
1

Visual Inertial Odometry for Mobile Home Robots
Paulo André Pereira Nogueira

Instituto Superior Técnico / UTL, Lisbon, Portugal
khakogcho@gmail.com

ABSTRACT

Robots aware of their surrounding, and able to roam freely,
are expected to become ubiquitous in future homes. Visual
inertial odometry is an enabling technology which is pos-
sible nowadays due to novel low-cost cameras and inertial
measurement units (IMUs). In this work we analyze how
the system-state initialization and dynamics propagation of
IMU readings, involving intrinsic bias, has to match the visual
motion captured by the camera. Then we analyze the synergies
between these two sensors in the context of pose estimation.

A small wheeled mobile robot is developed based on one
Raspberry Pi, one camera and one IMU mounted on an
Arduino. The calibration of the system, namely the rigid
transformation between camera and IMU is performed with
a free, public domain, tool. The visual and inertial data is
processed by means of an Unscented Kalman Filter with Lie
group embedding for state representation. We propose a state
initialization for this filter that enables matching the integrated
IMU readings with the tracked visual features.

Experiments and results show the importance of success-
fully matching the feature tracks in the first images with the
starting integration of IMU readings, as significant errors in
initial bias estimations may preclude sensors fusion and filter
convergence. Results show also that the operation of the fusion
filter allows synergies between the two sensors, while the IMU
provides instantaneous and reliable estimations of translation
and rotation speeds, the visual component provides IMU bias
correction.

I. INTRODUCTION

Visual Inertial Odometry combines imaging (video camera)
with inertial (IMU) information to estimate the pose of a robot.
The IMU specializes in tracking movement and orientation of
objects. It is often used in navigation applications like aerial
vehicles. However, its new found accessibility in current times
has facilitated its integration in low-cost systems.

Combining cameras and IMUs in the context of pose
estimation has multiple advantages, the main of which being
the possibility of creating synergies between these sensors. In
practice this means the visual information can help calibrate
the IMU (bias), while the IMU provides motion scale to the
visual information. With this in mind, we set out to develop
a low-cost system that can perform visual inertial odometry,
so we can critically analyze this synergy between sensors,
and understand what are the key issues in using inexpensive
equipment.

A. Related Work

Works as [11], that built navigation systems with low-cost
IMUs, have shown it is critical handling properly the IMU
bias. In general, research and development, bias is always
considered an important aspect when working with IMUs, and
there are multiple works like [16] that approach the issue of
estimating and removing bias from the IMU readings, which
are relevant to all IMUs independently of their price tag.

Simultaneous Location and Mapping (SLAM) is a set of
problems that overlaps with the problem of pose (position and
orientation) estimation. Works like [14] have compared the
performance of visual SLAM (vSLAM) and visual inertial
SLAM (viSLAM) concluded that typically viSLAM have
better performances. Problems like the natural difficulty of vS-
LAM systems to capture motion scale and general robustness
and accuracy are the main reasons.

Works as [3] have set out to implement already proven
algorithms low-cost ground robots. They show it may be
necessary to compromise filter performance due to the lack
of computational power of low-cost robots. In an opposite
direction, of accepting computational complexity, [15] pro-
poses a state of the art versatile monocular visual inertial state
estimator by means of a nonlinear optimization-based method.
This approach is based on the alignment of a visual structure
obtained by means of a structure from motion strategy with
the results of a IMU preintegration.

These works show that it is worthwhile to pursue the idea
of creating a low-cost visual inertial system dedicated to
odometry. They also indicate that the process of IMU bias
removal has a significant impact on the overall odometry
performance. In this thesis we study inertial sensors combined
with cameras, focusing on IMU bias estimation and removal,
and vision / IMU synergies.

Visual inertial odometry, as a base component of mobile
robots, has not only much research, but also real, interesting
and relevant, datasets. The EuRoC MAV datasets [6] offer
visual inertial measurements with accurate ground truth. These
datasets are widely used in this area, whether to test new state
of the art approaches or to establish benchmarks to compare
algorithms. They will be used in this work along with our own
datasets to test our solutions within a variety of scenarios.

B. Problem Formulation

Given a mobile robot the main objective consists of esti-
mating its motion using onboard sensors. We consider using a
camera and an IMU, and integrating the respective measure-
ments, taking into account the lack of motion scale associated
to a monocular camera and the bias of the IMU.



2

We set out to continue the work of [8] as it developed a
low-cost mobile robot based on a Raspberry Pi that is able to
acquire visual information for pose estimation. As referred,
we add one IMU. The IMU allows us to introduce linear
acceleration and angular velocity measurements in the system,
which capture motion scale. These measurements are offset
by bias, which needs to be removed as to avoid erroneous
estimations.

In summary, in this work we propose developing a low-
cost mobile robot that can acquire visual and inertial data,
and then process this data to obtain pose estimates using an
Unscented Kalman Filter (UKF) based on Lie groups. While
processing this data, we evaluate how the sensors cooperate
in the estimation.

Section II presents the engineering and mathematical back-
ground necessary to understand the concepts mentioned and/or
proposed in this work. Section III describes the developed
mobile robot and how it is able to acquire visual and inertial
data. Section IV exposes the pose estimator filter with all
the proposed modifications that enables it to meet our goals.
Section V provides an overview of the different experiments
performed as well as the results attained and a critical analysis
of these results. Lastly, Section VI summarizes the work
performed and highlights the main achievements in this work.
Moreover, this section proposes further work to extend the
activities described in this document.

II. BACKGROUND AND STATE OF THE ART

In this section we will cover several topics that serve as a
theoretical basis for this work. We will also mentions works
that had an impact on ours or serve as comparison to it.

A. Camera Model

A camera model defines the relation between 3D points in
the real world and 2D points in an image. A common model is
the pinhole model which is a perspective projection model. In
this model the projection matrix that makes this transformation
is defined as P = K[R t] where R and t are the extrinsic
parameters of the camera (i.e., the rigid transformation that
map its referential to the world frame), and K is the intrinsic
parameter’s matrix defined as

K =

fx s cx
0 fy cy
0 0 1

 , (1)

where f is the focal length, c is the principal point, and s is
the skew. With this projective matrix P we can maps the world
points to the image plane using homogeneous coordinates
(scale factor λ) as λx = PX.

