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Abstract

Recent developments in the area of automation of in-space additive manufacture and assembly of struc-

tures has resulted in the development of in-space mobile robots that perform assembly and logistics

operations inside the International Space Station (ISS). Consequently, studies and improvements in the

area of robot Task-Motion Planning (TMP) need to be made in order to improve robot navigation. In-

spired by this, we have created a hybrid domain using PDDL that describes mobile robots navigating

through a 2D approximation sampled roadmap that are responsible for moving, loading and assembling

modules.

We have chosen a state of the art TMP approach called MPTP. However, in this approach, the motion

planner is not aware of the world’s configuration by the time it is invoked by the task planner, for we have

contributed with an added logic to the approach that allows the motion planner to be informed of the

map availability according to the actions expanded by the task planner.

We designed a scenario as a proof-of-concept to test and compare the use of task and motion

planners separately versus a mixed TMP approach. Our results illustrate that using a mixed approach

in domains such as the space assembly domain presents advantages when compared to a separate

approach since it is aware of physical motion constraints while task planning.

Keywords

Hybrid domain; PDDL; Mobile robot navigation; Task planning; Motion planning.
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Resumo

Avanços recentes na área da automação de impressão e montagem de peças 3D no espaço resultou no

desenvolvimento de robôs móveis com capacidade de movimentar e montar peças, bem como executar

tarefas de logı́stica no interior da Estação Espacial Internacional. Consequentemente, é necessário

realizar estudos e melhorias na área do planeamento de tarefas e movimento de robôs para melhorar a

sua navegação. Posto isto, criámos um domı́nio hı́brido em PDDL que descreve a navegação de robôs

móveis numa aproximação 2D de um mapa de pontos amostrados responsáveis por mover, carregar e

montar módulos.

Escolhemos uma abordagem recente de planeamento de tarefas e movimento chamada MPTP. No

entanto, nesta abordagem o planeador de movimento não tem em conta a configuração do mundo no

momento em que é invocado, pelo que contribuı́mos com a adição de uma nova lógica à abordagem

que permite que o planeador de movimento receba informação acerca das zonas do mapa disponı́veis

consoante as ações expandidas pelo planeador de tarefas.

Definimos um cenário como prova de conceito para comparar o planeamento de tarefas e movimento

em separado com o planeamento feito em conjunto. Os resultados obtidos ilustram que a utilização

de uma abordagem conjunta, em domı́nios como o de montagem no espaço, apresenta vantagens

relativamente a uma abordagem desacoplada, uma vez que o planeador de tarefas está ciente de

restrições de movimento impostas pelas ações que vai expandindo, conseguindo assim um plano de

melhor qualidade.

Palavras Chave

Domı́nio hı́brido; PDDL; Navegação de robôs móveis; Planeamento de tarefas; Planeamento de movi-

mento.
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In this chapter we will provide the motivation that led to the development of this dissertation, as well

as a description of the proposed objectives. An overview of the main contributions of this thesis is also

provided and lastly an outline of the structure of this document.

1.1 Motivation

There has been a collaboration between ISR-Lisboa and MIT Space Systems Laboratory in the context

of autonomous robotic assembly of space structures using on-orbit additive manufacturing. By enabling

the autonomous robotic assembly of space structures, near-Earth science can be improved which is the

main goal of this international partnership.

Since 2014 there is an on board 3D printer operating in the International Space Station (ISS) [1]

which enables the production of 3D parts and tools that can be used for repairing or improving existing

hardware. Figure 1.1 shows the 3D printer on board of the ISS. However this technology of 3D printing

architectures has the potential of being extended to fabricate bigger parts of space structures that can

then be autonomously assembled in space, making way for the ISS to be able to repair and re-provision

and thus being able to maintain and upgrade its own structure. By means of path planning and assembly

of 3D printed parts this would make way for exploration and scientific operations of space structures.

Figure 1.1: In space 3D printer aboard the ISS1

By analysing the ISR-Lisboa and MIT Space Systems Lab collaboration renovation proposal report

for 2020 we can see that the proposed goals are as follow:

1Image source: https://directory.eoportal.org/web/eoportal/satellite-missions/i/iss-3d-print

2

https://directory.eoportal.org/web/eoportal/satellite-missions/i/iss-3d-print


• Understand how additive manufacturing of components for on-orbit assembly can be translated

into assembly via high-level path and task planning;

• Address the problem of motion control while manipulating objects during assembly tasks under

uncertainty of inertial parameters, including problems in transportation and physical contact of

the assembler and part. Optimize trajectories to meet requirements for grasping and assembly

including constraints in dynamics, collision avoidance, and contact;

• Perform experimental validation of the developed methods using the NASA Astrobee free-flyer

robots on the ISS. It is envisioned that one or more Astrobee will be able to grasp (using its

two degree of freedom arm) and transport small objects simulating manufacturing and assembly

scenarios.

This dissertation focuses on the first described objective which concerns the autonomous assem-

bly of parts via high-level path and task planning. The work in [2] shows a thorough study of different

architectures involving in space printing and assembly of parts. Figure 1.2 shows one example of the

architectures studied in [2] where a mobile robot (represented by the circle with number 5) that is op-

erating in an environment where a 3D printer (block 4) printed three parts (represented by the modules

labeled from 1 - 3) being the first picture square the initial state and the picture square 6 being the goal

state. In this example the robot uses proximity operations to assemble the 3D printed modules next to

the printer in reverse order.

Figure 1.2: Manufacturing and assembly architecture consisting of one mobile robot (represented by
the orange circle with label 5), a 3D printer (labeled as module 4) and three printed parts
(labeled as modules 1 - 3) where the goal is for the robot to place the modules next to the

printer2

Figure 1.2 represents one possible task plan for the robot to assemble the modules into the desired

goal configuration. This may be referred to as hybrid planning since it involves discrete and continuous
2Image taken from [2]
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aspects and it is integrated in the field of task-motion planning. This is an area that has been evolving

and different approaches have been emerging: some where task and motion planning are done in a

separate and sometimes interspersed way and others where this is done in a more mixed way, where

task planning has a form of integrating motion planning. Some robots have been created in the context

of robotic space assembly. Robots like the free-flyer Astrobee [3] which was made for investigation

purposes can be used to autonomously carry out assembly tasks and logistic operations inside the ISS.

Figure 1.3 shows Astrobee inside the ISS.

Figure 1.3: Astrobee operating inside the ISS3

We want to contribute to the study of these different task-motion planning approaches in the context

of the space assembly of 3D printed parts in order to know what would be more appropriate and produce

better results in terms of solution task-motion plans for environments such as the one described in figure

1.2. For this reason, this thesis arises from the motivation of improving the area of autonomy of robotic

assemblers for assembly of space structures. More specifically, this dissertation was motivated by the

need to advance the area of task-motion planning in the context of the autonomous logistic operations

inside a space station done by robots.

1.2 Objectives

This thesis is focused on studying which type of task-motion planning approach is better suited for a

scenario of a robotic autonomous assembly of modules through experimental results in a simulated

environment. In order to reach this objective we define the following goals:

3Image source: http://spaceref.com/international-space-station/testing-the-astrobee-robotic-assistant-droid.html
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1. Definition of a space assembly domain into PDDL where free-flyer robots like Astrobee can move

and assemble parts inside an environment like the ISS; this includes defining all the actions with

their respective preconditions and effects, along with the propositions needed to accurately repre-

sent and simulate the domain;

2. Definition of problems into PDDL within the context of the space assembly domain;

3. Choosing a state of the art task-motion planning approach to run tests using the space assembly

domain;

4. Development of a new logic to implement on the MPTP approach in the sense of making the

motion planner aware of the world’s configuration at the time it is invoked by the task planner;

5. Comparison between using task and motion planning separately and using a task-motion planning

mixed approach in the context of the space assembly domain.

Our goal is consequently to help improve existing methods for automated task planning in hybrid

domains by proving which type of planning approach is better suited for domains such as the space

assembly domain where the tasks to carry out include assembly of structures and logistics operations

inside a space station. We hope that this work is a contribution to the area of autonomy of robotic

assemblers.

1.3 Contributions

The main contributions of this work include:

• Development and implementation of an approach that allows the motion planner to be informed of

the world’s configuration and map availability according to the actions expanded by the task plan-

ner. This, as the main contribution of this work, will allow an improvement on the previously existing

state-of-the-art task-motion planning approach, MPTP, by making the motion planner have an up-

dated view on the world’s configuration according to the changes imposed by the task planner’s

expanded actions;

• Development of a PDDL domain that represents in space assembly of modules by robots like

Astrobee aboard the International Space Station;

• Experimental results on the advantages of using a mixed task-motion planning approach in certain

scenarios like the space assembly domain;

5



• Development of a python script that allows the user to visually define a problem in the space as-

sembly domain and the PDDL file is automatically generated without the user having to understand

PDDL.

1.4 Outline

This thesis is organized as follows:

• In chapter 2 there is an introduction to the background concepts that support this dissertation,

followed by the state of the art approaches relevant to this work and it ends by explaining the

approach that will serve as baseline for this thesis;

• Chapter 3 is divided into two sections: the first one refers to the methodology and contains a de-

tailed explanation of the developed domain and approach used under this dissertation; the second

part refers to the implementation, where there is a thorough description of the way the approach

was implemented in terms of the developed code;

• Chapter 4 shows the tests that were made as well as the obtained results. It contains three sections

that refer to three different goals to be tested and each section has the conclusions reached by the

analysis of the obtained results.

• Chapter 5 is the culmination of all this work’s conclusions.

All the bibliographical references that are cited in this dissertation can be found in the Bibliography

section. There is also an appendix at the end, appendix A, which contains the PDDL files for the space

assembly domain and for the Columbus lab scenario problem that is described in the results section.
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We start by giving a brief introduction to the background concepts of this thesis, as well as a descrip-

tion of the current existing approaches and then explaining the state of the art planning approach that

serves as baseline for this work.

2.1 Background Concepts

The background concepts explained in this section have been studied from different sources, including

mainly the textbooks [4] and [5].

2.1.1 Propositional Logic

Propositional logic is a simple but widely used type of logic. A proposition is a declarative sentence

(or statement) that can be either true or false and is represented by a proposition symbol which is a

letter (commonly a capital letter). Propositional logic does not look into a statement’s content but instead

focuses on how statements interact with each other in terms of their logical form.

A connective can logically connect propositions to form more complex sentences. The main con-

nectives are:

• not (¬): negates a statement;

• and (∧): the conjunction of 2 propositions;

• or (∨): the disjunction of 2 propositions;

• implies (⇒): for example, if P ⇒ Q it means that if P is true, Q is also true;

• if and only if (⇔): for example, if P ⇔ Q it means that P is true if and only if Q is true.

The full meaning of the connectives is illustrated by their respective truth tables (all represented

together on Table 2.1) which will be further explained in the next paragraph.

