
Pedestrian Motion Prediction Using Deep Learning
Pedro Miguel Gustavo Bilro

Instituto Superior Técnico, ULisboa,
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Abstract—Pedestrian motion prediction is a task that is rel-
evant for many kinds of intelligent systems. However, it can
be quite challenging, due to the fact that humans can be
influenced by a plethora of factors. In recent years, two types
of factors have been getting more relevance: the presence of
obstacles or social interactions. Most methods that incorporate
both of these types require information like video frames or
semantic maps, which may not be readily available. We propose
a new model, named Arc-LSTM-SMF, which considers the
existence of obstacles, as well as social interactions, using only
pedestrian trajectories. This model integrates Sparse Motion
Fields with Long Short Term Memory networks, with the use
of a new pooling layer that simulates a field of view for each
pedestrian. We evaluate our model using standard geometric
metrics, as well as metrics related to obstacle avoidance and
pedestrian collision avoidance. The proposed Arc-LSTM-SMF is
able to outperform several state-of-the-art models on popular
pedestrian datasets. The model is open-source and is available
at https://github.com/pedro-mgb/pedestrian-arc-lstm-smf.

Keywords: Machine learning; Trajectory prediction; Social
interactions; Obstacle awareness

1. INTRODUCTION

Knowing how pedestrians move and interact with their
surrounding environment, which can include pedestrians and
other obstacles, is a crucial process for many kinds of intelli-
gent systems. Service robots and autonomous vehicles need to
adjust their trajectories in order to coexist with humans [1], [2].
Surveillance systems may need to properly predict the motion
of people in a video scene to infer what kinds of activities are
being conducted [3], [4].

Pedestrian trajectory prediction can be summed up to pre-
dicting where a pedestrian will go for a certain foreseeable
future. This is a very challenging task, because the motion of
pedestrians can depend on a variety of factors, such as:

1) Presence of obstacles in the scene [5]: Pedestrians will
avoid colliding with static obstacles, and will preferably
go through areas were traversal is possible.

2) Presence of other pedestrians [6]: Pedestrians may in-
teract with each other in many ways, which undoubtedly
can influence their motion.

3) Personal characteristics [7]: Specific attributes like age
and health can influence pedestrian motion.

4) Individual and/or group goals [7]: Each person can
have a specific place to go to, which can mean a strict
path to follow. The same can also apply for a group of
people (if multiple pedestrians are considered).

Of the aforementioned factors, the ones usually considered
in trajectory forecast are the presence of obstacles and the

presence of other pedestrians.A visual representation of these
two factors can be seen in fig. 1.

Fig. 1. Illustration of the trajectory prediction problem and its difficulty. In
this example, the man in blue (left side of the figure) will adjust his trajectory
to avoid colliding with a tree, and with other people also present in the scene.
Similarly, a trajectory prediction method should deal with the presence of
static obstacles, and of other pedestrians that can interact with each other.

Classical works consisted in physics-based models, often
using handcrafted features [6], [8], [9] In recent years, there
have been advancements in creating neural network architec-
tures for trajectory forecast [10]–[15]. While some models try
to incorporate interactions between pedestrians in a data-driven
way [10], [11], others process scene-specific environments
with specialized networks [2], [12]. There has even been a
recent body of work to consider both social and scene aspects
in one model [4], [13], [15].

Most of the aforementioned models suffer from limitations.
Those that only consider scene or social aspects will have
limited performance in situations where both aspects have
weight. While the current models that integrate these two
aspects are meant to combat such limitations, they usually
require extra information. This extra information may be in
the form of semantic maps or video frames, which may
not always be readily available [16], [17]. Furthermore, the
processing of such data requires additional networks that can
be computationally heavy [18]–[20].