B. Inertial Measurement Unit (IMU)

One of the goals of this work is to incorporate an Inertial
Measurement Unit (IMU) into a preexisting system. To achieve
this, it is important that have an understanding of how this
sensor works and what it provides.

Concept wise, an IMU is a combination of an accelerometer
and a gyroscope (and a magnetometer if available, which

for our IMU it is). All these three sensors measure their
respective properties in three spacial axes. Let us consider
the coordinate system of the IMU shown in Figure 3. These
axes are applicable to the accelerometer and gyroscope. The
magnetometer has the same axes, except z and y are inverted.

1) Accelerometer: It measures proper acceleration. This is
the acceleration felt by an object. In practice, it is the accel-
eration of a body relative to a free falling state. This means,
an accelerometer in free fall will measure zero acceleration
for all axes. In contrast, a resting accelerometer on the surface
of the Earth will measure, approximately, the gravity vector,
9.81 m/s2, upwards.

2) Gyroscope: Depending on the type, a gyroscope can
measure angular velocity and/or orientation. Similarly to the
accelerometer, we will consider a MEMS gyroscope, which
measures angular velocity in degrees per second °/s or radians
per second rad/s.

3) Magnetometer: Typically magnetometers are used to
measure Earth’s magnetic field. However magnetometers are
susceptible to disturbances. These can take the form of hard
(b) and soft (A) iron effects, and can be removed form the
measurements as mcalib = A(m − b). The first is caused
by magnetic materials like magnets or electrified coils. The
second is caused by ferromagnetic materials like iron, cobalt
and nickel.

4) Measurement Model: Now that we know how the sen-
sors in an IMU work and what they measure, it is time to talk
about the mathematical models of the measurements. We will
first touch upon bias and noise and how they effect estimations.

a) Noise and Bias: Every sensor is projected to measure
the true magnitude of a property. Different sensors are affected
by different types of phenomenons. We will focus on the two
specific types of phenomenons that often cause issues to IMU
sensors: (white) noise and bias.

White noise is a form of additive noise. It is a random
signal with equal intensity at different frequencies. Bias is an
offset from the real value the signal should have. This property
is more often associated with IMU sensors. Part of Figure 1
shows a data signal (for example the gyroscope’s angular rate)
and what happens to it when affected by noise and bias.

b) IMU Sensors: We can represent the IMU measure-
ments as angular rate ω = [ωx ωy ωz]

T ∈ R3, linear
acceleration a = [ax ay az]

T ∈ R3, and magnetic field
m = [mx my mz]

T ∈ R3. In Equation 3 we have (embedded)
the complete measurement model of the accelerometer and
gyroscope measurements.

C. Sensor Fusion for Orientation Estimation

Sensor fusion is when there is a combining of multiple
data sources as to generate a better understanding of the
system. This can mean having average of two sensors for noise
reduction, avoid single point failure, estimate unmeasured
states or increase sensing coverage. Let us consider a 9 DoF
IMU like the one presented in Section II-B. In this section
we will discuss how we can use sensor fusion to estimate
orientation using the considered IMU.



3

1) Estimating Orientation: We will now study two different
ways of estimating orientation. One using both the accelerom-
eter and the magnetometer, and one using the gyroscope.

a) Accelerometer and Magnetometer: These sensors can
be used to estimate an absolute (does not depend on initial-
ization) estimate of the orientation by performing cross prod-
ucts between the measurements (gravity vector and Earth’s
magnetic field) in order to estimate the north, east and down
vectors. Through these it is possible to build a rotation matrix
that represents the body’s orientation.

One of the biggest drawbacks from this orientation esti-
mation approach is how it expects the accelerometer to only
measure the gravity vector. The accelerometer will measure
all linear acceleration and even acceleration based on rotations
not centered in the accelerometer. Every translation or rotation
that generates linear acceleration will throw off the estimation
of where the down axis is.

b) Gyroscope: By integrating the gyroscope’s measures
in a certain time interval we can obtain the rotation performed
over that amount of time. By doing this in small steps and
applying the estimate to the previous orientation we can
estimate the current orientation. One of its flaws is the fact
we need an initial estimate of orientation, due to this being a
relative estimation. This can be provided by ground truth or
making an initial estimation with an absolute method, like the
one described with the accelerometer and gyroscope. However
there is a bigger problem here: integrating the bias present in
the measurements will cause the orientation value to drift over
time, like shown in Figure 1. The only way to combat this is
to estimate the bias value at each time step and remove it from
the measurements. In Section IV-B1c we propose a method to
estimate this value.

Fig. 1: Graphical representation of integration of biased angu-
lar velocity measurements and the resulting drift.

2) Sensor Fusion Filters: Having two estimates for ori-
entation, the goal now is how to combine them as to mask
each other’s flaws. There are several filters that can do this
job: Complementary, Kalman, or even dedicated filters like
Madgwick or Mahony. From a conceptual standpoint they
all typically do a similar job: they estimate orientation at
each time step with the gyroscope measurements and use the
accelerometer (and magnetometer if available) for the initial
estimation and bias correction.

Since it was introduced in [10], the Kalman Filter has
dominated all problems with linear systems due to its best
characteristic: it is a statistically optimal filter. In our IMU
sensor fusion scenario, this would mean this filter would
calculate the perfect weight factor between the two orientation
estimates every time. However there is a catch here: this

IMU system is not linear, and therefore, it is not possible
to use the Kalman Filter to estimate orientation. The EKF is
a nonlinear version of the KF. The main assumption behind
the KF is that all models are linear (which leads to Gaussian
probability distributions). The EKF solves this problem by
locally linearizing the function with its first order derivative.
Although this is a simple extension to the KF which allows
its usage with nonlinear systems, it is still sub-optimal since
it does not capture the full system model and the noise on the
system.

D. Visual Odometry

Odometry is the use of methods to estimate the position of
an agent over time. From this we can derive Visual Odometry
(VO) which is performing this task using visual information.
Typically this also implies estimating the orientation (which
when combined with the position forms the pose) and both
linear and angular velocities that facilitate these estimations.
It is usually performed by tracking specific points in a camera
frame (features). It is common to use Kalman Filters to engage
this problem, modeling them as online problems, i.e., problems
where the estimation and acquisition occur in parallel.

Visual Odometry is an important concept in the context
of Simultaneous Location and Mapping (SLAM, or in this
case vSLAM), because, as the name implies, part of SLAM
problems is to estimate position of an agent. The main goal
here is to estimate the rigid transformation (3D position and
rotation) that maps each camera frame into the world frame,
while building a map of 3D points.

