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Resumo

O desenvolvimento das aeronaves não tripuladas (UAV) aumentou nos anos mais recentes, devido às

vastas aplicações, que estas já desempenham na sociedade. Naturalmente, o software e o hardware

dos pilotos automáticos usados pelos veı́culos aéreos não tripulados também acompanhou a evolução,

sendo que uma das preocupações destes sistemas é mitigar ou eliminar erros que possam ter con-

sequências negativas e inesperadas em prejuı́zo dos utilizadores ou de terceiros. É sobre o desen-

volvimento de um sistema de detecção e tolerante a falhas, aplicado no piloto automático de UAV que

a presente tese incide.

A partir do estudo dos conceitos de fialibilidade e redundância justificou-se que três unidades de

pilotos automáticos são suficientes para integrar o sistema.

Após análise de vários pilotos automáticos disponı́veis comercialmente de código aberto, o PX4 foi

o escolhido.

A biblioteca de controlo de estimação é o módulo mais complexo do PX4 firmware e por padrão,

utiliza sete instâncias independentes do filtro de Kalman estendido ao mesmo tempo, oferecendo re-

dundância ao nı́vel do estimador e capacidade de detecção de falhas graves e leves. Cada estimador

é avaliado através das suas inovações e variância das mesmas.

O algoritmo de decisão foi projectado num anel externo baseado nos resultados finais destes mecan-

ismos redundantes existentes no firmware. A selecção do piloto automático é calculada de forma

descentralizada, dentro de cada um, e em permanente comunicação com os outros dois pilotos au-

tomáticos.

O sistema de tripla redundância foi validado no software-in-the-loop com o simulador Gazebo.

Palavras-chave: Veı́culo aéreo não tripulado, PX4 Firmware, Filtro de Kalman estendido,

Detecção de falhas, Sistema tolerante a falhas.

ix



x



Abstract

Recently the unmanned air vehicle (UAV) development has been increasing due to the large number of

applications these already play at the society. Naturally, the autopilots software and hardware caught

up the UAV development. The mitigation or elimination of these system failures, which can imply unex-

pected behaviours with losses to the users and to others, has become a concern. Developing a fault

detection and tolerant system to the autopilot is the main objective of this thesis.

From the reliability and redundancy concepts study, it was concluded that three autopilot units are

enough to integrate the system.

After analysing some commercial-of-the-shelf open source autopilots, the PX4 firmware was chosen.

The estimation control library is the most complex module from the firmware. By default it uses seven

independent extended Kalman filter instances at the same time, offering redundancy to the estimator

level and capability for soft and hard fault detection. Each estimator health is evaluated through its

innovations and innovations variance.

The decision algorithm was computed on the external ring based on the final results from all these

redundant mechanisms existing at PX4 firmware. The selection is computed in such a decentralized

way, inside each autopilot permanently on communication with the other two.

The triple redundancy system was validated running the software-in-the-loop with the gazebo simu-

lator.

Keywords: Unmanned air vehicle, PX4 firmware, Extended Kalman filter, Fault detection, Fault

tolerant system
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Chapter 1

Introduction

This chapter provides the main goals of this thesis complemented with a research about existent systems

on the market which share the same purposes of this topic. Also the motivation for the project followed

by a basic outline of the structure of this thesis can be found here.

1.1 Motivation

”Automation is ubiquitous in many modern work settings, but perhaps most so in aviation. Automation

in aviation, as in other domains, has increased demands on the pilot to monitor systems for possible

failures. As research on vigilance has shown, this is a role for which humans are poorly suited.” [1].

To support this transcription, two examples from accidents related with automation overreliance by

humans are given below. In 1979, the crew from Eastern Flight 401 failed to detect the autopilot disen-

gaging and did not monitor altitude because they were engaged in a possible problem with the landing

gear and the aircraft crashed into the Florida Everglades.

The crew from China Airways Flight 006 preoccupied with an engine problem, did not notice the

autopilot gradually loosing control of the plane in 1985.

On both mentioned incidents, the crew was at the end of a long shift, was highly qualified, should have

detected the occurrence, were preoccupied with another task and may have overrelied on automated

systems. It can be concluded that under certain conditions, pilot overreliance on automation can make

detecting failures problematic since pilots may ignore other sources of information.

The problems in monitoring automated systems are further evident when analysing pilots reports of

incidents.

NASA’s Aviation Safety Reporting System (ASRS) database was examined by Mosier et al. (1994).

The conclusions are: 77% of the incidents in which overreliance on automation was suspected, involved

a probable vigilance failure as well as the vast majority of them occurred during cruise, when the pilot

primary role was to monitor and supervise the automation.

By studying anonymous responses to questionnaires about automation-related incidents from Ger-

man aviators, Gerbert and Kemmler (1986) reported the largest contributor to human error to be failures
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of vigilance.

So it is assumed that automatic pilots fail as well as the people responsible for monitoring those

fails. Despite of being older, these reports provide good indications to the problem. Based on the last

conclusion, the research started by aircraft systems with the functionalities of acquiring and analysing

the flight data looking for possible faults.

The Unmanned aircraft systems (UAS) belong to the aeronautics field as well and they have been

playing an important role through the military sector. UAS include an Unmanned aerial vehicle (UAV),

a ground-based controller and a system of communications between the two. The UAV came from the

airplanes following an historical perspective. So the framework about automation and fault reporting

systems used on airplanes plays an important role because the knowledge was adapted to develop the

most recent fault detection systems used by UAV.

Large (e.g., Global Hawk, Predator) and smaller unmanned aircraft (e.g., Wasp, Nighthawk) are mili-

tary examples of this technology development around the world. They are used in numerous applications

such as surveillance, communication relays or reconnaissance.

Nowadays, the challenge became the UAV civil and commercial applications. Although this technol-

ogy greater potential has been recognised, the society is still far from achieving all its utilities.

Some examples from UAV applications already used:

• Fire Detection - powerful to cover large areas using their mobility on the forests combining with

cameras and sensors to detect fire [2];

• Rescue Operations - facilities to access inhospitable places for humans [3];

• Farming - useful for irrigation managing and vegetation monitoring [4];

• Sport coverage - guarantees a lot of new stable positions and angles for cameras [5];

• Law enforcement - using cameras as payloads allows permanent vigilance from many places or

even autonomous inspection [6];

• Transportation - it allows to choose the direct routes through the atmosphere while carrying pay-

loads [7].

It is easy to predict that in the near future the civil applications will increase because of this technology

improvements.

Since these aircraft are unmanned, they are strongly related with the automation development due

to the airborne software/hardware necessary to be operated.

When the automation is introduced somewhere, the faults theme will follow it, becoming crucial if the

designers want the system working properly, detecting and reducing the corresponding faults as well as

its amplitude to reasonable numbers.

1.2 State Of The Art

Various type of systems related with faults were studied. Mechanical faults were considered beyond the

hardware and software faults.
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1.2.1 Market Overview - Fault Diagnose Systems

Health and Usage Monitoring System

”Health and Usage Monitoring System provides diagnosis information required for optimum performance.”[8]

Health and performance of mission-critical components are measured by sensors and monitored by

HUMS embedded diagnostic software alerting for the maintenance need of those components.

Some tasks provided by HUMS:

• Continuous vibration monitoring of drive-train;

• Performs rotor, track and balance;

• Provides actionable information for informed maintenance decisions;

• Pinpoints mechanical faults before they become catastrophic failures.

Despite of being a useful system to avoid the most dangerous scenarios, it was designed to give

information to the maintenance team preventing accidents in the near future, detecting previously which

are the most probable components failure.

It is not the best system to solve faults in real time, although it plays an important role on failures

prevention. The system is focused in mechanical failures, it does not mention software/automatic pilot

anywhere. It can be concluded from its functionality that it could be useful to this project just in case of

reading some unexpected values on the automatic pilot or sensors output and comparing with the data

given by HUMS to help understanding if the fault is related with a mechanical failure or if it is related with

software/hardware. Since the purpose is a faster real time detection fault system, the communication

and the data process with HUMS would slow in order to get just one more functionality rarely used when

compared with automatic pilot control speed.

Automated Flight Data Management System

During the flight, this system [9] records the desired set of flight parameters such as airspeed, heading,

fuel consumption, altitude, engine rpm, etc... It manages and generates reports based on that flight

data, accessing signals obtained by the sensors installed on the aircraft and transmitted on an airborne

databus.

After processing the signals, they are stored on a portable and self-protected memory device. The

signals processing consists on sampling, filtering, decoding, encrypting, and subjecting to an adaptive

compression.

The compression ratio varies according to the memory capacity of the device, since it decreases

during the flight, to allow all the data from the entire flight to be recorded.

The inversion process to treat the flight data is applied after the flight ends and it can be analysed

and it can be used to evaluate the pilot performance and monitor the operation of the aircraft over the

course of the entire flight by authorised personnel.

Statistical methods or artificial intelligence based algorithms or others various data analysis tech-

niques may be used to examine the flight data looking for any problem with either pilot or aircraft perfor-
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mance.

This fault diagnosis system does not work in real time. The data is recorded and sent to the ground

station for a posterior analysis.

1.2.2 Market Overview - Fault Detection Systems

Automatic Fault Reporting System

The automatic fault reporting system (AFRS) used in combination with airplanes systems reports air-

plane fault conditions prior to landing to the ground maintenance personnel.

The AFRS advantages consist in automatic comparing/monitoring of various aircraft data parameters

during the flight supplying fault outputs to the aircraft communications addressing and reporting system

(ACARS) for transmission to ground-based maintenance operations which relieves the flight crew from

the responsibility of isolating and reporting Built-In-Test Equipment (BITE) detectable fault conditions.

On the ground, this information can be used to assist inventory control, airplane scheduling or periodic

maintenance scheduling.

Automatic fault reporting is the primary functionality of this system and it is resumed here:

• Get the most likely cause for the fault through monitoring system outputs which can be either

analog or digital. Assign a fault code correspondent to that cause.

• ”On command, send ’data present’ discrete to presently installed Aeronautical Radio Inc (ARINC).”

[10]

• ”On command, send fault code to ACARS which transmits data via very high frequency (VHF) com-

munication to presently installed ARINC/Société Internationale de Télécommunications Aéronautiques

(SITA) network on ground which in turn routes fault code via land lines to applicable airline.” [10]

Despite of detecting the fault ”alone” and decreasing the human factor by the employment of presently

installed systems for the fault detection, AFRS does not correct the fault.

From this example it is noticed the importance of automation in the effectiveness and speed on fault

detection by the automatic reporting of presently on-airplane fault information to the individual airline.

1.2.3 Market Overview - Fault Tolerant Systems

Automatic Takeoff Thrust Management System

The main point from an automatic takeoff thrust management system (ATTMS) [11] is to reduce or

minimize takeoff noise in a limited takeoff field length. However its second functionality is the most

interesting to the fault tolerance theme, so it will be focused here.

ATTMS comprises status sensor or set of sensors capable of detecting establishment of takeoff climb

conditions and a controller coupled to them. Engine failure detectors and thrust management modules

respectively coupled to at least two engines (the first ones capable of detecting engine failures and the
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second ones capable of controlling the thrust of the engines) belong to this system as well as the thrust

controller which restores thrust to the initial or higher schedule after detecting an engine failure.

In response to signals from the failure detectors, the computer can automatically answer to complete

or partial engine failure using various techniques to control operating engine power levels. Additional

sensors for redundancy and self-checking can be used to improve reliability by avoiding false positive

and false negative indications.

The computer can address partial or intermittent engine failure that results in power loss by increasing

the power in remaining operating engines.

Mechanical failures are detected by reading the sensor values. Designing a new controller to correct

mechanical failures is out of scope from this thesis, so these will not be addressed here.

ATTMS gave some important ideas about redundancy on sensors and a conceptual schematic to

apply on the detection fault architecture showing the crucial communications between sensors, computer

and automatic pilot to have a response in real time when a failure occurs.

Built-In-Test Equipment and Redundancy Systems

By definition, BITE means ”any device which is part of an equipment or system and is used for the

express purpose of testing the equipment or system. BITE is an identifiable unit of the equipment or

system.” [12]

The built-in-test can be used in a software approach offering fault isolation, automatically complete

system checks or memory capability to identify a component deterioration earlier preventing an entire

system failure. Also, the software can always be adapted to the system changes if needed.

So the software approach should guarantee system data isolation from the test data because it is

not desired the interfacing hardware receives system outputs as commands while testing the system.

To get a greater advantage from BITE, the existing data networks should be used to test the interface

circuitry too and it should be defined common monitoring points whenever possible to isolate faults

while providing tests to more functional areas. Tolerance should be provided in order to monitor those

functional areas while the input stimuli must not be very different from the normal accepted data in order

to not create malfunctions at interfaces. [13]

In order to achieve an higher hardware fault detection capability the majority voting monitoring tech-

nique was combined with the BIT techniques. It can be assumed the probability of occurring faults

simultaneously for three independent systems is very small. If the three systems are identical (software

and hardware), tight synchronized and there are no faults, their behaviour and outputs should be the

same when stimulated with the same input data.

The redundancy drops the need of bigger threshold values for fault judgements which could decrease

the fault detect detection beyond of adding fault tolerance when switching from the master failing system

to other one available.

The triple redundant architecture or triplex is very useful because the third unit can be used as a

tiebreaker criteria when two systems give different outputs based on majority voting monitoring and

showing which is the failed one.
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As it can be seen at the figure 1.1, the monitor uses built-in-tests to get reasonable values which will

be compared with the output of the real time system. Based on the comparison, the decision of using a

determined lane is taken connecting or disconnecting the wire.

Figure 1.1: Triplex redundancy based on built-in-tests [14]

Redundant Autopilot system from Micropilot

The system functionality is based on the replacement of one failed system by another similar software

and hardware system available to take over the vehicle control. In this case, there are three autopilots

prioritized offering double redundancy. If the first autopilot fails, which flies the UAV, the second autopilot

takes over. It is useful to detect hardware faults.

The sensor data cannot simply be compared, because of the noise or the phase shift. It could lead

to a bad judgement about the sensors health.

Other concern from this triple redundancy system, MP21283X , is to assure smooth transitions be-

tween control jumps when a failure is detected on the flying autopilot. In order to avoid sudden control

inputs, those jumps do not take place on flight critical phases like the takeoff.

The system has independent power supplies connected. Each one of them is connected to a single

autopilot to ensure reliability on this component.

It uses a pulse based voting system instead of logic levels to choose which autopilot operates the

UAV. So it decreases the chances of fail signal malfunctions.

The MP21283X consists on a decentralized system since ”the three autopilots continuous watch

state information from the other two autopilots.” [15] Some of the main concepts from this example

represented in the figure 1.2 will be applied on this thesis such as the decentralization and simple voting

process to avoid complications at the selection.
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Figure 1.2: Servo signals in the MP21283X redundancy board [15]

Sensor sharing will be incorporated at MP21283X in the future to assure an autopilot to keep flying

in case of loosing one of its sensors. It will allow access data from another autopilot sensor.

1.2.4 Systems Analysis Resume

The table 1.1, was filled with the features, from the mentioned systems in the section 1.2.

HUMS AFDMS AFRS ATTMS B w/ R 1 MSM 12

Fault Diagnose X X

Fault Detection X X X X X X

Fault Tolerant X X X

Real Time FD 2 X X X X

Mechanical Faults X X X X

Hardware Faults X X X X

Software Faults X X

Inputs MMT3 FPR4 FPR4 SData5 DO6 FPR4

Outputs MF7 PAP8 CF9 EFT10 Faults AS11

Table 1.1: State of the Art systems characterization.
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1.3 Objectives

The main purpose of this thesis is to improve an automatic pilot, decreasing its number of faults without

loosing performance, always keeping in mind the time it would be necessary to create/design a new

automatic pilot. There are already tested autopilots on the market with responsiveness to almost every

type of aircraft like the Micropilot model.