We propose a socially-aware and scene-compliant model
that does not require video data. The model, labelled hence-
forth as ”Arc-LSTM-SMF”, will be based on Long Short Term
Memory (LSTM) [21]–[23] - a type of Recurrent Neural Net-
work (RNN) specialized in handling long-term dependencies
in sequences - to sequentially process pedestrian motion. It
will be combined with Sparse Motion Fields (SMF) [5], [24],
a scene-specific model that learns the presence of obstacles
using just pedestrian trajectories. The interactions between
pedestrians will be incorporated using an improved version
of directional pooling [25], that focuses on the neighbours in
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front of the pedestrian. The performance of our Arc-LSTM-
SMF model will be demonstrated by comparing predicted
pedestrian trajectories of our model with other state-of-the-art
works, using popular trajectory forecasting datasets [9], [26],
and the Trajnet++ benchmark [25].

2. RELATED WORK

Human trajectory forecasting methods can be categorized by
the type of contextual cues they incorporate [7]. Static environ-
ment cues relate to the presence of obstacles and unwalkable
areas and are specific to each scene. Dynamic environment
cues consider the presence and interactions between people
and/or groups of people. There are also pedestrian-specific
cues (e.g., age, health, and personal goals), but since our
model does not consider these, they will not be detailed to
much extent. We present existing research that incorporates
the first two types of cues and discuss their breakthroughs
and limitations.

Scene-specific information: There have been several lines
of research into the incorporation of scene-specific elements
- obstacles and traversal restrictions - for trajectory forecast.
Semantic maps have proven to be a solid option [2], [12], [27],
which can have the location of obstacles, but also the presence
of roads and poor terrain. The CAR-NET [2] model takes as
input pedestrian trajectories and a top-view image of the scene.
The latter is supplied to a Convolutional Neural Network
(CNN) [18] in order to extract feature maps through scene
segmentation techniques [28]. Ridel et al. [12] also extracted
features from the scene, but using ResNet [20]. Those features
are merged with trajectory data to form a probability grid that
indicates the most likely location of each pedestrian. Both
the aforementioned works require feature extractors, which
can make the whole model computationally heavier. Barata et
al. [5] proposed a model based on SMF that would learn the
presence of obstacles and areas without pedestrian traversal,
using only the actual pedestrian trajectories. The motion fields
restrict the learnt representation of pedestrians’ motion to
areas where motion is actually possible. These models do not
consider interactions between pedestrians, and therefore can
have limited performance in crowded scenarios.

Social interactions: This has been the most common type
of relevant cue to be considered in the trajectory forecasting
task [7]. The social force model [6] is physics-based, using
repulsion and attraction forces between pedestrians. While it is
still being used in recent works [8], [29], its use of handcrafted
energy potentials makes model generalization difficult. Alahi
et al. [10] were one of the first to use LSTM networks to create
a data-driven trajectory forecasting method, named Social-
LSTM. The hidden states of neighbouring pedestrians were
combined in a procedure called social pooling. An improved
version of this model, named Directional LSTM [25], used
relative velocities of neighbours instead of hidden states, which
are harder to interpret. Other types of networks have also
been used. Gupta et al. [11] used Generative Adversarial
Networks (GANs) [30], [31] combined with a pooling module
to generate multiple socially acceptable trajectories. Other
variants of GANs have also been employed in this task [32],

[33]. Mohamed et al. [14] have obtained competitive results,
modelling interactions with spatio-temporal graphs.

Scene and social context: Several models that capture
scene-specific information and social interactions have been
proposed in recent years [4], [13], [15], [34], [35]. Some works
took as basis a social model [10] and extended it to also in-
corporate the presence of obstacles [36]–[38]. Others extended
scene models [2] to also consider social interactions [13],
[35]. The NEXT model from [4] uses bounding boxes sur-
rounding people and objects in a video scene, together with
semantic maps, and a behaviour module to incorporate social
interactions. The Trajectron++ [15] is currently one of the best
performing models in this task. It incorporates LSTM networks
with other kinds of RNNs. It also uses CNNs for scene
processing (if available). Interactions between pedestrians -
and potentially other types of agents such as cyclists or skaters
- are encoded as edges of a spatio-temporal graph. These
methods require additional information regarding the scene
to perform accurate trajectory prediction, which increases
the computational weight, while also adding an additional
dependency on data that may not always be available (e.g.,
access to GPS data alone [16]). To the best of our knowledge,
our model is the first to incorporate both social and scene
constraints, using only trajectory data as input.

