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Resumo

Medimos a probabilidade de ocurrência do decaimento B0 → K∗0µ+µ− (branching fraction, BF) em

função do quadrado da massa invariante do par de muões, usando o canal B0 → J/ψK∗0 como

normalização. Usamos dados de colisões protão-protão a
√
s = 13 TeV, que foram adquiridos com a ex-

periência Compact Muon Solenoid (CMS) no Large Hadron Collider (LHC) durante os anos 2016, 2017

e 2018. A análise é validada, comparando a razão das BFs dos dois canais ressonantes, B0 → J/ψK∗0

e B0 → ψ(2S)K∗0, com a atual média mundial. O nosso resultado é consistente com este valor dentro

de 0.2σ. Os resultados para a BF do decaimento B0 → K∗0µ+µ− são também consistentes com as

medições anteriores realizadas com dados da Run 1 do LHC e com as previsões do modelo padrão.

Estes resultados preliminares são os mais precisos até ao momento.

O decaimento B0 → K∗0µ+µ− é um processo belo e raro que no modelo padrão só pode proceder

através de diagramas de Feynman de ordem superior, o que o torna muito sensı́vel a nova fı́sica.

Tensões com o modelo padrão foram já reportadas num dos parâmetros que entra na expressão da sua

taxa de decaimento, o P ′5, que pertence a uma classe de discrepâncias no setor do sabor comumente

referidas como anomalias de sabor. A BF do decaimento B0 → K∗0µ+µ− pode entrar em ajustes

globais que permitem restringir cenários de nova fı́sica e investigar a origem destas aliciantes anomalias

de sabor.

Palavras-Chave
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Abstract

We measure the B0 → K∗0µ+µ− decay branching fraction as a function of the di-muon invariant mass

squared, using the B0 → J/ψK∗0 decay as normalisation channel. We use proton-proton collision

data at
√
s = 13 TeV, collected by the Compact Muon Solenoid (CMS) experiment at the Large Hadron

Collider (LHC) during the years 2016, 2017 and 2018. The analysis is validated by comparing the ratio

between the branching fractions of the two resonant channels, B0 → J/ψK∗0 and B0 → ψ(2S)K∗0,

with the current world average. Our result is consistent with this value within 0.2σ. The B0 → K∗0µ+µ−

branching fraction results are also consistent with previous LHC Run 1 measurements and with the

Standard Model (SM) predictions. These preliminary results are the most precise to date.

The B0 → K∗0µ+µ− decay is a rare beauty process which can only proceed at loop order in the SM,

making it very sensitive to new physics (NP). Tensions with the SM have already been reported in one

of the parameters appearing in its decay rate, P ′5, belonging to the class of discrepancies in the flavour

sector commonly referred to as flavour anomalies. The B0 → K∗0µ+µ− branching fraction can enter

in global fits to help constraining NP scenarios and investigating the source of these alluring flavour

anomalies.
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Chapter 1

Introduction

The Standard Model (SM) describes the elementary particles as well as the electromagnetic, weak and

strong interactions between them in terms of fields. Ever since its development in the latter half of the

20th century, it has met great successes. Among them are the prediction of many new particles, such

as the W and Z bosons, the gluon and several quark flavours, which culminated with the discovery of

the Higgs boson in 2012. Another incredible success is the precision with which the magnetic moment

of the electron is known: the experimental measurement agrees with the theoretical prediction up to 10

significant figures; making it the most accurately verified prediction in the history of physics.

Notwithstanding its many accomplishments, the SM has also several shortcomings. The theory does

not accommodate gravity, one of the four fundamental interactions of nature. It does not provide a

mechanism to explain the existence of neutrino masses, which we now know is the case due to neutrino

oscillations [17]. There is no symmetry in the SM that protects the Higgs mass from being much smaller

or larger than its experimental value of 125 GeV (hierarchy problem). It does not explain the origin of

the matter-antimatter asymmetry, which could be connected to the charge parity (CP) violation present

in weak interactions. And it only describes around 5% of the energy and matter content of the universe.

As a consequence, searches for physics beyond the SM are well motivated and are one of the

main driving forces for the development of particle accelerators, such as the Large Hadron Collider

(LHC) at CERN and the Future Circular Collider (FCC). Searches for new physics (NP) fall into two

complementary approaches: direct and indirect searches. The former occurs at the high-energy frontier,

where NP particles are detected as excesses in distributions (e.g. a bump in the mass spectrum). The

latter occurs at the high-precision frontier, where NP particles are detected by their effect in several

particle properties, such as cross-sections, decay rates and branching fractions.

At colliders, the high-energy frontier is reached by increasing the centre-of-mass energy of the colli-

sions, whereas the high-precision frontier is reached by increasing the luminosity. The LHC has started

operating in 2011 and has since then undergone major upgrades envisaging the increase of both en-
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ergy and luminosity. Since the start of its operation, it has already had two data-taking periods: Run 1

(2011-2012) and Run 2 (2015-2018). During Run 1, it achieved centre-of-mass energies of 7 and 8 TeV

and in Run 2, it increased this energy up to 13 TeV with significant increases also in luminosity. Run 3 is

foreseen to start in 2022, and to arrive at energies of 14 TeV, being the last planned data-taking period

of the current LHC. The High Luminosity (HL)-LHC is projected to start its operation in 2027, aiming to

arrive at an ultimate integrated luminosity of up to 4000 fb−1. The FCC, a proposed particle accelerator

which would integrate both hadron collisions like LHC and electron-positron collisions like the former

Large Electron-Positron (LEP) collider, aims to push even further the energy and luminosity frontiers,

with the goal of reaching collision energies of 100 TeV.

Thus far, no clear sign of NP has emerged from collider data. Nonetheless, a class of discrepancies

with the flavour sector of the SM, pertaining to the category of indirect searches, has been slowly making

its stand. These are the so-called flavour anomalies and have been detected in two sets of quark level

transitions: b→ sll (beauty to strange quark plus pair of charged leptons) and b→ clν̄ (beauty to charm

quark plus charged lepton and neutrino). The work of this thesis will focus on the former.

1.1 Flavour anomalies in b→ sll transitions and beyond

The Flavour Changing Neutral Current (FCNC) transitions, b→ sll, are realised in several rare B meson

decays, both leptonic, e.g. B0
s → µ+µ−, and semileptonic, e.g. B → Xµ+µ−, where X stands for a

strange hadron (K,K∗0, φ...). Deviations from the SM expectations have been found in several observ-

ables of these decays, namely on branching fractions, such as B(B0
s → φµ+µ−), angular parameters

appearing in the decay rate of B0 → K∗0µ+µ−, such as P ′5, and on ratios of branching fractions, such

as RK(∗) = B(B0→K(∗)µ+µ−)
B(B0→K(∗)e+e−)

. The latest results on two of these observables can be seen in Fig. 1.1.

In Fig. 1.1 (left), the LHCb result [1] on the differential branching fraction of the B0
s → φµ+µ− decay is

shown to have a 3.6σ deviation with the SM prediction in the q2 region 1.1-6.0 GeV2. In Fig. 1.1 (right),

the LHCb result [2], superimposed with RK measurements from Belle [18] and BaBar [19], is shown to

have a discrepancy of 3.1σ with its predicted value of 1.

Even though observables like B(B0
s → φµ+µ−) and P ′5 are prone to theoretical uncertainties coming

from Quantum Chromodynamics (QCD) form factor calculations, variables such as RK(∗) are very clean,

since these uncertainties cancel when doing the ratio, because leptons do not interact via the strong

force. This makes the latest LHCb result [2] a very strong hint of NP and, if proven true, it would

imply the violation of one of the assumptions of the SM: that the electroweak gauge bosons W and Z

have identical couplings to all the three lepton flavours. A state of affairs referred to as Lepton Flavour

Universality Violation (LFUV), which would mean that the rates of the decays B+ → K+µ+µ− and

B+ → K+e+e− should be equal and their ratio equal to 1, as displayed by the dashed vertical line in

Fig. 1.1 (right).
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Figure 1.1: LHCb result on the differential branching fraction of the B0
s → φµ+µ− decay. In the q2 region 1.1-

6.0 GeV2, the measurement is found to be 3.6σ below the SM prediction. Taken from Ref. [1] (left).
LHCb result on RK superimposed with results from Belle and BaBar. The measured RK has a 3.1σ
discrepancy with the SM. Taken from Ref. [2] (right).

There is possibly a relation between the flavour anomalies found on the neutral b → sll and on

the charged b → clν̄ transitions with other anomalies in the flavour sector: they may be originating

from a common Lepton Flavour Universality (LFU) violating interaction. Besides the RK(∗) results, mea-

surements on RD(∗) [20–22] and on the anomalous magnetic moments (g − 2)l of charged leptons also

signal departures from the SM prediction of LFU. Here there is the long-standing discrepancy in (g−2)µ,

whose most recent result [23] signals a tension of 4.2σ. A collection of measurements (in blue) which

see deviations from the theoretical expectation (in orange) can be seen in Fig. 1.2. [1,6] intervals refer

to the di-lepton invariant mass squared (q2) ranges in GeV2. All these results are connected with the

muon sector and some authors [24] start to refer to them jointly as muon anomalies.

Although the individual discrepancies detected in these measurements do not yet display sufficient

levels of statistical significance, when taken together in global fits they do, and they can be used to

constrain possible NP models, as will be explained in Sec. 2.4. In Ref. [25], a naive combination of

RK and RK∗ measurements is reported to have a tension with the SM above 4σ. In Ref. [26], the

combined significance of the deviations found on RK∗ and B(B0
s → µ+µ−) is shown to reach 4.7σ. And

in Ref. [27], global fits to several b→ sll observables pass over the 5σ barrier. Therefore, a clarification

of the flavour anomalies is a current priority in High Energy Physics (HEP).

In this thesis, we will study a decay which is a particular realisation of the aforementioned b → sll

transitions, B0 → K∗0µ+µ−, with the Compact Muon Solenoid (CMS) experiment at the LHC. This

decay has been thoroughly studied in the literature. The previous analyses performed by the CMS

collaboration [4, 28, 29] all used Run 1 proton-proton (pp) collision data and measured several angular

parameters as well as the differential branching fraction. The results were found to be consistent with

the SM predictions and with the ones obtained with previous measurements [14,30–32].

The first complete angular analysis was performed by the LHCb collaboration [33] with 2011 pp data
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Figure 1.2: Collection of experimental measurements (in blue) and their shift with respect to the theoretical predic-
tion (in orange), which is set at zero. [1,6] intervals refer to the di-lepton invariant mass squared (q2)
ranges in GeV2. Taken from http://www.scholarpedia.org/article/Rare_decays_of_b_hadrons.

at
√
s = 7 TeV. A 3.7σ discrepancy was detected in one parameter that enters in the angular decay rate:

P ′5. Later, Belle independently reported a similar tension [34]. However, ATLAS measurements [35]

were consistent with the SM. After these results, LHCb made another two publications [36, 37] and

the tensions persisted with the new data. The previous differential branching fraction measurements

by Belle [30], LHCb [14] and CMS [4, 28] were all in good agreement with the SM prediction, but in

Ref. [14] they favoured lower values. In Fig. 1.3 (left), the latest LHCb result [3] on the P ′5 parameter

can be seen. A local discrepancy of 2.5 and 2.9σ in the ranges 4.0 < q2 < 6.0 and 6.0 < q2 < 8.0 GeV2

is reported, being slightly lower the previous tensions [36] (2.8 and 3.0σ). However, from the global fit

of several angular observables, the discrepancy with the SM is shown to increase from 3.0 to 3.3σ. In

Fig. 1.3 (right), the previous CMS measurement [4] of the B0 → K∗0µ+µ− differential branching fraction

can be seen. The results are consistent with the SM.

Though some anomalies may originate from statistical fluctuations, underestimated systematic un-

certainties or even a deficient SM prediction or measurement, the persistence of the flavour anomalies

makes them very alluring, to both theorists and experimentalists. In the theoretical community, people

have been developing models that attempt to explain the anomalies along with other tensions in the

flavour sector, such as the anomalous magnetic moment of the muon (g − 2)µ. Among these, the most

favoured ones are models with extra gauge bosons (Z ′) or leptoquarks (LQs), which will be explained

with more detail in Ch. 2.
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Figure 1.3: Latest LHCb result [3] on the P ′5 parameter, where a tension with the SM of 2.5 and 2.9σ is reported
in the ranges 4.0 < q2 < 6.0 and 6.0 < q2 < 8.0 GeV2, respectively (left). Latest CMS result [4] on the
differential branching fraction of the B0 → K∗0µ+µ− decay (right), which is consistent with the SM.

From the experimental side, many tensions with the SM have been reported independently by LHCb,

Belle and BaBar throughout the years. The results from larger experiments, like CMS and ATLAS, were

however reported to be consistent with the SM predictions but were mainly dominated by statistical

uncertainties. It is now of paramount importance that more precision measurements are performed so

that we can gauge the role of these anomalies in the current physics paradigm. With the available Run 2

data, where much higher luminosities were achieved, if we can push the significance of the results over

the 5σ barrier, they will count as an observation of flavour anomalies, making them the first established

NP seen at the LHC.

1.2 Analysis introduction

In this thesis, the differential branching fraction of the B0 → K∗0µ+µ− will be measured as a function

of the di-muon invariant mass squared (q2). The data used was collected by the CMS detector in pp

collisions at
√
s =13 TeV, during the data-taking years 2016, 2017 and 2018 of Run 2, corresponding to

a total integrated luminosity of 139.5 fb−1. The work is inserted in a larger analysis [13] which also has

the goal of measuring several angular parameters appearing in the decay rate.

The B0 → K∗0µ+µ− decay has a fully charged final state K+π−µ+µ− composed of a kaon and a

pion that result from the K∗0 and two opposite charge muons. Its branching fraction B(B0 → K∗0µ+µ−)

measures the number of B0 mesons that decay into the particular final state K∗0µ+µ− with respect to

the total number of B0 mesons that decay via all possible modes. It is then proportional to the number of

signal events that we measure (YS). Since YS is not the total number of B0 that decay to the final state

K∗0µ+µ− but actually the number of them that do and also pass our trigger and selection criteria (see

Ch. 4), we need to correct YS by the detector efficiency εS , which measures the fraction of events that
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pass our selections.

The final ingredient that is missing for the B(B0 → K∗0µ+µ−) calculation is the number ofB0 mesons

that decay via any possible mode. This quantity is not experimentally accessible at the LHC. In order

to cope with this, what is actually measured is a normalised branching fraction so that this quantity

cancels when doing the ratio. Moreover, due to the presence of large uncertainties regarding trigger and

production efficiencies at the LHC, only ratios of branching fractions can be measured precisely.

The channel used as normalisation needs to have the same final state as the signal decay of interest,

its production dynamics and decay kinematics should be the same as the B0 → K∗0µ+µ− decay and

its absolute branching fraction should be known with an uncertainty negligible when compared with

other sources. In our study, we use the B0 → J/ψK∗0 resonance as our normalisation channel, where

J/ψ → µ+µ− and B(B0 → J/ψK∗0)× B(J/ψ → µ+µ−) = 0.127 % × 5.961 % [38].

The analysis is performed in bins of q2, as defined in Tab. 1.1. The choice of q2 bins is similar to the

one found on previous analyses and is motivated by theoretical considerations. As will be explained in

Ch. 2, the B0 → K∗0µ+µ− effective Hamiltonian can be written in terms of Wilson Coefficients (WC),

whose values can be modified in the presence of NP and each q2 region is sensitive to different coef-

ficients Ci, as can be seen in Fig. 1.4. The theoretical calculations are performed with good control in

the low q2 region 1-6 GeV2. Above 6 GeV2, at the charmonium resonances, QCD Factorisation (QCDF)

methods, necessary to calculate some non-factorisable terms in the decay rate, fail and lattice QCD

calculations are necessary. The region below 1 GeV2 is dominated by the photon pole (b→ sγ).

Figure 1.4: Differential decay rate as a function of q2 for B0 → K∗0l+l− processes. Each region of q2 is sensitive
to different WCs Ci. Taken from Ref. [5].

The q2 ranges 8.68 < q2 < 10.09 GeV2 and 12.86 < q2 < 14.18 GeV2 correspond, respectively, to
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the resonant channels B0 → J/ψK∗0 and B0 → ψ(2S)K∗0, which occur much more frequently in the

collisions. These decays have the same final state as the non-resonant channel of interest K+π−µ+µ−,

where µ+µ− result from the J/ψ and ψ(2S) decays, and they are both used as control channels. The

former is additionally used to normalise the branching fraction measurement

dB(B0 → K∗0µ+µ−)

dq2
=
YS
YN

εN
εS

B(B0 → J/ψK∗0)× B(J/ψ → µ+µ−)

∆q2
i

, (1.1)

where YS and YN are the yields of signal and normalisation channels, respectively, εS and εN are the de-

tector efficiencies for signal and normalisation channels, respectively, and i runs over the non-resonant

q2 bins defined in Tab. 1.1.

Table 1.1: q2 bins used in the analysis.

bin index q2 range [GeV2]
0 1-2
1 2-4.3
2 4.3-6
3 6-8.68
4 8.68 - 10.09 (J/ψ region)
5 10.09-12.86
6 12.86-14.18 (ψ(2S) region)
7 14.18-16

Despite the fact that the previous branching fraction results were all consistent with the SM, they

suffered both from large theoretical uncertainties and large statistical uncertainties which dominated

Run 1 results. Furthermore, this observable can enter in global fits which help constraining NP scenarios

and it is also an ingredient of RK∗ , whose theoretical uncertainties are much lower and in which several

tensions have already been reported. This stresses the importance of this study in light of the current

flavour anomalies. Compared with the CMS Run 1 analysis [4], the current work will benefit both from

a centre-of-mass energy increase (from 8 TeV to 13 TeV), which will augment the B0 cross-section by a

factor of about 2, and from a luminosity increase (from 20.5 fb−1 to 139.5 fb−1). Both factors will allow to

improve the precision of the measurements.

The structure of this thesis is as follows. We begin in Ch. 2 with a theoretical introduction of the b→ sll

transitions and how they can be studied in the context of Effective Field Theories (EFT). A particular

emphasis will be put on the B0 → K∗0µ+µ− decay, where a description of its angular decay rate will

be provided. We continue on Ch. 3 with a description of the CMS detector at the LHC, highlighting

the components more relevant to the analysis. We also give an overview of the CMS trigger system,

describing the triggers used in the analysis. In Ch. 4, we describe the datasets and simulation samples

used as well as the offline selections. A study of the possible background sources contaminating the

decay channels and what cuts are used to reduce them is also presented. The method used to extract
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the yields YS and YN in Eq. (1.1) is provided in Ch. 5 and the efficiency computation (εS and εN ) can

be found in Ch. 6. The Monte Carlo (MC) validation is described in Ch. 7 and a study of systematic

uncertainties is presented in Ch. 8. We finally give in Ch. 9 the results with a discussion and in Ch. 10

the conclusions.
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Chapter 2

Theoretical framework

In this chapter, we begin by giving an overview of the electroweak sector of the SM in Sec. 2.1 and in

Sec. 2.2 we present the theoretical machinery of EFTs and how it can be used to search for NP in b→ sll

transitions. Using this formalism, the B0 → K∗0µ+µ− decay rate will be given as a function of angular

parameters in Sec. 2.3. This decay rate is then used in Ch. 6 in the efficiency computation. Finally, in

Sec. 2.4 we explain how global fits to the flavour anomalies can be used to constrain NP scenarios and

we refer two classes of NP models that have been more favoured in the theoretical community: models

with an extra gauge boson (Z ′) and with LQs.

2.1 Electroweak sector of the Standard Model

The electroweak sector of the SM unifies the electromagnetic interaction with the weak nuclear force.

The electromagnetic interaction has gauge group U(1)Q whereQ is the electric charge, it has a massless

and neutral gauge boson (the photon) and has an infinite range. The weak interaction is described by the

group SU(2), it has three gauge bosons (W± and Z0) and its range is confined to the atomic nucleus

(0.1-0.01 fm). The SM electroweak sector has gauge group SU(2) × U(1)Y , where SU(2) has three

generators T1, T2 and T3 (weak isospin) and U(1)Y has one generator Y (weak hypercharge). In nature,

only the U(1)Q symmetry is observed and results from the Spontaneous Symmetry Breaking (SSB) of

SU(2)× U(1)Y (see Sec. 2.1.1), which also gives origin to the W± and Z0 masses.

