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Abstract—This work addresses the problem of formation con-
trol of a quadrotor and one (or more) marine vehicles operating
at the surface of the water with the end goal of encircling the
boundary of a chemical spill. Firstly, the mathematical models
of the Medusa class of marine robots, and quadrotor aircrafts
are introduced, followed by the design of single vehicle motion
controllers that allow these vehicles to follow a parameter-
ized path individually. Inner-outer loop schemes coupled with
Lyapunov based techniques are used for control design. At a
second stage, a distributed coordination controller using event
triggered communications is introduced, enabling the vehicles to
perform cooperative path following missions according to a pre-
defined geometric formation. In the next step, a real time path
planning algorithm is developed that makes use of a camera
sensor, installed on-board the quadrotor. This sensor enables the
detection in the image of which pixels encode parts of a chemical
spill boundary and use them to generate and update in real
time a set of smooth B-spline based paths for all the vehicles
to follow cooperatively. The performance of the complete system
is evaluated by resorting to 3-D simulation software, making it
possible to simulate visually a chemical spill. Results from real
water trials are also provided for parts of the system, where two
Medusa vehicles are required to perform a static lawn-mowing
path following mission cooperatively at the surface of the water.

Index Terms—Quadrotor control, Autonomous Surface Vehicle
control, Cooperative Path Following, Environmental Boundary
Following

I. INTRODUCTION

The ocean covers around 361M km2 of the Earth’s surface
[1] and there is evidence that it was at its bottom that the
first primordial cells have formed, about 3.8 to 4 billion years
ago [2]. It also plays a key roll in our modern society, being
a source of food and sustainable energy that powers millions
of homes [3]. Unfortunately, this vast habitat is also known
for environmental disasters, some as a direct consequence of
human behaviour, such as oil spills or ocean waste disposal
and others as an indirect consequence, such as global warming
and the rise of seawater levels. These catastrophes represent
a major threat to wild life, and as a consequence a threat
to humans. In the case of oil spills or waste disposals,
surveillance as well as cleanup missions must be carried out
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in order to restore these environments to their previous states.
These operations are expensive to conduct and require the use
of huge vessels with specialized staff on board to conduct
them. In the case of oil spills, these operations usually resort
to skimmers used of off boats in order to ”skim” the oil from
the sea surface, together with chemical dispersants to break
up the oil molecules.

Recent years have seen a huge development in computing
power and miniaturization of sensors which have enabled the
development of very efficient robots that can sweep through
the sea at a relative small cost when compared to the current
alternatives - large ships that are loud and very disruptive.
These robots are usually known as Autonomous Underwater
Vehicles (AUV) or/and Autonomous Surface Vehicle (ASV)
when working only at the surface of water. In addition to these,
there has been recently a growing interest on the development
of miniaturized aircrafts denominated Unmanned Aerial Vehi-
cles (UAV) which are usually equipped with camera sensors
allowing them to have a top-down view of the environment.

Motivated by the all of those factors, the aim of this work
is to develop a set of tools that allow an UAV-quadrotor and
multiple ASVs to perform a surveillance mission coopera-
tively, where the main goal is to detect and follow closely an
environmental boundary 1, such as an oil spill, at the surface
of the water, according to Figure 1.

Environmental 
Boundary

ASV 
(1)

Water SurfaceASV (n)

UAV 
(quadrotor)

ASV 
(2)

(…)

Fig. 1. Cooperative path following on an environmental boundary

II. VEHICLE MODELS

The terminology regarding coordinates and reference frames
adopted for both vehicles is depicted in Figure 2. The Inertial
Reference Frame {U} follows the North-East-Down (NED)

1The term environmental boundary used in this context denotes any
hazardous spread of contaminants, pollutants, etc. that generate anisotropic
changes in the environment, for which a clear perimeter can be defined.



convention and the Body Reference Frame {B} is attached to
each vehicle’s center of mass.
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Fig. 2. Adopted reference frames (adapted from Teixeira et al. [4] and
Luukkonen T. [5])

A. ASV Equations of Motion
The kinematic equations of motion for the ASV are given

by

ṗ = U
BR(ψ)v + vc

ψ̇ = r,
(1)

where p := [x, y]T denotes the ASV position expressed in
{U}, v := [u, v]T the body-velocity vector, U

BR(ψ) ∈ R2×2

rotation matrix and v := [vc, vy]T the ocean current expressed
in {U}. The dynamics equations are given by

muu̇−mvvr + duu = τu

mv v̇ +muur + dvv = 0

mr ṙ −muvuv + drr = τr

(2)

where τu is the external force in surge (common mode), τr is
the external torque about the Z-axis (differential mode), mu :=

m−Xu̇, mv := m− Yv̇, mr := Iz −Nṙ and muv := mu −mv

represent the mass and hydrodynamic added mass and du :=

−Xu −X|u|u|u|, dv := −Yv − Y|v|v|v| and dr := −Nr −N|r|r|r|
the hydrodynamic damping effects.

B. Quadrotor Equations of Motion
An UAV-quadrotor can be described by the kinematics

equations:

ṗ := η̇1 = U
BR(η2)v1 (3)

η̇2 = Q(η2)v2 (4)

where p := η̇1 = [x, y, z]T denotes the quadrotor’s position
expressed in {U}, η2 := [φ, θ, ψ]T denotes the orientation
vector of {B} expressed in {U}. The linear velocity v1 ∈ R3

and angular velocity velocity v2 ∈ R3 are expressed in
{B}. The rotation matrix is denoted by U

BR(η2) ∈ R3×3 and
the angular transformation matrix by Q(η2). The dynamic
equations are given by

p̈ := η̈1 = ge3 −
1

m
U
BR(η2)Ze3 (5)

v̇2 = −J−1(v2 × Jv2) + J−1NRB (6)

where e3 = [0, 0, 1]T , g the gravitational acceleration, m the
mass of the vehicle, J ∈ R3×3 the inertia matrix, Z ∈ R the
total thrust force and NRB ∈ R3 the torque vector.

