
Topology Optimization of Flat Structures with Adaptive Finite

Elements

Diogo Miguel Fael Paráıso
diogo.paraiso@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

November 2021

Abstract

Topology optimization, as a field of structural optimization, has gained extensive use as a tool in
design problems across all fields of engineering and industry alike, however, the growing complexity
of the problems being solved is making it more computationally expensive to solve them. Adaptive
finite elements or adaptive mesh refinement presents itself as a natural solution to this problem, by
reducing the number of finite elements and thus, the computational cost. In this work, the topology
optimization of flat structures is approached using an adaptive finite element algorithm. For this
purpose, a MATLAB program using quadrilateral 4-node elements was developed to perform a
minimum compliance optimization, using the Solid Isotropic Material with Penalization and solving it
using the Optimality Criteria method. To better understand the algorithm, a parametric study was
conducted where the impact of the adaptive mesh refinement criteria and the topology optimization
parameters was tested. The optimum designs using the developed adaptive mesh refinement program
were also analyzed and compared against the design obtained on a comparable uniform mesh. The
results demonstrate (1) that the adaptive mesh refinement algorithm produced a good mesh behavior
and refinement was limited to the necessary regions, (2) it produced adequate results with considerably
fewer finite elements, and (3) further filtering techniques need to be studied in order to better utilize
the algorithm.
Keywords: Topology Optimization, Adaptive Finite Elements, Adaptive Mesh Refinement, Solid
Isotropic Material with Penalization, Non-uniform mesh

1. Introduction
Topology optimization at its core, as one of the
basic categories of structural optimization, has
always been present in the mind of engineers and
thinkers alike. The need to find the optimum
design of a structure in order to solve a problem is
intemporal. Finding that optimal design, before
the advancements in computational aided design
(CAD), was always a major challenge and based
on previous knowledge and experimentation.
The main goal of this work is developing an

algorithm that produces optimum designs with
less computational resources, while being easy to
use and modify, and relying on one of the
programming languages most used in education
and research, MATLAB. This is to be done
through the implementation of a technique known
as adaptive finite elements or adaptive mesh
refinement (AMR), which adaptively selects
elements to be refined before a new optimization
cycle and thus reducing the need of a large number
of finite elements when computing the problem.
As the field of topology optimization grows and

matures, its use is becoming more common, with
numerous applications in both academia and
industry alike. The advancements and availability
of CAD software made it the natural choice for
solving problems such as the one of minimizing
weight while maintaining (or increasing) stiffness
in structures like the body of a car.

In Aeronautics, for example, the use of topology
optimization, often combined with manufacturing
restrictions, is increasingly used as a mean to save
material, weight and fuel. In recent years, it has
been used to achieve an optimal design for an
aircraft components, like the seat and seat legs [1];
in the design of morphing wing structures [2, 3]
and for the design of the landing gear and engine
mount [4].

As the complexity of the problems being solved
increases, there is also a growing need of more
computational capacity for solving them. An
algorithm that produces results comparable to
traditional methods, but requiring less
computational resources is of particular interest.

Topology optimization as a subject has been

1



researched for many years, dating back to 1988
when was first introduced by Bendsøe [5].
Numerous methods have been developed since
then with the use of the homogenization method
[5], Solid Isotropic Material with Penalty (SIMP)
[6] and more recent ones, such as the moving
morphable components method [7].
The use of the SIMP approach, used to solve the

0-1 material problem, was able to overcome the
enormous computational requirements needed to
solve the continuum problem and was quickly
popularized. Not without its problems, such as the
presence of intermediate densities and
microstuctures, SIMP continues to be one of the
most used and crucial methods of solving
optimization problems. This is especially true with
the use of additive manufacturing and composite
materials [8].
To achieve the stated goal, two MATLAB codes

for topology optimization [9, 10] were considered
and used as a template to build the proposed
algorithm. This resulted in an easy to use and
modify MATLAB algorithm that uses square
4-node elements for the discretization of the design
domain and solves the minimum compliance
problem, using SIMP and the optimality criteria
method with an AMR cycle after each
optimization.
This work is organized as follows. In section 2

the topology optimization problem is formulated
and an introduction to AMR is made. The
detailed implementation of the MATLAB
algorithm follows in section 3. In section 4, to
better understand the behaviour of the proposed
algorithm to user defined parameters a parametric
study was conducted, followed by the validation of
the results obtained against a comparable uniform
mesh and a brief performance analysis. Lastly, a
conclusion is presented in section 5.
The produced algorithm can be found in

Appendix in the full dissertation.