3. METHOD

Pedestrians tend to change their path or velocity to ac-
commodate for other pedestrians. Furthermore, they may also
do the same to avoid physical obstacles that may stand in
their way. A trajectory prediction method needs to be able
to predict such changes of motion. To do that, it needs to
integrate, directly or indirectly, the presence of obstacles and
of other pedestrians in its predictions. The proposed Arc-
LSTM-SMF model, receives scene-specific predictions from
the SMF method [5], and considers the presence of neighbours
with an arc - or Field of View (FOV) - pooling layer. This
section will describe the model in parts: scene integration,
social aspects, and motion processing. All these parts are
combined to form the full Arc-LSTM-SMF model.

3.1. Problem Definition

The trajectory forecasting problem can be parameterized
with the notation similar to [10]. The input is a sequence of 2D
trajectories for all people simultaneously present in the scene,
Xi, with Xt

i ∈ R2, i ∈ {1, ..., N}, t ∈ {Tini, ..., Tobs} defining
the position at instant t, and N being the total number of
pedestrians. The objective is to estimate a future trajectory for
each of the pedestrians, Ŷi =

{
Ŷ Tobs+1
i , ..., Ŷ

Tpred
i

}
, with Ŷ ti

being the predicted position of pedestrian i and time t > Tobs.
The prediction should be as close to the real future trajectory,
Yi =

{
Y Tobs+1
i , ..., Y

Tpred
i

}
, as possible. The real future

trajectory will also be referred as Ground Truth (GT). The
Arc-LSTM-SMF model works with displacements between
two consecutive positions instead of actual absolute positions.
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They are defined as ∆Xt
i , ∆Ŷ ti , and ∆Y ti , for past, predicted,

and GT displacements.

3.2. Sparse Motion Fields

The proposed model for pedestrian motion prediction has as
basis recent methods proposed for the same task. Namely, the
integration of scene-specific elements are done via the SMF
method. It learns the presence of unwalkable regions in an
unsupervised way, i.e., without access to scene information,
and using just the pedestrian trajectories. A short introduction
into SMF is given here. For more information on the method,
refer to [5].

Motion fields are applied with the previous 2D position,
outputting a 2D displacement. For each pedestrian i, the
relation between two consecutive positions (instants t and t−1)
is defined as:

Xt
i = Xt−1

i + Γkti
(
Xt−1
i

)
+ wti , (1)

where the current and previous positions, Xt
i and Xt−1

i , are
replaced by the predictions, Ŷ ti and Ŷ t−1i , for t > Tobs (since
there is no more input). The term kti ∈ {1, . . . ,K} - with
K being total number of motion fields - identifies the active
motion field Γkti : [0, 1]

2 → R2 governing the displacement
at current time step t. It is worth mentioning that the input is
normalized, Xt

i ∈ [0, 1]
2, where [0, 1]

2 denotes the image lat-
tice. There is also additive white noise, wti ∼ N (0,Σkt(X

t
i )),

with the covariance matrix Σkt depending on the 2D position
of the pedestrian. The method parameters are estimated using
the Expectation-Maximization (EM) algorithm [39]. The To
perform inference, the most likely motion field, k̂ti , is chosen
using a forward pass of E-step algorithm (the first step of EM).
A deterministic prediction can be done by using the motion
field k̂ti , and removing the noise in (1).