Besides the photon and the W± and Z0 bosons, the SM particle content also includes fermions,

which can be separated into two categories: leptons and quarks. Leptons do not interact via the strong

force and they come in three different flavours: electron, muon and tau (Q = −1); and the corresponding

neutrinos (Q = 0), as can be seen in Tab. 2.1. Flavour is the analogous of the electric charge for the weak

nuclear force. As indicated in Tab. 2.1, fermions can be organised in families (columns): particles in the

same row have the same electric charge but a different flavour charge. Unlike leptons, quarks interact
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via the strong force and they are confined inside hadrons: mesons (qq̄ pair) and baryons (q1q2q3), among

other more exotic states. They also come in three flavours: up (u), charm (c) and top (t) with Q = +2/3

and down (d), strange (s) and beauty (b) with Q = −1/3.

Table 2.1: Leptons (first two rows) and quarks (last two rows).

1st family 2nd family 3rd family Q
νe νµ ντ 0
e− µ− τ− −1
u c t +2/3
d s b −1/3

The weak interaction violates parity, meaning that it attributes different quantum numbers to the left-

and right-handed chirality components of leptons and quarks (the SM is a chiral gauge theory). Since

we are interested in the quark-level b→ sll transitions, we will be focusing on quarks hereafter. The left-

handed components of quarks are doublets of SU(2),
(
UL
DL

)
, with ψL = PLψ, PL = 1−γ5

2 , U = u, c, t

and D = d, s, b and the right-handed components are singlets of SU(2), UR and DR, with ψR = PRψ

and PR = 1+γ5

2 . γ5 is written in terms of the gamma matrices: γ5 = iγ0γ1γ2γ3.

Another interesting property of the weak interaction is that it violates CP, the combined symmetry of

parity (P) and charge conjugation (C), which transforms a particle into its anti-particle counterpart. This

has profound implications in cosmology, being one of Sakharov’s criteria for baryogenesis, one of the

current proposed explanations for the observed matter-antimatter asymmetry in the universe.

In order to better understand the weak interaction, we need to dive into the scalar sector of the SM,

which will be explained in the next section.

2.1.1 Scalar sector of the Standard Model

As previously mentioned, what we observe in nature is not the gauge symmetry of the SM, SU(2) ×

U(1)Y , but the U(1)Q symmetry of electromagnetism. This is a result of SSB, which occurs by the

presence of a Vacuum Expectaction Value (VEV) of a scalar field. This scalar field needs to be both in

a doublet of SU(2) and neutral in order to break SU(2) and preserve U(1)Q, respectively. If we denote

the scalar SU(2) doublet by φ we can write

φ =

(
Φ+

Φ0

)

where Φ+ and Φ0 are complex fields. The scalar potential V must be invariant under SU(2) × U(1)Y

and lead to a renormalisable theory1 V = µ2φ†φ + λ(φ†φ)2, where λ is dimensionless and µ has mass

dimension.

1In order for a theory to be renormalisable, its Lagrangian cannot have fields with mass dimension greater than 4.
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The minimnum v of V is the VEV of the neutral scalar field Φ0, v =
√
−µ2

2λ . If we expand Φ0 around

its VEV by writing Φ0 = v + H+iχ√
2

, where H and χ are real fields and substitute this expression in V

we conclude that χ and Φ± are massless and H has mass mH =
√
−2µ2. The χ and Φ± are therefore

the three Goldstone bosons corresponding to the three broken generators of SU(2)2. H is the Higgs

boson, a particle discoverd at the LHC in 2012. Its mass is measured to be 125.10 ± 0.14 GeV [38] but

it is not a prediction of the SM. In fact, at loop order, it has a quadratically divergent contribution δm2
H

which needs to be cutoff at an energy scale Λ. The larger Λ is, the smaller µ needs to be so that mH =

125 GeV. Imposing δm2
H < m2

H (naturalness), implies that Λ < 1 TeV, meaning that the SM, as a natural

EFT, is only valid up to the 1 TeV energy scale. This is the source of the hierarchy problem mentioned

in Ch. 1. If we further replace the expression for φ in the SM Lagrangian, we conclude that the photon

remains massless and the W± and Z0 bosons acquire masses which are related by the experimentally

well verified relation mW = mZ cos θw, where θw is the Weinberg angle (MW = 80.379 ± 0.012 GeV and

MZ = 91.1876 ± 0.0021 GeV [38]).

2.1.2 Yukawa interactions of the quarks

The quark Yukawa Lagrangian describes the interactions between quarks and the scalar field φ defined

in Sec. 2.1.1 and can be written as

LY ukawa = −
3∑

i,j=1

Yij(ŪLi D̄Li)DRj (Φ
+ Φ0)† −

3∑
i,j=1

Y ′ij(ŪLi D̄Li)URj (Φ
0∗ − Φ−)† + H.c., (2.1)

where i, j run over the three quark families and Y and Y ′ are 3 × 3 matrices of Yukawa couplings and

H.c. stands for hermitian conjugate.

The quark mass matrices MD = vY and MU = vY ′ do not commute and so there is no basis in

flavour space where both matrices are diagonal. However, there are 3×3 unitary matrices BU,DL,R such

that the two can be bi-diagonalised

BU†L MUB
U
R = Mu = diag(mu,mc,mt) (2.2)

BD†L MDB
D
R = Md = diag(md,ms,mb). (2.3)

If we re-define the quark fields by UL = BU†L UL, UR = BU†R UR, DL = BD†L DL and DR = BD†R DR, the

Yukawa Lagrangian becomes

LY ukawa = Ū(MuV PL − VMdPR)DΦ+

v
+ D̄(V †MuPR −MdV

†PL)U Φ−

v
+ ..., (2.4)

2The Goldstone theorem states that for each spontaneously broken gauge symmetry generator there is a corresponding mass-
less scalar, a Goldstone boson.
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where D = DL+DR, U = UL+UR and a notation has been adopted in order to get rid of the i, j indices.

V = BU†L BDL is the Cabibbo–Kobayashi–Maskawa (CKM) matrix and it represents the relative rotation

between the two eigenbases of the up and down mass matrices.

The entries of V are measured experimentally [38] and the matrix is found to be almost diagonal

V =

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97370± 0.00014 0.2245± 0.0008 0.00382± 0.00024
0.221± 0.004 0.987± 0.011 0.0410± 0.0014

0.0080± 0.0003 0.0388± 0.0011 1.013± 0.039

 .

The charged current transitions depend on the entries of the CKM matrix Vij , which give the relative

strength for a certain qi → qj transition to occur

LW± =
g√
2

(ŪγµV PLDW+
µ + D̄V †γµPLUW−µ ). (2.5)

Therefore, charged currents change flavour. Transitions between quarks of the same family are less

suppressed, because the diagonal elements of V are close to 1. Transitions between the 1st and 2nd or

between the 2nd and 3rd families are more suppressed and transitions between the 1st and 3rd families

are even more suppressed, since |Vtd| and |Vub| are very close to 0.

Neutral current transitions, on the other hand, do not depend on Vij

Lγ = eAµ

(
− 2

3
ŪγµU +

1

3
D̄γµD

)
, (2.6)

where Aµ represents the photon and

LZ0 =
g

cos θw
Zµ

[
Ūγµ

(
PL
2
− 2 sin θw

2

3

)
U + D̄γµ

(
sin θw

2

3
− PL

2

)
D
]
. (2.7)

As a consequence, there are no FCNC decays at tree level in the SM.

The b→ sll transitions are highly suppressed. On the one hand, because they correspond to a FCNC

transition between a beauty quark from the 3rd family and a strange quark from the 2nd family. On the

other hand, because the leading order loop diagram is a penguin loop with a t-quark mediator (see

Fig. 2.1 a)) which is Cabibbo suppressed since it is proportional to the CKM elements |VtsVtb| ≈10−2.

Other SM loop contributions proceed via box diagrams, as can be seen in Fig. 2.1 b).

The fact that these transitions are so suppressed makes decays realising them very rare and sensitive

to NP, which could appear as yet undiscovered fundamental particles, such as LQs or heavier gauge

bosons (Z ′) (see Fig. 2.1 c) and 2.1 d)), which would allow the existence of these FCNC transitions at

tree level. These NP contributions could produce sizeable effects in the decay rates and branching

fractions which would appear as flavour anomalies. These indirect searches for NP are done with the

help of the formalism of EFTs, as will be explained in the next section.
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Figure 2.1: Loop diagrams contributing to the b → s l+l− transitions in the SM (top) and in possible NP scenarios
(bottom). a) and b) correspond to a penguin loop and a box diagram, respectively. c) and d) correspond
to tree level diagrams mediated by LQs and a heavy gauge boson (Z’), respectively.

2.2 Effective field theories

When describing a physical system, one can normally focus on the degrees of freedom that are relevant

at the distance scales under consideration. This means that all particles whose Compton wavelength

λ = h/mc is smaller than those distance scales are irrelevant and can be integrated out. In cases

where very disparate mass scales appear, it is advantageous to construct an EFT where the degrees

of freedom that become relevant at much lower distance scales (much higher energies) do not appear

explicitly. An example would be a NP particle whose mass could be hundreds of TeV and that cannot be

produced directly in the collisions at the LHC, at an energy scale smaller than its mass. Consequently,

the EFT Lagrangian, valid at the energy scales of interest, does not contain this degree of freedom.

The fact that this is possible is ensured by the decoupling theorem [39], which states that the heavy

degrees of freedom decouple at energy scales much lower than their mass. Mathematically, this means

that we can perform a functional integral over these fields i.e. we can write the partition function Z[j],

with external source j(x), as

Z[j] =

∫
[dφ][dΦ] exp

(∫
d4x
[
L(φ,Φ) + jφ

])
=

∫
[dφ] exp

(∫
d4x
[
Leff (φ) + jφ

]) (2.8)

where φ and Φ correspond to the light (µ) and heavy (Λ) mass fields, respectively, and

exp

(∫
d4xLeff (φ)

)
=

∫
[dΦ] exp

(∫
d4xL(φ,Φ)

)
. (2.9)

For length scales x � 1/Λ, all interactions due to Φ become local and Leff is a local effective La-
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grangian. When we consider decay processes containing b-hadrons, the relevant scale of such transi-

tions is the b-quark mass, mb ≈ 5 GeV. The SM contains particles whose masses are much larger than

this energy scale: the top quark, the weak bosons and the Higgs masses (m ≈ 100 GeV). Therefore, in

an EFT of the SM, these particles do not appear explicitly.

The starting point for the construction of an EFT is the presence of a large energy scale Λ, which

could be the W boson mass or even a predicted NP scale. Then one separates the long- and short-

distance contributions to the matrix elements of the effective Hamiltonian Heff denoting a transition

from an initial state |i〉 to a final state |f〉, whose energies Ei,f < Λ, by means of the operator-product

expansion

〈f |Heff |i〉 =
∑
k

Ck(Λ) 〈f | Ok |i〉, (2.10)

where Ck(Λ) are the WCs and contain physics information above Λ, being sensitive to NP, and 〈f | Ok |i〉

are the matrix elements of the local operators Ok, which contain physics information below Λ.

2.2.1 Fermi’s theory of the weak interactions

In 1934, Fermi formulated a theory of β-decay as a phenomenological modification of Quantum Electro-

dynamics (QED), before the SM had been developed. We now look at Fermi’s theory of weak interactions

as an EFT of the SM, which is very useful to describe processes occurring at energy scales much lower

than the W± and Z0 masses.

The charged current interactions described in Eq. (2.5) can be written in terms of the currents

Jµ± =
Jµ1 ∓ iJ

µ
2√

2
, (2.11)

with

Jµa = g
∑
Ψ

Ψ̄γµPL
τa
2

Ψ, (2.12)

where Ψ runs over the lepton and quark fields and τa are the Pauli matrices. Whereas the neutral current

interactions described in Eqs. (2.7) and (2.6) can be written as

Jµ0 =
g

cos θw
(Jµ3 − sin θw

2JµEM ), (2.13)

where JµEM is the electromagnetic current

JµEM =
∑
Ψ

eQΨ̄γµΨ. (2.14)

For low energy weak processes, i.e. processes mediated by a W± or Z0 boson whose exchanged
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momentum p is much lower than the boson mass M , we can Taylor expand the gauge bosons propaga-

tors in terms of p2/M2 and keep only the constant leading order term

1

p2 −M2
= − 1

M2
+O

(
p2

M2

)
. (2.15)

Since the Fourier transform of a constant is a Dirac δ-function, the process with the exchange of a

W/Z boson in Fig. 2.2 (a) is in Fermi’s theory a point-like interaction (see Fig. 2.2 (b)) with coupling

constantGF

LFermieff =
8GF√

2
(J+
µ J−µ +

1

2
Jµ0 J0µ), (2.16)

where GF = 1.166 × 10−5 GeV2 is the analogous of the WCs in the Fermi theory.

Figure 2.2: Tree level interaction between 4 fermions, mediated by the W/Z bosons in the SM (a) and point-like
interaction between 4 fermions in Fermi’s theory. Taken from Ref. [6].

2.2.2 Effective field theory of b→ sl+l− transitions

The b → sl+l− are quark-level transitions. What makes quarks more complicated than leptons is that

they interact via the strong force and that the strong coupling αs diverges below an energy scale ΛQCD ≈

0.2 GeV [40], whereas the QED coupling αe is approximately constant (αe ≈ 1/137) at large momenta.

This means that at very large momenta αs becomes small, quarks are asymptotically free and pertur-

bation theory methods can be applied. However, at low momenta αs becomes large, quarks become

confined inside hadrons and perturbation theory fails.

This has direct consequences to the definition of current-quark masses. Even though we can safely

compare the theoretical prediction of e.g. the electron mass with the experimental measurement, be-

cause αe is approximately constant at common collision energies, we cannot do the same for quarks.

In this case, we need to define a renormalisation scale µ at which this comparison can be performed.

Moreover, current-quark masses also depend on the way divergences are removed from the QCD La-

grangian, something referred to as renormalisation scheme. The Particle Data Group (PDG) [38] quotes

the current-quark masses in the MS scheme at a renormalisation scale µ = 2 GeV. The fact that the

choice of renormalisation scale is arbitrary is included by imposing that QCD must be invariant under

the renormalisation group, meaning that no physical observable can depend on µ. The evolution of QCD

parameters in terms of µ is governed by the renormalisation group equations.
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Another consequence of quark confinement is that they cannot be probed directly in experiments.

However, their dynamics can be studied by scattering leptons off hadrons or by scattering hadrons on

other hadrons. From these interactions the observables that can be extracted are form factors that

encode hadrons’ momentum-dependent interactions with photons, W and Z bosons.

Applying a similar reasoning to what is done in Fermi’s theory, we can describe the b → sl+l−

transitions which occur at scales much lower than the W/Z, top-quark and NP scales with an EFT of

the SM. In this way, the interactions depicted in Fig. 2.1 reduce to point-like interactions with couplings

given by the corresponding WCs.

The u-quark loop contribution in Fig. 2.1 a) is doubly Cabibbo suppressed since VubV ∗us ≈ 0.0007�

VtbV
∗
ts ≈ 0.04 and can be neglected. With this approximation and using the unitarity of the CKM matrix,

VubV
∗
us + VcbV

∗
cs + VtbV

∗
ts = 0, the t-quark and c-quark contributions are related by VtbV ∗ts = −VcbV ∗cs. The

effective Hamiltonian can then be written as

Heff = −4GF√
2
VtsV

∗
tb

[
C1Oc1 + C2Oc2 +

6∑
i=3

CiOi +
∑

i=7,8,9,10,P,S

(CiOi + C ′iO′i)
]
. (2.17)

The operators Oi≤6 are identical to the Pi given in Ref. [41], with Oc1 and Oc2 describing point like

interactions between the b- / s-quarks and the c-quarks, which cannot be integrated out at scales µ ≈ mb.

The remaining ones are given by

O7 =
e

g2
mb(s̄σµνPRb)F

µν , O′7 =
e

g2
mb(s̄σµνPLb)F

µν , (2.18)

O8 =
1

g
mb(s̄σµντ

aPRb)G
µνa, O′8 =

1

g
mb(s̄σµντ

aPLb)G
µνa, (2.19)

O9 =
e2

g2
(s̄γµPLb)(µ̄γ

µµ), O′9 =
e2

g2
(s̄γµPRb)(µ̄γ

µµ), (2.20)

O10 =
e2

g2
(s̄γµPLb)(l̄γ

µγ5l), O′10 =
e2

g2
(s̄γµPRb)(l̄γ

µγ5l), (2.21)

OS =
e2

16π2
mb(s̄PRb)(l̄l), O′S =

e2

16π2
mb(s̄PLb)(l̄l), (2.22)

OP =
e2

16π2
mb(s̄PRb)(l̄γ5l), O′S =

e2

16π2
mb(s̄PLb)(l̄γ5l), (2.23)

where g =
√

4παs, mb is the b-quark mass in the MS scheme, Fµν is the photon field strength tensor

and Gµν is the gluon field strength tensor. Oi and O′i have opposite chirality.

The WCs Ci encode short-distance physics and possibly NP. They are calculated at the matching
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scale µ = MW in a perturbative expansion in powers of αs(MW )

Ci = C
(0)
i +

αs
4π
C

(1)
i +

(
αs
4π

)2

C
(2)
i +O(α3

s), (2.24)

where C(0)
i and C(n)

i are tree level and n-loop contributions, respectively. They are then evolved down to

scales µ ≈ mb by means of the renormalisation group equation. Any NP effect enters in Ci(MW ), while

the evolution to lower scales is determined by the SM.

2.3 The B0 → K∗0µ+µ− decay rate

The B0 → K∗0(K+π−)µ+µ− decay has a fully charged final state composed of a kaon, a pion and two

opposite charge muons, which are easily identifiable in the CMS detector. The charge of the hadrons in

the final state determines the CP-state of the decay, i.e. whether it is B0 → K∗0µ+µ− → K+π−µ+µ−

or B̄0 → K̄∗0µ+µ− → K−π+µ+µ−. The four-particle final state can be fully described by a set of four

kinematic variables: q2, θK , θl and φ. q2 is the di-muon invariant mass squared and θK , θl and φ are the

three angles depicted in Fig. 2.3. θl is the angle between the momentum of the µ+ (µ−) and the direction

opposite to the B0 (B̄0) momentum in the di-muon rest frame. θK is the angle between the direction of

the kaon and the direction opposite to the B0 (B̄0) momentum in the K∗0 (K̄∗0) rest frame. And φ is

the angle between the plane containing the µ+ and µ− momenta and the plane containing the kaon and

pion momenta, in the B0 (B̄0) rest frame.

Figure 2.3: Graphical illustration of the three angular variables θl, θK ∈ [0, π] and φ ∈ [−π, π] used to describe the
decay B0 → K∗0(K+π−)µ+µ−. Taken from Ref. [7].

The B0 → K∗0µ+µ− decay is a realisation of the b → sl+l− transitions and its effective Hamiltonian

has the form described in Eq. (2.17). The most relevant operators for this decay are O(′)
7 , O(′)

9 and O(′)
10 .

O(′)
7 describe the electromagnetic penguin and O(′)

9 and O(′)
10 describe a penguin loop with a t-quark

mediator in which the muon pair originates from a photon and from a Z boson, respectively. While the

operators O7, O9 and O10 exist in the SM effective Hamiltonian, the chirality flipped O′7, O′9 and O′10 are

introduced by NP.

In order to compute the decay rate, the amplitude M = 〈Kπ|Heff
∣∣B̄〉 needs to be obtained. The
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B → K∗0 matrix elements of the operators O(′)
7,9,10,P,S can be expressed in terms of seven form factors

which depend on the momentum transfer p2 between the B and the K∗0 mesons. Besides the terms

proportional to form factors, the B0 → K∗0µ+µ− amplitude also contains non-factorisable terms, which

correspond to the matrix elements of the O1−6 and O8. In the heavy quark and large energy limit, they

can be calculated using QCDF [42], which is only valid below the charmonioum resonances (6 GeV2).

The form factors are calculated using non-perturbative methods. Below 6 GeV2, they are computed

using Light Cone Sum Rules (LCSRs) [15]. These calculations are only valid in the phase space region

where the K∗0 final state has a large recoil momentum in the B0 rest frame (low q2), where physics can

be described within the light-cone formalism. Above 6 GeV2, lattice QCD calculations [16] are needed.

They are currently restricted to a phase space in which the K∗0 final state has a small recoil momentum

in the B0 rest frame (high q2) since at low q2 there are large discretisation and statistical errors [38]. The

LCSRs and lattice QCD calculations are therefore complementary.