So, instead of doing a new controller without guaranties it would be better than others available to the

client, the focus was directed to build a fault detection, isolation and tolerant system. The reliability will be

increased using redundancy. The fault tolerant system designed in this thesis will be applied to an UAV.

Commercial-Off-The-Shelf (COTS) open source autopilots for UAV(s) are used as part of the system.

This project was made in collaboration with the Centre of Engineering and Product Development, CEiiA.

The institution has been working in partnership with the Portuguese Air Force doing various missions

with the UAS-30, figure 1.3, using different payloads. It is intended to validate and apply the designed

system to the UAS-30.

Figure 1.3: UAS30 from Ceiia [16]

Goals resume:

• Decrease the autopilot failure probability or increase its reliability

• Design a fault tolerant system with redundant autopilots integration

• Use COTS open source autopilots

• Demonstration of proof of concept of the proposed solution

1BITE with Redundancy
2Real time fault detection
3Mechanical monitoring Tests
4Flight parameters records
5Sensors data
6Devices output
7Mechanical faults
8Pilot and aircraft performance
9Codified faults

10Engine failures ans thrust
11Autopilot selection
12Micropilot System Model MP21283X
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1.4 Thesis Outline

Chapter 1 refers to the main objectives from this thesis, the motivation behind it and to the state of the

art.

In Chapter 2, UAS and Fault Detection systems are described focusing on the autopilot. The reliability

and redundancy concepts are introduced.

In Chapter 3 the decision about the autopilot firmware and hardware used in this project is justified

applying the AHP method to the autopilots available on the market.

In Chapter 4 the approach strategies to build the system are discussed and related with the PX4

software architecture to get the best solution for a fault tolerant system.

Following that, in Chapter 5 the Fault Tolerant system implementation and correspondent simulation

are done to obtain the results necessary to validate the system in the Software in The Loop mode.

Finally, in Chapter 6 presents the conclusions and the following steps to validate the entire system in

the UAS-30 during a real flight.
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Chapter 2

Background

UAS are divided in two subsystems, the ground station and the airborne, figure 2.1. The communications

are present in the two subsystem.

Figure 2.1: UAS

Unmanned Aerial Vehicle is a vehicle which moves trough the atmosphere without on board human

crew. The technology development allowed the usage of the UAV outside from the military’s domain,

dropping its costs to the civilians. There are different UAV and they can be grouped by their typology:

fixed wing (figure 2.2(a)), multi-rotor (figure 2.2(b)), hybrid (figure 2.2(c)) and lighter-than-air.
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(a) UAS30 from Ceiia [16] (b) Multi-rotor UAV [17] (c) Hybrid UAV [18]

Figure 2.2: UAV typology

2.1 Unmanned Aerial System Components

2.1.1 Ground Station

An autonomous operation is characterized by the ability of keeping the flight and executing tasks as

takeoff or land without any human intervention. The system navigation can change between a full

autonomous operation, to a tele-operation where the UAV is commanded by an human operator on the

ground using remote control. The second option gives a minimal degree of autonomy to the UAV.

The Ground Station is where the mission is planned and the operation control center. It is the

machine’s interface with the human regardless the flight mode operation with more or less autonomy.

It has signal emitters and receptors antennas, video receptor and the software to analyse flight data

through telemetry links and to be aware of some airborne components state. A picture from the Ground

Station software, QgroundControl, used on this project to command the vehicle is shown in figure 2.3.

Figure 2.3: Qgroundcontrol software print screen

2.1.2 Airborne Systems

This refers to the flying equipment: wings, motors, propellers, rudders, ailerons, flight controllers, video

cameras, batteries, antennas, sensors...

In figure 2.1, the two main parts of the UAS can be distinguished. In this project the autopilot will be

focused, mainly the flight controller and sensors.
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Usually the most important sensors for navigation have redundancy. Some examples are the ac-

celerometers, gyroscopes, compass or pitot tubes.

Autopilot

An autopilot typical architecture is shown in figure 2.1 for a better understanding about its functionality.

Other subsystems, which interact with the controller, are represented too.

The flight state estimator plays a big role on the autopilot since the states are directly used by the

control unit to compute the outputs that will be sent to the actuators. Some autopilots use the Extended

Kalman filter (EKF) for states estimation and it will be seen, on the next chapter 4, it is possible to

evaluate the estimator itself for the fault detection purpose.

2.2 Fault Detection

2.2.1 Fault and Failure Description

The fault detection begins by analysing data communicated by the aircraft. Data can be provided by its

on-board sensors, actuators as well as other internal states from the controller.

Some concepts should be clarified before starting to analyse and process the data communicated

between the avionics components.

• Fault - ”It is a deviation (of a feature) from the acceptable, standard operational condition. (perma-

nent, transient, ...).” [14] In figure 2.4, are demonstrated four sensor faults examples. The figure

2.5 shows actuator faults. Fault is the condition that causes the error.

• Error - ”Incorrect status resulting from a fault, information inaccuracy.” [14] It is the difference

between actual output and the expected output. From the figure inspection 2.4, the errors are

clear when it is compared the truth value (dotted line) with the measured value. Different causes

(like frozen sensors or sensor drifts) could be at the error origin, so they are called faults.

• Failure - ”It is a permanent interruption of a system’s ability to perform a required function under

operating conditions.” [14]

• Fault Tolerant System - ”It is a system, that is capable to perform its function properly in the

presence of one or several faults.” [14]

• Reliability - Defines the system capability to keep running properly while being affected by faults.

It is the fault tolerance measure from a system. A detailed explanation at the next section 2.2.2.

• Redundancy - It is the process of adding identical critical components to increase the system

reliability. A more detailed explanation on the further section 2.2.3
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Figure 2.4: a) Sensor bias; b) Loss of accuracy or calibration error; c) Sensor drift; d) Frozen sensor; tF

represents the moment when the fault was injected; [14]

Figure 2.5: a) Floating around set point; b) Lock-in-place; c) Hard-over; d) Loss of effectiveness; tF

represents the moment when the fault was injected; [14]

2.2.2 Reliability

Reliability represents the system ability to perform its tasks without errors for a time period. It is a

powerful tool to evaluate the design strategy from a fault tolerant system but other related concepts will

be explained first.

The Mean time to fail, MTTF, is calculated by [14]:

MTTF ≈ t1 + t2 + t3 + ...+ TN

N
= Ê[τ ] (2.1)

where each tN means the time to fail or degradation from a single component under ”stress test condi-
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tions”, N it is the number of identical components used from a sample and Ê[τ ] is the empirical mean

time to fail. This evaluation process is called failure characterisation.

The Mean Time Before Failure - MTBF - from a system is defined by E[τ ], equation 2.3. This is not

an empirical variable. The reliability, R(t), equation states:

R(t) = e−
∫ t
0
λ(x)dx (2.2)

where λ means the probability of failure which can be considered constant to simplify (λ(x) = λ).

In this case E[τ ] can be related with Reliability, R(t), through the equation:

MTBF = E[τ ] =

∫ ∞

0

R(x)dx (2.3)

After introducing the R(t) concept, other ways to calculate its value are defined regarding the system

configuration. System reliability in a serial connection (figure 2.6):

R(t) =

n∏
i=1

Ri(t) =

n∏
i=1

e−
∫ t
0
λi(t)dt (2.4)

where R(t) is the system reliability, Ri(t) is the reliability from each unit, λi(t) is the failure probability

from each unit (which can be considered constant λi(x) = λi) and n is the total number of units.

Figure 2.6: Failure in serial connection[14]

System Reliability on a parallel connection (figure 2.7):

R(t) = 1−
n∏

i=1

(1−Ri(t)) (2.5)

Figure 2.7: Failure in parallel connection [14]

Therefore to increase the system reliability, identical components should be added in parallel when-

ever possible creating redundancy.
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2.2.3 Redundancy

The main purpose is to choose the best architecture option to integrate the flight controllers based on

the fault detection methods and communications dependencies by duplication of the system. It will be

an embedded system - computer based information processing systems that are part of a large system

or equipment.

It must be a real-time system. It has time-respond constraints to complete its work/service when it is

requested. There must be a predictable time interval to give the correct outputs.

First of all, a way must be figured out to evaluate if the automatic pilot is working properly. As it was

noticed in the section 2.2.1, the system operation is evaluated throughout its outputs. Using the outputs

from a new internal control model for comparison against the autopilot outputs is not an option (avoiding

to build a new controller). So it was decided to use redundancy on the same existent model.

It takes to other questions: Which components should be redundant? Where will the monitoring point

be located?

On the presence of sensor failures, wrong data is sent to the autopilot processor (the state estimator

unit and after to the control unit). If the monitoring point is located at the autopilot outputs, the fault

detection process becomes more difficult and lasts longer. Adding monitoring points increases the

fault detection component capability. A new module was added to the system, the autopilot selection

which will be connected in series with the autopilots. The autopilot selection is made based on the fault

detection, so its reliability increases when the fault detection capability increases too. For the purpose of

detecting the fault immediately, one monitoring point must be at the sensors level due to their multiplicity

and there should be redundancy at the sensors.

Therefore, the designing strategy from this project system consists in adding more flight controllers,

with a monitoring point at the sensors module, to gain redundancy on both units. [12]

An example, using serial connections between the sensors and the flight control computers in a

quadruplex architecture is represented at the figure 2.8. This system uses four sets of sensors, flight

control computers and actuators. Each flight controller is individually and serially connected to one

sensors module.

Figure 2.8: The quadruple redundant flight control system architecture.[14]

Throughout data observation and comparison from the sensor outputs, it is possible to detect a failure

from one sensor unit. An hard-over failure is exemplified below on a quadruplex system, see figure 2.9.
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Figure 2.9: Quadruplex Hard-over failure [14]

The figure 2.9 shows an hard over failure from the second sensor θ2. Its measurement was compared

with the lower middle value from the four sensor measurements. The difference between the two sensors

measurements exceeded the threshold value.

For data comparison, the system needs communication between the redundant modules. A cross

communication data link can be used for data exchange between the flight controllers. For the actuators

selection there must be a voting system. This example can use the flight control computers to send out

the command for voting despite of the selection being made on the actuators. This system weakness

resides on the serial connection between units. If either the sensor or the flight control computer fails on

the same set, the entire set will fail.

The options to place the voting process and how the redundant systems communicate refers to the

system architecture. Generally, there are the three types for the flight control systems:

• Centralized architecture - The flight control computer will be connected to all the redundant

subsystems like the sensors or actuators. The wiring harness complexity increases as well as the

volume, weight and the reliability requirement for the centralized system part. It has to calculate

and control the entire system. Simple software design and easy maintenance beyond the need of

a lower number of subsystems are the main advantages.

• Distributed architecture - Each subsystem do the calculations and communicates with others.

The disadvantages are the increasing number of subsystems and the software design difficulty. By

the other side, the dependence on a single hardware is reduced because there is not a centralized

control unit. It can be demonstrated at figure 2.10 where there is no dependency from one flight

control system. To be a distributed architecture the software should be decentralized too.

• Federated architecture - Consists in a distributed hardware design with a centralized software

framework. Capability of achieving fault tolerant while reducing the design difficulty. It has a num-

ber of subsystems lower than a distributed architecture and higher than centralized architecture.

Since it is a compromise between the two architectures, the point is to take main advantages from

them keeping an higher reliability from the entire system.
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Figure 2.10: Quadruplex redundant flight control system. A possible distributed architecture with the

voting mechanism system[14]

This system should have a distributed architecture ideally to achieve a greater reliability. If it is not

possible to separate subsystems or the distributed system design becomes impractical because of its

difficulty, the system should be federated so it does not rely on a single hardware.

It has been shown examples with four redundant sensors units and the same number of flight con-

trol pilots. However the units number should always be considered to decide the best option for the

redundant system. A trade-off analysis must be performed to establish the redundancy for the electronic

system. The criteria which will impact the trade-off decision to incorporate redundancy at either the

system level, circuit or function level are:

• Reliability requirements;

• Testability limitations;

• Mission essential functions and criteria availability;

• Weight, size, impact on circuit functions including electromagnetic interference and cost.

From these points, it must be assured the redundancy used is the redundancy needed. In the figure

2.11, a slow over failure example occurring in the triplex architecture is represented.

Figure 2.11: Triplex Slow-over failure[14]

Both failures, hard-over and slow-over, could be detected and isolated using the middle value read

from the three outputs when compared with a threshold value imposed by the system designer. The
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previous explanation is the same for the quadruplex architecture example from a sensor failure, see

figure 2.9, with an exception: since the number of read values is even, the lower middle value is chosen

to verify if the other sensors output exceeded the threshold to isolate it.

The autopilot failure probability is considered a small value so the chances of failing two units simul-

taneously are even lower. So the advantages of designing a system with four units instead of three are

not enough to cover the increasing weight, size and cost.

For a majority voting system with triple modular redundancy, the system reliability is calculated by[14]:

R(t) = Rm

3∑
i=2

3CiRi(t)(1−Ri(t))
n−i = Rm(3R2

i − 2R3
i )

where the Rm is the voting machine reliability and Ri is the components reliability.

The voting machine is responsible for two tasks: fault detection and autopilot selection. The autopi-

lots outputs comparison could not be enough to detect a fault or not fast enough to avoid an accident.

Therefore monitoring points should be added in internal system levels to increase the autopilot voter

reliability, Rm, and so the entire system reliability, Rt. Also the equations 2.5 and 2.4 state that the total

system reliability, Rt, is increased when a system component becomes redundant moving from a serial

to a parallel connection.

Therefore, it should be a distributed system to reduce the computation complexity in the autopilot

selection point, see figure 2.12, and to decrease its failure probability. A fault detection module will be

added to all the autopilots where their internal data is shared and compared to select the best one.

Figure 2.12: Components Reliability in the centralized (on the left) and distributed architecture (on the

right).

The mechanisms to get each autopilot state must have an higher reliability: Rfd1, Rfd2 and Rfd3.

The system judgement and the autopilot selection relies on this information. The system total reliability

is computed by:

Rtotal(t) = (3R2
i − 2R3

i )Rm

19



20



Chapter 3

Autopilots Overview And Autopilots

Selection

In this chapter, it will be given an overview from the autopilots on the market and the choice justification

based on the parameters valued.

Usually, the autopilot hardware and software are sold together on the market because it is easier to

improve the autopilot functionality designing a specific hardware directed to work with the target software.

Since there is compatibility with the application programming interface, open source autopilots allow

the developers to change and to move the code to other microprocessor boards. However each autopilot

software works better in the primarily board which was designed for.

The decision making process to choose the autopilot Software/Hardware which can be fitted on

the redundant system plays an important role because the autopilot chosen will influence directly and

indirectly the system functionality and all the work to build it as well. The communication depends on

the protocol supported by the autopilot Software and Hardware.

There are many possibilities due to hardware and software compatibility between the autopilots.

The process starts by dividing the decision making process in three parts: software, communications

protocol and hardware.

From here, it will be called firmware instead of software because it is a special class of software

which helps to a control device specific hardware on a low level set of instructions.

Since the most valuable practical work of this project is the fault tolerance algorithm, a ”friendly”

firmware became the top priority immediately followed by an hardware board compatible with it which

can accomplish all the constraints (mainly related with interfaces or communications).

3.1 Autopilot Firmware

As mentioned above, it is desired a ”friendly” firmware which means it must fit in these three conditions:

• Application Programming Interface (API) - the point is to simplify the implementation of the soft-
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ware with a good interface or communication protocol between all the parts of a computer program.

Specifications for routines, data structures, object classes or variable are frequently included in an

API. Implementing and debugging ”new changes” in firmware can take a lot of time. This amount

is drastically decreased if there is access to a good and well organised API documentation where

it is possible to understand clearly the system architecture. Supported protocol communications

like MAVLink or another one belong to the API and they are evaluated in this point.

