
Topology Optimization of Flat Structures with Adaptive
Finite Elements

Diogo Miguel Fael Paraíso

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. José Arnaldo Pereira Leite Miranda Guedes
Prof. Hélder Carriço Rodrigues

Examination Committee

Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha
Supervisor: Prof. José Arnaldo Pereira Leite Miranda Guedes

Member of the Committee: Prof. Aurélio Lima Araújo

November 2021

ii

In memory of my grandfather Manuel.

Em memória do meu avô Manuel.

iii

iv

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

v

vi

Acknowledgments

Firstly, I would like to thank my supervisor, Professor José Miranda Guedes, for allowing me to work

with him, and especially, for his patience throughout this last year.

Secondly, to my parents, Cristina and Fernando, for their love, trust, and support, throughout this

particularly hard time that was University.

Lastly, to my friends, Guilherme Pinto and Guilherme Neves, with me since the beginning, and Rita,

the best person university has given me. A special thank you to you, you have made it all better.

vii

viii

Resumo

A otimização topológica, como um dos campos da otimização estrutural, tem vindo a ganhar ampla

utilização como ferramenta de projeto em problemas de todos os campos da engenharia e da

indústria, no entanto, a crescente complexidade dos problemas que estão a ser resolvidos está a

provocar um aumento do custo computacional necessário para resolvê-los. Os elementos finitos

adaptativos ou refinamento de malha adaptativo apresenta-se como uma solução natural para este

problema, reduzindo o número de elementos finitos e, portanto, o custo computacional.

Nesta dissertação, a otimização topológica de estruturas planas é abordada com recurso a

elementos finitos adaptativos. Para o efeito, um programa em MATLAB que utiliza elementos

quadriláteros de 4 nós foi desenvolvido para resolver o problema de otimização de energia mı́nima

(minimum compliance), com recurso ao modelo de Material Isotrópico Sólido com Penalização e

otimizando com recurso ao método do Critério de Otimalidade.

Para melhor compreensão do algoritmo foi realizado um estudo paramétrico, onde o impacto do

critério de refinamento de malha adaptativo e dos parâmetros de otimização foram testados. As

soluções ótimas obtidas com recurso ao algoritmo desenvolvido foram depois analisadas e

comparadas com as soluções obtidas com recurso a uma malha uniforme comparável. Os resultados

demonstram (1) que o algoritmo de refinamento de malha adaptativo produziu um bom

comportamento da malha e o refinamento foi limitado às regiões necessárias, (2) produziu resultados

adequados com consideravelmente menos elementos finitos, e (3) técnicas de filtragem adicionais

precisam de ser estudadas para utilizar a total capacidade do algoritmo.

Palavras-chave: Otimização topológica, Elementos finitos adaptativos, Refinamento de

malha adaptativo, Material isotrópico sólido com penalização, Malha não-uniforme.

ix

x

Abstract

Topology optimization, as a field of structural optimization, has gained extensive use as a tool in

design problems across all fields of engineering and industry alike, however, the growing complexity of

the problems being solved is making it more computationally expensive to solve them. Adaptive finite

elements or adaptive mesh refinement presents itself as a natural solution to this problem, by reducing

the number of finite elements and thus, the computational cost.

In this dissertation, the topology optimization of flat structures is approached using an adaptive finite

element algorithm. For this purpose, a MATLAB program using quadrilateral 4-node elements was

developed to perform a minimum compliance optimization, using the Solid Isotropic Material with

Penalization and solving it using the Optimality Criteria method.

To better understand the algorithm, a parametric study was conducted where the impact of the

adaptive mesh refinement criteria and the topology optimization parameters was tested. The optimum

designs using the developed adaptive mesh refinement program were also analyzed and compared

against the design obtained on a comparable uniform mesh. The results demonstrate (1) that the

adaptive mesh refinement algorithm produced a good mesh behavior and refinement was limited to the

necessary regions, (2) it produced adequate results with considerably fewer finite elements, and (3)

further filtering techniques need to be studied in order to better utilize the algorithm.

Keywords: Topology optimization, Adaptive finite elements, Adaptive mesh refinement, Solid

isotropic material with penalization, Non-uniform mesh.

xi

xii

Contents

Declaration . v

Acknowledgments . vii

Resumo . ix

Abstract . xi

List of Tables . xv

List of Figures . xvii

Nomenclature . xix

Glossary . xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Topic Overview . 2

1.3 Objectives . 2

1.4 Thesis Outline . 2

2 Background 3

2.1 Topology Optimization . 3

2.1.1 Problem Formulation . 4

2.1.2 Solution methods . 7

2.1.3 Difficulties . 9

2.1.4 Applications . 12

2.2 Adaptive Mesh Refinement . 12

2.2.1 Theory, difficulties and refinement criterion . 13

3 Implementation 15

3.1 Finite element method . 15

3.2 Algorithm implementation . 17

3.2.1 Pre-processing – Variables and Material Properties (lines 2-64) 19

3.2.2 Finite Element Analysis / Refinement Section (lines 66-478) 20

3.2.3 Optimization Section (lines 479-584) . 23

3.2.4 Final Stage - Plots and Outputs (lines 589-618) . 24

xiii

4 Results 25

4.1 Parametric Study . 25

4.1.1 Refinement Criteria . 26

4.1.2 Penalization power . 31

4.1.3 Volume fraction . 33

4.1.4 Filtering technique and radius . 35

4.2 Validation . 40

4.2.1 MBB-beam problem . 41

4.2.2 Cantilever beam problem . 43

4.2.3 Stocky cantilever beam problem . 45

4.2.4 ’Wheel’ problem . 47

4.2.5 Performance analysis . 49

5 Conclusions 51

5.1 Achievements . 51

5.2 Future Work . 52

Bibliography 53

A Parametric study 57

A.1 Results for different refinement criteria . 57

B MATLAB CODE 59

B.1 Topology Optimization with AMR algorithm . 59

xiv

List of Tables

3.1 Pseudo-code : Simplified AMR algorithm . 18

4.1 Table of performance comparison between the AMR algorithm and the ’88 lines code’ [10].

Note: for the AMR algorithm the optimization iteration shows two times, corresponding to

the time without and with the last filtering stage without refinement. 49

4.2 Table of performance for the refinement cycle of the developed algorithm. Note: the time

was measured in the last refinement iteration and is in seconds per element refined. . . . 50

xv

xvi

List of Figures

2.1 Three classes of structural optimization . 3

2.2 Penalization of intermediate densities . 6

2.3 Example of the checkerboard pattern . 9

2.4 Example of mesh-dependency . 10

2.5 Filter radius for filtering techniques . 11

2.6 Topology optimization Program Flowchart . 11

2.7 Topology optimization for maximization of the fundamental eigenfrequency 12

2.8 Topology optimization Program with AMR . 13

2.9 Mesh refinement . 13

3.1 2D finite elements . 16

3.2 Coordinate systems of FE analysis . 16

3.3 Pre-processing stage flowchart . 19

3.4 Refinement . 21

3.5 Mesh-incompatibility algorithm . 22

4.1 MBB-beam TO problem . 26

4.2 Evolution of algorithm for refinement criterion 0.2-0.7 . 27

4.3 Results of AMR algorithm for refinement criterion 0.2-0.8 27

4.4 Results of AMR algorithm for refinement criterion 0.3-0.8 28

4.5 Results of AMR algorithm for refinement criterion 0.4-0.7 28

4.6 Results of AMR algorithm for refinement criterion 0.4-0.9 28

4.7 Results of AMR algorithm for refinement criterion 0.5-0.7 29

4.8 Compliance for refinement criterion 0.2 - 0.8 . 29

4.9 Results of AMR algorithm for ’solid’ densities refinement 30

4.10 Results of AMR algorithm for p = 4 . 31

4.11 Results of AMR algorithm for p = 5 . 31

4.12 Results of AMR algorithm for p = 6 . 32

4.13 Compliance over time for different penalization power. 32

4.14 Results of AMR algorithm for f = 25% . 33

4.15 Results of AMR algorithm for f = 75% . 33

xvii

4.16 Result with uniform mesh for f = 75% . 34

4.17 6th iteration for an of f = 75% . 34

4.18 Sensitivity filter with constant filter radius of r = 1.5 . 35

4.19 Results for different radius change frequency . 36

4.20 Mesh detail for different radius change frequency . 36

4.21 Results of AMR algorithm with density filter for a refinement criterion of 0.2− 0.8 37

4.22 Results of AMR algorithm with density filter for a refinement criterion ’solid’ densities . . . 37

4.23 Results of AMR algorithm with density filter for a constant filter radius of r = 1.5 38

4.24 Compliance over time with the use of density filtering for a refinement criteria of 0.2− 0.8

and ’solid’ densities . 38

4.25 Results of AMR algorithm with sensitivity filter for a filter radius of r = 1.5ES 39

4.26 Results of AMR algorithm with density filter for a filter radius of r = 1.5ES 39

4.27 Results of AMR algorithm with sensitivity filter for a filter radius of r = 2ES 39

4.28 Results of AMR algorithm with density filter for a filter radius of r = 2ES 40

4.29 Design for sensitivity filter with decreasing filter radius without refinement. 41

4.30 Results for a MBB-beam using AMR algorithm vs uniform mesh 42

4.31 Design domain for the cantilever beam problem. 43

4.32 Results for a cantilever beam using AMR algorithm vs uniform mesh 44

4.33 Results for a cantilever beam on a comparable uniform mesh 45

4.34 Design domain for the stocky cantilever beam problem. 45

4.35 Results for a Stocky cantilever beam using AMR algorithm vs uniform mesh 46

4.36 Topology optimized design of a stocky cantilever beam in a coarse mesh 47

4.37 Design domain for the ’wheel’ problem. 47

4.38 Results for a ’wheel’ using AMR algorithm vs uniform mesh 48

4.39 Topology optimized design of a ’wheel’ in a coarse mesh 48

A.1 Results of AMR algorithm for refinement criterion 0.2-0.9 57

A.2 Results of AMR algorithm for refinement criterion 0.3-0.7 57

A.3 Results of AMR algorithm for refinement criterion 0.4-0.8 58

A.4 Results of AMR algorithm for refinement criterion 0.5-0.8 58

A.5 Results of AMR algorithm for refinement criterion 0.5-0.9 58

xviii

Nomenclature

Greek symbols

η Damping coefficient

ν Poisson’s ratio

Ω Design domain

ρ Density

Roman symbols

c Compliance

E Young’s modulus

F Load vector

f Volume fraction

H Weight factor

K Stiffness matrix

Λ \ λ Lagrange multiplier

L Lagrangian function

m Move limit

p Penalization power

U Displacement vector

V Volume

x Design variable

Subscripts

0 Initial

ad Admissible

xix

e Element

i, j, k, l Computational indexes

min Minimum

Superscripts

e Element

+ Upper limit

- Lower limit

mat Material

T Transpose.

xx

Glossary

1D One Dimensional.

2D Two Dimensional.

3D Three Dimensional.

AMR Adaptive Mesh Refinement.

CAD Computer Aided Design.

CPU Central Processing Unit.

FE Finite Element.

FEM Finite Element Method.

MATLAB Programming language and numeric computing environment.

OC Optimality Criteria.

QUAD4 Four-node Quadrilateral.

QUAD8 Eight-node Quadrilateral.

RAM Random Access Memory.

SIMP Solid Isotropic Material with Penalization.

TO Topology Optimization.

xxi

xxii

Chapter 1

Introduction

Topology optimization at its core, as one of the basic categories of structural optimization, has always

been present in the mind of engineers and thinkers alike. The need to find the optimum design of a

structure in order to solve a problem is intemporal. Finding that optimal design, before the advancements

in computational aided design (CAD), was always a major challenge and based on previous knowledge

and experimentation.

The main goal of this dissertation is developing an algorithm that produces optimum designs with

less computational resources, while being easy to use and modify, and relying on one of the

programming languages most used in education and research, MATLAB. This is to be done through the

implementation of a technique known as adaptive finite elements, which adaptively selects elements to

be refined before a new optimization cycle and thus reducing the need of a large number of finite

elements when computing the problem.

Firstly, the motivation for this dissertation is given in section 1.1, next an overview of topology

optimization in section 1.2. Followed by the objectives in section 1.3 and finally a quick outline of this

dissertation in section 1.4.

1.1 Motivation

As the field of topology optimization grows and matures, its use is becoming more common, with

numerous applications in both academia and industry alike. The advancements and availability of CAD

software made it the natural choice for solving problems such as the one of minimizing weight while

maintaining (or increasing) stiffness in structures like the body of a car.

In Aeronautics, for example, the use of topology optimization, often combined with manufacturing

restrictions, is increasingly used as a mean to save material, weight and fuel. In recent years, it has

been used to achieve an optimal design for an aircraft components, like the seat and seat legs [1]; in the

design of morphing wing structures [2, 3] and for the design of the landing gear and engine mount [4].

As the complexity of the problems being solved increases, there is also a growing need of more

computational capacity for solving them. An algorithm that produces results comparable to traditional

1

methods, but requiring less computational resources is of particular interest.

1.2 Topic Overview

Topology optimization (TO) as a subject has been researched for many years, dating back to 1988

when was first introduced by Bendsøe and Kikuchi [5]. Numerous methods have been developed since

then with the use of the homogenization method [5], Solid Isotropic Material with Penalty (SIMP) [6] and

more recent ones, such as the moving morphable components method [7].

The use of the SIMP approach, used to solve the 0-1 material problem, was able to overcome the

enormous computational requirements needed to solve the continuum problem and was quickly

popularized. Not without its problems, such as the presence of intermediate densities and

microstuctures, SIMP continues to be one of the most used and crucial methods of solving optimization

problems. This is especially true with the use of additive manufacturing and composite materials [8, 9].

1.3 Objectives

The main purpose of this dissertation is to develop an algorithm for solving the optimization problem

while using adaptive finite elements (also called, adaptive mesh refinement, AMR).

To achieve this, two MATLAB codes for topology optimization [10, 11] were considered and used as

a template to build the proposed algorithm. The program should be easy to use and modify, require less

computational resources when compared to using a uniform mesh, but still produce adequate results.

To better understand the influence of the user defined parameters a parametric study will be conducted.

Validation of the results against an optimization using a large uniform mesh will also be done.

Following this, a careful study of the results is done in order to understand its limitations and future

work is proposed to improve the implementation of the algorithm.

1.4 Thesis Outline

This dissertation is composed of 5 chapters, Introduction, Background, Implementation, Results and

Conclusions. The first chapter is this present introduction of the theme and dissertation. The second

focuses on the required technical background and literature review, where the topics of topology

optimization and adaptive mesh refinement are addressed. The third chapter is composed of a detailed

explanation of the developed algorithm, where a brief introduction to the finite element method is made

followed by the algorithm implementation. In chapter four the results of the algorithm are presented,

starting with a brief description of the problem, followed by a parametric study and validation against

different designs. Finally, in chapter 5, a careful conclusion on the results obtained as well as

suggestions for future work are presented. In appendix, some results and the MATLAB code can be

found.

2

Chapter 2

Background

This chapter introduces the results of the literature review done as a premise for this dissertation. It

provides general knowledge on theory, methods, difficulties and applications of Topology Optimization

as one of the basic categories of Structural Optimization, as first introduced by Bendsøe and Kikuchi [5]

in 1988 . A brief assessment of Adaptive Mesh Refinement strategies is also provided.

This chapter provides a theoretical summary of Topology Optimization in section 2.1, followed by a

brief overview of Adaptive Mesh Refinement in section 2.2.

2.1 Topology Optimization

As previously stated, Topology Optimization is one of the basic categories of Structural Optimization

(SO), with the others being Sizing Optimization and Shape Optimization (see Figure 2.1). As such, the

Figure 2.1: Three categories of structural optimization. a) sizing optimization, b) shape optimization and
c) topology optimization. The initial problems are shown at the left hand side and the optimal solutions
are shown at the right. Reprinted from Bendsøe and Sigmund [12, p.2].

general form of the problem is the same and can be simply described as finding the ’best’ (optimized)

solution to a design problem. This design is mathematically evaluated using an objective function,

f(x, y), which measures the performance of the design and represents the aim of the optimization

(maximizing or minimizing f). The objective function is dependent on the design variable (x) -

3

representing geometry - and the state variable (y) - representing displacement or force - and the

general problem takes the form [13]:

(SO)

minimize f(x, y) with respect to x and y

subject to

behavioral constraints on y

design constraints on x

equilibrium constraint

The TO problem can be described as a material distribution problem, whose solution defines the

distribution of material within a defined design domain (see Figure 2.1,c), and minimizes/maximizes the

objective function. For the purpose of this literature review, the focus will be on one of the most simple

design problems, minimum compliance design, in which the minimum strain energy (maximum global

stiffness) is the objective function.

2.1.1 Problem Formulation

As previously stated, the problem at hand will focus on solving the TO problem formulated as a

minimum compliance design. Starting by defining the problem as finding the optimal stiffness tensor

Eijkl(x) over the domain, Ω, we can introduce the energy bilinear form (internal work) as[5, 12]:

a(u, v) =

∫
Ω

Eijkl(x)εij(u)εkl(v)dΩ

with linearized strains εij(u) = 1
2 (∂ui

∂xj
+

∂uj

∂xi
) and load linear form (external work)

l(u) =

∫
Ω

fiuidΩ +

∫
ΓT

tiuids,

where f denotes body forces and t boundary tractions, and u and v are equilibrium and displacement

vectors, respectively. We are now able to write the general minimum compliance problem for continuum

structures as

min
u∈U,E

l(u)

subject to : aE(u, v) = l(v), for all v ∈ V , E ∈ Ead (2.1)

where a denotes the energy at the equilibrium u and displacement v, l the load and Ead denotes the
admissible stiffness tensors for the design. V represents the space of displacements that are compatible

with the Kinematic boundary conditions. Since equation 2.1 needs to be solved for a discretized domain,

using finite elements, one needs to rewrite it, taking the form [12],

min
u,E

uTKu

subject to : K(Ee)u = f , (2.2)

Ee ∈ Ead

4

where u are the displacements, f the load vectors and K the stiffness matrix, which depends on Ee,

the stiffness tensor for element e.

For our material distribution problem we are interested in determining the optimal placement of

isotropic material (or remain void) in our discretized design domain, represented by a finite element

mesh. This corresponds to viewing the geometry as a collection of black and white ’pixels’ that

represent a rough description of the optimal continuum structure. This implies that one of the previously

stated constraints, that weighs on the admissible stiffness tensors, can be written as

Eijkl = 1ΩmatE
0
ijkl , 1Ωmat =

1 ifx ∈ Ωmat,

0 ifx ∈ Ω \ Ωmat,

(2.3)

where the inequality

∫
Ω

1ΩmatdΩ = V ol(Ωmat) ≤ V

represents a limit on the volume(V) of material available and Ωmat the optimal subset of material points

that respect the admissible stiffness tensors. This means that we have formulated a discrete solution

to our problem and only black and white material points (0-1 values) are possible. The solution to

this integer problem leads to non-linear binary/integer programming problems which is computationally

heavy, since it results in many design variables/functions, limiting its application on large scale problems

[9, 12, 14, 15]. Nonetheless, numerous research papers, from various authors, have been published

on the TO integer problem (often using a linear mixed programming approach) and its application on

specific problems [16–20].

