason LAD only deals with binary 

variables which implies that for its use with non-binary data it has to be previously binarized. 

Also, the LAD methodology does not deal with inconsistencies such as two observations with the same feature 

values but belonging to different classes. On the contrary, and as a favorable aspect, it is being able to associate 

a cost to each feature, which allows selecting the features while minimizing the total cost. (Cavique et al., 

2013). 

 

3.3 Logical Analysis of Inconsistent Data - LAID 

Both LAD and Rough Sets approaches are a subset of filter models, which goal is to reduce the number of 

dataset attributes using two phases: first a problem transformation and second an optimization through a 

reduction in the number of attributes (Cavique, Mendes and Funk, 2011). Their main specificity is to keep the 

semantics of the data by removing only the redundant data. 

Logical Analysis of Inconsistent Data (LAID) was proposed in 2011 by (Cavique, Mendes and Funk, 2011) in the 

scope of a Paremiologic Study and described by the authors as a blend of the best qualities of each of former 

methodologies, being able to deal with inconsistent data and non-dichotomized classes, characteristics of 

Rough Sets, (Rissino and Lambert-Torres, 2009)  as well as the computational effectiveness of LAD. Also allows 

integer attributes, with associated costs. (Cavique et al., 2013) which allows for a greater range of selection 

strategies. 

In 2018 this new methodology was used in a feature selection problem involving one dataset with one million 

attributes (Cavique et al., 2018), solved using partitions of the problem. This experiment uses a computer 

cluster running at the Portuguese National Infrastructure for Distributed Computing (INCD) for parallel 

processing. And later (Apolónia and Cavique, 2019a) revisited the same problem again using LAID and a 

computational approach: based on serial processing and the dataset stored in high-performance data 

management and storage suite (HDF5) on disk. 

In feature selection the starting point is the dataset D = {O, X∪C}, where O = {O1,O2, …,On} is a nonempty set 

of observations (instances or rows), X = {X1,X2, …,Xn} is a nonempty set of features (attributes or columns), 

and C is the class attribute (Apolónia and Cavique, 2019a). 
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3.3.1 LAID Steps and Algorithms 

3.3.1.1 Removing redundant observations  

 
Redundant observations are observations with the same attribute values and belonging to the same class. 

Where m is the number of features of the decision system, 𝑜𝑥  and 𝑜𝑦 are redundant if: 

 {
𝒂𝒊(𝒐𝒙) = 𝒂𝒊(𝒐𝒚)

𝒄(𝒐𝒙) = 𝒄(𝒐𝒚)
   ∀𝒊 = 𝟏, … , 𝒎  (3-1) 

Removing redundancies is a simple task, just eliminate, row by row, the redundant observations. 

3.3.1.2 Remove any inconsistency 

 
Inconsistent observations are observations with the same attribute values and belonging to different classes. 

Where m is the number of features of the decision system, 𝑜𝑥  and 𝑜𝑦 are inconsistent if: 

 {
𝑎𝑖(𝑜𝑥) = 𝑎𝑖(𝑜𝑦)

𝑐(𝑜𝑥) ≠ 𝑐(𝑜𝑦)
   ∀𝑖  = 1, … , 𝑚 (3-2) 

Consider the degree of inconsistency (𝑔𝑟) of an observation 𝑜𝑥, with 𝑥 =  1, … , 𝑛, as the number of 

observations of the Universe of dimension n, inconsistent with 𝑜𝑥. This is the formal definition: 

𝑔𝑟(𝑜𝑥)  =  #{𝑦 = 1, … , 𝑛: 𝑜𝑦 ∈ 𝑈 ∧  (𝑎𝑖(𝑜𝑥)  =  𝑎𝑖(𝑜𝑦), ∀𝑖= 1, … , 𝑚)  ∧  𝑐(𝑜𝑥)  ≠  𝑐(𝑜𝑦)} 

If 𝑔𝑟(𝑜𝑥) = 0, it means that observation 𝑜𝑥  has no inconsistencies and the degree of inconsistency of the 

Universe, 𝑔𝑟(𝑈) is equal to the greatest of the degrees of the inconsistency of each observation: 

 𝒈𝒓(𝑼)  =  𝐦𝐚𝐱( 𝒈𝒓(𝒐𝒙)), ∀𝒙 = 𝟏, … , 𝒏 (3-3) 

The value of the Universe's degree of inconsistency is always less than or equal to the number of different 

values in the class. 

(Cavique et al., 2013) propose a simple but elegant system for removing inconsistencies in a dataset, by adding 

new binary attributes, called jnsq, from the French “je ne sais quoi”, to differentiate inconsistent observations. 

The number of new binary attributes needed 𝑚∗ is calculated by the expression: 

 𝒎∗  =  ⌈𝒍𝒐𝒈𝟐(𝟏 + 𝒈𝒓(𝑼))⌉ (3-4) 

Meaning that a new jnsq attribute is needed to distinguish two observations with the same attribute values 

but belonging to different classes. In the case of three or four observations with equal attribute values but 

different classes, 2 new jnsq attributes are needed (Apolónia and Cavique, 2019a). This new synthetic features 

remain in the dataset through the next steps, having the same treatment of original features. The set of original 

and added synthetic attributes is designated by 𝐴∗. 
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3.3.1.3 Generate the Disjoint Matrix  

 
As with the LAD, the LAID methodology uses the determination of the disjoint matrix M. But unlike the previous 

one, LAID allows classes with an unlimited number of different values (Cavique et al., 2013). 

This process consists of, for each observation, comparing the values of each attribute with the values of the 

following observations if they have a different class value. if the 𝑜𝑥  and the 𝑜𝑦 are  two observations, such that 

𝑐(𝑜𝑥) ≠ 𝑐(𝑜𝑦), whose comparison corresponds to row 𝑖 of disjoint matrix 𝑀, the elements of matrix 𝑀(𝑑𝑖,𝑗  , 

with 𝑗 = 1, … , 𝑚 + 𝑚∗) according with (Cavique et al., 2013).will be: 

 𝒅𝒊,𝒋 = {
𝟎     𝒊𝒇  𝒂𝒋(𝒐𝒙) = 𝒂𝒋(𝒐𝒚)

𝟏     𝒊𝒇  𝒂𝒋(𝒐𝒙) ≠ 𝒂𝒋(𝒐𝒚)
  (3-5) 

Because inconsistencies were previously removed, each row of matrix 𝑀 must have at least one non-null (or 

non-zero) value. The number of rows of matrix 𝑀 is less than or equal to 𝑛(𝑛 − 1)/2, value that would 

correspond to the worst possible case i.e., comparing all n observations (Cavique et al., 2013). 

3.3.1.4 Returning the reduced set of features. 

 
Obtaining the smallest support set uses a heuristic for the set covering problem proposed by (Chvatal, 1979) 

whose applicability in this problem is described by (Cavique et al., 2013). It’s an iterative process that intends 

to determine a subset, 𝑆, of 𝐴∗. In this initially empty subset 𝑆, the features chosen in each iteration are placed. 

In the end, the elements of 𝑆 correspond to the selection of features that reduce the support set. 

The first step is to sum the values of all the rows in each column of the disjoint matrix 𝑀, obtaining the vector 

𝑠, where: 

 𝒔𝒋  =  ∑ 𝒅𝒊,𝒋 ,   𝒘𝒊𝒕𝒉 𝒋 = 𝟏, … , 𝒎 + 𝒎∗𝒏
𝒊=𝟏  (3-6) 

The chosen feature, 𝑎𝑒, is the one that best explains the decision system, that is, the one that fulfills the 

condition: 

 𝒔(𝒂𝒆) =  𝐦𝐚𝐱(𝒔𝒋), 𝐰𝐢𝐭𝐡 𝒋 =  𝟏, … , 𝒎 + 𝒎∗ (3-7) 

After choosing the feature to enter the solution, 𝑎𝑒, and updating the solution S, the rows of the matrix 𝑀 that 

are explained by this attribute, whose value 𝑑𝑖,𝑒 = 1, as well as the column of the attribute itself, are 

eliminated (Apolónia and Cavique, 2019a). 

Then, the process is restarted with a new iteration, until all the lines of the matrix 𝑀 are eliminated, as we get 

the features to add to the solution 𝑆. 

A detailed description with examples can be found in (Apolónia and Cavique, 2019b). 
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4. Parallel computation and HPC 
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4.1 Parallel computing 

Considering parallel computing architectures, Flynn's taxonomy, presented Figure 4-1 adapted from (Lawrence 

Livermore National Laboratory, no date), is frequently used to classify computer architectures. It ranks a 

system according to the number of instruction streams and the number of data streams it can manage 

concurrently. (Pacheco, 2011). 

According to this taxonomy, SISD stands for Single Instruction stream and Single Data stream and matches the 

classic Von Neumann system architecture. 

 

 

MISD systems stand for Multiple instruction Stream, Single Data stream is an uncommon architecture that is 

generally used for fault tolerance on critical systems. Under this architecture, multiple instructions operate on 

one data stream. 

SIMD refers to a Single instruction Stream, Multiple data stream, this is clearly a parallel system that applies 

the same instruction to multiple data items. SIMD systems are ideal for parallelizing simple loops that operate 

on large arrays of data. This form of parallelism is achieved by splitting the data between processors and having 

all processors apply the same instructions to their data subsets reason that is also called data-parallelism. 

MIMD systems stand for Multiple instruction stream, multiple data stream is a system that supports multiple 

simultaneous instruction streams operating on multiple data streams, unlike SIMD systems, MIMD systems are 

usually asynchronous. These systems are usually classified by how they share or not memory which implies 

how the processors can communicate with each other. So, the principal types are shared-memory systems 

(each processor or core can directly access every memory location) and distributed-memory systems (each 

processor has its own private memory), on the latter, any communication between processors depends on 
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Figure 4-1 - Flynn's taxonomy for computer architectures 
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being connected over a network and on a message-passing implementation, an example of this systems is a 

computer cluster or supercomputer. 

In this work due to the use of High performance computing a MIMD architecture will be used and described in 

section 8. Therefore, the techniques used in uniprocessors or shared memory computers are not applicable. 

Instead, it is assumed that the target architecture is a distributed-memory parallel computer, or in other words, 

a multicomputer with private memory. 

4.2 High-performance Computing - HPC 

High-performance computing (HPC), also known as supercomputing, refers to computing systems with 

extremely high computational power that can solve hugely complex and demanding problems. (Ec.europa.eu, 

2021),(Zheng, 2020), performance is commonly measured in floating-point operations per second (FLOPS). 

HPC is the focus of this work, but it is relevant to introduce to disambiguate, close computational concepts 

that are sometimes confused, when essentially, they complement each other, such as Grid Computing, a 

distributed computing architecture, that utilizes computing resources that are geographically distributed. This 

architecture provides a virtual environment to users, integrating data and computing resources to accomplish 

solutions for various types of issues (Cummings and Huskamp, 2005), and also the High Throughput Computing 

(HTC) paradigm like HPC, HTC's tasks also require huge amounts of computing, but for much longer periods of 

time. Typically, months or years rather than hours and days. 

HPC Infrastructures started as an exclusive to Government and university research facilities, later followed by 

large companies, but more recently with the advent of commercial Public Cloud, all major Cloud players make 

HPC available in their service offerings, for example, AWS, Azure batch, IBM HPC, etc. 