Table 2.1: Truth tables for each connective (∧, ∨,⇒,⇔ and ¬) according to the truth value of p and q
(T : true; F : false; p and q are different propositions)

p q p ∧ q p ∨ q p⇒ q p⇔ q ¬ p
T T T T T T F
T F F T F F F
F T F T T F T
F F F F T T T

Going further into the semantics of propositional logic, to determine the truth value of connected

statements, there are truth tables. Truth tables define the truth value of connected statements for each
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and every possible combination of each statement’s truth value. Knowing the truth table of each con-

nective allows us to know the truth value of connected statements. Table 2.1 shows the truth tables for

the most commonly used connectives defined above.

There are also some properties of the connectives that are important to know to help solving more

complex propositional logic problems. These properties can be seen on Table 2.2.

Table 2.2: Properties of propositional logic connectives

Logical property Property’s name
(α ∧ β) = (β ∧ α) commutativity of ∧
(α ∨ β) = (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) = (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) = (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) = α double-negation elimination
(α⇒ β) = (¬β ⇒ ¬α) contraposition
(α⇒ β) = (¬α ∨ β) implication elimination

(α⇔ β) = ((α⇒ β) ∧ (β ⇒ α)) biconditional elimination
¬(α ∧ β) = (¬α ∨ ¬β) De Morgan
¬(α ∨ β) = (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) = ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) = ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

In section 2.1.3 it will be specified one situation where using the properties in Table 2.2 is very helpful

to solving a problem.

2.1.2 First-Order Logic

When compared to propositional logic, the main advantage of first-order logic is that it can evaluate

the content of the propositions, whereas propositional logic cannot, which means that first-order logic is

more expressive. First-order logic contains predicates and quantifiers.

A predicate is a statement that contains a variable and it cannot be given a truth value (true or false)

since the variable still has no specified value. An example of a predicate can be ”x is a student”, which

in first-order logic is represented with a shorthand notation, so in this case it would be represented, for

example, by Student(x), where Student() denotes the predicate ”is a student” and x is the variable.

It is only called a proposition when a statement contains a predicate and a subject (which is a spec-

ified value for the predicate’s variable). So, in the previous example, Student(x) becomes a proposition

when a value is assigned to the variable x, for example, the model x ← Sarah makes the proposition

Student(Sarah). This is a proposition since it has a truth value, i.e. the statement that ”Sarah is a

student” is either true or false.

A quantifier expresses the quantity of a variable:
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• universal quantifier (∀): for example, if we write ∀x : Student(x) it means that the predicate

Student(x) is true for all x (translated into a sentence it means ”Every x is a student”);

• existential quantifier (∃): for example, if ∃x : Student(x) it means that there exists at least one x

for which Student(x) is true (translated into a sentence it means ”Some x is a student”).

Both quantifiers have some relationship properties between them. These properties are represented

in Table 2.3 and they are relevant for solving more complex problems.

Table 2.3: Properties of universal and existential quantifiers

Property Property’s name
∀x : ¬P (x) ≡ ¬∃x : P (x) negation
¬∀x : P (x) ≡ ∃x : ¬P (x) negation
∀x : P (x) ≡ ¬∃x : ¬P (x) De Morgan
∃x : P (x) ≡ ¬∀x : ¬P (x) De Morgan

Just like propositional logic, first-order logic also uses the operators ∧, ∨, ⇒, ⇔ and ¬ to connect

propositions and form complex sentences. The equality symbol is also used to express that two propo-

sitions are the same, for example Mother(Sarah) = Julia, meaning that these two terms refer to the

same object.

An important concept to mention is entailment, which is represented by the symbol � and it means

that, for example if KB |= q, the knowledge base KB entails the sentence q if and only if every positive

literal in q is in KB and every negated literal in q is not.

2.1.3 Boolean Satisfiability Problem

A literal refers to a proposition or its negation (for example, p or ¬p), respectively denominated a positive

literal and a negative literal. The Conjunctive Normal Form (CNF) refers to a propositional formula

that is a conjunction of disjunctions, meaning that it is a conjunction of clauses and each clause is a

disjunction of literals. Any propositional formula that is not in CNF can be converted into it by means of

properties like the ones in Table 2.2. The formula

(x ∨ y) ∧ (¬y ∨ z) (2.1)

is a simple example of a propositional formula in CNF.

A model is the assignment of the truth value (true or false) to each propositional symbol in a propo-

sitional formula. The goal of the Boolean Satisfiability Problem (SAT) is to find a model that makes a

formula with Boolean variables true. Most SAT solvers take in formulas that are in CNF. In the case of

the propositional formula (2.1), one possible solution for the SAT problem, i.e. a model that would make
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the sentence true, would be {x = true; y = false; z = true}, for example. One way of checking if a

model makes a sentence true is by looking at the truth tables (in Table 2.1).

If a sentence is true for each and all the different models then the sentence is said to be valid. A

valid sentence can also be called a tautology. A sentence is satisfiable if there is at least one model

for which the sentence is true (or satisfied). If there is no model at all that can make the sentence true,

it is said to be unsatisfiable.

The concepts of validity and satisfiability are connected and the relationship between them is as

follows:

• α is valid ≡ ¬α is unsatisfiable;

• α is satisfiable ≡ ¬α is not valid.

2.1.4 Satisfiability Modulo Theories

Some real-world applications require a different and more expressive type of logic other than propo-

sitional logic or even first-order logic. For example, the dynamics of a robot may contain linear and

non-linear arithmetic. The way to solve the satisfiability problem for these different types of formulas

is by resorting to Satisfiability Modulo Theories (SMT), which verifies satisfiability with respect to a

background theory, since a supporting theory is required to capture the meaning of these formulas.

SMT combines the Boolean satisfiability problem with domains. The SMT problem consists of trying

to find out if it is possible to assign real values to the continuous variables that satisfy the formula

for quantifier-free first-order logic formulas over different theories, i.e. formulas that contain Boolean

combinations of polynomial equations and inequalities over continuous variables (real-valued variables).

Some examples of different theories are array theory, bit-vector and floating-point arithmetic, linear

and non-linear arithmetic, etc. The focus of this thesis will be on quantifier-free linear and non-linear real

arithmetic.

The overall way an SMT problem solver works is depicted in Figure 2.1. First, an input CNF formula

is abstracted into a Boolean formula. If the input formula is, for instance,

x ≥ 1 ∧ (y ≥ 2 ∨ x < 1) ∧ x > y, (2.2)

then its Boolean abstraction would be

p1 ∧ (p2 ∨ ¬p1) ∧ p3. (2.3)

After the Boolean abstraction is made, the formula is ready to enter the SMT solver. The solver finds

a model and the output is the theory constraints that come from that model. The theory constraints then
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Figure 2.1: Overview of SMT problem solving

enter a theory solver that verifies whether or not these constraints are consistent with the theory. If they

are, it means that the model is satisfiable (SAT) and the output of the solver is the model that corresponds

to the problem’s solution. On the other hand, if the theory constraints are inconsistent with the theory,

then the model is unsatisfiable (UNSAT) and the theory solver’s output will give an explanation (a theory

lemma) that can be, for instance, the negation of the theory constraints that are inconsistent. With this

explanation, the Boolean abstraction will be refined, changing to the conjunction of the consistent theory

constraints and the theory lemma, and the SAT solver will reattempt to find a different model.

This process is repeated iteratively until a satisfying solution is found or a boundary is met (such as

a time limit or all the possible models were checked and the problem is unsatisfiable).

2.2 Classical Planning

Planning refers to finding a model and a sequence of actions that will lead the system from its initial

state to a desired state. In classical planning, a few assumptions are made: (a) it is assumed that

the environment is finite and static, meaning that the state only changes if an action is performed,

excluding any type of effects from different agents or exogenous events; (b) it is also assumed that there

is no concurrency of events and time is not represented, assuming only a discrete set and sequence of

actions and states; (c) there is also the determinism assumption, which means that it is assumed that

there is no uncertainty when predicting the resulting state of an action in a given state, excluding any

type of execution errors and non-deterministic actions.

To sum it up, classical planning is a very simple way of planning that assumes a single agent acting
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in a fully observable world with deterministic actions. The aim of classical planning is to find a sequence

of actions that leads from an initial state to a desired goal state. This sequence of actions is called a

plan.

Finding any plan that satisfies the goal is known as satisficing planning. There is also another type

of planning that focuses, not only on finding a plan that is a solution to the problem, but also on finding

the plan with the lowest cost, i.e. the optimal plan. This type of planning is referred to as optimal

planning, however this is not the main focus of this work.

2.2.1 PDDL

McDermott first released the standard version of the Planning Domain Definition Language (PDDL) in

1998 [6, 7]. As the name states, it is a language used to define a classical planning problem domain.

This means that PDDL is a language capable of representing the four main aspects of the classical

planning domain: the initial state, the actions that can be executed in each state, the effects of each of

those actions and the goal state test.

In PDDL, a state is represented by conjunctions of fluents, for instance, Happy ∧ Student if we want

to represent the state of a person , or At(robot1, area1) ∧ At(robot2, area2) for describing a state in

which multiple robots are in different areas. Also, something like At(robot1, area1) is defined in PDDL

as a predicate, which is a relation between one or more objects. In this case, robot1 and area1 are

instantiated objects for example of the object types robot and area, respectively.

An action is represented by an action schema, which specifies the name of the action and defines

what are the preconditions necessary for the action to be able to be executed, as well as the effects that

it produces, i.e. what parts of the state change with the execution of that action. Both the preconditions

and effects are defined as a conjunction of literals. An example of an action schema for the movement

of a robot from one area to a different area is as follows:

Action(Move(r, from, to),

PRECOND : At(r, from) ∧Robot(r) ∧Area(from) ∧Area(to)

EFFECT : ¬At(r, from) ∧At(r, to))

As can be seen from the definition of the action schema’s preconditions and the concept of entail-

ment, an action a can be executed in a state s if the state entails the action’s preconditions, which can

be represented by (a ∈ ACTIONS(s)) ≡ s � PRECOND(a).

If the preconditions of an action a are satisfied by the state s, then a is applicable in s. An action

schema may contain variables that can be assigned values. An action can have multiple models that

make it applicable in a state s, making it have multiple applicable instantiations in s.

When applying an action in a state s, the resulting state s′ is defined by taking the initial state s and

removing all the negative literals in the action schema effects and adding all the positive ones. An effect
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always comes sequentially after the action’s preconditions, we can translate this as if the preconditions

occurred at time t and the effects at time t+ 1.

In order to define a planning problem using PDDL we need to provide a domain description and a

problem description. For the domain description we simply need to define all necessary action schemas

and all the predicates with their respective free variables. The problem description has to specify the

objects that will instantiate the predicates and the action schemas by replacing all the free variables, and

it also has to specify an initial state and a goal condition.