• Compatibility - It refers to the variety of boards which can run the firmware chosen and it is

related with its API. The microprocessor boards need to communicate with each other. Some

boards are better than others on some specifications, like processing speed or different type of

communications, so in this point, a firmware which can easily be ported would be a good option.

• Support/Community - There is another point related with the number of developers across the

world testing or implementing changes in the same firmware. First, the documentation is updated

regularly with the latest bugs detected and solved. Also, the probability of having someone who

already overtook the same issues throughout the self experience, which the current developer is

facing at the moment, increases. It is really helpful participating in the forums where the knowledge

about the firmware is shared, allowing to get a lot of answers for personal programming issues.

3.1.1 Market Overview

After enumerating the criteria, a sample of the best known COTS autopilots were evaluated. The point

is to use that information in the analytical hierarchy process (AHP) to choose the autopilot.

Ardupilot

ArduPilot (APM) firmware is the leading open source autopilot system considering the number of users

or the community size. It means the firmware is well classified by the users and developers in a general

opinion. Also APM was strongly tested having a large background across the entire world assuring to all

the developers a precious help when programming the firmware or other potential issues. Its compatibil-

ity with other boards is great. Its architecture is clear and very well explained in the API documentation

which is extremely detailed [19]. The APM can be used already on submarines or antenna trackers

beyond the traditional multi-copters and fixed wing aircraft.

PX4

In the second place of the best known open source autopilots, comes the PX4 which is a part from the

Dronecode project, Linux Foundation collaborative project. The PX4 firmware has a similar architecture

and functionality with the APM.

Like APM, it is also supported by a large amount of flight control boards and by an active world wide

community. It powers all kinds of vehicles from racing and cargo drones through to ground vehicles and

submersibles.
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However it was designed focusing on autonomous drones so it is not the best choice for first-person

view users.

The advantage relatively to the APM are the protocol communications and interfaces that will be

focused later in this thesis. It is known that in fault detection, the data transfer rate has a big weight on

the system performance. It has the best manuals and information on the web [20]. So, it seems to have

a better support nowadays than the APM.

Paparazzi

Here is another drone software and hardware project encompassing autopilot systems and ground sta-

tion software.

This firmware purpose is to be used with the Paparazzi boards, despite of having been ported to

other popular autopilots allowing for the use of the Paparazzi UAV system on many kind of hardware

platforms. The Paparazzi designers primary focus was the autonomous flight, leaving the manual flying

to a secondary plan. It can be used for multi-rotors, fixed wing, helicopters and hybrid aircraft.

The API documentation [21] is worse when compared with the PX4 or APM respective documenta-

tion. It remains less popular than the first ones, implying a smaller community and background to solve

possible issues.

LibrePilot

A firmware designed specifically to the Open Pilot boards family. There is not so much support in the

internet when compared with ArduPilot or PX4. One reason is due to the limited compatibility with other

boards, so the LibrePilot community is smaller than other open source COT autopilots. [22]

3.1.2 Analytical Hierarchy Process (AHP)

In decision making, a process that combines the rating parameters with the firmware options available

was needed. A good option to choose the best firmware is the AHP [14] application. The following steps

are applied on this decision-matrix method.

A possible rating scale for the parameters, referred in the section Market Overview, is to choose the

odd numbers from 1 to 9, table 3.1, to increase the difference between the parameters and so, the final

computed scores.
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Table 3.1: AHP Scaling

Definition Grade

Equal importance - two activities contribute equally to the objective 1

Moderate importance of one activity over another 3

Essential or strong importance 5

Very strong importance 7

Extreme importance 9

Each parameter importance is compared with the others parameters importance using the grading

scale from the table 3.1. From each comparison results a factor value. The criteria weigh is calculated

through the geometric mean ( n
√
a1 ∗ a2... ∗ an) relative to the parameter factors reducing inconsistency

in the matrix. an represents the factor value inserted in the column n from the respective criteria resulted

from the comparison between the two parameters importance. The API is the main point to choose the

autopilot firmware. It was considered to grade this parameter importance by 7 when compared to the

firmware compatibility importance and by 3 when compared with the support importance, first line of the

table 3.2. The geometric mean from the API parameter, APIGeometricmean is computed using its line

factors:

APIGeometricmean = ( n
√
a1 ∗ a2 ∗ a3) = (

3

√
1 ∗ 1

7
∗ 3) = 2.47 (3.1)

The same process was repeated for the two remaining parameters. To compute the weigh from each

parameter, its geometric mean is divided by the sum from all the parameters geometric mean. The vari-

able FirmwareCGeometricm represents the firmware compatibility geometric mean and the SupportGeometricm

variable represents the support parameter geometric mean. To exemplify, the API geometric mean com-

putation is shown below:

APIweigh =
APIGeometricm

APIGeometricm + FirmwareCGeometricm + SupportGeometricm
= (3.2)

2.47

2.47 + 0.36 + 1
= 0.45

The same process is applied to each parameter and the table 3.4 was filled.

Table 3.2: AHP - computing criteria weights

API Firm C1 C/S2 GM3 Weights

API 1 7 3 2.47 0.45

Firm C1 1
7 1 1

3 0.36 0.25

C/S2 1
3 3 1 1 0.3
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The support parameter has more influence to the final choice than the firmware compatibility. So the

support was rated by 3 when compared with the compatibility.

A similar process is done to rate each autopilot different firmware. The firmware autopilots are com-

pared to each other considering just one parameter at a time. Each table refers to just one parameter. It

is filled with the graded factor values resulted from the comparisons between the firmware autopilots rel-

ative to that parameter. Each firmware rating relative to a parameter is calculated through the geometric

mean ( n
√
a1 ∗ a2... ∗ an) to reduce inconsistency in the matrix. an represents the factor value inserted in

the column n of the correspondent autopilot. For example, to compute the API rating from the PX4 on

the first line of the table 3.3:

PX4Geometricmean = ( n
√
a1 ∗ a2 ∗ a3 ∗ a4) = (

4
√
1 ∗ 5 ∗ 7 ∗ 9) = 4.21 (3.3)

PX4 ratingAPI =
PX4Geometricm

PX4Geometricmean +ArdupilotGeometricm + PaparazziGeometricm + LibrepGeometricm
=

(3.4)

=
4.21

4.21 + 1.63 + 0.54 + 0.007
= 0.66

On the tables 3.3, 3.4 and 3.5 are calculated the ratings from each autopilot firmware relative to each

parameter (API, Compatibility and Support).

The PX4 firmware has a better API like is demonstrated in the table 3.3. Both PX4 and Ardupilot

have a good firmware compatibility, table 3.4 to run in different hardware. PX4 stands out for support,

table 3.5 because of the documentation available [20].

For the total scores, each autopilot rating relative to a specific parameter is multiplied by that pa-

rameter weight. The process is repeated for all the parameters and summed to compute the autopilot

firmware total score. For example:

PX4totalscore = PX4API ∗APIweight + PX4Firmcompat ∗ Firmcompatweight + PX4Supp ∗ Suppweight =

(3.5)

= 0.66 ∗ 0.45 + 0.42 ∗ 0.25 + 0.56 ∗ 0.3 = 0.537

The firmware with the highest sum of ratings is the selected one. The choice fell in PX4 firmware

justified by the total scores presented in the table 3.6. The PX4 is the best firmware autopilot and from

this point, all the strategies to build the redundant system will be conditioned by this option like the

hardware identification.

1Firmware Compatibility
2Community/Support
3Geometric Mean
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Table 3.3: AHP - API ratings

PX4 Ardupilot Paparazzi Librepilot GM 1 API R 2

PX4 1 5 7 9 4.21 0.66

Ardupilot 1
5 1 5 7 1.63 0.26

Paparazzi 1
7

1
5 1 3 0.54 0.09

Librepilot 1
9

1
5

1
3 1 0.007 0.001

Table 3.4: AHP - Firmware Compatibility ratings

PX4 Ardupilot Paparazzi Librepilot GM 1 CR3

PX4 1 1 5 7 2.43 0.42

Ardupilot 1 1 5 7 2.43 0.42

Paparazzi 1
5

1
5 1 3 0.59 0.1

Librepilot 1
7

1
7

1
3 1 0.29 0.05

Table 3.5: AHP - Support/Community ratings

PX4 Ardupilot Paparazzi Librepilot GM1 SR4

PX4 1 3 7 7 3.48 0.56

Ardupilot 1
3 1 7 7 2.01 0.32

Paparazzi 1
7

1
7 1 1 0.38 0.06

Librepilot 1
7

1
7 1 1 0.38 0.06

Table 3.6: AHP - Total scores

Criteria Weights PX4 Ardupilot Paparazzi Librepilot

API 0.45 0.66 0.26 0.09 0.001

Firm C 5 0.25 0.42 0.42 0.1 0.05

Support/Community 0.3 0.56 0.32 0.06 0.06

Total Scores 1 0.537 0.318 0.0835 0.0309

1Geometric Mean
2API Rating
3Firmware Compatibility Rating
4Community/Support Rating
5Firmware Compatibility
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3.2 Communication protocol

Triple redundant systems need to communicate between each other before taking the decision about

which of them must be on charge. Therefore, communication is a special key to the system efficiency.

So, before deciding about the autopilot hardware, the communication protocols were studied. The

protocols adopted will influence the hardware decision because of the necessary ports or interface

compatibility. To choose the communication protocol some parameters will be evaluated:

• Data rate, possible simultaneous transmission directions (Duplex, Half duplex)

• Data protection - Error Checking

• Complexity - number of wires or ports

3.2.1 Universal asynchronous reception and transmission (UART)

UART is a simple serial communication protocol that supports bidirectional, asynchronous and serial

data transmission.

UART has three operation modes: simplex (data transmission in one direction), half duplex (data

transmission in both directions but not simultaneously) and full duplex (data transmission in both direc-

tions simultaneously).

The data is transmitted through the Tx pin while the receiving UART reads the data through its Rx pin.

The transmission speed is defined by the baud rate (115,200 bits per second by default). It performs

error checking with the help from a parity bit. The start and stop bit create the data packets. Those

packets are sent to a UART buffer - first in, first out (FIFO) - which forces each transmitted byte to be

passed to the receiving UART.

Just to summarise the main features: no clock is needed (asynchronous), error checking capability,

low speed and low complexity.

3.2.2 Inter-Integrated-Circuit (I2C)

Despite of being a synchronous protocol, I2C is similar to UART. It is used for modules and sensors

communication and it requires just two wires (Serial Clock Line / Serial Data line Acceptance port) to

transmit information between devices connected to the bus. Many different devices, up to 128, can be

connected throughout the same wires, figure 3.1). All the data is transmitted on a single wire (SDA),

figure 3.2. Despite of being flexible, easy and cheap, it still have a lower speed, requires pull-up resistors

and has reduced noise immunity.
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Figure 3.1: I2C wiring diagram: SDA and SCL. Multi Master and Slaves. [23]

Figure 3.2: Transmission timing diagram, including the address and the acknowledgement bit[23]

3.2.3 Serial Peripheral Interface (SPI)

SPI is another synchronous protocol which operates at a full duplex mode (data can be sent and received

simultaneously) and at a faster data rate transmissions (8Mbits/s). It does not require addressing but

it needs slave select lines. Four ports are connected: Master Data Output, Slave Data Input (MOSI),

Master Data Input and Slave Data Output (MISO), SCLK (Clock Signal) and Slave Select (SS), controlled

by the master device, figure 3.3.

Despite of having good noise immunity, it is more more complex and expensive because of the pins

ports occupied (slightly more complicated in hardware when compared with I2C) and there is no error

checking.

Figure 3.3: SPI wiring protocol using MOSI, SCLK, MISO and SS ports to connect the master to the

slaves[23]
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3.2.4 Analytical Hierarchy Process (AHP)

The AHP will be applied to the communication protocol with the same scale from the table 3.1 with the

correspondent communication protocol criteria. The table 3.7 was filled with the values resultant from

the criteria comparison.

Table 3.7: AHP - computing criteria weights for communication protocol

Criteria Data Rate Data P 1 Complexity GM2 Weights

Data Rate 1 1 3 1.44 0.43

Data P1 1 1 3 1.44 0.43

Complexity 1
3

1
3 1 0.48 0.14

From the weights computed in table 3.7, it is considered that complexity is not so influential as the

data rate or data protection.

The communication protocols were compared with each other relatively to one parameter at a time.

The tables were filled with the resulting values from the comparisons:

• Table 3.8 - Considering the data rate performance;

• Table 3.9 - Considering the data protection performance;

• Table 3.10 - Considering the complexity performance.

Table 3.8: AHP - Communication Protocol, Data Rate

UART I2C SPI GM2 Data rate

UART 1 1
3

1
5 0.41 0.1

I2C 3 1 1
3 1 0.26

SPI 5 3 1 2.47 0.64

Table 3.9: AHP - Communication Protocol, Data Protection

UART I2C SPI GM2 Data P1

UART 1 7 5 3.27 0.73

I2C 1
7 1 1

3 0.36 0.08

SPI 1
5 3 1 0.84 0.19

1Data Protection
2Geometric Mean

29



Table 3.10: AHP - Communication Protocol, Complexity

UART I2C SPI GM1 Complexity

UART 1 3 9 3 0.67

I2C 1
3 1 5 1.19 0.27

SPI 1
9

1
5 1 0.28 0.06

I2C is the best communication protocol when considering the data rate parameter, see table 3.8.

From the table 3.9 inspection, it can be concluded UART has a better rating at data protection than

the other two protocols because of its error checking capability. UART is the protocol with less wiring

complexity (in this parameter, a better rate means less complexity).

The total scores were computed repeating the same process from the table 3.6, multiplying the

ratings for each parameter by its weight and summing all.

Table 3.11: AHP - Communication Protocols Total Scores

Criteria Weights UART I2C SPI

Data Rate 0.43 0.1 0.26 0.64

Data Protection 0.43 0.73 0.08 0.19

Complexity 0.14 0.67 0.27 0.06

Total scores 1 0.45 0.18 0.37

From the table 3.11 scores, it was decided by the UART connection.

3.3 Message Protocols

After the hardware communication protocol, a choice has to be made about how the messages will be

codified to be understood by all subsystems since the autopilots need to share information with each

other as well as with other interfaces to vote.

The PX4 firmware uses two different message protocols for external communication: Mavlink and

RTPS. The external communication can be with the ground control station (GCS), companion computer,

other autopilots or even the simulator.

3.3.1 Micro Air Vehicle Message Marshalling Library (MAVLink)

MAVLink is used for communication between the UAS components.

1Geometric Mean
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Python tools are used to convert the XML files into source code for the supported languages. Those

XML files are defined by a message-set specifications for different systems. It is a lightweight and

header-only library.

It is optimized for resource-constrained systems and implemented in C programming language.

The most popular high level protocol communication between UAV and/or ground stations. It has

inter-operability interface between components from different manufacturers and it was thoroughly tested.

Since MAVLink is an higher level protocol, it must use a lower level protocol to communicate between

devices. USB (to communicate with the CPU for firmware updates or simulations) and UART are the

predefined ports to be used with MAVLink by the autopilots firmware. [24]

3.3.2 Real Time Publish Subscribe (RTPS)

Data Distribution Service (DDS) is a middleware protocol and API standard for data centric connectivity

from the object management group (OMG) and it can be used for a real time publish subscribe interface

to PX4.

RTPS is a C++ implementation of the DDS RTPS protocol, which provides a decoupled communica-

tion middleware with a model based on publishers and subscribers, over unreliable transport protocols

such as UDP enabling the exchange of uORB messages between the PX4 components and (offboard)

RTPS applications.

This high-performance, dependable and inter-operable data communication has been adopted as

the middleware for the Robot Operating System 2 (ROS2) allowing a better integration with it using a

RTPS bridge.

It is lightweight and fully open source.