 

4.3 Infraestrutura Nacional de Computação Distribuída 

INCD - Infraestrutura Nacional de Computação Distribuída is a digital infrastructure supporting research, 

approved within the framework of the strategic research infrastructures of the FCT - Fundação para a Ciência 

e a Tecnologia, the Portuguese public agency that supports science, technology, and innovation, in all scientific 

domains, under the responsibility of the Ministry for Science, Technology and Higher Education and in the 

context of the Portuguese Roadmap of Research Infrastructures. 

INCD provides computing and storage services to the Portuguese scientific and academic community in all 

areas of knowledge. According to its website the infrastructure is “specially dedicated to providing scientific 

calculation services, supporting researchers and participation in national and international projects” (FCT – 

Fundação para a Ciência e a Tecnologia, 2020) 

 



 

 

28 
 

4.3.1 Services provided 

▪ Cloud Computing – that allows run virtual machines with full control over computing resources in an 
IaaS model based on Openstack. 

▪ HTC Computing - high throughput computing (GRID), Perform thousands of computational tasks to 
analyze large datasets. 

▪ HPC Computing – high-performance computing, Run applications in parallel processing or in GPUs. 
 

4.3.2 HPC facilities at INCD 

The high-performance computing service allows access to batch processing systems equipped with low-latency 

networks. This service is complemented by a high-performance file system adapted to the needs of parallel 

processing. 

This high-performance computing service enables users to: 

▪ Run parallel processing applications 
▪ Run applications encapsulated in Linux containers 
▪ Accessing GPUs 
▪ Accessing machines with high memory capacity 

 

Three clusters geographically distributed are available.  

▪ INCD-Lisbon (Cirrus-A) 
▪ INCD-Minho (Cirrus-B) 
▪ ISEC-Coimbra (Cirrus-C) 

 

4.4 HPC Environment for the Experiment 

INCD kindly provided computational resources in the Cirrus-A HPC cluster, that allowed the execution and 

testing of the code that constitutes the artifact of this work. These computational resources were made 

available for this experiment, naturally in concurrence with all other INCD users. 

A significant part of the choice of modules and versions used resulted from the excellent support and 

knowledge of the team that manages this facility. 

4.4.1 The Foundations 

4.4.1.1 Cirrus-A cluster on INCD-Lisbon 

 

Figure 4-2 presents the Technology usage view (Enterprise Architecture notation) of the Cirrus-A cluster and 

the main components used. On this cluster at INCD-Lisbon, there are 5 batch/compute nodes AMD EPYC 7501 

available, running CentOS 7 operative system, with 64 cores per node in a total of 320 cores. Interconnected 
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by FDR InfiniBand 56Gbps. The INCD filesystems are based on the Lustre distributed filesystem which is 

mounted in the compute nodes and in the submission/login nodes. The description of the components follows. 

 

Figure 4-2 - Technology usage of Cirrus-A HPC Cluster and components used 

 

4.4.1.2 CentOS Linux 7 (Core), Operative System 

 

The CentOS is a Linux distribution derived from the sources of Red Hat Enterprise Linux (RHEL). CentOS Linux 

is at no cost and is free to redistribute.(CentOS Project, no date). Is a common choice for OS in HPC Clusters 

around the world. 

4.4.1.3 Lustre Distributed file system 

 

The Lustre® file system is an open-source, parallel file system widely used for large-scale cluster computing 

and leadership class HPC simulation environments, with origin in a research project at Carnegie Mellon 

University, the Lustre file system “has grown into a file system supporting some of the Earth’s most powerful 

supercomputers.”, (Open Scalable File Systems, no date), like the Department of Energy National Laboratories 

including Lawrence Livermore, Sandia, Oak Ridge, and Los Alamos’ Cielo supercomputer. 

The Lustre file system provides a POSIX compliant file system interface, that can scale to “thousands of clients, 

petabytes of storage and hundreds of gigabytes per second of I/O bandwidth.” The key components of the 
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Lustre file system are the Metadata Servers (MDS), the Metadata Targets (MDT), Object Storage Servers (OSS), 

Object Server Targets (OST), and the Lustre clients. (Open Scalable File Systems, no date). The version used in 

INCD: 2.12.6 

4.4.1.4 Hierarchical Data Format Version 5 (HDF5) 

 

HDF5 is a data model, library, and file format for storing and managing data. “It supports an unlimited variety 

of data types and is designed for flexible and efficient I/O and high volume and complex data” (The HDF Group, 

no date). 

Since 1987, when the Graphics Foundations Task Force at the US National Center for Supercomputing 

Applications (NCSA) at the University of Illinois at Urbana-Champaign set out to create an architecture-

independent software library and file format to address the need to move scientific data among the many 

different computing platforms in use at NCSA at that time, to our days the Hierarchical Data Format has been 

adopted across multiple industries and is the de facto standard in the scientific and research community. 

Today the HDF Group as a non-profit organization is the developer and supporter of HDF5 and HDF5 related 

tools, The HDF5 Technology suite includes tools and applications for managing, manipulating, viewing, and 

analyzing data in the HDF5 format. 

The HDF5 version used in this work is version 1.12.0. 

4.4.1.5 Slurm Workload manager 

 

Slurm is an open-source, fault-tolerant, and highly scalable cluster management, and job scheduling system 

for Linux clusters (SchedMD, no date). According to the documentation is made of a slurmd daemon running 

on each compute node and a central slurmctld daemon running on a management node. 

As a cluster workload manager, Slurm has three key functions.  

1. Allocates exclusive and/or non-exclusive access to resources (compute nodes) to users for some 

duration of time so they can perform work.  

2. Provides a framework for starting, executing, and monitoring work on the set of allocated nodes.  

3. Arbitrates contention for resources by managing a queue of pending work. 

 

Parallel or serial jobs be submitted for execution on compute nodes are scheduled into a queue for execution 

until enough resources became free for their utilization. All resources are shared with other users and used in 

concurrency, meaning that every job submitted can impact and be impacted by cluster workload. 

Slurm directly launches job tasks and performs initialization of communications through PMIx APIs. 

Example of launching jobs: sbatch mpirun python laid_serial_5.py 

The version used on INCD: 20.02.0. 
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4.4.1.6 Message-Passing Interface (MPI) standard 

 

MPI (Message-Passing Interface) is a message-passing library interface specification, not an implementation. 

All parts of this definition are significant. (MPI-Forum, no date) MPI addresses primarily the message-passing 

parallel programming model, in which data is moved from the address space of one process to that of another 

process through cooperative operations on each process. Extensions to the “classical” message-passing model 

are provided in collective operations, remote-memory access operations, dynamic process creation, and 

parallel I/O (MPI-I/O) that provide routines for file manipulation and data access and allow multiple processes 

to access a single file. 

Point-to-point and collective communication are also supported that allow the coordination of multiple 

processes like in a master/slave scenario. These communication modes are not used in this work because they 

require more development and testing time and previous user experience. 

Also, in this work, only Independent I/O are used. which allows each process to do I/O independently. Not 

depending on or being affected by other processes. The exact opposite of Collective I/O. 

4.4.1.1 GCC - GNU Compiler Collection 

 

GCC used to stand for the GNU C Compiler, but since this compiler currently supports languages other than C, 

it now stands for GNU Compiler Collection. All software modules used in this experiment were compiled by 

INCD technicians using version 4.8 of this compiler. (GNU project and GCC developers, no date) 

 

4.4.2 The building blocks 

An application cooperation diagram of the full component stack is presented in Figure 4-3, which also 

compares a non-parallelization solution using the native HDF5 driver, above and a full-stack with MPI driver 

that allows parallelization below. This list has been compiled using information from (INCD - Infraestrutura 

Nacional de Computação Distribuída, no date) and providers’ websites referred in each component, all of them 

open-source tools. 

 

Figure 4-3 - Application cooperation 



 

 

32 
 

4.4.2.1 Open MPI (openmpi) 

 

Is an open-source High-Performance Message Passing Library for Linux clusters that implements the Message-

Passing Interface specification that is developed and maintained by a consortium of academic, research, and 

industry partners (Open-MPI-Project, no date). 

The version used: 4.0.3 

4.4.2.2 mvapich2 

 

MVAPICH2 is a high-performance MPI-2 implementation for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE 

based on MPICH2. This implementation of the MPI  standard is developed and maintained by Ohio State 

University and is available under a BSD licensing (Ohio State University, no date). 

The version used: 2.3.5 

4.4.2.3 Python 

 

Conceived in the late 1980s Python is a widely used general-purpose programming language with increased 

use in data science. One of its greatest strengths is her large standard library and a huge number of third-party 

packages that cover a wide range of functionality. It was ported to the most used OS such as Windows, 

Linux/UNIX, macOS (Python Software Foundation, no date). 

Version used 3.6.9 

4.4.2.4 mpi4py - MPI for Python 

 

MPI for Python package provides Python bindings (interface) for a Message Passing Interface (MPI) 

implementation, allowing Python applications to exploit multiple processors on workstations, clusters, and 

supercomputers. MPI for Python provides an object-oriented approach to message passing which grounds on 

the standard MPI-2 C++ bindings. The interface was designed with a focus on translating MPI syntax and 

semantics of standard MPI-2 bindings for C++ to Python. 

Supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers), with 1-to-many, many-

to-1, many-to-many communication of Python objects, as well as efficient communication of Python objects 

exposing the Python buffer interface (e.g., NumPy arrays). Provides optimized communication with NumPy 

arrays (Dalcín, Paz and Storti, 2005). 

The version used: 3.1 
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4.4.2.5 h5py - HDF5 for Python 

 

h5py is a high-level Python library for HDF5, such as MATLAB, and IDL. makes available for Python a High-level 

API which offers the main features of HDF5 in an interface modeled on dictionaries and NumPy arrays also 

provides a low-level API, which more closely follows the HDF5 C API” (Andrew Collette and contributors, no 

date) 

The version used: 3.1.0 

4.4.2.6 NumPy - Numerical Python 

 

NumPy (Numerical Python) is an open-source Python library that’s used in almost every field of science and 

engineering. It’s the facto standard for working with numerical data in Python, and it’s at the “core of the 

scientific Python and PyData ecosystems”, (NumPy Developers, no date) also the NumPy API is used extensively 

in the most used data science and scientific Python packages like Pandas, SciPy, Matplotlib, scikit-learn. 

NumPy can be used to perform a “wide variety of mathematical operations on arrays. It adds powerful data 

structures to Python that guarantee efficient calculations with arrays and matrices, and it supplies an 

enormous library of high-level mathematical functions that operate on these arrays and matrices” (NumPy 

Developers, no date). The h5py library also extensively uses NumPy, in handling datasets, so the link between 

both libraries and their use in this work is obvious. 

Comparing data types and data structures available in Python and NumPy, reveals greater flexibility in Python, 

perhaps one of the main reasons that this language became so popular, but flexibility, like  (VanderPlas, 2017) 

remember, “comes at a cost: to allow these flexible types, each item in the list must contain its own type info, 

reference count, and other information–that is, each item is a complete Python object. In the special case that 

all variables are of the same type, much of this information is redundant: it can be much more efficient to store 

data in a fixed-type array”. The difference between a dynamic-type list and a fixed-type like NumPy array is 

illustrated in Figure 4-4. 