A popular way to address the problem is to make use of interpolation models for the material

properties so that it depends on a continuous function, this is achieved by modifying the stiffness matrix

so that it depends on a continuous function which can be interpreted as the density of the material. This

heuristic method of solving the discretized problem introduces a penalization method for intermediate

material points (values between 0-1), making them less favorable in terms of stiffness contribution per

material used, such that the design tends to a ”0-1” solution. One of the first methods was introduced

by Bendsøe and Kikuchi [5] using an homogenization method, followed closely by Bendsøe [21] where

a method using penalized intermediate densities was introduced, later popularized by Bendsøe and

Sigmund [6] with the name Solid Isotropic Material with Penalization; a number of other methods, with

and without penalized intermediate densities, have also been studied, namely, Rational Approximation

of Material Properties (RAMP) [22] and evolutionary algorithms [23], respectively.

Considering the SIMP method, equation 2.3 can be written as:

Eijkl = ρ(x)pE0
ijkl , p > 1, (2.4)∫

Ω

ρ(x)dΩ ≤ V ; 0 ≤ ρmin ≤ ρ(x) ≤ 1, x ∈ Ω

where the density ρ(x) is the design function and E0
ijkl the material properties of an isotropic material.

5

We can refer to ρ as density since the volume is evaluated as
∫

Ω
ρ(x)dΩ, and as previously stated, the

function interpolates the material properties between Eijkl(ρ = ρmin) = Emin and Eijkl(ρ = 1) = E0
ijkl,

that directly modifies the stiffness matrix (see equation 2.2). The use of a minimum density (ρmin),

slightly larger than zero, is essential to avoid possible singularities when solving the equilibrium problem.

For the implementation of the AMR algorithm, and since it provides easier implementation of different

filters, such as a density filter, the algorithm will use a modified approach [24], later explained in section

3.2.3. The penalization of intermediate densities for different values of p can be seen in figure 2.2. A

small reference to the importance of choosing the penalization power needs to be made without going

into too much details. In order to consider the SIMP model as a material model, i.e., with physical

significance to the densities provided, the power p must satisfy the following [12]:

p ≥ max
{ 2

1− ν
,

4

1 + ν

}
in 2D (2.5)

where ν is the Poisson ratio of the base material.

Figure 2.2: Graphical representation of the penalization of intermediate densities for the SIMP model.
Adapted from Christensen and Klarbring [13, p.189].

We can now write the entire discretized problem based on the SIMP interpolation where the objective

is to minimize compliance[11]

min
x

: c(x) = UTKU =

N∑
e=1

(xe)
puTe k0ue

subject to :
V (x)

V0
= f (2.6)

KU = F

0 < xmin ≤ x ≤ 1

where U and F are the global displacement and load vectors, respectively, K is the global stiffness

matrix, ue and ke are the element displacement vectors and stiffness matrix, respectively, x is the

design variables vector (to be interpreted as relative density), xmin the minimum relative density, N is

the number of elements used in the finite element (FE) mesh, p is the penalization power, V (x) and

V0 are the material volume and design domain volume, respectively, and f is the volume fraction (user

defined).

6

For the purpose of this review no further details will be given on any other interpolation method.

2.1.2 Solution methods

Now that we have formulated the entire problem (see equation 2.6) we need to discuss how to solve

it through computational methods, with the provision that the problem implies a design variable for each

discretized element, thus requiring efficient computational methods to solve.

It is well known that most topology optimization problems are non-convex, which brings the added

difficulty of solving them, since usually convergence is attained for local minima, which is difficult for

large-scale problems. To solve this issue one can make use of approximate explicit (and

convex/concave) subproblems that approximate the original problem and solve these instead.

There are several methods to solve the problem, such as the Optimality Criteria (OC) method,

Sequential Linear Programming (SLP), Sequential Quadratic Programming (SQP), the Method of

Moving Asymptotes (MMA) and others; with the OC method being the classical and often chosen

method, since it can provide an extremely efficient way to solve some optimization problems

[12, 13, 25]. For the purpose of this literature review, and since it was the method employed by

Sigmund [11], the Optimality Criteria method is the sole focus for this chapter, with brief mentions to

other methods.

Optimality Criteria Method

The Optimality Criteria method relies on finding and selecting designs that fulfill the necessary

conditions of optimality, and iteratively, select better and better designs in an attempt to find a global

minima (or maxima). These conditions of optimality come from the Lagrange function, so for the

problem at hand, see equation 2.6, we can write it as [12, 26–28]

L = c(x)− {KU − F} − Λ[V (x)− V0 · f)] (2.7)

where Λ is the Lagrange multiplier and the side constraints have been concealed, since we know that λ−

and λ+ are greater or equal to zero, and for the switching conditions (0−xmin) and (x− 1), respectively,

are zero, meaning that for intermediate densities (xmin < x < 1) are also zero. The optimality criteria

update scheme can then be formulated as [10–12]:

xnewe =

max(0, xe −m) if xeBηe ≤ max(0, xe −m)

min(1, xe +m) if xeBηe ≥ min(1, xe −m)

xeB
η
e otherwise

(2.8)

where m is a positive move limit, η is a numerical damping coefficient and Be is obtained from the

optimality condition as:

Be =
− ∂c
∂xe

Λ ∂V
∂xe

(2.9)

7

One should note that the value of xnewe is dependant on the present value of the Lagrange multiplier Λ,

meaning it must be chosen so that the volume constraint is satisfied. Since the volume of the updated

schemes is a continuous and always decreasing function of Λ we can use a bisection method to

determine its value. The value of the move limit m and numerical damping coefficient η must be chosen

by experiment and can be adjusted in order to obtain a more rapid and stable convergence of the

iteration scheme [12]. To complete the update scheme we must first obtain the derivative of the

objective function in respect to the design variable xe, also called sensitivity of the objective function,

which can be written as
∂c

∂xe
= −pxp−1

e (E0 − Emin)uTe k0ue (2.10)

The derivative ∂V
∂xe

is dependent on the size of the element, for unitary elements this assumes the value

one, for non-uniform elements, as is the case here, ∂V
∂xe

= ae, which is the area of the element.

Although a straightforward method for some problems, like the one at hand, it can be difficult to

implement in others, and different methods should be considered when dealing with non-structural

constraints, non-self-adjoint problems or when constraints are not physically intuitive.[12]

Computational implementation

With the basic outline of the problem already understood it is possible to implement the algorithm

computationally and solve the proposed problem. In a very summarized way, the algorithm must follow

these steps (adapted from Bendsøe and Sigmund [12, p.12-13]):

• Pre-processing:

– Choose a suitable reference domain and choose which part or parts of said domain should

be designed or should be left solid/void.

– Construct a finite element mesh for the structure.

– Construct the finite element spaces for the independent fields of displacements and the

design variables.

• Optimization:

– Make the initial design (e.g. homogeneous distribution of material).

Start of iterative part:

– For the distribution of density at hand compute, using the finite element method, the

displacements and strains compatible for the set equilibrium problem (use of the SIMP

interpolation method).

– Compute the compliance of the design (this is how we measure the success of the design

and is used to stop the iterations).

– Compute the update of the density variable based on the optimization scheme (OC method

in this case).

8

– Repeat the iteration loop.

• Post-processing

– Interpret the optimal distribution of material as defining a shape.

This is a very generalized implementation that can be used on any type of FE mesh and reference

design domain, one could also replace the use of the SIMP interpolation method for another equivalent

material interpolation method and/or change the optimization scheme used.

2.1.3 Difficulties

To complete the implementation of the computational calculation of our optimization problem we

must discuss complications and possible solutions to these. The two most important issues that arise

when using the standard density approach to topology optimization is the appearance of checkerboards

patterns and mesh-dependency. These refer to a checkerboard like design of alternating solid and void

elements that appear in the final design and to the difference in final design when solving the same

optimization problem with different discretizations, respectively.

The use of a filtering technique is then necessary to avoid these and ensure the existence of solutions

[12].

Checkerboard Problem

The appearance of a checkerboard like pattern (see figure 2.3) in the design is linked to the artificially

high stiffness that the discretization of the continuum causes, specifically due to bad numerical modelling

that overestimates the stiffness of checkerboards. It has been shown that in an uniform grid, of square

Q4 elements, the stiffness of a checkerboard pattern is comparable to the stiffness of a ρ = 1/2 variable

thickness sheet, for any applied loads [12]. It is then expected, that for the minimum compliance problem,

a checkerboard version as an optimal design.

To avoid this numerical instability a number of prevention techniques can be used, such as,

employment of higher order finite elements, use of the patch technique and filtering methods. The use

of other restrictions, usually employed for mesh-dependency, can also reduce the appearance of the

checkerboard pattern, since, in general, results in ’stronger’ constraints, solving the problem by

’compacting’ the set of feasible designs. [24, 29].

Figure 2.3: Example of the checkerboard pattern. Reprinted from Sotola et al. [30, p.6].

9

Mesh-dependency

The problem of mesh-dependency is well known in topology optimization and arrises from the fact

that for the problem previously formulated, more holes, without changing the structural volume, will

generally increase the efficiency of a given structure, i.e., the use of a different and finer mesh, would

result in the appearance of more holes leading to a more efficient structure (see figure 2.4). This is

counter intuitive, as one expects that the use of a finer mesh (mesh-refinement) would produce better

results, with the same optimal design but with a more detailed description of boundaries, not in a different

structure. This mesh-dependency, at more extreme cases, when refining the mesh, can lead to the

formation of a fine-scale internal structure lay-out, similar to microstructures [12, 29].

Figure 2.4: Example of the mesh dependence of the optimal topology for a MBB-beam. Solution for a

discretization with a) 2700, b) 4800 and c)17200 elements. Reprinted from Bendsøe and Sigmund [12,

p.30].

To solve this problem we can deploy the use of design constraints or filtering techniques [31]. The

previous being the one chosen by Sigmund [11] (sensitivity filter) and by Andreassen et al. [10]

(sensitivity and density filter) on their MATLAB implementation.

The use of a sensitivity filter has proven to ensure mesh independence in a highly efficient way, with

the added benefit of easy implementation. This is a purely heuristic filter that produces similar results to

local gradient constraints based filters. The filter works by modifying the sensitivity as follows [12]:

∂̂c

∂xe
=

1

xe
∑
i∈Ne

Hei

∑
i∈Ne

Heixi
∂c

∂xi
(2.11)

where Ne is the set of elements i for which the center-to-center distance ∆(e, i) to element e is smaller

than the filter radius rmin (see figure 2.5) and Hei is a weight factor defined by Hei = max(0, rmin −

∆(e, i)). The modified sensitivities are then used in the optimization scheme (OC method).

The use of a density filter can also solve the problems mentioned above by directly limiting the

variation of the densities that appear in the set of admissible stiffness tensor Ead by only admitting

filtered densities. Essentially, the filter transforms the original densities xe into:

x̃e =
1∑

i∈Ne
Hei

∑
i∈Ne

Heixi (2.12)

10

This new way to refer to the densities, x̃e, emphasizes the difference between the original densities xe,

which should now be referred to as design variables, and filtered densities x̃e, which refer to physical

densities. Equation 2.10 remains valid but is now in respect to the physical densities x̃e. The sensitivity

in respect to the design variables xj is given by

∂ψ

∂xj
=

∑
e∈Nj

∂ψ

∂x̃e

∂x̃e
∂xj

=
∑
e∈Nj

1∑
i∈Ne

Hei

∂ψ

∂x̃e
(2.13)

where ψ is the objective function c or the volume V .

Figure 2.5: Visual representation of the filter radius (R) and the affected elements (R = 1.2 element size

(ES) in red to R = 3.0ES in purple). Reprinted from Sotola et al. [30, p.9].

Now that every component of a TO computational implementation have been discussed, including

the necessary filtering techniques, its useful to schematically present the algorithm of a TO program,

see figure 2.6.

Figure 2.6: Flowchart of a topology optimization program. Adapted from Bendsøe and Sigmund [12],

Sotola et al. [30].

11

2.1.4 Applications

Now that the topology optimization problem, as a whole, is understood, it is relevant to briefly realize

the importance of the field of topology optimization. With the ever increasing complexity of structures

and problems of other fields, an efficient way to reach an optimum design is of extreme usefulness.

Topology optimization can be used to create lighter and/or stiffer structures, can be used in dynamic

problems, such as the optimization of vibrating structures [32, 33] (see example in figure 2.7), or even

in domains such as fluid design, where, for example, novel approaches use topology optimization to

minimize flow power loss (hydrodynamic drag minimization problem) [34].

Figure 2.7: Optimized topology for maximization of the fundamental eigenfrequency of a simply
supported Mindlin plate with 10% non-structural mass at the center and volume fraction of 60%.
Reprinted from Bendsøe and Sigmund [12, p.75].

2.2 Adaptive Mesh Refinement

Topology Optimization, as previously mentioned, can be very computationally heavy, since problems

are commonly solved using an uniform mesh with a large number of finite elements so as to achieve high

accuracy designs. As the TO problem is being solved regions of solid or void material form that don’t

require such a fine mesh, however, these regions are unknown a priori. So it is only natural that adaptive

mesh refinement be researched as a solution to making solving the TO problem more economical.

Thus, the purpose of AMR when applied to TO can be described as a way to obtain accurate results,

comparable to those obtained when using a uniform mesh, but through the use of considerably less

elements, by refining the mesh when and where necessary. This is not without risk, as the problem of

mesh-dependency can be exacerbated by the refinement (and subsequent refinement) of elements.

A number of different approaches have been published on how to integrate AMR in TO to improve

computational cost and accuracy. The earliest of these approaches was proposed by Maute and Ramm

[35], where it follows a strategy of using the previous optimization to compute the elements to refine

followed by optimization of the new mesh. Other techniques that follow the same rule (or a similar

variation), some with analysis error estimator and mesh quality indicators, have also been proposed by

Stainko [36], Costa Jr and Alves [37], Bruggi and Verani [38], Wang et al. [39], Lambe and Czekanski

[40] and others. Another approach is to use AMR after each design change in the optimization cycle as

proposed by Wang et al. [41], Zhang et al. [42], Salazar de Troya and Tortorelli [43].

12

The flowchart previously presented (see figure 2.6), now with AMR represented can be seen in figure

2.8.

Figure 2.8: Flowchart of a topology optimization program with AMR, following the optimize → refine
technique.

2.2.1 Theory, difficulties and refinement criterion

In order to implement a basic adaptive mesh refinement some modifications need to be made to

the topology optimization program. Without going into computational implementation details, a brief

summary of the theory involved is necessary to better understand the algorithm.

The original MATLAB program by Sigmund [11] uses bilinear quadrilateral elements (Q4 elements)

for the necessary discretization, and this is maintained for simplicity. The refinement of the mesh is done

by dividing the existing element into four equal elements of the same type, see figure 2.9 a). By refining

an existing element we are creating new nodes and some of those will be classified as ’hanging nodes’,

this designation is used to identify nodes that have a single-level mesh-incompatibility (again, see figure

2.9(b)).

Figure 2.9: Illustration of the mesh refinement and mesh incompatibilities that arise from it. The
refinement represented at a) satisfies single-level mesh-incompatibility, while refinement b) does not.
Circles in red indicate ’hanging nodes’. The blue tint means the element is marked for refinement.

13

In order to fully compute the mesh the following constraint needs to be imposed to these nodes

ui = (
uj + uk

2
) (2.14)

where the subscript i denotes the ’hanging node’ and j and k the nodes at the vertices of the same

edge. This constrains the displacement of the ’hanging node’ to the displacement of its adjacent nodes.

In order to auto impose this for element i, the element stiffness matrix needs to be modified with the

following:

uTe keue =

=

ul

um

ui = (
uj+uk

2)

uj

T
k11 k12 k13 k14

k12 k22 k23 k24

k13 k23 k33 k34

k14 k24 k34 k44

ul

um

ui = (
uj+uk

2)

uj

=

=

ul

um

uk

uj

T
k11 k12

k13
2 (k14 + k13

2)

k12 k22
k23
2 (k24 + k23

2)

k13
2

k23
2

k33
4 (k342 + k33

4)

(k14 + k13
2) (k24 + k23

2) (k342 + k33
4) (k334 + k44 + k34)

ul

um

uk

uj

(2.15)

This method for solving the mesh-incompatibility only allows for single-level incompatibilities, for the

level-two incompatibilities shown at figure 2.9 b) (the upper red circle shows a node that would be

constrained by an already ’hanging node’) the explained method does not work. Since an

implementation for a level-two incompatibility is non-practical, a simple way to solve this is to force the

refinement of the element adjacent to it (again, see figure 2.9 b), element in blue) so as to eliminate the

level-two incompatibility.

It is also important to note some changes to the problem formulation previously presented, see

equation 2.6. Since the discretized domain now consists of different sized elements, as previously

mentioned, the derivative of V in order of the design variable is ∂V
∂xe

= ae.

The next step in an AMR is to define the refinement criterion. Several methods have been used,

namely, selecting the elements that define the design boundary [42] or selecting the elements that

define the design [41]. In a material problem this can be approximated by selecting the intermediate

densities, i.e., ρt− ≤ ρe ≤ ρt+ where ρe is the density of element e and ρt− /ρt+ represent the lower and

upper threshold; or by selecting the solid densities, i.e., ρt− ≤ ρe ≤ 1. This is the way the developed

algorithm selects the elements to be refined.

14

Chapter 3

Implementation

The main purpose of this dissertation is to implement a MATLAB algorithm for topology optimization

with adaptive mesh refinement. For this, the MATLAB code written and published by Sigmund [11] in

“A 99 line topology optimization code written in Matlab” and Andreassen et al. [10] in “Efficient topology

optimization in MATLAB using 88 lines of code” was used as a foundation for the implementation of the

adaptive mesh refinement algorithm, with the necessary modifications for a non-uniform finite element

mesh. The code produced aims at a simple and easily understandable algorithm that is capable of a

more efficient topology optimization by using AMR. The use of MATLAB allows for easy readability and

modification without the need for substantial coding knowledge.

Here, the detailed implementation of a finite element method (FEM) using MATLAB for the purpose

of topology optimization with adaptive finite elements is explored.

Firstly, a brief mention of the finite element method is made is section 3.1, followed by the detailed

implementation of the algorithm in section 3.2.

3.1 Finite element method

The finite element method is a widely used computational method for solving partial differential

equations that describe a discretized problem, either be it from structural mechanics or

thermodynamics. To solve the problem, the FEM discretizes the problem into small parts, called finite

elements. These can be of three basic groups, line elements, planar elements or solid elements,

depending on whether the problem is 1D, 2D or 3D, respectively, with each group having different types

of elements for different applications. For a 2D application, like the one at hand, two different types of

elements can be used, triangular or rectangular elements (see figure 3.1). With each having its

advantages and disadvantages, the most common choice is the QUAD4 element (or sometimes just

called Q4), which provides good results without the need for the extra computational cost associated

with QUAD8 elements. The element used in the development of the MATLAB algorithm is the QUAD4

element.

Like all finite element method implementations two coordinate systems are needed, a local and a

15

Figure 3.1: Two common element types in 2D finite element analysis. TRI3 elements on the top left,
TRI6 on the bottom left, QUAD4 on the top right and QUAD8 on the bottom right.

global coordinate system. The local coordinate system is used for the numerical computation of the

element stiffness matrix, whereas the global system is used to define the finite element domain being

discretized (see figure 3.2)

(a) Local coordinate system for a
QUAD4 element

(b) Global coordinate system for a domain with 12 elements

Figure 3.2: Coordinate systems for the finite element analysis. Reprinted from [44] (left) and from [10]
(right).