The initial state is defined as a conjunction of literals that are assumed to be true (no need to

represent the ones that are false due to the closed world assumption). Just like the preconditions and

effects, the goal is defined as a conjunction of literals that may contain variables and it describes the

result state we want to achieve.

Several versions of PDDL have emerged through the years, such as PDDL2.1 and PDDL+, which

will be mentioned in a later section of this chapter.

2.2.2 Planning as SAT

As Kautz and Selman referred in their paper in 1992 [8], it is possible to model a planning problem as

a satisfiability problem. The core idea is to encode the planning problem as a satisfiability problem and

then use a SAT solver on the encoding to find a solution. Later works improved Kautz and Selman’s

satisfiability encoding of planning problems, mainly by adding parallel encodings and substituting the

classical frame axioms by explanatory frame axioms.

For an action to be able to be executed, all its preconditions must hold at time t and all its effects

must hold at the time step t + 1. So to convert an action from a planning problem into a satisfiability

problem is to define that if an action is true then it implies that all of those action’s preconditions are also

true at the same timestamp and it also implies that all the action’s effects are true in the next timestamp

(or state).

It is also determined that only one action is allowed to occur at the same time and that it is mandatory

to have one action being executed at every time step. According to [8], as long as a complete initial state

is defined on the planning problem, all models are guaranteed to be valid plans due to these previously

defined axioms.

2.3 Hybrid Systems

Simply put, a hybrid system is one that contains both continuous and discrete state variables. When

talking about a system with multiple states, discrete variables are the ones associated with discontinuous

transitions between different states and continuous variables represent continuous evolution within a
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state. In the context of this thesis, since we are dealing with mobile robots, there is the need for a hybrid

plan since we need to know, not only the task plan, but also a motion plan for the robot.

It is possible to formally describe a hybrid model through Hybrid Automata, which allows for the

verification of a hybrid model. The following hybrid automaton definition was inspired by and adapted

from [5]. A hybrid automaton is modeled by equation (2.4),

H = (X,G, Init(vi), Inv(vi), F low(vi), Jump(eij)), (2.4)

where X = {x1, ..., xn} is a finite set of continuous variables with real values over time; G = (V,E) is

called the control graph, where vi ∈ V represents a control mode and eij = (vi, vj) ∈ E is a control

switch: the control graph refers to the discrete part of the automaton and there is a finite set of control

modes V ; Init(vi), Inv(vi) and Jump(eej) are all conditions over X; and Flow(vi) is a condition over

X; and Ẋ (which is the first derivative of X with regards to time): the Init(vi) condition is the set of

initial values of X for each control mode vi; Inv(vi) is an invariant for each control mode vi; Flow(vi)

describes the continuous change of the X variables for each control mode and Jump(eej) represents

the discrete change and it is a condition that triggers a control switch eij and when satisfied makes the

system jump from state vi to vj .

To better illustrate the concept of hybrid automata let us analyse the example on figure 2.2 (inspired

by the thermostat example from [5]): we have a system that consists of a houseplant in a vase with a

sensor that measures the volume of water in liters (L) contained in the soil and an irrigation system that

can be turned off or on according to the measured water volume.

Figure 2.2: Example of a hybrid automaton for an irrigation system in a houseplant
(W is the variable that represents the water volume in L)

For the hybrid automaton H in this example, X = {W} since there is one continuous variable W

which is the volume of water in the soil measured by the sensor. Then we have the irrigation that can

be in one of two control modes: off and on, so the set of control modes is defined by V = {on, off},

and consequently there are two control switches E = {(on, off), (off, on)} and the control graph is

G = {V,E}. It is assumed that the irrigation system is initially off, which means that the initial condition
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is Init(off) , W = 0, 4 and as we can see inside the off state in figure 2.2, the irrigation system will

remain turned off while the water volume present in the soil is bigger than or equal to 0, 2L, which means

that Inv(off) ,W ≥ 0, 2. We can also see inside the off state in figure 2.2 the equation that describes

how the water volume drops over time, i.e. the flow of the continuous variable W , so we have the flow

condition Flow(off) , Ẇ = −0, 2W . As soon as the water volume drops to less than 0,3L, the irrigation

system may turn on, which translates to the jump condition Jump((off, on)) , W < 0, 3 and the latest

that the irrigation system will turn on is when W = 0, 2L since Inv(off) ,W ≥ 0, 2.

The same reasoning applies to the other side of figure 2.2: the irrigation system will remain in

the control mode on while the water volume on the vase is below 0,8L, so Inv(on) , W ≤ 0, 8 and

while it is turned on, the volume of water on the soil increases following the equation Flow(on) ,

Ẇ = 0, 5 − 0, 01W . The irrigation system may turn off as soon as the water volume rises above 0,7L:

Jump((on, off)) , W > 0, 7 (and the latest that it will turn off is when the water volume is 0,8L, due to

Inv(on) ,W ≤ 0, 8).

The described jump conditions represent a non-deterministic jump since there is an interval of values

for the continuous variable W where the jump can happen instead of a single fixed value as it would

happen in the case of a deterministic switch. As described in the previous paragraph, the actual switch

condition is given by the combination of both the jump condition and the invariant of the control mode

(Jump + Inv). Together these two conditions define the interval of values of W for which the irrigation

system may switch for each control mode.

Adding the concept of input and output variables to hybrid automata enables the planning and acting

with hybrid models. Input and output variables contain both the set of continuous and discrete vari-

ables and the input variables can be divided into controllable and uncontrollable. The set of continuous

variables is X and the set of discrete variables can be represented by Y = {y1, ..., yn} and each yi

is a discrete variable associated with a control mode vi, similarly to a state representation. This way,

an actor can affect a hybrid model by defining the controllable continuous and discrete input variables

and it can then perceive the system’s status by analysing the output continuous and discrete variables.

Uncontrollable input variables are modeled by different dynamics, i.e. they may change according to

the environment, exogenous events, etc. Planning and acting with hybrid models is a very challenging

problem, much more complex than planning with classic discrete models.

2.3.1 PDDL2.1 and PDDL+

As mentioned in section 2.2.1, there is a version of PDDL called PDDL2.1 [9]. This PDDL version can

handle temporal considerations (scheduling) and numeric considerations (resources) and introduced,

for that purpose, numeric fluents for continuous change, plan-metrics and durative/continuous actions.

A durative action, besides having preconditions and effects, also has a duration and a way to assign
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continuous time to each precondition and effect by specifying that each one occurs in the beginning of

the action, by the end of the action or throughout the action, which corresponds to the PDDL construct

at start, at end, and over all, respectively.

A numeric fluent is similar to a predicate and is declared in the PDDL domain file as a function. A

numeric fluent is a variable that has a value throughout the plan and applies to zero or more objects

from the PDDL domain. Both actions and durative actions’ effects can change the value of a numeric

fluent. It is declared with a name, an object name and object type.

Another version of PDDL is PDDL+ [10] which is an extension of PDDL2.1 and it was created to

enable the modelling of hybrid domains. It also provides a more flexible model of continuous change

through the use of processes and events and supports modelling of exogenous events.

While an action changes the state, and a durative action is an action that lasts for a certain period of

time (it has a defined duration), a process is a durative action that holds for as long as its preconditions

are true and it can provoke a continuous effect on a state. An event is something that comes from the

outside environment and triggers a change of state, in other words it is an instantaneous action that is

not controllable and that makes the state change, negating its preconditions.

2.3.2 Hybrid System Based Planners

There are a lot of different hybrid system based planning approaches that emerged over the years and

we will briefly describe four of them in this section in chronological order of when they appeared. The first

approach that we will mention is called UPMurphi [11] (2009) and it performs universal planning using

a model checking based algorithm for hybrid and nonlinear systems. It is also able to read problem

specifications from PDDL+ files and plan for problems with time and resources constraints.

Another hybrid planning approach is DReach [12] (2015) which also uses PDDL+. This approach

is able to accommodate nonlinear change by encoding problems as nonlinear hybrid systems and then

applying Satisfiability Modulo Theories (SMT) (to know more about SMT in the context of hybrid system

planning we refer the reader to the work in [13] and [14]). This planner finds plan tubes instead of con-

crete plans because it solves a δ relaxation of the problem. This also presents heuristics for improving

SMT variable selection and pruning. This approach can prove plan non-existence.

A different approach that also uses an SMT encoding of PDDL+ domains is SMTPlan+ [15] (2016).

SMTPlan+ is also able to deal with nonlinear arithmetic and it can use any SMT solver. This planner

is also efficient in proving plan non-existence up to a certain bound and has proven to outperform

UPMurphi and DReach in terms of time and number of instances it is able to solve using different

types of domains.

A fourth and more recent hybrid system based planning approach is Optimization Modulo Theories

(OMT) [16] (2018). It is a task planner that is capable of finding optimal solutions and working in a
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multi-robot system with concurrent actions. OMT consists of SMT solving with optimization capabilities.

This approach has been used and tested in the RCLL competition where results showed that the solving

time increases with the increase in the number of robots, however the times were within the desirable

bounds according to the competition’s rules. Results also show that OMT outperforms SMTPlan+ and

produces solutions with smaller average makespans compared to other approaches.

2.3.3 POPF-TIF

Forward-Chaining Partial-Order Planning (POPF) [17] is a forward-chaining state-based search planner

designed to solve temporal-numeric problems supporting the concept of partial order planning. This

planner handles continuous linear numeric change and is based on grounded forward search combined

with Linear Programming (LP).

This planner does not sequentially build a plan, instead it builds partially ordered collections of ac-

tions. The partial ordering is achieved by delaying the commitment to ordering the decisions, timestamps

and values of the numeric parameters by managing sets of constraints as actions start and end, mean-

ing that the precise embedding of actions in time is delayed until constraints emerge. This approach

benefits from the informative search control of forward planning and at the same time it has some level

of flexibility due to its late commitment strategy. The partial ordering is done in a way that ensures the

consistency of the plan.

Since it is a temporal planner, POPF uses PDDL2.1 which supports durative-actions. However, this

is a versatile approach that can be used both for temporal and non-temporal planning and also for both

purely propositional representations or instantaneous and linear continuous numeric change. That being

said, POPF was created with the main goal of solving temporal-metric planning problems. In a problem

like this, a state is characterised by:

• the set of propositions that are true in that respective state;

• the set of values of the numeric variables;

• an event queue, which contains the actions that have started but still haven not ended their execu-

tion, as well as the respective step at which the action started;

• a list of all the temporal constraints that hold for the set of steps.