III. INNER-LOOP DESIGN

A. ASV Surge Speed and Yaw-rate Control

Problem III.1. Consider the ASV with dynamics described by
(2) and let u†d = [ud, rd]

T ∈ R2 denote the desired surge speed
and yaw-rate respectively. Design a linear control law for the
force and torque τu and τr such that u† = [u, r] converges to
a desired set of surge and yaw-rate references u†d.

Assumption III.1. The sway-motion of the ASV is negligible,
i.e v ≈ 0.

The proposed inner-loop controllers are given by Propor-
tional Integral (PI) control laws with feed-forward terms,
according to:

τu = duu+mu

[
−kpe(t)− ki

∫ t

0

e(τ)dτ

]
,

τr = drr +mr

[
−kpe(t)− ki

∫ t

0

e(τ)dτ

]
,

(7)

with kp, ki > 0 proportional and integral constants.

B. Ocean Currents Observer

Problem III.2. Consider that the ASV is equipped with a
Doppler Velocity Logger (DVL) capable of providing the
vehicle’s relative velocity to the water, expressed in {B} and
a DGPS unit which provides measurements of the position
of the vehicle pm, expressed in {U}. Furthermore, consider
that it is possible to express the velocities provided by the
DVL in {U}, by resorting to the rotation matrix R(ψ), as vm.
Develop an estimator for the ocean-currents vc expressed in
{U}, assumed to be constant and irrotational, i.e. v̇c = 0.

In order to solve this problem, we borrow the results from
Pascoal et al. [6] and Sanches et al. [7] where the authors
propose a time-varying complementary filter structure.

Proposition III.1. Consider the process model Mp given by

Mp :=


ṗ = R(ψ)v + vc
vm = R(ψ)v

pm = p

(8)

and the candidate complementary filter model described by

F :=

{
˙̂p = k1(pm − p̂) + vm + v̂c
˙̂vc = k2(pm − p̂)

(9)

with k1, k2 > 0 constants. The proposed complementary filter
is asymptotically stable and solves problem III.2.

C. Quadrotor Inner-loop Control

Problem III.3. Consider the AUV-quadrotor with rotational
dynamics given by (6) and let η2d = [φd, θd, ψd] ∈ R3 denote
the desired roll, pitch and yaw angles respectively. Design a
linear control law for the external torque NRB such that η2

converges to desired set of angle references η2d.

Assumption III.2. The drone’s inertia matrix J is diagonal.

Assumption III.3. The vehicle is working near its hover state,
where φ ≈ θ ≈ 0◦.



Near the hover state, the quadrotor’s linearized angular
acceleration is described by

η̈2 = J−1NRB , (10)

such that NRB = J · u‡d, where u‡d represents the control
input. The proposed Proportional Derivative (PD) control law
is given by

u‡d(t) = −Kp(η2(t)− η2d(t))−Kd(η̇2(t)− η̇2d(t)), (11)

with Kp,Kd > 0 the proportional and derivative gain matrices.

D. Generating angle references from accelerations
Consider the double integrator model of the vehicle given

by (5) where p̈ = u� is a desired control input given by
the auto-pilot/outer-loop. It is necessary to develop a sub-
system capable of computing the total thrust Z and the attitude
associated with the matrix R(η2) from the desired input of the
auto-pilot. Consider expanding equation (5):

u� = − 1

m
Rz(ψdes)[Ry(θ)Rx(φ)Ze3] + ge3. (12)

Furthermore, consider u∗ to be given by

u∗ := Ry(θ)Rx(φ)Ze3, (13)

where u∗ = [u∗1, u
∗
2, u
∗
3]T . Replacing (13) in (12) yields the

relation
u∗ = −mRTz (ψdes)(u

� − ge3). (14)

From (14) it is possible to compute u∗, from the desired
output of the outer-loop. It is also possible to infer that the
total thrust to be given by Z := ‖u∗‖ and

φdes = arcsin(−u∗2/Z), (15)

θdes = arctan(u∗1/u
∗
3), (16)

with u∗3 assumed to be different than zero.

IV. PATH FOLLOWING

Consider, for both vehicles that there exist virtual targets
moving along a desired path for which the vehicles must
converge to. The speed profile for a virtual target that moves
along a desired path is given by

vd(γ, t) := vL(γ) + vcoord(t) , with |vL(γ)| ≤ vmaxL , (17)

where vL(γ) is a desired speed profile as a function of the
path, vmaxL a pre-defined speed upper-bound and vcoord(t) a
speed coordination term that will be used later for enabling
Cooperative Path Following (CPF).

A. ASV Path Following

Problem IV.1. Let pd(γ) : [0,∞)→ R2 denote the desired path
parameterised by a continuous variable γ ∈ R and vd(γ, t) ∈ R
be a desired speed profile for a virtual target moving along
the desired path. Furthermore, consider pd(γ) to be C2 and
have its first and second derivatives with respect to γ bounded.
Moreover, the vehicle is equipped with an inner-loop controller
that given a desired surge speed and yaw-rate ud = [ud, rd]

T ,
assumed to be bounded, computes a set of desired thrust and
torque to apply to the vehicle. Design a control law for surge
ud, yaw-rate rd and virtual target γ̈ such that:

• the vehicle’s position converges to a tube around the
desired position that can be made arbitrarily small, i.e.

‖p(t)− pd(γ)‖ converges to a neighbourhood of the ori-
gin;

• the speed of the virtual target moving along the path con-
verges to the desired speed profile, i.e. |γ̇ − vd(γ, t)| → 0

as t→∞.