The B0 → K∗0µ+µ− decay amplitude is given by

M =
GFαe√

2π

[(
〈Kπ| s̄γµ(Ceff

9 PL + C ′9
effPR)b

∣∣B̄〉− 2mb

q2
〈Kπ| s̄iσµνqν(Ceff

7 PR + C ′7
effPL)b

∣∣B̄〉)(µ̄γµµ)

+ 〈Kπ| s̄γµ(Ceff
10PL + C ′10

effPR)b
∣∣B̄〉 (µ̄γµγ5µ) + 〈Kπ| s̄(CSPR + C ′SPL)b

∣∣B̄〉 (µ̄µ)

+ 〈Kπ| s̄(CPPR + C +P PL)b
∣∣B̄〉 (µ̄γ5µ)

]
,

(2.25)

where Ceff
7,9,10 are combinations of WCs, as defined in Ref. [43] and C′eff

7,9,10 = 4π
αs
C ′7,9,10. SquaringM and

summing over the spin of the final state particles, we obtain the decay rate of B̄0 → K̄∗0µ+µ−

d4Γ

dq2d cos θld cos θKdφ
=

9

32π
I(q2, θl, θK , φ), (2.26)

where
I(q2, θl, θK , φ) =Is1 sin θK

2 + Ic1 cos θK
2 + (Is2 sin θK

2 + Ic2 cos θK
2) cos θl

+ I3 sin θK
2 sin θl

2 cos 2φ+ I4 sin 2θK sin 2θl cosφ

+ I5 sin 2θK sin θl cosφ

+ (Is6 sin θK
2 + Ic6 cos θK

2) cos θl + I7 sin 2θK sin θl sinφ

+ I8 sin 2θK sin 2θl sinφ+ I9 sin θK
2 sin θl

2 sin 2φ.

(2.27)

The corresponding expression for the B0 → K∗0µ+µ− decay is given by

d4Γ̄

dq2d cos θld cos θKdφ
=

9

32π
Ī(q2, θl, θK , φ), (2.28)

where Ī(q2, θl, θK , φ) is obtained from Eq. (2.27) doing I(n)
1,2,3,4,7 → Ī

(n)
1,2,3,4,7 and I(a)

5,6,8,9 → −Ī
(a)
5,6,8,9, since

after CP conjugation θl → −θl, θK → −θK and φ → φ. Therefore, the B0 → K∗0µ+µ− decay is

18



completely described by 12 angular parameters Ī(a)
i , that depend only on q2.

In order to separate CP-conserving from CP-violating NP effects, one defines 12 CP averaged an-

gular coefficients

S
(a)
i =

I
(a)
i + Ī

(a)
i

d(Γ +Γ̄)
dq2

, (2.29)

as well as 12 CP asymmetries

A
(a)
i =

I
(a)
i − Ī(a)

i
d(Γ +Γ̄)
dq2

. (2.30)

Taking the CP average means that CP violating effects in S
(a)
i are removed which results in a cleaner

observable. Taking the CP asymmetry, on the other hand, means that any CP violation effect can be

easily identifiable. In this study we will take the former approach.

We can define a set of parameters in terms of the S
(a)
i . The forward-backward asymmetry of the

di-muon pair AFB = 3
8 (2Ss6 + Sc6) as well as the transverse and longitudinal polarisation of the K∗0

meson, FT = 4Ss2 and FL = −Sc2, respectively. These parameters depend on form factors and are prone

to hadronic uncertainties coming from LCSRs and lattice QCD calculations. In order to reduce these

theoretical uncertainties, a set of parameters P (′)
i , that are independent of form factors at leading order,

was constructed [44]: P1 = 2S3

FT
, P2 =

Ss6
2FT

, P3 = − S9

FT
, P ′4 = 2S4√

FTFL
, P ′5 = S5√

FTFL
, P ′6 = − S7√

FTFL

and P ′8 = − 2S8√
FTFL

. In terms of these parameters, the CP-averaged B0 → K∗0µ+µ− decay rate can be

written as

1

dΓ/dq2

d4Γ

dq2d cos θld cos θKdφ
=

9

32π

[
3

4
FT sin θK

2 + FL cos θK
2

+ (
1

4
FT sin θK

2 − FL cos θK
2) cos 2θl

+
1

2
P1FT sin θK

2 sin θl
2 cos 2φ

+
√
FTFL(

1

2
P ′4 sin 2θK sin 2θl cosφ+ P ′5 sin 2θK sin θl cosφ)√

FTFL(P ′6 sin 2θK sin θl sinφ−
1

2
P ′8 sin 2θK sin 2θl sinφ)

+ 2P2FT sin θK
2 cos θl − P3FT sin θK

2 sin θl
2 sin 2φ

]
.

(2.31)

This decay rate is used in the computation of the detector efficiencies, as will be explained in Ch. 6.

2.4 Global fits to the flavour anomalies and new physics

As explained in Ch. 1, the current individual tensions with the SM do not yet display sufficient levels

of statistical significance. Nonetheless, when one combines the information from several independent

measurements in global fits, the significance of the results increases and we can use this information
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to constrain NP scenarios. Regarding the FCNC transitions b → sll, the tensions detected in the LFU

observable RK(∗) seem to indicate the presence of NP in particular in the muon sector b → sµ+µ−.

NP can either be manifest by a modification of the WCs or by the introduction of new operators Oi.

The most favoured Lorentz structures for the operators are vector (V) and axial-vector (A), which in the

effective Hamiltonian in Eq. (2.17) are described by the operators O(′)
9 and O(′)

10 . O9 and O10 exist in the

SM Hamiltonian but their WCs can be modified by NP: C9 = CSM9 + CNP9 and C10 = CSM10 + CNP10 . The

chirality flipped operators O′9 and O′10 do not exist, however, in the SM but can be provided by NP.

For the global fits, several measurements are taken into account, both the ones where tensions with

the SM have been reported and the ones which are consistent with it. In Ref. [8] some of the results used

are: the angular analysis of B0 → K∗0µ+µ− [3] and of B± → K∗±µ+µ− [45]; the branching fraction of

the B0
s → µ+µ− and B0 → K∗0µ+µ− decays [46,47]; the recent RK measurement by LHCb [2] and the

B0
s → µ+µ− lifetime (τeff ) [46]. A distinction is made between theoretically clean observables, such as

R
(∗)
K and B(B0

s → µ+µ−) (”LFU,Bs → µµ”) and the ones suffering from theoretical uncertianties, such as

the differential branching fractions of the decays B± → K∗±µ+µ−, B0 → K∗0µ+µ− and B0
s → φµ+µ−

and their CP averaged angular parameters (”b→ sµµ observables”).

The most economic solutions to the anomalies are the so-called ”1D scenarios”, where only one

WC contributes or the values of two new WCs are related, so that there is only one extra parameter.

Scenarios with only CNP9 , CNP9 = −CNP10 or CNP9 = −C ′9 fit the data much better than the SM [48].

Another class of solutions are the ”2D scenarios”, where NP contributes to a pair of WCs and they are

expected to give much better fits with respect to the SM and the 1D scenarios.

In Ref. [8], the best 1D scenarios are gauged according to their significance in σ defined as
√

∆χ2,

where ∆χ2 is the difference between the χ2 value of the fit and the SM prediction. When considering

only the ”b → sµµ observables”, which could be prone to theoretical uncertainties, the best 1D fits

have CNP9 ≈ -0.87 or the left-handed combination CNP9 = −CNP10 ≈ -0.60. In these scenarios, the

agreement between theory and data is improved by more than 4σ with respect to the SM. When taking

into account only the ”LFU,Bs → µµ” observables, whose discrepancies cannot be explained by hadronic

uncertainties, the scenarios CNP10 ≈ 0.60 and CNP9 = −CNP10 ≈ -0.35 have a significance of 4.7σ and

4.6σ, respectively. Finally, when considering all the observables together, the significance increases to

5.7σ and 5.9σ for the CNP9 ≈ -0.80 and CNP9 = −CNP10 ≈ 0.41 scenarios, respectively.

In Fig. 2.4, the two-parameter scenarios (CNP9 , CNP10 ) and (CNP9 , C ′9) are presented in the left and

right plots, respectively. In the left plot, the yellow band represents the 1σ experimental limits coming

from the B0
s → µ+µ− branching fraction. In the right plot, the pink bands represent the 1σ and 2σ limits

from RK∗ . In both plots, the blue bands represent the 1σ and 2σ bands for a combination of the clean

RK and RK∗ observables, the orange bands represent the 1σ and 2σ constraints from the ”b → sµµ

observables” and the red bands represent the result of the global fit. The SM prediction is at (0,0).
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Figure 2.4: Constraints on the WCs in the CNP
9 vs CNP

10 (left) and in the CNP
9 vs C′9 (right) plane . The dashed

(solid) lines represent the experimental limits before (after) Moriond 2021. The SM prediction is at the
point (0,0). In red, the 1σ and 2σ contours of the global fit are depicted. Taken from Ref. [8].

The dashed (solid) lines represent the results before (after) the updates presented in Moriond 2021. In

the (CNP9 , CNP10 ) scenario, the B0
s → µ+µ− branching fraction prefers a slightly positive CNP10 , whereas

the ”b → sµµ observables” prefer a negative CNP9 . The best fit point corresponds to (CNP9 , CNP10 ) ≈

(-0.63,0.25) at 5.7σ. In the (CNP9 , C ′9) scenario, the best fit point is (CNP9 , C ′9) ≈ (-1.01,0.47) at 5.9σ.

Among the new physics models that try to explain some of the observed flavour anomalies, the most

favoured ones include LQs or an heavier gauge boson Z ′. LQs are hypothetical particles with both

lepton and baryon quantum numbers that couple to leptons and quarks, therefore allowing for the FCNC

b → sll transitions to occur at tree level. In light of the RK(∗) anomalies, LQs with different couplings to

electrons, muons and/or taus have been theorised in order to accommodate LFU-violating interactions.

The most favoured LQs are the scalar S3 and vector V1 and V3, described in Refs. [25, 49], whose

masses could be tens of TeV. Both S3, V1 and V3 can induce the 1D scenario CNP9 = −CNP10 , where the

WCs are proportional to the couplings of the LQs to leptons and quarks and inversely proportional to

the LQs mass. The direct searches for these particles are being pursued at the LHC [50,51]. The future

FCC, with the envisaged collision energy of 100 TeV, will help to push these searches even further.

Another famous class of theories enlarges the SM gauge group with a U(1)X symmetry, with gauge

boson Z ′ and different U(1)X charges for leptons and muons, therefore allowing for LFUV, as explained

in Refs. [52, 53]. The Z ′ boson acquires mass by the SSB of U(1)X at TeV scales. In Ref. [53], Z ′

mediates the b → sll transitions via O9. The CNP9 is proportional to the U(1)X coupling constant and

inversely proportional to the Z ′ mass and from global fits to this WC the parameters of the model can
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be constrained. In Ref. [52], the Z ′ gauge boson can contribute to the WCs CNP9 and CNP10 and the

parameters of the model can be constrained from global fits in the CNP9 vs CNP10 plane. Direct searches

for these heavy gauge bosons are also being performed at the LHC [54].

We conclude this chapter with the mindset that there is still a lot about the world that we do not

know and it is with the combined efforts from the experimental and theoretical communities that we can

push our understanding further. As Feynman himself said ”Nature’s imagination is so much greater than

man’s, she will never going to let us relax”.
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Chapter 3

CMS detector and online selections

In this chapter, we start by describing how particles are collided at the LHC in Sec. 3.1. We then focus

on one of the LHC experiments, CMS, and give an account of the main features of its sub-detectors in

Sec. 3.2. We also present a description of its trigger system in Sec. 3.3, describing the trigger (online)

selections used in the analysis.

3.1 The Large Hadron Collider

The LHC is a particle accelerator at CERN that pushes protons or heavy ions to near the speed of light.

It consists of a 27 km ring of superconducting magnets with accelerating structures that increase the

energy of the particles along the way.

The CERN accelerator complex consists of a succession of machines with increasing higher ener-

gies. Each of them accelerates a beam of particles to a given energy before injecting them to the next

one. The LHC is the last machine in the chain, where particles achieve their highest energies. Inside

the LHC, the two particle beams travel in opposite directions in separate beam pipes and are made to

collide in the center of the particle detectors. They are guided around the accelerator ring by a strong

magnetic field maintained by superconducting electromagnets. These magnets are kept at -271.3◦ C,

at a temperature colder than outer space, so that they can be in a superconducting state, offering no

resistance to the passage of electric current. The accelerator is connected to a vast distribution of liquid

helium which cools the magnets.

There are currently 8 experiments at the LHC which use detectors to analyse the particles produced

by the collisions. The 9th experiment, SND@LHC, has been approved in March 2021 and is being

comissioned, having the goal of detecting and studying neutrinos. The proton beams are collected in

each detector in packets called bunches. The collision rate is proportional to the instantaneous luminos-
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ity of the accelerator, which, under the assumption of gaussian beams, is defined as:

L =
fNbn

2
p

4πσxσy
, (3.1)

where f is the revolution frequency of the bunches, Nb is the number of bunches, np is the number

of protons in each bunch and σx, σy are the proton beam’s transverse dispersion along the x and y

axis. The total integrated luminosity is defined as L =
∫
Ldt. The integrated luminosity delivered by

CMS in pp collisions over the Run 2 data-taking years can be seen in Fig. 3.1 (left): L =4.3 fb−1 (2015),

L =41.6 fb−1 (2016), L =49.8 fb−1 (2017) and L =67.9 fb−1 (2018). In our work, we use data collected

during the years 2016, 2017 and 2018, corresponding to a total integrated luminosity of L =139.5 fb−1.

With the increase of luminosity during Run 2, there was a consequent increase of pileup, i.e. the

number of unwanted extra collisions that overlap in the detector and hide rare processes that are worth-

while studying. The CMS average pileup in pp collisions < µ > during the Run 2 data-taking years can

be seen in Fig. 3.1 (right): < µ >=13 (2015), < µ >=27 (2016), < µ >=38 (2017) and < µ >=37

(2018). In order to cope with this pileup increase, several upgrades in the pixel detector and trigger

system were performed [55,56] (see Secs. 3.2.3 and 3.3).

Figure 3.1: CMS integrated luminosity (left) and average pileup (right) in pp collisions during Run 2. Taken from
Ref. [9].

3.2 The Compact Muon Solenoid detector

CMS is a general purpose detector situated at interaction point 5 of the LHC, designed and built to study

physics at the TeV scale. A schematic representation of the detector can be seen in Fig. 3.2.

It has a cylindrical shape and is built around a 6 m diameter, 13 m long superconducting magnet that

generates a magnetic field of ≈ 4 T, around 100.000 times stronger than the magnetic field of the Earth.
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The solenoid is large enough to accommodate the tracking and calorimeter systems inside. Outside of

it there are the muon stations. The complete detector is 21 m long, 15 m wide and 15 m high.

The different CMS sub-detectors will be described in the next sections. A more complete description

can be found in Ref. [57]. For this analysis, the main sub-detectors used are the silicon tracker and

the muon detector, described in Secs. 3.2.3 and 3.2.6, respectively. These detectors are divided into a

barrel and two endcap sections.

Figure 3.2: Schematic representation of the CMS detector identifying dimensions and different constituents (left)
and transverse view identifying the layers where each type of particle is detected (right).

3.2.1 Coordinate system

The CMS experiment uses a right-handed coordinate system with origin at the collision point. The x

axis points to the centre of the LHC ring, the y axis points vertically upwards, perpendicular to the LHC

plane, and the z axis points along the anti-clockwise beam direction. The polar angle θ is measured from

the positive z axis, the azimuthal angle φ is measured from the positive x axis in the x-y plane and the

radius r measures the distance from the z axis. The pseudorapidity η is related with the polar angle θ by

the relation η = − ln [tan (θ/2)]. For θ = 90◦, the particle is moving in the transverse plane and |η| = 0.

The closest to zero θ is, the largest will |η| be and the particle will move closer and closer to the beam

direction (z axis). This region with large |η| values (|η| > 1) is called the forward region.

Other variables of interest are the particle’s transverse energy (ET ) and momentum (pT ). The reason

why we work with the transverse energy/momentum is because we do not know what is the fraction of

longitudinal momentum that quarks take from the colliding protons. We know, however, that the sum

of the total transverse momentum of the particles in the final state should be zero, due to momentum

conservation. This helps us to detect missing momentum in the events, which could be due to neutrinos

or a new weakly interacting particle. The rapidity, defined as y = 1
2 ln

(
E+pz
E−pz

)
, where E is the particle
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energy and pz the component of its momentum along the beam direction, is also often used.

3.2.2 Magnet system

CMS has a single large superconducting solenoid, which consists of a cylindrical coil of wire that, in

the presence of an electric current, generates an axial magnetic field of B = 3.8 T. To achieve the high

magnetic field, a current of 20 kA is necessary. The wires are made of superconducting strands coated

with copper. Each strand can carry more than 2000 A when cooled to 4.4 K using liquid helium.

As the superconducting solenoid needs to operate at liquid helium temperature, it needs to be main-

tained within a vacuum vessel to isolate it from the exterior. The solenoid also requires a return yoke to

control the field outside of it, which is represented in red in Fig. 3.2, and it constitutes the main support

(”skeleton”) of the CMS detector. The field strength in the return yoke is B ≈ 2 T.

3.2.3 Silicon tracker

The silicon tracker detects charged particles within |η| < 2.5, which leave a trail in this sub-detector

referred to as a track. The pixel detector is situated in the innermost region of the CMS detector and is

composed of four layers in the barrel region at radii 29, 68, 109 and 160 mm and three disks located in

the forward regions at radii 291, 396 and 516 mm from the centre of the detector. It is built from 1856

silicon sensor modules with 160× 416 pixels connected to 16 readout chips. Further from the interaction

region is a microstrip detector, composed of 10 barrel layers and 3 inner and 9 outer disks on either end

of the detector. In total, the microstrip detector contains around 10 million strips and, together with the

pixel detector, has an impact parameter resolution of about 15µm [58].

When pp bunches collide, they produce a luminous region in the detector called the beamspot.

Several primary vertices are also created, which represent the location of a pp collision. In the case of

b hadrons, since they are relatively long-lived (τ ≈ 10−12 s) they travel a distance of a few millimetres

in the detector (see Fig. 3.3). As a consequence, their primary vertex is displaced from their secondary

vertex, i.e. the region in space where they decay, which facilitates their reconstruction.

The tracks (h±) are reconstructed from the hits detected in the pixel and microstrip detectors. CMS

uses a Combinatorial Track Finder (CTF) algorithm [59] to determine their trajectories1. The pixel de-

tector is close to the interaction point to measure the position of the vertices accurately and to seed the

tracks. The track seeds serve as the initial direction for the track reconstruction algorithm, which then

searches for additional hits that can be associated with the track candidate, until the track reaches the

end of the tracker, contains too many missing hits or if its pT falls below a certain value.

1Given that the magnetic field inside the tracker is approximately constant, charged particles have an helitical trajectory, which
is defined by 5 parameters: d0, z0, φ, cot θ and pT ; where (x0, y0, z0) are the coordinates of the collision point, d0 = −y0 cosφ+
x0 sinφ is the distance of closest approach (DCA) of the track to the beam axis and θ and φ are the angles defined in Sec. 3.2.1.
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Figure 3.3: Illustration of the B0 decay and some of the variables that are used in the selections.

The transverse momentum of the track candidate is obtained with the knowledge of the magnetic field

inside the solenoid B and the radius of curavature of its trajectory R, pT = qBR, where q is the electric

charge of the track. As a consequence of the high granularity of the silicon tracker and the strong and

homogeneous magnetic field, a transverse momentum resolution of about 1.5 % is achieved for muons.

The uncertainty in the track reconstruction efficiency for charged hadrons is estimated to be 2.3 % in

Run 2 [60]. The branching fraction normalisation in Eq. (1.1), allows the absence of this uncertainty in

the measurement, since the error in the ratio εN/εS is negligible.

The vertices are reconstructed in two steps. The first one involves grouping several tracks into vertex

candidates (vertex finding), whereas the second one involves determining the best estimate for the

vertex parameters for a given set of tracks (vertex fitting). The probability of the tracks coming from the

same interaction vertex is quantified by means of the χ2 test (see Ch. 5).

The pixel detector at work during Run 2 was installed in 2016/17 as part of the CMS Phase I upgrade

[55], which allowed the performance of the pixel detector to be maintained or even increased in the new

Run 2 high event rate environment. A comparison between the tracking efficiency (left) and the number

of reconstructed tracks that do not correspond to a charged particle (fake tracks) (right), between the

track reconstruction with the original (blue) and upgraded (orange) pixel detector used in years 2016

and 2017, respectively, can be seen in Fig. 3.4. A considerable increase in the tracking efficiency is

observed, particularly in the forward regions. A reduction in the fake rate was observed in all |η| regions.