For a domain discretization using only square QUAD4 elements, the assembly of the global stiffness

matrix can be made knowing that the element stiffness matrix for non-hanging nodes is:

Ke =
E

1− ν2
∗

3−ν
6

1+ν
8 − 3+ν

8 − 1+3ν
12 − 3+ν

12 − 1+ν
8

ν
6

1−3ν
8

3−ν
6

1−3ν
8

ν
6 − 1+ν

8 − 3+ν
12 − 1+3ν

8 − 3+ν
12

3−ν
6 − 1+ν

6
ν
6 − 1+3ν

8 − 3+ν
12

1+ν
8

3−ν
6

1−3ν
8 − 3+ν

12
1+ν

8 − 3+ν
12

3−ν
6

1+ν
8 − 3+ν

12 − 1+3ν
8

Sym. 3−ν
6

1−3ν
8

ν
6

3−ν
6 − 1+ν

8

3−ν
6

(3.1)

16

Then, using the stiffness matrix above and the one shown in equation 2.15, the discretized problem

can be solved for the equilibrium described as [K]{u} = {F}, for a given displacement (U) and load (F)

vectors.

3.2 Algorithm implementation

This section discusses, in detail, the implementation of the algorithm, starting by giving a brief

introduction to the programming language, MATLAB. For easier understanding please refer to appendix

B.1 for the entire code.

MATLAB, which is short for ”Matrix Laboratory”, didn’t start as a programming language, but as a

simple FORTRAN program to allow simple access to a matrix calculator. The program eventually evolved

to the language we know today, with matrix mathematics at his core and developed with engineers

and scientists in mind. MATLAB is now a powerful computational tool, widely used in education at

universities, in industry and academia for research. This characteristics, combined with its ease of use,

made MATLAB a natural programming language to develop the algorithm, further exacerbated by its use

for the development of the original topology optimization code, in which this algorithm is based.

The first step was identifying the several sections of code used in the original programs and its

functions, in a simple description the sections can be described as a “Finite Element Analysis” and

“Optimization Loop”, following the scheme previously showed in figure 2.6. For both sections some

parts could be transcribed, usually with minor changes, to the new code, with most MATLAB functions

remaining the same or being replaced with functions that produce a similar outcome, with the most

common change being the implementation of loops, since its no longer possible to use vectors in all

situations. Since the use of vectorized loops was one of the main efficiency gains achieved by the

authors in “Efficient topology optimization in MATLAB using 88 lines of code” [10, p.2], the present

code is expected to be computationally heavier, especially when constructing and refining the mesh. To

achieve the desired outcome of adaptive mesh refinement a new section needed to be implemented, a

“Refinement Section”, this section is intertwined with the “Finite Element Analysis” section and is run as

a whole in the second part of the program.

The MATLAB code, being an adaptation, is based on the same optimization strategy that was used

on the original codes, described by the authors as a “standard topology optimization code” [10]. This

means the algorithm uses the SIMP interpolation method along with the OC method for optimization with

a sensitivity or density filter. Thus, the main focus of the code implementation will be on the necessary

adaptations and refinement section.

The program can be called using the prompt:

fem ite(nelx,nely,rmin,ite max,filter type)

where nelx and nely are the number of elements in the horizontal and vertical directions, respectively,

rmin is the filter initial size, ite max is the number of optimization cyles that the program will compute

17

and output, and filter type selects the type of filter (0 for sensitivity filter, 1 for density filter). Other

variables, such as volume fraction, which is also the initial (guess) density of each element, and

penalization power, which were prompts in the original code, are now defined in the pre-processing

section along with other important variables, like the name of the directory where the outputs will be

saved, material properties, the refinement criteria bounds (crt low and crt high are ρt− and ρt+ ,

respectively), the frequency of filter radius change and the boundary conditions, all of these can be

edited by the user.

The code can be divided into four parts, the initial starting stage (pre-processing), the finite element

analysis/refinement, the optimization loop, and the final stage (post-processing). Since the

computational code is one of the primary outcomes of this dissertation an extensive and detailed

explanation of each part implementation will be given below so that anyone can easily modify it to best

fit its needs. A pseudo-code of the implemented algorithm can be found bellow (see table 3.1).

Table 3.1: Pseudo-code : Simplified AMR algorithm

Algorithm 1 Simplified AMR algorithm
1: procedure femite(nelx, nely, rmin, ite max, filter type) . program prompt
2: Pre-processing stage . Starting variables and material properties
3: while Infinite loop do
4: Refinement/FE Stage
5: if refine == ’yes’ then
6: procedure REFINEMENT ALGORITHM
7: Numbering of new nodes
8: Update node connectivity matrix
9: Registry of refinement in ’ledger’

10: Update coordinate system
11: Update possible node constraints (for single-level mesh incompatibility)
12: Update notes at design boundary (if applicable)
13: Update DoF connectivity matrix
14: Update area matrix
15: Detecting and solving two-level mesh incompatibility
16: Assign old element density to new elements
17: Constraint ’hanging nodes’ . use of node constraints matrix
18: Compute [KE] for constrained elements and then [K]
19: end procedure
20: elseInitial Iteration
21: Uniform mesh solution
22: end if
23: procedure OPTIMIZATION ALGORITHM
24: TO algorithm with small modifications to for non-uniform mesh
25: end procedure
26: Post-processing stage . Plots and Outputs
27: if itemax == ’Inputted maximum number of iterations’ then
28: break
29: end if
30: AMR Criterion
31: end while
32: end procedure

18

3.2.1 Pre-processing – Variables and Material Properties (lines 2-64)

As previously mentioned, the pre-processing stage houses the initialization of important variables,

such as the reference design domain, the initial finite element mesh and material properties, and this

algorithm is no exception. A summary of the pre-processing stage can be found in figure 3.3.

The program starts by defining starting variables, such as the penalization power (penal), volume

fraction (volfrac), frequency of filter radius change (div r), the lower and upper bounds of the refinement

criteria (crt low and crt high, respectively) and the name used for the directory where the outputs will

be stored, which is immediately created. The material properties are also immediately defined, E0 is the

Young’s modulus, Emin is the artificial Young’s modulus for the void regions, nu is the Poisson’s ratio

and the element stiffness matrix for a square element, KE, is calculated using equation 3.1.

Figure 3.3: Flowchart for the ”Pre-processing” stage, altered to reflect the implemented algorithm.

The program then creates an initial degree of freedoms connectivity matrix, based on the number of

elements inputted by the user, that will be used in the following sections, as well as a connectivity matrix

based on node numbers with element identification.

This is followed by the creation of several other variables, non existing in the original code, such as

an element area matrix (created simultaneously with the node connectivity matrix) , a node coordinate

matrix and an initial design domain boundary matrix, that identifies nodes at the boundary. This

boundary matrix is created knowing that the design boundary is quadrangular in shape and needs

modification for other design domains, the matrix is a binary identification system, where 1 represents a

node at the boundary. Since the algorithm is being implemented from scratch there is a need to

implement such variables, considering there is no straightforward way (for a non-uniform mesh) to do

19

some verifications along the way without these variables; the coordinate system is also used in the last

stage for plotting. It is worth mentioning that the program doesn’t define the boundary conditions at this

stage, instead, they are defined at the end of the refinement cycle, where the program computes the

results of the equilibrium equation for the initial mesh.

3.2.2 Finite Element Analysis / Refinement Section (lines 66-478)

After the starting stage of the program the code is completely written within an infinite while loop that

stops with a break command when the number of iterations reaches the number inputted by the user, this

is because the refinement process is written to work in a loop, i.e., after the initial mesh an optimization

cycle follows, the refinement criteria then outputs the elements to be refined and a refinement cycle

is started again, this is then followed by an optimization cycle and so on, until the break command is

issued. Please see algorithm 1 for a summary of the steps needed.

Speaking in particular of the refinement section, the first step is identifying if it’s the initial iteration, if

this is the case, and since the initial mesh is always uniform and generated using user inputs, the same

as if we were using the original programs, the program uses the same code to generate it and is then

used as a starting point and no refinement takes place. This means that the If condition in which the

refinement section is run first selects if its a starting iteration or a refinement iteration, if it’s the first, the

program renames and creates variables so that they can be used in the optimization loop without the

need to identify, again, if it’s a starting iteration; if its the second, meaning it’s a refinement iteration, we

enter the refinement code, where the bulk of the programming work was done.

Since the initial iteration code is only eight lines long, and easily comprehensible after explaining

the refinement iteration, we will focus only on the last. The program starts by initiating a while loop

(line 74) that will refine the elements present in the vector refinar, this loop will be active until all

elements of the vector have been refined; an updated node and degree of freedom (DoF) connectivity

matrix are the primarily output of this loop (ending in line 337). In more detail, the program searches

for the element to refine in the existing node connectivity matrix and reads and stores the four nodes

that identify it, after this, and for compatibility issues, the program checks if this is the first element

refinement or a subsequent one, the only difference is the way the new nodes will be numbered, since

the nodes created from the first refined element will always be new, so there is no need to check for node

repetition. This node repetition check is important since the program doesn’t renumber the nodes for

each new mesh, but simply adds new nodes to the already existing one, meaning repetitions can occur

in adjacent elements when they are both refined. As seen on figure 3.4, when elements are refined up

to five new nodes can be created, four in the middle of the edges that make the original element and

one middle node; the middle node will always be new and there is no need to check for repetitions, but

the other four nodes can either be new or already exist if the adjacent element has already been refined,

this is the case if the element marked in blue tint is refined, then the node circled in black would be a

repeating node. An example of said repetition check can be seen in lines 81-95, where the code checks

for a “left” node repetition (the left node is the node that will appear in the middle of the left edge of

20

Figure 3.4: Illustration of the mesh refinement and the newly created nodes, indicated by the red circles.
The circle in black indicates an already existing node in case of refinement of the element in blue.

the original element), assessing whether the node already exists or if there is a need to create a new

node(lines 82-91). This repetition check is done using the node connectivity matrix and going line by line

to check for the existence of a node between the nodes that make the side in question, in this example,

the left side, if it doesn’t exist the program creates it and updates the maximum node number, used for

the next verifications (lines 92-95).

It is during this loop that variables that will be used later on are created and updated, such as

a coordinate matrix (coordinates), a registry of all the original elements and subsequent refinements

(registry), a matrix where the area of each element is stored (area), the nodes at each side of the

one created (node restrictions – they will be possible constraints to the node, if it’s a ’hanging node’,

remember equation 2.14) and a boundary matrix that identifies all the elements at the boundary of

the design domain (fronteira). As previously stated the node and DoF connectivity matrices are also

updated with the new elements, and the originating element is deleted. It can be useful to understand

how the coordinate system was implemented, the program computes each node’s coordinates by using

the coordinates of the original (refined) element and knowing that the new nodes will always be at half

the distance between the original ones.

It is also important to note a small piece of code placed near the end of the loop (lines 272-323),

this is a final verification, done after the last element has been refined, designed in order to solve the

mesh incompatibility mentioned in section 2.2.1, this issue arrises from the way the program constrains

floating nodes that are created when an element is refined. In order to solve the problem of level two

incompatibilities, which occurs when an element is four times smaller than that adjacent to it, the program

checks for a possible incompatibility and refines the adjacent elements, which removes the mentioned

incompatibility by downgrading it to a single-level incompatibility (remember figure 2.9). This is done in

a simple but crude way, using the area matrix the program searches for smaller elements in comparison

to those four times bigger, after identification of the elements, and since the program doesn’t know the

location of each element a priori, except that of the original elements, we use the registry of element

refinements and place each small and large elements at the location of its original elements, and then

refine all the elements inside of the large original element. This is done because of the computational

intensive calculation that is to calculate the distance between elements, so this is an easy way to,

21

without knowing what elements are next to each other, be able to solve the mesh-incompatibility. To

further illustrate the algorithm that solves this problem a basic scheme was made, see figure 3.5, here

illustrating the initial problem (on the left) and the solution (on the right); the initial size elements are in

gray, the blue elements have been refined once and the orange elements have just been refined. The

mesh on the left illustrates the stage of the mesh at which the two-level mesh-incompatibility is detected,

this problem was created by refinement of the element in orange, to solve this we need to refine the

elements marked with a blue circle. But since the program doesn’t know the location of each newly

created elements it solves this by refining all the elements that have been originated by the elements in

green.

Figure 3.5: Illustration of how the program solves mesh-incompatibilities. On the left is the problematic

mesh, on the right is the solved mesh.

Since we use the initial element location, this technique produces the expected outcome of resolving

the incompatibilities but with the disadvantage of losing fine control over each large element, which

means that some elements will be refined that didn’t require it (the green elements on the right that

weren’t marked by the blue circle), in other words, the finer the initial mesh the better the outcome of this

technique.

At the very end of this loop (lines 324-339), the program assigns the element density computed at

the previous iteration to the subsequent elements originated from the refinement; this piece of code is

only active after the first optimization, since it’s the source of the density vector used here.

After the loop as been finished the program identifies all the possible ’hanging nodes’ and then

removes those at the design domain boundary (since they aren’t true ’hanging nodes’), leaving us with

all the real ’hanging nodes’ and those that need to be constrained. The constraints are applied (lines

359-389) using a temporary copy of the node connectivity matrix, for easier coding, meaning the

program then needs to transform it back into a DoF connectivity matrix (lines 391-402) before using it to

compute the global stiffness matrix, K. Using the previous information, and because the elements

where constraints have been applied don’t use the “standard” element stiffness matrix, KE, the

program computes (lines 403-434) the required element stiffness matrix for each constrained element,

KE e, and then uses it to generate a required variable to compute K (lines 435 - 444). With all the

necessary variables generated, the program can now compute the global stiffness matrix and the

22

subsequent displacement matrix (lines 456-478), using the user defined boundary conditions (lines

461-464).

The refinement section of the code ends here, in line 478, with all the necessary variables ready for

the optimization cycle.

3.2.3 Optimization Section (lines 479-584)

The optimization loop is almost a complete transcription of the original code, with the necessary

adjustments and modifications needed, namely the fact that there are individual stiffness matrices for

each element since not all are equal, as was the case in the original code, and that the filter needed

a way to calculate the distance between elements. In this optimization section of the code it is also

included all the necessary outputs used in the post-processing for plots and variable outputs that will be

stored in the user defined directory, such as a registry of compliance over time.

The program starts by checking whether it’s an iteration where the radius of the filter will need to

be reduced or not (lines 482-484), this is important due to the nature of an adaptive mesh refinement,

where different sized elements will appear, leading to the need of a smaller radius for the filter as the

size of the elements decreases. In line 486, the user defined optimization convergence criterion can be

changed according to the user needs. The actual optimization loop (lines 504-583) starts after a few loop

variables and other needed variables are defined, for example, the name of the plots and other outputs

names. As previously stated, the optimization loop is considered a ’standard topology optimization’

loop, and is very similar to the original code, with the first necessary adjustment on line 503, where a

’for’ cycle needed to be implemented in order to separate the computation of the compliance and its

sensitivity, because of the different element stiffness matrices; the program goes row by row on the DoF

connectivity matrices and for each row checks whether or not is a constrained element, in which case

it needs its own, previously computed, element stiffness matrix. Its important to note the use of the

modified SIMP approach, as previously mentioned, for easier implementation of the density filter [10],

with the only modification being

Ee(xE) = Emin + xpe(E0 − Emin), xe ∈ [0, 1] (3.2)

with the sensitivity of the objective function as

∂c

∂xe
= −pxp−1

e (E0 − Emin)uTe k0ue (3.3)

The next necessary adjustment can be seen in the filtering function (called in lines 528-532); for the

filter to operate it needs to know where each element is, this is where the coordinate system previously

computed is needed, the program uses the coordinates of each node to compute the centroid of each

element (lines 667-723) and once all the centroids have been computed it uses that information to

compute a matrix with the distance between all elements (line 696); this is where one of the limitations

of the program is, being a RAM - Random Access Memory - intensive process, that scales with the

23

number of elements in the mesh). With the distance between elements stored in a variable, variable

that will only be computed once throughout the optimization cycle, the filter can now operate normally

(lines 698-723) for the remaining of the cycle. It’s important to note the use of the MATLAB function

squareform that allows for a more readable matrix, adding to the easy adaptation of the filtering code.

The optimality criteria method remains practically the same (lines 534-550), with a move limit of

m = 0.2 and a damping coefficient η = 1/2, with minor changes in lines 537 and 543, where the different

size elements needed to be taken into account, hence the appearance of the variable “area” that wasn’t

previously there. After each optimization iteration, and until a convergence is reached, the code has

some new variables and verifications, for example, the program stores the compliance history and to

ensure that we don’t end up in a very big cycle, if convergence is not reached within a user defined

amount of iterations (max opt ite), or if the the variable change is approximately the same for a specified

number of iterations(max change acc), ”convergence” is forced and the program jumps to its next step.

Finally, this is where the optimization loop ends and the user defined convergence criteria will be

checked; the same criteria as the original code is used, meaning that it reaches convergence when,

between two consecutive designs, the change in design variable is less than 1%.

3.2.4 Final Stage - Plots and Outputs (lines 589-618)

The program now enters its final stage; after each optimization cycle the program saves a number

of useful variables, such as the compliance, displacement and densities; it also plots, with and without

the mesh and stores the plots to the specified directory. The node matrix and coordinate matrix are

also stored so that it’s possible to posteriorly plot the densities. It’s also of note that a new way to plot

(lines 630-665) the densities was needed, since the mesh is no longer uniform the original way to plot

the densities no longer works. The function used to plot the mesh is a simple code that extracts the

coordinates of each node and stores it in a “X” and “Y” variable, those can than be used to plot the

elements and fill them with the corresponding densities.

Finally this is where the codes ends with two possible outcomes, if the user specified number of

optimization iterations has been reached (line 608) the code breaks, leaving the infinite loop and ending

the program, if that’s not the case the code continues, the elements to be refined are defined using the

AMR criterion and the code starts again from the Refinement Section. This last possibility is coded on

line 617, which as previously stated selects the new elements to be refined. This is done by selecting

the elements that are within specified density bounds. The user can modify the refinement criterion

by changing the way the program selects the elements and storing them in the vector, refinar. This

contributes to the requirement of a straightforward and easy to modify code.

24

Chapter 4

Results

In this chapter the results of several topology optimization problems are presented along with a

parametric analysis and performance comparison with the original code [11], as well as the optimized

code [10].

This chapter will follow the sequence in which the studies were conducted. Firstly, it starts by

presenting a brief description of the problem used for an extensive parametric study, followed by the

parametric study itself in section 4.1, and secondly, a validation of the algorithm is made by comparing

against several known problems, followed by a brief performance analysis, in section 4.2.

4.1 Parametric Study

In order to try to select the best parameters in which to run the algorithm, a parametric study was

conducted. For this, the parameters used by the original authors were used as a starting point, when

appropriate. For the entire study the MBB-beam problem, mentioned bellow, was considered. Unless

stated otherwise, the volume fraction (equal to 50%), penalization power (the usual value of p = 3

[11]), filter radius (rmin = 1.5) and the filter radius change frequency (divr = 2) will remain constant. The

convergence criterion remains the same as the original codes, at less than 1% for consecutive change in

design variable. To ensure results in a timely manner the optimization iterations were kept at a maximum

of 1000 per cycle, unless stated otherwise. The number of iterations was kept at 5 to ensure a maximum

refinement of four times per element.

Problem Description

Like the original code presented by Sigmund, the TO of a MBB-Beam was chosen (with symmetry

boundary conditions) as a main comparison problem. This is not only for simplicity sake, but as well

because it’s a very well documented problem. As seen in figure 4.1, it is a simple problem with a

rectangular design domain, this makes the programming of the design much simpler, since the

boundary is quadrangular and we can use this to (in a simple way) code the ’boundary matrix’

previously mentioned.

25

Figure 4.1: Illustration of the symmetric MBB-beam design domain, boundary conditions, and external
load for the topology optimization problem. Reprinted from Andreassen et al. [10, p.2].