2. Background
2.1. Topology Optimization
As previously stated, Topology Optimization is
one of the basic categories of Structural
Optimization (SO), as such, the general form of
the problem is the same and can be simply
described as finding the ’best’ (optimized) solution
to a design problem. This design is
mathematically evaluated using an objective
function, f(x, y), which measures the performance
of said design and represents the aim of the
optimization (maximizing or minimizing f). The
objective function is dependent on the design
variable (x) - representing geometry - and the
state variable (y) - representing displacement or
force - and the general problem takes the form

[11]:

(SO)


minimize f(x, y) with respect to x and y

subject to

behavioral constraints on y
design constraints on x
equilibrium constraint

The TO problem can be described as a material
distribution problem, whose solution defines the
distribution of material within a defined design
domain, and minimizes/maximizes the objective
function. Here, this simple problem takes the form
of minimizing the strain energy, minimum
compliance design, which equates to maximizing
global stiffness, i.e., the objective function is the
compliance of the design.

Along a discretized domain, using finite elements,
the problem takes the form [12]

min
u,E

uTKu

subject to : K(Ee)u = f , (1)

Ee ∈ Ead

where u are the displacements, f the load vectors
and K the stiffness matrix, which depends on Ee,
the stiffness tensor for element e, and Ead denotes
the admissible stiffness tensors for the design.

For our material distribution problem we are
interested in determining the optimal placement of
isotropic material (or remain void) in our
discretized design domain, represented by a finite
element mesh. This corresponds to viewing the
geometry as a collection of black and white ’pixels’
that represent a rough description of the optimal
continuum structure. This leads to an integer
problem whose solution is computationally heavy,
since it results in many design variables/functions,
limiting its application on large scale problems
[12, 13].

A popular way to address this is to make use
of interpolation models for the material properties,
such as the SIMP model, which can be written, in
his modified state, as [14]:

Ee(xE) = Emin + xp(E0 − Emin), (2)

x ∈ [0, 1], p > 1

where the density x is the design function, E0 the
material properties of an isotropic material and p
the penalization power. The use of a minimum
Young’s modulus, Emin, is essential to avoid
possible singularities when solving the equilibrium
problem, and in this modified state allows for
easier implementation of different filters, such as a
density filter.

We are now able to write the entire discretized
problem, as is solved by the algorithm, based on

2



the SIMP interpolation where the objective is to
minimize compliance[10]

min
x

: c(x) = UTKU =

N∑
e=1

(xe)
puT

e k0ue

subject to :
V (x)

V0
= f (3)

KU = F

0 < xmin ≤ x ≤ 1

where U and F are the global displacement and
load vectors, respectively, K is the global stiffness
matrix, ue and ke are the element displacement
vectors and stiffness matrix, respectively, x is the
design variables vector (to be interpreted as
relative density), xmin the minimum relative
density, N is the number of elements used in the
FE mesh, p is the penalization power, V (x) and
V0 are the material volume and design domain
volume, respectively, and f is the volume fraction
(user defined).

2.2. Solution methods
To solve the discretized problem detailed above
one must deploy the use of efficient computational
methods, since the problem implies a design
variable for each discretized element.
An extremely efficient way to solve some

optimization problems is the Optimality Criteria
(OC) method [12]. This heuristic method relies on
finding and selecting designs that fulfill the
necessary conditions of optimality, and iteratively,
select better and better designs in an attempt to
find a global minima (or maxima). This iterative
update scheme can be formulated as [9]:

xnewe =

=


max(0, xe −m) if xeB

η
e ≤ max(0, xe −m)

min(1, xe +m) if xeB
η
e ≥ min(1, xe −m)

xeB
η
e otherwise

(4)

where m is a positive move limit, η (= 1/2) is a
numerical damping coefficient and Be is obtained
from the optimality condition as:

Be =
− ∂c

∂xe

Λ ∂V
∂xe

(5)

where Λ is the Lagrange multiplier that can be
determined using a bisection algorithm.
To complete the update scheme we must first

obtain the derivative of the objective function in
respect to the design variable xe, also called
sensitivity of the objective function, which can be

written as

∂c

∂xe
= −pxp−1

e (E0 − Emin)u
T
e k0ue (6)

The derivative ∂V
∂xe

is dependent on the size of the
element, for unitary elements this assumes the value
one, for non-uniform elements, as is the case here,
∂V
∂xe

= ae, which is the area of the element.