As the MAVLink protocol, RTPS is an higher level protocol and it uses low level UART ports to

communicate between the devices. [25]

3.3.3 Message Protocol Decision

Since there are just two options, the justification is given by an explanation comparing the two message

protocols.

Fault detection systems need to reliably share time-critical/real-time information between the flight

controllers and/or off board components (by sending and receiving uORB topics) which is provided by

RTPS. On a first approach RTPS has advantage because of its greater speed than MAVLink.

However there is just one model available (quadcopter) to use this protocol to communicate with the

simulator since this protocol is still recent. The communications between the simulator and the PX4

firmware are crucial to design the voting system and to make the selection. Any fixed-wing UAV can not

be tested on the simulator using this protocol.

RTPS is a PX4 exclusive messaging protocol, so there is not the possibility to test the designed

redundant system with other firmware autopilots.

31



Moreover MAVLink is still the most used protocol between UAS by far. There is a greater support

and community which brings more safety for the developer to overtake possible errors at programming.

MAVLink will be the protocol used to communicate with external systems from each PX4.

3.4 Autopilot Hardware Identification

Due to PX4 great compatibility with many processing boards, the decision has to be made based on the

parameters:

• Support, well-tested and stable;

• Flexibility in terms of hardware peripherals that can be attached by its communication protocol

support and available sensors;

• Processing speed, RAM and affordability.

3.4.1 Market Overview

From the large list of compatible boards with PX4, four were chosen to be analysed and to apply the

AHP to decide which hardware better fits on the PX4 firmware.

Cube Flight Controller

A flight controller which belongs to the Pixhawk Series. The CEiiA organisation already owns one which

was tested in Delta-Spotter (UAV) with good performance. The technical information from this autopilot

relevant for the evaluation parameters from the AHP is shown below. [26]

Processing speed: 168MHz. RAM: 256KB. On-board sensors: 2 Barometers, 2 compasses and 3

IMU’s. Abundant connectivity options for additional peripherals (5x UART, I2C, CAN). Cost: 200C

Holybro Pixhawk 4

Pixhawk 4 is the latest update to the family of Pixhawk flight controllers. With the increased power

and RAM resources, more complex algorithms and models can be implemented on the autopilot. The

technical information from this autopilot relevant for the evaluation parameters from the AHP is shown

below. [27]

Processing speed: 216MHz. Ram: 512KB. Onboard-sensors: 2 IMU’s, 1 Magnetometer, 1 Barom-

eter. Cost: 250C.

BeagleBone Blue

The all-in-one Linux-based computer has all necessary sensors and peripherals needed by a flight

controller despite of being optimised for robotics. The technical information from this autopilot relevant

for the evaluation parameters from the AHP is shown below. [28]
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Processing speed: 1GHz. Ram: 512MB. Onboard-sensors: 2 IMU’s, 1 Magnetometer, 1 Barometer.

Cost: 250C.

Qualcomm Flight Pro

It is an onboard computer which runs the PX4 flight stack on the QuRT real time operating system. The

DSPAL API is used for POSIX compatibility. It adds a camera, wifi and high-end processing power in

comparison with Pixhawk autopilots. It is focused on the video and photography communications. The

technical information from this autopilot relevant for the evaluation parameters from the AHP is shown

below.[29]

Processing speed: 2.26GHz. Ram: 2GB. Onboard-sensors: 1 IMU’s, 1 Magnetometer, 1 Barometer.

Cost: 850C.

3.4.2 Analytical Hierarchy Process (AHP)

The AHP was applied to choose the best option. The criteria chosen to evaluate the autopilot hardware

are shown on table 3.12. Since the four boards have UART ports to communicate by Mavlink, this

criteria was not considered to make the decision. Each criteria weight was computed, repeating a

similar process used to fill the tables, 3.7 and 3.2. All the criteria are compared with each other using

the same scale presented on the table 3.1 to calculate each parameter weight.

Table 3.12: AHP - computing criteria weights for autopilot hardware

Criteria AS1 CS/R2 Afford3 Support GM4 Weights

Available Sensors 1 1 3 3 1.73 0.37

Clock speed/RAM 1 1 3 3 1.73 0.37

Affordability 1
3

1
3 1 1 0.58 0.13

Support 1
3

1
3 1 1 0.58 0.13

Available sensors and clock speed combined with RAM are the main factors which will help to decide

which autopilot hardware will be used on this project, see table 3.12. Both the parameters have a bigger

weight - 0.37 - than the other two parameters - 0.13.

To compute the autopilot hardware rating for each parameter, it was repeated the same process used

in table 3.8. Initially the autopilots were compared with each other considering just one parameter. After

filling the table with the values resultant from the comparisons, the geometric mean was calculated for

each line from the table. Dividing the geometric mean from the autopilot hardware by the total geometric

means sum, gives the rating for the correspondent parameter.
1Available Sensors
2Clock Speed/Ram
3Affordability
4Geometric Mean
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Table 3.13: AHP - Autopilot Hardware, Available Sensors Rating

PC1 PH2 BBB3 Qualcom GM4 ASR5

Pixawk Cube 1 5 5 9 3.87 0.63

Pixawk Holybro 1
5 1 1 5 1 0.16

Beagle-Bone Blue 1
5 1 1 5 1 0.16

Qualcom 1
9

1
5

1
5 1 0.26 0.04

Table 3.14: AHP - Autopilot Hardware, Clock Speed / RAM Rating

PC1 PH2 BBB3 Qualcom GM4 CS/RAM

Pixawk Cube 1 3 5 9 3.41 0.58

Pixawk Holybro 1
3 1 3 5 1.5 0.26

Beagle-Bone Blue 1
5

1
3 1 3 0.67 0.11

Qualcom 1
9

1
5

1
3 1 0.3 0.05

Pixawk Cube is the autopilot hardware with more sensors available and it was demonstrated on the

table 3.13. Also it has the best processor, table 3.14. By the other side, Pixawk HolyBro has the smallest

cost as it can be seen from the table 3.15. Both Pixawk have a big advantage relative to the Beagle-Bone

Blue or Qualcom when considering the Support and Community, table 3.16.

Since all the autopilots parameter ratings are calculated, the total scores table 3.17 can be filled with

them and the corresponding parameters weight repeating the process again from the table 3.11.

Analysing the total scores table, 3.17, it is clear the Pixawk Cube is the best board to combine with

the PX4 firmware.

Table 3.15: AHP - Autopilot Hardware, Affordability Rating

PC 1 PH2 BB3 Qualcom GM4 Afford5

Pixawk Cube 1 1
3 1 5 1.14 0.24

Pixawk Holybro 3 1 3 7 2.28 0.47

Beagle-Bone Blue 1 1
3 1 5 1.14 0.24

Qualcom 1
5

1
7

1
5 1 0.28 0.06

1Pixawk Cube
2Pixawk Holybro
3Beagle-Bone Blue
4Geometric Mean
5Available Sensors Rating
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Table 3.16: AHP - Autopilot Hardware, Support Rating

PC1 PH2 BBB3 Qualcom GM4 Support6

Pixawk Cube 1 1 3 3 1.73 0.37

Pixawk Holybro 1 1 3 3 1.73 0.37

Beagle-Bone Blue 1
3

1
3 1 1 0.58 0.13

Qualcom 1
3

1
3 1 1 0.58 0.13

Table 3.17: AHP - Autopilot hardware Total Scores

Criteria Weights PC PH BBB Qualcom

Available Sensors 0.37 0.63 0.16 0.16 0.04

Clock Speed /

RAM
0.37 0.58 0.26 0.11 0.05

Affordability 0.13 0.24 0.47 0.24 0.06

Support 0.13 0.37 0.37 0.13 0.13

Total Scores 1 0.527 0.27 0.148 0.07

Therefore the autopilot is already known as well as the protocols to communicate with it.

Resuming this chapter, the autopilot firmware is the PX4 which will be used on the Pixawk Cube

board. It will connect to other systems through UART ports using Mavlink codified messages.

1Pixawk Cube
2Pixawk Holybro
3Beagle-Bone Blue
4Geometric Mean
5Available Sensors Rating
6Affordability Rating
7Support Rating
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Chapter 4

Redundant System Design

It is time to materialize the ideas from the systems studied in the section 1.2, using the background

knowledge explained on chapter 2 to apply on the chosen firmware autopilot. From now, when the PX4

is mentioned, it refers to the PX4 autopilot firmware .

Several strategies were adopted to build the fault tolerant system while studying the PX4 firmware

code looking for the best way to detect and mitigate faults from its internal mechanisms. Therefore many

changes occurred since the first approach aiming to a final effective algorithm which can add more value

to the entire system and not simply replace strong mechanisms for fault detection already existent inside

the autopilot.

The different approaches will be presented on this chapter, following a chronological order while a

better understanding from the PX4 increases until reaching the final algorithm.

Three PX4 will be running on parallel. The number of autopilots needed to design the system is

justified by the trade off between the enough redundancy for fault detection and the system complexity

like it was explained on the redundancy section 2.2.3. It is considered that the failure probability of the

three autopilots at the same time is very low.

4.1 First Approach

The Reliability, see definition 2.2.2, states the entire system R(t) increases if its belonging subsystems

Ri(t) increases too. By this reason, the PX4 autopilot was divided in two subsystems to be added to the

new subsystem responsible for fault tolerance:

• Sensors module;

• Flight control module.

To situate the first two modules inside the autopilot, the PX4 architecture is shown in figure 4.1 where

it is noticed the estimator module between the sensors hub and the control module. On this approach,

the estimator module is included on the flight control module for simplification reasons.

37



Figure 4.1: PX4 firmware architecture. [20]

The point is to raise the fault detection and autopilot selection modules reliability, adding a monitoring

point after each sensor, used by the PX4, to compare the values with the same sensor type from the

other two autopilots. The fault detection capability and speed increase and so the fault detection module

reliability increases too.

Because of the noise, phase shifts and synchronization the comparison between sensors values it is

not an easy task. It can make the system to take the wrong decision when looking for real faults. One

diagram from this approach is demonstrated in figure 4.2, where is exemplified with just one sensor, how

the system could share the values from that sensor, in real time. Throughout a monitoring point, before

the flight control unit, it is possible to compare the referred data, looking for a sensor failure. In case of

sensor failure, the entire set of the belonging sensor would be classified unhealthy and its outputs could

not be selected to be sent to the actuators.
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Figure 4.2: First approach diagram

While studying the sensors module from PX4 to get and treat the correspondent data in real time, it

was noticed PX4 already has fault tolerant mechanisms to isolate and mitigate sensor failures. After the

sensors data being treated, by low pass filters to eliminate the noise or other normal peaks, the process

uses already redundancy at the sensors level. Throughout data comparison between sensors from the

same typology, it classifies each sensor priority and selects the best source to use as observation, figure

4.3. The barometer was selected as an example but it could be any other redundant sensor (GPS and

optical flow do not use redundancy).

Figure 4.3: PX4 Sensor Module

If the sensor is not publishing data (error timeout) or if the sensor value overtakes the threshold from

the mean of all sources data, the voter changes the sensor state to an error state, decreases the sensor
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priority and it will check if the failure sensor is the selected one to change it if needed. The sensor state

or priority can go up and down many times during a flight since the algorithm evaluates the sensor state

in a time window constantly updated with the most recent data and dropping the record data that does

not fit on the window length.

There is still the possibility of using redundancy working on an outer ring with the final values from

the selected sensors.

Meanwhile the data published from the selected sensor (the best ranked sensor from its typology)

follows to the Extended Kalman filter for state estimation usually as observation (exception for the IMU

measurements). On the diagram 4.4 is shown an overview from the flight stack to understand where the

states estimation occur and its importance for the control unit. The EKF refers to the red rectangle.

The inputs come from the sensors module while the outputs from the states estimation are used by

the controller units as well as by the navigator. The mission is uploaded to the navigator module which

defines the current waypoint to be achieved by the UAV and stores the next ones until the end of the

mission. The navigator output is received by the Position Controller in the Mission Mode.

For fully autonomous flights, a companion computer must be used and the communication with the

PX4 is made throughout the navigator module. If the user needs more freedom to control the UAV

during the flight, he can choose other different modes using the radio control unit. For example, on

the Acrobatic mode, more freedom is given to the autopilot allowing to send commands directly to the

altitude and rate controller unit which receives the outputs from the position controller as well.

Finally the mixer translates force commands (torques, forces) to actuator commands and it hides the

aircraft actuators specifications from the core controllers to ensure the different typologies do not require

special case handling by them. The actuators group depend on each vehicle typology, they can be just

motors like in the multi rotors case (figure 2.2(b)). They can be servos too in the fixed wing or hybrid

typologies, figures 2.2(a) and 2.2(c) respectively.

Figure 4.4: Building blocks from flight stack architecture. Estimation control library in red.[20]

So it is given a brief explanation from the EKF computing algorithm and its implementation on the

PX4 for state estimation in the next section 4.1.1.
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4.1.1 Extended Kalman Filter (EKF)

The EKF is implemented throughout the introduction of the system dynamics and the observations

linearized model relative to the current estimated state, refining the estimation with the sensor measure-

ments. Those states are used by the control unit [30].

The EKF computes two steps for each iteration k, since it works in discrete time:

• Prediction - the predicted state estimate x̂−
k+1 is computed using the state estimate x̂+

k from the

previous iteration and the input u(k) (the input is missing in this flowchart 4.5),

• Filtering - the x̂+
k is updated using the predicted state estimate and the current observations.

In the figure 4.5, all the steps from the EKF algorithm computation are demonstrated.

Figure 4.5: Flowchart of the EKF algorithm [30]
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Dynamics model

The EKF has 24 states, equation (4.1), where the first states (q0, q1, q2, q3) correspond to the quater-

nions that define the angular position (rotation) from the XY Z body frame relative to the (North, East,

Down) Navigation Inertial Reference Frame and the 6 next states VN , VE , VD, PN , PE , PD refers to the

velocity and position in the Navigation Inertial Reference Frame. The first 10 states capture the posi-

tion information through a dynamic process model. The states ∆ang bias x,∆ang bias y,∆ang bias z and

∆vel bias x,∆vel bias y,∆vel bias z refer to the gyro delta angle bias and accelerometer delta velocity bias

respectively (both gyro and accelerometer belong to the IMU - Inertial Measurement Unit). Following the

matrix columns order, 4.1, MN ,ME ,MD and MX ,MY ,MZ represent the magnetic field on the naviga-

tion inertial frame and on the body frame respectively. Finally the states VwindN
, VwindE

refers to the wind

velocity on the Navigation Inertial Frame. The equations from this section came from the PX4 estimation

control library document [31].

X =



qn(4)

V(NED)

P(NED)

∆ang bias (xyz)

∆vel bias (xyz)

M(NED)

M(XY Z)

VwindN

VwindE



(4.1)

From the IMU measurements (gyro + accelerometer), ∆ang meas and ∆vel meas are defined by:

∆ang meas =


∆ang meas x

∆ang meas y

∆ang meas z

 =

∫ tk+1

tk

w⃗dt (4.2)

∆vel meas =


∆vel meas x

∆vel meas y

∆vel meas z

 =

∫ tk+1

tk

a⃗dt (4.3)

The truth delta angles ∆ang truth are calculated from the IMU measurements and delta angle bias

states ∆ang bias:

∆ang bias (x,y,z) =


∆ang bias x

∆ang bias y

∆ang bias z

 (4.4)
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∆vel bias (x,y,z)) =


∆vel bias x

∆vel bias y

∆vel bias z

 (4.5)

∆ang truth = ∆ang meas −∆ang bias (x,y,z) (4.6)

∆vel truth = ∆vel meas −∆vel bias (x,y,z) (4.7)

The rotation matrix from Body Frame to the Navigation frame is given by:

[T ]NB =


q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 (4.8)

The quaternion ∆quat defines the rotation from frame k to k + 1. The truth delta angle, ∆ang truth, is

used to calculate ∆quat using a small angle approximation:

∆quat =


∆q0

∆q1

∆q2

∆q3

 =


1

∆ang truth x

2

∆ang truth y

2

∆ang truth z

2

 (4.9)

To rotate the quaternion state forward from frame k to k + 1 the ∆quat is used in the quaternion

product rule:


q0

q1

q2

q3


k+1

=


q0∆q0 − q1∆q1 − q2∆q2 − q3∆q3

q0∆q1q0 + q1∆q0 + q2∆q3 − q3∆q2

q0∆q2 + q2∆q0 − q1∆q3 − q3∆q1

q0∆q3 + q3∆q0 + q1∆q2 − q2∆q1

 (4.10)

The velocity states from frame k to k + 1 are calculated by the truth delta velocity vector, ∆vel truth,

rotated from the body frame to the Inertial Navigation frame and subtracting gravity:


VN

VE

VD


k+1

=


VN

VE

VD


k

+ [T ]NB .∆vel truth +


0

0

g

 .∆t (4.11)

The position estimates are updated:


PN

PE

PD


k+1

=


PN

PE

PD


k

+


VN

VE

VD


k

.∆t (4.12)
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The remaining states (IMU sensor bias, magnetic field and wind) use a static process model. They

do not change from k to k + 1 frame.