The parametric study is important to better understand the behaviour of the algorithm to changes in

the several AMR and optimization parameters and subsequently select the ’best’ parameters, that will

be used in later studies. The mesh considered consists of 32×24 elements, this was selected in order to

have a sufficiently large initial mesh, without compromising the number of AMR iterations, since a larger

initial mesh would prove too heavy for the available computational resources. Other parameters, such

as the stiffness of the material (E0 = 1), the stiffness of void regions (Emin = 1e−9) and the Poisson’s

ratio (ν = 0.3), remain constant throughout.

4.1.1 Refinement Criteria

First, establishing the ”baseline” refinement criteria in which all other problems were run is needed.

As previously mentioned (see section 2.2.1) we will approach this in two ways, refinement of the

intermediate density elements and refinement of ’solid’ elements. In order to only change the

refinement criteria the volume fraction, penalization power, filter radius and the filter radius change

frequency will remain constant as previously mentioned. For simplicity the filtering technique is also

kept constant and is a sensitivity filter.

Refinement of intermediate densities

For the parametric study a number of different density limits were selected, for the lower limit the

study focused on four densities, {0.2, 0.3, 0.4, 0.5}, and for the upper limit three densities, {0.7, 0.8, 0.9}.

So as to not burden the text with repeated results the first iteration will only be shown once, since it

represents the solution on a uniform mesh. It was also decided to limit the number of iterations to five.

The evolution of the AMR algorithm by iteration will only be shown once, for the first density range, and

only the last solution will be presented for the remaining.

Firstly, figure 4.2 shows the result for the first interval, 0.2 − 0.7, where the evolution of the design

can be seen, along with the resulting mesh. The subsequent figures, 4.3 to 4.7 will show a short version

for the additional intervals (some results for some intervals were omitted and can be found in appendix

A.1).

26

(a) Resulting topology optimized design

(b) Resulting mesh

Figure 4.2: Evolution of the topology optimization algorithm design with five iterations and final resulting

mesh, for a refinement criterion of 0.2− 0.7.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.3: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.2 −

0.8.

27

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.4: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.3 −

0.8.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.5: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.4 −

0.7.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.6: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.4 −

0.9.

28

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.7: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.5 −

0.7.

After analyzing not only the final design, but also the final mesh, it’s possible to exclude the narrowest

intervals, those starting at 0.5, this is because of poor design boundary, as one can see in figure 4.7

a), also visible on the same figure is the lack of definition on the resulting mesh. Not quite to the

same extent, the intervals starting with 0.4 suffer from the same problem, with rough ’edges’ around the

boundary especially seen at interval 0.4−0.7 (see 4.5), with better definition are the remaining intervals,

0.4 − 0.8 and 0.4 − 0.9. These last two also suffer from the appearance of holes in the structure, which

might be, again, due to the poor selection of all the boundary (see figure 4.6 b)). The better results

seem to appear when selecting the interval 0.2−0.8, with the highest ’range’ resulting in better definition

of the boundary, as can be seen in figure 4.3. The results edge those from the intervals starting with 0.3,

which with satisfactory results don’t select the boundary as well (see figure 4.4 b)). It is also of interest

to see the behavior of the compliance over time for the interval chosen, see figure 4.8. Even though the

compliance over time is lower with the use of this AMR criterion the same can be said for the others,

making it a less than an ideal way to judge the ’performance’ of the criteria.

Figure 4.8: Evolution of the compliance over time for the AMR criterion of 0.2− 0.8.

29

Refinement of ’solid’ densities

As previously stated another strategy is to refine the densities which are approximately solid, this

is done by choosing every density bigger than 0.8 (see code, line 614). This essentially produced a

very predictable mesh that reliably represents the resulting design (see figure 4.9), proving to be a good

way to select the ’solid’ densities. At first glance the resulting design is very well behaved around the

boundary and reduces the number of elements when compared to a uniform mesh, but with each ’AMR

→optimization’ cycle the compliance increases (see figure 4.9 c)), indicating a less stiff design. This

is not necessarily a bad behaviour, since a cleanlier boundary description will increase the number of

elements leading to a more ’realistic’ design with possibly lower compliance. It’s also important to note

that this method is more computing intensive since it leads to considerable more elements and more

RAM usage, in fact, four cycles was the limit of cycles before using all the available RAM (as previously

mentioned, the way the distance between centroids is computed is very RAM intensive). With this

analysis concluded, henceforward, all problems will be solved with an AMR criterion of 0.2− 0.8.

(a) Resulting topology optimized design (b) Resulting mesh

(c) Compliance over time

Figure 4.9: Topology optimized design with AMR and resulting mesh, for a refinement criterion of ’solid’

densities, along with the compliance over time.

30

4.1.2 Penalization power

We start by remembering equation 2.5, which states that in 2D the penalization power must be bigger

than a prescribed interval, for ν = 0.3 that means it must be bigger than three. With this in mind four

values were tested, 3, 4, 5 and 6. Once again, a visual analysis of the obtained final design and the final

mesh is done to draw conclusions about the best penalization power. It is worth mentioning that one of

the problems, with p = 6, surpassed the iteration limit but it was allowed to keep going, until convergence,

without limitation. There is no need to plot, once more, the results for a penalization power of 3, as this

is the same as the one shown in figure 4.3, for the rest of the p they are presented bellow.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.10: Topology optimized design with AMR and resulting mesh, for a penalization power of 4.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.11: Topology optimized design with AMR and resulting mesh, for a penalization power of 5.

31

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.12: Topology optimized design with AMR and resulting mesh, for a penalization power of 6.

(a) p = 4 (b) p = 5

(c) p = 6

Figure 4.13: Compliance over time for three different penalization power, p = 4, p = 5 and p = 6

The obtained results show a clear difference between designs, especially those with a high value of

penalization power (p = 5 and p = 6), the design boundary starts to appear rugged and with numerous

edges, see figures 4.11 and 4.12, this is also valid to some extent on p = 4, see figure 4.10, where

some edges appear along the boundary. The aforementioned is the consequence of locking in the

’solid’ densities earlier in the process, thus resulting in ’under-refinement’ of the material in some parts

and resulting in the edges shown. It’s important to remember the algorithm is selecting the intermediate

32

densities for refinement, so early locking of ’solid’ densities makes it less reliable at following the

boundary of the design, as seen, for example, in figure 4.10 b) where locations resembling crosses

appear on the mesh surrounded by unrefined mesh. The analysis of the compliance over time also

proves useful to better understand the behaviour of the algorithm for high p; the plot for p = 3 was

previously shown in figure 4.8, where for the others can be seen in figure 4.13. Analysis of the plots

show a significant increase of the iterations performed for higher p, even though the final compliance is

around the same. This behaviour was expected as the same happens on the original codes, but when

using the AMR algorithm the effect is increased with the added disadvantages already described. For

this reason, and since the value typically used is p = 3, this is the value selected to be used,

subsequently.

4.1.3 Volume fraction

A quick study on the influence of the volume fraction was also conducted, and so three values were

selected, f = 25%, f = 50% and f = 75%. Since we’ve already established some parameters, we

already have the results for a volume fraction of 50%, see figure 4.3, for the remainder are as follows.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.14: Topology optimized design with AMR and resulting mesh, for a volume fraction of 25%.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.15: Topology optimized design with AMR and resulting mesh, for a volume fraction of 75%.

As we can see from figure 4.15, the resulting design for a volume fraction of 75% is filled with holes

and edges on the ’inside’ boundary and the mesh doesn’t follow the boundary. For the volume fraction

33

of 25% the design boundary is much more detailed and the resulting mesh clearly follows along the

boundary. This considerable difference in behaviour appears to be the result of poor refinement

combined with the limitations of the filtering technique, since in the bigger volume fraction the resulting

mesh creates a space where large amounts of elements appear and seem to create the effects seen in

mesh-dependency. The relatively large volume fraction makes it so that only a small number of

intermediate densities exist and are all located in the ’interior’ of the design, this is visible in figure 4.16,

where it shows the initial optimized design on a uniform mesh, thus creating a situation where the

algorithm behaves poorly.

Figure 4.16: Topology optimized design with uniform mesh for a volume fraction of 75%.

To confirm the cause, the algorithm was allowed to run a 6th iteration, expecting it to further refine the

inner region and somewhat reduce the problem (the filtering radius remain the same). When analyzing

the results, see on figure 4.17, we see that the further refinement did improve the ’edges’ previously seen

and a cleaner border region is formed. Mesh-dependency is still present and the conclusion remains

the same, the algorithm behaves poorly for this high volume fraction. For a volume fraction of 50% the

algorithm behaves well, as previously seen, and gives good results with a good resulting mesh. Thus,

we can say that the AMR algorithm behaves well for lower volume fractions. For this reason, and since

a volume fraction of 50% was used in the original codes, this was the selected value.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.17: 6th iteration of a the topology optimized design with AMR and resulting mesh, for the volume

fraction of 75%.

34

4.1.4 Filtering technique and radius

As previously mentioned a filtering technique is required to solve the complications that arise from

the discretized computational calculation of the optimization problem. The previous designs were all

computed using sensitivity filtering but the algorithm is capable of deploying density filtering, thus, an

analysis on the different methods was required. It is also important to mention that a simultaneous

analysis of the filter radius is also needed.

For basic knowledge on how these filtering techniques work please remember section 2.1.3.

Sensitivity filtering

To better understand the role of the sensitivity filter, as well as the radius of the filter, a number of

experiments were carried out. These involved changing the radius and implementing a solution where

the filtering radius decreases with the iterations.

Firstly, a constant filter radius was analyzed, for this a filter radius of r = 1.5 was selected, this was

considered the minimum filter radius, since a lower radius would result in not including the diagonal

elements (see figure 2.5, for unitary elements the diagonal distance between centroids is
√

2 ≈ 1.41).

As seen in figure 4.18, the use of a constant filter radius results in the appearance of hole like structures

in the design with a very poor definition of boundaries. This is a less than ideal behaviour which probably

occurs from the fact the filter radius becomes too large for some areas of the mesh.

Figure 4.18: Design for sensitivity filter with constant filter radius of r = 1.5.

In an attempt to solve this, the idea of reducing the filter radius as the mesh was refined was

implemented. This meant that the algorithm would divide the radius by a factor of two every div r

iteration. For this, three values, divr = {1, 2, 3}, were selected with a starting radius of r0 = 1.5. The

results for divr = 2 have already been presented and can bee seen in figure 4.3, for divr = 1 and

divr = 3, see figure 4.19.

The design for divr = 3 resembles the one for a constant filter radius, even though with better details,

presenting the same hole like structures inside the design, meaning the radius continues to be too large

for the size of the elements. For the design with divr = 1, we quickly obtain a more ’black’ solution with

much less intermediate densities, this is a positive result and confirms the need for a smaller filter radius

as the refinement progresses. When comparing to the solution already obtained for divr = 2, at first

35

glance the design is identical, we need to look at the resulting meshes to identify important differences.

That can be seen in figure 4.20, where on figure b) we can see a further refinement of the boundary,

which is the preferred behaviour.

(a) divr = 1 – final radius of 0.1875 (b) divr = 3 – final radius of 0.75

Figure 4.19: Design for divr = 1 and divr = 3. Note: for figure (a) the design represents the 5th iteration,
while (b) represents the 6th iteration, this was done in order to plot the last design before the radius
would decrease again.

(a) divr = 1 – final radius of 0.1875 (b) divr = 2 – final radius of 0.375

Figure 4.20: Mesh detail for divr = 1 and divr = 2.

With this in mind, testing with two more starting radius, which effectively means the final design had

a radius of r = 0.5 and r = 0.625, produced subpar results and means that the better radius change

frequency, for this problem, is div r = 2 with a starting radius of r0 = 1.5, producing a final radius of

r = 0.375.

However, this is an indication that the filter radius for the last design iteration must be carefully chosen

in order to produce good results, for this particular problem the (expected) smallest element should be
1

256 of the starting element, and these smaller elements require efficient filtering as well.

Density filtering

With the results for the sensitivity filtering in mind, the next step is to test the algorithm with a density

filter. It is worth noting that this filter is computationally heavier than sensitivity filtering and is expected

to produce a ’blurred’ region as the ratio of radius/element size increases [30].

36

In order to test the behaviour of the filter more briefly, the refinement criteria used was limited to

0.2 − 0.8 and approximately ’solid’ densities with div r = 2 and starting radius of r0 = 1.5; a constant

radius was also tested with refinement criterion of 0.2 − 0.8 and the same starting radius. For the

refinement criterion of 0.2− 0.8 the results can be seen on figure 4.21, figure 4.22 shows the results for

approximately ’solid’ densities and figure 4.23 shows the results for a constant radius.

The results show an overall good behaviour of the density filter for both refinement criteria, and shows

that the use of a constant radius is infeasible for both filtering techniques. The algorithm produces a good

description of the design for intermediate densities, as seen on figure 4.21, with a good detailed mesh

around the boundary. For the refinement of ’solid’ densities (see figure 4.22) the result is comparable to

that previously obtained with sensitivity filtering (see figure 4.9), but with less detail around the boundary.

This might be because of the relatively high final filtering radius, since the algorithm was limited to four

iterations due to the high number of elements. Once again, the use of a constant filter (see figure 4.23)

produces a less than ideal result, with a ’blurred’ design, characteristic of a large filter radius when

compared to element size; it is also relevant to mention that the problem did not converge.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.21: Topology optimized design with AMR and resulting mesh, for a refinement criterion of

0.2− 0.8. Final filter radius of r = 0.375.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.22: Topology optimized design with AMR and resulting mesh, for a refinement criterion of ’solid’

densities. Final filter radius of r = 0.75.

37

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.23: Topology optimized design with AMR and resulting mesh, for a constant filter radius of

r = 1.5.

When analyzing the compliance over time, for the two successful designs, see figure 4.24, the same

behaviour as the one previously observed for sensitivity filtering is presented, meaning the compliance

decreases for the ’intermediate’ density refinement and increases for the ’solid’ densities refinement.

Ultimately, and since the use of a density filter produced similar results with added computation time,

the use of the sensitivity filter is preferred.

(a) Refinement criterion of 0.2− 0.8 (b) Refinement criterion of ’solid’ densities

Figure 4.24: Compliance over time with the use of density filtering for a refinement criteria of 0.2 − 0.8

(a) and ’solid’ densities (b).

Modifying the filtering radius

At this point it’s obvious that the filtering radius plays a big role in obtaining good results. As a natural

evolution, a method for finer control of the radius was tried. For this, a simple line of code was used to

adapt the radius of the filter to the size of the element being filtered, i.e., the filter radius directly depends

on each element size (ES). This modification can bee seen, in comment, in line 702 of the code.

For a simple analysis, with both filtering techniques, two sizes were selected, r = 1.5ES and

r = 2ES. The results can be seen bellow and show a failed attempt at implementing a new ’rule’ for the

filter radius. Present in all final designs for r = 1.5ES (see figures 4.25 and 4.26), is a layer of

38

intermediate densities around the material, the result for the density filter also shows evidence of

checkerboard pattern, indicating the filter was ineffective. Since there is this layer around the material,

one could suppose the bigger radius of r = 2ES would ’bridge the gap’ and produce a region of low

(but still gray) densities. This was not the case and the results for both filtering types (see figures 4.27

and 4.28) still show the same layer and now checkerboard pattern is present in both.

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.25: Topology optimized design with AMR and resulting mesh, for a sensitivity filter with radius
of r = 1.5ES

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.26: Topology optimized design with AMR and resulting mesh, for a density filter with radius of
r = 1.5ES

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.27: Topology optimized design with AMR and resulting mesh, for a sensitivity filter with radius
of r = 2ES

39

(a) Resulting topology optimized design (b) Resulting mesh

Figure 4.28: Topology optimized design with AMR and resulting mesh, for a density filter with radius of
r = 2ES

Another alternative was implemented to try and improve the filter, the program was allowed to run

(with a sensitivity filter) for five iterations with refinement and then the filtering radius was decreased

without any refinement, this was done to see if continuing to reduce the radius would produce any

effect. The evolution of the last iterations is shown in figure 4.29. As one can see, after turning off the

refinement, lowering the filtering radius produced some effects, smoothing out the border but having

little impact in the design, especially as the radius continues to decrease, where it has no effect. This

produced somewhat of a good result, with compliance decreasing from C = 35.8774 at the 5th iteration

to C = 35.4125 at the 6th, but nothing too significant, nonetheless, one might use it to achieve a better

description of the border after the AMR algorithm has finished. Even though lowering the filter radius

after the final iteration is not negligible, the main parameter to use as a primary mechanism to better

control the filter, is the filter division frequency of div r.

4.2 Validation

Now that a parametric study was conducted to establish the best parameters to use in the algorithm,

we are able to compare the solutions of the developed algorithm with those produced by one of the

original codes, the ’88 lines of code’ [10], using a uniform mesh (the more optimized code was selected

due to the use of a relatively large mesh).

The way of comparing the algorithms is by using a uniform mesh of comparable element size. This

means that we first compute the design using the developed AMR algorithm and retrieve the size of the

smallest element, after having the size we can extrapolate the number of elements along the x and y

sides to be equivalent to that element size. This is done since the original code uses unitary elements

and we can’t directly tell it the element size.

The validation of the algorithm consisted of analysing the solutions for four well known problems,

the MBB-beam, the cantilever beam, the stocky cantilever beam and the ’wheel’, after all results were

analyzed a small paragraph is made about the difficulties in comparing the designs, resulting from the

choice of the filter radius. A brief performance analysis of the algorithm was also conducted.

40

Figure 4.29: Evolution of the topology optimized design for a decreasing filter radius without refinement.
The last iterations are showed with filter radius of a) r = 0.375, b) r = 0.1875, c) r = 0.09375 and d)
r = 0.046875.

4.2.1 MBB-beam problem

The MBB-beam problem as already been described in the beginning of section 4.1 (remember figure

4.1 for design domain) and is the default state for the MATLAB code. Nevertheless, the boundary

conditions are as follows:

F(2,1)= -1;

and

fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);

The problem was solved using the following parameters, penalization power of p = 3, volume fraction

of f = 0.5, sensitivity filter with radius of r = 1.5 and an original mesh of 32 × 24. Except for the size

of the initial mesh, these were the parameters used by Sigmund [11]. The AMR method chosen was

the refinement of intermediate densities (crt low = 0.2 and crt high = 0.8) and for a better result the

program was allowed to decrease the radius of the filter once, after refinement ended.

Firstly, we are going to establish the baseline solution for the MBB-beam problem using the original

code. Knowing that the smallest element using the AMR algorithm after five iterations is ESf we are

able to extrapolate the size of the uniform mesh using the following equation

N =

√
1

ESf
(4.1)

41

where N represents the factor by which we need to multiply the amount of original elements along x

(nelx) and y (nely).

We are now able to compute N and obtain the size of the comparable uniform mesh, so for the

original mesh of 32× 24 and ESf = 1
256 we get N = 16 and thus the uniform mesh is 512× 384.

Another problem was quickly identified, what filter radius to choose for the uniform mesh. In order

to be comparable to the radius used in the last iteration of the AMR algorithm, the filter would need to

encompass an equivalent number of elements, but since the AMR algorithm mesh is non-uniform this

means that the number of elements affected by the filter is constantly changing. The solution thought to

be the fairest is to use the maximum number of elements affected by the filter in the last iteration of the

AMR algotirhm, and use a filter in the uniform mesh that affects the same (or approximate) number of

elements. For the MBB-beam problem the final filter radius is r = 0.1875, which equates to a filter radius

in the uniform mesh of r = 3.