3.2.4 Electromagnetic calorimeter

The Electromagnetic Calorimeter (ECAL) measures the energy of incident electrons/positrons and pho-

tons. It performs measurements of the incident position and tries to distinguish single photons from pairs

of closely spaced photons coming from decays of neutral pions (π0 rejection). The ECAL is made of a
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Figure 3.4: Tracking efficiency (left) and fake rate (right) of the original pixel detector (blue) and the upgraded one
(black), used in years 2016 and 2917, respectively. Taken from Ref. [10].

crystal volume which consists on a truncated pyramid of lead tungstate (PbWO4). The incident electrons

and photons deposit almost all their energy in the crystals producing scintillating light, whose amount is

a linear function of the particle’s energy. Photomultipliers convert this light intro electrical signals.

In addition to the crystals there is a detector in the endcaps, called endcap preshower, whose primary

function is π0 rejection by measuring the transverse profile of electromagnetic showers2. It is a fine

granularity detector in order to be able to have enough resolution to distinguish the two photons coming

from the π0 decay, whose separation is a few millimeters. The preshower is a sampling calorimeter3 with

two thin layers of lead (to generate the showers) followed by a layer of silicon strip sensors (to produce

and detect the emitted light).

3.2.5 Hadronic calorimeter

The Hadronic Calorimeter (HCAL) surrounds the ECAL and its main purpose is the identification of

quarks, gluons and neutrinos by measuring the energy and direction of jets and of missing transverse

energy in the events, which is also a crucial signature of NP particles. For a good missing energy

resolution, the calorimeter needs to be as hermetic as possible. The CMS HCAL is hermetic up to |η| =

5. The HCAL aids in identifying electrons, photons and muons in conjunction with other sub-detectors.

The barrel and endcap HCAL are sampling calorimeters made from thick brass plates interconnected

with a thick plastic scintillator. The scintillators emit blue-violet light, whose amount is proportional to the

energy of the incident hadron. The two forward HCALs are also sampling calorimeters, made from a

2Electromagnetic showers are a cascade of e+e− pairs and photons. It starts with a high energetic photon or electron. The
photons create e+e− pairs via pair production and the electrons emit photons via bremsstrahlung radiation.

3In a sampling calorimeter, the material that produces the particle shower is different from the one that detects the emitted light.
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large steel absorber (to generate the showers) embedded with quartz fibres. The large absorber is

necessary given the high radiation present at high |η|. The energy of jets is measured from Cerenkov

light4 produced as charged particles traverse the quartz fibres.

3.2.6 Muon system

The muon system is designed to detect muons within |η| < 2.4, with four muon stations interleaved with

the iron return yoke, to make full use of the magnetic field in this region (B = 2 T). Each station consists

of several layers of drift tubes and cathode strip chambers in the regions |η| < 1.2 and 0.9 < |η| < 2.4,

respectively. They are complemented with resistive plate chambers covering the range |η| < 1.6.

The muons are reconstructed independently in the silicon tracker (muon tracker track) and by com-

bining hits in the three muon sub-detectors (standalone muon). They are subsequently combined with

tracks found in the silicon tracker to form global muons. For a global muon, a standalone muon is

matched to a track by comparing their trajectory parameters after propagation to a common surface at

the innermost muon station of the reconstructed standalone muon track.

3.3 The CMS Trigger system

Events are selected using a two-level trigger system composed by a level 1 (L1) trigger and a High

Level Trigger (HLT), which reduce the event rate to around 100 kHz and 1 kHz, respectively, before data

storage. The L1 trigger is made from custom electronics (hardware trigger) and uses coarse information

from the calorimeters and from the muon detectors to try to select the most interesting events, e.g.

events with high pT muons. The information from the sub-detectors is held in pipeline memory buffers

on front-end electronics.

The HLT relies on ≈ 100 commercial processors (software trigger) and is the first trigger level that

has access to the complete silicon tracker information, allowing more precise selections to be made

online. It performs the readout of the front-end electronics after the L1 trigger and executes physics

selection algorithms on the read events, in order to accept the ones with the most interesting physics

content. The HLT contains many paths (HLT paths), each applying a different set of selection strategies

that are more suitable to a certain physics analysis. A more complete description of the CMS trigger

system can be found in Ref. [61].

During Run 2, the LHC reached a peak instantaneous luminosity of ≈ 2 × 1034cm−2s−1 with an

average pileup of < µ >= 34. Under these conditions, the online event selection is a very challenging

task. In order to cope with this, the L1 trigger was completely upgraded [56]. The upgraded system as

a lower muon trigger rate while maintaining the same efficiency. In Fig. 3.5 (left), the L1 muon trigger

4Cerenkov light is emitted whenever a charged particle travels faster than the speed of light inside a given material.
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efficiency as a function of the reconstructed pT can be seen for different |η| ranges, using 2017 events.

In Fig. 3.5 (right), the ratio between the trigger rates as a function of the L1 muon |η|, between the

upgraded trigger (2017) and the old trigger (2015) can be seen. The upgraded trigger has rates 20-80 %

lower across the entire η range.

Figure 3.5: L1 muon trigger efficiency as a function of the transverse momentum of the reconstructed muon candi-
date (left) for different |η| regions (2017). Ratio between the trigger rates between the upgraded (2017)
and old (2015) trigger as a function of the L1 muon η (right). Taken from Refs. [11,12]

In our analysis, we use three HLT paths with the same requirements but covering different ranges

of the di-muon invariant mass: [2.9-3.3] GeV (J/ψ); [3.3-4.05] GeV (ψ(2S)) and [1-2.9] ∪ [4.0-4.8] GeV

(non-resonant channel). This set of triggers has been active during the full Run 2 and underwent small

modifications during the three years. A mistake in the code of one of the di-muon filters prevented one

of the paths to select the events in the high di-muon invariant mass region [4.0-4.8] GeV. This implies

the absence of these events in this region for the majority of 2017 and the whole of 2018 data samples.

In the current version of the analysis we are not, therefore, measuring the differential branching fraction

in this mass region.

The events used in the analysis were collected with triggers requiring that two opposite charge muons

and an additional track are found in the event and form a displaced 3-body vertex. The following require-

ments are applied at the HLT:

• single muon pT > 4 GeV and |η| < 2.5;

• di-muon pT > 6.9 GeV;

• di-muon vertex confidence level > 0.1;

• di-muon invariant mass in the window specified in the text;
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• DCA between the two muon momenta < 0.5 cm;

• DCA between the muon momentum and the beamspot in the transverse plane < 2 cm;

• |~Lµµ|/σµµ > 3, where |~Lµµ| is the distance in the transverse plane between the di-muon vertex

and the beamspot and σµµ is the corresponding uncertainty (see Fig. 3.3);

• cosα > 0.9, where α is the pointing angle, in the transverse plane, between the di-muon momen-

tum vector and ~Lµµ (see Fig. 3.3);

• pT of the additional track > 0.8 GeV and |η| < 2.5;

• di-muon plus track vertex normalised χ2 < 10.

In 2017 and 2018, the pT of the track was required to be greater than 1.2 GeV and a requirement on the

significance of the track DCA from the beamspot was introduced (DCA significance > 2).
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Chapter 4

Datasets and offline selections

In this chapter, we start by defining the data and simulation samples used in the analysis in Sec. 4.1.

In Sec. 4.2, we present the baseline selection of the analysis and finally, in Sec. 4.3, we present the

sources of background studied and the optimised selections that are used to reject them.

4.1 Data and simulation samples

In this analysis we use data from pp collisions at the LHC at
√
s = 13 TeV, collected by the CMS detector

during the years 2016, 2017 and 2018, corresponding to a total integrated luminosity of L = 139.5 fb−1.

Besides data samples, the analysis also uses Monte Carlo (MC) simulated samples. The MC event

generator is a program which simulates particle physics events with the same probability as they occur

in nature. There are several such event generators, among them PYTHIA v.8 [62].

The collision event simulation starts by identifying a hard process1 and generating the kinematics of

the initial and final state particles. It then evolves the final state, including the decays of heavy quarks,

the evolution of the parton shower and the hadronisation of partons to form final state hadrons. In

our analysis, decays of particles containing b or c quarks are simulated with the EVTGEN package [63].

Creation of charged particles during the decays of B mesons can cause some energy to be radiated

through photons, which is included via the PHOTOS package [64].

The response of the CMS detector, including the interaction of particles with matter and the different

sub-detectors described in Ch. 3, is simulated with GEANT4 [65]. Pileup events are added to represent

the number of multiple vertices per event as seen on data (pileup weight). The simulated samples are

used to estimate background contributions, as will be explained in Sec. 4.3, to compute the detector

efficiency and perform studies of systematic uncertainties, as will be explained in Chs. 6 and 8.

1An hard process is an interaction with a high momentum transfer.
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4.1.1 Data-taking conditions

During the three years, a few important changes in the data-taking conditions occurred. In the first part

of the 2016 data-taking period, the Endcap Muon Track Finder (EMTF) was misconfigured and it was

only assigning the measured pT to the highest-quality muon track in a 60◦ sector in φ. Consequently,

even if two muons were found in the same endcap and within 60◦ in φ from each other, they could not fire

a double muon L1 seed, because one of them always had pT = 0. This introduces a q2 dependence on

the measured event yield which affects the branching fraction result. Also during 2016, the strip tracker

was operated with suboptimal settings, causing the tracking efficiency to decrease with increasing in-

stantaneous luminosity. This effect has been found to be caused by High Ionising Particles (HIP) that

saturate the hit strips, which become fully blinded in the next bunch crossings and then only partially until

full recovery. Events from these problematic periods of 2016 are not, therefore, used in this analysis.

The effect of this removal in the precision of the final results is studied in Sec. 5.5.

As explained in the previous chapter, in 2017 a new pixel detector was installed. In October 2017, a

series of DC-DC converters powering the pixel detector broke when modules were power-cycled [66].

4.1.2 Fiducial region

The fiducial region of the analysis i.e. the region of phase space that is covered by the analysis, is

defined by the presence of a B0 candidate with |ηB | < 3, where ηB is the pseudorapidity of the B0

meson. For |ηB | > 3, the probability of detecting the four final state particles that result from the B0

decay is very low and therefore a filter to these events is used in the MC simulations in order to save

computing time and disk space. This cut does not introduce any q2 dependence on the efficiencies

computed in Ch. 6. The 2D scatter plot of the B0 transverse momentum (pT ) vs pseudorapidity (η) for

the generated events lying in the fiducial region can be seen in Fig. 4.1.

4.1.3 Acceptance cuts

The detector acceptance is defined by the region of phase space within which the final state particles

are potentially detectable. Particles with too large pseudorapidities, move very close to the beam axis

and escape the CMS detector without leaving a signal in the sub-detectors. Moreover, they need to have

a minimum pT in order to be able to leave a significant amount of hits in the silicon tracker and, in the

case of muons, in the muon stations so that they can be correctly reconstructed.

Therefore, a set of requirements on the final state particles is applied in the generation level MC in

order to reject events falling outside the acceptance of the detector

|η(µ+, µ−,K±, π∓)| < 2.5, pT (µ+, µ−) > 2.5 GeV, pT (K±, π∓) > 0.4 GeV. (4.1)
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Figure 4.1: 2D scatter plot of the B0 transverse momentum (pT ) vs pseudorapidity (η) for events in the fiducial
region of the analysis.

4.2 B reconstruction and baseline selection

The signal and control channels B0 → K∗0µ+µ−, B0 → J/ψK∗0 and B0 → ψ(2S)K∗0 are reconstructed

through their decay into the fully charged final state K+π−µ+µ−. Only events passing the triggers

described in Sec. 3.3 are considered. B0 candidates are formed by combining two opposite charge

muons with a K∗0(892) meson. The two muons and at least one track should be matched to the objects

firing the HLT. The selections applied at HLT are re-applied in the offline analysis.

Muons are required to pass the following criteria:

• single muon pT > 4 GeV and |η| < 2.5;

• muon tracker track matched with at least one muon segment in both x and y coordinates;

• number of track layers with measurements > 5;

• number of pixel layers with measurements > 0;

• muon track passing the high-purity flag [59] in order to reject fake tracks;

• transverse (longitudinal) impact parameter < 0.3 (20) cm with respect to the primary vertex.

The two hadron tracks are required to satisfy the following selections:

• pT > 0.8 GeV and |η| < 2.4; in 2017 and 2018, the pT of the offline track matched to the one firing

the trigger is required to be > 1.2 GeV;

• pass the high-purity flag [59] in order to reject fake tracks;
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• DCA of the track with respect to the beamspot in the transverse plane (d0) significance greater

than 0.8; in 2017 and 2018, the DCA significance of the track matched to the one firing the trigger

is required to be > 2 (see Fig. 3.3);

• tracks reconstructed as global muons which have at least 1 pixel layer with measurement and 6

tracker layers with measurements are discarded;

• tracks which are also reconstructed as muon tracker tracks are discarded.

We apply the following requirements on the K∗0 meson:

• the two tracks must successfully fit to a common vertex;

• the K∗0 invariant mass is computed for both K+π− and K−π+ mass hypotheses, and at least one

of the two combinations is required to lie in a 3σ mass window from the K∗0 nominal mass [38],

where σ is its natural width (50 MeV);

• mKK > 1.035 GeV, where mKK is the invariant mass of the two hadron tracks with kaon mass

assigned. This cut was studied in the Run 1 analysis [29] and is useful to reject B0
s → J/ψ(µ+µ−)

φ(K+K−) events.

The two muon and two hadron candidates are fitted to a common vertex and a minimum χ2 probability

of 1 % is required.

4.2.1 Flavour-tag assignment and mistag fraction

The decay B0 → K∗0(K+π−)µ+µ− and its CP-conjugate B̄0 → K̄∗0(K−π+)µ+µ− both occur in the

collisions and they leave the same signature in the CMS detector: two opposite charge tracks (h±)

and two opposite charge muons (µ±) (see Fig. 3.3). Therefore, a flavour-tag assignment on the two

opposite charge tracks composing the final state particles is necessary to distinguish between the two

combinations: (h+, h−) = (K+, π−) or (h+, h−) = (π+,K−). As described in Sec. 4.2, the invariant

masses of both the K+π− and K−π+ combinations is computed and saved. The flavour-tag assignment

consists on selecting the combination whose invariant mass is closest to the K∗0 nominal mass [38],

thereby determining the CP state of the decay.

This assignment does not always result in the correct flavour for the tracks and, consequently, there

is a fraction of mis-tagged events in our signal. Henceforth, events with the correct flavour will be

referred to as right-tagged (RT) events and the ones with mis-tagged flavour will be referred to as wrong-

tagged (WT) events. The mis-tag fraction (fM ) is defined as the ratio between the number of WT events

and the total number of signal events and is determined from simulation. The mis-tag fractions are

around 12-13%, depending on the q2 bin and year.
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4.3 Background studies and optimised selections

In this section, we report the selections that have been applied in order to reduce or completely remove

background decays contaminating our signal. A multivariate analysis [13] was used to optimise the

background rejection power, as will be described in Sec. 4.3.1.

A source of background referred to as combinatorial background is present in every physics analysis.

It describes events in which the four particles in the final state do not all come from the same vertex.

Consequently, the 4-body invariant mass can have a random value. This constitutes the main source of

background in our analysis and needs to be modelled accordingly, as explained in Ch. 5.

4.3.1 Multivariate analysis

A multivariate analysis [13] was performed in order to reduce the amount of background, using a Boosted

Decision Tree (BDT) discriminator to separate signal from background events. A decision tree has

several branches and on each branch binary decisions are done. The training proceeds iteratively until

some figure of merit is optimized and one has a signal and a background sample. The optimised figure

of merit was the Punzi pseudo-significance [67].

The training was performed on signal MC and on background events from the data2 sidebands.

Sidebands are defined as events with mB0 in the range [mPDG
B0 − 7σ,mPDG

B0 − 3σ] (left) and [mPDG
B0 +

3σ,mPDG
B0 + 7σ] (right), where σ is the B0 signal width measured on MC, and are regions dominated by

background events. Data and MC samples were split into 11 sub-samples, 10 for training and testing

and 1 to use as analysis data, where the BDT score is generated. This process is repeated 11 times

and each sub-sample is used as the analysis data exactly once. The BDT response on the signal and

background samples for year 2018 can be seen in Fig. 4.2 (left).

The BDT score cut to be used in the analysis was chosen by maximising the expected S/
√
S +B in

the signal region, where S is the signal yield extracted from a fit to the signal MC sub-sample and B is

the background yield extracted from a fit to the left and right data sub-sample sidebands, extrapolated

to the signal region. In Fig. 4.2 (right), the S/
√
S +B values as a function of the BDT score, evaluated

on the 11 sub-samples and their average can be seen for year 2018. The working points giving the best

S/
√
S +B values are: BDT score > 0.99 (2016), > 0.97 (2017) and > 0.975 (2018).

4.3.2 Peaking background contributions

Peaking backgrounds are decays that do not correspond to our signal and can result from e.g. other b-

hadron decays. They are not of combinatorial nature and can give rise to structure in the mass spectrum.

The resonant B0 → J/ψK∗0 channel was used to evaluate residual contamination from this type of

2Events from the resonant channels are not used in the optimisation process.
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Figure 4.2: BDT response on signal and background samples for year 2018 (left). S/
√
S +B as a function of

the BDT score calculated in the 11 sub-samples and their average for year 2018 (right). Taken from
Ref. [13].

decays. Simulated samples of B+ → J/ψK+ and B0
s → J/ψφ decays were used. The K+π−µ+µ−

invariant mass from the simulated samples and the data is shown in Fig. 4.3 (left).

Figure 4.3: K+π−µ+µ− invariant mass distribution after the event selections (left) and after the additional cut on
m(µ+µ−K+) and m(µ+µ−) (right) are applied, for events in q2 bin 4, for data (blue points), B0 →
J/ψK∗0 MC (green), B+ → J/ψK+ MC (black) and B0

s → J/ψφ MC (red). MC distributions are
normalised to data luminosity. Taken from Ref. [13].

A small contamination from B0
s decays is present in the signal region; however, it is very small

compared to the B0 signal and is considered to be negligible. On the other hand, B+ → J/ψK+ events

significantly pollute the right sideband, while being absent in the signal region. The removal of these

events is necessary in the angular analysis [13] in order to guarantee that the distribution of events lying

in the sidebands correctly models the background under the signal.

The rejection of B+ → J/ψK+ events is achieved through a 2D requirement on the invariant mass

of the µ+µ−K+ and µ+µ−K− combinations, where K+ and K− are the two tracks forming the K∗0

meson, having the kaon mass assigned. The 2D distributions of m(µ+µ−K+) vs m(µ+µ−K−) from the

B+ → J/ψK+ and B0 → J/ψK∗0 MC samples are shown in Fig. 4.4. The 1D µ+µ−K+ and µ+µ−K−

distributions for B+ → J/ψK+ events after the event selections are fitted with a gaussian, whose width,
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σfit, is used to define the mass cut. Events are rejected if

|m(µ+µ−K+)−mPDG
B+ | < 3σfit ∨ |m(µ+µ−K−)−mPDG

B+ | < 3σfit. (4.2)

This additional selection allows to completely remove B+ → J/ψK+ events, as shown in Fig. 4.3 (right),

while retaining 99.2% (98.5%) of B0 → J/ψK∗0 (B0 → K∗0µ+µ−) signal.

Figure 4.4: Distribution of m(µ+µ−K+) vs m(µ+µ−K−) for the B0 → J/ψK∗0 (left) and B+ → J/ψK+ (center)
MC samples. The right plot shows m(µ+µ−K+) vs m(µ+µ−K−) from the B+ → K+J/ψ sample for
events surviving the cut in Eq. 4.2. Taken from Ref. [13].

4.3.3 Feed-through from resonant channels

The resonant channels B0 → J/ψK∗0 and B0 → ψ(2S)K∗0 corresponding to q2 bins 4 and 6, respec-

tively, can leak into the adjacent q2 bins, contaminating the non-resonant channel B0 → K∗0µ+µ−.