 

Figure 4-4 - Difference between NumPy Array and Pyhton List 
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At the implementation level, the array essentially contains a single pointer to one contiguous block of data. 

The Python list, inversely, contains a pointer to a block of pointers, each of which in turn points to a full Python 

object. The advantage of the list is flexibility: because each list element is a full structure containing both data 

and type information, the list can be filled with data of any desired type. Fixed-type NumPy-style arrays lack 

this flexibility but are much more efficient for storing and manipulating data (VanderPlas, 2017) 

The version used: 1.19.5 

 

4.5 Discussion 

Using the computing resources of an HPC infrastructure is an opportunity and a challenging task. Setting up 

the HPC environment to run parallel processing is no task for beginners. It is necessary to be prepared for this 

and to foresee the time needed to prepare the environment by carefully studying the alternatives of the 

components, especially modules and libraries needed. To avoid incompatibilities. 

It is particularly important to consult the experts on the infrastructure team and follow their advice and 

guidance, which can save you many hours and frustration. 

Given that it is a shared and competitive environment, it is also a good idea to know and follow the facility's 

protocols and rules, to avoid disturbing the work of other users and collaborate in the more efficient use of 

the shared resources. 

It is also a good idea and a good practice to have a home lab with an environment as similar as possible to the 

HPC environment, which helps to develop and test code, for example, with a reduced dataset, and thus achieve 

the maximum amount of development without the need for HPC resources, thus avoiding executions 

interrupted after hours due to simple avoidable errors in the code. 

Regarding the job scheduling and the resources needed, it is advisable to be cautious, asking for too many 

resources at once when many other cluster users are waiting in the queue it just takes a long time to wait until 

those resources are available. It is often preferable to request fewer resources and be able to perform jobs 

faster. 
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5. Parallel Code 
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Given the prior availability of a codebase for the LAID algorithms written in the C and Python programming 

languages, these source codes were used here with emphasis on the Python version that already used HDF5, 

through in a serial programming model reason for choosing this language and because, thus, part of the work 

consisted in the adaptation of the sequential code base and the necessary additional developments. 

5.1 Parallelism in Python 

There are several general methodologies by which Python parallelism can be achieved a non-exhaustive list 

follows using python standard features or 3rd party libraries: 

▪ Multiple invocations of the Python interpreter 
▪ Process-level and subprocess parallelism 
▪ Thread-level parallelism 
▪ Numba a JIT compiler offers a range of options for parallelizing Python code 
▪ OpenMP API that supports multi-platform shared-memory multiprocessing programming 
▪ Libraries such as BLAS or Intel oneAPI Math Kernel Library 
▪ Higher-level frameworks, like Dask, Joblib, or Ray 

 
Also, Python's standard library provides a multiprocessing package that supports the spawning of processes. 

This can be used to achieve some level of parallelism within a single compute node. (National Energy Research 

Scientific Computing Center, no date)  “It cannot be used to achieve parallelism across compute nodes”. 

As seen in section 0 there is a consensus in the case of using distributed memory as a programming model to 

resort to parallel APIs, such as Message Passing Interface (MPI) (Talia, 2019), and this solution is available for 

Python through a third-party library called MPI for Python or more usual mpi4py discussed in more detail 

below. 

5.2 Design Methodology for parallel program 

Foster’s methodology, described by  (Pacheco, 2011) provides a sequence of steps that can be used to design 

parallel programs or adapt serial code. The steps are: 

▪ Partitioning - The process of dividing data and computation into small pieces, 
▪ Communication - The process of defining what and how tasks will communicate with each other, 
▪ Agglomeration or aggregation – The process of grouping tasks into larger tasks to simplify and 

improve performance, 
▪ Mapping - The process to assign tasks to processes/threads/physical processors. 

 

The purpose of partitioning is to discover as much parallelism as possible, which was widely used as described 

in 5.3. on the contrary, communication was not used at all. Agglomeration was also used on the final run 

described in section 8.5. 

the final step of this methodology is the procedure of assigning each task to a processor, mapping. This 

technique was intensively used in this work, considering that the objective in the development of mapping 

algorithms is to minimize the total execution time, which can be obtained by minimizing the communication 
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between processors (or eliminating it at all) and maximizing the use of each processor. Was also associated 

with rows or columns data partition 

5.3 Coding the LAID algorithms 

All the Python code is based or adapted from previous work (Apolónia and Cavique, 2019a) and (Cavique et 

al., 2018) the changes consisted essentially of code improvements, changes in the execution flow, the 

introduction of a configuration file, different use of files, and HDFS datasets and introduction of techniques 

aimed at parallelization. Can be accessed in a public repository referred to in Annex 11.2.2. 

Of the various decisions taken, stands out the access of HDF5 files using the MPIO driver, we opted for using 

MPI without communication what is sometimes called MPI independent mode. In which each of the tasks 

works independently without collective or point-to-point communication between nodes or a node master. 

This decision was taken due to the time available to complete this work as well as the intent to keep a common 

code base to serial and parallel versions. 

 

5.3.1 Laid steps 

According to (Cavique et al., 2018)(Apolónia and Cavique, 2019a), the Logical Analysis of Inconsistent Data 

algorithm consists of the following steps: 

Input: dataset D = {O, X∪C} with binary variables 

Output: (number of features, accuracy) 

1. check data inconsistencies and add dummy variable “jnsq” as a discriminant feature to remove any 
inconsistency in addition check and remove all redundant observations. 

2. disjoint matrix generation [Ai,j] this is a O(n2) in the Big O notation 
3. number of features = Minimum Set Covering Problem. In this third step of LAID, a heuristic (Chvatal, 

1979) is applied to solve the set covering problem. This is an O(log n) on Big O notation and is known 
to be NP-hard. 

4. accuracy = Cross-validation 
 
 

5.3.2 Step 1 - Check and fix redundant or inconsistent observations 

Redundant and Inconsistent observations, described in 3.3.1.1 and 3.3.1.2 must be handled on this step. Both 

algorithms with high dependency between their interactions and are inherently considered serial algorithms 

Considering that the serial version is fast enough, and no redundancies or inconsistencies were found in the 

Source-Dataset (1000k columns) or in subsets (200k columns) the option was to keep the existing code with 

only minor adaptations and give priority to the next steps. 
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5.3.3 Step 2 - Disjoint Matrix Generation 

As described in 3.3.1.3, this step consists of reading the source dataset's rows and comparing them with all 

those that have a different class value, the disjoint lines found are written in a destination dataset, which for 

operational reasons has been decided to be stored in a separate HDF5 file, this new derived dataset has been 

named DM-Dataset. 

Because there are no dependencies between each iteration of the algorithm used, i.e., each observation/row 

of the Source-Dataset is treated independently, its parallelization appears to be simply requiring only a few 

adaptations to the serial code. What in the parallel jargon is known as an “embarrassingly parallel problem”. 

Technically it is only necessary to distribute the rows of the source-Dataset by the processors assigned to the 

run, which can be seen as a way of data-parallelism from the SIMD definition, or a horizontal by row partition. 

However, it was not so simple. All parallel tasks on the run write the generated rows to the same target HDF5 

dataset. If this recording could be sequential, something like adding new rows to the dataset, the process 

would be simple, but it can't, the HDF5 datasets used are all fixed length. This implies, to avoid overwriting, 

strictly controlling, and segregation of the write-row index, as is done for reading. 

It is obviously possible to define a formula to calculate rows index, but only if the Source-Dataset does not have 

redundant rows and if it is sorted by the value of the class(es) and this effectively is. But this sort, despite good 

practice, is not a requirement of LAID and it cannot be considered an assumption. Which makes this an 

unsolvable problem, because before the execution of the algorithm it is not possible to know how many, and 

in which index the rows should be written. This insolubility inspired the solution, not elegant but effective, the 

algorithm will run twice. In the first pass, it identifies the source and destination rows, without spending time 

writing to disk. With this valuable information, the second pass knows exactly what and where to write. The 

bet is that parallelization allows not only to recover the time spent on the first pass but also to save more time 

because it avoids unnecessary comparisons. 

The first trial had a disappointing result. The chart in Figure 5-1, shows the Parallel version with 5 parallel tasks 

that took a few minutes longer than the serial version. Row-by-row the algorithm wasted time for the serial 

version. 

 

Figure 5-1 - DM-Dataset generation, first trial of serial version against 5 parallel tasks 



 

 

39 
 

From the analysis of these results, it was concluded, that whether in parallel or serial version, The DM rows 

were saved to HDF5 on disk, Row-by-row, immediately after being generated, which caused overhead.  

To avoid that issue the code was changed to include a buffer, which allowed the number of write operations 

to be reduced by writing more data at a time. 

The introduction of this buffer has proved so useful that even the serial version benefits from it, (29% from the 

initial time), the results after buffer introduction are presented in Table 8-2 and the chart is presented in Figure 

8-3 of section 8.4. 

The conclusion is that it is not enough to parallelize, because the effects of any inefficiencies in the code are 

equally multiplied, it is necessary to correct these inefficiencies beforehand to take advantage of the 

parallelization. Listing 5-1 below presents the code of this second pass with the buffer. 

step = int(class_ref/worker_nodes)  #  number_of_rows of class ref (1700 on the sample) 

start = task_id * step 

stop = int( task_id * step + step -1 ) # number_of_rows-1 

if task_id + 1 == worker_nodes and stop < number_of_rows: # ensure odd cases last // task 

    stop = number_of_rows-1 

sys.stdout.write("Task_{}; start; {} stop; {}\n".format(task_id, start, stop)) 

sys.stdout.write("Task_{}; Build Disjoint Matrix parallel version\n".format(task_id))  

disjoint_array = np.zeros((number_of_features + number_jnsq_features), 

dtype=np.dtype(np.int8))    # stores compare of mi e mj sums 

t1 = time.perf_counter() 

rows_on_disjoint_matrix = dset.attrs['rows_on_disjoint_matrix'] # from first pass 

size_a = rows_on_disjoint_matrix 

size_b = number_of_features + number_jnsq_features  

hdf5_disjoint_file = os.path.join(mydir, config_base[0][10]) + '0.h5' # one dm file for all tasks 

hfdm = h5py.File(hdf5_disjoint_file, 'w', driver='mpio', comm=MPI.COMM_WORLD) # Create, truncate  

dataset_disjoint_matrix = hfdm.create_dataset('dmatrix', (size_a, size_b), dtype= 

np.dtype(np.int8))    

number_of_interact = 0   

 

for i in range(start, stop+1):         

    rows_on_disjoint_matrix = dm_guide_array[i,0] 

    show_rows_on_disjoint_matrix = rows_on_disjoint_matrix         

    comparations_expected = dm_guide_array[i,1] 

    number_of_interact_per_row = 0  

    rows_on_disjoint_matrix_per_row = 0 

    buffer_array = np.zeros((comparations_expected,number_of_features + number_jnsq_features), 

dtype=np.dtype(np.int8)) 

    t1_row = time.perf_counter() 

 

    if comparations_expected > 0:  # redundant observations are not considered.  

        read_mi_array = dset[i,:number_of_features+number_jnsq_features]  
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        for j in range(i+1, number_of_rows): # compares current row with following rows 

            number_of_interact_per_row += 1 

            if (j not in redundant_array) and (class_array[i] != class_array[j]):  

                read_mj_array = dset[j,:number_of_features + number_jnsq_features]  

                disjoint_array = np.absolute(np.subtract( read_mi_array , read_mj_array ))  

                buffer_array[rows_on_disjoint_matrix_per_row,:] = disjoint_array # updates buffer 

                rows_on_disjoint_matrix += 1  

                rows_on_disjoint_matrix_per_row += 1 

 

            number_of_interact += 1     

        #  updates DM dataset from buffer 

        dataset_disjoint_matrix[dm_guide_array[i,0]:comparations_expected,:] = buffer_array  

 

    t2_row = time.perf_counter() 

    test = (f"in; {t2_row - t1_row:0.4f}; seconds") 

    sys.stdout.write("Task_{}; Row;{}; Class;{}; Start DM row;{}; comparations_expected; {}; 

Number of interact;{}; Disjoint rows found;{}; {}\n".format(task_id, i,  class_array[i], 

show_rows_on_disjoint_matrix, comparations_expected,number_of_interact_per_row, 

rows_on_disjoint_matrix_per_row, test ))  

 

Listing 5-1 - Build Disjoint Matrix - Parallel version 

 

5.3.4 Step 3 - Find the solution with the minimum set covering algorithm 

This is the real bottleneck in all steps of the LAID methodology. The serial version used in this step is inherently 

a serial algorithm. there is a clear dependence between interactions given that the computation performed in 

the (i + 1)-th iteration depends on the result of the i-th iteration.  