Another set of problems related to VO and vSLAM is
Structure from Motion (SfM). These problems focus on re-
constructing the 3D environment from 2D visual information.
In practice, this reconstruction means estimating the rigid
transformations that consistently map each camera frame in a
considered world frame, as done in, for example, [9]. Although
not perfectly, these sets of problems overlap, and so it is
not uncommon that certain strategies are common to these
problems.

E. State of the Art

We would like to highlight is [4], which provides the filter
that was the software basis of our work. From here on out
we will address this filter as Fusion18. This filter performs
VIO with a monocular camera and an IMU. The reason why
we chose to highlight this filter was its integration of Lie
groups with a Square-Root Unscented Kalman Filter (SR-
UKF). This approach is the culmination of several works that
saw the potential Lie groups had in SLAM. It mainly builds
upon two elements. First, the Lie group structure of SLAM
advocated in the field of invariant filtering (as seen in [2, 1,
18]). Secondly, the UKF on Lie Groups (UKF-LG), whose
general methodology has been introduced in [5].

III. MOBILE ROBOT AND SYSTEM ARCHITECTURE

In this section we will build upon the hardware and software
setup of [8]. This work provided us with a mobile car



4

capable of live streaming video from its camera, and a PC
user interface capable of giving movement commands to the
robot and acquiring images from the video feed. Along with
maintaining (and upgrading) the previous system’s features,
our two main objectives are: integrate an IMU in the system
and enable the acquisition of formatted visual-inertial datasets.

A. Global System

In terms of hardware, this system can be divided in two
main parts that serve distinct purposes: the mobile car and
the user’s PC. The first has the job to acquire visual-inertial
data and make it available, while the latter has to be able to
receive the data, format it and store it locally. To achieve this
we propose the system represented in Figure 2.

Mobile Car
Raspberry Pi

ArduinoMotor Driver Pi Camera Board

SPI

Car Motors IMU

PC

I2C

Java GUI

Matlab

Formatting
and Local

Storing

Fig. 2: Acquisition system architecture.

B. Mobile Robot

Our starting point was a mobile robot that had a Raspberry
Pi Model B (R2) as the central processing component, a
Pi Board Camera for image acquisition, a DRV8833 Dual
Motor Driver Carrier with Multi-Chassis 4WD Kit (4 DC
Motors) to enable movement and a USB battery box 4x18650
Coolook PB-2000 to power the system. With this setup, our
first objective was to incorporate an IMU sensor. We used a
SparkFun 9DoF (Degrees of Freedom) IMU Breakout ICM-
20948 (Qwiic) SEN-15335 along with an Arduino Mega 2560
R3 that acted as middle man between the Raspberry Pi and
the IMU. All connections are straight forwards according to
the communication protocols available (which we will mention
bellow).

In Figure 3 we can see the achieved mobile robot along with
each sensor’s coordinate system. This car has a 3D printed
platform on which is has the Raspberry Pi and motor driver.
We had to incorporate a cardboard box since we had no
where to place the Arduino. However we made sure the IMU
stayed in the printed platform since it oscillation less than the
cardboard box when the robot is moving.

Now let us go through the main components of the car:
what they do and how they interact with other components or
outside elements.

𝑰𝒙

𝑪𝒚

𝑪𝒙 𝑪𝒛
𝑰𝒚

𝑰𝒛
Camera

IMU

Arduino

Raspberry Pi

(a) Main components (b) Sensors

Fig. 3: Wheeled mobile robot.

1) IMU and Arduino: We chose this IMU due to its price-
quality ratio and its Digital Motion Processor (DMP). This
IMU allows us to get raw values from its sensors - accelerom-
eter, gyroscope and magnetometer - but with the help of the
DMP we can obtain processed values, like calibrated angular
rate and 9DoF orientation quaternions.

The only available library that can access the DMP is
written for Arduino, and as such, we need to use one as the
middle man between the IMU and the Raspberry PI. These
communications between the IMU and the Arduino are done
with the I2C protocol.

2) Raspberry Pi: This is the central component of the
mobile robot. The Raspberry Pi makes all the sensor data -
visual and inertial - available to a PC client. It also receives
commands that control the motor wheels.

The Pi is connected to both sensors, the Pi board camera
and the Arduino-IMU, and to the actuators, the dual motor
driver. To communicate with a PC, the Pi has three servers: a
visual server that provides the clients with video feed from the
Pi board camera; an inertial server that gets the inertial data
from the Arduino and provides it to the clients, and a motor
server that accepts commands for the DC motors (wheels).

The Arduino and Raspberry Pi are communicating over the
SPI protocol with an ACK based system of messaging.

C. PC Interface

The PC interface is mainly characterized by the Java GUI
and by the MATLAB scripts. The first serves as a graphical
hub that allows the user to send motion commands and set
network configurations. The second coordinates the acquisition
from the PC side and collects the data, formatting it in the
process.

D. Trajectories Ground Truth

One of the most important parts of this process is estimating
ground truth. These are the values that represent truth in a
dataset. The reference values that will enable us to evaluate the
results of pose estimation. Our general strategy was to record
the car and capture key positions in the trajectory. From these
we interpolated the rest of the trajectory.



5

IV. VISUAL INERTIAL ODOMETRY WITH STATE
INITIALIZATION

In this section we will detail all the concepts behind
our proposed Visual Inertial Odometry system. We will use
Fusion18 [4] as a base and arrange it to meet our objectives.
We set out to develop a system that could, at least, run with
the datasets acquired in Section III, but ideally could run with
many other quirky datasets.

A. Mobile Robot System and Measurements Model
a) System Frames: Because our camera and IMU do not

have their coordinate systems aligned (as shown in Figure 3),
we considered 3 frames: the world frame W , the body frame
B and the camera frame C. W is the fixed global frame on
which we want to estimate our key variables on. B is a mobile
frame that follows and is centered on the IMU. We named it
the body frame instead of IMU frame since we will consider
this frame to represent the entire car. Finally, C is the camera’s
mobile frame.

Although B and C are mobile, for our hardware setup
(again, as seen in Figure 3), they are fixed in relation to
each other. Using Kalibr framework1, we can get the extrinsic
parameters (RC→B , tC→B) and (RB→C , tB→C) that map C
to B and B to C, respectively.