The discrimination between signal, B0 → K∗0µ+µ−, and control channels, B0 → J/ψK∗0 and B0 →

ψ(2S)K∗0, is based on the di-muon invariant mass. The signal sample is required to pass the selection

• |m(µ+µ−)−mPDG
ψ | > 3σµµ,

where mPDG
ψ is the PDG mass of the J/ψ and ψ(2S) mesons and σµµ is the uncertainty on the di-muon

invariant mass, calculated per each candidate through the propagation of the track uncertainties.

As already done in the Run 1 analysis [29], a selection cut (called ”B0 & Psi mass cut” henceforth)

acting jointly on m(K±π∓µ+µ−) and m(µ+µ−) is applied in order to reject the control channel events

which spill in the neighbour q2 bins. In particular, the cut is such that events are rejected if

• |(m(K±π∓µ+µ−)−mPDG
B0 )− (m(µ+µ−)−mPDG

ψ )| < ∆m.

The value of ∆m is tuned independently for the three di-muon mass regions: below the J/ψ (bin 3), be-

tween the ψ(2S) and J/ψ (bin 5) and above the ψ(2S) (bin 7). The optimisation criteria is the reduction of

the feed-through from the resonant channels to a negligible level, below the 10% of the total background

on data within the m(K±π∓µ+µ−) mass window |m(K±π∓µ+µ−)−mPDG
B0 | < 0.28 GeV for bin 3 and 5,
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while for bin 7 the resonant background level is required to be less than 1%. The background from the

control channels (Bpeak) and the overall background (Btot) are evaluated as:

• Bpeak: number of feed-through events from the control channel simulations;

• Btot: difference between number of events in data and in the signal (non-resonant) simulation.

The optimisation procedure results in the following ∆m cuts:

• bin 3: ∆mJ/ψ = 180 MeV;

• bin 5: ∆mJ/ψ = 80 MeV and ∆mψ(2S) = 90 MeV;

• bin 7: bin 7: ∆mψ(2S) = 80 MeV.

The scatter plots of the di-muon invariant mass squared vs the m(K±π∓µ+µ−) for data events before

(left) and after (right) the J/ψ and ψ(2S) rejection cuts as well as the B0 & Psi mass cuts are applied are

shown in Fig. 4.5, for year 2018. The vertical lines depict the q2 bins defined in Tab. 1.1.
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Figure 4.5: Scatter plots of the di-muon invariant mass squared vs the m(K±π∓µ+µ−) for data events, before (left)
and after (right) the J/psi and ψ(2S) rejection and the B0 & Psi mass cuts are applied for year 2018.

4.3.4 Partially reconstructed backgrounds

Partially reconstructed backgrounds are formed by decays similar to our signal where an additional

particle in the final state is missed in the reconstruction. The presence of these decays is studied

in the B0 → J/ψK∗0 channel. A clear example of this kind of contamination are events from the

B+ → ψ(2S)K+ decay, with ψ(2S) → J/ψπ+π−, in which the softest pion is missed. These events

populate the left K+π−µ+µ− sideband, showing up as a wide shape in the mass spectrum and as a

peak in the cos θK distribution, as can be seen in Fig. 4.6.

An additional selection to remove this background was studied on simulated events ofB+ → ψ(2S)K+

and on both MC and data B0 → J/ψK∗0 events from 2018 samples. The rejection is achieved using cuts

on the following pairs of invariant masses: (mµµπ,mµµK) and (mPDG
B+ −mwt

µµKπ,m
wt
Kπ −mwt

K∗0); where
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in mwt
µµKπ and mwt

Kπ, the pion and kaon mass assignments are swapped and mPDG
B+ and mPDG

K∗0 are the

nominal B+ and K∗0 masses from the PDG [38].

For each of the planes defined by the pair of variables, the partially reconstructed events are identified

and removed. To reduce the impact of the selection criteria, only events lying in the affected region in

both (mµµπ,mµµK) and (mPDG
B+ −mwt

µµKπ,m
wt
Kπ −mwt

K∗0) planes are removed. Moreover, in the studies

performed on MC, in the partially reconstructed B+ → ψ(2S)K+ events, the kaon mass is always

assigned to the leading track3 during the flavour-tagging procedure. Events are rejected if:

• (mwt
Kπ −mPDG

K∗0 + 0.4) > −2.5× (mPDG
B+ −mwt

Kπµµ − 0.3) ∧ (mwt
Kπ −mPDG

K∗0 ) > 0;

• 3.2 < mµµπ < 3.6 GeV ∧ 4.7 < mµµK < 4.9 GeV ∧ 0.6× (mµµK − 3.8) > (mµµπ − 3);

• pKT > mπ
T .

In Fig. 4.6 the mass spectrum (left) and the cos θK angular distribution (right) of the events with

mass in the range [5.0-5.15] GeV are shown, before and after the application of the rejection criteria for

B+ → ψ(2S)K+ events. The effect of the cut on the B0 → J/ψK∗0 signal is negligible. The rejection

cut is effective in removing the excess of events in the cos θK distribution.

Figure 4.6: B0 → J/ψK∗0 mass spectrum (left) with (yellow) and without (black) the application of the rejection cut
for the B+ → ψ(2S)K+ events (red). cos θK angular distribution (right) for events with masses in the
range [5.0-5.15] GeV, with (yellow) and without (blue) the rejection cut. Taken from Ref. [13].

3The leading track is the one with the highest momentum.
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Chapter 5

Yields extraction

We present in Sec. 5.1 and 5.2 the methodology used to obtain the yields YS and YN of both signal B0 →

K∗0µ+µ− and normalisation B0 → J/ψK∗0 channels which are necessary to compute the branching

fraction in Eq. (1.1). We then present in Sec. 5.3 the results of the fit as well as its validation in Sec. 5.4.

Finally, in Sec. 5.5 we study the impact of removing events coming from the problematic periods of 2016,

as described in Sec. 4.1.1, in the precision of the final results.

5.1 Probability Density Function

Each event reconstructed as a B0 candidate and passing the trigger and offline selections described

in Chs. 3 and 4 has an associate K+π−µ+µ− invariant mass mi. The distribution of invariant masses

for all considered events m follows a Probability Density Function (PDF) P(m;~λ), where ~λ is a finite

set of parameters and P(m;~λ) dm gives the probability to find an event with mi ∈ [m + dm]. In our

analysis, the PDF model contains two signal components, corresponding to RT and WT events from

the B0 → K∗0µ+µ−, B0 → J/ψK∗0 and B0 → ψ(2S)K∗0 decays and a combinatorial background

component. In the case of the J/ψ channel, there is an additional background component describing

events from unremoved partially reconstructed decays, as will be explained in the following.

The total PDF is defined as

P(m;~λ) = Ysig × [(1− fM )PRT (m;~λRT ) + fMPWT (m;~λWT )] + Ybkg × Pbkg(m;~λbkg), (5.1)

where PRT , PWT and Pbkg are the PDFs of RT signal, WT signal and combinatorial background, respec-

tively, and ~λRT , ~λWT and ~λbkg the corresponding parameters. For the J/ψ channel, there is an additional

term ferf ×Ysig×Perf (m), where ferf is the fraction of partially reconstructed events. fM is the fraction

of WT events, as described in Sec. 4.2.1. Ysig and Ybkg are the yields of signal and combinatorial back-
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ground components, respectively. For the non-resonant q2 bins Ysig = YS and for the B0 → J/ψK∗0 q2

bin Ysig = YN , where YS and YN are the yields appearing in Eq. (1.1).

The RT signal PDF is parametrised as

PRT (m;~λRT ) =


DoubleCB(m; m̄, σ, α1, α2, n1, n2), if q2 bin = 0, 1, 2, 3

(1− f)× CB(m; m̄, σ1, α1, n1) + f × CB(m; m̄, σ2, α2, n2), if q2 bin = 4, 5, 6

(1− f)× CB(m; m̄, σ1, α1, n1) + f ×Gauss(m; m̄, σ2), if q2 bin = 7

where DoubleCB(m; m̄, σ, α1, α2, n1, n2) is a double crystal-ball function

DoubleCB(m; m̄, σ, α1, α2, n1, n2) =


e−

t2

2 , if − α1 < t < α2

e−
α2

1
2

[
1− α1

n1
(α1 + t)

]−n1

, if t ≤ −α1

e−
α2

2
2

[
1− α2

n2
(α2 − t)

]−n2

, if − t ≥ α2

with t = m−m̄
σ , CB(m; m̄, σ, α, n) is a single crystal-ball function

CB(x; x̄, σ, α, n) =


e−

t2

2 , if t > −α(
n
|α|

)n
e−
|α|2

2

[
n
|α| − |α| − t

]−n
, if t ≤ −α

and Gauss(m; m̄, σ) is a Gaussian function

Gauss(m; m̄, σ) = e−
(m−m̄)2

2σ2 .

For all q2 bins, the WT signal PDF is described by a double crystal-ball function PWT (m;~λWT ) =

DoubleCB(m; m̄, σ, α1, α2, n1, n2) and the combinatorial background is described by an exponential func-

tion P(m;~λbkg) = eλm. All PDFs are normalised to the mass range used in the fits m ∈ [5.0,5.6] GeV.

The shape of Perf is taken from MC. Possible contributions from unremoved backgrounds were

studied using the 2018 inclusive MC containing B → J/ψ X decays, where X is a hadron. In Fig. 5.1

(left), the signal distribution (blue) as well as the combinatorial background (cyan), peaking backgrounds

(green) and partially reconstructed backgrounds (red) distributions can be seen. The contribution from

peaking background events is negligible and can be considered to be part of the combinatorial back-

ground. However, there is a significant presence of partially reconstructed events in the left sideband.

A fit to this distribution was performed using the sum of an exponential and a complementary error

function and the result of the fit can be seen in Fig. 5.1 (right). When fitting data events from the J/ψ

channel, Perf is fixed to the shape obtained in MC. The normalisation ferf is not, however, fixed to MC,

where its value (≈ 31%) is much larger than the one found in data. The 2018 data fit to the J/ψ q2 bin

is firstly performed with ferf free to float, where one obtains the result ferf = 0.0672 ± 0.0018. The fits

for all years are then performed with the normalisation fixed to this value.
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Figure 5.1: Different backgrounds and signal distributions in the 2018 B → J/ψ X inclusive MC (left) and result of
the fit to the distribution of partially reconstructed events (right).

5.2 Maximum likelihood estimation

The maximum likelihood estimation [38] is a method used to determine the estimators λ̂i for the un-

known parameters λi of our model. The maximum likelihood theorem states that the best estimators

are the ones that maximise the likelihood function, i.e. the ones that maximise the likelihood that the

process described by our model produced the data that we are observing. The likelihood function L(~λ)

corresponds to the model PDF when regarded as a function of the parameters P(m;~λ). When the sam-

ple consists of Yobs statistically independent events, each following the same PDF, the joint likelihood

factorises and can be written as

L(~λ) =

Yobs∏
i=1

P(mi;~λ), (5.2)

in which Yobs is regarded as fixed.

When the probability to observe Yobs events depends on ~λ the likelihood function is extended

L(~λ) =

Yobs∏
i=1

P(mi;~λ)× e−Y Y Yobs

Yobs!
, (5.3)

by the factor e−Y Y Yobs
Yobs!

, which constrains the sum of signal and background yields Y to follow a Poisson

distribution. From the parameters obtained with this procedure, Ysig is our parameter of interest.

The maximisation of the likelihood can be performed analytically for the simplest cases but a numer-

ical approach is necessary in most realistic problems. In many situations, it is convenient to use the the

negative of the logarithm − lnL instead of L, because the product of the terms is transformed in the sum

of logarithms, which is advantageous in the computation, e.g. when dealing with the product of large

exponentials. In the analysis, the minimisation of − lnL is performed with the Minuit [68] package.

The estimator λ̂i for the parameter λi has an associate error, which is estimated by analysing the

45



region around the minimum of − lnL. We can Taylor expand − lnL around its minimum λ = λ̂ by writing

− lnL(λ) = − lnL(λ̂)− d lnL
dλ

∣∣∣
λ=λ̂

(λ− λ̂)− 1

2

d2 lnL
dλ2

∣∣∣
λ=λ̂

(λ− λ̂)2 +O((λ− λ̂)3). (5.4)

Since λ̂ is a minimum of − lnL, the first derivative term is equal to zero. Moreover, in the limit of a large

number of events Yobs, the estimator λ̂ converges to λ and we can neglect higher order terms in the

difference λ− λ̂. We can then write

− lnL(λ) ≈ − lnL(λ̂)− 1

2

d2 lnL
dλ2

∣∣∣
λ=λ̂

(λ− λ̂)2, (5.5)

or, equivalently,

L(λ) ≈ C × e
1
2
d2 lnL
dλ2 (λ−λ̂)2

. (5.6)

Therefore, in the limit of large Yobs the likelihood function is Gaussian distributed with (σ−1)2 = −d
2 lnL
dλ2

∣∣∣
λ=λ̂

,

where σ is the error of the estimator (1σ interval). It corresponds to the range around the minimum for

which − lnL increases by +0.5. The estimator is then quoted as λ̂± σ. If Yobs is not sufficiently large, L

is not exactly Gaussian distributed and the estimator will have asymmetric uncertainties (σ+ and σ−).

When more than one parameter is simultaneously extracted from the fit, the σi errors of the estima-

tors λ̂i are defined as the square root of the diagonal elements of the covariance matrix, whose inverse

is given by

(V −1)ij = − ∂
2 lnL

∂λi∂λj

∣∣∣
~̂λ

, (5.7)

evaluated at the minmum of − lnL. Vij is an invertible square symmetric matrix, whose entries corre-

spond to the covariances between parameters λi and λj , Vij = cov(λi, λj), measuring how much the

two parameters vary together: cov(λi, λj) = 1
Yobs−1

∑Yobs
n=1 E[(λni − λ̂i)(λnj − λ̂j)]; where E denotes the

expectation value. The diagonal elements of Vij correspond to the covariance of one parameter with

each other, i.e. its variance, cov(λi, λi) = var(λi) = 1
Yobs−1

∑Yobs
n=1 E[(λni − λ̂i)2]. The statistical error

of the estimator λ̂i is then σi =
√
Vii. In the case of one dimension, V −1 is a 1×1 matrix given by

V −1 = −d
2 lnL
dλ2

∣∣∣
λ=λ̂

and we recover the result of the last paragraph.

5.3 Nominal fit results

We perform a one-dimensional extended unbinned1 maximum likelihood fit to the K+π−µ+µ− invariant

mass distribution. Since in data there is not enough information to distinguish RT from WT events, we

adopted the following fitting strategy. We started by fitting the RT and WT events separately using ded-

icated MC simulations with the same selections as in data. From these fits we extracted the estimators
1Bins of the K+π−µ+µ− invariant mass are not used in the likelihood fit since the low statistics q2 bins do not allow for an

adequate binning.
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λ̂′i ± σ′i with which we defined Gaussian constraints centred in λ̂′i with width given by σ′i. When fitting

the data, Gaussian constraints on all parameters, except on the RT mean (m̄RT ) and yields, are applied.

A re-parametrisation of the original PDF defined in Eq. (5.1) is made, moving from (m̄RT , m̄WT ) to

(m̄RT , m̄diff ), where m̄diff = m̄WT−m̄RT is the difference between the RT and WT means. A Gaussian

constraint on this parameter is also applied, centred in the difference between the means obtained in

MC and with width equal to the quadratic sum of their uncertainties. The RT and WT PDFs are multiplied

by the Gaussian constraints on the RT and WT parameters, respectively.

Finally, the total PDF is multiplied by a Gaussian constraint on the fraction of WT events fM . Its

central value is given by the ratio YWT

YWT+YRT
, where YRT and YWT are the RT and WT yields obtained

from the MC fits. Its error is obtained by measuring the mis-tag fraction on sub-samples of MC events

with data-like statistics and fitting the distribution with a Gaussian function. The resulting Gaussian width

is used as the uncertainty on the fM constraint when fitting the data. The obtained fM values range

from 12% to 14%, depending on the q2 bin and the data-taking year.

The results of the fit to the RT and WT MC can be seen in Figs. 5.2 and 5.3, respectively, for q2 bins

0, 4 and 7 in year 2018. In each plot, the result of the fit with the data points superimposed can be

seen. The signal yield estimate is shown in the top left region of each plot, with the respective statistical

uncertainty. On the bottom panel, the pull defined as Pulli =
Y datai −Y fiti

σdatai

for each m(K+π−µ+µ−) bin i is

shown, where Y datai is the yield found on data with the respective error σdatai and Y fiti is the yield given

by the fit. The pull gives us a way to quantify the deviation between the fit result and the data points and

should ideally be distributed around zero within a few standard deviations.

Figure 5.2: Results of the fit to the RT MC in year 2018, for q2 bins 0 (left), 4 (centre) and 7 (right).

Another way to ascertain the quality of the fit is by means of the χ2 test. The χ2 is defined as

χ2 =
∑nbins
i=1 Pull2i , with the number of m(K+π−µ+µ−) bins nbins = 80 and the Pulli defined in the

previous paragraph. If the fit results for the yields Y fiti are normally distributed around the data points
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Figure 5.3: Results of the fit to the WT MC in year 2018, for q2 bins 0 (left), 4 (centre) and 7 (right).

with central value equal to Y datai and width σdatai , then the χ2 variable follows the χ2 distribution

P(χ2) =
(χ2/2)

ndf
2 −1 exp

{
−χ

2

2

}
2Γ(ndf/2)

, (5.8)

where Γ(x) is the Gamma function. The expectation value of χ2 is the number of degrees of freedom,

that in this case, corresponds to the number of bins minus the number of fitted parameters. Therefore,

for a good fit quality, we expect χ2 ≈ ndf or, equivalently, χ2/ndf ≈ 1.

The data fit results in year 2018 are shown in Fig. 5.4. The data fit results for the remaining data-

taking years can be found in Appendix A. The total fit (in black) can be seen superimposed with the data

points. The RT and WT components are painted in green and red, respectively. The exponential curve of

the combinatorial background is shown in blue and the component describing the partially reconstructed

events in the J/ψ channel is shown in cyan. The q2 ranges covered by each q2 bin can be seen in the

top left region of each plot.

The signal yields for all q2 bins and data-taking years are collected in Tab. 5.1 with the corresponding

statistical errors. The χ2/ndf value of each fit is also shown. The lowest statistical error is 0.13% for the

J/ψ channel in year 2018, whereas the largest statistical error is 11.1% for q2 bin 0 in year 2016.

5.4 Fit validation

Besides checking the quality of the fit by means of pull plots and the χ2 values, we also want to know

whether our estimate for the signal yield is unbiased and whether we can trust its statistical error. In order

to do that, a toy MC study is performed using the RooMCStudy class. 5000 toy samples are generated and

fitted using the same model PDF used to fit the data. The fit parameters as well as the corresponding

errors are saved for each toy MC.

We are particularly interested in validating the signal yield result, since it is the parameter we use to
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Table 5.1: Signal yields with respective statistical uncertainties obtained from the data fits to all q2 bins and data-
taking years. The χ2/ndf of each fit is shown in the last column.

q2 bin Year Nominal yield Stat. error (%) χ2/ndf
2016 118± 13 11.1 0.83

0 2017 307± 21 6.9 0.68
2018 501± 27 5.4 1.21
2016 232± 20 6.4 0.73

1 2017 581± 30 5.1 0.78
2018 982± 39 4.0 0.65
2016 181± 18 9.9 0.79

2 2017 495± 28 5.6 0.87
2018 822± 36 4.4 0.82
2016 398± 25 6.3 1.17

3 2017 1013± 39 3.9 1.42
2018 1609± 50 3.1 1.79
2016 292609± 693 0.24 6.52

4 2017 734519± 1152 0.16 14.12
2018 1532024± 1985 0.13 11.70
2016 634± 32 5.0 1.06

5 2017 1363± 46 3.4 1.43
2018 3022± 68 2.2 1.84
2016 20900± 181 0.9 2.05

6 2017 48108± 321 0.7 1.38
2018 97752± 435 0.4 3.93
2016 359± 23 6.4 0.84

7 2017 836± 33 4.0 0.92
2018 1837± 49 2.7 0.65

compute the branching fraction. We analyse the pull distribution

Pull(Y ) =
Y toyi − Y data

σtoyi
, (5.9)

where Y toyi is the signal yield obtained from the fit to the toy MC sample with index i, σtoyi is the corre-

sponding statistical error and Y data is the signal yield obtained from the fit to data.

Due to the central limit theorem2, the pull distribution should be normally distributed for a sufficiently

large number of toy MC samples. Moreover, if the estimator for the signal yield Y data is unbiased, we

expect to obtain statistically compatible estimates in each repeated measurement. The distribution of

pulls for an unbiased fit should follow a Gaussian distribution with unit width, centred upon zero. Shifts

in the mean can suggest a bias in the fitting procedure, while deviations from a unit width can suggest

that the statistical uncertainty returned by the fit is not reliable.