Following the approach proposed by Aguiar et al. [8],
[9] and [10], consider the global diffeomorphic coordinate
transformation which expresses the position error defined in
the body-frame of the vehicle {B} as

ep(t) := B
UR(ψ)(p(t)− pd(γ)), (18)

and let the speed-tracking error be defined as

eγ := γ̇ − vd(γ, t). (19)

The body-fixed position error dynamics can be given by:

ėp(t) = B
U Ṙ(ψ)(p(t)− pd(γ)) + B

UR(ψ)(ṗ(t)− ṗd(γ))

= −S(r)BUep(t) + v + vc − B
UR(ψ)

∂pd(γ)

∂γ
γ̇

= −S(r)(ep − δ) + ∆u +

[
0
v

]
+ vc − B

UR(ψ)
∂pd(γ)

∂γ
γ̇

(20)

with
S(r) =

[
0 −r
r 0

]
, (21)

δ = [0, δ]T , ∆ = diag(1,−δ) with δ < 0 and u = [u, r]T

the system input. Consider the ocean currents estimate and
estimation error expressed in the body frame, according to:

v̂c := B
UR(ψ)v̂c and ṽc := vc − v̂c, (22)

and inner-loop tracking error given by

ũ := u− ud. (23)

Proposition IV.1. Consider the system error dynamics de-
scribed by equations (19) and (20), along with virtual target
dynamics proposed in (25). Furthermore, consider the control
laws given by

ud := ∆−1

(
−Kpσ(ep − δ)−

[
0
v

]
− v̂c + B

UR(ψ)
∂pd(γ)

∂γ
vd

)
,

(24)

γ̈ := −kγeγ + v̇d(γ, t) + (ep − δ)TBUR(ψ)
∂pd(γ)

∂γ
, (25)

where Kp � 0, kγ > 0 and σ(ep) is a saturation function.
The closed-loop system is ISS with respect to ∆ũ + ṽc.

Proof. Consider a candidate Lyapunov function:

V (ep, eγ) =
1

2
(ep − δ)T (ep − δ) + e2

γ . (26)

Take the first derivative of the candidate Lyapunov function:

V̇ = −(ep − δ)TKpσ(ep − δ)− kγeγ + (ep − δ)T (∆ũ + ṽc)

≤ −(1− θ + θ)(ep − δ)TKpσ(ep − δ)− kγ |eγ |2

+ ‖ep − δ‖ ‖∆ũ + ṽc‖ ,
(27)

where 0 < θ < 1. The term

−θ(ep − δ)TKpσ(ep − δ) + ‖ep − δ‖ ‖∆ũ + ṽc‖ (28)



will be ≤ 0 if

θλmin(Kp)σ(‖ep − δ‖) ≥ ‖∆ũ + ṽc‖ , (29)

which in turn implies that

‖ep − δ‖ ≥ σ−1

(
1

θλmin(Kp)
‖∆ũ + ṽc‖

)
, (30)

and

V̇2 ≤ −(1− θ)(ep − δ)TKpσ(ep − δ)− kγ |eγ |2, (31)

as the right side of inequality (30) can be made arbitrarily
small by controlling the gain matrix Kp.

Problem IV.2. Consider a quadrotor-UAV described by

p̈ := u� + d, (32)

where d ∈ R3 represents unmeasured external constant
disturbances acting on the vehicle, such that

‖d‖ ≤ dmax, (33)

where dmax is a known, positive constant. Let pd(γ) :

[0,∞) → R3 denote the desired path parameterised by a
continuous variable γ ∈ R and vd(γ, t) ∈ R be a desired
speed profile for a virtual target moving along the desired
path. Furthermore, consider pd(γ) to be C2 and have its first
and second derivatives with respect to γ bounded. Design a
control law for the quadrotor acceleration and virtual target
such that:

• the vehicle’s position converges to a tube around the
desired position that can be made arbitrarily small, i.e.
‖p(t)− pd(γ)‖ converges to a neighbourhood of the ori-
gin;

• the speed of the virtual target moving along the path con-
verges to the desired speed profile, i.e. |γ̇ − vd(γ, t)| → 0

as t→∞.

Following a similar approach to the one proposed by F.
Vanni and P. Aguiar, consider the position and velocity errors,
but this time defined in the inertial frame {U} as

ep := p(t)− pd(γ), (34)

ev := ṗ− ∂pd
∂γ

vd, (35)

respectively and a virtual target speed tracking error to be
defined by (19). Moreover, consider the speed tracking error
(19) and a new auxiliar error z defined as

z := ev +K1ep, with K1 � 0. (36)

The position and velocity error dynamics can be given by

ėp = ṗ− ∂pd
∂γ

γ̇, (37)

ėv = p̈− d

dt

(
∂pd
∂γ

vd

)
. (38)

Furthermore, consider the time derivative introduced in (38),
the desired virtual target speed function (17) and virtual target

speed tracking error function (19), then we can expand the
expression as

d

dt

(
∂pd
∂γ

vd

)
=

d

dt

(
∂pd
∂γ

)
vd +

∂pd
∂γ

d

dt
vd

=

[
∂2pd
∂γ2

vd +
∂pd
∂γ

∂vL(γ)

∂γ︸ ︷︷ ︸
h(γ)

]
(eγ + vd) +

∂pd
∂γ

v̇coord

= h(γ)(eγ + vd(γ, t)) +
∂pd
∂γ

v̇coord.