Now all we need is a transformation that can map B to
W . That is the transformation our whole problem means to
estimate: the body’s pose.

b) State Space: The state contains all the variables of
interest that we want the filter to estimate. This includes
the body’s pose which is formed by its position x ∈ R3

and orientation R ∈ SO(3), plus its velocity v ∈ R3, the
IMU biases bω ∈ R3 and ba ∈ R3, and the 3D position
of p landmarks p1, . . . ,pp ∈ R3 in W . The state will be
represented by the pair (χ, b), with χ being defined as matrix

χ =

[
R v x p1 · · ·pp

0(p+2)×3 I(p+2)×(p+2)

]
(2)

with size (3 + 2 + p)× (3 + 2 + p) and with 0m and Im as,
respectively, zero matrix and identity matrix with sizes m.

Finally, we can define the bias vector as b = [bTω b
T
a ]T ∈ R6.

c) Dynamic Model: Even though our hardware setup is
different, our models are based on the ones present in [4]. This
model is advantageous because, for our case, it allows us to
anticipate scenarios like floors with inclinations. Therefore, we
will consider a grounded body navigating on flat earth (with
the possibility of a sloping floor) equipped with an IMU. We
can model the system as

body state


Ṙ = R(ω − bω + nω)×

v̇ = R(a− ba + na)− g
ẋ = v

, (3)

IMU biases

{
˙bω = nbω
ḃa = nba

, (4)

landmarks
{
ṗi = 0, i = 1, . . . , p , (5)

1https://github.com/ethz-asl/kalibr

where (ω)× portrays the skew-symmetric matrix related with
the cross product with vector ω ∈ R3. We can group the
multiple noises as n = [nTω nTa nTbω nTba ]T ∼ N (0, Q).

Using the Euler method we can discretize Equations (3) to
(5), not including rotation. For a small time step ∆t, we get

Rt+∆t = Rtexp
[
(ωt − bω,t)∆t+ Cov(nω)1/2g

√
∆t
]
×

vt+∆t = vt + (Rt(at − ba,t)− g)∆t, xt+∆t = xt + vt∆t

bω,t+∆t = bω,t, ba,t+∆t = ba,t, pi,t+∆t = pi,t

.

(6)

d) Measurement Model: Along with the IMU, we are
also considering the system to have a calibrated monocular
camera that provides visual information and observes and
tracks p landmarks in the visual scene. The camera observes
landmark pi through the standard pinhole model and respec-
tive projection model (Section II-A) as yi = [yiu y

i
v]
T + niy,

where yi is the result of projection:

λ

yiuyiv
1

 = K[RT
B→C (RT (pi − x)− tB→C)], (7)

with λ as the scale factor. This is a transformation from frame
W to current image plane using the state’s pose, R and x
(W → B), the IMU-camera extrinsic parameters, RB→C and
tB→C (B → C), and the camera intrinsic parameters, K
(C → image plane).

The filter will compare this projection to the expected posi-
tion of the landmark in the image. This process will invalidate
the 3D landmarks that are too distant to the respective expected
2D feature.

e) Lie Groups: Something we did not mention right away
is that the system dynamics form a Lie group. The state
was arranged to form χ (2) which belongs to the special
Euclidean group SE2+p(3). This representation also allows
for a more compact and sturdy mathematical formulation that
does not require variable conversions (which often leads to
a decrease in accuracy and numerical consistency). This is
particularly relevant for orientation as it has multiple forms of
representation with different benefits, like quaternions, rotation
matrices, angle-axis, and others.

The Special Euclidean group SE2+p(3) is an extension of
the group SE(3). It is defined by the same operator ∗, but the
elements are slightly different. An element contains 1+p extra
3D vectors that, in our case, will be the linear velocity and
positions of p landmarks in the world frame. Regarding the
operation that defines this group, it represents a propagation.
This means that if a system suffers a change χ in relation to
the prior state χt−1, we can obtain the new system state as
χt = χ ∗ χt−1.

B. Self Initialization and Feature Management

Now that we know the models used for this filter , let us
talk about what changes needed to be made for us to meet our
objectives. The two components that need intervention are:
the initialization process and the feature management, with
the latter being part of the filtering algorithm.

https://github.com/ethz-asl/kalibr


6

1) Initialization: Although the Fusion18 software has a
robust and interesting filter, it lacks one key element: self
initialization. Instead, this filter assumes the user will manually
provide initialization values for the biases and 3D landmarks.
As an example, the software comes with the results of running
ORB-SLAM [13] to initialize the filter for a specific dataset.

First of all, let us clarify what is it that the initialization
stage does. The initialization is responsible for establishing
observation times, the initial state and a bank of landmarks.
Aside from the observation times, which is an auxiliary
variable to the algorithm, in a perfect world, the initialization
should set the state and features to their correct values in the
world. This means, we should manually measure these values
and feed them to the algorithm. Aside from the fact we cannot
always perform such measurement, this is not a very practical
approach.

We will initialize the pose and velocity the same way the
Fusion18 algorithm: by setting it as the ground truth. The main
reason for this is so we can compare the results to the ground
truth. This choice only implies that our starting pose will not
be aligned with the world frame W origin, but other from that
it does not have any real significance. In terms of how the filter
works, all referential transformations are present where they
need to be, which allows for any given initial pose. The filter
will estimate pose starting on the initial one, regardless of its
actual value.

a) Observation Times: The IMU and camera have differ-
ent rates of acquisition. In a typical scenario, the IMU’s rate
is higher (as is with ours). This makes it so there usually are
multiple IMU samples to be processed before each consecutive
image. Considering Fusion18 processes an IMU sample at
each iteration, one of the inputs of the algorithm is at which
iterations there will be an images to process. This is what we
define as observation times.

For datasets that have a rigorous sample rate for both
sensor measurements, we can get these observation times by
simply using the visual and inertial acquisition frequencies.
However, if, for a given dataset, the time interval between
samples changes, this equation cannot be used. The datasets
we were able to acquire have this unfortunate property. As
such we removed images that predated the first IMU sample or
came after the last IMU sample. We also removed consecutive
images (except for the least old) that came temporally in
between two consecutive IMU samples, as the filter does not
foresee this possibility.

b) Landmark Initialization: There are two types of fea-
tures we need to estimate in the initialization process. First
we need to estimate the 3D position of landmarks for the
initial state. Second, we need to get 2D features for latter
replacement of the state’s landmarks. These last features can
be obtained with by using a corner detection algorithm like
minimum eigenvalue (which is Fusion18’s preferred feature
extraction algorithm) in the first image frame.