The accelerometer and Gyroscope raw data are used as input (u(k)) to the EKF and not as obser-

vation like the remaining sensors.

Observations Model

The EKF solves this problem by linearizing the observations model. Starting with the observations

equation [30]:

zk = h [x(tk)] + vk (4.13)

where zk is the sensor measurement vector, vk the observations noise and h [x(tk)] is the relation

between states and the observations. Some examples are given below.

The GPS position, barometer height and GPS velocity are direct observations from states, so the

observation mode is trivial. The equations from this section relative to the PX4 observations model,

came from the PX4 estimation control library document [31].

It is assumed the magnetometer to be aligned with the body frame and experiences a magnetic field

vector which is the sum from the Navigation Inertial Frame rotted into Body Frame and a Body Frame

bias:


MX

MY

MZ


meas

= [T ]NB .


MN

ME

MD

+


MX

MY

MZ


bias

(4.14)

It is assumed the sensor measures the magnitude of velocity relative to the wind field by the airspeed

observation equation:


VrelN

VrelE

VrelD

 =


VN

VE

VD

−


VwindN

VwindE

0

 (4.15)

TASmeas =
√
(V 2

relN
+ V 2

relE
+ V 2

relD
) (4.16)

In order to linearize the observations equations, the Jacobian matrix of h(x) is obtained. This matrix

is called the observation matrix, H, and is given by[30]:

Hk =

[
∂h(x)

∂x

]
x=x−

k+1

, (4.17)

The last observation model parameter is the observation noise covariance matrix, Rk, which is a
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n× n diagonal matrix given by [30]:

Rk =


σ2
1 0

σ2
2

. . .

0 σ2
n

 (4.18)

Having obtained all the parameters necessary to the computation of the EKF, the 24 states can be

estimated.

4.1.2 Sensor Fusion

It was noticed that PX4 can change the source of observations while running the EKF. Giving one

example, the barometer is the primary source for height determination but the GPS can be used as

height observation instead, figure 4.6.

In case of a sensor failure, it is replaced or corrected by another sensor source. This process is

called sensor fusion and it is not related with the sensors modules which replaces sensor values with

other from the same typology. Also the fault detection criteria is different from the sensors module. The

observation measurements are evaluated by their innovations or residuals, the difference between the

sensor measurement (Observation) and its equivalent calculated through the predicted estimated states,

zk − ẑk = zk − h(x̂−
k ). For a better understanding, a flowchart was designed (see figure 4.6) relative to

the height source.

There are four different possible sources to get the Height observation - Barometer, GPS, Range

Finder, External Vision. One of them, is the primary height source, which means that sensor publishing

data is currently being fused on the EKF or its data has currently been used as observation and the

correspondent innovation and innovation variance are calculated every iteration. The system checks the

innovation and innovation variance, using some parameters defined and tested by the PX4 developers

relative to each sensor in the calculations to conclude if the co-variance matrix is badly conditioned

(filter fault, figure 4.8) through the innovation variance or if the observations will be rejected (sensor

fault) through the innovations (if the sensor innovation is higher than the innovation test limit, figure 4.9).

If any of this two checks fails, the PX4 warns the user the height source will be changed and starts

fusing other sensor measurements on the EKF. The fusing order is already defined at the start and it

depends on the available sources. Although it is possible to define the fused sensor before or during the

flight through setting specific parameters on the PX4 console as well as to know which sensor is being

fused on the control mode flags from the estimator status topic.

Other optional sensors not represented in the observation model can be used like the optical flow.

Doing the innovation test limit for the magnetometer x component, to exemplify:

mag test ratiox =

√
mag innovx√

mag innov gate parameter ∗mag innov varx
(4.19)

45



where the parameter was defined by the PX4 developers, the innovation (the sensor measurement

from the matrix zk subtracted by the estimated value from the matrix ẑk = h(x̂−
k )) and innovation

variance (from the matrix HkP
−
k HT

k + Rk) are computed using the EKF algorithm, figure 4.5. If the

mag test ratiox > 1 the observation will be rejected and the EKF will stop the magnetometer fusion.

Figure 4.6: Sensor fusion example with the height source.

Different time delays on each measurement relative to the IMU are caused by different sensors. A

complementary filter is needed because the EKF runs on a ’delayed fusion time horizon’. An overview

of the estimation control diagram block with the complementary filter for states propagation forward from

the ’fusion time horizon’ to current time using the buffered IMU data is at figure 4.7. Data from each
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sensor is FIFO buffered so the EKF can retrieve it from the buffer and use it at the correct time.

Figure 4.7: State estimator with the correction algorithm.[20]

The filter computation with the corrector algorithm will not be focused on this project since there is

no need of adding more redundancy levels on the sensors level. Therefore the first approach was left.

4.2 Second Approach

Since the purpose is still to increase the fault detection subsystem Ri(t), the strategy changed to work

on an external ring immediately after the sensors, jumping to the filter states used by the control unit.

Instead of comparing the sensor data from the three autopilots, the point is to compare the 24 states

from each autopilot correspondent EKF, adding a monitoring point after the filter. Synchronization is still

a problem when comparisons are made because of the possible wrong decisions based on the states

data correspondent to different timestamps. Also the processing capability needed from the PX4 stack

is a problem, to keep sending and receiving the 24 states for each iteration and for each autopilot.

A solution was found inside the EKF2 module (EKF folder is just a library) from PX4. The system

uses the innovations (zk − ẑk) and innovation variances (HkP
−
k HT

k + Rk))) to evaluate the filter own

health. The estimator status topic has flags groups that indicate observation (sensor measurements)

faults, figure 4.9, or numerical errors which came from filter faults, figure 4.8.

47



Figure 4.8: Filter internal fault flags resulted from the innovation variance, estimator status topic [32]

Figure 4.9: Rejecting observation flags resulted from the innovation test limits, estimator status topic

[32]

The combination from this two flags groups gives origin to a third group of flags which contains a bit-

mask indicating which filter kinematic state outputs are valid for flight control use (solution status flags).

The values from the ratios of the largest sensor innovation component to the innovation test limit (the

innovation check) are represented too in this topic to understand the observation error dimension, fig-

ure 4.10. The GPS has its own bitmask to indicate specific faults (minimal required satellite count fail,

maximum allowed PDOP fail, ...) since the PX4 navigation system depends a lot from it.

If trustful data referring to the estimator health already exists, based on different sensor measure-

ments comparisons with the estimated data from the EKF, there is no need of an heavy computational

operation for states comparison between autopilots to achieve similar conclusions. Each PX4 can watch
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Figure 4.10: Ratio of the largest sensor innovation component to the innovation test limit, estima-
tor status topic [32]

out his own estimator flags and share the information with the other two autopilots, between defined

time periods, in order to catch permanent faults and not punctual faults caused by a single bad sensor

measurement reflected in the innovations.

The PX4 keeps running the default mechanisms from 1 autopilot explained on the previous section

4.1, including the sensors module which uses redundancy to vote on the sensor with the highest priority

(applied specially to the Inertial Measurement Unit sensors - accelerometers and gyroscopes) followed

by the EKF. The sensor fusion selects the best source of the same sensor typology throughout the

innovations analysis from observations.

As EKF input, the IMU are the most relevant sensors, so special attention is given to the accelerom-

eter and gyroscope. With less than 3 gyroscopes, it’s impossible to determine which is the failing gyro

if one fails because there is not a tiebreaker. The same applies to the accelerometer. Therefore the

autopilot with just 2 healthy IMU must change to prevent the worst case scenario.

Also the tilt and yaw alignment flags must be true to consider the EKF healthy. Those flags belong to

the the topic where the innovation flags can be found.

So the designed system uses the estimator status topic to get the filter Bitmask flags correspondent

to the innovation checks and EKF internal faults to decide if the estimated states are good or bad. If the

estimated results are bad and do not change during a time period, it is decided to decrease the autopilot

priority and to request for another autopilot to take over ( in case if the autopilot being on charge).

For a while this algorithm had been the best choice however the discovery of the Multi-EKF operation

mode forced a turn back on the main ideas.

4.3 Third Approach

The most recent fault detection method from PX4 uses 7 (by default) EKF running on parallel. Each EKF

is attached to one accelerometer, one gyroscope and one magnetometer and it cannot change any of

these sensors but the same sensor can be attached to more than one EKF, figure 4.11.

The Multi-EKF allows soft failures detection beyond the hard faults which were detected until now by

the sensors modules. The EKF selector module judges the EKF health through the innovation test ratios

and the Bitmask flags correspondent to the filter internal faults (numerical errors).
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Figure 4.11: PX4 Multi-EKF mode flowchart.

The chosen EKF is the one classified as ”healthy” with the best (the smallest) combined test ratio

which corresponds to:

combined test ratio = max(0.5 ∗ (vel test ratio+ pos test ratio), hgt test ratio) (4.20)

where vel test ratio, pos test ratio and hgt test ratio belong to the innovation tests ratios done by each

EKF like it was exemplified with the magnetometer in equation 4.23.
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Ratio of the largest velocity innovation ”component” to the innovation test limit:

vel test ratio =

√
vel innov√

vel innov gate parameter ∗ vel innov var
(4.21)

Ratio of the largest horizontal position innovation component to the innovation test limit:

pos test ratio =

√
pos innov√

pos innov gate parameter ∗ pos innov var
(4.22)

Ratio of the vertical position innovation to the innovation test limit:

hgt test ratio =

√
hgt innov√

hgt innov gate parameter ∗ hgt innov var
(4.23)

To prevent unnecessary selection changes between EKF instances, the relative test ratio is calcu-

lated through the difference between the actual selected EKF instance combined test ratio s and the

other EKF instance combined test ratio i. If the difference module overtakes a threshold, the parameter

EKF2 SEL ERR RED, the change occurs:

|relative test ratioi| = |combined test ratio s− combined test ratio i| > EKF2 SEL ERR RED (4.24)

The fault tree for an ”unhealthy” EKF classification was designed, figure 4.12. Any of these five

events leads to an ”unhealthy” judgement of the EKF:

• Filter internal faults

• Faulty gyroscope or faulty accelerometer

• combined test ratio < 0

• EKF publishing topics timeouts

The Multi-EFK mode does a similar process from which was planned on the last approach algorithm,

section 4.2. It evaluates the estimator to select the best one. The main difference resides the estimators

are running on the same autopilot instead of running on different boards.

One possible approach would be to evaluate just the selected EKF flags from each autopilot. Al-

though there is another module that does already the task.

The Commander Module relates the chosen/best EKF published estimator status topic data with time

periods to conclude if the autopilot has detected an hard failure and if it has to trigger the failsafe mode.

It verifies if the innovation test ratios for the velocity and position components are higher than 1. In that

case the Commander Module considers the navigation is failing. If the navigation keeps failing for more

than 2 seconds, the commander module changes the state to ”navigation failure”. That decision will

change three flags in the ”vehicle status” topic published by this module: condition local position valid,

condition local velocity valid and condition global position valid, see figure 4.13. A fault tree using the

example from the global and local position flag is represented in the figure 4.15.
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Figure 4.12: EKF Fault tree used by the EKF Selector Module.

Figure 4.13: Global position, local position and local velocity validity checks flags. [32]

Those flags are not exclusively dependent from the ”navigation failure” decision. They are set to

be ”false” if the dead reckoning time is exceeded, if standard deviations errors from the correspondent

estimates exceeds the limit imposed by the PX4 parameters (figure 4.14) or if the messages published

by the selected EKF lasts longer than 1 second (timeout error).
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Also all the estimated states values are checked to be finite, looking for software faults.

Figure 4.14: Standard deviation errors. [32]

The standard deviation error of the horizontal and vertical local position (meters) is calculated by:

eph =
√
P−
k (7, 7) + P−

k (8, 8) (4.25)

epv =
√
P−k(9, 9) (4.26)

where P−
k is the error covariance estimate matrix from the EKF algorithm.

The standard deviation error of the horizontal and vertical global position (meters) is calculated by:

eph g =
√
P−
k (7, 7) + P−

k (8, 8) + gps origin eph2 (4.27)

epv g =
√
P−
k (9, 9) + gps origin epv2 (4.28)

The standard deviation error of the horizontal and vertical velocity meters per second) is calculated

by:

evh =
√
P−
k (4, 4) + P−

k (5, 5) (4.29)

evv =
√

P−
k (6, 6) (4.30)

These values are compared with the required accuracy from the PX4 defined parameter.

The fault tree relative to the global or local position validation variable is demonstrated in figure 4.15,

as an example for a better understanding of the PX4 coded functions and to relate the estimator faults

with possible sensor failures from any kind.

More three Boolean flags are determined by the Commander Module: condition angular velocity valid,

condition attitude valid and condition local altitude valid. The angular velocity, the attitude and the local

altitude are verified due to their importance to the navigation. The Commander Module checks if those

variables are updated (less than 1 second from the last publish) as well as if their values are finite.

So the 6 error flags were considered relevant for fault detection about one PX4 unit:

• condition local position valid

• condition local velocity valid

• condition global position valid

• condition angular velocity valid
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• condition attitude valid

• condition local altitude valid

Figure 4.15: Global or Local position validation fault tree used by the Commander module.
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The commander module publishes other important flags not related with the estimator. They are

suitable to evaluate crucial subsystems for the autopilot operations:

• battery healthy (set to true if the battery is available - not low)

• condition system sensors initialized (check if the sensors are initialized)

• failsafe (true if system is in failsafe state (e.g.:RTL, Hover, Terminate, ...) - a security mechanism

which is triggered when an hard failure is detected

• data link lost (datalink to GCS lost)

The triple redundant system provides the possibility to detect and mitigate faults by comparing the

system or subsystem states. When two of the three systems agree about its state, the third one which

disagrees is probably failing. Because the chances of two systems taking the wrong decision at the

same time are much lower. This logic will guide the system fault detection.

Therefore the mentioned six flags relative to the estimator/sensor health plus the other 4 flags, rel-

ative to other autopilot subsystems, were chosen to be monitored and compared with the respective

flags from the others redundant autopilots. As an example, the comparison logic between different PX4

instances is demonstrated with the battery healthy flag, on the diagram 4.16.

Figure 4.16: Comparison diagram of the redundant Boolean battery healthy flag and failure counter for

each PX4 instance.

Error/failing counters are defined by the sum of all faults from one PX4 unit. All the faults have the

same weight with exception to the communication faults between the autopilots that will be covered next.

The battery healthy used in this example, figure 4.16, is the first variable to be compared so the

failing/error counter from each instance is equalized to one instead of being incremented when the
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correspondent instance battery healthy state is ’FALSE’. When the three PX4 instances flag have the

same Boolean value, the system is considered to be healthy even if the flag indicates a faulty subsystem

(’FALSE’ state). In that case, it is considered an external problem to the autopilot and out of range for

fault tolerance.