3.3. The Arc-LSTM-SMF model

The proposed model for scene and interaction-aware tra-
jectory forecasting, Arc-LSTM-SMF, can be divided in three
main modules:

1) LSTM networks, that are responsible for processing the
pedestrian trajectories and generating the predictions of
the future trajectories. In fact, the LSTM networks do
not work directly with the positions, but instead with
the displacement between two positions, since it has
been proven that it is easier to predict relative motion
instead of absolute positions [11], [14], [32]. Similarly
to other works [11], [25], we adopt an encoder-decoder
architecture. This means that there are two LSTMs,
with the encoder processing the past trajectory, and the
decoder forecasting the future trajectory.

2) SMF method, summarized in section 3-B, that generates
scene-specific (and scene-compliant) predictions that are
fed to the decoder when generating its own predictions.
It is this integration that makes our model scene-aware.

3) An arc (or FOV) pooling layer, that takes the positions
of all pedestrians at that instant. It generates a tensor
containing relevant social context, which is sent to the

LSTM cell (encoder or decoder). It this is layer that
makes our model interaction-aware.

The overall architecture of the Arc-LSTM-SMF model is
illustrated in fig. 2. It shows the aforementioned three modules
and the connections between each of them.

3.4. Arc pooling layer

The consideration of social interactions in a model based on
LSTMs has commonly been done by including an interaction
layer. This layer receives information from multiple pedes-
trians and outputs a tensor with information regarding the
neighbourhood each pedestrian. The first major use of such
a layer was in the Social-LSTM model [10]. An alternative
was proposed with Directional LSTM [25], which used the
relative velocities of neighbouring pedestrians. Being easier to
interpret and less computationally heavy, the latter was chosen
as basis to build our own interaction layer. Directional LSTM
builds a social tensor on a square grid containing Ng × Ng
cells, centered on the pedestrian. All cells of the grid have
length l, with each cell containing the information of the
neighbours whose position lies in that cell. Neighbours outside
the grid are not considered for pooling. The tensor generated
by each pedestrian has size Ng ×Ng × 2.

Using a square grid has an issue associated to it: the neigh-
bours behind the pedestrian are included. While in some cases
these can influence the pedestrian’s motion, the pedestrian’s
focus usually lies on the neighbours in front, i.e., the ones that
are visible [40]. This motivated the following improvement to
Directional LSTM: instead of considering a square grid, we
employ an arc-shaped pooling to consider only the neighbours
that the pedestrian can see. As such, the arc shape can be
thought of as the FOV of the pedestrian.

A visualization of the two pooling techniques - grid and
FOV - is available in fig. 3. As seen in fig. 3b, the grid shape
considers a pedestrian (in green) that is behind and moving
away from the blue pedestrian. The green pedestrian most
likely does not influence the motion of the blue pedestrian,
and as such does not need to be including the pooled tensor.
The FOV (fig. 3c) only includes the orange pedestrian, which
is the one that the blue pedestrian is most likely focusing on.

The orientation of the FOV is be given by the pedestrian’s
gaze direction. However, as stated in the problem definition
of section 3-A, the proposed models only have access to the
actual trajectories of pedestrians, in R2. To circumvent this, it
is simulated using the direction of motion.The FOV shape can
have more degrees of freedom than a square grid. In our work,
the FOV has a radius r and spread (or angle) α. Furthermore, it
has Nα×Nr cells, with Nα Nr being the number of divisions
in the spread and radius, respectively. For instance, the FOV
in fig. 3c has Nα = 3 and Nr = 4.

The output of the arc pooling layer, for each pedestrian i
is a Nr × Nα × 2 tensor containing the relative velocities
(or displacements) or each neighbour that is inside the arc.
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Fig. 2. Arc-LSTM-SMF architecture for scene and interaction-aware trajectory forecast. The input is a set of trajectories for all pedestrians present in a scene.
The pedestrians may have obstacles in the way (in gray, not apart of input). The social context surrounding each pedestrian is obtained every instant via an
arc pooling layer. The SMF predictions are sent to the LSTM decoder to have a scene-specific consideration of the environment.