To estimate the 3D positions of detected landmarks to
initialize the state, we convert the pixels, u and v, to metric
coordinates, X and Y , as X = (u − cx)/fsx and Y =
(v−cy)/fsy . However, with just one view, there is not enough
information to estimate depth. Our solution was to set Z to

the same value for all landmarks. With this transformation we
have estimated the 3D landmarks in the camera frame C. Now
all that is left to do is to transform them to the world frame
W . This can be done using the the camera-IMU extrinsic
parameters, RC→B and tC→B (C → B), and the initial state
pose, R and x (B →W ).

To prevent a collective invalidation of the initial landmarks,
we removed all, but one, IMU samples that came temporally
before the first image, as to avoid multiple integration of bias,
which would lead to a deviated pose, which would cause the
landmark invalidation (Equation 7).

c) Gyroscope Bias Estimation: Our strategy to estimate
this bias was inspired by [15]. To perform this estimation we
are assuming an offline setup, i.e., we first need to acquire
all data and only afterwards will we estimate the values. Let
us consider I and J as the total number of images and IMU
samples in the dataset, respectively. The first step is to estimate
the orientation of all image frames, qi (quaternions with i =
1, . . . , I), using only the visual information. To achieve these
orientation estimates we use the MonoSLAM algorithm of [7].

Secondly (or in parallel), we preintegrate the inertial data in
the camera frame C in order to estimate the rotation matrices
between each image frame, γi, i = 1, 2, . . . , I . We consider
the starting bias to be null [0 0 0]T . However, if the user
already has an initial bias estimation, it can be inputted to
this method. For j as a discrete moment corresponding to a
IMU sample within [ti, ti+1], we can discretely integrate the
gyroscope measurements as

γj+1 = γj ⊗
[

1
1
2 (ωj − bωj

)δt

]
, (8)

with δt as the time interval between IMU samples j and j+1.
In order to get the rotation between image frames i − 1 and
i, we need to accumulate the rotations within that interval
by doing the quaternion multiplication between consecutive
rotations following the correct order.

We now have all the orientations at each image frame
coming form the visual data and all rotations between each
consecutive image frame coming from the inertial data. In a
perfect world, for a arbitrary consecutive frames i and i+ 1,
if we rotated the frame’s orientation qi over γi+1, we should
get qi+1. However, due to bias and noise, this will not happen.
Because of this, we can build a cost function to estimate the
bias:

min
δbω

∑
i∈I

∥∥q−1
i+1 ⊗ qi ⊗ γi+1

∥∥2
, γi+1 ≈ γi+1 ⊗

[
1

1
2J

γ
bω
δbω

]
.

(9)
Jγbω is a part of the first-order Jacobian, Ji+1, of the covariance
matrix, Pi+1, obtained in the IMU preintegration (see [15]).

By initializing both starting orientations (MonoSLAM and
preintegration) as identity quaternion (null rotation) we are
guaranteeing both methods to estimate orientation in the
same reference since we have both body B and camera C
frames fixed in relation to each other. Because we are only
interested in rotations, and the whole systems rotates as one,
all estimations stay coherent. With that done, we have now
estimated the initial bias. It is possible to repropagate the



7

rotations between frames as (9) with the estimated bias and
repeat the process.

2) Feature Management: By default, the filter will only
try to replace the state’s landmarks after processing 120 IMU
samples. This is a measure put in place to ensure the filter
can robustly initialize the 3D position of new landmarks. Not
only is this a limitation on the size of a dataset, it also means
that, in this interval with the initial landmarks, it is imperative
the state is not too far off from reality. If the state’s pose
causes a collective invalidation of landmarks in this initial
period, that would cause the filter to run solely with the inertial
data without any possibility of bias estimation until the 120-
th iteration. This would result in filter divergence. To combat
this, we changed this iteration threshold to 30 and made all
logic related changes to the original code necessary for this
change to work properly.

C. Estimated Pose Error Metrics

Let us now consider two error metrics: RMSE metric
that evaluates the residuals in a point to point basis, and
a Procrustes based metric that aligns the estimates to the
ground truth using the Procrustes problem to find the rigid
transformation (with scale) that most closely performs this
alignment. The first metric will be used to evaluate all ori-
entation estimates and trajectories of public datasets, while
the second will be used for trajectories estimated with our
acquired datasets.

V. EXPERIMENTS AND RESULTS

In this section we will present all the experimental results
that lead us from acquiring an IMU to running Fusion18 with
our own datasets.

A. Hardware Setup Testing and Calibration

a) Testing IMU Orientation Estimation : To visualize the
orientation in real time, we used the software provided in [17].
It receives quaternion information from a serial communica-
tion port and represents it visually using a rectangular cuboid.

A really positive notion was the fact the cuboid reacted
with an high level of accuracy and speed to each and every
movement, regardless of its speed. The most relevant issue no-
ticed was horizontal drift. It was apparent rotation movements
caused the most drift, although we could notice a slight drift
even if not moving.

b) IMU-Camera Extrinsic Parameters: One of the key
parts of this work was to estimate the extrinsic parameters
that performed the rigid transformation between the camera
frame and the IMU frame, (RC→B , tC→B). Without these
parameters we cannot have any form of synergy between the
camera and IMU since they are representing data in different
coordinate systems. To estimate these parameters we used
the Kalibr toolbox2. In Figure 3 we can see the results of
this calibration (not proportional to real life). In these figures
it is hard to evaluate, but the results are highly accurate in
comparison to the real life hardware.

2https://github.com/ethz-asl/kalibr

B. IMU and Video Datasets

Throughout this work we used datasets from two sources:
EuRoC MAV [6] and our own mobile car. The main dataset
used from [6] was the same dataset that came default with
the Fusion18 filter: V1 02 medium (20 Hz and 200 Hz for the
cameras and IMU, respectively). The Fusion18 software also
came with initialization values for this dataset. This allowed us
to test certain scenarios without having to worry much about
the quality of the dataset.