In Fig. 5.5, the signal yield pull distributions in year 2018 can be seen. The pull distributions for the

remaining data-taking years can be seen in Appendix B. The values of the means and widths of the

2The central limit theorem states that if one has a population with mean µ and standard deviation σ and take a sufficiently large
number of random samples from the population, then the distribution of the sample means will be approximately Gaussian.
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Figure 5.4: Data fit results in year 2018. The q2 ranges covered by each q2 bin can be seen in the top left region
of each plot. The RT and WT components are shown in green and red, respectively. The combinatorial
background is shown in blue and the partially reconstructed background in the J/ψ channel in cyan.

signal yield pull distributions for all q2 bins and years are collected in Tab. 5.2. The fit bias is taken as a

systematic error in the yields, as will be explained in Ch. 8.

5.5 Impact of removing the problematic periods of 2016

As explained in Sec. 4.1.1, in this analysis we do not consider the events from 2016 corresponding to

the periods in which the EMTF was misconfigured (”EMFT L1” period) and the hit strip tracker was being

saturated by HIP (”APV” period). In the ”APVL1” period both problems were present simultaneously. In
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Figure 5.5: Signal yield pull distributions resulting from the toy MC study in year 2018. The mean and width values
of the Gaussian distributions are shown in the top right panel.

this section, we study the impact of this removal in the precision of the final result and its effect in the

yield ratio YS/YN , which appears in Eq. (1.1).

In Fig. 5.6 (left), the relative statistical errors in years 2016 (blue) before (dashed line) and after (solid

line) the removal, 2017 (orange) and 2018 (green) can be seen. We observe a decrease of a factor of

about 1.3-1.4, depending on the q2 bin, in the precision of the 2016 results after the removal. In the

same figure, the relative statistical error of the 3 years combined result is also shown in black, before

(dashed line) and after (solid line) the removal. The combination of the three years is performed as

explained in Sec. 9.2.2. Here we see a decrease of a factor of about 1.1-1.2, depending on the q2 bin,

and we conclude that this removal does not affect significantly the precision of the final result. Still in the

same plot, the statistical errors of the previous CMS Run 1 [4] analysis are also shown in red. We see

an increase of a factor of about 3 in the statistical precision of the branching fraction measurement with

respect to the previous Run 1 analysis. The same comparison is performed in Ch. 9, taking also into

account the systematic error of the results.
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Table 5.2: Values of the means and widths of the Gaussian pull distributions for the signal yield.

q2 bin Year Mean Width
2016 −0.048± 0.017 0.997± 0.012

0 2017 −0.036± 0.017 1.023± 0.012
2018 −0.052± 0.017 1.012± 0.012
2016 −0.011± 0.017 1.000± 0.012

1 2017 +0.026± 0.016 1.001± 0.012
2018 +0.008± 0.017 1.014± 0.012
2016 +0.002± 0.017 1.012± 0.012

2 2017 −0.022± 0.017 1.021± 0.012
2018 −0.0016± 0.017 1.017± 0.013
2016 −0.0006± 0.017 1.018± 0.013

3 2017 −0.014± 0.017 1.025± 0.012
2018 −0.0029± 0.017 1.015± 0.012
2016 −0.153± 0.017 1.018± 0.012

4 2017 +0.062± 0.017 0.999± 0.012
2018 +0.028± 0.018 1.031± 0.013
2016 +0.001± 0.017 0.995± 0.012

5 2017 −0.022± 0.016 0.995± 0.012
2018 −0.010± 0.017 1.008± 0.012
2016 −0.111± 0.037 1.032± 0.021

6 2017 −0.046± 0.035 1.072± 0.021
2018 −0.079± 0.044 1.128± 0.027
2016 −0.020± 0.017 1.006± 0.012

7 2017 −0.010± 0.016 1.001± 0.012
2018 −0.015± 0.017 1.006± 0.012
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Figure 5.6: In the left, the relative statistical errors in years 2016 (blue) before (dashed line) and after (solid line)
the removal, 2917 (orange) and 2018 (green). The 3 year combined results (black) before (dashed line)
and after (solid line) the removal can also be seen, as well as the previous CMS Run 1 [4] results (red).
In the right, the yield ration YS/YN obtained with the total 2016 sample (red), after removing the APVL1
period (orange) and after removing both periods (green).

In Fig. 5.6 (right), the yield ratio YS/YN obtained with the total 2016 sample (APVL1+APV+GOOD)

in red, the 2016 sample after removing the APVL1 period (APV+GOOD) in orange and the 2016 sample

after removing both periods (GOOD) in green can be seen. The removal of the APV period does not

change notably the yield ratio, except in q2 bin 5 where a larger difference is seen. The effect of removing
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the APVL1 period is more significant in the highest q2 bins.
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Chapter 6

Detector efficiency

In this chapter, we present the methodology used to compute the efficiencies εS and εN of both signal

B0 → K∗0µ+µ− and normalisation B0 → J/ψK∗0 channels appearing in Eq. (1.1). We begin in Sec. 6.1

by presenting the efficiency definition. In Sec. 6.2, we present a simplified method to compute the

efficiencies which relies solely on the MC simulations. Finally, in Sec. 6.3, we present a correction to this

simple method which makes use of the B0 → K∗0µ+µ− decay rate in Eq. (2.31). A comparison between

the two methods is also provided.

6.1 Efficiency definition

The efficiency is defined as the ratio between the number of signal candidates that are accepted, re-

constructed and selected over the total number of signal events produced in the collisions, within the

fiducial region of the analysis. The accepted candidates are the ones passing the selections defined in

Eq. (4.1). The efficiencies (εS and εN ) are used to correct the measured signal yields (YS and YN ) ob-

tained in Ch. 5 in the branching fraction measurement, so that the experimental results can be compared

with the theory predictions.

Since we want to take into account the effect of the pileup re-weighting mentioned in Sec. 4.1, the

total efficiency ε is defined as the product between two terms: the selection efficiency (Nsel/Dsel) and

the acceptance (Nacc/Dacc) as

ε =
Nacc
Dacc

× Nsel
Dsel

. (6.1)

The selection efficiency gives the fraction of signal candidates that are reconstructed and pass all the

selections described in Ch. 4 over the total number of candidates that are accepted, whereas the detector

acceptance gives the fraction of signal candidates that are accepted over the total number of signal

events that are produced, within the fiducial region. The terms Nsel and Dsel have the pileup weight,
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whereas the terms Nacc and Dacc do not.

6.2 MC based efficiency

The efficiency defined in Eq. (6.1) can be obtained simply by taking the ratio between the number of

events in the numerators and denominators. Separate histograms binned in q2 are firstly filled with

simulated events passing the respective selections. The ratio between the histograms corresponding to

Nacc×Nsel andDacc×Dsel is posteriorly performed using the TEfficiency class, bin by bin. Considering

that k events pass the mentioned selections, out of a sample containingN events, the efficiency estimate

is ε̂ = k
N . The results of this procedure are shown in Fig. 6.1 for each q2 bin in year 2016 (left) and 2018

(right). The result for 2017 can be seen Appendix C.
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Figure 6.1: Detector efficiency for each q2 bin, using solely the MC simulations, in year 2016 (left) and 2018 (right).

The process of having k successful events out of a total of N follows the binomial distribution

B(k; ε,N) =
N !

k!(N − k)!
εk(1− ε)N−k, (6.2)

in which the probability of having k successes (ε) is regarded as a parameter and the number of suc-

cesses (k) as the variable. If instead we regard the number of successes (k) as a fixed parameter and

the probability of success (ε) as the variable, then ε follows the β-distribution

β(ε;α, β) =
1

B(α, β)
εα−1(1− ε)β−1, (6.3)

where the β-function B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt ensures that the β-distribution is normalised to unity.

As in the case of the binomial distribution, we can interpret α − 1 as the number of events passing the

selections and β − 1 as the number of events that are rejected.

Using the latter interpretation, the statistical error of the efficiency can be obtained using the Clopper-

Pearson method [69], representing the finite size of the MC. This method is regarded as exact, since
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it makes use of the β-distribution rather than an approximation, and its use is recommended by the

PDG [38]. In the Clopper-Pearson method, the coverage probability of the interval, [σ−ε , σ
+
ε ], is fixed in

advance as 100× (1−α)%, where 1−α = 0.68 for a 1σ interval. Then the lower limit (σ−ε ) of the interval

is obtained by solving the equation

C(x) = P (x ≥ k;N) =
α

2
, (6.4)

where P (x ≥ k;N) gives the probability that the number of events (x) is greater or equal to the number

of events passing the selections (k). C(x) is the cumulative distribution function of the β-distribution

defined in Eq. (6.3). We can write

P (x ≥ k;N) =1− P (x ≤ k − 1;N)

=1−
∫ 1−ε

0

B(t, α = k, β = N − k + 1)dt

=1− 1

C

∫ 1−ε

0

tN−k(1− t)k−1dt

=1− 1

C

∫ 1

ε

tk−1(1− t)N−kdt

=
1

C

∫ ε

0

tk−1(1− t)N−kdt

=Iε(α = k, β = N − k + 1),

(6.5)

where Iε(α, β) = B(ε;α,β)
B(α,β) is the regularised incomplete β-function, C is a normalisation factor and 1−t =

x
N is the probability of having x events passing the selections. The lower bound (σ−ε ) of the Clopper-

Pearson interval corresponds, therefore, to the α
2 quantile1 of the β-distribution.

Similarly, the upper limit (σ+
ε ) of the Clopper-Pearson interval is obtained by solving the equation

C(x) = P (x ≤ k;N) = 1− α

2
, (6.6)

with P (x ≤ k;N) giving the probability that the number of events (x) is less or equal to the number of

events passing the selections (k). Analogously, it corresponds to the 1− α
2 quantile of the β-distribution.

The efficiency statistical uncertainties obtained with the Clopper-Pearson method are collected in

Tab. 6.1, for each q2 bin and data-taking year.

6.3 Angular correction

The MC simulations are generated using values for the angular parameters appearing in the B0 →

K∗0µ+µ− decay rate in Eq. (2.31) that are close to the SM predictions. Since probing the flavour anoma-

1The quantile determines how many values of a distribution are above or below a certain limit.
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Table 6.1: Relative statistical errors of the efficiency computed with the Clopper-Pearson method for each data-
taking year and q2 bin. The upper (+) and lower (-) limits are shown in %.

q2 bin 0 1 2 3 4 5 6 7
2016 (+) 7× 10−4 % 3× 10−4 % 4× 10−4 % 3× 10−4 % −2× 10−3 % 7× 10−5 % 3× 10−4 % 2× 10−4 %
2016 (-) 7× 10−4 % 2× 10−4 % 4× 10−4 % 3× 10−4 % −8× 10−3 % 2× 10−4 % 2× 10−4 % 1× 10−4 %
2017 (+) 6× 10−4 % 3× 10−4 % 4× 10−4 % 2× 10−5 % −4× 10−3 % −5× 10−3 % −1× 10−4 % 2× 10−4 %
2017 (-) 6× 10−4 % 3× 10−4 % 4× 10−4 % 2× 10−4 % 2× 10−4 % 1× 10−4 % 2× 10−4 % 1× 10−4 %
2018 (+) 6× 10−4 % 2× 10−4 % 3× 10−4 % 2× 10−10 % −6× 10−3 % 1× 10−4 % −9× 10−3 % 2× 10−4 %
2018 (-) 6× 10−4 % 9× 10−5 % 3× 10−4 % −7× 10−3 % −1× 10−4 % 6× 10−3 % 1× 10−4 % 2× 10−4 %

lies is one of the goals of our study, the dependence of the efficiencies on the angular variables, cos θK ,

cos θl and φ defined in Sec. 2.3 needs to be considered: ε(cos θK , cos θl, φ). To enter in the branching

fraction calculation, these angular efficiency functions need to be integrated over the angular variables,

weighted by the decay rate.

The angular parameters are extracted [13] from an extended unbinned maximum likelihood fit to the

four kinematic variables describing the decay: the K+π−µ+µ− invariant mass, m, and the three angular

variables. The PDF model used in this fit is defined as

P(m, θK , θl, φ) =Ysig

[
(1− fM )PRT (m)D(cos θK , cos θl, φ)εRT (cos θK , cos θl, φ)

+ fMPWT (m)D(− cos θK ,− cos θl, φ)εWT (cos θK , cos θl, φ)

]
+ YbkgPbkg(m)Pbkg(cos θK , cos θl, φ).

(6.7)

The first, second and third terms describe, respectively, the RT signal, the WT signal and the background

events. PRT (m), PWT (m) and Pbkg(m) are the corresponding mass PDFs. D(cos θK , cos θl, φ)2 is the

angular decay rate given by Eq. (2.31) and includes the pure-physics information of the decay. This

theoretical description needs to be adapted to the experimental conditions with the angular efficiency

functions εRT (cos θK , cos θl, φ) and εWT (cos θK , cos θl, φ) for RT and WT events, respectively. Finally,

Pbkg(cos θK , cosθl, φ) describes the angular distribution of the background events and is given by a

multivariate Bernstein polynomial. The extraction of the angular parameters was not performed in the

context of the work of this thesis. However, the angular parameters obtained from this fit are used to

compute the averaged efficiencies presented in this section.

In the angular analysis, a blinding procedure is used in order to avoid any bias introduced by human

decisions in the setup of the analysis. During the blinded period, which includes the steps of event

selection, fit strategy and validation and efficiency measurement, only the MC samples and data from

the mass sidebands have been used, while the distribution of events in the data signal region has not

been considered. Since at the time this thesis was written, the angular analysis has not been unblinded

yet, we used the signal angular parameters from LHCb [3].

2Since under CP: θK → θK − π, θl → θl − π and φ→ φ; the angular decay rate as a function of the reconstructed variables
to be used for the WT events is D(− cos θK ,− cos θl, φ). The efficiency functions need not be corrected since they are computed
using the reconstructed variables.
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The averaged efficiencies ε(~p) are obtained using the values for the angular parameters ~p = (FL, P1,

P2, P3, P ′4, P ′5, P ′6, P ′8) that are obtained with the four-dimensional maximum likelihood fit to data and

MC, which can be found in Appendix C.

We denote, generally, a numerator and a denominator by N(~p)data and D(~p)data, respectively, such

that the efficiency in Eq. (6.1) is given by ε(~p) = N(~p)data

D(~p)data
. We can obtain the numerator doing the

following integration

N(~p)data =

∫
ε(~θ)D(~p, ~θ)datad~θ, (6.8)

where ~θ = (cos θK , cos θl, φ) and ε(~θ) is the angular efficiency function. Since ε(~θ) should be the same in

data and MC, we can write

N(~p)data =

∫
N(~p′, ~θ)MC

D(~p′, ~θ)MC
×D(~p, ~θ)datad~θ, (6.9)

where ~p′ are the MC angular parameters. We can, therefore, obtain N(~p)data by summing over the

MC numerator events, re-weighted with the ratio D(~p,~θ)data

D(~p′,~θ)MC
. D(~p, ~θ)data and D(~p′, ~θ)MC are obtained

substituting in the B0 → K∗0µ+µ− decay rate the angular parameters obtained from the fit to data and

MC, respectively, and the values of the angular variables associated to each event in the sum. Similarly,

we can obtainD(~p)data by summing over the MC denominator events, re-weighted by the ratio N(~p,~θ)data

N(~p′,~θ)MC
.

Practically, the averaged efficiencies are computed by, firstly, filling four weighted histograms and

then using the TEfficiency class to divide the Nacc ×Nsel and Dacc ×Dsel histograms, bin by bin. The

results of this procedure can be seen in Fig. 6.2 for each q2 bin in year 2016 (left) and 2018 (right). The

efficiency result for year 2017 can be found in Appendix C.
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Figure 6.2: Averaged efficiencies for each q2 bin in year 2016 (left) and 2018 (right).

Since in this case the histograms are filled with weights, the efficiency statistical errors cannot be

estimated using the exact Clopper-Pearson method. They are obtained assuming that the efficiency
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follows a Gaussian distribution with standard deviation

σε =

√
ε̂(1− ε̂)
N

, (6.10)

where ε̂ is the estimator for the efficiency. This is only a good approximation in the limit of large N , as

a consequence of the central limit theorem. The efficiency relative statistical errors in % for each q2 bin

and data-taking years are collected in Tab. 6.2. These errors are taken as a systematic uncertainty in

the final branching fraction result, reflecting the finite size of the MC sample (see Ch. 8).

Table 6.2: Relative statistical errors in % of the averaged efficiency, computed using the normal approximation, for
each data-taking year and q2 bin.

q2 bin 0 1 2 3 4 5 6 7
2016 0.42 % 0.27 % 0.31 % 0.22 % 0.095 % 0.19 % 0.27 % 0.23 %
2017 0.38 % 0.25 % 0.29 % 0.21 % 0.092 % 0.17 % 0.24 % 0.22 %
2018 0.39 % 0.25 % 0.29 % 0.20 % 0.090 % 0.16 % 0.23 % 0.20 %

In Fig. 6.3, a comparison between the simple efficiency calculation described in Sec. 6.2 and the

averaged efficiencies obtained in this section is presented, for years 2016 (left) and 2018 (right). The

comparison in year 2017 can be found in Appendix C. The largest differences are found at high q2.
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Figure 6.3: Comparison between the simple efficiency calculation described in Sec. 6.2 and the averaged efficien-
cies, for years 2016 (left) and 2018 (right).
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Chapter 7

Monte Carlo validation

As explained in the previous chapter, the detector efficiency computation relies on the MC simulations

and, as a consequence, we need to validate the MC by comparing it with data. Since in MC there is only

the signal component, before this comparison can be made the signal and background events in data

need to be separated. This is achieved by making use of the sPlot method [70] described in Sec. 7.1.

The comparison between data and MC is performed in Sec. 7.2. The ratios between the data and MC

signal distributions obtained in this way are used to estimate a systematic uncertainty, which quantifies

the data vs MC disagreements, as will be explained in Ch. 8.

7.1 The sPlot method

When our data sample is composed of more than two species, in our case, signal (RT + WT) and

background events, we can use the sPlot method to obtain the distribution of a set of control variables

for events belonging to each species. A control variable x can be, for instance, the transverse momentum

or the pseudorapidity of the B0 meson. It needs to be uncorrelated with the discriminating variable, i.e.

the variable appearing in the likelihood expression in Eq. (5.3): the K+π−µ+µ− invariant mass m. The

goal is then to obtain the distribution of x for the signal events, Ms(x).

The first step is to perform an extended maximum likelihood fit to the K+π−µ+µ− invariant mass m

and extract the signal and background yields, Ysig and Ybkg, as explained in Ch. 5. The sWeights are

then defined as

sPn(mi) =

∑
j=s,b Vnjfj(mi)∑
k=s,b Ykfk(mi)

, (7.1)

where the sums run over the different species (signal s and background b), fn(mi) represents the corre-
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sponding mass PDFs and Vnj is the covariance matrix, whose inverse is given by

V −1
nj = − ∂2 lnL

∂Yn∂Yj
=

Y∑
i=1

fn(mi)fj(mi)(∑
k=s,b Ykfk(mi)

)2 . (7.2)

When other parameters are fitted simultaneously with the yields, as is the case in our analysis, a second

fit needs to be performed in which these parameters are fixed, so that the covariance matrix defined in

Eq. (7.2) is correctly determined.

The second step is to fill histograms of the x variable weighted by the sWeights in Eq. (7.1)

Yn sM̃n(x̄)δx =
∑
i∈δx

sPn(mi), (7.3)

where the sum runs over the events in the x-bin centred in x̄ with width δx. The sum of their entries is

equal to the yields Yn given by the fit and the quadratic sum of the error bars per bin, defined as

σ[Yn sM̃n(x̄)δx] =

√∑
i∈δx

(sPn)2, (7.4)

is equal to the yields statistical uncertainties,
√
Vii.