2.3. Difficulties
The computational calculation of the optimization
problem requires the implementation of a filtering
technique. This is used to ensure the existence of
solutions and prevent the appearance of
checkerboards patterns and mesh-dependency [12].
Two types of filtering techniques are explored,
sensitivity filtering and density filtering.

The use of a sensitivity filter has proven to ensure
mesh independence in a highly efficient way, with
the added benefit of easy implementation. This is a
purely heuristic filter that produces similar results
to local gradient constraints based filters. The filter
works by modifying the sensitivity as follows [12]:

∂̂c

∂xe
=

1

xe
∑

i∈Ne
Hei

∑
i∈Ne

Heixi
∂c

∂xi
(7)

where Ne is the set of elements i for which the
center-to-center distance ∆(e, i) to element e is
smaller than the filter radius rmin and Hei is a
weight factor defined by
Hei = max(0, rmin − ∆(e, i)). The modified
sensitivities are then used in the optimization
scheme (OC method).

The use of a density filter can also solve the
problems mentioned above by directly limiting the
variation of the densities that appear in the set of
admissible stiffness tensor Ead by only admitting
filtered densities. Essentially, the filter transforms
the original densities xe into:

x̃e =
1∑

i∈Ne
Hei

∑
i∈Ne

Heixi (8)

This new way to refer to the densities, x̃e,
emphasizes the difference between the original
densities xe, which should now be referred to as
design variables, and filtered densities x̃e, which
refer to physical densities. Equation 6 remains
valid but is now in respect to the physical
densities x̃e. The sensitivity in respect to the
design variables xj is given by

∂ψ

∂xj
=

∑
e∈Nj

∂ψ

∂x̃e

∂x̃e
∂xj

=
∑
e∈Nj

1∑
i∈Ne

Hei

∂ψ

∂x̃e
(9)

where ψ is the objective function c or the volume
V .

3



2.4. Adaptive Mesh Refinement
Topology Optimization, as previously mentioned,
can be very computationally heavy, since problems
are commonly solved using an uniform mesh with
a large number of finite elements so as to achieve
high accuracy designs. As the TO problem is
being solved regions of solid or void material form
that don’t require such a fine mesh, however, these
regions are unknown a priori. So it is only natural
that adaptive mesh refinement (AMR) be
researched as a solution to making solving the TO
problem more economical. Thus, the purpose of
AMR when applied to TO can be described as a
way to obtain accurate results, comparable to
those obtained when using a uniform mesh, but
through the use of considerably less elements, by
refining the mesh when and where necessary. This
is not without risk, as the problem of
mesh-dependency can be exacerbated by the
refinement (and subsequent refinement) of
elements.
A number of different approaches have been

published on how to integrate AMR in TO to
improve computational cost and accuracy. The
earliest of these approaches follows a strategy of
using the previous optimization to compute the
elements to refine followed by optimization of the
new mesh [15]. Another approach is to use AMR
after each design change in the optimization cycle
as proposed by [16].
The integration of an optimize → refine AMR

technique, just like the one implemented, on a
typical optimization algorithm can be seen in
figure 1.

Figure 1: Flowchart of a topology optimization
program with AMR, following the optimize → refine
technique.

2.5. Theory, difficulties and refinement criterion
In order to implement a basic adaptive mesh
refinement some modifications need to be made to
the topology optimization program. Without
going into computational implementation details,
a brief summary of the theory involved is

necessary to better understand the algorithm.
The algorithm uses 4-node quadrilateral

elements (QUAD4). Refinement is then made by
dividing the existing element into four equal
elements of the same type, see figure 2 a). By
refining an existing element we are creating new
nodes and some of those will be classified as
’hanging nodes’, this designation is used to
identify nodes that have a single-level
mesh-incompatibility (again, see figure 2(b) ).

Figure 2: Illustration of the mesh refinement and
mesh incompatibilities that arise from it. The
refinement represented at a) satisfies single-level
mesh-incompatibility, while refinement b) does not.
Circles in red indicate ’hanging nodes’. The blue
tint means the element is marked for refinement.