With our mobile car we were able to acquire several visual
inertial datasets with a stable visual sample rate, and varying
inertial sample rate. All these datasets start with a few seconds
of no motion.
Movement Forward ”mf 04” This first dataset had the
objective of having a simple trajectory with no rotations.
Therefore, we acquired a it with the car making a straight
line trajectory at a constant speed. The acquisition frequencies
are 13 Hz (average) and 5 Hz for the inertial and visual data,
respectively.
Movement Curve ”mc 01” This dataset was meant to
introduce rotations. More specifically, this dataset introduced
rotations over the IMU’s z axis. We were able to capture it at
the frequency rates of 10 Hz (average) and 5 Hz for the inertial
and visual data, respectively.

C. Effect of One IMU Sample Error

In order to see how the filter handles wrong IMU data we
thought of a simple test: insert one noisy IMU sample. The
filter uses IMU samples to make small changes to the state
(Equation (6)), while also propagating its uncertainty. When
the filter has an image to process, it then makes an update to
the state based on that uncertainty using both the previous state
estimated with IMU data and the image data. We wanted to
see how robust the filter was against IMU noise. We inserted
a IMU sample with a certain percentage of noise (size factor
of original sample) in the middle of execution and compared
the results to a no error run (normal run).

Let us consider the experiment with 400 % error in the sam-
ple. Although the caused offset in RMSE is not significantly
big, the orientation could not be corrected, which affected
the position and velocity estimates, even with them showing
almost instant recoveries to the initial offset. This implies a
good recovery must be achieved by the whole state. If it is
just partial, then the bad estimate will influence the others.

Now let us focus on the experiment with 900 % error.
These results came in contrast to last experiments’. All three
estimates make a swift recovery which causes the last two
seconds of estimates to have approximately the same RMSE
as a normal run.

In the experiments with 1600 % noise, we can see the filter
starting to fall apart under the impact of the noisy sample.
The RMSE shape for each estimate is unrecognizable and
although there is an effort for correction that lowers the RMSE,
ultimately the filter cannot get a stable state and it falls in the
loop of the sensors being hindrances to each other.

3000 % noise is the final transition point for the filter. It is
where is completely breaks without being able to recover. The

https://github.com/ethz-asl/kalibr


8

offset in the estimates is so big that neither the inertial or the
visual data can help to make a correction. As mentioned on
Section IV, all features will be invalidated if the state’s pose
is too distant from the real pose. With other noise percentages,
although the sample caused an immediate invalidation of
landmarks which negatively affects the state’s estimation, the
pose was still plausible which meant new features could
facilitate a recovery. However, this last sample makes it so
all transformations using the state’s pose are implausible, and
therefore cause the filter to diverge.

It is true that to converge, the filter must estimate a state
that enables cooperation between sensors (as depicted in
Section IV), but what this experiment showed is that once that
state is reached, the filter becomes robust. It was necessary to
introduce a sample with 1600 % noise in order to make the
filter not converge.

D. Mobile Robot Navigation

Before talking about the final results of running Fusion18
with our datasets, let us go through some results from our
modifications and experiments.

1) IMU Bias: To validate the gyroscope bias estimation
we setup a small experiment using dataset mf 04. We will be
estimating two values with the samples: angle and trajectory.
In both we will consider a case with the original raw values
and another with the IMU samples after subtracting the
estimated gyroscope bias. This will allow us to see if removing
the estimated bias will prevent or reduce the estimates from
drifting away from the correct values over time.

To estimate the angle we integrated the angular rate over
time. As for the trajectories, we used the same propagation as
the Fusion18 filter. For the angle, although slight, the effect
of drift is noticeably smaller when removing the estimated
gyroscope bias, since the line has a smaller slope. As for
the trajectories, we should note they were aligned with our
Procrustes metric present in Section IV-C. But this alignment
was not equal for both. We aligned the trajectory with less bias
and then used that transformation to align the biased trajectory.
This allows us to see that, in fact, the subtraction of bias helps
in reducing the effect of drift, which in the results, it did.

Although this experiment explicitly shows removing the
estimated initial bias helps in the immediate estimations,
it implies something more important. Estimating an initial
bias that helps reduce the measurement’s bias means we are
facilitating the filters initialization process. Even if the bias is
not showing a huge impact right away, what matters is that we
have a better initial estimate than a null bias. This will help
the filter get to a better bias value faster, and, as mentioned
before, will help the IMU estimate a good pose, which will
help in the observation of landmarks, which will help the bias
estimation, and so on.

2) First Frames fusion with IMU Readings: One of the
most broad problems we faced in this work, in terms of
dependencies, was the handling of the initialization period.
The filter only uses landmarks that, when projected into the
image frame (see Equation 7), have a small enough distance
to the tracked features (20 pixel). Without features, the IMU

biases will not be estimated, which causes a worse estimation
of pose. And this same pose is used in the projection that
can result in landmark invalidation. Also, as mentioned in
Section IV-B2, the filter has an initial period on which it
will not replace the state’s 3D landmarks, even if they all get
invalidated. If we add of all this together we can see just how
important this initialization period is. Most of the times this
period is the difference maker between the filter converging or
not. So we have to make sure the first image frames can fuse
with the IMU readings in order to create a positive work flow
between these two sensors, where each sensor helps estimate
properties for the other.

One measure we put in place to fight this problem was the
removal of all (but one) IMU samples that came temporally
before the first image. To show the impact of this measure we
plotted the real and estimated features (with and without the
measure) in the first 5 frames that are used in the filter for
observation. The results are in Figure 4. For simplicity, we
will refer to these scenarios by the color of their features. The
reason why the blue features only appear in the first frame is
because they were invalidated due to their error (with regards
to the red features). The filter rendered these features as invalid
so they would not deteriorate the state estimation. Hijacking
the filter and demanding it to further estimate the state with
these invalid landmarks resulted in reprojections outside the
bounds of the image.

It is clear to see that the number of propagations heavily
influences the first projection (observation) of 3D landmarks.
This is because each time we propagate the state, we are
effectively integrating the bias present in the measurements.
As explained in Section II-B4a, integrating bias results in a
drift over time from the correct values, even if in a motionless
scenario. This means the higher the number of times we
propagate the state without a good bias estimate (to reduce
the measurement bias), the higher the drift from reality.

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

Real features
One propagation
10 propagations
Corresponding features

Fig. 4: Feature tracking on first 5 frames with and without
IMU sample removal. Red features are the real (tracked)
features. Cyan features are the estimated features with one
initial propagation (our measure). Dark blue features are the
estimated features with 10 initial propagations.