A state is updated whenever an action is added to the plan, since the action’s effects will update the

set of propositions that hold, as well as the set of values of the task numeric variables. An action can

only be applied at a certain time step as long as its effects do not interfere with the invariants of the

actions from the event queue from that current state. Since this is a temporal planning problem, the set

of temporal constraints is updated every time a step is added to the plan.
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To clarify, a plan can be seen as a sequence of steps. A durative action is an action that holds for a

certain amount of steps and its effects can be seen as instantaneous effects that take place at certain

time instants: the first step is when the action starts and it is where the at start effects become true, the

last step is where the at end effects of the action take place and all the steps in between including the

starting and last steps hold all the over all effects of the action. Any action can take place at any step as

long as its preconditions do not cause conflict with the effects of the actions that are still being executed.

That being said, each state records which steps in the plan interact with a given fact p or numeric variable

v. According to [18] POPF defines each state by keeping a record of each of the following aspects:

• F+(p) records the step of the plan that most recently introduced an add effect on the fact p (and

F−(p) for a delete effect);

• FP (p) is the set of preconditions that involve p, as well as their respective step index i. Each set

element is of the form < i, d >, where d is 0 (in case p can be deleted in parallel to step i) or ε (in

case p can only be deleted ε steps after step i);

• V eff (v) is the most recent step that introduced a numeric effect on the variable v;

• V P (v) is the set of all the steps that depend on the variable v - this includes steps that have either

preconditions, effects or duration depending on the current value of v.

As it is looking for a plan, the planner then adds the necessary ordering constraints to make sure that

the propositional preconditions, numeric preconditions, and duration constraints are always satisfied. An

important aspect of POPF is that it imposes total ordering in steps that change the value of a variable

v, imposing the order in which the steps are added to the plan. The planner also forces conditions that

depend on active process effects to stay within those processes. In general, this approach represents

a middle ground between least and total commitment, as the ordering constraints imposed by POPF

result in the metric fluents being able to maintain an unambiguous value while avoiding commitments

with ordering actions that do not affect the inserted step.

A new version of POPF was developed and introduced in [18] and its name is POPF2. There were

mainly two improvements: it can make less commitments to ordering constraints and it implements a

cost-optimisation approach that allows it to improve the first found plan by using a modified planning

graph heuristic and by using anytime search. In other words, POPF terminates after finding the first plan

while POPF2 seeks a plan that minimizes the total plan cost.

The way that POPF2 reduces the amount of ordering constraints is by doing a static analyses of the

structure of the problem with the goal of identifying patterns of numeric behaviour in order to handle

them more efficiently.

By doing this static analyses, POPF2 can identify the metric-tracking variables. These variables

correspond to what a respective problem is trying to minimize as its cost function and their values are
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only changed by the action’s effects. Since metric-tracking variables never appear in preconditions or

duration constraints, their values do not affect the correctness of the plan and their values are also not

used for numeric effects. Because of this, the order of the actions does not matter as we only need to

know what were the executed actions at the end in order to know the final value of a tracking-variable v

and POPF2 is able to update it without adding any ordering constraints.

Later, an extension of POPF2 named Forward-Chaining Partial-Order Planning with Timed Initial

Fluents (POPF-TIF) was introduced in [19] and was also explored in [20] where the authors provided

evidence that POPF-TIF is a powerful solution and extended the concept of using an external advisor.

The name comes from the fact that this planner’s goal is to handle problems with numeric Timed Initial

Fluents (TIF) which are an extension of Timed Initial Literals (TIL) (a PDDL feature that allows the

representation of exogenous events in a restricted way by assuming a value of true or false at a certain

time step known to the planner before even knowing the actions that will take place) to numeric fluents.

POPF-TIF presents two main improvements compared to POPF2: a better heuristic evaluation and the

addition of alternative search methods using a combination between Enforced Hill Climbing (EHC) and

Best First Search (BFS).

This new version of the planner is able to include exogenous events that assign values to fluents but

not exogenous events that add or delete some effect. This is possible with the TIFs and the way it is

done is by separating each domain fluent into two parts: one that is changed by the action and another

that is changed by TIFs. An example of a fluent (x) would be represented in the domain as follows:

(at end (increase (x) 1))

where an action can increase the value of (x) by 1 as an effect. It could also be represented as

(at end (increase (x) (external)))

where the value of (x) is increased by the value of the (external) variable that is a TIF and is calculated

externally.

As described in [20], POPF-TIF comes equipped with the ability to be connected to an external

solver/advisor which allows the planner to perform sophisticated mathematical operations, which is

something that PDDL alone is not prepared to handle. The connection between the planner and the

external advisor is done through semantic attachments (concept that will be further explored in section

2.5.2). This external advisor can be used to compute numeric information and more effective heuris-

tic values. This feature makes POPF-TIF a powerful framework especially for solving problems with

numeric goals.
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2.4 Sampling: Probabilistic Roadmaps

In path planning (or motion planning), the configuration space, also known as C-space, is the set of all

possible robot configurations regarding its position and orientation. There is also the concept of free

space which refers to the space where the robot can move free of obstacles.

Probabilistic Roadmaps (PRMs) [21] are a sampling method used to get an approximation of a

roadmap. They are constructed from a set of configurations sampled from a collision free C-space.

PRMs are often used to solve complex planning problems in high-dimensional C-spaces and in this

context they are better than grid graphs since they can capture the C-space structure with many fewer

nodes.

A particularity of the PRM is that the likelihood that the graph is a roadmap tends to 100% as the

number of samples tends to infinity. There are algorithms that can be used to produce a PRM graph

(nodes and edges) to approximately represent the free space. The PRM is probabilistically complete

since an increase in the number of sampled points results in a higher probability of finding a path (if one

exists).

2.5 Task-Motion Planning

Task planning is the aforementioned classical planning and it refers to the process of finding a discrete

sequence of actions that lead from a starting state to a desired goal state.

Motion planning is the process of finding a sequence of collision-free poses, with the respective

position and orientation values, that the robot has to go through to get from a starting point to a desired

goal pose.

When planning in robotics there is the need to have both a task plan of the discrete actions and

a motion plan describing the robot’s motion, but combining both is a complex problem. Task-Motion

Planning (TMP) involves an interaction between the decision-making process on both the discrete and

continuous domains. Different approaches have been suggested for TMP and this is an area of research

that keeps getting attention.

Initial TMP approaches would work by doing task planning first and then using the resulting sequence

of actions to instruct the motion planner. This is done under the assumption that the robot will be able to

carry out each motion with no restrictions, which is sometimes not the case, since there may be some

geometric constraints. Other approaches try to mix task and motion planning, presenting a task-motion

interface. The following sections will briefly show some recent TMP approaches and then get into more

detail about one of them (MPTP) due to its relevance for this dissertation.
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2.5.1 Task-Motion Planning Based Planners

In this section we compare three state of the art planning approaches which are meant for task-motion

planning: Iteratively Deepened Task and Motion Planning (IDTMP) [22] (2016), PDDLStream [23] (2020)

and Motion-Planning-aware Task Planning (MPTP) [24] (2021).

IDTMP [22] is a constraint based task-planning approach and it uses SMT as a way of making the

task planner aware of geometric constraints and have some level of motion feasibility awareness at the

task planning level. The IDTMP algorithm is probabilistically complete and is able to handle domains

with diverse actions as well as model kinematic coupling.

PDDLStream [23] is a TMP approach that extends PDDL to incorporate sampling procedures. It also

presents two new algorithms: Binding and Adaptive. These two new algorithms reduce PDDLStream

planning to solving a series of finite PDDL problems. In [23] these algorithms are compared to each

other and to previously existing algorithms and the results show that the Adaptive algorithm outper-

forms the other algorithms in three distinct domains. The Adaptive algorithm balances the time spent

searching and sampling and aggressively explores many possible bindings. This algorithm outperforms

existing algorithms (particularly in tight-constrained and cost-sensitive problems) by greedily optimizing

discovered plans. PDDLStream can be used to plan for real-world robots operating using a diverse set

of actions.

MPTP [24] is an approach that uses a task planner combined with an external solver which has a

motion planner incorporated. The task planner used is POPF-TIF, but a different one could be used. It

uses PDDL2.1 to define the task level actions and the way it works is by defining numeric fluents in the

domain and taking advantage of the concept of semantic attachments in order to have an external solver

calculate some of these numeric fluent variables, including the motion cost and the respective path plan,

returning the cost to the task planner. MPTP is optimal at the task level.

Even though all three approaches are capable of doing task-motion planning they have limitations.

PDDLStream is undecidable and its algorithms are semi-complete, meaning that it is complete only

under feasible instances. IDTMP and MPTP are both probabilistically-complete. The task-motion inter-

action in IDTMP is done by the use of abstraction and refinement functions while MPTP uses semantic

attachments as its task-motion interface.

Another difference is the fact that, while PDDLStream and IDTMP approaches both involve TMP for

manipulation, MPTP is focused on TMP for navigation. MPTP involves a motion planning aware task

planner, taking motion costs and motion plan feasibility into account.
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2.5.2 MPTP

The Motion-Planning-aware Task Planning approach (MPTP) documented in [24] is a planning approach

that will serve as baseline for this work. For this reason it is thoroughly explained in this section. Being

a Motion-Planning-aware Task Planning approach means that there is an interaction between the task

and motion planners. This approach is meant for navigating in large knowledge-intensive domains, it

is probabilistically complete and returns a solution plan that is optimal at the task level. The MPTP

framework is also prepared to deal with belief space planning, i.e. motion planning under motion and

sensing uncertainty in partially-observable state-spaces, although this is not explored within the scope

of this thesis.

In most traditional approaches, the high level task planning and the low level motion planning are

done separately and PDDL and other planning frameworks make the assumption that the motion needed

to carry out the planned tasks is achievable. However this assumption may not always be accurate, which

can result in an unfeasible plan at the execution level. To present a solution for situations like this, the

MPTP approach presents a task-motion interface layer that allows the motion planner to inform the task

planner of the motion feasibility as well as the associated costs.

In this approach, there is a set of discrete actions that can be expanded by the task planner. Every

time the task planner expands an action that requires robot motion, an external solver is called/triggered.

When this happens, the discrete symbolic parameters are converted to the corresponding continuous

geometric instantiations. These geometric instantiations are pre-sampled upon knowing the map of the

environment (a roadmap-based sampling is used, specifically PRM). For each call of the external solver

different motion plans are obtained for these instantiations and the best one is chosen according to a

specific metric. Finally, the cost associated with the chosen motion plan is returned to the task planner

and it corresponds to the cost of the associated action. Because the motion cost is returned as every

action is expanded, the resulting plan will be optimal at the task level.

The cost used in this approach is the sum of the trajectory length and the cost associated with

motion and sensing uncertainty. However, MPTP is capable of supporting any cost function and since

uncertainty is not within the scope of this thesis, the respective motion and sensing uncertainty cost will

not be considered.