Now that all parameters have been established, and for easier comparison, the results for the MBB-

beam, even though they’ve been previously shown, are reproduced again, along with the uniform mesh

optimized design, in figure 4.30.

(a) Topology optimized design using AMR (C =
35.4125)

(b) Resulting mesh for AMR

(c) Compliance and number of elements over time
(final number of elements, Nele = 7521), the yellow
dots represents the start of a new cycle

(d) Topology optimized design using uniform
mesh (C = 44.9256), with details

Figure 4.30: Topology optimized design of a MBB-beam with AMR and resulting mesh, for a refinement
criterion of intermediate’ densities, along with the compliance and number of iterations over time. The
optimized design for a comparable uniform mesh is also shown.

Firstly, and for the uniform mesh, these results demonstrate a certain level of mesh-dependency,

since the design is not just a better description of the design found at coarser meshes (see figure 4.2(a),

42

where the design for the starting conditions on a coarse uniform mesh are shown), but also a different

design with ’wire-like’ structures. Since, in theory, this mesh should be comparable with the AMR mesh,

this could be evidence that the filtering radius on the AMR mesh is also insufficient for some regions.

The results between algorithms show similarities, on the lower right corner of the designs there is the

formation of a ’beam’ that is present in both, the middle ’beam’ also splits in two in both designs and

the bottom decreases its height in both. The main difference is on the top left corner and along the

small ’beam’ that originates in it (see detail in blue in figure 4.30 (d)), on the AMR algorithm the ’beam’

remains single and the corner doesn’t bulge out. This might be because of the phenomena previously

described that an AMR algorithm that follows the optimize →refine strategy can ’lock’ in local minima

from the first iterations. The space in the detail in orange, on the same figure, is also present in the

design from the AMR algorithm. When looking at the behaviour of the mesh (see figure 4.30(b)), as

was previously seen, the AMR algorithm produced a good mesh following the boundary of the material.

Analyzing now the compliance over time, see that it decreased (see figure 4.30(c)) with the iterations,

sometimes increasing as the cycles progress, this is because of refinement creating elements that are

initially ’populated’ with intermediate densities, being especially present from the 1st to the 2nd iteration.

The number of elements over time, as it should, increased over time, except for the last cycle, as this was

exclusive for decreasing the filter radius. Over time the number of elements increased from the initial 768

to the final 7521, but significantly less when compared to the uniform mesh’s 196608. Overall, the results

from the AMR algorithm were good with compliance decreasing from C = 44.9256 to C = 35.4125, for

the uniform mesh and AMR algorithm, respectively.

4.2.2 Cantilever beam problem

The cantilever beam problem can be described with the design domain shown in figure 4.31. To

implement it, the boundary conditions and fixed degrees of freedom variables need to be updated to the

following:

F(2*(nelx+1)*(nely+1),1)= -1;

and

fixeddofs = [1:2*(nelx+1)];

Figure 4.31: Design domain for the cantilever beam problem.

To solve this problem the following parameters were used, penalization power of p = 3, volume

43

fraction of f = 0.4, sensitivity filter with radius of r = 1.2 and an original mesh of 32×20. These were the

parameters used by Sigmund [11] and was decided to maintain them. The AMR method chosen was the

refinement of intermediate densities (crt low = 0.2 and crt high = 0.8). Just like before we make use

of equation 4.1 to compute the comparable uniform mesh, so knowing that the original mesh is 32 × 20

and ESf = 1
256 we get N = 16 and thus the uniform mesh is 512 × 320. To select the radius we repeat

the process described for the previous problem (see section 4.2.1), for a final filter radius of r = 0.15 the

uniform mesh filter radius is r = 2.4. The results are shown in figure 4.32. Just like before, the results

show some mesh-dependency, which can, by now, be classified as a shortcoming of the AMR algorithm

as is implemented. Starting by mentioning the final mesh of the AMR algorithm (see figure 4.32(b)), we

see a good behavior of the refinement criterion, as was expected, with large areas of unrefined mesh.

Focusing now on the differences between designs (see figure 4.32 (a) and 4.33 (b)), this time some

differences appear in the shape of the designs, with the uniform mesh design being more angular in

shape, but still very similar to what we see in the AMR design. There are some other differences, as

highlighted by the details in the plot. The blue one, less significant, shows a larger hole than the one

present in the AMR design, at the right of the hole the lines split and causes another opening that is

not present in the AMR design, this is no longer the case for the opening on the left, that is present in

both. The opening at the left of the blue highlight and beneath it are also present, but with a smaller size.

The highlight in orange shows a bigger difference, as the AMR design shows it but significantly smaller.

Once again, the final compliance achieved by the AMR algorithm (C = 50.8624) is smaller than the one

achieved in the uniform mesh (C = 53.3906), and the compliance over time behaved as expected for this

design (see figure 4.33 (a)). Overall, the designs are comparable and the AMR algorithm produced a

good result, that resembles the design from the uniform mesh, using significantly less elements (6907

and 163840, respectively).

(a) Topology optimized design using AMR (C =

50.8624)

(b) Resulting mesh for AMR

Figure 4.32: Topology optimized design of a cantilever beam with AMR and resulting mesh, for a

refinement criterion of intermediate’ densities, along with the compliance and number of iterations over

time. The optimized design for a comparable uniform mesh is also shown.

44

(a) Compliance and number of elements over time
(final number of elements, Nele = 6907), the yellow
dots signify the start of a new cycle

(b) Topology optimized design using uniform
mesh (C = 53.3906), with details

Figure 4.33: Topology optimized design of a cantilever beam with for a comparable uniform mesh along
with compliance over time and number of elements for the AMR algorithm.

4.2.3 Stocky cantilever beam problem

The Stocky cantilever beam problem can be described with the design domain shown in figure 4.34.

To implement it, the boundary conditions and fixed degrees of freedom variables need to be updated to

the following:

F(((2*(nelx+1)*(nely+1))-(nely+1))+1,1)= -1;

and

fixeddofs = [1:2*(nelx+1)];

Figure 4.34: Design domain for the stocky cantilever beam problem.

For the problem above the following parameters used were, penalization power of p = 3, volume

fraction of f = 0.4, sensitivity filter with radius of r = 1.2 and an original mesh of 32 × 20. Once again,

and since this is a particular cantilever beam, the parameters were selected to mimic the ones used by

Sigmund [11]. The AMR method chosen was the refinement of intermediate densities (crt low = 0.2

and crt high = 0.8). As before, using equation 4.1 and for an ESf = 1
256 we get N = 16, so the uniform

mesh is 512×320, and knowing that in the last iteration filter radius is r = 0.15, the radius for the uniform

mesh is r = 2.4 (see section 4.2.1 for a detailed explanation). The results for the stocky cantilever beam

are shown in figure 4.35. The results diverge from what was previously seen, just like before the uniform

mesh result shows signs of mesh-dependency, but this is no longer the case with the AMR algorithm, as

the final design is very similar to the design of the first iteration (except for two small holes that appear),

on a coarse mesh, just better defined (see figure 4.36). Considering what was previously seen this

45

behaviour was unexpected, and can be, perhaps, explained by a stronger performance of the filtering

technique for this particular radius and design domain. Even so, the AMR algorithm produced a good

mesh (see figure 4.35(b)). As already mentioned, the designs differ and this can be seen in figure

4.35(a) and 4.35(b), the ’beams’ in the inner part of the design are split on the uniform mesh and this

is not the case on the AMR design, with the common part being the outer shape and location of the

larger holes. The AMR design produced is of lower compliance, with C = 44.2898 when compared to

the uniform mesh’s compliance of C = 46.4406, and this is, once again, a positive for the AMR design,

this was achieved with less elements (8818 and 163840, respectively).

(a) Topology optimized design using AMR (C =

44.2898)

(b) Resulting mesh for AMR

(c) Compliance and number of elements over time

(final number of elements, Nele = 8818), the yellow

dots signify the start of a new cycle

(d) Topology optimized design using uniform

mesh (C = 46.4406), with details

Figure 4.35: Topology optimized design of a stocky cantilever beam with AMR and resulting mesh, for a

refinement criterion of intermediate’ densities, along with the compliance and number of iterations over

time. The optimized design for a comparable uniform mesh is also shown.

46

Figure 4.36: Topology optimized design of a stocky cantilever beam in a coarse mesh, corresponding to
the first design iteration of the AMR algorithm.

4.2.4 ’Wheel’ problem

The ’wheel’ problem can be described with the design domain shown in figure 4.37. To implement it,

the boundary conditions and fixed degrees of freedom variables need to be updated to the following:

F((2*(nely+1))+(nelx/2)*(2*(nely+1)))= -1;

and

fixeddofs = union([2*(nely+1)-1, 2*(nely+1)],[2*(nelx+1)*(nely+1)])

Figure 4.37: Design domain for the ’wheel’ problem. Adapted from [45].

To solve this problem the following parameters used were, penalization p = 3, volume fraction of

f = 0.5, sensitivity filter with radius of r = 1.2 and an original mesh of 32× 20. The AMR method chosen

was the refinement of intermediate densities (crt low = 0.2 and crt high = 0.8). Once more, using using

equation 4.1 and for ESf = 1
256 we get N = 16, so the uniform mesh is 512 × 320, and for a final filter

radius of r = 0.15 the uniform mesh filter radius is r = 2.4 (see section 4.2.1 for a detailed explanation).

The results can be seen in figure 4.38. We see mesh-dependency of the design on a uniform mesh

(see 4.38(d)), where as the design obtain using the AMR algorithm (see figure 4.38(a)) is much closer

to the expected design, still, the ’wheel spokes’ split near the end, which is a sign that the filter did

an insufficient work. The resulting mesh of the AMR algorithm shows, again, a good refinement of

the intermediate densities, this time with less unrefined areas, this is because of the initial optimized

design on a coarse mesh (see figure 4.39), that has a significant number of elements with intermediate

47

densities. The differences in designs are more noticeable due to the mesh dependency of the uniform

mesh design, but the AMR design still captures the ’wheel spokes’ that are splitting along the middle.

With that said, the AMR design is better, retaining the shape seen in a coarser mesh (see figure 4.39)

and improving the definition of the boundary. The AMR design final compliance is also lower than that

on the uniform mesh, with C = 10.4921 and C = 14.9795, respectively.

(a) Topology optimized design using AMR (C =

10.4921)

(b) Resulting mesh for AMR

(c) Compliance and number of elements over time

(final number of elements, Nele = 9244), the yellow

dots signify the start of a new cycle

(d) Topology optimized design using uniform

mesh (C = 14.9795), with details

Figure 4.38: Topology optimized design of a ’wheel’ with AMR and resulting mesh, for a refinement

criterion of intermediate’ densities, along with the compliance and number of iterations over time. The

optimized design for a comparable uniform mesh is also shown.

Figure 4.39: Topology optimized design of a ’wheel’ in a coarse mesh, corresponding to the first design
iteration of the AMR algorithm.

48

4.2.5 Performance analysis

To analyze the performance of the AMR algorithm the problems solved in section 4.2 were used.

The performance was measured using a built-in function of MATLAB (cputime) that quantifies the total

CPU time used by MATLAB in seconds. Using this function three times were measured, the time per

optimization iteration and the time required to run the entire program for each test case, on both

algorithms, and the third, the time required to refine 1000 elements on the AMR algorithm. It’s

important to note that this function doesn’t return the actual time that the program takes to run, instead,

it returns the time spent by MATLAB utilizing the CPU. This is a more fair comparison, since it focuses

on time computing and doesn’t favor parallel processing. It’s also worth noting that the code used for

comparison is the ’88 lines code’[10]. Lastly, it is also of relevance to mention that the code ran on

MATLAB R2020b on an AMD 3900X Processor with 128GB of RAM.

The results are shown in table 4.1. The result for the optimization iteration is averaged between

all iterations (just for the last cycle, in the case of the AMR algorithm). The time comparisons show

that the optimization cycles are similar or shorter in the uniform mesh program, with the ones that are

similar coinciding with the two designs with less total elements (MBB-beam and Cantilever beam), even

though not the desired outcome, this is because of the highly optimized code used for comparison. The

developed code takes use of for loops for the computing the stiffness matrix and filtering, which adds

extra computing time to the optimization iteration. When comparing to the original ’99 line code’[11], that

took a cputime = 25 min per optimization iteration (for the MBB-beam until canceling), one can see the

potential gains to be had using the AMR algorithm. More interesting, is the fact that the whole program,

except for the ’wheel’ problem, is always faster than that of the uniform mesh. This could be because of

two things, first, the AMR algorithm required less iterations overall to solve the same problem, leading

to less computing time, and second, due to the nature of the function that measures time. Since parallel

computing, using multiple cores, leads to less wall-clock time but is still counted as computing time,

the highly efficient code is still requiring expensive computing time, which means that discounting the

inefficiencies due to the programming nature of the developed code, the AMR algorithm requires less

computational power to solve the same problem.

Table 4.1: Table of performance comparison between the AMR algorithm and the ’88 lines code’ [10].
Note: for the AMR algorithm the optimization iteration shows two times, corresponding to the time without
and with the last filtering stage without refinement.

AMR Algorithm ’88 lines code’

Optimization
iteration (s)

Whole program
(min)

Optimization
iteration (s)

Whole program
(min)

MBB-beam 7.6 - 9.48 22.45 9.78 71.59
Cantilever beam 8.86 - 9.64 31.35 8.03 65.37

Stocky cantilever beam 11.26 - 15.60 42.99 7.8 53.34
’Wheel’ 16.44 - 17.13 95.61 7.98 50.07

49

Lastly, a brief mention to the performance of the refinement portion of the code. The time required per

element varied based on the problem being solved, as seen on table 4.2, and overall the time seems low

at an average of ≈ 0.0324 seconds per element refined, yet, when considering the size of a large mesh,

this is a considerable amount of time. It’s important to note, though, that the initial mesh is computed on

an optimized code, meaning that a larger number of initial elements would bring no added computational

time when compared to the ’88 lines code’, and only subsequent meshes would be computed using the

refinement cycle.

Table 4.2: Table of performance for the refinement cycle of the developed algorithm. Note: the time was
measured in the last refinement iteration and is in seconds per element refined.

Refinement cycle
MBB-beam 0.0595

Cantilever beam 0.0252
Stocky cantilever beam 0.0225

’Wheel’ 0.0223

50

Chapter 5

Conclusions

This chapter has the purpose of presenting the conclusions that can be drawn from this dissertation.

It serves as a reflection on the work done as well as identified shortcomings and potential future work.

5.1 Achievements

The main purpose of this dissertation was to build an easy to use and modify, MATLAB code for

topology optimization using adaptive finite elements, which has been successful.

Nevertheless, a number of shortcomings have been identified that need to be addressed in order to

use the algorithm at its full potential.

Based on the results previously presented the main limitation seems to be choosing the most

adequate radius for the filtering technique. This problem was not as evident when selecting the

refinement of ’solid’ densities, but when using sensitivity filtering combined with the refinement of

’intermediate’ densities the choice of radius was most important. Achieving a ’perfect’ radius, that

would prevent checkerboard pattern and mesh-dependency, at every iteration, was deemed

unsuccessful. This is especially hard due to the nature of a non-uniform mesh. Even so, the results,

when compared to a comparable uniform mesh, were adequate and achieved lower compliance. The

refinement criteria also proved to be effective at selecting the solid material or the design border.

The developed algorithm, although less optimized, showed that for most problems it requires less

computational resources. Especially when compared to the original ’99 line code’ from Sigmund [11],

which is a better approximation, due to the use of for loops. This showcases the best scenario for the

use of AMR in topology optimization. In insight, the use of a separate FEM library to compute the mesh

and subsequent refinements, would have improved the efficiency of the algorithm.

It is also important to acknowledge that the designs obtained, even though crude in some ways,

always produced a good description of an optimum design.

51

5.2 Future Work

To better implement the algorithm and allow it to be used in a larger scale several improvements

need to be made.

Already mentioned, is the need to achieve a better filtering of the design, either through the use of a

better method for selecting the filter radius, or through the use of a different filtering technique. This was

identified as the main shortcoming that needs to be addressed in order to successfully use the algorithm

in all situations.

Improving the computational efficiency of the algorithm is also needed. The widespread use of for

loops comes at the expense of compute time and the code should be optimized in a latter iteration.

To further improve the algorithm, especially for large scale problems, the implementation of

derefinement would allow the algorithm to save further compute time by reducing the elements in void

regions that were once material regions.

Lastly, the use of a MATLAB function to calculate distance between all points results in high memory

usage, a different method, to allow for larger problems, should be investigated.

52

Bibliography

[1] S. W. Roper, H. Lee, M. Huh, and I. Y. Kim. Simultaneous isotropic and anisotropic multi-

material topology optimization for conceptual-level design of aerospace components. Structural

and Multidisciplinary Optimization, 64(1):441–456, 2021. doi:10.1007/s00158-021-02893-4.

[2] F. Sousa, F. Lau, and A. Suleman. Topology optimization of a wing structure. Engineering

Optimization 2014, page 507–512, 2014. doi:10.1201/b17488-91.

[3] P. D. Jensen, F. Wang, I. Dimino, and O. Sigmund. Topology optimization of large-scale 3d morphing

wing structures. Actuators, 10(9):217, 2021. doi:10.3390/act10090217.

[4] D. J. Munk, D. J. Auld, G. P. Steven, and G. A. Vio. On the benefits of applying topology optimization

to structural design of aircraft components. Structural and Multidisciplinary Optimization, 60(3):

1245–1266, 2019. doi:10.1007/s00158-019-02250-6.

[5] M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a

homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2):

197–224, 1988. doi:10.1016/0045-7825(88)90086-2.

[6] M. P. Bendsøe and O. Sigmund. Material interpolation schemes in topology optimization. Archive

of Applied Mechanics (Ingenieur Archiv), 69(9-10):635–654, 1999. doi:10.1007/s004190050248.

[7] X. Guo, W. Zhang, and W. Zhong. Doing topology optimization explicitly and geometrically — a

new moving morphable components based framework. Journal of Applied Mechanics, 81(8), 2014.

doi:10.1115/1.4027609.

[8] J. Liu and Y. Ma. A survey of manufacturing oriented topology optimization methods. Advances in

Engineering Software, 100:161–175, 2016. doi:10.1016/j.advengsoft.2016.07.017.

[9] Y. Liang and G. Cheng. Topology optimization via sequential integer programming and canonical

relaxation algorithm. Computer Methods in Applied Mechanics and Engineering, 348:64–96, 2019.

doi:10.1016/j.cma.2018.10.050.

[10] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund. Efficient topology

optimization in matlab using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1):

1–16, 2011. doi:10.1007/s00158-010-0594-7.

53

[11] O. Sigmund. A 99 line topology optimization code written in matlab. Structural and Multidisciplinary

Optimization, 21(2):120–127, 2001. doi:10.1007/s001580050176.

[12] M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, methods and applications.

Springer, 2003. ISBN:978-3-540-42992-1.

[13] P. W. Christensen and A. Klarbring. An introduction to structural optimization. Springer, 2009.

ISBN:978-1-4020-8665-6.

[14] C. Hvejsel and E. Lund. Material interpolation schemes for unified topology and multi-material

optimization. Structural and Multidisciplinary Optimization, 43:811–825, 2011. doi:10.1007/s00158-

011-0625-z.

[15] C. E. K. Pin and Z. S. H. An introduction to optimization. Wiley, 2001. ISBN:0-471-39126-3.

[16] M. Stolpe and K. Svanberg. Modelling topology optimization problems as linear mixed 0-1

programs. International Journal for Numerical Methods in Engineering, 57(5):723–739, 2003.

doi:10.1002/nme.700.