(39)

Replacing (32) and (39) in (38) yields

ėv = u� + d− h(γ)(eγ + vd)−
∂pd
∂γ

v̇coord. (40)

Let the disturbance estimation error be given by:

d̃ := d− d̂. (41)

In Cabecinhas et al. [11] the authors propose the use of a
simple observer based on a smooth projection operator for
disturbance rejection on a quadrotor. Consider the following
disturbance observer:

˙̂d := KdProj(z, d̂) with Kd � 0, (42)

where Proj(·) denotes a smooth projection operator given by

Proj(µ, θ̂) = µ− η1η2

4(ε2 + 2εθ0)n+1θ2
0

∇pd(θ̂), (43)

where
pd(θ̂) = θ̂

T
θ̂ − θ2

0, (44)

η1 =

{
pn+1
d (θ̂), if pd(θ̂) ≥ 0

0, otherwise
, (45)

η2 =
1

2
θ̂
T
µ+

√(
1

2
θ̂
T
µ

)2

+ δ2, (46)

and µ(t) ∈ Rp is a known, n times continuously differentiable
(Cn) variable, ε and δ are arbitrary positive constants. This
projection operator enjoys the following property:

θ̃
T

Proj(µ, θ̂) ≥ θ̃Tµ. (47)

The estimation error dynamics are given by

˙̃d = − ˙̂d. (48)

Moreover, consider an inner-loop tracking error given by

ũ� := u� − u�d, (49)

assumed to be bounded.

Proposition IV.2. Consider the double integrator system de-
scribed by (32) with outer-loop control laws given by

u�d := −d̂ +h(γ)vd(γ, t) +
∂pd
∂γ

v̇coord−K1ev − ep−K2z. (50)

γ̈ := −kγeγ + v̇d(γ, t) + eTp
∂pd
∂γ

+ zT
(
h(γ) +K1

∂pd
∂γ

)
, (51)

where K1,K2 � 0 and kγ a positive gain. The proposed
control laws solve the problem IV.2.



Proof. Consider the candidate Lyapunov function

V =
1

2
eTp ep +

1

2
zT z +

1

2
e2
γ +

1

2
d̃TK−1

d d̃. (52)

Take its time derivative along with the previously introduced
equations. Then

V̇ = −epK1e
T
p − zTK2z− kγe2

γ + d̃T (z− Proj(z, d̂))︸ ︷︷ ︸
≤0

+zT ũ�.

(53)
Making use of the property of the smooth projection operator,

it is possible to derive a bound for the derivative

V̇ ≤ −W (ep, ev, eγ) + zT ũ�, (54)

From combining the relation (5), (49) and (50), the input is
bounded by

ũ� ≤ ‖r̃3‖
(∥∥∥d̂∥∥∥+ ‖h(γ)vd(γ, t)‖+

∥∥∥∥∂pd
∂γ

v̇coord(t)

∥∥∥∥
+ ‖K1‖ ‖ev‖+ ‖ep‖+ ‖K2‖ ‖z‖+ g

)
.

(55)

It is only possible to conclude that as long as the position
and velocity errors are small, and the inner-loop of the system
is much faster than the outer-loop (guaranteeing that ‖r̃3‖ is
small), then the system is able to converge to a neighborhood
of the desired references.

In order to make the designed control law ud more readable,
consider the following algebraic manipulation:

u�d = −d̂ + h(γ)vd +
∂pd
∂γ

v̇coord(t)︸ ︷︷ ︸
acceleration term

− ev (K1 +K2)︸ ︷︷ ︸
Kv

−ep (I +K1K2)︸ ︷︷ ︸
Kp

. (56)

V. COOPERATIVE PATH FOLLOWING

Consider a group of N ∈ R+ \ {1} vehicles in a network
that can be described by a digraph G(V, E ,A), consisting on
N vertices V, a set of directed edges E ⊆ V × V, where the
edge εij represents the flow of information from agent i to
agent j, and a weighted adjacency matrix A = [aij ] ∈ RN×N .
Furthermore, each vehicle i is able to receive information from
its neighbours in N in

i and send information to its neighbours
in N out

i . Let the state vector of the system be composed by
the path parameter of each individual vehicle γ = [γ1, ..., γN ]T .
The CPF problem is formulated in problem V.1.

Problem V.1. For each agent i, with i = 1, ..., N derive a
consensus protocol for the speed correction term vcoord =

[vcoord1 , ..., vcoordN ]T such that limt→∞ |γi − γj | = 0, ∀j ∈ N in
i ,

and the formation of vehicles achieves the desired speed
assignment vL(γ) as t→∞.

In order to solve problem V.1 the following simplifying
assumption is taken:

Assumption V.1. The communication topology of the vehicles
is fixed, i.e. the Laplacian matrix L associated to the graph G is
constant. G is also undirected, i.e. N in

i = Nout
i , and connected.

Assumption V.2. The speed progression of a virtual targets
along the desired paths is always assumed to be modelled by
a single integrator system γ̇ = vd = vL(γ) + vcoord.

Let the synchronization error vector be defined as ε =
[ε1, ..., εN ]T , such that

εi :=
∑
j∈N in

i

aij(γi − γj), (57)

where εi denotes the coordination error between vehicle i

and its neighbours. This can also be expressed in it’s vectorial
form as

ε := Lγ with L = D −A, (58)

where L is the Laplacian matrix of graph G obtained according
to:

D = diag(dini ), with dini =
∑
j∈N in

i

aij . (59)

such that L1 = 0 and L has a simple eigenvalue at zero
associated with eigen vector 1. In this section a distributed
control scheme with Event-Triggered Communications (ETC)
is presented, based on previous work developed by A. Aguiar
and A. Pascoal [12] and N. Hung and F. Rego [13]. In their
work, the authors propose a scheme where each agent i has
a set of estimators γ̂j , j ∈ N in

i for the true state of each in-
neighbour virtual target γj . In addition, each agent i has an
estimator for its own state γ̂i which is reset whenever vehicle
i broadcasts its true state γi. The other estimators are reset
whenever agent i receives the true state from its in-neighbours
j ∈ N in

i . In their research paper, the authors propose a time-
dependent triggering/broadcasting condition.