Since this approach will be used to accomplish this thesis’ goal, we provide a more practical and

in depth explanation of how it works. MPTP uses POPF-TIF [19], which is an extension of POPF2

[18], as the task planner. POPF-TIF is used because it is a temporal task planner that can handle

numeric time initial fluents. It is also PDDL based, using the version PDDL2.1 since this version supports

durative actions as well as numeric fluents. The work in [19] and [20] introduces the concept of semantic

attachments, allowing the POPF-TIF planner to have an external solver call and MPTP takes advantage

of this concept to incorporate the motion planner.
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According to [20], a semantic attachment evaluates numeric fluents using externally specified func-

tions. For this interface to work, all the domain’s numeric variables are categorised either as indirect

variables (V ind), direct variables (V dir) or free variables (V free). The planner, in this case POPF-TIF,

determines the value of the V dir variables and when these values change they affect the V ind variables.

The V ind variables are calculated by the external function/advisor based on the information provided by

the planner. The V free variables are the remaining variables evaluated by the planner but they do not

trigger any external computation. Figure 2.3 shows an overall view of the described structure.

Figure 2.3: Overview of the overall structure of POPF-TIF combined with an external solver through
the use of semantic attachments, where V dir are the direct variables, V ind the indirect

variables and V free the free variables that stay within the task planner

In other words, every time the POPF-TIF planner expands an action, the planner passes the V dir

variables to the external function and in turn the advisor returns the V ind variables to the planner, so a

semantic attachment can be seen as a function that is dependent on the V dir variables and computes

the V ind variables. More precisely, when POPF-TIF first updates a state, the V dir and V free variables

are computed. If any of the V dir variables changed, then the external function is called to compute the

V ind variables and it receives all the V dir values as input.
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The approach that was used to fulfil the proposed goal is described in this chapter. The approach will

be explained from a more theoretical perspective in the first part. After that, the practical implementation

will be described in more detail, as well as the relevant developed code.

3.1 Methodology

3.1.1 The Space Assembly Domain

We consider a mobile robot navigating through a corridor inside the International Space Station (ISS)

that holds, moves and assembles modules and we refer to it as the space assembly domain. Figure 3.1

shows a portion of the ISS1 and we consider an environment similar to the Columbus lab which is the

European laboratory that has a width of approximately 6.8 meters.

Figure 3.1: Portion of the International Space Station

To simplify the problem, we consider a 2D approximation of the ISS Columbus lab as a corridor of

3 × 6 meters. This means that the environment’s map is known a priori. As can be seen in figure 3.2

we design the corridor as a grid of 1× 1 meter squares so that each of these squares can be used as a

location to the task planner when defining the domain.

In order to guarantee that each location contains at least one waypoint, the center of all grid squares

is manually added to the roadmap and labeled as shown in figure 3.3. This figure also shows how the

locations are going to be referred to in the problem file: we label each row with a letter in alphabetical

order and each column with a number i ∈ R starting with zero.

In this domain we define 3 different types of objects:

1Image from https://earth.esa.int/web/eoportal/satellite-missions/i/iss-columbus
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Figure 3.2: Representation of a 3× 6 meter 2D ISS corridor approximation in an xy coordinate axis
(wp stands for waypoint and represents an example of a sampled roadmap point and its

respective coordinates)

Figure 3.3: The 2D ISS corridor approximation with a waypoint for each location as well as the used
nomenclature for each location (the rows are identified by letters and the columns by

numbers, so the location containing wp0, for example, is location a0)

• location - a location is an area of the ISS corridor corresponding to a square from the grid approx-

imation;

• module - these are assumed to be equally sized squares that correspond to the parts that the

robot has to assemble. It is also assumed that a module occupies all the area covered by the

location where it is placed;

• robot - the mobile robot that can grab modules and navigate through the ISS.

The goal is to have the robot assemble the modules into a desired configuration. A robot may not

be carrying anything, which is encoded by the predicate (empty ?r), where r is the robot, or it may

be holding a module, which is encoded by the predicate (loaded ?r ?m), where m is the module that

is being carried by the robot r. In either case, the robot can move from one location to another using

the high-level action move_robot. To describe the current location of a robot we use the predicate

(at ?r ?l), where l is the location where the robot r is.
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If a location has a module placed on it, it is encoded by the predicate (on ?m ?l), where m is the

module placed on the location l. On the other hand, if a location does not have a module on it, then this

corresponds to the predicate (clear ?l), which encodes that the location l is clear.

One of the predicates defined in this domain is (adjacent ?l0 ?l1), where l0 and l1 are two

distinct locations that are adjacent to each other. This predicate has a crucial role in this domain, since

we consider that a robot cannot leave a module floating inside the ISS, one of the preconditions for a

robot to unload a module is that it has to be assembled to another module, which can be translated as:

only unload the module if there is another module on an adjacent location. The high-level action that

encodes a robot unloading/assembling a module is assemble. For simplicity purposes we assume that

all modules can be assembled to each other with no restrictions.

For a robot to pick up a module it has to be within the reach of the module’s location, which means

that the robot has to be at a location adjacent to a different location with a module in it. The robot also

has to be empty for it to be able to pick up a module since a robot can only grab one module at a time.

The high-level action load is the one responsible for encoding a robot grabbing a module and therefore

one of its consequences is that the robot is no longer empty, which can be translated in the negation of

the predicate (empty ?r).

In this domain there are also the following numeric fluents:

• (act-cost): this is a direct variable that models the cost associated with the actions and it will be

used as the cost to minimize by the task planner, as we will define in the problem file;

• (extern): the motion cost, an indirect variable that is returned by the external solver. In the action

that involves robot movement, after being computed by the external solver, this variable’s value will

be added to the act-cost value as an effect of this action;

• (triggered ?from ?to): a direct variable used for the action that involves robot motion (which

is move_robot) whose value is 1 at the beginning when the action is expanded and 0 once the

action duration is complete. Every time this variable changes it triggers the motion planner in the

external solver and gives two locations as arguments - these two locations represent the from and

to positions where the robot is and to where it wants to move, respectively;

• (occupied ?loc): a direct variable used for the assemble action that takes as argument the lo-

cation where a module is being placed in order to let the external solver know that this location

is now occupied. This is the core of our approach, we program the external solver to remove the

waypoints that are within this occupied location for the motion planner to know that they are no

longer available.

• (unoccupied ?loc): a direct variable used for the load action. This is the opposite of the occupied

variable, since its goal is to inform the external solver that a module was removed from a location
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which means that this location is now unoccupied and the external solver can register that the

respective waypoints became available for the motion planner to use.

The first three numeric fluents described above were already a part of the MPTP approach. The

last two were implemented by us in order to achieve this thesis goal. The PDDL code for the described

domain can be found in appendix A.

3.1.2 Choosing a TMP Approach

In order to fulfil the main goal of this thesis we need to choose an appropriate task-motion planning

approach. In chapter 2, section 2.5.1, three state of the art TMP approaches are described and com-

pared. All three approaches are capable of doing with task-motion planning, however we highlight the

MPTP approach as the most appropriate to use in the context of this dissertation. This is because while

other TMP approaches are more focused on TMP for manipulation, MPTP is focused on solving TMP for

navigation which is what the space assembly domain requires since it revolves around a mobile robot

carrying and assembling modules.

Taking into account the detailed explanation of MPTP in section 2.5.2, we proceed to explain the

improvements that were added in order to be able to make this approach more suited for our domain

and to have a more accurate task and motion plan.

3.1.3 External Solver Expansion

In section 2.5.2 it is explained that the communication between the task planner (POPF-TIF) and the

external solver is done through the use of V dir and V ind variables. In our approach there are four

direct variables: (act-cost), (triggered), (occupied) and (unoccupied); and one indirect variable:

(extern) which is calculated by the external solver.

The external solver defined by the MPTP approach mainly consists of a motion planner and it

works by using (triggered ?from ?to) and (increase (act-cost) (extern)). The triggered nu-

meric fluent is what allows the motion planner to receive information about the start and goal loca-

tions of the robot motion that the action involves and the indirect variable extern is the motion cost

computed and returned to the task planner by the external solver/motion planner. The act-cost is

the direct variable that the task planner uses to accumulate the cost of the expanded actions. Con-

sequently, (increase (act-cost) (extern)) is used as an effect in the move_robot action, since it

involves robot motion, to increase the act-cost variable by the motion cost value returned by the mo-

tion planner, while the remaining high-level actions that do not involve robot motion use something like

(increase (act-cost) n) where n is a value defined by the task planner which corresponds to the

action’s cost.
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In order to accomplish this thesis’ goal, we change the external solver to incorporate our approach

as well as the motion planner defined by MPTP. An overview of our approach is shown in figure 3.4 in

Figure 3.4: Flowchart showing an overview of planning with MPTP integrated with our approach
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the form of a flowchart. Our goal is to see if the task plan changes when the high-level actions result in

motion constraints in cases like the space assembly domain. In this domain a robot can move modules

from one location to another. By doing so, the sampled robot poses that are contained within the new

module’s location are now unavailable and this may imply that the robot has to find a different path to go

around the module, which may result in a larger path with a higher motion cost. A case like this would

mean that the task plan would have to change according to the motion planner information in order to

find the optimal plan.

We extend the external solver to keep track of a list of currently available waypoints. This includes all

the map points that belong to locations that do not have a module placed in it. Every time an assemble

action is expanded by the task planner (POPF-TIF), the (occupied ?l) numeric fluent informs the exter-

nal solver of the location l that is now occupied and the list of available waypoints is updated by removing

all the waypoints contained within the given location. A similar thing happens whenever the task planner

expands a load action: the (unoccupied ?l) fluent informs the external solver of the location that has

just been unoccupied and the list of available waypoints is updated by adding the waypoints within the

respective location.

The way that the motion planner works in MPTP is by expanding the waypoints one by one between

the initial and goal locations. By doing this, it calculates and stores the cost of each different available

path between the two locations returning the smallest cost at the end. The cost we use is the sum of

the distance between all the waypoints that constitute the path. Our implementation gives the motion

planner access to an updated list of available waypoints at all times so whenever the motion planner

is expanding the possible paths between two locations it checks if the next waypoint is available and in

case it is not available, the motion planner skips it and does not take into account for the path.

The external solver can only return numeric variable values to POPF-TIF. This means that in case

there are modules blocking all possible paths between two locations it is not possible for the external

solver to inform the task solver that there is no feasible motion plan for that particular action. To get

around this situation we make the external solver return a very high cost whenever there is no path

available in order for the task planner not to include that action in the final plan. Since the goal is to find

a plan that minimizes the act-cost variable which corresponds to the sum of all action costs from the

task planner output plan, the motion cost has an impact on the chosen plan actions.