The approach followed was to perform the vertical partition of the DM-Dataset columns and their distribution 

by parallel tasks. But the different solutions found must be compared and the best one chosen. which requires 

communication and cooperation between processors/parallel tasks, so In this work, the approach for a parallel 

solution was limited to the first iteration. For this reason, the goal of parallelizing this step 3 was postponed. 

Literature reveals various other potential parallel solutions (Blelloch, Simhadri and Tangwongsan, 

2012),(Chakravarty and Shekhawat, 1992). there is a common point in all of them relying on some form of 

communication between processors. 

In conclusion, the next approach will have to make use of MPI point-to-point or collective communication 

modes via shared-memory or external memory that allows coordination between parallel tasks/processors. 

5.3.5 Flow control flow and orchestration 

By opting for the code aggregation of all blocks in a single python program, some flexibility was lost if one 

intended to run only one of the steps, the introduction of on/off conditions and their control from the 
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configuration file, allowed to keep a single block of code, which can be submitted to the cluster for execution 

at once, keeping control of what is intended to be executed. 

 

5.4 Performance Metrics for Parallel Systems 

Execution (run) time: Parallel execution time is usually defined as the time that elapses from the moment a 

parallel calculation starts until the moment the last processor finishes execution. 

Whereas the main objective of parallel computing is increasing speed and reducing time complexity is 

necessary to measure the result. for this purpose, two performance metrics are usually used (Rastogi and 

Zaheer, 2016), (Cavique et al., 2018) to measure the efficiency of an algorithm in terms of the time complexity 

factor. N computers working simultaneously can increase the speed up to N times, or an approximation of N 

as other factors can influence the time spent, such as bottlenecks communications. 

The Speedup Sp factor is defined as the ratio of the serial runtime of the best sequential algorithm for solving 

a problem to the time taken by the parallel algorithm to solve the same problem on p processors. 

Can be calculated as: 

 
𝑆𝑝 =  

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑜𝑛𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 (𝑏𝑒𝑠𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑚)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑤𝑖𝑡ℎ 𝑝 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
=  

𝑡𝑠

𝑡𝑝

 
(5-1) 

Where 𝑡𝑠 (Tserial) is the execution time on a single processor or serial run time. 

𝑡𝑝 (Tparallel) is the execution time on a multiprocessor or parallel run time. 

𝑆𝑝 it the increase in speed by using multiprocessor. 

To determine 𝑡𝑠  and 𝑡𝑝, it is necessary to include calls to a timer function in the source code. 

 

Was also calculated the Efficiency 𝐸 is defined as the ratio of speedup 𝑆𝑝 to the number of processors 𝑃. 

Efficiency measures the fraction of time for which a processor is usefully utilized. 

 
𝐸 =  

Speedup 𝑆𝑝

number of processors 𝑃
 

(5-2) 
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6. The Dataset used 
 

  



 

 

43 
 

The dataset used on this work was also used in the 2018 experiment described by (Cavique et al., 2018). 

Contains a total of 2 000 observations (by row) x 1 000 000 features (by column) of synthetic data representing 

some kind of Omic data. All observations are labeled according to a binary classification. 

It is subdivided into ten text files containing a sequence of pairs of digits that represent coordinates (row and 

column or in this context observation and feature) of cells with a value of "1", as presented in Figure 6-1. Half 

of the files contain the observations labeled as a class “0”. The other half contains class “1” observations. 

 

 

Figure 6-1 - Fragment of one of the text files 

 

This way every one of the class “0” subset represents 1 700 x 200 000 cells coordinates of the original matrix 

and the class “1” represents 300 x 200 000 cells coordinates. As described in Table 6-1. 

 

Table 6-1 - Rows, Columns, Classification, and size on disk of Dataset parts 

File Part Class Part Rows Columns Nonzero cells Size in Mb 

D1C0.TXT 0 1 1 700 200 000 64 307 600 764 

D1C1.TXT 1 1 300 200 000 13 783 200 164 

D2C0.TXT 0 2 1 700 200 000 64 681 600 768 

D2C1.TXT 1 2 300 200 000 13 925 700 165 

D3C0.TXT 0 3 1 700 200 000 64 591 500 767 

D3C1.TXT 1 3 300 200 000 13 665 300 162 

D4C0.TXT 0 4 1 700 200 000 64 117 200 762 

D4C1.TXT 1 4 300 200 000 13 806 900 770 

D5C0.TXT 0 5 1 700 200 000 64 795 500 770 

D5C1.TXT 1 5 300 200 000 13 768 500 163 

     391 443 000 5 254 
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6.1 Assembly the dataset parts in HDF5 

Since in this experiment there is no need to unequivocally identify the order of each of the features, the 

position along the horizontal axis of the stored HDF5 dataset is not decisive, even so, the option was to position 

the contents of the files by their nominal order D1, D2, D3, D4, and D5, inversely, positioning along the vertical 

axis is mandatory, since the information of every feature is always split into two files, it is necessary to ensure 

that they coincide. Figure 6-2 describes the chosen placement. Also, the text files only contain coordinates of 

the cells with value “1”. When filled the dataset all other cells remain with value “0”. 

In the rest of this document, the original Dataset is referred to by Source-Dataset to avoid ambiguities with 

other Datasets derived from this one. 

 

 
Figure 6-2 - Assembly of the dataset parts in HDF5 dataset 

 

 

6.2 Loading the data 

The first step to perform is to extract the data from the text files and load it into the dataset in the HDF5 file, 

this is a task commonly referred to as ETL from extract, transform and load 

The simplest and predictably slow way is to load an entire text file into an in-memory 2D NumPy array for input. 

and traverse the related range of dataset filling HDF5 cell by cell. This way consumed 4 hours only for the first 

file (D1C0.TXT),  Which is an unacceptable time. 

A much better approach is loading the text files into a NumPy 1d array containing 1 tuple with the coordinates 

of each cell and next performing in memory the transcription to a matrix with coordinates compatible with the 

hdf5 dataset and finally write the entire matrix to HDF5 in one single operation. This approach took an average 

of 20 minutes for the larger blocks, only 12% of the first solution time. Table 6-2 presents the time, in minutes, 

consumed by two parallel tasks each loading 5 text files. 

 

jnsq class

# columns D1 - 200K D2 - 200K D3 - 200K D4 - 200K D5 - 200K ? 1

1 700 D1C0.TXT D2C0.TXT D3C0.TXT D4C0.TXT D5C0.TXT ? 0

300 D1C1.TXT D2C1.TXT D3C1.TXT D4C1.TXT D5C1.TXT ? 1

2 000 L (200k)

2 000

2 000

Rows Columns

data

dataset block  

from text file 

# rows 

XL (600K)

XXL (1000K)

Dataset for 

study the 

storage layout
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Table 6-2 - Time for loading all text files, performed by two parallel tasks 

Task order on batch batch minutes filled cells Cells filled per minute 

Task_0 1 D1C0 17,74 64 307 600 3 625 309,4 

Task_0 2 D1C1 4,83 13 783 200 2 852 866,2 

Task_0 3 D2C0 20,88 64 681 600 3 097 206,2 

Task_0 4 D2C1 5,27 13 925 700 2 642 048,4 

Task_0 5 D3C0 17,88 64 591 500 3 612 387,5 

Task_0 Totals   66,61 221 289 600 3 322 413,7 

     

Task_1 1 D3C1 3,83 13 665 300 3 565 929,1 

Task_1 2 D4C0 25,60 64 117 200 2 504 834,6 

Task_1 3 D4C1 5,44 13 806 900 2 538 886,4 

Task_1 4 D5C0 18,12 64 795 500 3 576 628,4 

Task_1 5 D5C1 3,84 13 768 500 3 582 491,5 

Task_1 Totals   56,83 170 153 400 2 994 215,5 

 
For this case, 10 text files are equivalent to 10 work packages. The entire loading process is regulated in a 

configuration file named config.json which is also part of the artifact (See Annex 11.2.1) this config file contains 

the original coordinates of the entire block on the Source-Dataset and its translation to HDF5 coordinates, each 

block is described individually as shown on Figure 6-3. 

 

Figure 6-3 - Work packages described on the config file 

 

For 10 work packages, the most suitable number of parallel tasks are 1 (serial load), 2, 5, or 10, which ensure 

the best load distributions by work packages. Adding more than 10 tasks does nothing to reduce time. 

The final version of the code added to the artifact does not have separate versions for parallel or serial 

processing, It’s the Rank (MPI Job Task Id) that defines this behavior, if equal to 1 (single task), then processing 

follows Serial Programming model, if greater than 1, it is Parallel programming model. 

This is an example of application the Mapping referred on Foster’s methodology. This allows an existing 

function in the code to map the work to be done by the different parallel tasks in execution demonstrated in 

Listing 6-1. 
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def map_parallel_worker_to_workpack(rank, worker_nodes, work_packages ):   

    step = work_packages / worker_nodes 

    ini = int(rank * step) 

    end = int(ini + step -1) 

    return (ini, end) 

 

Listing 6-1 - Map Function 

 
As this code was never executed by just one task, it is only possible to have a duration estimate that points to 

approximately 123,44 minutes (sum of the minutes spent by the two tasks in Table 6-2). In the same way, we 

estimate that the minimum time required if using a maximum of 10 parallel tasks (one for each text file) is 

equivalent to the longest of the batches on the run described in Table 6-2 bold cell i.e., 25,6 minutes which 

implies a Speedup factor of 4.82 with an Efficiency of 0.48 as shown on Table 6-3. 

 

Table 6-3 - Data loading into HDF5, Speedup, and Efficiency Estimated 

Tserial Tparallel Processors Speedup Sp Efficiency E 

123,44 25,60 10 4,82 0,48 

 

6.3 A brief exploratory data analysis 

After loading the data to HDF5 and to better understand the characteristics of the dataset, a brief exploratory 

data analysis was carried out allowing us to conclude that the total number of cells in the dataset is 2 000 000 

000 (2 000 x 1 000 000) whereas only 391 443 000, (19.57%), are filled with non-zero value means a sparse 

matrix. This sparsity is not uniform across the columns, in fact, 311 704 (31%) of the columns don’t contain 

any value as shown in Table 6-4, and only 19% of the columns concentrate 50% of the total cells filled. 