(a) Full trajectories (b) Grid pooling [25] (c) FOV pooling (ours)

Fig. 3. Comparing directional pooling (originally from [25]) using different shapes. (a) Trajectories of 3 pedestrians, with full line representing the past and
dashed representing the future. The pooling is focused on the blue pedestrian. (b) The grid shape considers a pedestrian (in green) that is behind and moving
away from the blue pedestrian. (c) Our FOV based shape only includes the orange pedestrian, that the blue pedestrian is most likely focusing on.

Formally, for the (mr, nα) cell, the tensor is defined as:

Ati(mr, nα, :) =
1∑

j∈Ni 1mr,nα
[
dtij , β

t
ij

]∑
j∈Ni

1mr,nα
[
dtij , β

t
ij

] (
∆Xt

j −∆Xt
i

)
,

(2)

where dtij is the distance between pedestrian i and j, and βtij
is their relative orientation. The difference of displacements(
∆Xt

j −∆Xt
i

)
is used in place of the actual relative velocity.

The indicator function 1mr,nα [dtij , β
t
ij ] checks if neighbour j

is inside the (mr, nα) cell of the FOV of pedestrian i. The
first term

(
1

1mr,nα [dtij ,β
t
ij ]

)
means that if there are multiple

neighbours in the same cell, their relative velocity is averaged.

3.5. Integrating SMF and Arc pooling with LSTM

Having described the SMF (scene) and arc pooling (social)
modules, this section details how the information that they
output is integrated into the LSTM networks.

LSTM encoder. The encoder processes the past trajectory,
available as input, while also receiving a tensor containing
social information. Since the model receives SMF predictions,
these are only used by the decoder. Both position and arc-
shaped tensor, for each pedestrian i and instant t, are embed-
ded before being fed to the LSTM cell:

eti = Emb
(
∆Xt

i ;Wemb

)
, (3)

pti = Emb
(
Ati;WembA

)
, (4)

where each Emb layer includes an affine transformation
(weights and biases) and a PReLU activation function [14].
The embedding of the position, eti, and of the arc-shaped tensor
pti, are done with separate parameters, Wemb and WembA . The
hidden state of the LSTM encoder, hti, is computed with the
previous state and the embeddings:

hti = LSTMe

(
ht−1i ,

[
eti, p

t
i

]
;WLSTMe

)
, (5)

where the last hidden state outputted by the encoder, hTobsi ,
contains a encoded summary of the full past trajectory of
pedestrian i. This summary is the information that is sent for
the LSTM decoder.

LSTM decoder. The decoder is responsible for generating
the predicted motion for each pedestrian, one instant at a
time. Besides processing the position and social context of
each tensor, the LSTM decoder also processes the predicted
displacements from the SMF. Instead of just receiving the most
likely displacement, the LSTM receives K displacements from
the K different motion fields. This gives extra flexibility to
the LSTM network in giving importance to the scene-specific
predictions. These K predicted displacements from motion
fields are also embedded:

qti = Emb
(

Γ1

(
Ŷ t−1i

)
, ...,ΓK

(
Ŷ t−1i

)
;Wembq

)
(6)

where Γk

(
Ŷ t−1i

)
is the k-th motion field displacement at

time t for pedestrian i. Notice the motion fields receive the
previous predicted position from the LSTM, Ŷ t−1i . This is
a correction done on the motion fields. Even though they
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are scene-compliant, their predictions can be poor from a
geometric standpoint. The LSTM decoder cell receives qti , as
well as the other two embeddings, to compute the hidden state:

hti = LSTMd

(
ht−1i ,

[
eti, q

t
i , p

t
i

]
;WLSTMd

)
(7)

The first decoder step receives the state hTobsi , and the final
hidden state outputted is hTpred−1i . The output of the model
is no longer a single displacement value, but instead a prob-
abilistic distribution, Similarly to [10], [14], [25], we use a
bi-variate Gaussian distribution for the displacement, with a
total of 5 parameters: 2D mean µ, 2D standard deviation σ,
and correlation factor ρ. These parameters are obtained from
the state, via an output linear layer:[

µ̂t+1
i , σ̂t+1

i , ρ̂t+1
i

]
= Woutlinh

t
i + boutlin , (8)

where Woutlin and boutlin are the weights and bias of the
output layer. To obtain a deterministic prediction, the mean
displacements can be used: ∆Ŷ ti ≡ µ̂t+1

i . The estimated
parameters σ̂t+1

i and ρ̂t+1
i are used in training the model.