3.2 Implementation

POPF-TIF (implemented in C++) works with the following inputs: the PDDL domain file, the problem file

and a user defined external solver/advisor (which is a dynamically loaded shared library). MPTP defines

an external solver that works as the motion planner.
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When an external solver is provided, POPF-TIF calls it using the function: virtual map<string,

double> callExternalSolver (map <string,double> initialState, bool isHeuristic). As can

be seen by the function’s declaration, POPF-TIF calls an external solver and gives the state as argument

as well as a boolean variable that states if it wants to use a heuristic or not. The MPTP approach defines

the motion planner in a function called callExternalSolver that receives the 2 given arguments, one of

them being the current state. This includes not the predicates defined on the problem.pddl file, but a

map from the names of the numeric fluents defined on the domain.pddl file to their respective current

values.

In addition to the domain.pddl and problem.pddl files, MPTP also needs three more files in order to

work and to know the environment’s map:

• edge.txt - this file contains a list of all the edges in the form of pairs of connected waypoints. If

we use the map on figure 3.3 an example of an edge would be (wp0, wp1) which are two adjacent

locations and therefore they are connected;

• waypoint.txt - this file contains a list of all the map’s waypoints, each with a respective set of

coordinates x, y and θ for the orientation. Once again, if we use the map on figure 3.3 an example

of a waypoint contained in this file would be wp0[0.5, 2.5, 0];

• region poses - this file lists the correspondence between each location and the respective set of

waypoints that is contained within that location. Using the map on figure 3.3, what would appear

in this file for location a0, for example, would be: a0 wp0, since wp0 is the only waypoint inside the

location a0.

The domain file used in this work is the one contained in appendix A and described in section 3.1.1.

3.2.1 Automatic file generation

The problem file can change according to whatever example we want to test out. Since there can be

an infinite number of problem files and consequently edge, waypoint and region poses files (because

these three change according to the map of the problem) we automated the process of creating these

four files by developing a python script to quickly be able to define new problems.

The script uses the pygame library in order to have a graphical interface that shows a grid. The size

of the grid can be changed by choosing the number of rows and columns. When running this script a

grid with the specified size will appear and three steps will be prompted:

1. first is the selection of all the locations that correspond to the initial module positions; each module

will be named m1, m2, etc according to the order of selection;
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2. then the selection of locations for the robots (the amount of locations selected will correspond to

the amount of robots used and they will be named by order of selection as r1, r2, etc);

3. lastly is the selection of the locations corresponding to the desired goal configuration for all the

modules selected in step 1.

These are all the required steps to build the necessary files. The waypoint file will define one waypoint

for every location which corresponds to the center coordinates of each grid location. For the edges we

consider that every location forms an edge with all directly adjacent locations vertically and horizontally

(diagonal edges are not considered).

All the produced problem files have in common the initialization of the (act-cost) and (extern)

variables with the value of zero and the goal of having a positive (act-cost) value (>= 0). All the files

also have in common the fact that the robots are empty in the initial and goal state definitions and the

specification of (act-cost) as the metric to minimize. They also all specify the robots and modules

(quantity and names) as well as the locations for which we use the same nomenclature described in

section 3.1.1.

3.2.2 Addition and Removal of Waypoints

Besides defining the space assembly domain and problem, our approach consists in improving MPTP

in order for it to know and update which waypoints are available while the task planner is expanding the

actions to find a solution plan.

We start by initializing a variable called available wp list which is a list of all the available waypoints.

This list is initialized with all the waypoints in the provided map and then we read from the problem.pddl

file in order to know which are the initial module locations that we initially remove from the available

waypoints list.

Then we take advantage of the fact that the external solver can receive information from the task

planner with the use of numeric fluents and define for that purpose the variables (occupied ?l) and

(unoccupied ?l) where l is the occupied or unoccupied location, respectively. Every time the task

planner expands an assemble or load action, one of the at start effects of each of these actions is to

change the value of the variables occupied and unoccupied, respectively, to 1.

Inside the external solver function there is a loop that goes through all the numeric fluents received

as the state to check which ones have a value bigger than zero (every numeric fluent is initialized as

zero so the ones which are zero did not suffer any changes). Since an action was expanded and at

least one direct variable changed (in this case either (occupied ?l) or (unoccupied ?l) changed to

1), then inside the loop either the code on listing 3.1 or the code on listing 3.2 will be triggered. The

remove wps variable present in both these listings is a global boolean variable that is true whenever
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we want to use our approach of updating the waypoints and false to use the original MPTP approach

without the waypoint removal.

Listing 3.1: C++ code for removing waypoints from the available waypoints list invoked by the occupied
numeric fluent

1 if (function =="occupied"){

2 if (value >0 && remove_wps) {

3 // Remove all the waypoints within the occupied location

4 vector <string >:: iterator it = region_mapping[location ]. begin();

5 for (; it != region_mapping[location ].end(); it++){

6 available_wp_list.remove (*it);

7 }

8 }

9 }

In the MPTP approach there is a variable called region mapping which is a map from all the locations

to their respective list of waypoints, so this is essentially a map that keeps track of the waypoints that

correspond to each location. The code on listing 3.1 will be invoked whenever an assemble action is

expanded by the task planner and the variable location is the information sent by the task planner of the

location that has been occupied. The code then loops through the list of waypoints from region mapping

associated to that location to remove all of them from the list of available waypoints.

Listing 3.2: C++ code for adding waypoints to the available waypoints list invoked by the unoccupied
numeric fluent

1 if (function =="unoccupied"){

2 if (value >0 && remove_wps) {

3 // Add all the waypoints within the unoccupied location

4 vector <string >:: iterator it = region_mapping[location ]. begin();

5 for (; it != region_mapping[location ].end(); it++){

6 available_wp_list.push_back (*it);

7 }

8 }

9 }

On the other hand, the code on listing 3.2 will be invoked whenever the task planner expands a load

action. Just like in listing 3.1, the location variable is also the information sent by the task planner and it

informs the external solver of what location has been unoccupied. The code will then loop through the
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waypoints stored in the region mapping variable associated to that location and add all of them back to

the available waypoints list.

3.2.3 Motion Planner

When the task planner expands the move_robot action, one of its at start effects is to change the value

of the numeric fluent (triggered ?from ?to) to 1. Whenever this happens, the external solver will

execute the motion planner code which expands the waypoints in order to find all possible paths from

the from location to the to location variables sent by the task planner and returning an external cost

(which corresponds to the (extern) variable) of the path with the smallest cost.

There is a loop inside the motion planner that starts with the from location, gets all of its child

nodes, i.e. all the roadmap’s poses that are directly connected to it according to the list of edges from

the edge.txt file, and iterates through all the child nodes, expanding all the possible waypoints until

reaching the goal location.

In order to incorporate our approach into the motion planner we add a step that verifies if a child node

is present in the list of available waypoints and only expand it in case it is. If it is not on the list it means

that that waypoint has a module placed on it and the robot cannot use that point as a part of its path.

Since the list is constantly updated while the planner is running, then the motion plan can be done with

updated information on the available paths. In algorithm 3.1 there is a pseudo code description of the

motion planner behaviour with our approach included and using the euclidean distance as the motion

cost.

There are situations that may require some additional steps due to the way the planner and the

external solver work. One situation is when there is no available path between the start and the goal

locations, in other words when the path is blocked by modules. In this case we would want to inform the

task planner that there is no available path between those two locations. However, POPF-TIF is only

prepared for the external solver to return the indirect variables (V ind) with numerical values in order to

update the V dir variables internally.

For this reason, in our approach, whenever the motion planner is unable to find a path because it

is blocked and there are no available roadmap points between the two locations, it returns a very high

motion cost, for example of 10000, so that the task planner will not choose that specific move_robot

action to be included in the output plan.

Another situation to take into account is that whenever the goal waypoint is not available, instead of

returning a high cost we just temporarily add it and expand it. This is because the task planner has the

ability to know that the action cannot be done since it is able to use the predicate (clear ?l) to know

that the goal location is actually not clear and has a module on it. Because the task planner will exclude

this action, the external solver does not need to.
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Algorithm 3.1: Motion planner with waypoint removal
Data: Roadmap (sampled poses and edges), start: starting location, goal: goal location
cost← 0
available waypoints list← list of the currently available roadmap poses
to expand← start
expanded← empty
while to expand is not empty do

current node← first element of to expand
child nodes← Find children of current node (all waypoints that form edges with current node)
expanded← add current node
foreach child node not in expanded do

if child exists in available waypoints list then
to expand← child

. Calculate euclidean distance between current node and child
distance←

√
(xcurrent − xchild)2 + (ycurrent − ychild)2

cost of current node← cost of current node + distance
if child is goal then

Store this path’s cost
Break out of for loop

to expand← remove current node
extern← Choose smallest path cost
Print motion path into output file
return extern
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We start by testing the difference between planning with a task planner combined with a motion

planner and planning only using a task planner (and forcing it to make a motion plan, which can be

done by changing the definition of the domain). After that, we test our waypoint removal approach in a

simple example to show how the incorporation of a motion planner with updates on the roadmap points

availability can change the robot’s motion plan. We then create a more elaborate scenario where a robot

navigates in a corridor similar to the Columbus lab using the approximation described in section 3.1.1

and represented in figure 3.2 to show how the output task plan can change by incorporating the waypoint

removal approach.

All the problem files needed for the tests were generated using the code developed for that purpose

described in section 3.2.1. POPF-TIF planner was run using Ubuntu version 18.04.

4.1 Motion Plan: Using Task Planner vs Using Motion Planner

To test the difference between using only the task planner (and getting a motion path by changing the way

the domain is defined) and using the task planner along with a motion planner with the domain definition

described in section 3.1.1 we made a simple change in the domain file from listing A.1: we added

the precondition in listing 4.1 to the move_robot action, which forces the robot to only move between

adjacent locations. This way the solution plan outputted by the task planner will have a description of

the locations where the robot had to walk through in order to get from one location to another.

Listing 4.1: Precondition added to the domain file to force the robot to only be able to move between
adjacent locations

1 ( at s ta r t ( ad jacent ?from ?to ) )

When the external solver is being used, the move_robot action’s cost is the cost returned by the

motion planner. Since we are only using the task planner in this test we changed this cost to a fixed

value of 1.

The problem that was defined for this test is shown in figure 4.1 where the blue squares represent

the positions of the three modules numbered from 1 to 3 and the red circle represents the mobile robot.

We can see from figure 4.1(a) that the robot’s initial position is a0 and modules 1, 2 and 3 are initially in

locations c0, c1 and b7, respectively. From figure 4.1(b) we can see that only module 2 is required to be

relocated as its goal position is location b6. This problem requires the robot to move close to module 2

and then move once again to take the module to its goal position.