Figure 4.17: Comparison diagram of the redundant Boolean failsafe flag and failure counter for each

PX4 instance.

Another diagram, figure 4.17, refers to the failsafe variable comparison between autopilots. At this

time a ’FALSE’ Boolean flag state means there is no error. The failsafe is triggered when an hard failure

is detected by the PX4 itself. Like any error flags, when the fault is detected, the respective error counter

from the autopilot is increased.

The comparisons are done inside each PX4, since it is a decentralized and distributed system. An

extra Module was added to the Firmware code, the redundancy manager.cpp. Also the voting process

is decentralized, each PX4 has autonomy and computes its own vote on the best autopilot based on the

data shared between them. All the autopilots vote on the respective autopilot with the lowest error/faults

counter computed by themselves based on the information they received about the 10 error flags states

from the other 2 PX4. The error counters values are reflected on the autopilot priority (another created

variable) unless the communications between the PX4 stand as the error origin. The autopilot which

does not communicate for more than 3 seconds, has its priority immediately changed and becomes the

last choice regardless the other two PX4 error counters values.

The autopilot priorities values are reflected on the voted autopilot by each instance.

The first autopilot (PX4 instance 0) computation algorithm and the external selection using the other
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two autopilots decisions can be visualized on diagram 4.18.

Figure 4.18: Decentralized voting algorithm for the first autopilot.

The autopilots instances are numbered from 0 to 2:

• First autopilot - Instance 0

• Second autopilot - Instance 1

• Third autopilot - Instance 2

When the autopilots computed priorities are the same (equal error counters values), each autopilot

votes on the autopilot numbered with the smallest value.

The voted autopilot will be the selected to take over. In case of all the autopilots having one vote,

which is not a good sign, the first autopilot or the instance 0 takes over the UAV control.
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The triple redundant algorithm computation is just allowed to work 30 seconds after take off to prevent

sudden jumps at flight critical phases.

The third approach was the chosen one to be validated since it benefits from the existent fault tol-

erant systems which are similar with the two first approaches systems. This approach is based on the

commander module which works as the upper layer and last fault tolerant system from the estimation

control library. In the next chapter 5 all the computations will be clear and justified from this programmed

algorithm.
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Chapter 5

Experimental Results

In this chapter, the system implementation and experimental results are described. All the programs

were specifically designed for the Software-In-The-Loop (SITL) simulation. SITL consists of running

the three flight stacks and executing other compiled source code belonging to the fault tolerant system

on computer using a modeled vehicle in a simulated world (mathematical model simulation). After the

experimental setup, the results are presented and analyzed. Gazebo was the simulator software used

on this project while the GCS software to interact with the PX4 was the QgroundControl, see figure 5.1.

Figure 5.1: Description of the redundancy system software running on SITL.

5.1 Problem Description

The main goal of this thesis is to build a fault tolerant system for an autopilot. The system was designed

based on redundancy and using internal variables from the autopilot to increase the fault detection

reliability and so the entire system reliability too.

To this end, sensor faults were artificially injected in the autopilot for time periods through the System

Failure Injection module, on the PX4 console. Those faults consequences are observed through logged
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internal topics as well as the system reaction and fault mitigation in order to validate the system.

The example from the figure 5.2(a) shows when the GPS signal stopped to publish data. It occurred

37 seconds after the simulation start. The time window is automatically adjusted to the published values,

so the graph ends when the last North and East velocities values were published. It is confirmed by the

triggered dead reckoning flag 2 seconds later, see figure 5.2(b).

To simulate the communication failure between autopilots, the instance 0 stopped sending messages

to the other two instances. On both figures 5.3(a) and 5.3(b), the blue line is not published anymore after

the 42 seconds. It represents the time of the last message received from the instance 0.

(a) PX4 instance 0, GPS North and East velocity. (b) PX4 instance 0, GPS dead reckoning.

Figure 5.2: GPS signal turned off using the failure injection command.

(a) PX4 instance 1, received messages times-

tamp from other autopilots.

(b) PX4 instance 2, received messages times-

tamp from other autopilots.

Figure 5.3: Broken communications from the PX4 instance 0.

Stuck magnetometer values are represented in figure 5.21(a) when the fault occurred (2 minutes and

27 seconds after the simulation start). This case was studied in the section 5.3.2.

5.2 Experimental Setup

For this thesis were implemented three different programs to allow the autopilot selection. Beyond the

module added to the PX4 firmware, two interface software were designed to manage the communica-

tions between the autopilot, simulator and ground control station. Both interface software forward data
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just from the selected PX4 instance, accordingly to the voting system, to prevent communications con-

flicts on the simulator and GCS ports. In order to prevent bugs and problems which are not matter of

interest of this project context, the complexity factor of running multiple PX4 SITL instances cannot be

exposed to the Gazebo and to the QGC. So the redundancy manager programs were designed to be

the the only one communication contact point from both GCS software and simulator and to make the

three PX4 instances to be invisible to them both. Also it is desired the user experience to be transparent

(one vehicle - one autopilot) although the developer knows that three autopilot instances are running.

5.2.1 Software-In-The-Loop (SITL)

In order to validate the fault tolerant algorithm, three PX4 SITL stacks ran independently at the same

machine. The SITL architecture diagram for one flight stack is below, figure 5.4.

Figure 5.4: Software In The Loop simulation. [20]

The simulator communicates with PX4 using the simulator MAVLink API and it supplies sensor data

to the PX4 SITL instance while this one returns actuators and motor values to be applied to the simulated

vehicle though the API referred. The API creates the sockets and codifies the messages to MAVLink.

The offboard API is not used. The ports were changed at the PX4 SITL side to connect to the interfaces

programs instead of direct connection to the Simulator and the Ground Control Station.

5.2.2 Simulator

The decision fell on Gazebo because of its support, Robot Operating System and multi-vehicle com-

patibility . The Gazebo communication process with PX4 was carefully studied to select easily the PX4

instance outputs through ROS before becoming simulator inputs. Unfortunately the gazebo plugins de-

signed to interface with PX4 were not build with ROS libraries so it is impossible to redirect them through

this tool. Gazebo can also be used for multi-vehicle simulations which could be interesting to run mul-

tiple flight stacks on the same model multiplied (twins) when injecting faults to analyse the ”same” UAV

behaviour response to the different stimulus. However just one model instance was ran on the Gazebo
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to test the voting system and selection process robustness to mitigate the faults and capability to keep

the same model running with a different flight stack after fault detection. Jmavsim could also be an

option, although a major experience and knowledge about Gazebo became a factor to continue with

this simulator. It communicates by TCP/IP socket protocol. The simulation ran on the different machine,

remote server, to improve the PX4 SITL performance since it consumes a lot of processing from the

same computer when all the three autopilots are running at the same time. The simulated UAV model

chosen is a simple quadcopter named ”iris”.

5.2.3 Gazebo Redundancy Manager

Before implementing the redundancy manager, it must be understood how the communication between

the PX4 SITL and the simulator is established, figure 5.5. This is based on TCP/IP protocol where PX4

SITL is the client and the simulator behaves like server.

Figure 5.5: Communication protocol between PX4 and Simulator.

The simulator redundancy manager must behave like a server listening for connections while com-

municating with PX4 SITL. By the other side, it must behaves like a client to connect to the simulator.

So it was designed to poll messages continuously from both sides without interrupting the cycles using

multi threading techniques in C language.

It is intended to run three PX4 SITL at the same time where just one of them sends the computed

actuators and motor values to the simulated vehicle. The program must select the outputs accordingly

to the voting system and forward to the simulator as well as it must forward also the sensor values from

the simulated world to all the three PX4 SITL. Once again, multi threading the program allowed to create

more two servers listening on different ports (referred at the diagram 5.6).

Despite of not being represented at the diagram 5.6, there are three more socket connections be-

tween the PX4 and the interface software (one more for each PX4 SILT). Those communication channels

refer to the vote result computed in each autopilot. The selection program counts the votes and selects

the most voted to forward its messages to the simulator.
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Figure 5.6: Communication protocol between PX4, Simulator Redundancy Manager and Simulator.

5.2.4 QgroundControl

The GCS software mostly indicated to work with PX4 is the QgroundControl. It communicates by UDP/IP

protocol. There is no offboard control, the mission is settled on the QgroundControl. This software was

used to command the vehicle (where missions were defined) and to monitor the vehicle throughout

telemetry. A mission plan taken from the QGC window is represented in the section 5.2.6, in figure 5.8.

All the PX4 SITL connect to the GCS sending their own heartbeats Mavlink messages to the same

port, 14550. However the QGC answers to each PX4 SITL local port.

5.2.5 QgroundControl Redundancy Manager

It is intended the QGC to send the same mission or commands to the three PX4 instances and just to

receive telemetry from one of them, accordingly to the redundant voting system.

An similar process, figure 5.6, was done to create the redundancy manager program. Now the

papers are inverted, each PX4 SITL behaves like server and the QGC like client. So the Redundancy

manager has to behave like a client to communicate with the PX4 instances or like a server if the

communication refers to the QGC. In the UDP communication protocol, the local ports are defined by

default (14580, 14581,14582) from the PX4 SITL side to allow the Redundancy manager (or the QGC

when not running the redundant system) to answer to the autopilots, diagram 5.7. In multi-vehicle

simulations, all the PX4 SITL instances send messages to the QGC through the same port (14550).

That port was divided on three different ports (145555,1556, 14557) to prevent congestion in a single

port when polling messages. This program was written in C language with multi threaded cycles to poll

messages from the QGC and the 3 autopilots continuously. More three TCP connections were added

to the QGC Redundancy Manager, not represented at the diagram 5.7, to receive the computed votes

from each autopilot instance.
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Figure 5.7: Communication protocol between PX4, QGC Redundancy Manager and QGC.

5.2.6 Mission plan

The mission takes place in the PX4 default location (Zurich, Switzerland). There is no need to change

the location since all the simulated sensors values, including GPS, are not real and are provided by the

Gazebo while running on SITL or HITL simulations. It was chosen a typical survey mission where the

UAV, after the takeoff, follows the Waypoints number order to up and down throughout vertical lines on

the map. The waypoints form a circular pattern, so the vehicle covers the respective area, figure 5.8. As

it will be seen on the section 5.3, most of the vehicle simulations did not perform the full mission plan

since it was considered enough data was taken to validate the redundant system operation.

Figure 5.8: Mission plan view from QgroundControl.

5.3 Results

In order to demonstrate the fault tolerant redundant system working properly, artificial faults must be

injected on the PX4 which is on charge. By default, the instance 0 takes over the vehicle control when

all the instances remain at the same healthy condition. The instance 1 takes over if the instance 0 is

classified unhealthy when compared with the other two instances available. This means the instance 3

just takes over the control when both first two instances are classified by a worst condition than the last
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instance.

Faults will not be introduced by the Gazebo plugins since the three autopilots are connected to the

same simulated vehicle. So the faults would reach the three autopilots and it could not be possible to

differentiate any of them. The failure command, available on the PX4 console, was useful to simulate

GPS, barometer and magnetometer faults since it introduces them on the correspondent PX4 instance

sensor messages. The failure injection is defined inside the PX4 own simulator module which means its

action resides just after the data being received from Gazebo allowing to differentiate the failing instance.

For the flight log analysis were chosen two different tools:

• The Flight Review [33] for the general topics and its graphs visualization. It is not possible to

visualize different topics from the default.

• The Plotjuggler [34] for specific topics inspection like the added messages from the redundancy

algorithm or other messages containing flags considered important for this project.

5.3.1 GPS Failure

A GPS failure was injected 27 seconds after the takeoff as it can be read on the PX4 console or in the

recorded messages in the log from the PX4 console, figures 5.9 and 5.10. At the appendix A, is shown

the dead reckoning start around the 37 seconds on the instance 0, see figure A.4(a). Also in the section

5.1, this example was given to demonstrate the moment when the GPS signal was turned off, figures

5.2(a) and 5.2(b).

Since the tests were done in a simulated vehicle and there was no risk of loosing the UAV on a crash,

the timestamp for voting and selection between different autopilots was reduced to 10 seconds after the

critical flight phases, like the takeoff. It is intended to do not waste time during the simulations to get

the data to validate the system. In real flights that value becomes equal to 30 seconds to increase the

vehicle security.

Figure 5.9: Takeoff command on the log recorded messages from PX4 console.

Figure 5.10: GPS failure injection command on the log recorded messages from PX4 console.

The PX4 trajectories represented in figure 5.11(a) and 5.11(b) were designed throughout the pro-

vided data (GPS, setpoints/waypoints, estimated position) from the PX4 instances. The graphs belong-

ing to the third PX4 autopilot, correspondent to the instance 2, are not shown below because they are

similar to the second autopilot, instance 1.
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When comparing the computed trajectories it is noticed the instance 0 did not accomplish the mission

continued by the other two instances. After the takeoff both instances towards to the same first position

setpoint despite of instance 0 not achieving it. The GPS projected trajectory is coincident with the

estimated and setpoint trajectory on the instance 1 and 2, figure 5.11(b). While the instance 0, figure

5.11(a), stopped the GPS navigation (blue line) because of the blocked GPS sensor messages.

(a) PX4 instance 0, waypoints were not reached. (b) PX4 instance 1 and 2, waypoints reached after takeoff.

Figure 5.11: Two dimensions UAV mission trajectories from the top view

The three autopilot instances refers to the same simulated vehicle in space time, so the quadcopter

travelled the same true trajectory 5.11(b) regardless the PX4 instance. The reason of the false trajectory

from instance 0, figure 5.11(a), is because of the PX4 low capability to estimate the position seconds

after the GPS being turned off, specially when the direction needed to change as well as the forced

navigation stop.

The figure 5.12(a) shows the UAV position along the Z axis during the simulation. The ground level

is stated by 0 value and the Z axis points to down which means the relative altitude to the ground is

negative. The UAV climbs to 10 meters after the takeoff and stays at the same altitude until it receives

the land command from the navigator module. Despite of not receiving new commands to abort the

mission, the vehicle started the descend maneuver to land 42 seconds after the simulation start. While

the instance 0 has been taking over the vehicle, the failsafe mechanism was triggered after the GPS

fault injection. The autopilot took 5 seconds to consider the fault as an hard failure. The redundant

system algorithm is based on the commander module flags. Some of them, like the global and local

position valid flags or the failsafe flag, take the same time to change as the PX4 to be declared faulty.

Therefore the redundant algorithm caught the first errors when the autopilot started to descend and they

were compared with the other two instances. For the autopilot to be declared faulty by the algorithm,

the same flags should remain faulty more than 1 second when compared again. The purpose is to gain

consistency on the decision about the running PX4 instances and to avoid punctual errors which could

lead to bad evaluations about the autopilots and provoke constant changes between autopilots during a

flight. It is a trade off between the decision consistency and the reaction time to a real failure.

Before the 50 seconds, the instance 1 takes over and the vehicle starts to climb again to the 10

meters to complete the mission following to the next set point, figure 5.12(b). The difference between
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the setpoint and the estimated Z position is clear when the UAV descends.

(a) PX4 instance 0. (b) PX4 instance 1 and 2.

Figure 5.12: PX4 set and estimated position projected on the Z axis (negative altitude relative to the

ground) during the flight in the Inertial Frame from the different instances

On the figures 5.13(a) and 5.13(b) are represented the actuator controls values from both PX4 in-

stances during the SITL simulation. The values from the PX4 instance 2 actuator controls were ignored

because it does not take over the UAV control in this simulation. The instance 1 actuator controls begin

with instability while the instance 0 is the only autopilot controlling the UAV, so the other instances are

receiving the feedback from the other autopilot control. It is not a problem since their actuators values

are being ignored. When the instance 0 initiates the landing phase, the other two instances show oppo-

site values to the actuators since they are not aware of the triggered failsafe and they will do an effort to

keep the UAV on the previous route to reach the next waypoint. Fifty seconds after the simulation start,

the actuator controls from the instance 1 stabilize since it has taken over the UAV and it receives now the

correct feed backs from the vehicle answers as well as it turns back to the right position to accomplish

the mission.