Proposition V.1. Consider the distributed control law given
by

vcoordi := −kε
∑
j∈N in

i

aij(γi − γ̂j), (60)

where kε is still a sufficiently large positive constant and γ̂j
is vehicle’s i estimate of vehicle’s j real state/path parameter.
Consider also that the bank of estimators that each vehicle i
is running follows the dynamics equation

˙̂γi := vL(γ̂i). (61)

Based on the broadcast/triggering condition defined previ-
ously, at any time instant t, under negligible transmission
delays, the vehicle’s j self-state estimate γ̂j is equal to
vehicle’s i estimate of γ̂j , which allows us to express the new
distributed control law and estimator dynamics using vectorial
notation as

˙̂γ := vL(γ̂), (62)

where, γ̂ = [γ̂1, ..., γ̂N ]T is the vector with the self-estimate of
the state. It is possible to define vcoord according to:

vcoord := −kε [Dγ −Aγ̂]

= −kε (ε+Aγ̃).
(63)

Consider as well a triggering function used to define when
to broadcast the state of each vehicle, defined as{

δi(t) := |γ̃i(t)| − gi(t)
γ̃i(t) = γ̂i(t)− γi(t)

, (64)



where γ̃i(t) is the local estimation error of agent i and gi(t)
is a threshold function that is time dependent, such that if the
estimation error exceeds this threshold, i.e. δi(t) ≥ 0, vehicle
i broadcasts its state to the out-neighbours N out

i and resets
its local estimator. Furthermore, consider gi(t) to belong to a
class of non-negative functions, given by

gi(t) = ci + bie
−αit, (65)

with ci, bi and αi positive constants and g(t) = [g1, ..., gN ]T

the collection of functions for each individual vehicle. Then,
the system is ISS with respect to the error vector ε and the
inputs vL(γ) and h(t), under the assumptions V.1 and V.2.

Proof. Consider the time derivative:

ε̇ = L(vL(γ)− kε(ε+Aγ̃))

= vL��*
0

L1 + LṽL − kεL(ε+Aγ̃)

= −kεL(ε+ d) with d =
ṽL

kε
+Aγ̃,

(66)

with vL(γ) = vL1 + ṽL Consider now, the Jordan form L =
V −1ΛV . Moreover, consider the change of variables

˙̄ε = −kεΛ(ε̄+ d̄), with d̄ = V −1d. (67)

which is decomposable in[
˙̄ε1

˙̄ε2

]
=

[
0

−kεΛ2(ε̄2 + d̄2)

]
. (68)

Consider now the candidate Lyapunov function

Vε̄2 =
1

2
ε̄T2 ε̄2, (69)

and it’s time derivative given by

V̇ε̄2 = −(1− θ)kεε̄T2 Λ2ε̄2 − θkεε̄T2 Λ2ε̄2 − kεε̄T2 Λ2d̄2 (70)

where 0 < θ < 1. The term

−θkεε̄T2 Λ2ε̄2 − kεε̄T2 Λ2d̄2 (71)

will be ≤ 0 if
‖ε̄2‖ ≥

1

θ

∥∥d̄2

∥∥ (72)

and
V̇ε̄2 ≤ −(1− θ)kεε̄T2 Λ2ε̄2. (73)

The norm ‖d‖ can be made arbitrarily small and so does∥∥d̄2

∥∥ by proper choice of kε and triggering condition. From
the application of 4.19 in H. Khalil [14], the system is ISS
with respect to the error vector ε and inputs γ̃ and ṽL.

VI. PATH PLANNING

Problem VI.1. Consider an UAV (quadrotor) flying over a
body of water at a pre-defined fixed altitude, equipped with
a camera sensor pointing downwards with a fixed pitch angle
relative to the vehicle’s body reference frame {B}. Consider
also that the vehicle is capable of detecting environmental
boundaries in the 2-D image provided by the camera. Further-
more, consider that at the surface of the water, one or more
ASV vehicles are required to follow the quadrotor according
to a pre-defined vehicle formation.

As the quadrotor detects an environmental boundary in the
2-D image, generate a set of smooth and planar reference

paths for each individual vehicle (quadrotor and ASVs), such
that they encircle the boundary according to the pre-defined
formation.

To solve problem VI.1 an online path planning algorithm
is proposed. Given a stream of pixels corresponding to a
boundary to be followed, the proposed algorithm:

1) uses the data provided by the quadrotor navigation
system to convert the pixels to a 2D point cloud;

2) does some pre-processing on the point cloud;
3) fits the data with open B-splines, by formulating an

online optimization problem;
4) generates a path for each vehicle to follow based on the

generated B-spline;
5) repeats the process once new data is available.

A few simplifying assumptions are made:

Assumption VI.1. The environmental boundary is located at
the ocean’s surface assumed to be a 2D plane at Z = 0 in the
inertial frame of reference {U}.

Assumption VI.2. The quadrotor has a navigation system that
can track the vehicle’s pose with a ”good enough” accuracy.

Assumption VI.3. The quadrotor has a limited vision of the
environment, i.e, the camera sensor might not be able to
capture the entire boundary, but rather sections of it, according
to Figure 1.

Assumption VI.4. The detection of the pixels that encode the
boundary in the image frame is a sub-system that we assume
to be already developed and readily available.

A. Camera Model

In order to convert pixels in an image frame to a 2D
point cloud expressed in the inertial frame {U}, we must first
introduce the camera model adopted (Figure 3).