 

Table 6-4 - Sum of values per column vs number of columns 

# Sum of value per column Number of columns 

1 0 311 704 

2 300 92 980 

3 1 700 73 155 

4 2 000 22 162 

5 390 11 248 

6 393 11 213 

7 391 11 171 

(…) (…) (…) 

158 314 1 

159 310 1 
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The chart in Figure 6-4 graphically confirms that the distribution of the sum of column values follows a long 

tail. 

 

Figure 6-4 - Distribution of the sum of values in column 

 

It is also relevant to note that the pattern of distribution is not uniform, on column ranges [1 to 100k[, [200k 

to 300k[, [400k to 500k], [600k to 700k] and [800k to 900k], (i.e the first 100k of each text file) a random 

distribution pattern predominates, visible on Figure 6-5 pattern a), while the remaining presents a more 

organized and concentrated distribution Figure 6-5 pattern b), where a small number of columns contain most 

values and there are a large number of columns without any value. 

 

 

Figure 6-5 - Distributions patterns found on Source-Dataset 

a) random pattern b) organized pattern
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6.4 Discussion 

Loading the dataset is also an excellent exercise for testing parallel computing techniques, which substantially 

reduced loading time. 

The main conclusion is to avoid the cell-by-cell storage method as it is too slow. It is preferable to use 

h5py/HDF5 capability and store 2d arrays with contiguous data blocks at once. 

After loading it is also important to validate the information stored on the HDF5 dataset,  

1. Counting the number of non-zero cells (sum) should be the same reported on the column “Number 

nonzero cells” in Table 6-1, to ensure all data was stored on the target dataset. 

2. Check non-zero on known cells on the boundaries of different File Parts, to ensure the correct 

placement of all parts. 

3. Check all the values on the labeled column, to ensure that the correct class value was correctly loaded 

and stored. 

 

It is also advisable and desirable to know as much as possible about the characteristics of the dataset to be 

processed. Considering its large dimensions this is by itself a challenging task where visual inspection is not 

even possible and descriptive statistics do not help. 

The ranges of columns where this pattern b) predominates if processed separately (via vertical partition per 

column), has implications for the outcome due to the high number of redundant observations. Which naturally 

limits the number of possible partitions and of course the number of parallel tasks if parallelization via vertical 

partition is used. 
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7. HDF5 Storage Layout: Chunking Analyses 
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7.1 Storage layout options 

The storage layout or storage strategy must be aligned with dataset access patterns which mean read 

operations, hence the choice to test the storage layout options with the block of code that generates the DM-

Dataset, in this step the access to the Source-Dataset is done exclusively by reading an entire line, never by 

column. 

As mentioned in (Andrew Collette and contributors, no date) “The default storage layout of HDF5 files is 

contiguous storage: data of a multidimensional array is serialized (or flattened) along the fastest-changing 

dimension and is stored as a contiguous block in the file. This storage mechanism is recommended if the size 

of a dataset is known and the storage size for the dataset is acceptable to the user”. in other words, laid out 

on disk in traditional C order. 

Datasets may also be created using HDF5’s chunked storage layout. This means the dataset is divided up into 

regularly sized pieces which are stored haphazardly on disk and indexed using a B-tree. This storage makes also 

it possible to resize datasets, and because the data is stored in fixed-size chunks, to use compression filters. 

Chunking has performance implications (Andrew Collette and contributors, no date). It’s recommended to 

keep the total size of chunks between 10 KiB and 1 MiB, larger for larger datasets. And more relevant when 

any element in a chunk is accessed, the entire chunk is read from the disk. If only use a subset of the data, the 

extra time spent reading from the disk is wasted. it is necessary to be aware that chunks bigger than 1 MiB by 

default will not participate in the fast, in-memory “chunk cache” and will instead be read from the disk every 

time. 

About the chunk size, they can't be too small and can't be too big either and there's a limit. The current 

maximum number of bytes in a chunk is 2^32-1 (4 GB). As a result of this restriction, the number of elements 

in a chunk cannot be greater than 4 GB (The HDF Group, no date). And it is necessary to consider the datatype 

size of each element. 

According to (Collette, 2013). The process of picking a chunk shape is a trade-off between the following three 

constraints: 

• Larger chunks for a given dataset size reduce the size of the chunk B-tree, making it faster to find and 

load chunks. 

• Since chunks are all or nothing (reading a portion loads the entire chunk), larger chunks also increase 

the chance of reading data into memory that won't be needed. 

• The HDF5 chunk cache can only hold a finite number of chunks. Chunks bigger than 1 MiB don’t even 

participate in the cache. 
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7.1.1 Tests performed 

for the above, the choice of storage layout and internal organization of the HDF5 file is not a trivial decision 

and required research and a battery of tests to allow for conclusions. For performing this analysis, we set up a 

test protocol considering three different dataset sizes, based on the number of columns: L, XL, and XXL all of 

them subsets of the Source-Dataset presented in Table 7-1. 

Table 7-1 - Datasets used for read/write tests with size on disk 

Dataset Rows x Columns. Size on disk in Bytes GB 

200K (L) 2k x 200k 400 100 352 0,37 

600K (XL) 2k x 600k 1 200 004 000 1,12 

1000K (XXL) 2k x 1000k 2 000 006 136 1,86 

 

7.1.2 Write Operations over the HDF5 Source-Dataset 

These tests were carried out essentially at the expense of successive parallel write operations over the Source-

Dataset and all times presented are the average of the runs performed. 

The noteworthy fact is that of the total data loading time, about 60% of the time is spent extracting the data 

from the text file, 40% transforming it into memory and extraordinary fact less than 0.5% is consumed 

preserving the dataset in the HDF5 file Table 7-2. 

As described in the previous section the write is done in a single write operation which has proven to be 

extremely efficient as it typically takes less than 0.5% of the total load time, regardless of the data block size 

and chunking layout. 

Table 7-2 - How is the time consumed? 

   Extract  Transform Load (Write)  Total  

200K (L) 81,2% 18,5% 0,3% 100% 

600K (XL) 59,2% 40,7% 0,1% 100% 

1000K (XXL) 59,5% 40,3% 0,2% 100% 

 

Table 7-3 - Chunking layout tested 

Layout Meaning 

Row chunk Equals the dimension of the entire row, regardless of its dimension 

Best Fit chunk Is a chunk whose dimension perfectly fits the defined HDF5's read cache size 

Contiguous Don't use chunks 

Auto-chunk Gives HDF5 the responsibility for choosing the dimension 

 

Table 7-3 describes the different options tested. An additional explanation is needed as to “Best Fit chunk” 

which depends on prior knowledge of the cache size defined at HDF5 installation. This parameter can be 
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obtained by accessing the low-level API for h5py, whose H5D module provides access to the low-level HDF5 

dataset interface using the get_access_plist() and get_cache() functions (Andrew Collette and contributors, no 

date). The value obtained was 1048576 bytes. With this information and knowing the dimension in bytes of 

each row of the different datasets used, it is possible to systematize the different possibilities in Table 7-4. 

Table 7-4 - Best Fit chunk estimation per dataset 

Dataset Allocation Chunk size in bytes  Cache in bytes Bytes wasted on reading 

L 5 x 200k 1 000 005 1 048 576 48 571 

XL 1 x 600k 600 001 1 048 576 448 575 

XXL 1 x 1000k 1 000 001 1 048 576 48 575 

 

L and XXL have minimal waste, in the case of L per resource to include 5 rows per chunk, but XL is heavily 

penalized, it wastes about half the cache size. 

It was verified in these tests an excessive variability of the times between similar runs. the workload and I/O 

conditions of the cluster influenced the times obtained mainly in the L tests, even so, and given that in the 

portion concerning the write operation, these are very low times, (all below 10 seconds) Table 7-5 the focus 

has to be on small differences in seconds and here are two layouts that stand out negatively; Row chunk for 

datasets with less than 1000K columns and Auto-chunk with such poor performance that it was abandoned 

after the first test. 

 

Table 7-5 - Average time to write an entire block of data on HDF5 file in seconds 

Layout 200K (L) 600K (XL) 1000K (XXL) 

Row chunk 4,91 2,08 1,82 

Best Fit chunk 1,27 2,08 1,82 

Contiguous 3,87 1,24 5,98 

Auto-chunk 7,12     

 

According to (Collette, 2013) the reason the automatically generated chunks are “square” in N dimensions is 

that the auto-chunker doesn't have any knowledge of how the information will be accessed, and bet on 

common usages, such as image storage. It's ideal for those who just want to compress a dataset and don't care 

about details, but inadequate when specific time-critical access patterns are a concern. 

Regarding the use of chunking in write operations, except for Auto-Chunk, there are no major discrepancies 

depending on the size of the dataset and the chunking used. 

Not using chunking at all is not heavily penalized on write operations and may even be faster on 600K column 

datasets. Best Fit chunk is the most difficult to use and is probably the best solution for some sizes, where it is 

easier to adjust the dimension to the HDF5 cache size. 
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7.1.3 Read Operations over the HDF5 Source-Dataset 

The component or reading of this test uses the 2nd step of LAID, the Disjoint Matrix generation. The reading 

pattern of this algorithm over the Source-Dataset is every row is compared with all others, which requires full 

row reading. 

Table 7-6 and chart of Figure 7-1 compares the time consumed reding over different HDF5 Storage layout 

options, the Auto-chunk option performs so badly even on a small dataset that was abandoned for the larger 

ones. 

Table 7-6 - Read operations versus HDF5 Storage layout (time in seconds) 

Dataset Row Chunk Best Fit Chunk Contiguous Auto-chunk 

200K (L) 183,24 174,05 168,37 962,98 

600K (XL) 307,20 307,20 264,03 
 

1000K (XXL) 479,48 479,48 384,34 
 

 

 

 
Figure 7-1 - Read operations versus HDF5 Storage layout (time in seconds) 

 

Conclusions can be drawn from due to this pattern:  

Chunking is an option to be considered in no way an obligation. Even for the best chunking option, given the 

read cache size defined in the HDF5 installation and the read pattern used by the algorithm, it is observed that 

the Storage Layout Contiguous systematically allows greater speed and access. 

This speed is hardly distinctive in smaller datasets (L) but gradually becomes more significant as the chart of 

Figure 7-2 demonstrate. 

Contiguous is the best storage layout for larger datasets and indicates a linear relationship between reading 

time and the number of columns in the dataset. 
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Figure 7-2 - Best fit chunk and contiguous layout comparison for reading workload in seconds 

 

7.1.4 Read and write operations over the DM-Dataset 

The tests described above were sufficiently elucidative, so specific tests were not carried out for reading or 

writing the DM-Dataset. Given the reading pattern of the step 3 algorithm (whole rows and columns) the 

recourse to any form of chunking for this dataset is a mistake. 

7.2 Strategy for HDF5 files and datasets 

There doesn't seem to be an advantage in storing class values in the rightmost columns of the dataset, it seems 

preferable to use another dataset stored in the same HDF5 file. This conclusion does not refer to space-saving, 

but only to the ease of handling and addressing the respective columns. Notice that the addressing between 

the two datasets is still maintained by row index. 