(a) PX4 instance 0. (b) PX4 instance 1.

Figure 5.13: PX4 actuator controls (Roll, Pitch, Yaw and Thrust) from the different instances during the

simulation time.

The redundancy manager module publishes a topic, redundancy selection, where the voting selec-

tion can be followed any time by the user. The message topic is recorded on the logger as well as its

selection criteria.

The error provoked by the GPS fault had been detected around the 43 seconds on the instance

0 where the fault was injected, figure 5.14(a). Three seconds later it had been detected on the other
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two instances (figures 5.15(a) and 5.16(a)). All the autopilots error counters are represented on the

graphs which proofs the decentralized capability at any autopilot. Each autopilot number line refers to

the autopilot instance plus 1 because the autopilots were numbered from 1 to 3 instead of 0 to 2. The

line of the autopilot 2 (instance 1) is not visible because of the autopilot 3 (instance 2) line, which has

exactly the same form and it superimposes the last one.

(a) Error counters from the three autopilots

computed by the instance 0.

(b) The three autopilots priorities com-

puted by the instance 0.

Figure 5.14: PX4 instance 0 computed variables by the redundancy algorithm during the simulation.

(a) Error counters from the three autopilots

computed by the instance 1.

(b) The three autopilots priorities com-

puted by the instance 1.

Figure 5.15: PX4 instance 1 computed variables by the redundancy algorithm during the simulation.

(a) Error counters from the three autopilots (b) The three autopilots priorities

Figure 5.16: PX4 instance 2 computed variables by the redundancy algorithm during the simulation.

The redundancy algorithm belonging to the respective autopilot refreshes the autopilots priorities

which is based on the error counters, figures: 5.14(b), 5.15(b) and 5.16(b). However the voting selection
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is made following a descending order, so the autopilot selected has the lowest priority. The default priority

is 1. The priority varies until 3 if the error counter from the correspondent autopilot increases when

compared with the other two autopilots. When the autopilots have the same error counter value, the

same priority number is given to both or to all (in case of the three having the same error counter value).

In the case of having the same priority, the tiebreaker criteria for the selection is the instance/autopilot

number. The autopilot with a lower instance number, is the chosen one. That is the reason why the

instance 0 always starts the flight.

Since the autopilot priorities computation is based on the respective error counters and it is executed

immediately after computing the error counters, they changed both at the same time. When the first

autopilot error counter increased to 4, its priority increased to 3.

The voting selection from the instance 0 is shown in the figure 5.17(a). Again the instance 0 or

autopilot 1, is the first to change the voted autopilot, around 43 seconds accordingly with the computed

priority from the correspondent instance. The other two instances changed the voted autopilot at the

same time, 45 seconds, so the instance 2 is omitted because the graph is equal to the instance 1,

figure 5.17(b). From the figure 5.12(b) it can be concluded the changing between the autopilots is not

instantaneous, because of the heavy computational multiple threads occurring at the same time on the

interface selection programs. The autopilot 2 just took over the control 48 seconds after the simulation

start.

The redundancy manager interface programs are running on the background decoding and coding

every MAVLink message exchanged between the simulator, the three PX4 instances and the Qground-

Control so the voting thread took 3 seconds to process the votes from all the instances to change the

autopilot which is sending the actuator values to be read by the UAV on the simulator.

(a) PX4 instance 0 voter. (b) PX4 instance 1/2 voters.

Figure 5.17: Autopilot voted by the redundancy algorithm during the simulation.

The error flags whose sum defines the error counters if they are constant for a time period, are shown

at the console in real time when they occur or on the logged messages part from the log file, figure 5.18.

However the error flags counters cannot reflect sometimes the error flags shown at the console

because of its consistency. Regardless the error vanishment from the console, if it had been constant

for more than one second, it will be taken in account for the error counter during at least 600 seconds.

On the contrary, when the faults are detected at the first time, they are not immediately reflected on the

error counters or priorities since they have to keep the same error more than one second. It is just the
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case of instance 0, figure 5.18. The failsafe was triggered just in the instance 0, so the fault was noticed

and printed on the console. The same happened for the condition local position error flag despite of not

having its values reflected on the error counters and the autopilots priorities.

The autopilot priority 1 vector refers to the computed autopilot priorities. This vector is ordered

differently from the default way (autopilot priority) and it is relative to each autopilot. It should not be

used for comparisons between autopilots. The autopilot priority is ordered on the same default way to

all the instances and it can be compared with the other autopilots same vector.

The flags used to compute the error flags from each instance can be accessed through the vehi-

cle status.msg and the vehicle status flags.msg topics as mentioned in 4.3.

Figure 5.18: Console messages display with error flags from instance 0 or autopilot 1.

Since the fault was injected it took 6 seconds to be detected by the first autopilot and 8 seconds by

both second and third autopilots. Globally it took 11 seconds for the second autopilot to take over the

vehicle after the fault injection.

The relation between the estimations quality with the GPS failure is analyzed through the innovation

test ratios graphs in the appendix A.1. Also the standard deviation errors and the dead reckoning time

graphs demonstrate to be the cause for triggering some error flags.

5.3.2 Magnetometer Failure

Two stuck magnetometers connected to the first autopilot were simulated, two minutes and 27 seconds

since the simulation start, throughout the failure injection command leaving the PX4 instance 0 without

any working magnetometer available.

Figure 5.19: Magnetometer failure injection command on the log recorded messages from PX4 console

at 2 minutes and 27 seconds.

In the figure 5.20(a) is drawn the trajectory made by the vehicle from the point of view of the first

autopilot or instance 0. The vehicle must follow the green line, which defines the mission connected set

points on the correct order. The answer of the vehicle to the setpoints is represented by the red line

which represents the estimated vehicle trajectory. The green line is superimposed to the red line in the

first part of the trajectory. Then the second autopilot took over because of the fault detection. Since the
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first autopilot triggered the failsafe, the mission was aborted and the green line vanished at that moment.

Although the second autopilot or instance 1, has continued the mission so the red line which estimates

the vehicle position is correct. The estimated and mission trajectory from that autopilot is drawn in the

figure 5.20(b). The third autopilot or instance 2 is omitted because of the lack of space, the similar

behaviour with the instance 1 and the point of not taking over the vehicle control during the flight time.

There is a great difference between the estimated trajectory and the mission trajectory on the first

part of the trajectory. The first setpoint chosen to start the mission corresponds to the second setpoint

in the first autopilot, ignoring the first one, by unknown reasons since the same mission was sent to

the three autopilots from the QGC. Apart from that issue, the vehicle estimated trajectory differs from

its mission trajectory when the vehicle reaches the 180 metes along the y axis. That is because the

first autopilot is still on charge and the UAV started the landing movement determined by the failsafe

mechanism. Meanwhile the autopilot 2 has taken over the vehicle control and it recovers the position as

well as the mission setpoints which make the red line being superimposed by the green line.

(a) PX4 instance 0. (b) PX4 instance 1.

Figure 5.20: 2D trajectory in the inertial frame of reference (top view).

The magnetic field measured by both instances is shown below providing a visualisation of the fault

injected at the magnetometers. In figure 5.21(a) is shown the raw magnetic field strength from the

instance 0 along the three axis with different colours. Around the 30 seconds the UAV took off and

some variations were noticed on the magnetic field. Even after being stabilized, the measurements

always have some noise. At 2 minutes and 27 seconds after the simulation start, the raw magnetic field

strength values had become stuck like it was commanded on the PX4 console, figure 5.19.

By the other side, on the instance 1 (figure 5.21(b)) some perturbations on the magnetic field are

noticed between the third and fourth minute when the vehicle is still confused because of the fault

injected and the consequent decision to land caused by the failsafe mechanism. When the control

change between autopilots is made, the magnetic field and the vehicle stabilize again. The magnetic

field strength measured values from the instance 1 are not stuck, since they keep showing noise like

before the fault injection.
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(a) PX4 instance 0. (b) PX4 instance 1. X axis - time in min-

utes:seconds.

Figure 5.21: Magnetic field strength measured by the PX4 magnetometers during the simulation.

The figures below were chosen to demonstrate the control change between autopilots during the

flight using the actuator controls. The difference between the pitch, yaw and thrust actuator control val-

ues from instance 0 (figure 5.22(a)) to the instance 1 (figure 5.22(b)) until the third minute are explained

by a different first Waypoint on the uploaded mission by the QGC, nothing related with faults. The land-

ing maneuver is visible on the first autopilot in figure 5.22(a) at 3 minutes and 10 seconds when the

thrust is decreased. The landing phase also confuses the second autopilot, figure 5.22(b), which tries

to contradict the maneuver not commanded by itself. After taking over the vehicle control, the thrust

returns to same initial value from the instance 0 as well as the roll, pitch and yaw which turns 0. Now it

is the instance 0 turn to try contradicting the maneuver commanded from the instance 1.

(a) PX4 instance 0. (b) PX4 instance 1.

Figure 5.22: PX4 actuator controls (Roll, Pitch, Yaw and Thrust) from the different instances during the

simulation time.

For this simulation the error flags used on the computed selection were recorded. Just the four flags

which changed over time are shown below. The flags were recorded from the first autopilot (see figures

5.23(a) and 5.24(a)) and from the second autopilot (see figures 5.23(b) and 5.24(b)).

The instance 0 detects the global position error flag firstly followed by the local position, figure 5.23(a),

around the 190 seconds. Both error flags are detected approximately 3 seconds earlier than the instance

1, figure 5.23(b). A similar behaviour is observed with the failsafe and the local velocity error flags. The

instance 0 detects the failsafe flag at the same time as the global position error flag is detected, figure

5.24(a). Again the instance 1 detects those error flags, figure 5.24(b) approximately 3 seconds after of

being detected on the instance 0.
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(a) PX4 instance 0. (b) PX4 instance 1.

Figure 5.23: Local and global position error flags.

These error flags are relative to the first autopilot behaviour, although the results shown came from

two different autopilots. The third autopilot results were omitted because they are similar to the second

autopilot.

(a) PX4 instance 0. (b) PX4 instance 1.

Figure 5.24: Failsafe and local velocity error flags.

Some of the error flags relative to the second autopilot behaviour are described for comparison -

figure 5.25(a) from the first autopilot point of view and figure 5.25(b) from the second autopilot point of

view.

The error flags computed by the two instances do not change over time, figures 5.25(a) and 5.25(b),

resulting in zero accountable errors for the second autopilot.

The error counters relative to three autopilots but computed on the different autopilots during the

flight simulation are represented in figures 5.26(a) and 5.26(b). The third autopilot or instance 2 was

omitted because of its similarity with the instance 1. So the instance 0 computed error counters, figure

5.26(a), shows two detected faults around the 187 seconds when the first two error flags changed.

Three seconds later, the first autopilot error counters increases to 4 while the other two autopilots keep

the error flags unchanged and the error counters at 0.

While the second and third autopilot keep the same priority level at 1, the first autopilot priority

number increases to 3 (remember this system priority follows a descending order). The figure 5.27(a)

refers to the instance 0 computed priorities relative to the three autopilots while the instance 1 computed

priorities are represented in the figure 5.27(b).

Around the 190 seconds the priority of the second autopilot is classified by 3 at the same time of the

error flags changes detection. So the instance 1 changes the second autopilot priority 3 seconds after
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the instance 0 like the error flags behaviour observed before in figures 5.23(b) and 5.24(b).

(a) PX4 instance 0 observation. (b) PX4 instance 1 observation.

Figure 5.25: Local velocity, local position, global position and failsafe error flags behaviour from the

second autopilot observed by two different instances.

(a) PX4 instance 0. (b) PX4 instance 1.

Figure 5.26: Error counters from the three autopilots computed by the first two instances.

(a) PX4 instance 0 priorities. (b) PX4 instance 1 priorities.

Figure 5.27: Computed priorities over time from both autopilots (instance 0 and instance 1). Instance 3

omitted. Priority scale from 1 to 3.

(a) PX4 instance 0. (b) PX4 instance 1 and 2.

Figure 5.28: Autopilot voted by the redundancy algorithm during the simulation.
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From the past results analysis about the autopilots priorities, error counters and the respective error

flags, it is possible to guess the vote changing time from the first to the second autopilot. Since the

voting selection is made immediately after the priorities computation, around the 190 seconds the vote

changed to the second autopilot in the first instance, figure 5.28(a). Like the error counters and the

error flags, the computed vote from the second autopilot was three seconds later approximately, figure

5.28(b). Therefore the vote selection accompanied the first change in the error counters which means

when the first two error flags changed. The other two error flags triggered later did not influence the

voting since the other two autopilots kept its error counters at 0.

Since the magnetometers faults were injected, it took approximately 40 seconds until the system

declare it as a failure. However the UAV was not in a real danger all that time while waiting for other

autopilot to take over. The PX4 maintained the UAV on the same route 40 seconds after the failure

injection with no fault detection because of its estimators ability to work temporarily with just other sensor

data sources.

So it starts to struggle because of the bad estimations provoked by the magnetometers faults and it

took more 25 seconds until the error flags being triggered as well as the failsafe mechanism to initiate the

landing. So the system catches the error flags values and it votes on another autopilot and approximately

three seconds later the second autopilot takes over.

Finally the relation between the estimator health with the magnetometer failure is analyzed through

the innovation test ratios graphs in the appendix A.2. Some of the error flags triggered caused by the

Magnetometer failure are a direct consequence from great innovations during the flight.

5.3.3 PX4 Communication Failure

That scenario occurs when a autopilot turns off for some reason or when it becomes unable to com-

municate with the others. In the second case, despite of the autopilot being healthy at the present, it

can avoid the system fault detection ability in the future because the autopilots rely on real time data to

compute the priorities and to vote on the right autopilot.

To simulate a communication breakdown at the autopilot on charge, the first autopilot was pro-

grammed to stop sending messages to the other two autopilots 30 seconds after the take off.

The UAV took off 11 seconds after the simulation start, figure 5.29. Therefore after 41 seconds from

the simulation start, the second and third autopilot had not received any messages from the first one.

The figures 5.3(a) and 5.3(b) in the section 5.1 refers to this fault. All the autopilots have a 3 seconds

margin to wait for other autopilot messages which corresponds to three iterations because the shared

messages between autopilots have a rate of 1 per second.

Figure 5.29: Takeoff on the logged messages from PX4 console at 11 seconds.
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The instance 1 (second autopilot, figure 5.30(a)) and the instance 2 (third autopilot, figure 5.30(b)),

react to the communication failure almost at the same time, approximately at 45 seconds, changing the

first autopilot priority and the voting autopilot. The graph relative to the instance 0 (first autopilot) voting

selection was omitted because it stands the vote in the first autopilot all the simulation, since it keeps

receiving the messages from the other two autopilots and does not know the other two autopilots are

not receiving its messages.

Through the actuator controls pitch and roll during the flight, it is clear the second autopilot took over

the control from the UAV around the 48 seconds, see figures 5.31(a) and 5.31(b).

(a) PX4 instance 1 voter. (b) PX4 instance 2 voter.

Figure 5.30: Autopilot voted through the redundancy algorithm during the simulation.

From the 30 seconds up to 48 seconds, the first autopilot on charge has its actuator controls pitch

and roll stabilized with low values, figure 5.31(a). However the second autopilot actuator controls pitch

and roll are increasing because of a small divergence on the UAV control, figure 5.31(b), which obeys

just to the first autopilot by now. When the UAV control is transferred to the second autopilot, at 48

seconds, the opposite situation occurs. The first autopilot actuator controls pitch and roll rise, figure

5.31(a), as well as the respective variables from the second autopilot stabilizes, figure 5.31(b). Now the

UAV obey to the second autopilot.