Fig. 3. Camera model and reference frames

A camera can be characterized by: i) a set of extrinsic
parameters C

U [R|T ], which model the conversion between co-
ordinates expressed in the world/inertial reference frame {U}
and the camera reference frame {C}; ii) intrinsic parameters
K which describe how a set of points in {C} are represented
in the image frame.
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where (x, y) denote the coordinates in the image frame, f
denotes the focal distance, (sx, sy) are scale factors in the X



and Y -axis respectively, (cx, cy) correspond to the offset of
the focal point in the image plane and λ is a scale factor.
Furthermore, we can aggregate the intrinsic and extrinsic
parameters in a matrix Ω according to

Ω = K · CU [R|T ]. (75)

Taking into consideration assumption VI.1 we can define the
linear system:xy

1

 =
1

λ

Ω1 Ω2 Ω3 Ω4

Ω5 Ω6 Ω7 Ω8

Ω9 Ω10 Ω11 Ω12


︸ ︷︷ ︸

Ω

XUYU0
1

 . (76)

Making use of assumption VI.2 we can assume that the linear
system of equations is well defined and can be inverted such
that for each pixel, XU and YU are extracted from

1

λ

XUYU
1

 =

Ω1 Ω2 Ω4

Ω5 Ω6 Ω8

Ω9 Ω10 Ω12

−1 xy
1

 . (77)

This methodology is far from perfect and small estimation
errors in the vehicle attitude estimation can lead to errors of
several meters in the generated point cloud. Synchronizing the
orientation data provided by the positioning system and the
camera images can also prove challenging when the quadro-
tor’s orientation is changing very fast. In order to avoid data
synchronization problems, a naive step is added to the process,
such that if for a given planning iteration ‖v2‖ ≥ ωmax, the
image data is discarded an no point cloud data is produced.

B. Pre-processing Point Cloud Data
In this section, the problem of developing an online path

planning algorithm that given a set of points generates a
desired path for the quadrotor (the leader vehicle) to follow
is addressed. Start by considering the example in Figure 4
where the vision system of the quadrotor produces a point
cloud, representing the boundary to be followed, at an arbitrary
time-step tk. In the point cloud, some points represent the
environmental boundary in a region close to the vehicle (with
outliers) - the region of interest. Other points represent regions
of the boundary that were partially occluded and, therefore,
seem disconnected from the main cluster of points. The goal
is for the vehicle to follow a path (depicted in red) which fits
only points in the region close to itself. This requires that at
the pre-processing stage the cluster of points that are further
way from the vehicle, as well as outliers, are ignored.

Outliers

Partial view of 
the boundary

XU

YU{U}

tk tk+1

Points of interest
Quadrotor

Outliers
Points from partial 

view of the boundary
Old points no longer needed 
Desired path at tk
Re-planned path at tk+1

ps

ps Point where re-planning started

Fig. 4. Pre-processing stage

Consider that at time-step tk+1 the vision system produces a
new point cloud in which some of the points overlap a region

where the quadrotor has already flown by. Since this section
of the path should not be re-planned, those points should be
discarded as well as other points that are ”behind” ps (an
arbitrary point further ahead of the vehicle).

1) Remove unused points: Consider ps ∈ R2 to be the
point at which the path re-planning starts (to be defined later
on), arbitrarily further ahead of the vehicle’s position on the
current path. In order to remove the points that are ”behind”
ps, consider that ψs is the tangent angle to the current path
at ps. A coordinate transformation can be applied to the new
points X := {Xm}Mm=1 ∈ R2, such that in a new reference
frame, points that are behind ps (points that should be ignored)
have a negative X-coordinate. This coordinate transformation
is given by

X◦m = R(ψs) · (Xm − ps),∀m = 1, ...,M (78)

where X◦
m = [X◦x

m ,X◦y
m ]T . Each points Xm is discarded

if X◦xm < 0. The points that belong to set X and are not
discarded, should be saved in a new set X? := {Xj}Jj=1 ∈ R2

with J ≤M .

2) Order a set of points and remove outliers: In order to
fit a set of points with a parametric curve, it is necessary to
infer some natural ordering from the data. Unlike most path
planning problems, we lack the knowledge of which points
represent an end position goal, as well as in which order should
the vehicle pass near each point.

To arrange the points in a consistent manner, the authors
in [15] propose the construction of an Euclidean Minimum
Spanning Tree (EMST) from a set of unordered points. To
compute the EMST associated to the data we must first con-
struct a graph from the set of points X? such that each vertex
V in the graph represents a point Xi, and each edge E , with
its associated weight Aij , represents the euclidean distance
between each pair of points i and j. For computing a Minimum
Spanning Tree (MST) one can resort to Kruskal’s algorithm
- a greedy algorithm with a computational complexity of
O(|E|log|V|) [16].

If we consider that each vertex is connected to each other,
the construction of the graph itself will have a computational
complexity of approximately O(|V|2) due to the necessity of
having to compute the euclidean norm between each pair of
points. This is not suitable for real time applications nor to use
with Kruskal’s algorithm as the resulting graph will be dense.
In order to simplify this problem we can consider that each
point is only related to its nearest set of points.

To find the nearest neighbours for each point, we can
resort to a very popular unsupervised learning data structure
proposed by Jon Bentley, the KDTree [17]. By defining a
threshold distance NJ for the neighbours of each point, the
computational cost of this nearest neighbour search for each
individual point is on average O(2|V|log(|V|)) [18]. Repeating
this operation for all J points, we construct a sparse graph
where each point has a limited set of neighbours. From there
we can use Kruskal’s algorithm to generate the EMST.

To get rid of outliers and define a coarse path to follow,
Breadth-First Search (BFS) can be applied to the points that



form the MST, starting from ps. The resulting ordered list of
points that forms the path with the highest number of points
should be saved in a new ordered set X† := {Xk}Kk=1 ∈ R2

with K ≤ J .

C. Fitting data with a parametric curve

In order to have a suitable representation of a path that
PF controllers can track, we are required to have parametric
curves that are both smooth and at least C2. For this work,
we resort to uniform cubic B-Splines.