[17] E. Muñoz and M. Stolpe. Generalized benders’ decomposition for topology optimization problems.

Journal of Global Optimization, 51(1):149–183, 2010. doi:10.1007/s10898-010-9627-4.

[18] G. L. Nemhauser, M. W. Savelsbergh, and G. C. Sigismondi. Minto, a mixed integer optimizer.

Operations Research Letters, 15(1):47–58, 1994. doi:10.1016/0167-6377(94)90013-2.

[19] C. Cordier, H. Marchand, R. Laundy, and L. A. Wolsey. Bc-opt: A branch-and-cut code for mixed

integer programs. Mathematical Programming, 86(2):335–353, 1999. doi:10.1007/s101070050092.

[20] M. Stolpe and M. P. Bendsøe. Global optima for the zhou–rozvany problem. Structural and

Multidisciplinary Optimization, 43(2):151–164, 2010. doi:10.1007/s00158-010-0574-y.

[21] M. P. Bendsøe. Optimal shape design as a material distribution problem. Structural Optimization, 1

(4):193–202, 1989. doi:10.1007/bf01650949.

[22] M. Stolpe and K. Svanberg. An alternative interpolation scheme for minimum compliance

topology optimization. Structural and Multidisciplinary Optimization, 22(2):116–124, 2001.

doi:10.1007/s001580100129.

[23] Y. Xie and G. Steven. A simple evolutionary procedure for structural optimization. Computers &

Structures, 49(5):885–896, 1993. doi:10.1016/0045-7949(93)90035-c.

[24] O. Sigmund. Morphology-based black and white filters for topology optimization. Structural and

Multidisciplinary Optimization, 33(4-5):401–424, 2007. doi:10.1007/s00158-006-0087-x.

[25] G. Rozvany. Aims, scope, methods, history and unified terminology of computer-aided topology

optimization in structural mechanics. Structural and Multidisciplinary Optimization, 21(2):90–108,

2001. doi:10.1007/s001580050174.

54

[26] G. Chiandussi. On the solution of a minimum compliance topology optimisation problem by

optimality criteria without a priori volume constraint specification. Computational Mechanics, 38

(1):77–99, 2005. doi:10.1007/s00466-005-0722-1.

[27] B. Hassani and E. Hinton. Structural topology optimization using optimality criteria methods.

Homogenization and Structural Topology Optimization, page 71–101, 1999. doi:10.1007/978-1-

4471-0891-7 4.

[28] N. H. Kim, T. Dong, D. Weinberg, and J. Dalidd. Generalized optimality criteria method for topology

optimization. Applied Sciences, 11(7):3175, 2021. doi:10.3390/app11073175.

[29] O. Sigmund and J. Petersson. Numerical instabilities in topology optimization: A survey

on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural

Optimization, 16(1):68–75, 1998. doi:10.1007/bf01214002.

[30] M. Sotola, P. Marsalek, D. Rybansky, M. Fusek, and D. Gabriel. Sensitivity analysis of key

formulations of topology optimization on an example of cantilever bending beam. Symmetry, 13

(4):712, 2021. doi:10.3390/sym13040712.

[31] B. Bourdin. Filters in topology optimization. International Journal for Numerical Methods in

Engineering, 50(9):2143–2158, 2001. doi:10.1002/nme.116.

[32] Y. Maeda, S. Nishiwaki, K. Izui, M. Yoshimura, K. Matsui, and K. Terada. Structural

topology optimization of vibrating structures with specified eigenfrequencies and eigenmode

shapes. International Journal for Numerical Methods in Engineering, 67(5):597–628, 2006.

doi:10.1002/nme.1626.

[33] N. Pedersen. Maximization of eigenvalues using topology optimization. Structural and

Multidisciplinary Optimization, 20(1):2–11, 2000. doi:10.1007/s001580050130.

[34] A. Ghasemi and A. Elham. A novel topology optimization approach for flow power loss minimization

across fin arrays. Energies, 13(8):1987, 2020. doi:10.3390/en13081987.

[35] K. Maute and E. Ramm. Adaptive topology optimization. Structural Optimization, 10(2):100–112,

1995. doi:10.1007/bf01743537.

[36] R. Stainko. An adaptive multilevel approach to the minimal compliance problem in topology

optimization. Communications in Numerical Methods in Engineering, 22(2):109–118, 2005.

doi:10.1002/cnm.800.

[37] J. C. Costa Jr and M. K. Alves. Layout optimization withh-adaptivity of structures. International

Journal for Numerical Methods in Engineering, 58(1):83–102, 2003. doi:10.1002/nme.759.

[38] M. Bruggi and M. Verani. A fully adaptive topology optimization algorithm with

goal-oriented error control. Computers and Structures, 89(15-16):1481–1493, 2011.

doi:10.1016/j.compstruc.2011.05.003.

55

[39] Y. Wang, Z. Kang, and Q. He. Adaptive topology optimization with independent error control

for separated displacement and density fields. Computers and Structures, 135:50–61, 2014.

doi:10.1016/j.compstruc.2014.01.008.

[40] A. B. Lambe and A. Czekanski. Topology optimization using a continuous density field and adaptive

mesh refinement. International Journal for Numerical Methods in Engineering, 113(3):357–373,

2017. doi:10.1002/nme.5617.

[41] S. Wang, E. de Sturler, and G. H. Paulino. Dynamic adaptive mesh refinement for topology

optimization. ArXiv, abs/1009.4975, 2010.

[42] S. Zhang, A. L. Gain, and J. A. Norato. Adaptive mesh refinement for topology optimization with

discrete geometric components. Computer Methods in Applied Mechanics and Engineering, 364:

112930, 2020. doi:10.1016/j.cma.2020.112930.

[43] M. A. Salazar de Troya and D. A. Tortorelli. Adaptive mesh refinement in stress-constrained

topology optimization. Structural and Multidisciplinary Optimization, 58(6):2369–2386, 2018.

doi:10.1007/s00158-018-2084-2.

[44] Mane 4240 & civl 4240: Introduction to finite elements – four-noded rectangular element. https:

//homepages.rpi.edu/~des/4NodeQuad.pdf. Accessed: 2021-09-30.

[45] L. Li and K. Khandelwal. Volume preserving projection filters and continuation methods in topology

optimization. Engineering Structures, 85:144–161, 2015. doi:10.1016/j.engstruct.2014.10.052.

56

https://homepages.rpi.edu/~des/4NodeQuad.pdf
https://homepages.rpi.edu/~des/4NodeQuad.pdf

Appendix A

Parametric study

A.1 Results for different refinement criteria

(a) Resulting topology optimized design (b) Resulting mesh

Figure A.1: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.2−

0.9.

(a) Resulting topology optimized design (b) Resulting mesh

Figure A.2: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.3−

0.7.

57

(a) Resulting topology optimized design (b) Resulting mesh

Figure A.3: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.4−

0.8.

(a) Resulting topology optimized design (b) Resulting mesh

Figure A.4: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.5−

0.8.

(a) Resulting topology optimized design (b) Resulting mesh

Figure A.5: Topology optimized design with AMR and resulting mesh, for a refinement criterion of 0.5−

0.9.

58

Appendix B

MATLAB CODE

B.1 Topology Optimization with AMR algorithm

59

 1 function [U,xPhys,area_min] = fem_ite(nelx,nely,rmin,ite_max,filter_type)
 2 %%Starting variables
 3 tStart = cputime;
 4 penal=3;
 5 volfrac=0.5;
 6 div_r = 2; %frequency of filter radius change
 7 crt_low = 0.2;
 8 crt_high = 0.8;
 9 r0 = rmin;
 10 folder = ['Nelx_' num2str(nelx) '_Nely_' num2str(nely) '_r0_' num2str(r0) '_'
num2str(crt_low) '_' num2str(crt_high) '_' num2str(penal) '\'];
 11 if exist(folder,'dir')
 12 folder = [folder(1:end-1) '_new\'];
 13 mkdir(folder);
 14 elseif ~exist(folder,'dir')
 15 mkdir(folder);
 16 end
 17 compliance = [];
 18 refinar = [];
 19 % Material properties and element sitffness matrix
 20 E0 = 1.;
 21 Emin = 1e-9;
 22 nu = 0.3;
 23 a = 1;% size of side a of the element
 24 b = 1;% size of side b of the element
 25 E = E0;
 26 KE = [(1 / a * b * E / (1 - nu ^ 2)) / 0.3e1 + (a / b * E / (2 + 2 * nu)) / 0.3e1
(nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (1 - nu
^ 2)) / 0.3e1 + (a / b * E / (2 + 2 * nu)) / 0.6e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 - (E
/ (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (1 - nu ^ 2)) / 0.6e1 - (a / b * E / (2 + 2 *
nu)) / 0.6e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1 (1 / a * b *
E / (1 - nu ^ 2)) / 0.6e1 - (a / b * E / (2 + 2 * nu)) / 0.3e1 -(nu * E / (1 - nu ^ 2))
/ 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1; (nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 *
nu)) / 0.4e1 (1 / a * b * E / (2 + 2 * nu)) / 0.3e1 + (a / b * E / (1 - nu ^ 2)) / 0.3
e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (2 +
2 * nu)) / 0.3e1 + (a / b * E / (1 - nu ^ 2)) / 0.6e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1
- (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (2 + 2 * nu)) / 0.6e1 - (a / b * E / (1
- nu ^ 2)) / 0.6e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1 (1 / a
* b * E / (2 + 2 * nu)) / 0.6e1 - (a / b * E / (1 - nu ^ 2)) / 0.3e1; -(1 / a * b * E /
(1 - nu ^ 2)) / 0.3e1 + (a / b * E / (2 + 2 * nu)) / 0.6e1 -(nu * E / (1 - nu ^ 2)) /
0.4e1 + (E / (2 + 2 * nu)) / 0.4e1 (1 / a * b * E / (1 - nu ^ 2)) / 0.3e1 + (a / b * E
/ (2 + 2 * nu)) / 0.3e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1
(1 / a * b * E / (1 - nu ^ 2)) / 0.6e1 - (a / b * E / (2 + 2 * nu)) / 0.3e1 (nu * E /
(1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (1 - nu ^ 2)) /
0.6e1 - (a / b * E / (2 + 2 * nu)) / 0.6e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 +
2 * nu)) / 0.4e1; (nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1 -(1 / a
* b * E / (2 + 2 * nu)) / 0.3e1 + (a / b * E / (1 - nu ^ 2)) / 0.6e1 -(nu * E / (1 - nu
^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1 (1 / a * b * E / (2 + 2 * nu)) / 0.3e1 + (a
/ b * E / (1 - nu ^ 2)) / 0.3e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 * nu)) /
0.4e1 (1 / a * b * E / (2 + 2 * nu)) / 0.6e1 - (a / b * E / (1 - nu ^ 2)) / 0.3e1 (nu *
E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (2 + 2 * nu))
/ 0.6e1 - (a / b * E / (1 - nu ^ 2)) / 0.6e1; -(1 / a * b * E / (1 - nu ^ 2)) / 0.6e1 -
(a / b * E / (2 + 2 * nu)) / 0.6e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 *
nu)) / 0.4e1 (1 / a * b * E / (1 - nu ^ 2)) / 0.6e1 - (a / b * E / (2 + 2 * nu)) / 0.3
e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1 (1 / a * b * E / (1 -

60

nu ^ 2)) / 0.3e1 + (a / b * E / (2 + 2 * nu)) / 0.3e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 +
(E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (1 - nu ^ 2)) / 0.3e1 + (a / b * E / (2 +
2 * nu)) / 0.6e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1; -(nu * E
/ (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (2 + 2 * nu)) /
0.6e1 - (a / b * E / (1 - nu ^ 2)) / 0.6e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 +
2 * nu)) / 0.4e1 (1 / a * b * E / (2 + 2 * nu)) / 0.6e1 - (a / b * E / (1 - nu ^ 2)) /
0.3e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1 (1 / a * b * E / (2
+ 2 * nu)) / 0.3e1 + (a / b * E / (1 - nu ^ 2)) / 0.3e1 -(nu * E / (1 - nu ^ 2)) / 0.4
e1 + (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (2 + 2 * nu)) / 0.3e1 + (a / b * E /
(1 - nu ^ 2)) / 0.6e1; (1 / a * b * E / (1 - nu ^ 2)) / 0.6e1 - (a / b * E / (2 + 2 *
nu)) / 0.3e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b *
E / (1 - nu ^ 2)) / 0.6e1 - (a / b * E / (2 + 2 * nu)) / 0.6e1 (nu * E / (1 - nu ^ 2))
/ 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (1 - nu ^ 2)) / 0.3e1 + (a / b *
E / (2 + 2 * nu)) / 0.6e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1
(1 / a * b * E / (1 - nu ^ 2)) / 0.3e1 + (a / b * E / (2 + 2 * nu)) / 0.3e1 -(nu * E /
(1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1; -(nu * E / (1 - nu ^ 2)) / 0.4e1 +
(E / (2 + 2 * nu)) / 0.4e1 (1 / a * b * E / (2 + 2 * nu)) / 0.6e1 - (a / b * E / (1 -
nu ^ 2)) / 0.3e1 (nu * E / (1 - nu ^ 2)) / 0.4e1 + (E / (2 + 2 * nu)) / 0.4e1 -(1 / a *
b * E / (2 + 2 * nu)) / 0.6e1 - (a / b * E / (1 - nu ^ 2)) / 0.6e1 (nu * E / (1 - nu ^
2)) / 0.4e1 - (E / (2 + 2 * nu)) / 0.4e1 -(1 / a * b * E / (2 + 2 * nu)) / 0.3e1 + (a /
b * E / (1 - nu ^ 2)) / 0.6e1 -(nu * E / (1 - nu ^ 2)) / 0.4e1 - (E / (2 + 2 * nu)) /
0.4e1 (1 / a * b * E / (2 + 2 * nu)) / 0.3e1 + (a / b * E / (1 - nu ^ 2)) / 0.3e1;];
 27 %Creates original dof connectivity mtrix
 28 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
 29 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
 30 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
 31 %creates a matrix with the format [#element node numbers]
 32 node_matrix = zeros(nelx*nely,5);
 33 area = zeros(nelx*nely,2);
 34 i=1;
 35 for k = 1:nelx
 36 for h = 1:nely
 37 node_matrix(i,:) = [i reshape(nodenrs(h:h+1,k:k+1).',1,[])];
 38 area(i,:) = [i 1];
 39 i=i+1;
 40 end
 41 end
 42 %creates initial coordinate matrix
 43 l = linspace(0,nelx,nelx+1) ;
 44 b = linspace(0,nely,nely+1) ;
 45 [X,Y] = meshgrid(l,b) ;
 46 Y = flip(Y);
 47 coordinates=[];
 48 for i=1:(nelx+1)*(nely+1)
 49 coordinates = [coordinates; [i X(i) Y(i)]];
 50 end
 51 %creates initial design domain matrix (based on rectangular shape), nodes
 52 %at boundary are identified with number "1"
 53 fronteira = zeros((nelx+1)*(nely+1),2);
 54 fronteira(:,1)=1:1:length(fronteira);
 55 fronteira(1:nely+1,2)=1;
 56 fronteira(1:nely+1:length(fronteira),2)=1;
 57 fronteira(nely+1:nely+1:length(fronteira),2)=1;
 58 fronteira(length(fronteira)-(nely+1):length(fronteira),2)=1;
 59 node_restrictions = [];

61

 60 edofMat_original = edofMat;
 61 edofMat = [[1:size(edofMat,1)]' edofMat];
 62 registry = [];
 63 run = 1;
 64 rmin_i = 0;
 65 while true
 66 %% Refinement Section
 67 %Start of the Refinement Cycle
 68 if run == ite_max
 69 break
 70 end
 71 if isempty(refinar) == 0
 72 p=1;
 73 %edofMat
 74 while (p < length(refinar)+1)
 75 [~,m]=ismember(refinar(p),node_matrix(:,1)); %searches for the element
to refine in the "ledger"
 76 node_eletoref = node_matrix(m,2:end); %retrieves element to refine
 77 %If statement that searches for the repetitions of node numbers
 78 if length(node_matrix) > nelx*nely
 79 buffer = node_matrix((nelx*nely)+1:end,2:end);
 80 max_node = max(buffer(:));
 81 done_left = []; %Search for the left node
 82 for u = 1:length(buffer)-1
 83 buffer_i = buffer(u:u+1,:);
 84 if (buffer_i(3) == node_eletoref(1) && buffer_i(8) ==
node_eletoref(3) && buffer_i(4) == buffer_i(7))
 85 new_left = buffer_i(4);
 86 done_left = true;
 87 elseif (buffer_i(1) == node_eletoref(1) && buffer_i(6) ==
node_eletoref(3) && buffer_i(2) == buffer_i(5))
 88 new_left = buffer_i(2);
 89 done_left = true;
 90 end
 91 end
 92 if isempty(done_left) == 1
 93 new_left = max_node+1;
 94 max_node = new_left;
 95 end
 96 done_top = []; %Search for the top node
 97 for u = 1:length(buffer)-2
 98 buffer_i = buffer(u:u+2,:);
 99 if (buffer_i(1) == node_eletoref(1) && buffer_i(6) ==
node_eletoref(2) && buffer_i(3) == buffer_i(4))
100 new_top = buffer_i(3);
101 done_top = true;
102 elseif (buffer_i(7) == node_eletoref(1) && buffer_i(12) ==
node_eletoref(2) && buffer_i(9) == buffer_i(10))
103 new_top = buffer_i(9);
104 done_top = true;
105 end
106 end
107 if isempty(done_top) == 1
108 new_top = max_node+1;
109 max_node = new_top;

62

110 end
111 new_middle = max_node+1; %The middle node is always new
112 max_node = new_middle;
113 done_bottom= []; %Search for the bottom node
114 for u = 1:length(buffer)-2
115 buffer_i = buffer(u:u+2,:);
116 if (buffer_i(1) == node_eletoref(3) && buffer_i(6) ==
node_eletoref(4) && buffer_i(3) == buffer_i(4))
117 new_bottom = buffer_i(3);
118 done_bottom = true;
119 elseif (buffer_i(7) == node_eletoref(3) && buffer_i(12) ==
node_eletoref(4) && buffer_i(9) == buffer_i(10))
120 new_bottom = buffer_i(9);
121 done_bottom = true;
122 end
123 end
124 if isempty(done_bottom) == 1
125 new_bottom = max_node+1;
126 max_node = new_bottom;
127 end
128 done_right = []; %Search for the right node
129 for u = 1:length(buffer)-1
130 buffer_i = buffer(u:u+1,:);
131 if (buffer_i(3) == node_eletoref(2) && buffer_i(8) ==
node_eletoref(4) && buffer_i(4) == buffer_i(7))
132 new_right = buffer_i(4);
133 done_right = true;
134 elseif (buffer_i(1) == node_eletoref(2) && buffer_i(6) ==
node_eletoref(4) && buffer_i(2) == buffer_i(5))
135 new_right = buffer_i(2);
136 done_right = true;
137 end
138 end
139 if isempty(done_right) == 1
140 new_right = max_node+1;
141 end
142 %Call registry function and add new nodes to the node
143 %connectivity matrix
144 registry = reg_func(node_matrix,refinar,registry,p);
145 node_matrix = [node_matrix; max(node_matrix(:,1))+1 node_matrix
(refinar(p),2) new_top new_left new_middle];
146 registry = reg_func(node_matrix,refinar,registry,p);
147 node_matrix = [node_matrix; max(node_matrix(:,1))+1 new_left
new_middle node_matrix(refinar(p),4) new_bottom];
148 registry = reg_func(node_matrix,refinar,registry,p);
149 node_matrix = [node_matrix; max(node_matrix(:,1))+1 new_top
node_matrix(refinar(p),3) new_middle new_right];
150 registry = reg_func(node_matrix,refinar,registry,p);
151 node_matrix = [node_matrix; max(node_matrix(:,1))+1 new_middle
new_right new_bottom node_matrix(refinar(p),5)];
152 %Add new nodes and its coordinates to the coordinate
153 %matrix
154 buff_coord = coordinates(node_matrix(refinar(p),2),:);
155 dist_left = coordinates(node_matrix(refinar(p),2),3)-coordinates
(node_matrix(refinar(p),4),3);