In order to fully compute the mesh the following
constraint needs to be imposed to these nodes

ui = (
uj + uk

2
) (10)

where the subscript i denotes the ’hanging node’
and j and k the nodes at the vertices of the same
edge. This constrains the displacement of the
’hanging node’ to the displacement of its adjacent
nodes. In order to auto impose this for element i,
the element stiffness matrix needs to be modified
with the following: 

k11 k12 k13 k14
k12 k22 k23 k24
k13 k23 k33 k34
k14 k24 k34 k44

 =

=


k11 k12

k13

2 (k14 +
k13

2 )

k12 k22
k23

2 (k24 +
k23

2 )
k13

2
k23

2
k33

4 (k34

2 + k33

4 )

(k14 +
k13

2 ) (k24 +
k23

2 ) (k34

2 + k33

4 ) (k33

4 + k44 + k34)


(11)

This method for solving the
mesh-incompatibility only allows for single-level
incompatibilities, for the level-two
incompatibilities shown at figure 2 b) (the upper
red circle shows a node that would be constrained
by an already ’hanging node’) the explained
method does not work. Since an implementation
for a level-two incompatibility is non-practical, a
simple way to solve this is to force the refinement
of the element adjacent to it (again, see figure 2
b), element in blue) so as to eliminate the
level-two incompatibility.

4



The next step in an AMR is to define the
refinement criterion. Several methods have been
used, namely, selecting the elements that define
the design boundary [17] or selecting the elements
that define the design [18]. In a material problem
this can be approximated by selecting the
intermediate densities, i.e., ρt− ≤ ρe ≤ ρt+ where
ρe is the density of element e and ρt−/ρt+
represent the lower and upper threshold; or by
selecting the solid densities, i.e., ρt− ≤ ρe ≤ 1.
This is the way the developed algorithm selects
the elements to be refined.

3. Implementation
The MATLAB code uses the SIMP interpolation
method along with the OC method for
optimization with a sensitivity or density filter, as
previously described.
The program can be called using the prompt:

fem ite(nelx,nely,rmin,ite max,filter type)

where nelx and nely are the number of elements
in the horizontal and vertical directions,
respectively, rmin is the filter initial size, ite max
is the number of optimization cyles that the
program will compute and output, and filter type
selects the type of filter (0 for sensitivity filter, 1
for density filter) . Other variables, such as volume
fraction, which is also the initial (guess) density of
each element, and penalization power are defined
in the pre-processing section along with other
important variables, like the name of the directory
where the outputs will be saved, material
properties, the refinement criteria bounds (crt low
and crt high are ρt− and ρt+ , respectively), the
frequency of filter radius change and the boundary
conditions (defined at the end of the
Refinement/FE stage), all of these can be edited
by the user.
The code can be divided into four parts, the

initial starting stage (pre-processing), the finite
element analysis/refinement, the optimization
loop, and the final stage (post-processing). A
simplified pseudocode of the developed algorithm,
with the stages highlighted in blue can be found in
figure 3.

3.1. Pre-processing – Variables and Material
Properties (lines 2-64)

In simplified terms, the pre-processing stage
houses the initialization of important variables and
loop variables used throughout. Some of these
include the penalization power (penal), volume
fraction (volfrac), frequency of filter radius
change (div r), the lower and upper bounds of the
refinement criteria (crt low and crt high,
respectively). Other variables, such as an element

area matrix and design boundary matrix, central
to the functioning of the code, are also created
here.

3.2. Finite Element Analysis / Refinement Section
(lines 66-478)

After the starting stage the program is completely
written within an infinite while loop that stops
with a break command when the number of
iterations reaches the number inputted by the
user. This is done so the refinement process works
in a loop with the optimization cycle, so as to
implement the desired ’optimize → refine’
strategy. A summary of the steps required at this
stage can be found at figure 3.

The primary function of this stage is to handle
the refinement of the mesh. This includes all the
necessary steps to ensure mesh-compatibility (lines
272-323) and impose the constraints for ’hanging
nodes’ (lines 359-389). The way the algorithm
solves the problem of level-two
mesh-incompatibility is by refinement the elements
around the problematic element, an illustration of
this process can be found in figure 4.