The DM-Dataset should be kept isolated in a separate HDF5 file, as no advantage was identified in keeping it 

in the same file as the Source-Dataset. on the contrary, it is more manageable if kept separate. For example, if 

it is necessary to delete it. The same can be said for any other derived datasets. 

When a new fixed-length Dataset is created, HDF5 needs to be informed about the shape i.e., dimensions of 

both axes. For the Source-Dataset these dimensions are known in advance and are not a problem. But for DM-

Dataset only the dimension in columns is known, the same as the Source-Dataset (1000k in the example), the 

number of rows needs to be estimated. 

To estimate it, according to (Cavique et al., 2013) the maximum number of comparisons is given by the 

expression n(n–1)/2 which for n = 2000 (observations) means 1 999 000 interactions, therefore, in the worst 
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case, if all rows are labeled with a different class value, the algorithm will compare all n observations and get 

that same number of disjoint rows that would need to be preserved on disk. 

It is also known that interactions between lines of the same class do not generate disjoint lines and that in the 

Source-Dataset there are only two different class values (0 and 1), so for this example and because there are 

1 700 rows of class 0 and 300 rows of class 1 the maximum number of disjoint rows is given by the expression 

1 700 x 300 = 510 000. This number can even be reduced if there are redundant rows that can be discarded. 

In this sample, there are no redundant observations, so it is necessary to consider all 510 000 disjoint rows. 

Considering the 1000k columns and the one-byte data type, it turns out to store approximately 475 GB on disk 

which is a large dataset that requires non-negligible storage space whose growth is linear (coefficient of 

determination = 1) Figure 7-3. 

 

Figure 7-3 - Disk size estimate for DM-Dataset 

 

In the (Apolónia and Cavique, 2019a) experiment, disk space was never a concern because it was done on a 

single machine with enough disk space. In this case in an HPC environment, with other users competing for the 

same resources and with a nominal disk quota of 20GB, the space needed to store the DM-Dataset can be a 

concern, which is why valuable time was spent trying to reduce this size. 

 

7.3 Attempts to reduce the disk size of the DM-Dataset 

To evaluate and test how to reduce it, three different solutions described below were tested and discarded. 

The option for using resizable datasets and abandoning fixed-length was also evaluated, and discarded, as it 

requires the mandatory use of chunking in the DM-Dataset, which is contraindicated as referred above. 
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7.3.1 Dataset compression  

Following the recommendations (Collette, 2013),(The HDF Group, 2015) the dataset compression was tested, 

using the gzip filter, because GZIP compression is the simplest and most portable compressor for HDF5. 

however, the use of this filter through h5py and the mpio driver requires the use of MPI cooperative mode. 

MPI Collective Communication and cooperative mode is a topic by itself, its study and usage implications go 

far beyond the use of compression. because of this, the option taken was to abandon the mpio driver and 

instead use the native driver which blocks the possibility of parallel use and therefore is not part of the solution, 

but it was tested anyway. 

Compression is supposed to be transparent, data is read and written normally, However, this comes at a cost, 

compression is a CPU-intensive process where the trade-off is that the most compressed data usually requires 

the most work to compress/decompress and the longer it takes. 

The GZIP compressor offers a range of compression levels from 1 to 9 where 1 offers the fastest compression 

speed but at a lower ratio, and 9 offers the highest compression ratio but at a slower speed. with a default of 

4, which was used as a compromise between the two factors. 

The result was entirely disappointing, notice in Figure 7-4 the need to use a logarithmic scale to represent the 

time in seconds of both compressed and uncompressed runs for only the first 39 600 rows. 

 

Figure 7-4 - DM-Dataset generation with and without compression 

 

Part of this immense time can be explained by Auto-chunking is also enabled when using compression if a 

chunk shape is not manually specified. Anyway, this path was abandoned for not allowing parallelization. 
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7.3.2 Remove empty columns, the "redux" approach 

Considering that approximately 31% of the Source-Dataset columns do not contain any value and therefore do 

not contribute anything to the solution. getting rid of these columns means an equal percentage of storage 

reduction. of the DM-Dataset which for the XXL source reaches a non-negligible 147 GB. 

So, this approach was tested, first, the unvalued columns were marked, (which is a quick task), but removing 

them from the dataset is a heavy task, the method followed was to copy the unmarked columns to a new 

dataset. this process took approximately 6 hours for the L dataset, which makes this approach inadequate. 

 

7.3.3 The data type option 

From the 2019 experience (Apolónia and Cavique, 2019a), one doubt stands out, why choose a one-byte data 

type for data columns? when they will only contain only two possible values 0 and 1. Considering a data type 

that requires only 1 bit per cell would mean a saving of approximately 87% which is a huge difference and 

justifies revisiting this subject. 

The HDF5 library implements an object-oriented model of datatypes. organized as a logical set of datatype 

classes. Each datatype class defines a format for representing logical values as a sequence of bits. Also defines 

a set of predefined datatypes, corresponding to commonly used storage formats. See Figure 7-5. 

 

Figure 7-5 - HDF5 Datatype Classes and their properties 

 

HDF5 datatype API provides methods to create datatypes of different datatype classes so a user program can 

derive types with custom values for the properties and for example “can create a datatype to describe a 6-bit 

integer” (The HDF Group, no date), so there seems to be no limitation regarding HDF5, but “when transferring 
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data (e.g., a read or write), the data elements of the source and destination storage must have compatible 

types. As a general rule, data elements with the same datatype class are compatible, while elements from 

different datatype classes are not compatible”. 

On the other side is Python which defines only one type of a particular data class (only one integer type, one 

floating-point type, etc.), and the Python approach to Boolean values as two constant objects "True" and 

"False". They are used to represent truth values in numeric contexts, they behave like the integers “1” and “0”, 

respectively (Python Software Foundation, no date). meaning Python's default implementation of bool is as a 

subclass of int.  

However, the h5py interface does not rely on python datatypes, but on NumPy, as we saw in section 4.4.2.5 

and NumPy, following C rules, takes a different approach, there are 24 new fundamental Python types to 

describe different types of scalars. These type descriptors are mostly based on the types available in the C 

language (NumPy Developers, no date). For example, in NumPy, the bool_ type is not a subclass of the int_ 

type moreover is not even a number type and is stored as a byte. So, there is no advantage in choosing it, in 

terms of memory and storage space savings. 

the investigation of the NumPy C-API, despite allowing the creation of its own types, did not allow much 

progress, that is why, for this purpose, there are no alternatives to int, also the smallest platform-independent 

type available is indeed numpy.int8 (8 bits). (NumPy Developers, no date). In conclusion, the most suitable 

data type out of the box is effectively numpy.int8: 8-bit signed integer (-128 to 127) or numpy.uint8: 8-bit 

unsigned integer (0 to 255). 

 

7.4 Discussion 

It was confirmed that HDF5 is an excellent alternative to store the datasets needed in a LAID analysis. Although 

it has no performance implications, separating the datasets into different hdf5 files turns out to be a good 

option, as it allows for better file handling (copy, zipping, deleting from the OS UI, etc.) 

It is also a good idea to store the dataset sorted by class values. Through NumPy arrays it is simple to perform 

this sorting operation even before storing in HDF5; therefore, this part of the problem must be carefully 

evaluated from the beginning to avoid pitfalls. 

The choice of the datatype for the information, as well as the storage layout, must be carefully made and resist 

the temptation of using HDF5 out of the box. mainly avoid the Auto-chunk option enabled, because the format 

is automatically chosen by HDF5 it will almost certainly not be adjusted to the reading pattern of the algorithm 

used and this can lead to considerably degraded performance. From all the above, the preferred layout 

strategy is not to use chunking at all, opting for contiguous, even so, and for the Source-Dataset chunking is 

always an option, but it must be correctly evaluated.  
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8. Computational Experiments and Results 
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8.1 Method and Action Plan 

To develop the code and conduct the computational experiments, a 7-phase plan (called T0 to T6) was defined, 

providing maximum interactivity where the feedback from the previous phase feeds the next phase, as 

recommended in the Interactive design cycle of the DSR methodology referred to in Annex 11.1. 

Due to the lack of previous experience in HPC, parallel computing, and HDF5, T0 was reserved for the 

acquisition of the essential knowledge and setting up the environment. T1 and T2 were intended for the 

experience of loading the original dataset, with parallelization, as well as studying layout alternatives, namely 

chunking. T3 allowed conduct a series of reading tests, based on parts of the LAID algorithm, using datasets 

with a different number of columns, and allowed us to draw the first conclusions. T4 and T5 phases were 

reserved to operationalize all parts of the algorithm and study parallelization alternatives. T6 for last 

adjustments and finally for solution tests. 

The work on INCD infrastructure was performed between 2021-03-28 and 2021-09-07, during this time 317 

runs jobs are performed of which 267 (84%) were completed successfully. these jobs occupied a total of 312 

CPU hours, involving a maximum of 10 CPUs per job and an average of 2 CPUs per job, running on a maximum 

of 2 computational nodes. 

 

Figure 8-1 - Bash script for launching jobs through mpirun 
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Figure 8-1 presents a bash script used for launching python code jobs. It defines the parameters necessary for 

slurm to know what resources are being requested and allows its scheduling, clean, and load the environment 

with the necessary modules. eliminate auxiliary datasets, echo parameters to document the run, and finally 

launch the job using the mpirun command. An example of the output is shown in annex 11.3. 

All Python code has been provided with performance counters for benchmarking whose information was cross-

referenced with the start and end date-time of each job. therefore, there is high confidence in the observed 

time, however, Some caution is needed in analyzing the reported times. On several occasions, it was found 

that the same code and data running in different periods returns the same result but with discrepancies in the 

time spent which indicates that the job environment is not fully isolated and is affected by cluster operational 

conditions, it could be concurrent workloads, network latency or other cause, It would be important to identify 

the reasons, but the conditions for this analysis are not met, nor is it part of the scope of this work. 

8.2 Serial, Hybrid and Parallel Runs 

Figure 8-2 illustrates and synthesizes the three forms of runs used in this work. The simplest model follows the 

sequential execution, is represented on the left side of the figure, the center represents a hybrid form, where 

part of the processing is serial, and part parallelized, and the parallel model is represented on the right side. 

 

 

Figure 8-2 - Serial, Hybrid and Parallel Runs 

 

Program Model Serial Parallel and Serial

Resources 1 task 1 task + 5 tasks + 1 task

Target Whole dataset Whole dataset D1 D2 D3 D4 D5

Number of features 1000k 1000k 200k 200k 200k 200k 200k

LAID step

1

check and remove any data 

inconsistencies and redundant 

observations

2

disjoint matrix M generation

3

find the solution with minimum 

set covering problem

Parallel Decomposition

5 tasks
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8.3 Serial Program Model 

This solution is largely a repetition of the 2019 procedure (Apolónia and Cavique, 2019a), it was important to 

carry out because its times are an interesting comparison with that past experience and mainly serves as a 

reference for current parallelization experiments. The average time consumed by each step is described in 

Table 8-1. 