63

156 dist_up = coordinates(node_matrix(refinar(p),3),2)-coordinates
(node_matrix(refinar(p),2),2);
157 dist_right = coordinates(node_matrix(refinar(p),3),3)-coordinates
(node_matrix(refinar(p),5),3);
158 if isempty(find(ismember(coordinates(:,1),new_left)))
159 coordinates = [coordinates; new_left buff_coord(2) buff_coord
(3)-(dist_left/2)];
160 end
161 if isempty(find(ismember(coordinates(:,1),new_top)))
162 coordinates = [coordinates; new_top buff_coord(2)+(dist_up/2)
buff_coord(3)];
163 end
164 coordinates = [coordinates; new_middle buff_coord(2)+(dist_up/2)
buff_coord(3)-(dist_left/2)];
165 if isempty(find(ismember(coordinates(:,1),new_bottom)))
166 coordinates = [coordinates; new_bottom buff_coord(2)+
(dist_up/2) buff_coord(3)-dist_left];
167 end
168 if isempty(find(ismember(coordinates(:,1),new_right)))
169 coordinates = [coordinates; new_right buff_coord(2)+dist_up
buff_coord(3)-(dist_right/2)];
170 end
171 %Add new node to the possible constraints matrix with the
172 %following structure
173 %node_restrictions = [#node left/bottom constraint right/top
constraint]
174 node_restrictions = [node_restrictions; new_left node_matrix
(refinar(p),4) node_matrix(refinar(p),2)];
175 node_restrictions = [node_restrictions; new_top node_matrix(refinar
(p),2) node_matrix(refinar(p),3)];
176 node_restrictions = [node_restrictions; new_bottom node_matrix
(refinar(p),4) node_matrix(refinar(p),5)];
177 node_restrictions = [node_restrictions; new_right node_matrix
(refinar(p),5) node_matrix(refinar(p),3)];
178 %Update boundary matrix
179 fronteira_index = find(ismember(node_matrix(end-3:end,2:end),
[fronteira(fronteira(:,2)==1)']));
180 front_buffer = node_matrix(end-3:end,2:end);
181 if length(fronteira_index) == 3
182 if isequal(fronteira_index,[1 7 10]')
183 fronteira = [fronteira;front_buffer(fronteira_index(1)+1)
1];
184 fronteira = [fronteira;front_buffer(fronteira_index(1)+size
(front_buffer,1)) 1];
185 elseif isequal(fronteira_index,[7 10 16]')
186 fronteira = [fronteira;front_buffer(fronteira_index(3)-size
(front_buffer,1)) 1];
187 fronteira = [fronteira;front_buffer(fronteira_index(3)-1)
1];
188 elseif isequal(fronteira_index,[1 10 16]')
189 fronteira = [fronteira;front_buffer(fronteira_index(2)-1)
1];
190 fronteira = [fronteira;front_buffer(fronteira_index(2)+size
(front_buffer,1)) 1];
191 elseif isequal(fronteira_index,[1 7 16]')

64

192 fronteira = [fronteira;front_buffer(fronteira_index(2)-size
(front_buffer,1)) 1];
193 fronteira = [fronteira;front_buffer(fronteira_index(2)+1)
1];
194 end
195 elseif length(fronteira_index) == 2
196 if front_buffer(fronteira_index(1)+1) == front_buffer
(fronteira_index(2)-1)
197 fronteira = [fronteira;front_buffer(fronteira_index(1)+1)
1];
198 end
199 if front_buffer(fronteira_index(1)+size(front_buffer,1)) ==
front_buffer(fronteira_index(2)-size(front_buffer,1))
200 fronteira = [fronteira;front_buffer(fronteira_index(1)+size
(front_buffer,1)) 1];
201 end
202 end
203 else
204 %It does the same as previously done but, for compatibility
205 %issues, only for the first element refinement
206 max_node = max(node_matrix(:));
207 registry = reg_func(node_matrix,refinar,registry,p);
208 node_matrix = [node_matrix; max(node_matrix(:,1))+1 node_matrix
(refinar(p),2) max_node+2 max_node+1 max_node+3];
209 registry = reg_func(node_matrix,refinar,registry,p);
210 node_matrix = [node_matrix; max(node_matrix(:,1))+1 max_node+1
max_node+3 node_matrix(refinar(p),4) max_node+4];
211 registry = reg_func(node_matrix,refinar,registry,p);
212 node_matrix = [node_matrix; max(node_matrix(:,1))+1 max_node+2
node_matrix(refinar(p),3) max_node+3 max_node+5];
213 registry = reg_func(node_matrix,refinar,registry,p);
214 node_matrix = [node_matrix; max(node_matrix(:,1))+1 max_node+3
max_node+5 max_node+4 node_matrix(refinar(p),5)];
215 buff_coord = coordinates(node_matrix(refinar(p),2),:);
216 dist_left = coordinates(node_matrix(refinar(p),2),3)-coordinates
(node_matrix(refinar(p),4),3);
217 dist_up = coordinates(node_matrix(refinar(p),3),2)-coordinates
(node_matrix(refinar(p),2),2);
218 dist_right = coordinates(node_matrix(refinar(p),3),3)-coordinates
(node_matrix(refinar(p),5),3);
219 coordinates = [coordinates; max_node+1 buff_coord(2) buff_coord(3)-
(dist_left/2)];
220 coordinates = [coordinates; max_node+2 buff_coord(2)+(dist_up/2)
buff_coord(3)];
221 coordinates = [coordinates; max_node+3 buff_coord(2)+(dist_up/2)
buff_coord(3)-(dist_left/2)];
222 coordinates = [coordinates; max_node+4 buff_coord(2)+(dist_up/2)
buff_coord(3)-dist_left];
223 coordinates = [coordinates; max_node+5 buff_coord(2)+dist_up
buff_coord(3)-(dist_right/2)];
224 node_restrictions = [node_restrictions; max_node+1 node_matrix
(refinar(p),4) node_matrix(refinar(p),2)];
225 node_restrictions = [node_restrictions; max_node+2 node_matrix
(refinar(p),2) node_matrix(refinar(p),3)];
226 node_restrictions = [node_restrictions; max_node+4 node_matrix

65

(refinar(p),4) node_matrix(refinar(p),5)];
227 node_restrictions = [node_restrictions; max_node+5 node_matrix
(refinar(p),5) node_matrix(refinar(p),3)];
228 fronteira_index = find(ismember(node_matrix(end-3:end,2:end),
[fronteira(fronteira(:,2)==1)']));
229 front_buffer = node_matrix(end-3:end,2:end);
230 if length(fronteira_index) == 3
231 if isequal(fronteira_index,[1 7 10]')
232 fronteira = [fronteira;front_buffer(fronteira_index(1)+1)
1];
233 fronteira = [fronteira;front_buffer(fronteira_index(1)+size
(front_buffer,1)) 1];
234 elseif isequal(fronteira_index,[7 10 16]')
235 fronteira = [fronteira;front_buffer(fronteira_index(3)-size
(front_buffer,1)) 1];
236 fronteira = [fronteira;front_buffer(fronteira_index(3)-1)
1];
237 elseif isequal(fronteira_index,[1 10 16]')
238 fronteira = [fronteira;front_buffer(fronteira_index(2)-1)
1];
239 fronteira = [fronteira;front_buffer(fronteira_index(2)+size
(front_buffer,1)) 1];
240 elseif isequal(fronteira_index,[1 7 16]')
241 fronteira = [fronteira;front_buffer(fronteira_index(2)-size
(front_buffer,1)) 1];
242 fronteira = [fronteira;front_buffer(fronteira_index(2)+1)
1];
243 end
244 elseif length(fronteira_index) == 2
245 if front_buffer(fronteira_index(1)+1) == front_buffer
(fronteira_index(2)-1)
246 fronteira = [fronteira;front_buffer(fronteira_index(1)+1)
1];
247 end
248 if front_buffer(fronteira_index(1)+size(front_buffer,1)) ==
front_buffer(fronteira_index(2)-size(front_buffer,1))
249 fronteira = [fronteira;front_buffer(fronteira_index(1)+size
(front_buffer,1)) 1];
250 end
251 end
252 end
253 %Updates the dof connectivity matrix for the new nodes
254 edofMat(size(edofMat,1)+1,:) = [max(edofMat(:,1))+1 node_matrix(end-
3,4)*2-1 node_matrix(end-3,4)*2 node_matrix(end-3,5)*2-1 node_matrix(end-3,5)*2
node_matrix(end-3,3)*2-1 node_matrix(end-3,3)*2 node_eletoref(1)*2-1 node_eletoref(1)
*2];
255 edofMat(size(edofMat,1)+1,:) = [max(edofMat(:,1))+1 node_eletoref(3)*2-
1 node_eletoref(3)*2 node_matrix(end-2,5)*2-1 node_matrix(end-2,5)*2 node_matrix(end-
2,3)*2-1 node_matrix(end-2,3)*2 node_matrix(end-2,2)*2-1 node_matrix(end-2,2)*2];
256 edofMat(size(edofMat,1)+1,:) = [max(edofMat(:,1))+1 node_matrix(end-
1,4)*2-1 node_matrix(end-1,4)*2 node_matrix(end-1,5)*2-1 node_matrix(end-1,5)*2
node_eletoref(2)*2-1 node_eletoref(2)*2 node_matrix(end-1,2)*2-1 node_matrix(end-1,2)
*2];
257 edofMat(size(edofMat,1)+1,:) = [max(edofMat(:,1))+1 node_matrix(end,4)
*2-1 node_matrix(end,4)*2 node_eletoref(4)*2-1 node_eletoref(4)*2 node_matrix(end,3)*2-

66

1 node_matrix(end,3)*2 node_matrix(end,2)*2-1 node_matrix(end,2)*2];
258 %Removes the row, of the dof connectivity matrix, corresponding
259 %to the element that was just refined
260 [~,n]=ismember(refinar(p),edofMat(:,1));
261 edofMat(n,:) = [];
262 %updates the area matrix for the new elements and removes the
263 %row corresponding to the refined element
264 new_area = node_matrix(end-3:end,1);
265 for i=1:1:4
266 area = [area; [new_area(i) area(area(:,1)==refinar(p),2)/4]];
267 end
268 area(area(:,1)==refinar(p),:) = [];
269 %If statement used to check for incompatibilities after the
270 %last element is refined
271 refinar_add = [];
272 if p == length(refinar)
273 [area1,area2,area3] = unique(area(:,2));
274 for area_i = 1:length(area1)
275 if isempty(area1(area1(area_i)/16 == area1)) == 0
276 ele_high = area(find(area(:,2)==area1(area_i)),1);
277 ele_low = area(area(:,2)==area1(area1(area_i)/16 == area1),
1);
278 fun = @(registry) registry(1);
279 firstele = cellfun(fun,registry);
280 ele_low_pos = find(ismember(firstele,ele_low));
281 ele_0 = [];
282 for i_pos=1:length(ele_low_pos)
283 ele_0 = [ele_0; registry{ele_low_pos(i_pos),1}(length
(registry{ele_low_pos(i_pos),1}))];
284 end
285 ele_0 = unique(ele_0);
286 ele_0_h = [];
287 ele_high_pos = find(ismember(firstele,ele_high));
288 for i_posh=1:length(ele_high_pos)
289 ele_0_h = [ele_0_h; registry{ele_high_pos(i_posh),1}
(length(registry{ele_high_pos(i_posh),1}))];
290 end
291 ele_0_h_u = unique(ele_0_h);
292 for i_high = 1:length(ele_0_h)
293 if ismember(ele_0_h(i_high),1:nely:((nely*nelx)-(nely-
1))) %upper design boundary
294 ele_around_high = [ele_0_h(i_high)+1 ele_0_h
(i_high)-nely ele_0_h(i_high)+nely];
295 elseif ismember(ele_0_h(i_high),nely:nely:(nelx*nely))
%lower design boundary
296 ele_around_high = [ele_0_h(i_high)-1 ele_0_h
(i_high)-nely ele_0_h(i_high)+nely];
297 elseif ismember(ele_0_h(i_high),1:1:nely) %left design
boundary
298 ele_around_high = [ele_0_h(i_high)-1 ele_0_h
(i_high)+1 ele_0_h(i_high)+nely];
299 elseif ismember(ele_0_h(i_high),(((nely*nelx)-(nely-
1)):1:(nely*nelx))) %right design boundary
300 ele_around_high = [ele_0_h(i_high)-1 ele_0_h
(i_high)+1 ele_0_h(i_high)-nely];

67

301 else
302 ele_around_high = [ele_0_h(i_high)-1 ele_0_h
(i_high)+1 ele_0_h(i_high)-nely ele_0_h(i_high)+nely]; %for "middle" elements
303 end
304 ele_around_high = ele_around_high(ele_around_high>0);
305 ele_around_high = unique(ele_around_high);
306 ele_around_high = [ele_around_high, ele_0_h(i_high)];
307 ele_around_low = ele_around_high(ismember
(ele_around_high,ele_0));
308 if isempty(ele_around_low) == 0
309 refinar_add = [refinar_add, firstele(ele_high_pos
(i_high))];
310 end
311 end
312 ele_0_h_original = find(ismember(ele_high,[ele_0-1 ele_0+1
ele_0-nely ele_0+nely]));
313 ele_0_h_original = unique(ele_0_h_original);
314 for i_original = 1:length(ele_0_h_original)
315 if ismember(ele_high(ele_0_h_original(i_original)),1:1:
nelx*nely)
316 refinar_add = [refinar_add, ele_high
(ele_0_h_original(i_original))];
317 end
318 end
319 end
320 end
321 refinar_add_u = unique(refinar_add);
322 refinar = [refinar, refinar_add_u];
323 end
324 %Ledger used to assign the density of the original element to
325 %the newly created, corresponding, elements
326 [~,ipm]=ismember(refinar(p),xPhys_ledger(:,1));
327 if isempty(ipm) == 0
328 xPhys_ledger = [xPhys_ledger; max(xPhys_ledger(:,1))+1 xPhys_ledger
(ipm,2)];
329 xPhys_ledger = [xPhys_ledger; max(xPhys_ledger(:,1))+1 xPhys_ledger
(ipm,2)];
330 xPhys_ledger = [xPhys_ledger; max(xPhys_ledger(:,1))+1 xPhys_ledger
(ipm,2)];
331 xPhys_ledger = [xPhys_ledger; max(xPhys_ledger(:,1))+1 xPhys_ledger
(ipm,2)];
332 xPhys_ledger(ipm,:)=[];
333 else
334 xPhys_ledger = [xPhys_ledger; node_matrix(end-3:1:end,1) [volfrac;
volfrac;volfrac;volfrac]];
335 end
336 p=p+1;
337 end
338 xPhys = xPhys_ledger(:,2)';
339 x=xPhys;
340 %Updates boundary matrix to remove non boundary nodes
341 i_front = fronteira(:,2)==0;
342 fronteira(i_front,:)=[];
343 %Identification of free floating dofs
344 [~,~,ix] = unique(reshape(edofMat(:,2:end),size(edofMat,1)*(size(edofMat,2)

68

-1),1)');
345 C = accumarray(ix,1);
346 i = 1;
347 i_hanging = [];
348 for i = 1:length(C)
349 if C(i) > 1 & C(i) < 4
350 i_hanging = [i_hanging i];
351 else
352 i=i+1;
353 end
354 end
355 n_hanging = i_hanging(rem(i_hanging,2)==0)/2; %Transforms dofs in nodes
356 %Removes the nodes at the boundary, leaving only the "true" free
357 %floating nodes
358 n_hanging(find(ismember(n_hanging,fronteira(:,1)')))=[];
359 %Section corresponding to the aplication of the constraints to the
360 %free floating nodes
361 buffer_edofMat=edofMat(:,2:end);
362 node_dofMat=[];
363 for i=1:length(buffer_edofMat)
364 node_dofMat = [node_dofMat; buffer_edofMat(i,2)/2 buffer_edofMat(i,4)/2
buffer_edofMat(i,6)/2 buffer_edofMat(i,8)/2];
365 end
366 node_dofMat = [edofMat(:,1) node_dofMat];
367 edofMat_truque = node_dofMat(:,2:end);
368 for i=1:length(n_hanging)
369 i_n_restrictions = find(ismember(node_restrictions(:,1),n_hanging(i)));
370 [xxx,yyy] = find(ismember(edofMat_truque,n_hanging(i)));
371 local = [xxx yyy];
372 [rest_1_x rest_1_y] = find(ismember(edofMat_truque(local(:,1),:),
node_restrictions(i_n_restrictions,2))); %Searches fot the first constraint in the
constraint matrix
373 rest_1 = [rest_1_x rest_1_y];
374 [rest_2_x rest_2_y] = find(ismember(edofMat_truque(local(:,1),:),
node_restrictions(i_n_restrictions,3))); %Searches fot the second constraint in the
constraint matrix
375 rest_2 = [rest_2_x rest_2_y];
376 if rest_1(1,1) == 1
377 node_restrictions(i_n_restrictions,:);
378 edofMat_truque(local(:,1),:);
379 edofMat_truque(local(1,1),local(1,2)) = node_restrictions
(i_n_restrictions,3);
380 edofMat_truque(local(2,1),local(2,2)) = node_restrictions
(i_n_restrictions,2);
381 edofMat_truque(local(:,1),:);
382 elseif rest_1(1,1) == 2
383 node_restrictions(i_n_restrictions,:);
384 edofMat_truque(local(:,1),:);
385 edofMat_truque(local(2,1),local(2,2)) = node_restrictions
(i_n_restrictions,3);
386 edofMat_truque(local(1,1),local(1,2)) = node_restrictions
(i_n_restrictions,2);
387 edofMat_truque(local(:,1),:);
388 end
389 end