Without this IMU sample removing strategy, and also the
changes in feature management described in Section IV-B2,
all initial landmarks would get invalidated and then, because
Fusion18 was set to only replace the state’s landmarks after
120 IMU samples, the filter would run solely with the IMU.



9

Due to bias, by the time the filter replaced the landmarks, the
pose would already be too far off from reality and the ob-
servation step would be unable to use any visual information,
ultimately resulting in the filter diverging.

Our solution ensures the first landmark observation will not
cause a general invalidation of features, which will provide us
with an immediate start in IMU bias estimation. Although far
from perfect, this provides us with adequate results that enable
the filter to converge, as shown in Figure 4.

3) Navigation Assessment: Let us finally talk about the
results of running Fusion18 with our own datasets. We con-
sidered the Procrustes error metric when running our own
datasets. The results for dataset mf 04 are in Figure 5.

(a) Trajectories

0 2 4 6 8 10 12 14 16 18 20

t (s)

0

0.5

1

1.5

2

2.5

R
M

S
E

 a
tti

td
ud

e 
(°

)

RMSE on attitude as function of time

R-UKF-LG

(b) Orientation RMSE
over time

Fig. 5: Procrustes aligned estimated positions and ground
truth positions point clouds (a) along with orientation RMSE
function (b) and when running the mf 04 dataset.

It is clear by looking at Figure 5b that the filter had an
initialization period of 2 s before it had an estimation of the
state that enabled sensor cooperation. This goes to show how
important the first seconds of a dataset are. Which is why our
datasets have an initial static period. It greatly helps the filter
find a stable state that can create synergies.

The reason why the results with dataset V1 01 medium
have such a seamless initialization period is that the filter
started with half of the state (pose and linear velocity) coming
from ground truth values and the other half (bias and 3D
landmarks with corresponding features and backup features)
coming from the result of running ORB-SLAM. This pretty
much means the filter starts with values as close to reality as
possible, and therefore, already has a state able to enable the
synergy between both sensor’s data.

When running dataset mc 01 we experimented with the
process noise covariance, which is related to the IMU mea-
surements, and by default resulted from the IMU calibration
(IMU intrinsic parameters). Our obtained Fusion18 results are
shown in Figure 6. Trajectories are similar for both versions of
the process noise. In Figure 6b we can notice the filter is not
being able to arrange the synergy between sensors. To combat
the early negative effects of the IMU bias, we increased the
process noise covariance. As shown in Figure 6c, although not
very robust, the synergy between sensors is present. However,
around t = 25 s the RMSE has an almost vertical increase.
This is due to the fact during the visual capture of dataset
mc 01 we were unable to have a stable luminosity , which
leads to detection and tracking of multiple feature in shadows.
This will lead the vision portion of the filter to perceive an
nonexistent movement and because we increased the process

noise covariance, the filter will trust the vision more than the
IMU. This is why this lighting problem does not appear to be
present in Figure 6b.

(a) Angled view of the
trajectories

0 5 10 15 20 25 30

t (s)

0

2

4

6

8

10

12

14

16

18

R
M

S
E

 a
tti

td
ud

e 
(°

)

RMSE on attitude as function of time

R-UKF-LG

(b) Orientation RMSE
over time

0 5 10 15 20 25 30

t (s)

0

5

10

15

20

25

30

35

40

R
M

S
E

 a
tti

td
ud

e 
(°

)

RMSE on attitude as function of time

R-UKF-LG

(c) Orientation RMSE
over time for higher pro-
cess noise

Fig. 6: Procrustes aligned estimated positions and ground truth
positions point clouds from and angled view (a) along with
orientation RMSE function for the calibrated process noise
(b) and for an increased process noise (c) when running the
mc 01 dataset.

Overall, these results are pretty positive since they validate
our initialization estimation and show it is possible to run our
own acquired datasets with plausible results (even if in need
of alignment). But it left us with one final question: what if
we starting the filter with a stronger initialization? What if we
ran the filter up to a point and then started it again with the
results of the first run? This is the final experiment we will
present.

The steps for this experiment are: run Fusion18 on half of
a dataset; save its final state along with all detected features
and landmarks; run second half of the dataset but using this
previous data to initialize it. The specific variables we are
considering in this initialization are both sensor biases, the
3D landmark estimations and the reserve features along with
their sighting in past images. We will still initialize the pose
and linear velocity using ground truth.

We will consider the last dataset: mfpf 02. This dataset was
specifically designed for this experiment. It was acquired in
the exact same conditions as mf 04. In terms of movement,
this dataset is also very similar to mf 04, except it is doubled.
It follows the pattern: pause, forward, pause (moment of the
filter reset), forward, pause. In sum we will run the filter on
two similar trajectories that are separated by resting phase, on
which we will make the filter reset. As expected, we will also
perform this experiment using the initialization established
in Section IV-B1 to initialize the state after the reset. This
will allow us to compare our generic and (mostly) online
initialization to this calibration like approach.

We will focus on the orientation results in Figure 7, since
they are more explicit than the trajectories. The orientation
RMSE’s show disparity in the results. The run with our ini-
tialization has a linearly increasing error which is the result of
a inadequate initialization process. The run with the Fusion18
initialization answers our question: a stronger initialization
results in a short, or almost non existing initialization period. It
is similar to the results with V1 02 medium, which possesses
a strong initialization due to the fact it uses ground truth and
estimated landmarks and bias from running ORB-SLAM [13].



10

0 5 10 15 20 25 30 35

t (s)

0

2

4

6

8

10

12

R
M

S
E

 a
tti

td
ud

e 
(°

)

Filter Reset

First Half of dataset
Second Half with our initialization
Second Half with initialization from first half

Fig. 7: Orientation RMSE when running the two halves of
dataset mfpf 02 with a reset in the middle. Red uses our
initialization after the reset. Magenta uses as initialization the
final state of the last half.

VI. CONCLUSION AND FUTURE WORK

A. Conclusions

In this work we set out to study develop a low-cost mobile
robot able to acquire visual and inertial data, and to study
the synergies between those types of data in the context of
pose estimation. Not only were we able to integrate and valid
a low-cost IMU into this system, we were able to acquire
visual inertial datasets. We proposed a state initialization
for a Unscented Kalman Filter based on Lie groups that
experimentally showed promising results.