Table 8-1 – Average time spent running Serial LAID steps by step 

LAID Step T0 

1 Check and remove inconsistency and redundant observations 1.254,96 

2 Disjoint matrix generation 
first-pass N/A 

second-pass 1.352,21 

3 Find a solution with minimum set covering problem 6.221,88 

  total in seconds: 8.829,06 

  total in minutes: 147,15 

 

This is approximately half the time reported by (Apolónia and Cavique, 2019a), however, there are too many 

differences between the two experiments, different datasets, and environments, the HPC effect, etc. to draw 

secure conclusions. 

8.4 Hybrid of Serial and Parallel Programming Models 

In this solution, only step 2, DM-Dataset generation, is parallelized through a horizontal data partition. As we 

saw in section 5.3, the algorithms from steps 1 and 3 were not converted due to the non-use of the MPI 

cooperative mode. 

 

Figure 8-3 - DM-Dataset generation, Comparison of the serial version against 5 parallel tasks 
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For this specific dataset and due to its characteristics, described in section 6, the maximum number of parallel 

tasks is 1700, each performs 300 comparisons, or even better if we swapped the order of the dataset classes, 

300 parallel tasks, each performing 1700 comparisons. More realistically in this experiment, only 5 parallel 

tasks were used so, the 1700 lines were divided by 5 and each job perform 340 x 300 comparisons with the 

results described on the chart in Figure 8-3. 

Table 8-2 - Time spent running Hybrid approach 

LAID Step Serial  T0 T1 T2 T3 T4 

1 
Check and remove inconsistency and 
redundant observations 

1.254,96 
 

     

2 Disjoint matrix generation 
first-pass 407,83  

     

second-pass 444,43  444,43 441,50 431,18 431,16 429,41 

3 
Find a solution with minimum set covering 
problem 

6.221,88 
      

  total in seconds: 8.329,11            

  total in minutes: 138,82            

 

As expected, for the parallel version the difference is appreciable, a speedup of 3,04 with an efficiency of  0,6, 

this value can even be further improved by fine-tuning the buffer size. 

Table 8-3 - Performance Metrics for Hybrid approach 

Tserial Tparallel Processors Speedup Sp Efficiency E 

1.352,21 444,43 5 3,04 0,61 

 

8.5 Parallel decomposition through vertical data partition 

The previous solution, although faster than the serial solution, is not practical. A much better solution is to run 

several jobs in parallel of all the serial code, that is, parallelize the execution of the serial version. This way, 

each job will process subsets of the entire dataset, for example, 200k column blocks. Then after the parallel 

operation, a final run could be performed to reduce the result of the various solutions found. This way the 

bottleneck constituted by step 3, which was not fully resolved, has less impact. 

Table 8-4 - Time spent running Parallel Decomposition 

LAID Step T0 T1 T2 T3 T4 

1 
Check and remove inconsistency and redundant 
observations 

32,28 32,60 32,81 33,11 32,98 

2 Disjoint matrix generation 
first-pass 211,71 212,91 206,97 211,94 212,05 

second-pass 237,44 240,05 236,69 242,38 237,51 

3 
Find a solution with minimum set covering 
problem 

1.044,77 988,40 956,70 1.068,36 918,17 

  total in seconds: 1.526,19 1.473,95 1.433,17 1.555,79 1.400,71 

  total in minutes: 25,44 24,57 23,89 25,93 23,35 
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Comparing and evaluating the running times of LAID algorithms for 1000k features using Serial against parallel 

version, where the same number of features is subdivided into 5 batches of 200k takes 147.15 minutes for 

serial to solve against 25.93 minutes on parallel version. Table 8-5 resumes this evaluation. 

 

Table 8-5 - Performance Metrics for Parallel over Serial 

Tserial Tparallel Processors Speedup Sp Efficiency E 

147,15 25,93 5 5,67 1,13 

 

8.6 Discussion 

Table 8.6 presents a comparative board of the three approaches described above, for the last run parallel T1 

was chosen because it has the worst (longest) performance of the third run. 

Some caution is needed when comparing this outcome. Parallel T3, (selected because it was the task with the 

worst performance), could not be directly compared with others as only handled 200k only the total time could 

be compared with no restrictions. And as expected the fully parallel version is much faster than any of the 

others. 

 

Table 8-6 - Comparative board of three approaches Serial/Hybrid/Parallel decomposition 

LAID Step Serial Hybrid Parallel T3 

1 
Check and remove inconsistency and redundant 
observations 

1.254,96 1.254,96 33,11 

2 
Disjoint matrix generation 

first-pass N/A 407,83 211,94 
 second-pass 1.352,21 444,43 242,38 

3 
Find a solution with minimum set covering 
problem 

6.221,88 6.221,88 1.068,36 

  total in seconds: 8.829,06 8.329,11 1.555,79 

  total in minutes: 147,15 138,82 25,93 

 

The result of the solution considering all columns of the source dataset is only the column with index 100004. 

The reason is that this column is exactly equal to the class column. Any quality evaluation would reveal 100% 

of Accuracy. The conclusion is that it makes no sense to evaluate this specific case. 

There are also two notes regarding the running of the serial version in parallel.  

First changes to the code of the serial supposedly should be simple, since the partition of the columns of the 

Source-Dataset is made, it is necessary to ensure that the rows generated from the DM-Dataset are equally 

separated to be processed by different tasks. to achieve this, the creation of 5 datasets within the same HDF5 

file was attempted. but it was not possible due to errors in the Lustre file system on their creation. The same 
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happened when trying the operation on separate HDF5 files. In no case was the creation operation possible 

when executed in code running in parallel. 

Due to the number of components and layers involved troubleshooting attempted using specialized sites such 

as stackoverflow.com did not allow us to isolate and identify the cause and resolve the issue, in the list of 

suspects are the main components: h5py/hdf5, the MPI implementation, and even Lustre. 

To overcome the problem, It was necessary to create the files in advance using serial mode and leave the job 

of filling them out by parallel tasks. Although this solution is not entirely satisfactory, the results are quite good, 

but more study and testing will be needed for this specific issue. 

Second, after testing with 5 parallel tasks and getting very acceptable times, the next step was to ask why not 

subdivide into even smaller batches and presumably get even shorter runtimes? What was tried, but this 

Source-Dataset does not allow subdivision below 200k, because as mentioned in section 6.3 each block of 200k 

is not uniform, and when treated separately, the second part of each block presents a high number of 

redundant observations 1998 for a total of 2000 which would introduce error in the final solution. 
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9. Conclusions 
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9.1 Contributions 

The research work described in this master's dissertation is part of a sequence of previous works produced by 

different authors, to contribute to the usage of the Logical Analysis of Inconsistent Data methodology in the 

problem of selecting features in highly dimensioned datasets. A contribution that constitutes yet another 

“brick” in the much broader construction of knowledge for the effective solution of a current and increasingly 

relevant problem. 

The approach followed is in line with current trends towards computationally intensive algorithms increasingly 

considered a paradigm shift in scientific environments, where working data is stored on HDF5 format on disk, 

and running the algorithms in parallel in a cloud High-Performance Computing environment. 

The objective of discovering how parallel processing can reduce processing times for the end-user and 

describing how the HPC paradigm applies to this problem led to the decomposition of the problem into several 

parts that we tried to answer. 

To do this the Design Science Research methodology was followed, a Systematic Literature Review was carried 

out to compile a theoretical background that supports this research. 

The key constituent parts of the HPC environment used have been described and documented, hoping that 

they will be useful in future work that will certainly take place. 

Also, about the sample dataset used, useful information and data insights were extracted that can be useful in 

future situations to which is added a work of analysis and comparison of the best strategies and layouts for 

storing information in HDF5, meeting the reading patterns required by the different steps of LAID. 

It has been fully confirmed and demonstrated that HDF5 is an excellent way to store the dataset used in a LAID 

analysis. It presents excellent performance for reading and writing. But even so, and especially in parallel use, 

it was also demonstrated that parallel code must implement ways to avoid overload to avoid degrading 

performance. The continuous layout was also indicated as the most suitable for the datasets used and the 

conditions where the alternatives can be used were described. 

As for the parallelization of the LAID algorithms, code developed in previous works was adapted and newly 

developed as needed. Which was later tested on INCD HPC environment, following a testing protocol to 

produce the results presented. To highlight the reduction from 140 minutes of the serial version to 24 minutes 

of the parallel version of a dataset with 1000k features, which represents an acceptable time and an 82% 

reduction of the previous time. 

Yet regarding this topic of parallelization, not all goals were achieved. It was left to do the parallelization of the 

LAID step 3, but even in this case, it was possible to describe what is believed to be the solution which will 

certainly go through the use of the MPI collaborative mode. 
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To the constituents of the proposed artifact, which as stated are the parallel code, the organization of HDF5 

files and datasets, the orchestration of the process. It also added an interesting set of lessons learned and 

guides that enrich it and justify the conviction about its usefulness. 

9.2 Limitations 

The absence of essential knowledge about essential concepts such as parallel programming, HPC, and HDF5 

was an initial limitation, obviously surmountable, but it required substantial effort and consumed precious 

time. 

The use of HDF5 via h5py, in the subsequent phases of the LAID analysis, especially in the creation of the DM-

Dataset, reveals some weaknesses, mainly related to some lack of flexibility that comes down to the need to 

know in advance the number of rows to create a dataset with fixed dimensions. The alternative of using 

resizable datasets also reveals little flexibility by forcing the use of chunking. In contrast, the I/O speed is very 

good, the bottlenecks found to result from excessive write operations overhead in multitasking mode, 

avoidable with the introduction of a buffer that limits the number of write operations, in favor of less writing 

but with more data at a time. This seems to be one of the golden rules. 

Attempts to reduce the DM-Dataset disk size using compression have been disappointing. 

The impact of overall workload conditions on the cluster is an issue that affects runtimes and complicates the 

act of concluding. 

Despite the potential of the Python, NumPy, h5py, HDF5 stack, especially the ease of use, details such as the 

impossibility of defining a custom data type justify considering the choice of other elements for this stack that 

allow a greater level of control even with fewer out-of-the-box features. 

9.3 Future Work 

It would be very interesting to continue the parallelization effort of the LAID steps. Using the MPI Collective 

Communication Mode and how this use impacts favorably or unfavorably on the execution of LAID algorithms, 

with an obvious emphasis on LAID’s step 3. 

It would also be interesting to search for a fast and efficient way to remove irrelevant columns while keeping 

all the original column index information intact. 

It might also be interesting to study the use of the HDF5 Virtual Dataset (VDS) feature to allow the ”merging” 

of datasets created by different parallel tasks into separate files. 

From a systems management perspective and about the future use of the LAID methodology in an enterprise 

context, it would be interesting to study ways of operationalizing it in a CLOUD as a Service context. Considering 

the essential points such as financial, technical, and operational requirements without forgetting the need for 

security and confidentiality that this kind of information requires. 
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11.1 Research align with the three Hevner cycles: Relevance, 

Design and Rigor 

 

Table 11-1 - Research align with Hevner cycles, Relevance, Design and Rigor 

Hevner Guidelines 
(Hevner, 2007) 

Peffers six-stage  
(Peffers et al., 2007)  

Work Package decomposition 

The relevance of the 
problem 

Problem identification and 
motivation 

Bibliographic research for a clear understanding of the 
problem and its different contexts, with emphasis on LAID 
and parallel computing to ensure theoretical foundations. 