1) Define the number of segments: Consider now the
ordered sequence of K points obtained via the application
of the previously described steps. In order to fit the ordered
sequence of points with a parametric curve we are required
to attribute to each point Xk ∈ R2 a corresponding γk in the
target curve. This problem could be formulated as a nonlinear
optimization problem (computationally demanding to solve for
real-time applications). A good approximation proposed in
[19] is to consider DX to be the total distance between the
points, given by

DX :=

K∑
k=2

‖Xk −Xk−1‖ , (79)

and the vector of parametric values γ = [γ1, ..., γk]T associated
to the set of points being fitted, given by{

γ1 = 0

γk = γk−1 +
‖Xk−Xk−1‖

DX
γmax, k = 2, ...,K

, (80)

where γmax is the maximum parameter value of the parametric
curve. For cubic B-splines this number depends directly on the
number of control points that the target curve will have. The
number of control points also dictates how many spline sec-
tions are actually used for the fitting problem. Since uniform
cubic B-splines must have at least 4 control points in order to
define one segment, a dynamic way of defining the number of
control points NC used is by taking:

NC := max

{⌊
DX
ρ

⌉
, 4

}
, (81)

where (1/ρ) > 0 denotes a control points density (a tunning
parameter) and bDX/ρe denotes the rounding to the nearest
integer value. For a smaller ρ, the higher the number of control
points used.

Before fitting the points with a new B-spline with NC
segments, it is important to define which segments from the
previously planned path should be discard and which should
be kept. For that it is now necessary to define the point ps at
which the new planning starts.

2) Fit the points with a B-spline: Consider a 2-dimensional
uniform cubic B-spline definition expressed in vectorial form,
according to:

C(γ) = B(γ) ·P, (82)

where B(γ) denotes a matrix of basis functions evaluated at
a given parameter γ and P the vector of control points where
the X and Y-coordinates are concatenated. Each spline section
is only defined by four local control points - local support
property.

A naive approach to the define the re-planning point ps
(undefined until now) is to consider the quadrotor’s current
virtual target γtk and define the starting point for re-planning
according to

ps := C(dγtke), (83)

where dγtke denotes the ceiling of γtk (the vehicle’s virtual
target value at instant of re-planning, tk). To remove sections
of the curve to be re-planned corresponding to γ > dγtke,
all the control points with indexes i ≥ dγtke + 3 should be
discarded.

To generate new curve sections, an optimization problem is
solved such that the ordered sequence of points X† is fitted
with a new B-spline dictated by NC control points. Making
use of the local support property, it is know that C2 continuity
between the old curve the new one can be guaranteed as
long as the first 3 new control points are equal to the 3 last
control points in the previous curve. Consider the following
optimization strategy:

Pnew = argmin
Pnew

‖B(γ)Pnew −X‖2︸ ︷︷ ︸
goal

+λPnewT

R1P
new︸ ︷︷ ︸

regularizer

+ βPnewT

R2P
new︸ ︷︷ ︸

regularizer

subject to


P x new0

P x new1

P x new2

P y new0

P y new1

P y new2

 =



P xdγtk e
P xdγtk e+1

P xdγtk e+2

P ydγtk e
P ydγtk e+1

P ydγtk e+2



(84)

where Pnew = [P x new0 , ..., P x newNC−1, P
y new
0 , ..., P y newNC−1]T de-

fines the new vector of control points (with X and Y-
coordinates concatenated), and Pold = [P x0 , P

x
1 , ..., P

x
dγtk e

,

P xdγtk e+1, P
x
dγtk e+2, P

y
0 , P

y
1 , ..., P

y
dγtk e

, P ydγtk e+1, P
y
dγtk e+2]T de-

notes the vector of control points used to represent the initial
curve, λ, β ≥ 0 are regularization constants. Matrix R1 results
from the integral of the L2

2 norm of the first derivative of the
basis functions, and penalizes the total length of the curve.
The matrix R2 results from the integral of the L2

2 norm of the
second derivative of the basis function, and penalizes bends
in the path.
Remark: For the first iteration the same algorithms are used
with the following key differences:

• The position ps and angle ψs are given by the vehicle’s
position and orientation (and not by a virtual target);

• The linear constraint in (84) is now given by B(0)Pnew =

ps, such that the initial path starts at the vehicle’s
position;

D. Multi Path Coordination
To generate individual paths for the ASVs, consider a

formation vector denominated di ∈ R3, different for each
vehicle, with each distance defined with respect to a tangential
reference frame {T} to the virtual target’s position in the path.
Then, the desired position for ASV i can be given by

pFi(γi) = pd(γi) + U
TR(γi)di, (85)

where U
TR(γi) encodes a rotation from a tangential frame in

the leader path to the inertial frame.



VII. RESULTS

A. CPF with ETC between Quadrotor and 2 Medusa ASVs
(simulation)

For the first experiment a CPF mission was performed
where the quadrotor was required to follow a lawn-mowing
trajectory with two Medusa ASVs, at a desired speed of 0.5m/s,
according to a triangle formation (Figure 5). In this experiment
there was bi-directional communication between the pairs of
vehicles: (quadrotor, Medusa 1) and (quadrotor, Medusa 2).

Fig. 5. XY-view

The aircraft was required to fly at an altitude of 30m and the
formation vectors for the marine vehicles were given by d1 =

[−5, 5, 0]Tm and d2 = [−5,−5, 0]Tm. From the results obtained
in Figure 6, it is observable that the vehicles converge to their
desired formation at around second 20. After that period of
time, the position error converges to zero and the virtual target
speeds converge to their desired value. As a consequence, the
number of communication events between the vehicles drops
as the bank of observers in each vehicle can more accurately
track the state of the virtual target of their peers.
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Fig. 6. CPF between quadrotor and 2 medusas (simulation)

B. Boundary Tracking with Quadrotor and a Medusa ASV
(simulation)
For the next experiment, the quadrotor was required to start a
lawn-mowing CPF mission with one Medusa ASV, and as soon
as it detects the environmental boundary, start re-planning in
real time the desired path to follow, at a pre-defined height of
30m with a desired constant speed of 0.5m/s (Figure 7). The
quadrotor was equipped with a fixed camera with a pitch angle
of −45◦, pointing downwards. The quadrotor is required to

align itself with the tangent to the path to guarantee a constant
overview of the boundary being followed.