(a) PX4 instance 0. (b) PX4 instance 1.

Figure 5.31: PX4 actuator controls (Roll, Pitch, Yaw and Thrust) from the different instances during the

simulation time.

So it took approximately 3 seconds to the system to change the autopilot on charge since the decision

was made inside each autopilot. The total time the system spent to answer to the communication failure

was 7 seconds. In a real flight, it is not known if this failure refers just to the communications or if the

entire autopilot turned off. Therefore the system reaction time to an hard failure from this kind is not

smaller enough to be considered safe or to avoid a crash.
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Chapter 6

Conclusions

This thesis was developed with the goal of designing a redundant autopilot system to increase its relia-

bility when compared with a single autopilot. To this end, the reliability and redundancy concepts were

studied in Chapter 2 to choose the best architecture and the number of units in order to get the best

results considering the trade-off with complexity and weight. In the end, a triple redundancy system with

distributed architecture was chosen as the best approach.

In the Chapter 3 several pilots available at the market were analyzed. The PX4 was considered the

best pilot to fit on this triple redundancy system. MAVLink protocol was chosen for the pilots external

communications.

The system design was implemented on Chapter 4. An introduction was given about the estimation

control library from PX4. Different approaches were attempted before reaching a solution which benefits

from the fault detection systems existing at PX4 such as the sensor fusion and the Multi-EKF.

Afterwards, on Chapter 5 can be found the simulation results obtained from the designed system

of this project when GPS or Magnetometer failures occurred as well as the simulation environment

implementation. For a better understanding of the steps needed to run the simulations, the commands

and routines are detailed in the appendix B.

This project has shown that three PX4 units combined, allows to detect and mitigate faults increasing

the system total Reliability.

In the case of GPS and Magnetometer failures, the PX4 failsafe mechanisms were triggered before

the pilot actuators control changed. Some of the error flags used by the implemented system are also

used by the PX4 itself for own fault detection to trigger the failsafe. The situation caused perturbations

along the flight trajectory. The pilot which receives corrupted data from the faulty sensors, initiates an

emergency landing maneuver to avoid greater damages while the new pilot have not taken over the

vehicle control. Two seconds are needed, at least, to update the error counters and the correspondent

vote. The heavy computational communications from the interface programs limit the available computer

resources. Just running the software on a powerful processor allows to reduce the time interval between

iterations in real time without loosing program threads. To avoid the trajectory deviation, the fault detec-

tion speed of the system has to increase and so the time between the iterations to check the error flags
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and to communicate with other pilots is decreased. While running the software on Hardware-In-The-

Loop simulation mode or in real flights, the freedom to change the target variables will depend on the

board processor clock speed since the interface programs are just needed for simulations (Software-In-

The-Loop and Hardware-In-The-Loop) allocating resources just on the computer and not on the boards.

For a comparison between different failure causes tested on the system, the table 6.1 was filled with

the time periods for fault detection followed by the pilot replacement. The magnetometer failure took

more 37 seconds to be detected than the GPS failure meaning the PX4 relies more on GPS than on

Magnetometer. The PX4 was able to control the vehicle properly for a longer period without magnetome-

ters. Although any of these sensors can not be replaced by other sensor sources throughout the sensor

fusion, since the pilot error flags were triggered continuously. Apart from the PX4 estimators capability

to keep the flight stabilized with sensor failures, the needed time for the system to detect the fault should

be reduced like it was explained on the previous paragraph. Consequently the time needed for the pilot

change is reduced too because it fully depends on fault detection, usually 3 or 4 seconds after.

The PX4 communication failure is the fastest to be detected. However 7 seconds is still a lot of time in

flight for the actuators to be locked by an autopilot without heartbeat. In this case, there is no error flags

dependency from the PX4, so the fault detection time period will decrease considerably to 1 second if

the iterations rate of the program increases. Therefore the pilot change time period could decrease to 3

seconds or less.

Table 6.1: Fault tolerance reaction performance of the system.

Failure Typology

Time period GPS Magnetometer PX4 communication

Failure Detection (seconds) 6 43 4

PX4 On Charge Replacement (seconds) 10 46 7

6.1 Future Work

This section identifies some directions to improve the current work:

• System validation for accelerometer and gyroscope faults:

Beyond the GPS and Magnetometer faults, the system was tested for Barometer fault without

any consequence for the pilot selection since the PX4 changed the height source to the GPS

throughout the sensor fusion using the GPS as a primary height reference.

Both accelerometer and gyroscope faults were introduced by the failure injection command (stuck

and off modes) without success because the simulation broke down every attempt for some reason

that it could not be figured out. There is triple redundancy for any of these sensors, making this

entire group of sensors extremely unlikely to fail.
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More faults can be introduced in another sensors used by the PX4 for validation.

• Validate the system for QGC communication fault:

The QGC communication and battery faults were not simulated yet despite of the system algorithm

being already implemented to mitigate them through the error flags ”mission failure”, ”data link lost”

and ”battery healthy” observation from each PX4. So the system still needs to be validated for

those faults. For the QGroundControl communication fault, it can be done modifying the interface

program between the pilot instances and the QGC in such a way that one or more pilots will not

be able to receive messages from the QGC.

• System validation running on HITL simulation mode:

The next step is to validate the system running it on the Hardware-In-The-Loop simulation mode,

where the software is tested on a real flight controller hardware. The interface programs must be

modified and adapted to the new architecture, replacing the three TCP sockets relative to each

pilot instance by the three USB connections. CEIIA has already bought 3 Hex Cube Black Flight

Controller [26] for this purpose.

• Validate the system in a real flight with a low cost UAV, including already the battery and engine

fault tolerance:

The fault tolerant system will be tested on a real flight with a low cost UAV where new functionalities

will be added to the redundant algorithm, like the ”engine failure” error flag observation. It will

allow to verify if there are faults related with the wire connection to a specific autopilot and to

distinguishing them from external faults related with the engine (when the same fault is detected

on the three autopilots). The same process applies to the battery with the ”battery healthy” error

flag observation.

When testing the system on a real flight, the MAVLink API module from PX4 is not needed anymore

because there is no connection between the pilots and the simulator. Therefore the interface

selection programs are no more suitable. The pilots outputs are sent to the actuators by PWM

throughout wires. An analog multiplexer connected to the three pilots output selects the right one

to the actuators based on the final selection. A micro controller will be needed to receive and

decode the MAVlink messages with the votes from each pilot, to select the most voted sending the

decision to the analog multiplexer.

• Validate the system on the UAS-30
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Appendix A

Extra Simulation Data - Innovations

A.1 GPS Failure

(a) PX4 instance 0. X axis - time in seconds. Y axis - GPS

position innovations (meters), GPS velocity innovations (me-

ters/second).

(b) PX4 instance 0. X axis - time in seconds. Y - GPS

Innovations test ratios (dimensionless).

Figure A.1: PX4 Instance 0 - GPS innovations and innovation test ratios.
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(a) PX4 instance 1. X axis - time in seconds. Y axis - GPS

position innovations (meters), GPS velocity innovations (me-

ters/second).

(b) PX4 instance 1. X axis - time in seconds. Y - GPS

Innovations test ratios (dimensionless).

Figure A.2: PX4 Instance 1 - GPS innovations and innovation test ratios.

(a) PX4 instance 2. X axis - time in seconds. Y axis - GPS

position innovations (meters), GPS velocity innovations (me-

ters/second).

(b) PX4 instance 2. X axis - time in seconds. Y - GPS

innovations test ratios (dimensionless).

Figure A.3: PX4 Instance 2 - GPS innovations and innovation test ratios.

The GPS failure does not provoke greater innovation test ratios from the GPS horizontal and vertical

position or velocity, figure A.1(b). A peak is noticed after the autopilot loosing the UAV control for the

second autopilot (instance 1) and so is not related with the fault injected. To be considered navigation

failure, the innovation test ratio must be greater than 1 while the peak is around 0.08. For the other

autopilots, in figures A.2(b) and A.3(b), the peak is around 0.005. In this case the fault was not detected

because of the innovations values.
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(a) PX4 instance 0. X axis - time in seconds. Y axis - Dead

Reckoning (Boolean), horizontal and vertical standard devi-

ation errors (meters).

(b) PX4 instance 1. X axis - time in seconds. Y axis - Dead

Reckoning (Boolean), horizontal and vertical standard devi-

ation errors (meters).

Figure A.4: Standard deviation errors and Dead Reckoning.

The dead reckoning was triggered after the 37 seconds when the fault was injected in the instance

0, figure A.4(a). Therefore this is the cause to the error flags change and to the fault being detected.

The horizontal standard deviation error also increases until the end of the simulation. The instance 1

standard deviation errors and dead reckoning flag is represented in figure A.4(b), similar to the instance

2. The standard deviation errors keep constant along the simulation time and the dead reckoning is

never triggered.

A.2 Magnetometer Failure

(a) PX4 instance 0. X axis - time in seconds. Y axis - GPS

position innovations (meters), GPS velocity innovations (me-

ters/second).

(b) PX4 instance 0. X axis - time in seconds. Y axis - GPS

and Magnetometer Innovations test ratios (dimensionless).

Figure A.5: PX4 Instance 0 - GPS innovations and GPS plus MAG innovation test ratios.
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(a) PX4 instance 1. X axis - time in seconds. Y axis - GPS

position innovations (meters), GPS velocity innovations (me-

ters/second.

(b) PX4 instance 1. X axis - time in seconds. Y axis - GPS

and Magnetometer Innovations test ratios (dimensionless).

Figure A.6: PX4 Instance 1 - GPS innovations and GPS plus MAG innovation test ratios.

(a) PX4 instance 2. X axis - time in seconds. Y axis - GPS

position innovations (meters), GPS velocity innovations (me-

ters/second.

(b) PX4 instance 2. X axis - time in seconds. Y axis - GPS

and Magnetometer Innovations test ratios (dimensionless).

Figure A.7: PX4 Instance 2 - GPS innovations and GPS plus MAG innovation test ratios.

The GPS and Magnetometer innovations test ratios from instance 0, figure A.5(b), are greater than 1 for

a time period of 20 seconds approximately. So the fault detection is triggered by the global position valid

and local position valid flags. Both reflect the respective GPS innovations, figure A.5(a) and the Mag-

netometer innovations A.8(a). While the other two instances, figures A.6(b) and A.7(b), keep their inno-

vations test ratio without overtaking 1. It means the estimator is working properly.
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(a) PX4 instance 0. X axis - time in seconds. Y axis - Mag-

netometer Innovations in the three axis (Gauss).

(b) PX4 instance 1. X axis - time in seconds. Y axis - Mag-

netometer Innovations in the three axis (Gauss).

Figure A.8: Magnetometer innovations.

Beyond the GPS innovations already shown, the magnetometer innovations in the three dimensions

are represented in figures A.8(a) (instance 0) and A.8(b) (instance 1), which are reflected in the magne-

tometer test ratio for the instance 0, figure A.5(b), and for the instance 1, figure A.8(b), respectively.
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Appendix B

Simulation environment procedures

In this chapter, a more in-depth explanation of the procedures to realise the simulations on the Linux

operating system. Gazebo had been the simulator chosen to run the default UAV model, a quadcopter

called iris. QGroundControl had been the GCS software to control the desired trajectory. Two interface

programs had run to redirect the communications between the PX4 instances and QGC/Gazebo, select-

ing the most voted instance to control the vehicle. Finally the Mavlink protocol was updated to define

new message structures for specific data communicated between PX4 instances, the states relative to

each autopilot which allow to compute the error flags.

B.1 PX4 instances

Firstly, the PX4 code was downloaded using the terminal command:

1 git clone https://github.com/PX4/PX4-Autopilot.git --recursive

The redundancy manager directory from the https://github.com/stalone89/thesis-.git was

added to the modules directory. Also the px4-rc.simulator and the px4-rc.mavlink run control script

files from the same repository were changed in the /PX4-Autopilot/ROMFS/px4fmu common/init.d-posix

directory because the TCP ports are defined on these files.

In order to run 3 independent PX4 instances, they must run on different terminals. On the first

terminal, the command make is run with the simulation mode (SITL) and the simulator name, so the

Gazebo automatically initiates with the configured default model (quadcopter - ”iris”) while the PX4

binaries had been created inside the build directory.

1 make px4_sitl gazebo
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Figure B.1: PX4 instance 0 or first autopilot running on terminal.

After the simulation start, this is a typical example from the first terminal visualization, figure B.1. A

lot of printed computations relative to the new added module redundancy manager are shown on the

print screen.

The second and third autopilots were called by their binaries. The ”-i” option represents the instance

number. The second autopilot is associated to the instance 1, since the first autopilot was initiated by the

”make” command corresponding to the instance 0. The ”-s” option represents the Run Control file script

used for the PX4 initialization. The PX4 binary is found using the cd command from home location. The

PX4 model has to be set because both instance 1 and 2 do not have the environment variable initiated

like the instance 0.

1 export PX4_SIM_MODEL="iris"

2 cd Developer/PX4-Autopilot/build/px4_sitl_default/instance_1

3 ../bin/px4 -i 1 ~/Developper/PX4-Autopilot/build/px4_sitl_default/etc/ -s etc/init.d-posix/rcS -t

"/home/pedro/Developper/PX4-Autopilot"/test_data↪→

1 export PX4_SIM_MODEL="iris"

2 cd Developer/PX4-Autopilot/build/px4_sitl_default/instance_2

3 ../bin/px4 -i 2 ~/Developper/PX4-Autopilot/build/px4_sitl_default/etc/ -s etc/init.d-posix/rcS -t

"/home/pedro/Developper/PX4-Autopilot"/test_data↪→

Both print screens are relative to the terminals where the PX4 instance 1 (figure B.2) and PX4

instance 2 (figure B.3) had run.
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Figure B.2: PX4 instance 1 or second autopilot running on terminal.

Figure B.3: PX4 instance 2 or third autopilot running on terminal.

B.2 QGC / Gazebo

The iris model flying following the Waypoints is shown in the figure B.4.

The Waypoints were defined on the mission at the QGC. In the figure B.5 is shown the UAV following

the Waypoints during a mission.
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Figure B.4: Gazebo simulator print screen during the simulation.

To run the QGC, the QGroundControl.AppImage was downloaded from the website: https://docs.

qgroundcontrol.com/master/en/getting_started/download_and_install.html

After use these two terminal commands:

1 chmod +x ./QGroundControl.AppImage

2 ./QGroundControl.AppImage

Figure B.5: QGroundControl print screen during the simulation.

B.3 Redundant Interface programs

The redundant interface programs are available in the repository https://github.com/stalone89/

thesis-.git. The figure B.6 represents the interface program forwarding messages from the simu-

lator to the three PX4 instances as well as forwarding messages from the first autopilot (the selected at

the moment) to the simulator.

The figure B.7 represents the interface program forwarding messages from the QGC to the three

PX4 instances as well as forwarding messages from the first autopilot (the selected at the moment) to
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the QGC.

When a message is received from any of the sides, the message origin and its target is printed on

the terminal. It is useful to track the communications and to know if the messages had been correctly

redirected. Specially when the fault tolerant system had been designed and tested.

Figure B.6: Redundant interface program between the PX4 instances and Gazebo.

Figure B.7: Redundant interface program between the PX4 instances and QGroundControl.

B.4 Mavlink protocol update

In order to understand the communication data between autopilots, the new message structures must be

updated to the default Mavlink structures already existent. The PX4-Autopilot/mavlink/include/mavlink/v2.0/common

directory must be replaced by the ”new common” directory available in the thesis repository https:

//github.com/stalone89/thesis-.git. The new message definitions were defined in the dialect file

”.xml” and the libraries in C++ were generated through the python mavgen tool [24].
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