Define the objectives for a 
solution 

Systematic Literature Review (SLR) for qualitative finding 
for possible solutions in analogous or related problems 

Design as an artifact 

Design and development 

Interactive 
design 
cycle 

 
 
 
 
 
 
 
 
 

 
Arrange of the data on HDF5 logical 
structure. 
New development or adaptation of 
existing algorithms i.e., the construction of 
the artifact 
 

The design 
constituting itself as 
a research process 

The experimental component will be 
carried out using parallel processing in the 
cloud infrastructure of the National 
Infrastructure for Distributed Computing 
(INCD) 

The evaluation of the 
design 

Demonstration 

Outcome evaluation 

Rigor of the Research 

Evaluation 

Final 
evaluation of 
the best 
solution 
obtained and 
evaluation of 
the 
usefulness of 
the artifact 

Two performance measures will be used to evaluate 
results: the computational time and the quality of the 
solutions. The quality of the solution is attained by two 
criteria: the minimum number of attributes that better 
explains the dataset and the accuracy of the reduced 
dataset. (Cavique et al., 2018) 
 
Also comprises fitting the Design Evaluation Methods of 
the artifact described by (Hevner et al., 2004) in three 
dimensions; Analytical, Experimental and Testing 

The research 
contributions 

Communication of 
the research and its 
results 

Communication Write and submit a paper to scientific journals 
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11.2 The Artifact 

 

11.2.1 Configuration file 

 

 
Figure 11-1 - config.json 

 
First config block legend: 

1. "Path of raw data files",  

2. "Source-Dataset file name", 

3. "Number of rows",  

4. "Number of features",  

5. "Number of classes",  

6. "Number different values on class",  

7. "Chunk type ('CONTIGUOUS', 'CHUNKED')", 

8. "Chunk row or zero (0)", 

9. "Chunk columns or zero (0)",  
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10. "Experiment reference",  

11. "DM-Dataset file name",  

12. "parameter Step for sort", 

13. "Number of features used for test only. zero (0) for all",  

14. "Auxiliary Dataset File name",  

15. "Perform Laid step 1 - Check and fix redundant and/or inconsistent observations) Y/N", 

16. "Perform Laid step 2 - Create DM-Dataset Y/N", 

17. "Perform Laid step 3 – Find solution Y/N" 

 

Second config block legend: 

1. Block 

2. File 

3. Class 

4. Row starts 

5. Column starts 

6. Row ends 

7. Col ends 

8. Rightmost column 

 

 

 

11.2.2 Python Code 

Due to the size of this code and to facilitate its future use, the option followed was to publish it in a public 
code repository. It can be found at the URL: https://github.com/ppmorgado/parallel-laid 
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11.3 Sample Output 

* ---------------------------------------------------------------- 
* Running PROLOG for LaidS on Fri Aug 20 04:46:58 WEST 2021 
*    JOB_NAME                : LaidS 
*    JOB_ID                  : 2017710 
*    JOB_PARTITION           : hpc 
*    JOB_USER                : pmorgado 
*    JOB_ACCOUNT             : hpc 
*    JOB_QOS                 : normal 
*    NODE_LIST               : hpc049 
*    SLURM_NNODES            : 1 
*    SLURM_NPROCS            : 1 
*    SLURM_NTASKS            : 1 
*    SLURM_TASKS_PER_NODE    : 1 
*    SLURM_JOB_CPUS_PER_NODE : 1 
*    SLURM_MEM_PER_CPU       : 8000 
*    WORK_DIR                : /users/hpc/pmorgado/laidp/t6 
* ---------------------------------------------------------------- 
Start job: 2017710 
2021-08-20 04:46:58,531340839 
Currently Loaded Modulefiles:   1) gcc-4.8          2) mvapich2/2.3.5   3) hdf5/1.12.0 
python version: Python 3.6.9 
working dir: /users/hpc/pmorgado/laidp/t6 
disk usage before: 1.9G . 
/users/hpc/pmorgado/laidp/t6/config.json 
Task_0; Laid Serial 2021 version 
Task_0; Experiment T6_1000k; Storage Layout of Sample Dataset CONTIGUOUS 
Task_0; Dataset from HDF5 /users/hpc/pmorgado/laidp/t6/laidp_original_dataset_1000k.h5 
Task_0; Settings loaded from HDF5 metadata: 
Task_0, number_of_rows       : 2000 
Task_0; number_of_columns    : 100000 
Task_0; number_of_features   : 100000 
Task_0; number_jnsq_features : 0 
Task_0; number_of_classes    : 1 
Task_0, Shape class_array    : (2000, 1) 
Task_0; Check and Fix redundant and/or inconsistent observations Y/N: Y 
Task_0; Sort columns; 21 number of column blocks to handle 
Task_0; Columns Sorted in; 155.8016; seconds 
Task_0; ordered_array shape (2000,) and content sample  
Task_0; positional_array shape (2000,) and content sample  
Task_0; Check redundant and/or inconsistent observations  
Task_0; Found (0) Redundant and (0) Inconsistent rows; In; 0.0012; seconds 
Task_0; redundant_array shape (0, 1) and content sample  
Task_0; inconsistent_array shape (0, 2) and content sample  
Task_0; Handle required jnsq attributes 
Task_0; created (0) jnsq attribuetes; In; 0.0000; seconds 
Task_0; jnsq_array shape (2000, 0) and content sample  
Task_0; shape disjoint_array : (100000,) 
Task_0; max of disjoint rows (worst case);1999000 effective disjoint rows;510000  
Task_0; Disjoint Matrix dataset: [510000,100000] 
Task_0, Parallel step =  2000 
Task_0, start =  0 stop =  1999 
 
Task_0; Row : 0; Class: [0]; Number of interact: 1999; Disjoint rows found: 300; in; 0.1899; 
seconds 
Task_0; Row : 1; Class: [0]; Number of interact: 1998; Disjoint rows found: 300; in; 0.1981; 
seconds 
Task_0; Row : 2; Class: [0]; Number of interact: 1997; Disjoint rows found: 300; in; 0.1983; 
seconds 
Task_0; Row : 3; Class: [0]; Number of interact: 1996; Disjoint rows found: 300; in; 0.1916; 
seconds 
Task_0; Row : 4; Class: [0]; Number of interact: 1995; Disjoint rows found: 300; in; 0.1933; 
seconds 
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Task_0; Row : 5; Class: [0]; Number of interact: 1994; Disjoint rows found: 300; in; 0.1916; 
seconds 
Task_0; Row : 6; Class: [0]; Number of interact: 1993; Disjoint rows found: 300; in; 0.1929; 
seconds 
Task_0; Row : 7; Class: [0]; Number of interact: 1992; Disjoint rows found: 300; in; 0.1937; 
seconds 
Task_0; Row : 8; Class: [0]; Number of interact: 1991; Disjoint rows found: 300; in; 0.1956; 
seconds 
Task_0; Row : 9; Class: [0]; Number of interact: 1990; Disjoint rows found: 300; in; 0.1915; 
seconds 
(…) 
Task_0; Row : 1982; Class: [1]; Number of interact: 17; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1983; Class: [1]; Number of interact: 16; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1984; Class: [1]; Number of interact: 15; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1985; Class: [1]; Number of interact: 14; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1986; Class: [1]; Number of interact: 13; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1987; Class: [1]; Number of interact: 12; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1988; Class: [1]; Number of interact: 11; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1989; Class: [1]; Number of interact: 10; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1990; Class: [1]; Number of interact: 9; Disjoint rows found: 0; in; 0.0004; 
seconds 
Task_0; Row : 1991; Class: [1]; Number of interact: 8; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0; Row : 1992; Class: [1]; Number of interact: 7; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0; Row : 1993; Class: [1]; Number of interact: 6; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0; Row : 1994; Class: [1]; Number of interact: 5; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0; Row : 1995; Class: [1]; Number of interact: 4; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0; Row : 1996; Class: [1]; Number of interact: 3; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0; Row : 1997; Class: [1]; Number of interact: 2; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0; Row : 1998; Class: [1]; Number of interact: 1; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0; Row : 1999; Class: [1]; Number of interact: 0; Disjoint rows found: 0; in; 0.0003; 
seconds 
Task_0 - Disjoint matrix generated in; 440.4836; seconds 
Task_0; max interact (worst case);1999000 effective interact;1999000  
Task_0; Total number_of_interact      : 1999000 
Task_0; Total rows_on_disjoint_matrix : 510000 
Task_0; Estimated fie size 47.497451305389404 GB without compression  
 
Task_0; selected_column; 10594 
Task_0; selected features; 1; interactions needed #;510000; time spent;1220.1627; seconds 
Task_0; selected_column; 68429 
Task_0; selected features; 2; interactions needed #;307600; time spent;1477.6641; seconds 
Task_0; selected_column; 43739 
Task_0; selected features; 3; interactions needed #;181876; time spent;1230.3814; seconds 
Task_0; selected_column; 14663 
Task_0; selected features; 4; interactions needed #;105620; time spent;974.2748; seconds 
Task_0; selected_column; 64308 
Task_0; selected features; 5; interactions needed #;60225; time spent;557.5738; seconds 
Task_0; selected_column; 22918 
Task_0; selected features; 6; interactions needed #;34257; time spent;175.1373; seconds 
Task_0; selected_column; 99741 
Task_0; selected features; 7; interactions needed #;19238; time spent;14.0505; seconds 
Task_0; selected_column; 87276 
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Task_0; selected features; 8; interactions needed #;10839; time spent;7.9455; seconds 
Task_0; selected_column; 72734 
Task_0; selected features; 9; interactions needed #;6179; time spent;4.5066; seconds 
Task_0; selected_column; 2428 
Task_0; selected features; 10; interactions needed #;3480; time spent;2.5489; seconds 
Task_0; selected_column; 98231 
Task_0; selected features; 11; interactions needed #;1884; time spent;1.3840; seconds 
Task_0; selected_column; 50112 
Task_0; selected features; 12; interactions needed #;985; time spent;0.7270; seconds 
Task_0; selected_column; 8801 
Task_0; selected features; 13; interactions needed #;531; time spent;0.3878; seconds 
Task_0; selected_column; 98460 
Task_0; selected features; 14; interactions needed #;269; time spent;0.1956; seconds 
Task_0; selected_column; 33426 
Task_0; selected features; 15; interactions needed #;135; time spent;0.1016; seconds 
Task_0; selected_column; 86941 
Task_0; selected features; 16; interactions needed #;57; time spent;0.0423; seconds 
Task_0; selected_column; 97079 
Task_0; selected features; 17; interactions needed #;21; time spent;0.0165; seconds 
Task_0; selected_column; 6 
Task_0; selected features; 18; interactions needed #;3; time spent;0.0032; seconds 
Task_0; selected features; 18; interactions needed #;0; time spent;0.0007; seconds 
Task_0; Solution found in; 5667.1110; seconds 
Task_0, number_selected_features: 18 
Task_0; shape selected_feature_array;(100000,) 
Task_0; selected_feature_array;[    6  2428  8802 10594 14664 22920 33431 43740 50117 64311 
68430 72740 86952 87282 97092 98240 98472 99747] 
 
Task_0; LAID concluded 
Task_0 Try close all HDF5 Files 
Task_0 HDF5 Files Closed 
Finished job 2017710 
2021-08-20 06:31:23,640926752 
disk usage after: 50G 

 

 