3.6. Training

Since the model outputs parameters of a probabilistic
distribution, the training is done in a probabilistic manner.
Following the procedure of recent works [10], [25], we use a
Negative Log Likelihood (NLL) loss:

Li (Wnet) = −
Tpred∑

t=Tobs+1

log
(
P
(
∆Y ti | µ̂ti, σ̂ti , ρ̂ti

))
, (9)

where the subscript i in Li means the loss is computed for each
pedestrian. The parameters of the Arc-LSTM-SMF, Wnet are
learned by minimizing the loss in (9).

When evaluating the model, there is no access to GT, so
for t > Tobs the predicted displacements are used as input to
the model. At train time, the GT displacements are used as
input to the Arc-LSTM-SMF model. This technique is often
referred to as teacher forcing and has proven to help with
training trajectory forecasting models [10], [25].

3.7. Implementation Details

The encoder and decoder LSTMs have the same parameter
dimensions (although having separate parameters). We use
a hidden state (hti) dimension of 128. The embedding of
pedestrian displacement (eti) and SMF displacements (qti ) each
have size 32. The FOV has angle α = 140° and radius
r = 4 m, with a total of Nr × Nα = 20 cells, Nr = 4,
Nα = 5. The SMF methods were trained for each scene
using a similar configuration to the original work [5]. The
Arc-LSTM-SMF method was also trained separately for each
scene. While not being strictly necessary, we found that it
helped the model better capture scene-specific cues. We used
Adam [41] optimizer with an initial learning rate of α = 0.001,
with a batch size of 8 and the number of training epochs
exceeding 100. The model is open-source and is available
at https://github.com/pedro-mgb/pedestrian-arc-lstm-smf.

TABLE I
INFORMATION ABOUT THE DATASET BEING USED. TOTAL OF FOUR
SCENES, WITH TRAJECTORIES OF LENGTH L = 21 FOLLOWING THE

TRAJNET++ CONFIGURATION [25]. THE NUMBER OF RELEVANT
TRAJECTORIES IS THE NUMBER OF PRIMARY PEDESTRIANS. TO GET A

NOTION OF THE CROWD DENSITY PER SCENE, THE AVERAGE NUMBER OF
NEIGHBOURING PEDESTRIANS IS SHOWN. EACH CELL HAS TWO VALUES:

THE FIRST REGARDS THE TRAINING SET, AND THE SECOND THE TEST SET.

Scene Original no.
of trajectories

No. of primary
pedestrians

Avg. no. of
neighbours

ETH [9] 194/124 34/3 23/10
Hotel [9] 103/150 25/26 13/10
Univ [26] 435/362 624/532 66/54
Zara [26] 191/204 201/243 12/15

Total 923/840 884/809 50/40

4. EXPERIMENTS

4.1. Datasets

We evaluate our results on two publicly available datasets:
BIWI Walking Pedestrians dataset [9] (commonly known as
ETH) and Crowds by example dataset [26] (commonly known
as UCY). BIWI dataset has two scenes: ETH and Hotel.
Crowds dataset also has two scenes: Univ and Zara (although
Zara is often divided in Zara1 and Zara2 [10], [11], the actual
location is the same). However, the original dataset trajectories
were not used, because they often contained static and linear
trajectories, which usually have less influencing cues (scene
or social) to be captured. As such, we adopt the Trajnet++
configuration [25] for these datasets. We divided each of the
four scenes in half, having around 50% of trajectories for
training, and 50% for testing, with fixed trajectory length
L = 21. The trajectories were converted to the Trajnet++
format using publicly available code1. In Trajnet++, instead
of evaluating with all trajectories, only the primary pedes-
trians are evaluated. For a set of trajectories, there is only
one primary pedestrian, which is the one whose trajectory
is richer from the point of view of social interactions. A
summary of the training and testing sets can be seen in table I,
with number of original trajectories, the resulting number of
primary pedestrians, and average number of neighbours, to get
an idea of crowd density.