3.3. Optimization Section (lines 479-584)

The optimization stage is a standard optimization
algorithm modified to ensure compatibility with
the AMR algorithm, namely, a non-uniform mesh.
These modifications are present throughout and
can be seen on lines 482-484, where the filter
radius is decreased with every iteration, on line
503, where the program computes the compliance
of each element taking into account the different
element stiffness matrices, and on lines 528-532
where the filtering function is called. The filtering
function had to be completely modified and a way
to compute the distance between element centroids
had to be implemented (lines 667-723). The
filtering in itself is a sensitivity filter or a density
filter, depending on user input, and the
modification of the sensitivities is present in lines
712-717 and the filter is applied in lines 538-542.
A number of different output variables used in the
post-processing stage are stored and some
verifications, to limit the number of optimization
iterations (for example a user defined maximum
amount of iterations, max opt ite), are also
implemented.

The optimization stage ends when convergence
is achieved, described as when between two
consecutive designs the change in design variable
is less than 1%, or when the maximum number of
optimization iterations is reached.

3.4. Final Stage - Plots and Outputs (lines 589-618)

The final stage of the program is used as a
post-processing stage, where a number of plots

5



Figure 3: Simplified pseudocode of the developed AMR algorithm.

Figure 4: Illustration of how the program
solves mesh-incompatibilities. On the left is the
problematic mesh, on the right is the solved mesh.

and outputs are stored and displayed, and the
place where the AMR criterion is defined and the
elements to be refined in the next cycle are
selected.

To plot the densities a new function had to be
made, it works by extracting the coordinates of each
node and filling the corresponding element with its
density in grayscale (0 - white and 1 - black).

Finally the algorithm ends with two possible
outcomes, if the user specified number of
optimization iterations has been reached (line 608)
the code breaks, leaving the infinite loop and
ending the program, if that’s not the case the code
continues, the elements to be refined are defined
using the AMR criterion and the code starts again
from the Refinement Section. This last possibility
is coded on line 617, which as previously stated
selects the new elements to be refined. This is
done by selecting the elements that are within
specified density bounds. The user can modify the
refinement criterion by changing the way the

program selects the elements and storing them in
the vector, refinar. This contributes to the
requirement of a straightforward and easy to
modify code.

4. Results

To better understand the behavior of the
developed algorithm a parametric study was
conducted, followed by the validation of the results
against those obtained from a comparable uniform
mesh. Finally, a brief performance analysis is
presented.

4.1. Parametric Study

In order to try to select the best parameters in
which to run the algorithm, a parametric study
was conducted. For this, the developed algorithm
was used to optimize the MBB-beam. The
starting mesh consisted of 32 × 24 elements, and
unless that was the parameter being tested, the
volume fraction (equal to 50%), penalization
power (the usual value of p = 3 [10]), filter radius
(rmin = 1.5) and the filter radius change frequency
(div r = 2) will remain constant. The convergence
criterion remains the same at less than 1% for
consecutive change in design variable. The
stiffness of the material (E0 = 1), the stiffness of
void regions (Emin = 1e−9) and the Poisson’s ratio
(ν = 0.3), remain constant throughout. The
number of iterations was kept at 5 to ensure a
maximum refinement of four times per element.
The design domain for the described problem can
be seen in figure 5.

This parametric study consisted in varying the
following parameters, refinement criteria
(intermediate or solid densities), penalization

6



Figure 5: Illustration of the symmetric MBB-beam
design domain, boundary conditions, and external
load for the topology optimization problem (C =
35.4125). Reprinted from [9, p.2].

power, volume fraction, and filtering technique
and radius of the filter. The filtering technique
used was sensitivity filtering, and the full results
can be seen in the full dissertation.

For the refinement criteria study several
intervals were tested, ranging from a lower bound
of 0.2 to 0.5 with 0.1 increments, to an upper
bound of 0.7 to 0.9 with 0.1 increments, and the
refinement of ’solid’ densities. After analyzing the
final design and corresponding final mesh, it is
possible to exclude the narrowest intervals and
those that exclude the more external densities,
since it produced subpar designs with poor detail
around the boundary of the material. The
corresponding final meshes also presented a poor
refinement around the border of the material with
areas left unrefined due to the limitation of the
interval. The results for ’solid’ densities presented
a good and detailed final design with the expected
final mesh of only material refined, ultimately, this
proved to be computationally heavier and the
compliance of the design increased with each
iteration, which did not occur for the refinement of
intermediate densities. It was found that the
algorithm worked best for intermediate densities
when most densities were selected and the interval
of 0.2 to 0.8 was selected, as presented in figure 6
and 7. The analysis of compliance over time shows
a decrease in compliance with each iteration (see
figure 8, which is the preferred behaviour.