In this test we are going to run the task planner with two different domains: the one in listing A.1 and

the same one but with both changes mentioned above forcing the robot to only move between adjacent

locations.
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(a) Initial state

(b) Goal state

Figure 4.1: Visual representation of a problem in a 4× 8 map with three modules and one mobile robot
where the blue squares represent the module positions and the red circle represents the

initial robot position

The output from POPF-TIF after running with the original domain was the one in table 4.1 and the

POPF-TIF output after running with the modified domain that forces movement between adjacent lo-

cations is the one in table 4.2. In both figures the numbers inside the squared brackets represent the

duration of the respective action and the numbers on the left of each action represent the sum of the

actions duration so far.

As we can see, the output plan for the original domain in table 4.1 is composed by four actions.

There is a move action for the robot to go from region a0 to b1, when in b1 the robot can execute a load

action and load module m2 which is within the robot’s reach since the module’s location is c1 which is

adjacent to the current robot’s location b1. Then another move_robot action is executed from b1 to a6

where the robot can then unload module m2 at its goal location b6 assembling it to module m3 which is
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Table 4.1: POPF-TIF output after running the problem defined in figure 4.1 with the domain described
in listing A.1

Actions
0.000: (move_robot r1 a0 b1) [20.000]

20.001: (load r1 m2 b1 c1) [5.000]

20.002: (move_robot r1 b1 a6) [20.000]

40.003: (assemble r1 m2 m3 a6 b6 b7) [10.000]

in the adjacent location b7. The total plan cost is 4 and the total planning time was 0.13 seconds.

By running the task planner alone with this domain we cannot have an idea of the path that the robot

has to take in each move_robot action. However, by running the task planner using the modified domain,

as table 4.2 shows, the output plan discriminates all the locations that the robot goes through and thus

having a motion plan. As the plan indicates, to get from a0 to c2 the robot goes through locations a1, a2

and b2 and in the second move_robot action the robot starts in its current position c2 and it goes through

locations c3, c4, b4 to finally reach c5. The total plan cost is 10 and the total planning time was 0.35

seconds.

Table 4.2: POPF-TIF output after running the problem defined in figure 4.1 with the modified domain
that forces robot movement between adjacent locations only

Actions
0.000: (move_robot r1 a0 a1) [20.000]

20.001: (move_robot r1 a1 a2) [20.000]

40.002: (move_robot r1 a2 b2) [20.000]

60.003: (move_robot r1 b2 c2) [20.000]

80.004: (load r1 m2 c2 c1) [5.000]

80.005: (move_robot r1 c2 c3) [20.000]

100.006: (move_robot r1 c3 c4) [20.000]

120.007: (move_robot r1 c4 b4) [20.000]

140.008: (move_robot r1 b4 b5) [20.000]

160.009: (assemble r1 m2 m3 b5 b6 b7) [10.000]

Comparing both results we can see that using the domain definition to force this kind of motion plan

implies a higher cost: the original domain had a cost of 4 while the one that forced a motion discrimination

had a cost of 10; and it also implies a higher execution time: the original domain had an execution time

of 0.13 seconds while the other one was 0.35 seconds which is almost 3 times higher. In problems that

require a larger amount of move actions the cost would increase exponentially, as well as the execution

time, proving that making the task planner do a motion plan is not an efficient approach compared to

using a domain that implies less actions and combining it with an external motion planner.
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4.2 Motion Plan With Waypoint Removal

In order to see the difference between the motion plan produced by the original MPTP approach and the

motion plan produced by MPTP with waypoints update we define a problem where a robot needs to go

around some modules in order to get to its goal location. For that purpose we define the problem that is

visually represented in figure 4.2.

(a) Initial state (b) Goal state

Figure 4.2: Visual representation of a problem in a 4× 4 map with five modules and one mobile robot
where the blue squares represent the module positions and the red circle represents the

initial robot position

Figure 4.2(a) shows the initial configuration of the five modules and the initial robot position which is

a2. The goal configuration is shown in figure 4.2(b) where the only module that changed position was

module m1 which started in location a3 and whose goal location is d3. So the goal of this problem is for

the robot to get module m1 from its initial to its goal location.

After running POPF-TIF with both the original MPTP external solver and MPTP with the waypoint

removal approach, both output plans were the same and the one shown in table 4.3.

Table 4.3: POPF-TIF output after running it with both the original MPTP external solver and MPTP with
the waypoint removal approach - the output task plan was the same

Actions
0.000: (load r1 m1 a2 a3) [5.000]

0.001: (move_robot r1 a2 d2) [20.000]

20.002: (assemble r1 m1 m5 d2 d3 c3) [10.000]

Both plans include one load action where the robot loads module m1, followed by one move_robot

action where the robot goes from a2 to d2 and then an assemble action where the robot assembles
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module m1 to m5. The difference between the two plans is in the motion path and consequently in the

total plan cost.

We consider a cost of 1 for both the load and assemble actions. The motion planner cost is the

calculated euclidean distance between all the waypoints included in the robot’s path from one location

to another. In this case we are using a map that has one waypoint for every location which corresponds

to its center coordinates. For this reason, the motion cost between every two adjacent locations is going

to be 1. The labels of the roadmap points are shown in figure 4.3.

Figure 4.3: Roadmap points used in the problem described in figure 4.2 and their respective labels as
well as labeling of grid locations (rows are identified by letters and columns by numbers)

The motion paths outputted by the output motion.txt file for both approaches is shown in figure 4.4.

For the first approach the cost was 5. This corresponds to a cost of 1 from the load action plus 1 from

the assemble action and a remaining cost of 3 for the move_robot action. The output motion path that

could be seen by the output motion.txt file was the following sequence of waypoints (reading from left

to right and taking into account the waypoints nomenclature of figure 4.3): wp2→ wp6→ wp10→ wp14.

This motion path is highlighted in figure 4.4(a).

For the second approach with waypoints removal the total plan cost was 9. This cost corresponds

to the sum of a cost of 1 from the load action with another cost of 1 from the assemble action with a

remaining cost of 7 for the move_robot action. This move action has a higher cost than the previous

approach since the waypoints from all the locations that contain a module were removed. This includes

waypoints wp6, wp7, wp9 and wp11 which the robot is not able to use for its path. For this reason,

the outputted motion plan for this second approach was a sequence of roadmap points that go around

the modules as follows: wp2 → wp1 → wp0 → wp4 → wp8 → wp12 → wp13 → wp14. A visual

representation of this motion path can be seen in figure 4.4(b).

Comparing both results we conclude that using the roadmap points update approach is beneficial in

situations like the one described in this section where there are obstacles that are unknown to the task
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(a) Original MPTP (b) MPTP with waypoint removal

Figure 4.4: Motion plan (represented by the dark red arrows) outputted by MPTP and by MPTP with
the waypoint removal approach for the problem in figure 4.2

planner due to the way the domain is defined (which is a domain that implies less actions and whose

advantages were explained in section 4.1). Even though results from figure 4.4(b) imply a higher cost

than the results from figure 4.4(a), the motion plan is better and more accurate since the one in figure

4.4(a) would fail at the robot’s execution phase due to physical motion constraints that were not taken

into account during the planning phase.
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4.3 Columbus Lab Scenario

The Columbus lab scenario consists in a simple environment which was specifically designed as a

proof-of-concept to compare and study the advantages of using an integrated task-motion planning

approach in contrast with using task and motion planning separately. This scenario consists of the

domain described in section 3.1.1 with a map that is similar to a 2D approximation of the ISS Columbus

laboratory (hence the name Columbus lab scenario), which is the European laboratory. The map used in

this test can be seen in figure 3.2 and uses the location’s names and the exact roadmap points pictured

in figure 3.3, which means that each location contains a roadmap point that corresponds to its center

coordinates. The problem that was defined for this test is depicted in figure 4.5 where there is a mobile

robot and five modules that are to be all moved to a different configuration.

(a) Initial state

(b) Goal state

Figure 4.5: Visual representation of the Columbus lab corridor problem in a 3× 6 map with five
modules and one mobile robot where the blue squares represent the module positions and

the red circle represents the initial robot position
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The modules are labeled from 1 to 5 and their initial positions are the ones shown in figure 4.5(a)

which are a0, b0, b1, b2 and b3, respectively. The robot’s initial location is c0, close to module m2. The

robot has to move all modules to their goal locations which are b3, a3, b4, a4 and a5, respectively.

After running this problem using only the task planner POPF-TIF we get the output solution plan

detailed in table 4.4. The table shows all the output task plan actions in order. This is a valid plan and

all move_robot actions have at least one possible path with no modules blocking it, which means that if

we were to do motion planning after this task plan it would be possible to find a valid motion plan with

no modules blocking the way.

We proceeded to manually build the motion plan with the smallest cost possible by following the

given task plan and taking into account all the module positions upon the execution of each load and

assemble action. The result was the motion plan described in figure 4.6.

Taking the motion plan in figure 4.6 we then calculated the euclidean distances of all the paths that

make up the motion plan in order to know the total plan cost of solving this problem using task and motion

planning separately. The cost of each action is shown in table 4.4 in front of the respective actions as

well as the total plan cost at the bottom of the table. The cost of the solution by doing task planning

separately from motion planning is 55.

Table 4.4: Output task plan obtained by running the problem described in figure 4.5 using only the task
planner (POPF-TIF) and the cost associated with each action (the costs of the move robot

actions were calculated using the motion plan described in figure 4.6)

Actions Cost
0.000: (load r1 m2 c0 b0) [5.000] 1
0.001: (move_robot r1 c0 a4) [20.000] 6
20.002: (move_robot r1 a4 a2) [20.000] 2
40.003: (assemble r1 m2 m5 a2 a3 b3) [10.000] 1
50.004: (load r1 m4 a2 b2) [5.000] 1
50.005: (move_robot r1 a2 b4) [20.000] 5
70.006: (assemble r1 m4 m2 b4 a4 a3) [10.000] 1
70.007: (move_robot r1 b4 b5) [20.000] 1
90.008: (move_robot r1 b5 a1) [20.000] 7
110.009: (load r1 m1 a1 a0) [5.000] 1
110.010: (move_robot r1 a1 b2) [20.000] 2
130.011: (assemble r1 m1 m2 b2 a2 a3) [10.000] 1
140.012: (load r1 m3 b2 b1) [5.000] 1
140.013: (move_robot r1 b2 b5) [20.000] 5
160.014: (assemble r1 m3 m4 b5 b4 a4) [10.000] 1
160.015: (move_robot r1 b5 b2) [20.000] 5
180.016: (load r1 m5 b2 b3) [5.000] 1
180.017: (move_robot r1 b2 b5) [20.000] 5
200.018: (assemble r1 m5 m4 b5 a5 a4) [10.000] 1
200.019: (move_robot r1 b5 b2) [20.000] 5
220.020: (load r1 m1 b2 a2) [5.000] 1
225.021: (assemble r1 m1 m2 b2 b3 a3) [10.000] 1

TOTAL: 55
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Figure 4.6: Task plan outputted by running the problem from figure 4.5 using only the task planner
(POPF-TIF) as well as the correspondent visual representation of the minimum cost

manually built motion plan for every move robot action (labeled with capital letters A-J); r
represents the robot and r − n stands for the robot loaded with module n
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Then we ran the Columbus lab scenario using MPTP along with the waypoint removal approach (in

order to get an accurate motion plan for this domain) and we obtained the solution task plan detailed in

table 4.5. This table also shows the cost associated with each action, being the move_robot action cost

the one calculated by the external solver with the roadmap points update.