The scene with the highest number of pedestrians and
overall crowd density is Univ. It has more primary pedestrians
than the original number of trajectories, meaning that for the
same original trajectory, more than one primary pedestrian, or
in other words, more than one portion of length L = 21 can
be retrieved. The ETH and Hotel scenes have a much smaller
number of primary pedestrians, due to having more static and
linear trajectories and overall smaller duration.

4.2. Evaluation metrics

To properly evaluate the performance of our proposed Arc-
LSTM-SMF model, we need a diverse set of evaluation met-
rics. First, we use geometrical metrics (computed on primary
pedestrians), a popular choice in related works [7]:

1https://github.com/vita-epfl/trajnetplusplusdataset; use of chunk stride=21
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• Average Displacement Error (ADE): Average Eu-
clidean distance between GT and model prediction over
all predicted time steps t ∈ {Tobs + 1, ..., Tpred}.

• Final Displacement Error (FDE): Euclidean distance
between GT and model prediction for the final prediction
instant t = Tpred.

The lower these metrics are, the closer the prediction is to
the GT. However, they give no real insight on how social and
scene-specific cues are being followed. We use the following
interaction-centric metrics, as proposed in the original Tra-
jnet++ benchmark [25]:

• Prediction collision (Col-P): The percentage of colli-
sions between the primary pedestrian and his/her neigh-
bours. A collision is set to occur if two pedestrians are
below a safety distance T . This metric uses the predicted
trajectories for primary pedestrians and neighbours.

• GT collision (Col-GT): The percentage of collisions
between the primary pedestrian and his/her neighbours,
but using the GT trajectories for the neighbours.

Lower percentages of collisions mean the model better learns
the concept of collision avoidance. This also means that the
generated trajectories are more socially acceptable. We use
T = 0.1 m, the same value used in Trajnet++ [25].

For scene-compliant evaluation, we developed new metrics
that, to our knowledge, have never been employed in the in
the ETH/UCY datasets. We built a simple map for each scene
identifying obstacles and unwalkable areas (with the exception
Univ scene, that has no actual obstacles), as well as scene
limits. These new metrics are based on the maps:

• Collisions with Scene Environment (CSE): Percentage
of trajectories that collide with an obstacle or go to an
unwalkable region. Such collisions occur if the predicted
trajectory intersects the obstacle or the limits of that
region, defined in the map of each scene.

• Out of Scene Bounds (OSB): Percentage of trajectories
that go out of the bounds of a scene. A predicted
trajectory goes out of scene bounds if it goes beyond
the limits set in the map specific to that scene. All train
and test set trajectories are within those limits.

To get extra data for CSE and OSB, they will be computed on
primary pedestrians and neighbours. The Trajnet++ configu-
ration is interaction-centric, but not scene-centric, so scene
environment cues can have relevance for some neighbour
trajectories.

4.3. Baselines

We compare our work against the following baselines:

1) Constant Velocity (CV): Simple method that uses a
constant velocity equal to the last observed velocity.

2) SMF [5]: Deterministic and scene-specific SMF method.
3) S-LSTM [10]: Social LSTM model, which considers

interactions via a grid-based social pooling layer.
4) D-LSTM [25]: Directional LSTM model that uses a

grid-shaped pooling of neighbour’s relative velocity.

5) S-GAN [11]: Social GAN model, trained without variety
loss (deterministic version)2.

It is worth noting that none of these works integrate scene
and social cues (they integrate either one or the other).
Most of the methods that integrate both cues do not have
public implementation, and those that do [4], [15] require
considerable effort to make them support Trajnet++ data.