69

390 %Restores the dof connectivity matrix with the applied constraints
391 final_dofMat = [];
392 h=1;
393 for k=1:size(edofMat_truque,1)
394 for i = 1:size(edofMat_truque,2)
395 dofMat(h) = edofMat_truque(k,i)*2-1;
396 h=h+1;
397 dofMat(h) = edofMat_truque(k,i)*2;
398 h=h+1;
399 end
400 final_dofMat = [final_dofMat; dofMat];
401 h=1;
402 end
403 %Cycle to compute the striffness matrix for the elements where
404 %constraints were applied
405 [finx,~]=find(ismember(node_dofMat(:,2:end),n_hanging));
406 ele_KE = unique(finx); %elements with true free floating nodes (where
constraints have been applied)
407 KE_e = cell(1,((nelx*nely)-length(refinar)+length(ele_KE)));
408 buffer_node_dofMat = node_dofMat(ele_KE,2:end);
409 for i=1:size(buffer_node_dofMat,1)
410 i_n = find(ismember(buffer_node_dofMat(i,:),n_hanging(:)));
411 hanging_node = [];
412 h=1;
413 for l = 1:length(i_n)
414 hanging_node(h) = i_n(l)*2-1;
415 h=h+1;
416 hanging_node(h) = i_n(l)*2;
417 h=h+1;
418 end
419 buff_if = buffer_node_dofMat(i,:);
420 find_if = find(ismember(node_restrictions(:,1),buff_if(i_n)));
421 if length(i_n) == 1
422 sum_n_i = ismember(node_restrictions(find_if(1),2:3),buff_if);
423 buff_sum_n_i = node_restrictions(find_if(1),2:3);
424 sum_n_n = buff_sum_n_i(sum_n_i);
425 sum_n = find(ismember(buff_if,sum_n_n));
426 sum_node = [sum_n*2-1 sum_n*2];
427 elseif length(i_n) == 2
428 sum_n_i = node_restrictions(find_if(1),ismember(node_restrictions
(find_if(1),:),node_restrictions(find_if(2),:)));
429 sum_n = find(ismember(buff_if,sum_n_i));
430 sum_node = [sum_n*2-1 sum_n*2];
431 end
432 %Calls the necessary function
433 KE_e{ele_KE(i)} = KE_i(KE,hanging_node,sum_node);
434 end
435 sK=zeros(64,size(final_dofMat,1));
436 for i = 1:size(final_dofMat,1)
437 if ismember(i,ele_KE)
438 sK(:,i)= KE_e{i}(:)*(Emin+xPhys(i).^penal*(E0-Emin));
439 else
440 sK(:,i)= KE(:)*(Emin+xPhys(i).^penal*(E0-Emin));
441 end
442 end

70

443 sK = reshape(sK,64*size(final_dofMat,1),1);
444 else
445 %In case there is no refinement the If statement jumps here
446 final_dofMat = edofMat_original;
447 x = kron(volfrac,ones(size(final_dofMat,1),1))';
448 xPhys = x;
449 n_hanging = [];
450 i_front = fronteira(:,2)==0;
451 fronteira(i_front,:)=[];
452 ele_KE = [size(edofMat_original,1)*4];
453 sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*size
(edofMat_original,1),1);
454 xPhys_ledger = [node_matrix(:,1),xPhys'];
455 end
456 iK = reshape(kron(final_dofMat,ones(8,1))',64*size(final_dofMat,1),1);
457 jK = reshape(kron(final_dofMat,ones(1,8))',64*size(final_dofMat,1),1);
458 K = sparse(iK,jK,sK);
459 K = (K+K')/2;
460 %Boundary Conditions and new dofs from the new elements
461 F = sparse(2*max(max(node_matrix(:,2:end))),1);
462 F(2,1) = -1; %mbb
463 U = zeros(2*max(max(node_matrix(:,2:end))),1);
464 fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]); %mbb
465 more_dofs = setdiff(node_matrix(nelx*nely+1:end,2:end),n_hanging);
466 extra_dofs = setdiff(more_dofs,node_matrix(1:nelx*nely,2:end));
467 alldofs = [1:2*(nely+1)*(nelx+1)];
468 dof_buffer = [];
469 h=1;
470 for i = 1:length(extra_dofs)
471 dof_buffer(h) = extra_dofs(i)*2-1;
472 h=h+1;
473 dof_buffer(h) = extra_dofs(i)*2;
474 h=h+1;
475 end
476 alldofs = [alldofs dof_buffer];
477 freedofs = setdiff(alldofs,fixeddofs);
478 U(freedofs) = K(freedofs,freedofs)\F(freedofs);
479 %% Optimization
480 optimization = true;
481 while optimization
482 if ismember(rmin_i,[0:div_r:50]) && rmin_i > 1
483 rmin = rmin/2; %Devides the filter radius every "div_r" iteration
484 end
485 loop = 0;
486 change = 1;
487 change_acc = [];
488 max_opt_ite = 500;
489 max_change_acc = 100;
490 change_loop = 0.01; %Optimization loop convergence criteria
491 dist_centroid = [];
492 centroid = [];
493 if isempty(refinar) == 0
494 name = ['Com refinamento' ' e com Raio = ' num2str(rmin)];
495 fig_name = ['IteN_' num2str(run) '_Nelx_' num2str(nelx) '_Nely_' num2str
(nely) '_Raio_' num2str(rmin) '_change_' num2str(change_loop)];

71

496 else
497 name = ['Sem refinamento com Raio = ' num2str(rmin)];
498 fig_name = ['IteN_' num2str(run) '_Nelx_' num2str(nelx) '_Nely_' num2str
(nely) '_Raio_' num2str(rmin) '_change_' num2str(change_loop)];
499 end
500 file_name = ['OptCycle_Nelx_' num2str(nelx) '_Nely_' num2str(nely) '_r0_'
num2str(r0) '.txt'];
501 fileiD = fopen([folder file_name],'a');
502 fprintf('\n\n ------ Novo ciclo de otimização ------ Refinement Ite.: %.f \n',
run);
503 fprintf(fileiD,'\n\n ------ Novo ciclo de otimização ------ Refinement Ite.: %.
f \n',run);
504 while change > change_loop
505 loop = loop +1;
506 c=0.;
507 dc=[];
508 for i = 1:size(final_dofMat,1)
509 if ismember(i,ele_KE)
510 Ue = U(final_dofMat(i,:));
511 c = c + xPhys(i)^penal*Ue'*KE_e{i}*Ue;
512 dc(i,1) = -penal*(E0-Emin)*xPhys(i)^(penal-1)*Ue'*KE_e{i}*Ue;
513 else
514 Ue = U(final_dofMat(i,:));
515 c = c + xPhys(i)^penal*Ue'*KE*Ue;
516 dc(i,1) = -penal*(E0-Emin)*xPhys(i)^(penal-1)*Ue'*KE*Ue;
517 end
518 end
519 if isempty(refinar) == 1
520 node_dofMat(:,1) = node_matrix(:,1);
521 node_dofMat(:,2) = node_matrix(:,4);
522 node_dofMat(:,3) = node_matrix(:,5);
523 node_dofMat(:,4) = node_matrix(:,3);
524 node_dofMat(:,5) = node_matrix(:,2);
525 end
526 dv = area(:,2);
527 %Calls the filtering function
528 if filter_type == 1
529 [dc,dist_centroid,centroid,dv,H,Hs] = filter(node_dofMat,node_matrix,
xPhys,coordinates,rmin,dc,refinar,dist_centroid,centroid,dv,filter_type,area);
530 elseif filter_type == 2
531 [dc,dist_centroid,centroid,dv,H,Hs] = filter(node_dofMat,node_matrix,x,
coordinates,rmin,dc,refinar,dist_centroid,centroid,dv,filter_type,area);
532 end
533 %Optimality Criteria Update
534 l1 = 0; l2 = 1e9; move = 0.2;
535 while (l2-l1)/(l1+l2) > 1e-3
536 lmid = 0.5*(l2+l1);
537 xnew = max(0.001,max(x'-move,min(1.,min(x'+move,x'.*sqrt((-dc./dv)
/lmid)))));
538 if filter_type == 1
539 xPhys = xnew';
540 elseif filter_type == 2
541 xPhys = (sum(H(:,:).*xnew(:))'./Hs)';
542 end
543 if sum(xPhys'.*area(:,2)) - volfrac*nelx*nely > 0

72

544 l1 = lmid;
545 else
546 l2 = lmid;
547 end
548 end
549 change = max(max(abs(xnew-x')));
550 x = xnew';
551 %Print results
552 fprintf(' It.:%5i Obj.:%11.4f Vol.:%7.4f ch.:%7.4f\n',loop,c, ...
553 mean(xPhys(:)),change);
554 fprintf(fileiD,' It.:%5i Obj.:%11.4f Vol.:%7.4f ch.:%7.4f\n',loop,c, ...
555 mean(xPhys(:)),change);
556 compliance = [compliance; c];
557 %Different steps to ensure that its not an infinite loop
558 change_acc = [change_acc, change];
559 if length(change_acc) > max_change_acc && isempty(setdiff(change_acc(end-
max_change_acc:end),change_acc(end)))
560 change = change_loop - 0.005;
561 name = [name '_NoConvergence'];
562 end
563 if length(change_acc) > max_opt_ite
564 change = change_loop - 0.005;
565 name = [name '_NoConvergence'];
566 end
567 if isempty(refinar) == 0
568 sK=zeros(64,size(final_dofMat,1));
569 for i = 1:size(final_dofMat,1)
570 if ismember(i,ele_KE)
571 sK(:,i)= KE_e{i}(:)*(Emin+xPhys(i).^penal*(E0-Emin));
572 else
573 sK(:,i)= KE(:)*(Emin+xPhys(i).^penal*(E0-Emin));
574 end
575 end
576 sK = reshape(sK,64*size(final_dofMat,1),1);
577 else
578 sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*size(edofMat,
1),1);
579 end
580 K = sparse(iK,jK,sK);
581 K = (K+K')/2;
582 U(freedofs) = K(freedofs,freedofs)\F(freedofs);
583 end
584 fclose(fileiD);
585 xPhys_ledger(:,2) = xPhys';
586 dist_centroid = [];
587 centroid = [];
588 %% Final Stage - Plots and File Outputs
589 plot_mesh(coordinates(:,2:3),node_dofMat(:,2:end),xPhys,name,1,nelx,nely);
590 saveas(gcf,[folder 'Malha_' fig_name '.fig'],'fig')
591 saveas(gcf,[folder 'Malha_' fig_name '.jpeg'],'jpeg')
592 plot_mesh(coordinates(:,2:3),node_dofMat(:,2:end),xPhys,name,0,nelx,nely);
593 saveas(gcf,[folder fig_name '.fig'],'fig')
594 saveas(gcf,[folder fig_name '.jpeg'],'jpeg')
595 plot_mesh(coordinates(:,2:3),node_dofMat(:,2:end),xPhys,name,3,nelx,nely);
596 saveas(gcf,[folder 'NoFill_' fig_name '.fig'],'fig')

73

597 saveas(gcf,[folder 'NoFill_' fig_name '.jpeg'],'jpeg')
598 comp_name = ['Compliance_Nelx_' num2str(nelx) '_Nely_' num2str(nely) '_r0_'
num2str(r0) '.mat'];
599 save([folder comp_name],'compliance')
600 U_name = ['U_Ite_' num2str(run) '_Nelx_' num2str(nelx) '_Nely_' num2str(nely)
'_r0_' num2str(r0) '.mat'];
601 save([folder U_name],'U')
602 xPhys_name = ['xPhys_Ite_' num2str(run) '_Nelx_' num2str(nelx) '_Nely_' num2str
(nely) '_r0_' num2str(r0) '.mat'];
603 save([folder xPhys_name],'xPhys')
604 node_dofMat_name = ['node_dofMat_Ite_' num2str(run) '_Nelx_' num2str(nelx)
'_Nely_' num2str(nely) '_r0_' num2str(r0) '.mat'];
605 save([folder node_dofMat_name],'node_dofMat')
606 coord_name = ['coord_Ite_' num2str(run) '_Nelx_' num2str(nelx) '_Nely_' num2str
(nely) '_r0_' num2str(r0) '.mat'];
607 save([folder coord_name],'coordinates')
608 if run == ite_max
609 area_min = min(min(area));
610 tEnd = cputime - tStart;
611 tEnd_min = tEnd/60;
612 disp(tEnd_min)
613 break
614 end
615 rmin_i = rmin_i+1;
616 %Refinement Criteria (input at the beginning of the code)
617 refinar = node_dofMat(find(xPhys>crt_low & xPhys<crt_high),1)';
618 %refinar = node_dofMat(find(abs(xPhys-1)<=0.2),1)';
619 if run < 5
620 optimization = false;
621 end
622 if isempty(refinar)
623 break
624 end
625 run = run+1;
626 end
627 end
628 end
629
630 function plot_mesh(coordinates,nodes,xPhys,name,line,nelx,nely)
631 %%Plot Mesh Function
632 %The line input variable is used to specify if the plot is with or without
633 %lines. line == 0 means it plots without mesh lines
634 nel = length(nodes); % number of elements
635 nnel = size(nodes,2); % number of nodes per element
636 % Initialization of the required matrices
637 X = zeros(nnel,nel) ;
638 Y = zeros(nnel,nel) ;
639 for iel=1:nel
640 nd = nodes(iel,:) ;
641 X(:,iel)=coordinates(nd,1); % extract x value of the node
642 Y(:,iel)=coordinates(nd,2); % extract y value of the node
643 end
644 % Plotting the FEM mesh
645 if line == 1
646 fig1 = figure('Name',['Malha_' name]);

74

647 figure(fig1)
648 colormap(gray)
649 fill(X,Y,1-xPhys,'LineStyle','-')
650 title('Finite Element Mesh') ;
651 axis ([0 nelx 0 nely])
652 elseif line == 0
653 fig1 = figure('Name',name);
654 figure(fig1)
655 colormap(gray)
656 fill(X,Y,1-xPhys,'LineStyle','none')
657 title('Finite Element Mesh') ;
658 axis ([0 nelx 0 nely])
659 elseif line == 3
660 fig1=figure('Name',['NoFill_' name]);
661 figure(fig1)
662 patch(X,Y,'white');
663 axis ([0 nelx 0 nely])
664 end
665 end
666
667 function [dc,dist_centroid,centroid,dv,H,Hs] = filter(node_dofMat,node_matrix,
xPhys,coordinates,rmin,dc,refinar,dist_centroid,centroid,dv,filter_type,area)
668 %%Filter Function
669 if rmin > 0
670 if isempty(refinar) == 0
671 %Computes de Centroid of each element
672 if length(dist_centroid) ~= length(node_dofMat)
673 centroid = zeros(size(node_dofMat,1),3);
674 for i = 1:size(node_dofMat,1)
675 distance_cent = pdist([coordinates(node_dofMat(i,4),2) coordinates
(node_dofMat(i,4),3); ...
676 coordinates(node_dofMat(i,5),2) coordinates(node_dofMat(i,5),
3)]);
677 distance_cent = distance_cent/2;
678 centroid(i,:) = [node_dofMat(i,1) coordinates(node_dofMat(i,5),2)
+distance_cent coordinates(node_dofMat(i,5),3)-distance_cent];
679 end
680 end
681 else
682 node_dofMat = node_matrix;
683 if length(dist_centroid) ~= length(node_dofMat)
684 centroid = zeros(size(node_dofMat,1),3);
685 for i = 1:size(node_dofMat,1)
686 distance_cent = pdist([coordinates(node_matrix(i,3),2) ...
687 coordinates(node_matrix(i,3),3);coordinates(node_matrix(i,2),2)
coordinates(node_matrix(i,2),3)]);
688 distance_cent = distance_cent/2;
689 centroid(i,:) = [node_matrix(i,1) coordinates(node_matrix(i,2),2)
+distance_cent coordinates(node_matrix(i,2),3)-distance_cent];
690 end
691 end
692 end
693 if length(dist_centroid) ~= length(node_dofMat)
694 %Computes de distance between all centroids and presents it in a
695 %more "readable" way

75

696 dist_centroid = squareform(pdist(centroid(:,2:3)));
697 end
698 for i = 1:size(node_dofMat,1)
699 %Adjustable filter radius (if user wants to activate it)
700 %
701 %
702 %rmin = 1.5*area(i,2);
703 h_operator_m(:,i) = rmin-dist_centroid(:,i);
704 h_operator_sum_m(:,i) = max(0,h_operator_m(:,i));
705 h_i_m{i} = find(h_operator_sum_m(:,i)>0);
706 sum_h_matrix(i,1) = sum(h_operator_sum_m(:,i),1);
707 end
708 for i = 1:size(node_dofMat,1) %Filtering cycle
709 h_operator_sum = h_operator_sum_m(:,i);
710 h_i = h_i_m{i};
711 sum_h = sum_h_matrix(i,1);
712 if filter_type == 1
713 dcn(i,1) = sum(h_operator_sum(h_i).*xPhys(h_i)'.*dc(h_i))/(max(1e-3,
xPhys(i))*sum_h);
714 elseif filter_type == 2
715 dcn(i,1) = sum(h_operator_sum(h_i).*(dc(h_i)./sum_h_matrix(h_i)));
716 dv(i,1) = sum(h_operator_sum(h_i).*(dv(h_i)./sum_h_matrix(h_i)));
717 end
718 end
719 dc = dcn;
720 H = h_operator_sum_m;
721 Hs = sum_h_matrix;
722 end
723 end
724
725 function [KE_i] = KE_i(KE,hanging_node,sum_dof)
726 %% Function that outputs the element stiffness matrix for constrained elements
727 % the entries are strcutured as follows:
728 % hanging_node=[1,2,5,6]; #of free floating nodes
729 % sum_node=[3,4]; #of nodes where changes will occur
730 KE_i = KE;
731 KE_i(:,hanging_node(:)) = (KE_i(:,hanging_node(:))/2);
732 KE_i(:,sum_dof(1)) = KE_i(:,sum_dof(1)) + sum(KE_i(:,hanging_node(1:2:end)),2);
733 KE_i(:,sum_dof(2)) = KE_i(:,sum_dof(2)) + sum(KE_i(:,hanging_node(2:2:end)),2);
734 KE_i(hanging_node(:),:) = (KE_i(hanging_node(:),:)/2);
735 KE_i(sum_dof(1),:) = KE_i(sum_dof(1),:) + sum(KE_i(hanging_node(1:2:end),:),1);
736 KE_i(sum_dof(2),:) = KE_i(sum_dof(2),:) + sum(KE_i(hanging_node(2:2:end),:),1);
737 end
738
739 function [registry] = reg_func(node_matrix,refinar,registry,p)
740 %% Fuction used to create a registry of the original element and all subsequent
refined elements
741 index_registry = [];
742 for ir = 1:size(registry,1)
743 ir_m = find(ismember(registry{ir,1},refinar(p)));
744 if isempty(ir_m) == 0
745 index_registry = [index_registry; ir ir_m];
746 end
747 end
748 if isempty(index_registry)

76

749 registry{size(registry,1)+1,1} = [max(node_matrix(:,1))+1 refinar(p)];
750 elseif index_registry(2) ~= 1
751 registry{size(registry,1)+1,1} = [max(node_matrix(:,1))+1 registry
{index_registry(1),1}(2:end)];
752 else
753 registry{index_registry(1),1} = [max(node_matrix(:,1))+1, registry
{index_registry(1),1}];
754 end
755 end
756
757

77

78

	Declaration
	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Topic Overview
	1.3 Objectives
	1.4 Thesis Outline

	2 Background
	2.1 Topology Optimization
	2.1.1 Problem Formulation
	2.1.2 Solution methods
	2.1.3 Difficulties
	2.1.4 Applications

	2.2 Adaptive Mesh Refinement
	2.2.1 Theory, difficulties and refinement criterion

	3 Implementation
	3.1 Finite element method
	3.2 Algorithm implementation
	3.2.1 Pre-processing – Variables and Material Properties (lines 2-64)
	3.2.2 Finite Element Analysis / Refinement Section (lines 66-478)
	3.2.3 Optimization Section (lines 479-584)
	3.2.4 Final Stage - Plots and Outputs (lines 589-618)

	4 Results
	4.1 Parametric Study
	4.1.1 Refinement Criteria
	4.1.2 Penalization power
	4.1.3 Volume fraction
	4.1.4 Filtering technique and radius

	4.2 Validation
	4.2.1 MBB-beam problem
	4.2.2 Cantilever beam problem
	4.2.3 Stocky cantilever beam problem
	4.2.4 'Wheel' problem
	4.2.5 Performance analysis

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography
	A Parametric study
	A.1 Results for different refinement criteria

	B MATLAB CODE
	B.1 Topology Optimization with AMR algorithm