Fig. 7. 2D-view

It was desirable for the marine vehicle to always follow
the aerial vehicle from behind and never in front of it, to
guarantee that the path further ahead can be generated. For that
matter, a formation of vector d = [−5, 5, 0]Tm was once again
picked. There was bi-directional communication between both
vehicles. In Figure 8 the evolution of the boundary distance
to each vehicle is provided, along with the path following
position tracking error.
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Fig. 8. Performance metrics

Remark: A demonstration video is available online [20].

C. CPF with ETC between 2 Medusa Vehicles (real trials)

For the real trial, it was requested that two Medusa vehicles
performed a lawn-mowing mission cooperatively (Figure 9).

Fig. 9. Medusa cooperative path following (real trial)

The black vehicle (Medusa 1) was required to follow a
formation dictated by d = [−5,−5, 0], with respect to the
leader’s path. From the results in Figure 10 it is observable
that the virtual targets of each vehicle rapidly increase to a
value of approximately 0.5 such that they get as close as
possible to the original position of their respective vehicles.
Some oscillations are also observed in the beginning on the
trial which result from the virtual targets finding an agreement



between inter-vehicle alignment and intra-vehicle position
error minimization.
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Fig. 10. Triggering condition

After approximately 50s, the vehicles align themselves into
the required formation and as a consequence, the rate of
information exchange decreases after this period of time.

VIII. CONCLUSION

This dissertation addressed the problem of tracking and
following an environmental boundary caused by a chemical
spill using a team of robots composed of an aerial quadrotor
and marine vehicles.

In the vehicle modelling section, the notation and reference
frames adopted for both the ASV and UAV were introduced. In
the next section, the problem of vehicle inner-loop control was
formulated and a set of linear control schemes were derived
for both vehicles. Next, the PF problem was introduced, and
a non-linear control law derived for the ASV, according to the
proposal by P. Aguiar and F. Vanni. Inspired by this control
law, a new one was derived for a quadrotor following the same
methodology with some key differences due to the nature of
the aircraft.

For the section that followed, the CPF problem was for-
mulated and a proposal to solve the problem was presented,
such that the synchronization controller was distributed and
the same for all vehicles (aerial and marine). Borrowing from
the works of A. Pascoal, N. Hung and F. Rego this controller
was devised such that information exchange between vehicles
would only be carried using even-triggered communications.

For the following chapter, a new real-time path planning
algorithm was developed. This algorithm made use of the
camera sensor onboard of the quadrotor to have a local view
of the boundary and generate a point cloud expressed in the
inertial frame. This data was then used to solve an optimization
problem which generates a B-spline based path that grows
dynamically as the vehicle moves along the boundary and
acquires more data. This path is then shared among all the
ASV vehicles in the network.

Finally, the proposed algorithms were implemented in four
main toolbox by resorting to ROS, C++ and python. More-
over, a 3-D virtual scenario that resembles Doca dos Olivais
was also generated, allowing for realistic simulations of the
proposed algorithms. In the end it was also possible to test
the CPF algorithm using two real Medusa vehicles.
A. Future Work

In this work some problems were left unsolved. Some
notable work that could be addressed includes:

• Considering event-triggered communication for CPF un-
der network changing topologies and communication
delays;

• Make the height at which the quadrotor operates dynamic;
• Introducing obstacle avoidance into the path planning

problem.
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[8] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-following
of underactuated autonomous vehicles with parametric modeling uncer-
tainty,” IEEE Transactions on Automatic Control, vol. 52, no. 8, pp.
1362–1379, 2007.

[9] F. Vanni, A. P. Aguiar, and A. M. Pascoal, “Cooperative path-following
of underactuated autonomous marine vehicles with logic-based com-
munication,” Proceedings Volumes, vol. 41, no. 1, pp. 107–112, 2008,
2nd IFAC workshop on navigation, guidance and control of underwater
vehicles.

[10] A. P. Aguiar, R. Ghabcheloo, A. M. Pascoal, and C. Silvestre, “Co-
ordinated Path-Following Control of Multiple Autonomous Underwater
Vehicles,” vol. All Days, 07 2007, iSOPE-I-07-006.

[11] D. Cabecinhas, R. Cunha, and C. Silvestre, “A nonlinear quadrotor
trajectory tracking controller with disturbance rejection,” Control En-
gineering Practice, vol. 26, p. 1–10, 05 2014.

[12] A. P. Aguiar and A. M. Pascoal, “Coordinated path-following control for
nonlinear systems with logic-based communication,” in 2007 46th IEEE
Conference on Decision and Control. IEEE, 2007, pp. 1473–1479.

[13] N. T. Hung, F. C. Rego, and A. M. Pascoal, “Event-triggered commu-
nications for the synchronization of nonlinear multi agent systems on
weight-balanced digraphs,” in 2019 18th European Control Conference
(ECC). IEEE, 2019, pp. 2713–2718.

[14] H. Khalil, Nonlinear systems, 3rd ed., ser. Always Learning. Pearson
Education Limited, 2013.

[15] Y. Liu, H. Yang, and W. Wang, “Reconstructing B-spline curves from
point clouds–a tangential flow approach using least squares minimiza-
tion,” in International Conference on Shape Modeling and Applications
2005 (SMI’ 05). IEEE, 2005, pp. 4–12.

[16] Hackerearth - minimum spanning tree. [Online]. Available:
https://www.hackerearth.com/practice/algorithms/graphs/minimum-
spanning-tree/tutorial/

[17] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, p. 509–517, Sep. 1975.

[18] Scikit learn - unsupervised learning, section 1.6.4.2. k-d tree. [Online].
Available: https://scikit-learn.org/stable/modules/neighbors.html

[19] M. Liu, S. Huang, G. Dissanayake, and S. Kodagoda, “Towards a
consistent SLAM algorithm using B-splines to represent environments,”
in 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, pp. 2065–2070.

[20] M. Jacinto. Thesis demo video. [Online]. Available:
https://youtu.be/ax8q3wf5MYM