Figure 6: Topology optimized design with AMR for
a refinement criterion of 0.2− 0.8.

The study also shows a better behaviour when
using the typical penalization power of p = 3 and

Figure 7: Resulting mesh of the AMR algorithm for
a refinement criterion of 0.2− 0.8.

Figure 8: Compliance and number of elements over
time (final number of elements, Nele = 7521), the
yellow dots represents the start of a new cycle.
AMR criterion of 0.2− 0.8.

using smaller volume fractions, this is because
increasing the penalization power reduces the
amount of intermediate densities, and for high
volume fractions the starting mesh is prone to
regions with large amounts of intermediate
densities, which causes the algorithm to produce
mesh-dependent designs. This is evidence of the
need to identify a better filtering technique.

4.2. Filtering technique and radius

With the previous results in mind, several variations
to the filtering technique were researched to analyse
and improve the behaviour of the sensitivity filter,
an analysis of the behaviour of the density filter was
also performed. These variations involved changing
the radius and implementing a solution where the
filtering radius decreases with the iterations.

The results are evident as to the need to use a
radius that is better adapted to the adaptive nature
of the mesh. When using a constant radius both
filtering techniques produced inferior results with
holes and a poor definition of the design boundary.
This is because the radius is unable to efficiently
filter several element sizes with such a high radius
(when compared to the final element size).

A natural evolution was to implement a
decreasing filter radius, so as to better adjust the
filter to the element sizes. To analyse this three
filter radius change frequencies were tested,
div r = 1, 2 and 3, where the filter radius was
divided by a factor of two every div r iterations.

7



The results show that there is a need for fine
control over the filtering technique and radius. For
div r = 1 the final design appeared to be adequate
and was obtained with a quick convergence, since
the use of a small filter radius helped the design to
remain more ’black’, with less intermediate
densities, this produced a worse mesh when
compared to a div r = 2. For div r = 3 the final
design was poor, with microstructures and holes in
the design, with a poor boundary detail.
Ultimately, a filter radius change frequency of
div r = 2 proved to be more successful at
preventing the appearance of holes and
microstructures, while also ensuring a good mesh.

The results of the density filter show a similar, if
not marginally better, behaviour to the sensitivity
filter, but with added computation time. The
refinement of intermediate densities produced a
good design with good boundary definition, and
with a good final mesh. The design obtained for
the refinement of solid densities is once again
similar to that previously obtained when using
sensitivity filtering, with the limitation of being
much more computationally heavy.

Ultimately, and since the use of a density filter
produced similar results with added computation
time, the use of the sensitivity filter is preferred.

There was also an attempt at implementing a
better adaptive filter radius, by making it
dependent on the size of the element being
filtered. This was unsuccessful and the designs
presented a border of unconnected gray elements
around the design, for both filtering techniques.
As a final attempt at producing a better design,
the algorithm was modified to perform more
filtering cycles, with decreasing filter radius, after
the final optimization. The results showed that
after optimization, lowering the filtering radius
produced some effects, smoothing out the border,
but having little impact in the design, especially as
the radius continues to decrease, where it has no
effect (see figure 9). This produced somewhat of a
good result, with compliance decreasing from
C = 35.8774 at the 5th iteration to C = 35.4125 at
the 6th, but nothing too significant, nonetheless,
one might use it to achieve a better description of
the border after the AMR algorithm has finished.

4.3. Validation: MBB-beam

Now that the parametric study identified the
better parameters to use in the algorithm, a
comparative study was performed to compare the
solution obtained using the developed AMR
algorithm, against a standard optimization
algorithm using a comparable uniform mesh.

The validation of the algorithm consisted of
analysing the solutions for four well known

Figure 9: Evolution of the topology optimized
design for a decreasing filter radius without
refinement. The last iterations are showed with
filter radius of a) r = 0.375, b) r = 0.1875, c)
r = 0.09375 and d) r = 0.046875.

problems, the MBB-beam, the cantilever beam,
the stocky cantilever beam and the ’wheel’. Only
the MBB-beam solution is presented here and one
should refer to the full dissertation for further
details.