The most crucial point of our work was how we exper-
imentally saw the process that made the inertial and visual
information synergize. We saw how important it was for the
filter to quickly estimate the IMU bias so its measurements
would not cause the state to drift from reality. Without this
taking place we verified the landmark observations were too
far from reality, which caused the filter to invalidate them.
This would start a cycle of deterioration between both sensors.
However, we were also able to experimentally get results that
showed the opposite: a cycle of cooperation between sensors,
where the bias estimation coming from the visual information
would make the landmark projection more accurate, which in
term would improve the bias estimation.

Ultimately we were able to advance (even if just a little)
towards the goal of having low-cost mobile home robots that
can autonomously roam and perform task.

B. Future Work

Starting with the IMU, there is great potential in inexpensive
IMU’s. Traditionally, IMU’s are used in systems to provide
measurements, and any estimation is performed outside the
IMU. However, we witnessed the quality of the onboard ori-
entation estimation.This opens plenty of new paths. Personally
we think it would be interesting to develop a system where,
instead of modeling the system around the IMU measurements,
we could model it around the orientation coming directly from
the IMU.

The topic of IMU sensor fusion for orientation estimation
is something that, in our opinion, should be further explored.
Filters like [4] have a lot of merit for the results they display.

However they opt for a IMU-camera sensor fusion approach.
We believe this concept could be improved by first fusing
each IMU sensor with a separated filter and only then fuse
inertial and visual data. Overall, the current accessibility to
IMU’s should be capitalized on. Be it with new filter, like the
relatively recent Madgwick filter [12] that is currently one of
the most used in filters for orientation estimation in digital
motion processor, or with integration of existing technology.

REFERENCES

[1] Axel Barrau and Silvère Bonnabel. “Invariant Kalman Filter-
ing”. In: Annual Review of Control, Robotics, and Autonomous
Systems 1 (May 2018).

[2] Axel Barrau and Silvere Bonnabel. An EKF-SLAM algorithm
with consistency properties. 2016.

[3] Liu Bo, Lin Li, and Hengzhu Liu. “SoC Implementation
of Visual-inertial Odometry for Low-cost Ground Robots”.
In: Journal of Physics: Conference Series 1453 (Jan. 2020),
p. 012091.

[4] M. Brossard, S. Bonnabel, and A. Barrau. “Unscented Kalman
Filtering on Lie Groups for Fusion of IMU and Monocular
Vision”. In: International Conference on Robotics and Au-
tomation (ICRA) (2017).

[5] M. Brossard, S. Bonnabel, and J. Condomines. “Unscented
Kalman Filtering on Lie Groups”. In: IROS 2017, EEE/RSJ
International Conference on Intelligent Robots and Systems.
IEEE/RSJ. Vancouver, Canada, Sept. 2017.

[6] M. Burri et al. “The EuRoC micro aerial vehicle datasets”.
In: The International Journal of Robotics Research 35 (Jan.
2016).

[7] J Civera, A J Davison, and J M M Montiel. “Inverse Depth
Parametrization for Monocular SLAM”. In: IEEE Transac-
tions on Robotics 24.5 (2008), pp. 932–945.

[8] João Cruz. “Wireless Mobile Camera”. MA thesis. Instituto
Superior Técnico, 2015.

[9] A. Fitzgibbon and A. Zisserman. “Automatic Camera Re-
covery for Closed or Open Image Sequences”. In: European
Conference on Computer Vision (July 1998).

[10] Rudolph Emil Kalman. “A New Approach to Linear Filtering
and Prediction Problems”. In: Transactions of the ASME–
Journal of Basic Engineering 82.Series D (1960), pp. 35–45.

[11] Yufei Liu, Noboru Noguchi, and Kazunobu Ishii. “Devel-
opment of a Low-cost IMU by Using Sensor Fusion for
Attitude Angle Estimation”. In: IFAC Proceedings Volumes
47.3 (2014), pp. 4435–4440.

[12] S. Madgwick. “An efficient orientation filter for inertial and
inertial/magnetic sensor arrays”. In: Report x-io and Univer-
sity of Bristol (UK) 25 (2010), pp. 113–118.

[13] R. Mur-Artal, J. Montiel, and J. D. Tardós. “ORB-SLAM: a
Versatile and Accurate Monocular SLAM System”. In: IEEE
Transactions on Robotics 31.5 (2015), pp. 1147–1163.

[14] S. M. Potirakis et al. “Visual and Visual-Inertial SLAM: State
of the Art, Classification, and Experimental Benchmarking”.
In: Journal of Sensors (Feb. 2021).

[15] T. Qin, P. Li, and S. Shen. “VINS-Mono: A Robust and
Versatile Monocular Visual-Inertial State Estimator”. In: IEEE
Transactions on Robotics 34.4 (2018), pp. 1004–1020.

[16] Glauco Garcia Scandaroli and Pascal Morin. “Nonlinear filter
design for pose and IMU bias estimation”. In: 2011 IEEE
International Conference on Robotics and Automation. 2011,
pp. 4524–4530.

[17] ZaneL. 3D Node.js quaternion sensor. Version 1.0. May 2020.
URL: https://github.com/ZaneL/quaternion sensor 3d nodejs.

[18] Teng Zhang et al. Convergence and Consistency Analysis for
A 3D Invariant-EKF SLAM. 2017.

https://github.com/ZaneL/quaternion_sensor_3d_nodejs

	Abstract
	Introduction
	Related Work
	Problem Formulation

	Background and State of the Art
	Camera Model
	Inertial Measurement Unit (IMU)
	Accelerometer
	Gyroscope
	Magnetometer
	Measurement Model

	Sensor Fusion for Orientation Estimation
	Estimating Orientation
	Sensor Fusion Filters

	Visual Odometry
	State of the Art

	Mobile Robot and System Architecture
	Global System
	Mobile Robot
	IMU and Arduino
	Raspberry Pi

	PC Interface
	Trajectories Ground Truth

	Visual Inertial Odometry with State Initialization
	Mobile Robot System and Measurements Model
	Self Initialization and Feature Management
	Initialization
	Feature Management

	Estimated Pose Error Metrics

	Experiments and Results
	Hardware Setup Testing and Calibration
	IMU and Video Datasets
	Effect of One IMU Sample Error
	Mobile Robot Navigation
	IMU Bias
	First Frames fusion with IMU Readings
	Navigation Assessment


	 Conclusion and Future Work
	Conclusions
	Future Work