If we go to the continuous limit, by averaging the left- and right-hand sides of Eq. (7.3), the average

of the sum is transformed in the integral
∫
dm
∫
dx
∑
j=s,b Yjfj(m,x)δ(x− x̄)δx, which corresponds to

total number of events in an infinitesimal region of phase space. Because the control variable x is

independent of the discriminating variablem, fj(m,x) = fj(m)Mj(x). Then, using the sWeight definition

in Eq. (7.1), Eq. (7.3) becomes

< Yn sM̃n(x̄) >=
∑
j=s,b

YjMj(x̄)

∫
dmfj(m)

∑
l=s,b Vnlfl(m)∑
k=s,b Ykfk(m)

, (7.5)

where the integral of the Dirac δ-function was performed. In the continuous limit, the inverse of the

covariance matrix takes the form (see Ref. [70])

V −1
nj =

∫
dm

fn(m)fj(m)∑
k=s,b Ykfk(m)

. (7.6)
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Using this expression, Eq. (7.5) can be written as

< Yn sM̃n(x̄) > =
∑
j=s,b

YjMj(x̄)
∑
l=s,b

VnlV
−1
jl

=
∑
j=s,b

YjMj(x̄)δnj

= YnMn(x̄).

(7.7)

Therefore, on average, the sPlot method reproduces the true x distributions, for signal and background

events, within the statistical uncertainties defined in Eq. (7.4), using the covariance matrix and the yields

obtained from the likelihood fit. The resulting Mn(x̄) distributions are only valid if x is uncorrelated

with the discriminating variable m otherwise the step fj(m,x) = fj(m)Mj(x) could not be used. A

way to quantify the correlation among the control variables and m is by means of the correlation factor

r = cov(x, y)/σxσy, where the covariance among two variables x and y was defined in Ch. 5 and σx =√
1/Yobs

∑Yobs
i=1 (xi − x̄)2 is the standard deviation of x, with the sum running over the total number of

observed events. If r = 1, x and y are totally correlated and if x = 0, x and y are totally uncorrelated.

In Fig. 7.1, the matrix plots show the correlation factor for a set of control variables for q2 bin 4 in year

2016 (left) and 2018 (right). The selected control variables are: ”bEta”, ”bPhi”, ”bPt”, ”kstEta”, ”kstPhi”,

”kstPt”, ”mumuEta”, ”mumuPhi” and ”mumuPt”; corresponding, respectively, to the pseudorapidity, angle

φ and transverse momentum of the B0 meson, the K∗0 meson and the di-muon system. Darker shades

of blue correspond to r values closer to 0 whereas darker shades of orange correspond to r values closer

to 1. The matrix plot is symmetric since cov(x, y) = cov(y.x). In the first row/column, the correlation factor

between the selected control variables and m (”bMass”) is shown and we can conclude that they are

uncorrelated. The correlation plot for year 2017 is similar to the ones found for years 2016 and 2018.

bMass bEta bPhi bPt kstEta kstPhi kstPt mumuEta mumuPhi mumuPt

bMass

bEta

bPhi

bPt

kstEta

kstPhi

kstPt

mumuEta

mumuPhi

mumuPt 0.005169 -0.002333 0.001093 0.871699 -0.002133 0.001023 0.30252 -0.002279 0.000458 1.

-0.00043 0.005269 0.939115 0.000748 0.005343 0.773834 0.000542 0.005257 1. 0.000458

-0.004158 0.997944 0.005793 -0.003333 0.969828 0.005712 -0.003141 1. 0.005257 -0.002279

0.005949 -0.003282 0.001422 0.725557 -0.003368 0.001312 1. -0.003141 0.000542 0.30252

-0.000752 0.005743 0.830246 0.001511 0.005902 1. 0.001312 0.005712 0.773834 0.001023

-0.003729 0.982344 0.005924 -0.003353 1. 0.005902 -0.003368 0.969828 0.005343 -0.002133

0.006175 -0.003445 0.001655 1. -0.003353 0.001511 0.725557 -0.003333 0.000748 0.871699

-0.000586 0.005813 1. 0.001655 0.005924 0.830246 0.001422 0.005793 0.939115 0.001093

-0.004073 1. 0.005813 -0.003445 0.982344 0.005743 -0.003282 0.997944 0.005269 -0.002333

1. -0.004073 -0.000586 0.006175 -0.003729 -0.000752 0.005949 -0.004158 -0.00043 0.005169

bMass bEta bPhi bPt kstEta kstPhi kstPt mumuEta mumuPhi mumuPt

bMass

bEta

bPhi

bPt

kstEta

kstPhi

kstPt

mumuEta

mumuPhi

mumuPt -0.002152 0.002081 0.002 0.885658 0.002011 0.000768 0.323639 0.002047 0.001986 1.

0.001113 -0.009761 0.933675 0.001777 -0.009571 0.761796 0.000941 -0.009731 1. 0.001986

-0.000471 0.998312 -0.009866 0.002205 0.976617 -0.010189 0.001424 1. -0.009731 0.002047

0.001077 0.001511 0.001197 0.719505 0.001544 0.000457 1. 0.001424 0.000941 0.323639

0.001368 -0.010273 0.822734 0.00064 -0.01024 1. 0.000457 -0.010189 0.761796 0.000768

-0.000177 0.98663 -0.009789 0.002231 1. -0.01024 0.001544 0.976617 -0.009571 0.002011

-0.001419 0.002271 0.001925 1. 0.002231 0.00064 0.719505 0.002205 0.001777 0.885658

0.001536 -0.009913 1. 0.001925 -0.009789 0.822734 0.001197 -0.009866 0.933675 0.002
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1. -0.000416 0.001536 -0.001419 -0.000177 0.001368 0.001077 -0.000471 0.001113 -0.002152

Figure 7.1: Matrix plots showing the correlation factor between the set of selected control variables and the dis-
criminating variable m (”bMass”) for q2 bin 4 in year 2016 (left) and 2018 (right).
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The sPlot method is implemented with the RooStats::SPlot class. The results obtained are shown

in Fig. 7.2, for q2 bin 4 in year 2018, for the selected control variables. The signal and background

distributions, Ms(x̄) and Mb(x̄), are shown in red and blue, respectively. The two distributions are

normalised over the range of each control variable. In the y-axis, the normalised number of events

divided by the bin width is shown.
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Figure 7.2: Signal (in red) and background (in blue) distributions obtained with the sPlot method, in year 2018 for
q2 bin 4, for different control variables.

7.2 Data vs Monte Carlo comparison

We can now compare the signal distributions obtained with the sPlot method described in the previous

section with the MC. The results of this comparison for q2 bin 4 can be found in Fig. 7.3 for the selected

control variables in year 2018. The comparisons for the remaining data-taking years can be found in

Appendix D. The signal data and MC distributions are shown in red and green, respectively, and they

are both normalised to the range of the control variable. In the bottom panel, the bin by bin ratio between

the two distributions can be seen. This ratio is computed using the TRatioPlot class, using the ”divsym”

option. The ratio error bars per bin are given by the quadratic sum of the errors in the data and MC bins.

The largest discrepancies between data and MC are found for the pseudorapidity control variables
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and they are quantified in a systematic uncertainty on the final branching fraction result, as will be

explained in Ch. 8. For this systematic study, the ratios between data and MC for the pseudorapidity of

the B0 meson in the J/ψ channel are used.
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Figure 7.3: Comparison between data signal distribution (in red) obtained with the sPlot method and the MC (in
green), for different control variables in year 2018 for q2 bin 4.
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Chapter 8

Systematic uncertainties

In this chapter, we describe the studies of the different sources of systematic uncertainties in the analy-

sis, which originate from the assumptions and methods used to extract the yields (Ch. 5) and compute

the efficiencies (Ch. 6) necessary to obtain the B0 → K∗0µ+µ− branching fraction defined in Eq. (1.1).

We start in Sec. 8.1 to talk about the uncertainties associated with the model used to fit the K+π−µ+µ−

invariant mass and the fit bias (see Sec. 5.4). In Sec. 8.2, we explain how the discrepancies found be-

tween data and MC in Ch. 7 are quantified in a branching fraction systematic error. Since the method

used to compute the averaged efficiencies in Sec. 6.3 makes use of the angular parameters obtained in

Refs. [3, 13], the definition of a systematic uncertainty related with their statistical errors is explained in

Sec. 8.3. The efficiency statistical uncertainties presented in Tab. 6.2 are propagated to the branching

fraction systematic error. Finally, the uncertainties of the input branching fractions B(B0 → J/ψK∗0)

and B(J/ψ → µ+µ−) are also considered as part of the systematic error, being 3.94% and 0.55% [38],

respectively.

8.1 Yield systematics

The systematic uncertainties associated with the yields arise from biases in the choice of the nominal fit

and on how well the chosen model fits the observed data distribution. The former is estimated by using

different fit configurations, other than the nominal presented in Ch. 5, to extract the yields YS and YN

appearing in Eq. (1.1). The latter quantifies how reliable the yields obtained with the nominal fit are. The

different fit variations used will be presented in Sec. 8.1.1. The total yields systematic uncertainties are

presented in Sec. 8.1.2.

8.1.1 Fit variations

We use the following fit configurations
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• Scale factor: all the fit parameters, except the RT mean and the yields, are fixed to the values

found in MC. A ”scale factor” parameter is multiplied by all the widths to allow for possible differ-

ences in the mass resolution between data and MC. This parameter is left free to float in the two

resonant q2 bins, J/ψ (bin 4) and ψ(2S) (bin 6), and is fixed to the values obtained in the J/ψ

channel for the signal q2 bins. The scale factor fit results for 2018 can be seen in Fig. 8.1 and the

scale factor parameters obtained in the two resonant channels for all the data-taking years can be

found in Tab. 8.1. The largest value for the scale factor is found in q2 bin 4, in year 2017, where the

data prefers a shape 10% wider than in MC.

• Mistag fraction: nominal fit in which the fraction of WT events is fixed to the values obtained from

a fit to the MC containing both RT and WT events, applying the same Gaussian constraints used

to fit the data. It allows for possible differences in the amount of WT events in data and MC. The

mistag fraction values obtained from the MC fit can be seen in Tab. 8.2 for all q2 bins and data-

taking years. The results of the fit to data with the mistag fraction fixed to these values can be seen

in Fig. 8.2 for year 2018.

• No erf: the component describing the partially reconstructed events in the J/ψ channel is removed.

The fit result in year 2018 can be seen in Fig. 8.3 (left).

• Largest/lowest ferf : nominal fit in which the fraction of partially reconstructed events with respect

to signal (ferf ) is fixed to its estimated largest and lowest limits, respectively. In order to estimate

these limits, several fit configurations were performed in which ferf was left free to float. The

variation giving the largest values for ferf is the one that has the largest number of degrees of

freedom: the RT parameters are unconstrained. The variation giving the lowest values for ferf is

the one that has the lowest number of degrees of freedom: the scale factor variation. The ferf

values obtained with these two variations are collected in Tab. 8.3 for all data-taking years and the

fit results for year 2018 can be seen in Fig. 8.3 (centre) and (right).

The fit results for the remaining data-taking years can be seen in Appendix E.

Table 8.1: Scale factor parameters resulting from the J/ψ and ψ(2S) resonant channels fits in all data-taking years.

Year J/ψ ψ(2S)
2016 1.0694± 0.0026 1.0554± 0.0096
2017 1.1028± 0.0017 1.0793± 0.0062
2018 1.0786± 0.0011 1.0577± 0.0043

The yield uncertainties estimated with the fit variations are estimated in the following way. The differ-

ence between the signal yields obtained with each variation and the nominal fit is computed. Only the

maximum difference between the variations ”no erf”, ”largest ferf ” and ”lowest ferf ” and the nominal fit

68



Figure 8.1: Scale factor fit results in year 2018. The results for q2 bin 2 and 6 can be seen in Appendix E.

is considered in the J/ψ channel, since they all have to due with the fit component describing the par-

tially reconstructed events. The systematic error is then given by the quadratic sum of each independent

variation.

The relative signal yield differences for each variation can be found in Tab. 8.4, where the last column

shows the total contribution of the fit variations to the yield systematics. In the signal q2 bins, the largest

contribution to the systematic error comes from the scale factor variation, whereas in the normalisation

channel, it comes from the ”no erf” variation, in which only a single exponential is used to describe

the background. The scale factor uncertainty is larger in year 2017, where the scale factor parameter

Table 8.2: Fraction of WT events obtained in the fit to the MC containing WT and RT events applying the same
Gaussian constraints used to fit the data.

q2 bin / Year 2016 2017 2018
0 0.1130 ± 0.0155 0.1098 ± 0.0123 0.1122 ± 0.0123
1 0.1171 ± 0.0107 0.1172 ± 0.0087 0.1170 ± 0.0080
2 0.1213 ± 0.0115 0.1157 ± 0.0102 0.1191 ± 0.0091
3 0.1191 ± 0.0091 0.1150 ± 0.0071 0.1200 ± 0.0065
4 0.1304 ± 0.0003 0.1266 ± 0.0003 0.1250 ± 0.0002
5 0.1403 ± 0.0078 0.1347 ± 0.0061 0.1301 ± 0.0049
6 0.1367 ± 0.0009 0.1270 ± 0.0007 0.1280 ± 0.0007
7 0.1313 ± 0.0085 0.1286 ± 0.0071 0.1243 ± 0.0061
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Figure 8.2: Mistag fraction fit results in year 2018. The results for q2 bin 2 and 6 can be seen in Appendix E.

Figure 8.3: No erf (left), largest ferf (centre) and lowest ferf (right) fit results in year 2018.

Table 8.3: Largest and lowest values for ferf obtained in the J/ψ channel, for all data-taking years.

Year Largest ferf Lowest ferf
2016 0.0750± 0.0032 0.0381± 0.0039
2017 0.0832± 0.0034 0.0386± 0.0023
2018 0.0859± 0.0025 0.0396± 0.0016

obtained in the J/ψ channel in Tab. 8.1 reaches its largest value. The largest error of 3.99 % is found in

q2 bin 3 in year 2017 and the lowest error of 0.62 % is found in q2 bin 6 (ψ(2S)) in year 2016.
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Table 8.4: Yield systematic uncertainties from the fit variations in %.

q2 bin Year Mistag fraction (%) Scale factor (%) No erf (%) Largest ferf (%) Lowest ferf (%) Total (%)
2016 0.32 2.55 — — — 2.57

0 2017 0.39 3.30 — — — 3.33
2018 0.40 2.71 — — — 2.74
2016 0.23 2.63 — — — 2.64

1 2017 0.15 3.53 — — — 3.53
2018 0.26 2.92 — — — 2.93
2016 0.20 2.80 — — — 2.81

2 2017 0.32 3.77 — — — 3.78
2018 0.25 3.01 — — — 3.02
2016 0.19 2.84 — — — 2.85

3 2017 0.35 3.97 — — — 3.99
2018 0.14 2.94 — — — 2.95
2016 0.00 0.09 2.33 0.69 0.97 2.33

4 2017 0.01 0.52 2.52 0.78 1.07 2.57
2018 0.00 1.75 2.02 0.90 0.92 2.67
2016 0.26 2.53 — — — 2.55

5 2017 0.25 3.49 — — — 3.50
2018 0.16 2.57 — — — 2.58
2016 0.01 0.62 — — — 0.62

6 2017 0.00 2.14 — — — 2.14
2018 0.02 0.86 — — — 0.86
2016 0.18 2.03 — — — 2.04

7 2017 0.01 2.63 — — — 2.63
2018 0.08 2.04 — — — 2.04

8.1.2 Total yield systematic uncertainty

The total yield systematic uncertainty is given by the quadratic sum of the two considered sources: fit

variations and fit bias. The former is computed as explained in Sec. 8.1.1, whereas the latter is given by

the product between the mean of the signal yield pull distributions presented in Sec. 5.4 and the yield

statistical uncertainty. The fit variations and the fit bias uncertainties are collected in Tab. 8.5 as well as

the total error, which can be seen in the last column. This error is propagated to the branching fraction.

8.2 Data vs MC discrepancies

The ratios between the B0 pseudorapidity signal distribution from data (sPlot) and MC in the J/ψ chan-

nel presented in Ch. 7 are used to compute a weighted efficiency

εwei =
Nacc
Dacc

×
(
Nsel
Dsel

)wei
. (8.1)

εwei is computed in the same way as the efficiency ε defined in Sec. 6.1, with the difference that the
D(~p,~θ)data

D(~p′,~θ)MC
weights in Eq. (6.9) for the numerator Nsel and N(~p,~θ)data

N(~p′,~θ)MC
for the denominator Dsel are multi-

plied by the data/MC ratios. In Fig. 8.4, the averaged efficiencies ε (black) and the weighted efficiencies

εwei (red) can be seen for years 2016 (left) and 2018 (right).

The systematic error associated with these discrepancies is estimated by computing the B0 →

K∗0µ+µ− branching fraction with ε and εwei to avoid correlations between the two, and the error is

taken as the difference. The values of these systematic errors will be presented in Ch. 9.
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Table 8.5: Yield systematic uncertainties in %.

q2 bin Year Fit variations Fit bias Total
2016 2.57 0.53 2.62

0 2017 3.33 0.25 3.34
2018 2.74 0.28 2.75
2016 2.64 0.09 2.64

1 2017 3.53 0.13 3.53
2018 2.93 0.03 2.93
2016 2.81 0.02 2.81

2 2017 3.78 0.12 3.79
2018 3.02 0.07 3.02
2016 2.85 0.00 2.85

3 2017 3.99 0.05 3.99
2018 2.95 0.09 2.95
2016 2.33 0.03 2.33

4 2017 2.57 0.01 2.57
2018 2.67 0.00 2.67
2016 2.55 0.00 2.55

5 2017 3.50 0.07 3.50
2018 2.58 0.02 2.58
2016 0.62 0.10 0.63

6 2017 2.14 0.03 2.14
2018 0.86 0.04 0.86
2016 2.04 0.13 2.04

7 2017 2.63 0.04 2.63
2018 2.04 0.04 2.04
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Figure 8.4: Averaged efficiencies computed as explained in Sec. 6.3 (black) and averaged efficiencies weighted by
the data/MC ratios presented in Ch. 7 (red) for years 2016 (left) and 2018 (right).

8.3 Angular parameters statistical uncertainties

The angular parameters obtained from the data and MC fits, which are taken from Refs. [3, 13] are an

input to the averaged efficiencies computation explained in Sec. 6.3. As a consequence, their statistical

uncertainties need to be accounted for in a systematic uncertainty.

For this purpose, two additional ”efficiencies” ε+ and ε− are computed. The former, uses the nominal
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values plus statistical uncertainties of all the angular parameters simultaneously, whereas the latter

uses their nominal values minus statistical uncertainties. In Fig. 8.5, the ε (black), ε+ (red) and ε− (blue)

efficiencies can be seen for years 2016 (left) and 2018 (right).
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Figure 8.5: Averaged efficiencies ε computed as explained in Sec. 6.3 (black) and the efficiencies computed with
the nominal values plus statistical uncertainties of all the angular parameters simultaneously ε+ (red)
and nominal values minus statistical uncertainties ε− (blue) for years 2016 (left) and 2018 (right).

Similarly to what was explained in Sec. 8.2, two additional branching fractions are calculated using

ε+ and ε− to avoid correlations between ε, ε+ and ε−. The difference between the two and the nominal

branching fraction is computed and the systematic error is defined as the maximum difference with

respect to the nominal value. The values of these errors will be presented in Ch. 9.
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Chapter 9

Results and discussion

In this chapter, we present the main result of the analysis, the B0 → K∗0µ+µ− differential branching

fraction as a function of the di-muon invariant mass squared (q2). We start in Sec. 9.1 by validating the

analysis, comparing the obtained ratio between the B0 → ψ(2S)K∗0 and B0 → J/ψK∗0 branching frac-

tions with the current world average [38]. We then proceed in Sec. 9.2 by presenting the B0 → K∗0µ+µ−

differential branching fraction results and comparing them with the previous CMS [4] and LHCb [14] cal-

culations and the SM predictions [15, 16]. In Sec. 9.2.1 we present the single year results, whereas in

Sec. 9.2.2 we present the three years weighted average. Finally, in Sec. 9.2.3, we study the effect that

the efficiency angular correction described in Sec. 6.3 has in the branching fraction measurement.

9.1 Analysis validation

The analysis is validated by comparing the ratio between the branching fractions of the two resonant

channels, B0 → ψ(2S)K∗0 and B0 → J/ψK∗0, with the current world average [38]. The PDG value is

given by

RPDG =
B(B0 → ψ(2S)K∗0)× B(ψ(2S)→ µ+µ−)

B(B0 → J/ψK∗0)× B(J/ψ → µ+µ−)
, (9.1)

where B(B0 → ψ(2S)K∗0) = (5.9±0.4)×10−4, B(ψ(2S)→ µ+µ−) = (80±6)×10−4, B(B0 → J/ψK∗0) =

(1.27± 0.05)× 10−3 and B(J/ψ → µ+µ−) = (5.961± 0.033)× 10−2. We compute this ratio as

R =
Y

YN

εN
ε
, (9.2)

where Y , YN are the B0 → ψ(2S)K∗0 and B0 → J/ψK∗0 signal yields, respectively, obtained as ex-

plained in Ch. 5 and ε, εN are theB0 → ψ(2S)K∗0 andB0 → J/ψK∗0 averaged efficiencies, respectively,

computed as described in Sec. 6.3.