For the MBB-beam problem, knowing that the
smallest element using the AMR algorithm after five
iterations is ESf we are able to extrapolate the size
of the uniform mesh using the following equation

N =
√

1
ESf

(12)

where N represents the factor by which we need to
multiply the amount of original elements along x
(nelx) and y (nely).
We are now able to compute N and obtain the

size of the comparable uniform mesh, so for the
original mesh of 32 × 24 and ESf = 1

256 we get
N = 16 and thus the uniform mesh is 512× 384.

To achieve a fair comparison between algorithms
the filter radius also needs to be taken into account,
the solution is to use a radius that encompasses an
equivalent number of elements on both algorithms.
For the MBB-beam problem the final filter radius
is r = 0.1875, which equates to a filter radius in the
uniform mesh of r = 3.

Now that all parameters have been established
the design on a comparable uniform mesh can be
computed, see figure 10.

Firstly, the results demonstrate a certain level of
mesh-dependency, since the design is not just a
better description of the design found at coarser
meshes, but a different, more detailed design.
When compared against the design from the AMR
algorithm (remember figure 5), and since this

8



Figure 10: Topology optimized design of a MBB-
beam using uniform mesh (C = 44.9256), with
details

mesh is comparable to that from the AMR
algorithm, this can be interpreted as further
evidence that the filtering technique was
insufficient for some parts of the design.

Nonetheless, the results show similarities, on the
lower right corner of the designs there is the
formation of a ’beam’ that is present in both, the
middle ’beam’ also splits in two in both designs
and the bottom decreases its height in both. The
main difference is on the top left corner and along
the small ’beam’ that originates in it (see detail in
blue in figure 10), on the AMR algorithm the
’beam’ remains single and the corner doesn’t bulge
out. This might be because of the phenomena
previously described that an AMR algorithm that
follows the optimize → refine strategy can ’lock’ in
local minima from the first iterations. The space
in the detail in orange, on the same figure, is also
present in the design from the AMR algorithm.

Analyzing now the compliance over time, see
that it decreased (see figure 8) with the iterations,
sometimes increasing as the cycles progress, this is
because of refinement creating elements that are
initially ’populated’ with intermediate densities,
being especially present from the 1st to the 2nd

iteration. The number of elements over time, as it
should, increased over time, except for the last
cycle, as this was exclusive for decreasing the filter
radius. Over time the number of elements
increased from the initial 768 to the final 7521, but
significantly less when compared to the uniform
mesh’s 196608.

Overall, the results from the AMR algorithm
were good with compliance decreasing from
C = 44.9256 to C = 35.4125, for the uniform mesh
and AMR algorithm, respectively, with the AMR
algorithm producing a comparable and adequate
design while using far less elements.

4.4. Performance

To analyze the performance of the AMR algorithm
the time spent computing the problems used for
validation was used. This was done using the
MATLAB function, cputime, which retrieves the

CPU time used by MATLAB. The code used for
comparison is the ’88 lines code’[9], and both
algorithms ran on MATLAB R2020b on an AMD
3900X CPU with 128GB of RAM. The results are
shown in table 1, which presents the average CPU
time spent by MATLAB over the optimization
iterations.

The results show that the optimization cycles
are similar or shorter in the uniform mesh
program, even though not the desired outcome,
this is because of the highly optimized code used
for comparison, since the less optimized ’99 lines
code’ [10] would take a prohibitively amount of
time to compute (at a cputime = 25 min per
iteration), this reveals the potential of an AMR
algorithm.

More interesting, is the fact that the whole
program, except for the ’wheel’ problem, is always
faster than that of the uniform mesh. This could
be because of two things, first, the AMR algorithm
required less iterations overall to solve the same
problem, leading to less computing time, and
second, the AMR algorithm, with all its
inefficiencies, presents itself as a way to achieve
comparable results using less computation time.

Table 1: Table of performance comparison between
the AMR algorithm and the ’88 lines code’ [9].
Note: the two times in the AMR algorithm is for
with and without extra filtering.

5. Conclusion
The main purpose of this work was to build an
easy to use and modify MATLAB code for
topology optimization using adaptive finite
elements, which has been successful.

Nevertheless, a number of shortcomings have
been identified that need to be addressed in order
to use the algorithm at its full potential.

Based on the results previously presented the
main limitation is related to the filtering
technique. The non-uniform nature of the mesh
makes the classic sensitivity filter inadequate, even
with the filter radius decreasing with every
iteration. The density filter behaved much better,
but came with heavier computational costs.