This test’s motion plan was printed in the output motion.txt file and its graphical representation is

shown in figure 4.7 by the red arrows. There is a path representation for each move_robot action. The

total solution plan cost for this approach is the one shown at the bottom of table 4.5 which is 41.

Table 4.5: Output task plan obtained by running the problem described in figure 4.5 using a mixed task
and motion planning approach (MPTP) with the waypoint removal approach and the cost

associated with each action

Actions Cost
0.000: (load r1 m2 c0 b0) [5.000] 1
0.001: (move_robot r1 c0 a4) [20.000] 6
20.002: (move_robot r1 a4 a2) [20.000] 2
40.003: (assemble r1 m2 m5 a2 a3 b3) [10.000] 1
50.004: (load r1 m4 a2 b2) [5.000] 1
50.005: (move_robot r1 a2 b4) [20.000] 5
70.006: (assemble r1 m4 m2 b4 a4 a3) [10.000] 1
70.007: (move_robot r1 b4 b5) [20.000] 1
90.008: (move_robot r1 b5 b2) [20.000] 5
110.009: (load r1 m5 b2 b3) [5.000] 1
110.010: (move_robot r1 b2 b5) [20.000] 3
130.011: (assemble r1 m5 m4 b5 a5 a4) [10.000] 1
130.012: (move_robot r1 b5 b2) [20.000] 3
150.013: (load r1 m3 b2 b1) [5.000] 1
150.014: (move_robot r1 b2 b3) [20.000] 1
170.015: (assemble r1 m3 m4 b3 b4 a4) [10.000] 1
170.016: (move_robot r1 b3 b2) [20.000] 1
190.017: (move_robot r1 b2 a1) [20.000] 2
210.018: (load r1 m1 a1 a0) [5.000] 1
210.019: (move_robot r1 a1 b2) [20.000] 2
230.020: (assemble r1 m1 m2 b2 b3 a3) [10.000] 1

TOTAL: 41

The main difference between both approaches is that the first one does task and motion planning

separately by doing the task planning first and only later the motion planning, while the second approach

does task-motion planning combined using the MPTP approach. Starting by comparing both results in

terms of the task actions we can observe that the actions as well as the sequence of actions differs from

the first approach to the other. This is because the second approach is aware of the motion constraints

as the robot loads and assembles modules into different positions of the map and with the incorporation

of the motion planner along with that information, the task planner is able to choose the actions in a more

informed way, so it will switch the order in which the robot moves modules in order to avoid producing

motion constraints that will imply a higher cost when doing the motion plan, which is what happened in
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Figure 4.7: Task plan outputted by running the problem from figure 4.5 using a mixed task-motion
planing approach (MPTP) with the waypoint removal approach as well as the

correspondent visual representation of the outputted motion plan (as outputted in the
outputmotion.txt file) for every move robot action (labeled with capital letters A-K); r

represents the robot and r − n stands for the robot loaded with module n
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the case of the first approach.

From this comparison we can conclude that an informed mixed task-motion planning approach allows

the motion planner to be aware of the physical constraints imposed by the task planner’s expanded

actions while planning, which will help produce a solution plan with a smaller cost, and consequently with

higher quality than the one produced by the task planner working separately from the motion planner.

We can also conclude that the task plan, i.e. the discrete actions that are executed as well as their order,

may change when using this mixed informed approach in order to accommodate a feasible, realistic and

smaller cost motion plan, which is highly beneficial in scenarios like the space assembly domain that

involve robot navigation.
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5.1 Conclusions

Planning in domains like the space assembly domain where a mobile robot navigates through the en-

vironment to move and assemble parts can be challenging since it involves task-motion planning. We

have seen that it is possible to define the domain in a way that we can obtain some sort of motion plan by

only using the task planner if we force the robot to only move between adjacent locations. We can even

divide the map into smaller areas that we would define as locations in order to have a more accurate

motion plan. However, by performing the tests described in section 4.1 we can conclude that this is not

a very efficient way of performing task and motion planning combined since this implies a very high cost

which only gets higher for problems that involve more robot movement actions. It is also a very time

consuming approach which might make it difficult to find a solution plan within a reasonable amount of

time.

We introduced an improvement into the MPTP approach that enabled the external solver to inform

the motion planner of the availability of each roadmap point, updating this information according to the

actions expanded by the task planner, while the planner is working to find a solution. After running some

tests, we were able to show that using this informed task-motion planning approach was highly beneficial

in the space assembly domain in comparison to running the task planner and then the motion planner

separately. This is due to the fact that the mixed TMP approach is able to produce a more realistic task

plan since it takes into account some motion constraints. By doing task and motion planning separately

the task planner can in some situations produce a plan that may be unfeasible due to motion constraints

or it can also be a task plan that implies a higher motion cost than other possible task plans.

In section 4.3 we showed a problem that we defined as the Columbus Lab scenario where we made

a 2D approximation of the ISS European laboratory and defined a problem with a mobile robot and

five modules to assemble into a goal configuration. With this example we were able to test both TMP

approaches and conclude that the mixed informed TMP approach produced better results as some

physical constraints imposed by the task planner’s expanded actions were taken into account during

planning, which led to a sequence of high-level task actions that produced a lower cost motion plan and

an overall lower total cost for the task-motion plan. This shows that using a mixed TMP approach in

scenarios that involve robot navigation is very beneficial in terms of task-motion plan quality.

5.2 System Limitations and Future Work

This work could be extended to a multi-robot environment where the task-motion planning could be

informed of each robot’s location while expanding the actions during the planning phase. This will allow

the planner to build a solution plan that is more likely to be feasible at the execution level due to taking

more motion constraints into consideration early on. This would allow some sort of collision avoidance
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mechanism for the robots not to collide due to the produced task-motion plan.

It could also be extended to take into account a micro-gravity environment, making it into a more

accurate approximation of the in-space autonomous assembly. Future work should also be improved to

a 3D simulation of the environment and include the 3D free-flying motion range of in-space assembler

robots like Astrobee.

Another possible improvement would be to use a different task planner to study how the solution

plan’s quality would change as well as the time required to plan in more complex problems and how it

would change in terms of plan optimality.
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A
Domain and Problem Code

This appendix contains all the relevant PDDL code that was developed in the context of this thesis.

Listing A.1 defines the domain described in section 3.1.1.

Listing A.1: Space assembly domain

1 ( define ( domain space assembly )

2 ( :requirements :typing :cond i t iona l -e f fec ts :equa l i ty : f luents

3 :durat ive-act ions : n u m e r i c - f l u e n t s :negative-precondit ions : a c t i o n - c o s t s )

4

5 ( :types module l o c a t i o n robot - ob jec t )

6

7 ( :predicates ( on ?m - module ? l - l o c a t i o n )

8 ( at ?r - robot ? l - l o c a t i o n )

9 ( loaded ?r - robot ?m - module )

10 ( c l ea r ? l - l o c a t i o n )

11 ( empty ?r - robot )

12 ( ad jacent ? l0 ? l1 - l o c a t i o n ) )

13
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14 ( : functions ( a c t - c o s t )

15 ( ex tern )

16 ( t r i g g e r e d ?from ?to - l o c a t i o n )

17 ( occupied ?loc - l o c a t i o n )

18 ( unoccupied ?loc - l o c a t i o n ) )

19

20 ( :durat ive-act ion load

21 :parameters ( ?r - robot ?m - module ? robo t l oc ?module loc - l o c a t i o n )

22 :durat ion ( = ?dura t ion 5)

23 :condit ion ( and ( at s ta r t ( empty ?r ) )

24 ( at s ta r t ( at ?r ? robo t l oc ) )

25 ( at s ta r t ( on ?m ?module loc ) )

26 ( at s ta r t ( ad jacent ? robo t l oc ?module loc ) ) )

27 : e f f e c t ( and ( at s ta r t ( increase ( unoccupied ?module loc ) 1 ) )

28 ( at s ta r t ( not ( empty ?r ) ) )

29 ( at end ( loaded ?r ?m) )

30 ( at end ( not ( on ?m ?module loc ) ) )

31 ( at end ( c l ea r ?module loc ) )

32 ( at end ( assign ( unoccupied ?module loc ) 0 ) )

33 ( at end ( increase ( a c t - c o s t ) 1 ) ) ) )

34

35 ; Unload only i f there i s a module on an adjacent l o c a t i o n

36 ( :durat ive-act ion assemble

37 :parameters ( ?r - robot ?m0 ?m1 - module

38 ? robo t l oc ?goal module loc ?adj module loc - l o c a t i o n )

39 :durat ion ( = ?dura t ion 10)

40 :condit ion ( and ( at s ta r t ( loaded ?r ?m0 ) )

41 ( at s ta r t ( c l ea r ?goal module loc ) )

42 ( at s ta r t ( at ?r ? robo t l oc ) )

43 ( at s ta r t ( ad jacent ? robo t l oc ?goal module loc ) )

44 ( at s ta r t ( ad jacent ?goal module loc ?adj module loc ) )

45 ( at s ta r t ( on ?m1 ?adj module loc ) ) )

46 : e f f e c t ( and ( at s ta r t ( increase ( occupied ?goal module loc ) 1 ) )

47 ( at s ta r t ( not ( loaded ?r ?m0 ) ) )

48 ( at s ta r t ( not ( c l ea r ?goal module loc ) ) )

49 ( at end ( empty ?r ) )

50 ( at end ( on ?m0 ?goal module loc ) )

51 ( at end ( assign ( occupied ?goal module loc ) 0 ) )

52 ( at end ( increase ( a c t - c o s t ) 1 ) ) ) )

53

54 ( :durat ive-act ion move robot

55 :parameters ( ?r - robot ?from ?to - l o c a t i o n )

56 :durat ion ( = ?dura t ion 20)

57 :condit ion ( and ( at s ta r t ( at ?r ?from ) )

58 ( at s ta r t ( c l ea r ?to ) ) )
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59 : e f f e c t ( and ( at s ta r t ( increase ( t r i g g e r e d ?from ?to ) 1 ) )

60 ( at s ta r t ( not ( at ?r ?from ) ) )

61 ( at end ( c l ea r ?from ) )

62 ( at end ( at ?r ?to ) )

63 ( at end ( assign ( t r i g g e r e d ?from ?to ) 0 ) )

64 ( at end ( increase ( a c t - c o s t ) ( ex tern ) ) ) ) )

65

66 )
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