In Fig. 9.1, the obtained results for this ratio as well as the PDG value can be seen with the respective
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statistical (black) and systematic (red) uncertainties. The PDG value is shown in the bottom and the

dashed blue line indicates its nominal value for reference. The single year results as well as the three

years combined result (see Sec. 9.2.2) in the top can be seen. In Tab. 9.1, the nominal values for the ratio

as well as the relative statistical and systematic uncertainties can be seen. The three years combined

result is in agreement with the PDG value within 0.2σ, therefore validating the analysis.

0.059 0.06 0.061 0.062 0.063

 0.0013 ± 0.0018 ±PDG: 0.0619 

 0.0015± 0.0006 ±2016: 0.0618 

 0.0021± 0.0004 ±2017: 0.0615 

 0.0017± 0.0003 ±2018: 0.0603 

 0.0012± 0.0002 ±All years: 0.0608 
Statistical Uncertainty

Systematic Uncertainty

Figure 9.1: Single year and three year average (top) results for the ratio between the branching fractions of the
two resonant channels, B0 → ψ(2S)K∗0 and B0 → J/ψK∗0, with the respective statistical (black) and
systematic (red) uncertainties. On the bottom, the PDG value can be seen with the dashed blue line
indicating its nominal value for reference.

Table 9.1: Resonant channels branching fraction ratio with relative uncertainties in %.

Year BF ratio Stat. error (%) Syst. error (%)
2016 0.0618 ± 0.0006 ± 0.0015 0.90 2.45
2017 0.0615 ± 0.0004 ± 0.0021 0.68 3.38
2018 0.0603 ± 0.0003 ± 0.0017 0.46 2.89

9.2 B0 → K∗0µ+µ− differential branching fraction

Gathering the results of Ch. 5 and Ch. 6 for the determination of the yields and efficiencies, respectively,

we present in this section the main result of the analysis, the B0 → K∗0µ+µ− differential branching

fraction. The results presented in Sec. 9.2.1 and Sec. 9.2.2 are obtained with the angular corrected

averaged efficiencies described in Sec. 6.3. In Sec. 9.2.3, we study the impact of this correction by

comparing these results with the ones obtained with the MC based efficiencies described in Sec. 6.2.
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9.2.1 Single year results

In Fig. 9.2 the B0 → K∗0µ+µ− differential branching fraction in years 2016 (top left), 2017 (top right)

and 2018 (bottom) can be seen. Our results in black are superimposed with the previous CMS Run 1

measurement in lilac. In the plots, both statistical and systematic uncertainties are shown. The former

has a horizontal tick in the end whereas the latter does not. The uncertainties of the input B(B0 →

J/ψK∗0) and B(J/ψ → µ+µ−) branching fractions are not included in the systematic error bars. The

two grey bands indicate the q2 ranges of the two resonant channels, B0 → J/ψK∗0 andB0 → ψ(2S)K∗0.

From the plots we can see that the single year results are all consistent with the previous CMS Run 1

calculations [4]. The largest discrepancies are found at the highest q2 bins, in particular in q2 bin 7. They

are however all within 3σ. In terms of the precision of the results, while in 2016 the size of the error bars

is comparable with the Run 1 analysis, wee see a significant reduction in 2017, culminating in 2018. In

Tab. 9.2, the factor of increase in the precision of the results in comparison with the previous CMS Run 1

calculations can be seen.

In Tabs. 9.3, 9.4 and 9.5 the relative branching fraction uncertainties (in %) for years 2016, 2017 and

2018, respectively, can be seen. In the first two rows, the total statistical and systematic error of the

results is shown. In the other rows, the contribution of the different sources of systematic uncertainty

described in Ch. 8 is shown in %. The sources with the largest contribution to the branching fraction

systematic error come from the yield uncertainties (fit variations) and from the B(B0 → J/ψK∗0) PDG

uncertainty. The systematic uncertainties are comparable with the statistical uncertainties in most q2

bins. In 2016, the statistical uncertainties dominate for the three first signal q2 bins. In year 2018, the

systematic uncertainties dominate in the last three signal q2 bins.

Table 9.2: Factor of increase in the precision of the branching fraction measurement between our results and the
previous CMS Run 1 analysis [4].

Year / q2 bin 0 1 2 3 5 7
2016 1.39 1.72 1.65 1.63 1.92 2.81
2017 2.03 2.40 2.23 1.92 2.38 3.48
2018 2.37 2.73 2.67 2.49 2.75 4.03

Table 9.3: Differential branching fraction uncertainties - year 2016

0 1 2 3 5 7 Normalization
Stat. error (%) 11.12 8.42 9.87 6.31 5.02 6.38 —
Syst. error (%) 5.40 5.33 5.41 5.44 5.36 5.08 —

Yield syst. 2.62 2.64 2.81 2.85 2.55 2.04 2.33
Data-MC disc. 0.44 0.25 0.22 0.19 0.12 0.03 —
MC finite size 0.42 0.27 0.31 0.22 0.19 0.23 0.10

Angular param. 0.79 0.30 0.03 0.44 0.99 0.55 —
B(B0 → J/ψK∗0) 3.94 3.94 3.94 3.94 3.94 3.94 —
B(J/ψ → J/µ+µ−) 0.55 0.55 0.55 0.55 0.55 0.55 —
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Figure 9.2: B0 → K∗0µ+µ− differential branching fraction single year results: 2016 (top left), 2017 (top right) and
2018 (bottom). Our results in black can be seen superimposed with the CMS Run 1 results in lilac.

Table 9.4: Differential branching fraction uncertainties - year 2017

0 1 2 3 5 7 Normalization
Stat. error (%) 6.87 5.11 5.61 3.85 3.37 3.96 —
Syst. error (%) 5.87 5.92 6.08 6.24 6.03 5.49 —

Yield syst. 3.34 3.53 3.79 3.99 3.50 2.63 2.57
Data-MC disc. 0.60 0.34 0.21 0.19 0.12 0.12 —
MC finite size 0.38 0.25 0.29 0.21 0.17 0.22 0.09

Angular param. 0.61 0.11 0.35 0.76 1.26 0.89 —
B(B0 → J/ψK∗0) 3.94 3.94 3.94 3.94 3.94 3.94 —
B(J/ψ → J/µ+µ−) 0.55 0.55 0.55 0.55 0.55 0.55 —

9.2.2 Three years averaged result

The combination of the branching fraction results from the three years presented in Sec. 9.2.1 is per-

formed using the weighted average

B̄ =

∑3
i=1 wiBi∑3
i=1 wi

, (9.3)

where Bi is the value of each measurement with statistical uncertainty σi.The weights wi are defined as

wi = 1/σi. The weighted average in Eq. (9.3) is the CMS statistical committee recommendation [71] to
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Table 9.5: Differential branching fraction uncertainties - year 2018

0 1 2 3 5 7 Normalization
Stat. error (%) 5.45 4.01 4.42 3.09 2.24 2.68 —
Syst. error (%) 5.74 5.74 5.76 5.73 5.58 5.28 —

Yield syst. 2.75 2.93 3.02 2.95 2.58 2.04 2.67
Data-MC disc. 1.40 1.16 0.97 0.80 0.11 0.41 —
MC finite size 0.39 0.25 0.29 0.20 0.16 0.20 0.09

Angular param. 0.54 0.15 0.31 0.69 1.24 0.73 —
B(B0 → J/ψK∗0) 3.94 3.94 3.94 3.94 3.94 3.94 —
B(J/ψ → J/µ+µ−) 0.55 0.55 0.55 0.55 0.55 0.55 —

combine the results of three uncorrelated measurements.

In Fig. 9.3, the three years averaged result can be seen in black. Both the statistical and systematic

error bars are shown in the plot. The former has a horizontal tick in the end, whereas the latter does not.

The two grey bands indicate the q2 ranges of the two resonant channels. Superimposed in the plot are

the previous CMS [4] (lilac) and LHCb [14] (grey) Run 1 results as well as the SM predictions [15,16] (pink

shaded region). At low q2, below the charmonium resonances, the B0 → K∗0 form factor calculations

come from LCSRs [15] whereas at high q2, they come from lattice QCD [16].
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Figure 9.3: Three years average result (black) superimposed with the previous CMS [4] (lilac) and LHCb [14] (grey)
Run 1 results as well as the SM predictions [15,16] (pink shaded region). The two grey bands represent
the q2 ranges of the two resonant channels.

From Fig. 9.3, we can see that our results are consistent with the previous CMS [4] and LHCb [14]

Run 1 measurements while having an increased precision. The factor of increase in the precision of

the results in comparison with the previous CMS analysis can be seen in Tab. 9.6. Our results are also

consistent with the SM. In Tab. 9.7, the 3-years averaged results for all q2 bins can be seen with the

respective relative statistical and systematic uncertainties. The systematic uncertainties are, in general,
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Table 9.6: Factor of increase in the precision of the branching fraction measurement (three years averaged result)
in comparison with the previous CMS Run 1 calculation [4].

q2 bin 0 1 2 3 5 7
Factor 3.39 3.96 3.80 2.80 3.06 4.77

Table 9.7: Differential branching fraction - weighted average

q2 dB/dq2 [10−7 GeV−2] Stat. error (%) Syst. error (%)
0 0.47 ± 0.02 ± 0.02 3.99 3.71
1 0.34 ± 0.01 ± 0.01 2.95 3.75
2 0.36 ± 0.01 ± 0.01 3.28 3.80
3 0.40 ± 0.01 ± 0.02 2.25 3.81
5 0.51 ± 0.01 ± 0.02 1.75 3.82
7 0.43 ± 0.01 ± 0.02 2.10 3.56

comparable with the statistical uncertainties.

9.2.3 Effect of the angular correction

In Fig. 9.4, the branching fraction calculated with the angular corrected efficiencies described in Sec. 6.3

(blue) and the MC based efficiencies described in Sec. 6.2 (black) can be seen. The error bars contain

both statistical and systematic uncertainties. The former has a horizontal tick in the end whereas the

latter does not. In the case of the MC based results, both the higher and lower limits of the efficiency

statistical uncertainties presented in Tab. 6.1 are considered. Superimposed in the plots are also the

SM predictions [15, 16] (pink shaded region). The angular correction does not change significantly the

nominal values of the B0 → K∗0µ+µ− branching fraction.
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Figure 9.4: Comparison between the branching fraction results obtained with the angular corrected efficiencies
described in Sec. 6.3 (blue) and the MC based efficiencies described in Sec. 6.2 (black). Superimposed
are the SM predictions [15, 16] (pink shaded region). The two grey bands represent the q2 ranges of
the two resonant channels.
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Chapter 10

Conclusions

In this thesis, we measured the differential branching fraction of the B0 → K∗0µ+µ− decay as a func-

tion of the di-muon invariant mass squared (q2), using the B0 → J/ψK∗0 resonance as normalisation

channel. The work of the thesis was inserted in a larger analysis [13] which also has the goal of mea-

suring several angular parameters appearing in the B0 → K∗0µ+µ− decay rate. We used pp collision

data at
√
s = 13 TeV collected by the CMS experiment in LHC Run 2. The analysis was performed

independently for each data-taking year and q2 bin.

The analysis was validated by computing the ratio of branching fractions of the resonant B0 →

J/ψK∗0 and B0 → ψ(2S)K∗0 channels and comparing it with the current world average [38]. Our

result was consistent with that value within 0.2σ, therefore validating our analysis. The B0 → K∗0µ+µ−

branching fraction results were also found to be consistent with the previous CMS [4] and LHCb [14]

measurements in Run 1 and with the SM predictions [15,16], and are the most precise to date.

The B0 → K∗0µ+µ− decay is a rare beauty process that can only proceed at loop order in the

SM, making it very sensitive to NP. Tensions with the SM have been reported in one of the angular

parameters appearing in its decay rate, P ′5. Other tensions in the flavour sector have also been reported

in other decays and observables, being commonly referred to as flavour anomalies. TheB0 → K∗0µ+µ−

branching fraction can enter in global fits, helping to constrain NP scenarios and to investigate the source

of these alluring flavour anomalies.

For the measurement of the B0 → K∗0µ+µ− differential branching fraction two quantities were

needed: the measured signal yield and the detector efficiency. The former was obtained by performing a

one-dimensional extended unbinned maximum likelihood fit to the K+π−µ+µ− invariant mass. The lat-

ter was obtained in two ways. Firstly, the efficiencies were calculated by simply determining the fraction

of simulated events passing the selections described in Chs. 3 and 4 (MC based efficiency). Since in the

analysis we want to probe the flavour anomalies and the angular parameters in the MC simulations are

fixed to values close to the SM predictions, a second method was employed, which consisted on making
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an average of the efficiencies over the angular variables, θK , θl and φ, weighted by the B0 → K∗0µ+µ−

decay rate. For this, the angular parameters obtained in Refs. [3, 13] were used. We compared the

branching fractions obtained with these two methods and concluded that the angular correction does

not affect significantly the nominal values.

The work presented in this thesis is part of the ongoing effort to achieve a better understanding of

the flavour anomalies. Future endeavours are also being advanced by both experimental and theoretical

communities. The accumulation of larger datasets (LHC Run 3, BelleII) will result in a reduction of

statistical uncertainties. The complementary exploration made by different experiments will increase the

robustness of the results by creating orthogonal systematic effects. The theoretical uncertainties can be

reduced by exploring additional observables, with a smaller form-factor dependence. In the future, if the

statistical significance of the anomalies crosses the 5σ barrier, they will be the first established NP seen

at the LHC.
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Appendix A

Nominal data fit results (2016 and

2017)
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Figure A.1: Data fit results in year 2016. The q2 ranges covered by each q2 bin can be seen in the top left region of
each plot. The RT and WT components are shown in green and red, respectively. The combinatorial
background is shown in blue and the partially reconstructed background in cyan.
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Figure A.2: Data fit results in year 2017. The q2 ranges covered by each q2 bin can be seen in the top left region of
each plot. The RT and WT components are shown in green and red, respectively. The combinatorial
background is shown in blue and the partially reconstructed background in cyan.
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Appendix B

Signal yield pull distributions (2016

and 2017)
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Figure B.1: Signal yield pull distributions resulting from the toy MC study in year 2016. The mean and width values
of the Gaussian distributions are shown in the top right panel.
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Figure B.2: Signal yield pull distributions resulting from the toy MC study in year 2017. The mean and width values
of the Gaussian distributions are shown in the top right panel.
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Appendix C

Detector efficiency (2017) and angular

parameters

The results of the MC based efficiency computation presented in Sec. 6.2 and the averaged efficiency

computation presented in Sec. 6.3 for year 2017 are presented in Fig. C.1 (top left) and (top right) plots,

respectively. The comparison between the two methods is also presented in Fig. C.1 (bottom).
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Figure C.1: Results of the MC based efficiency computation (top left) and the averaged efficiency computation (top
right) for year 2017 and comparison between the two methods (bottom).
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The angular parameters obtained in Ref. [13] and used in the computation of the averaged efficien-

cies in Sec. 6.3 can be found in Tab. for MC and data, respectively.

Table C.1: Angular parameters appearing in the B0 → K∗0µ+µ− decay rate in Eq. (2.31) resulting from the fit to
the MC in Ref. [13].

q2 bin FL P1 P2 P3

0 0.714± 0.0005 0.004± 0.004 −0.388± 0.0008 0.00242± 0.00214
1 0.813± 0.0003 −0.052± 0.004 −0.258± 0.0009 0.00088± 0.00221
2 0.740± 0.0004 −0.113± 0.004 0.205± 0.0009 0.00325± 0.00196
3 0.618± 0.0003 −0.147± 0.002 0.418± 0.0004 0.00198± 0.00098
4 0.6000± 0.0005 −0.198± 0.0031 −0.0003± 0.0009 0.0004± 0.0025
5 0.456± 0.0003 −0.236± 0.001 0.461± 0.0002 0.00115± 0.00066
6 0.6000± 0.0021 −0.199± 0.0126 −0.0004± 0.0034 0.0007± 0.0099
7 0.370± 0.0004 −0.402± 0.001 0.445± 0.0003 0.00080± 0.00077

q2 bin P ′4 P ′5 P ′6 P ′8
0 0.163± 0.003 0.345± 0.002 −0.00237± 0.00181 0.00226± 0.00343
1 −0.522± 0.003 −0.310± 0.001 −0.00095± 0.00151 0.00051± 0.00289
2 −0.917± 0.003 −0.723± 0.001 −0.00074± 0.00153 −0.00032± 0.00298
3 −1.029± 0.001 −0.861± 0.001 0.00002± 0.00100 −0.00143± 0.00191
4 −0.870± 0.0033 0.0012± 0.0019 −0.0003± 0.0016 0.0004± 0.0040
5 −1.098± 0.001 −0.852± 0.001 −0.00091± 0.00089 0.00037± 0.00167
6 −0.816± 0.0123 0.0005± 0.0078 0.0000± 0.0065 0.0002± 0.0158
7 −1.178± 0.001 −0.761± 0.001 −0.00114± 0.00118 0.00324± 0.00226

Table C.2: Angular parameters appearing in the B0 → K∗0µ+µ− decay rate in Eq. (2.31) resulting from the fit to
data. The values for the resonant channels in q2 bins 4 and 6 are taken from Ref. [13], whereas the
parameters in the signal q2 bins are taken from Ref. [3].

q2 bin FL P1 P2 P3

0 0.655± 0.046 −0.617± 0.296 −0.443± 0.100 0.324± 0.147
1 0.756± 0.047 0.168± 0.371 −0.191± 0.116 0.049± 0.195
2 0.684± 0.035 0.088± 0.235 0.105± 0.068 −0.090± 0.139
3 0.645± 0.030 −0.071± 0.211 0.207± 0.048 −0.068± 0.104
4 0.55501± 0.000624 −0.015484± 0.00312 −0.0012001± 0.000958 0.23983± 0.00255
5 0.461± 0.031 −0.460± 0.132 0.411± 0.033 −0.078± 0.077
6 0.52136± 0.00218 −0.039087± 0.0126 0.0059624± 0.00338 0.46670± 0.0103
7 0.352± 0.026 −0.511± 0.096 0.396± 0.022 0.000± 0.056

q2 bin P ′4 P ′5 P ′6 P ′8
0 −0.080± 0.142 0.365± 0.122 −0.226± 0.128 −0.366± 0.158
1 −0.435± 0.169 −0.150± 0.144 −0.155± 0.148 0.037± 0.169
2 −0.312± 0.115 −0.439± 00.111 −0.293± 0.117 0.166± 0.127
3 −0.574± 0.091 −0.583± 0.090 −0.155± 0.098 −0.129± 0.098
4 −0.95271± 0.00329 −0.0063346± 0.00193 0.0018248± 0.00157 −0.21960± 0.00398
5 −0.491± 0.095 −0.622± 0.088 −0.193± 0.100 0.018± 0.099
6 −0.77781± 0.0123 0.0022117± 0.00778 0.010996± 0.00645 −0.35748± 0.0159
7 −0.626± 0.069 −0.714± 0.074 0.061± 0.085 0.007± 0.086
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Appendix D

Monte Carlo validation (2016 and

2017)
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Figure D.1: Comparison between data signal distribution (in red) obtained with he sPlot method and the MC (in
green), for different control variables in year 2016 for q2 bin 4.
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Figure D.2: Comparison between data signal distribution (in red) obtained with he sPlot method and the MC (in
green), for different control variables in year 2017 for q2 bin 4.
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Appendix E

Fit variations

103



Figure E.1: Scale factor fit results in year 2016 for all q2 bins.
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Figure E.2: Scale factor fit results in year 2017 for all q2 bins.

Figure E.3: Scale factor fit results in year 2018 for q2 bins 2 (left) and 6 (right).
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Figure E.4: Mistag fraction fit results in year 2016 for all q2 bins.
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Figure E.5: Mistag fraction fit results in year 2017 for all q2 bins.

Figure E.6: Mistag fraction fit results in year 2018 for q2 bins 2 (left) and 6 (right).
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Figure E.7: No erf (left), largest ferf (centre) and lowest ferf (right) fit results in year 2016.

Figure E.8: No erf (left), largest ferf (centre) and lowest ferf (right) fit results in year 2017.
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