The refinement criteria proved to be effective at
selecting the intended elements and the algorithm
produced a good final mesh.

9



Despite the general use of for loops, the
developed algorithm showed that for most
problems, it requires less computational resources
than when compared with a traditional program
on a uniform mesh.

It is also important to acknowledge that the
designs obtained, even though crude in some ways,
always produced a good description of an
optimum design.

For future work, a better and more adequate
filter needs to be researched and implemented.
Furthermore, improving the computational
efficiency of the algorithm is necessary, since the
general use of for loops comes at the expense of
compute time. The implementation of
derefinement would allow further savings in
compute time by reducing the number of elements
in void regions. Lastly, the use of a MATLAB
function to calculate distance between all points
results in high memory usage, a different method,
to allow for larger problems, should be
investigated.

References

[1] Stephen W. Roper, Haksung Lee, Mongyoung
Huh, and Il Yong Kim. Simultaneous isotropic
and anisotropic multi-material topology
optimization for conceptual-level design
of aerospace components. Structural and
Multidisciplinary Optimization, 64(1):441–456,
2021.

[2] F Sousa, F Lau, and A Suleman. Topology
optimization of a wing structure. Engineering
Optimization 2014, page 507–512, 2014.

[3] Peter Dørffler Jensen, Fengwen Wang, Ignazio
Dimino, and Ole Sigmund. Topology
optimization of large-scale 3d morphing wing
structures. Actuators, 10(9):217, 2021.

[4] David J. Munk, Douglass J. Auld, Grant P.
Steven, and Gareth A. Vio. On the
benefits of applying topology optimization
to structural design of aircraft components.
Structural and Multidisciplinary Optimization,
60(3):1245–1266, 2019.

[5] Martin Philip Bendsøe and Noboru Kikuchi.
Generating optimal topologies in structural
design using a homogenization method.
Computer Methods in Applied Mechanics and
Engineering, 71(2):197–224, 1988.

[6] M. P. Bendsøe and O. Sigmund. Material
interpolation schemes in topology
optimization. Archive of Applied Mechanics
(Ingenieur Archiv), 69(9-10):635–654, 1999.

[7] Xu Guo, Weisheng Zhang, and Wenliang
Zhong. Doing topology optimization explicitly
and geometrically — a new moving morphable
components based framework. Journal of
Applied Mechanics, 81(8), 2014.

[8] Jikai Liu and Yongsheng Ma. A survey of
manufacturing oriented topology optimization
methods. Advances in Engineering Software,
100:161–175, 2016.

[9] Erik Andreassen, Anders Clausen, Mattias
Schevenels, Boyan S. Lazarov, and Ole
Sigmund. Efficient topology optimization in
matlab using 88 lines of code. Structural
and Multidisciplinary Optimization, 43(1):1–
16, 2011.

[10] Ole Sigmund. A 99 line topology optimization
code written in matlab. Structural and
Multidisciplinary Optimization, 21(2):120–127,
2001.

[11] Peter W. Christensen and Anders Klarbring.
An introduction to structural optimization.
Springer, 2009.

[12] Martin P. Bendsøe and O. Sigmund.
Topology Optimization: Theory, methods
and applications. Springer, 2003.

[13] Yuan Liang and Gengdong Cheng.
Topology optimization via sequential integer
programming and canonical relaxation
algorithm. Computer Methods in Applied
Mechanics and Engineering, 348:64–96, 2019.

[14] Ole Sigmund. Morphology-based black
and white filters for topology optimization.
Structural and Multidisciplinary Optimization,
33(4-5):401–424, 2007.

[15] K. Maute and E. Ramm. Adaptive topology
optimization. Structural Optimization,
10(2):100–112, 1995.

[16] Miguel A. Salazar de Troya and Daniel A.
Tortorelli. Adaptive mesh refinement in
stress-constrained topology optimization.
Structural and Multidisciplinary Optimization,
58(6):2369–2386, 2018.

[17] Shanglong Zhang, Arun L. Gain, and Julián A.
Norato. Adaptive mesh refinement for
topology optimization with discrete geometric
components. Computer Methods in Applied
Mechanics and Engineering, 364:112930, 2020.

[18] Shun Wang, Eric de Sturler, and Glaucio H.
Paulino. Dynamic adaptive mesh refinement
for topology optimization. ArXiv,
abs/1009.4975, 2010.

10