4.4. Quantitative results

The first step is to evaluate the overall quality of the Arc-
LSTM-SMF predictions. The results for ADE and FDE metrics
can be seen in table II.

The Arc-LSTM-SMF model has competitive ADE and FDE
values with state-of-the-art models, outperforming models like
D-LSTM and S-GAN. The model has considerably lower
errors in the ETH and Hotel scenes, due to being specialized in
each scene and having SMF predictions. The model with the
second best performance is S-LSTM. D-LSTM has a larger
error than S-LSTM, which is consistent with the original
Trajnet++ results [25]. The CV method, while being the most
simple, has the third lowest ADE. The performance of CV
has already been discussed recently [42]. Geometrically, the
SMF has the worst performance of all models. Even though
SMF predictions are worse on their own, they give additional
information to the LSTM - learning when to use it and when
not -, which allows improvement of its own predictions.

To evaluate the compliance of scene and social cues, we
perform evaluation with the same models and data, and using
the Col-P/Col-GT (social) and CSE/OSB (scene) metrics. The
results are summarized in table III.

In terms of social metrics, the Arc-LSTM-SMF continues to
be competitive with the state-of-the-art, having the lowest Col-
P percentage and the second lowest Col-GT percentage. This
shows that the use of FOV pooling can be a superior approach
in incorporating social interactions than grid-based pooling
like that of S-LSTM and D-LSTM. In terms of scene-specific
metrics, the model has the lowest value of CSE, along with
SMF, meaning the integration of SMF with LSTM networks
helps reduce the number of predictions that are not compliant
with the scene environment. However, our Arc-LSTM-SMF
model fails to learn the concept of scene bounds. Even though
it has access to SMF predictions, which are within the scene
bounds (they are inside the original video image), it cannot
restrict its own predictions to the scene bounds. More insight
on this will be given in the next section.

4.5. Qualitative results

This section provides a different insight on the Arc-LSTM-
SMF performance, when compared to the baselines. To do
that, we visualise several predictions from our model and
some baselines, while also showing the GT, to understand
how accurate are each of the predictions. The predictions to
be shown are a small but relevant sample, containing distinct
situations to highlight the strengths and limitations of our Arc-
LSTM-SMF model.

2It was experimentally found that this model yielded better results in a
unimodal evaluation than the one with variety loss.
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TABLE II
COMPARING GEOMETRIC ERRORS BETWEEN ARC-LSTM-SMF MODEL AND SEVERAL BASELINES. EACH CELL HAS THE ADE, FOLLOWED BY THE FDE,
BOTH IN metres. ”AVERAGE” IS THE AVERAGE OF THE ERRORS FROM THE 4 SCENES (SAME WEIGHT FOR EACH SCENE). ”WEIGHTED AVERAGE” IS THE
AVERAGE OF ALL ERRORS, AND SCENES WITH MORE TRAJECTORIES HAVE MORE WEIGHT. LOWEST ERROR (BEST MODEL) IN BOLD AND UNDERLINE.

Scene CV SMF [5] S-LSTM [10] D-LSTM [25] S-GAN [11] Arc-LSTM-SMF (ours)
ETH 0.73/1.04 0.97/0.72 1.18/1.74 1.14/1.69 0.75/0.91 0.67/0.73
Hotel 0.52/1.03 0.75/1.41 0.50/0.95 0.62/1.26 0.47/0.93 0.47/0.79
Univ 0.68/1.49 1.30/2.41 0.69/1.47 0.74/1.60 0.73/1.49 0.67/1.44
Zara 0.53/1.21 0.95/1.67 0.49/1.07 0.50/1.09 0.55/1.14 0.54/1.13

Average 0.62/1.19 0.99/1.55 0.71/1.31 0.75/1.41 0.62/1.12 0.59/1.02
Weighted
Average 0.63/1.38 1.17/2.14 0.62/1.33 0.66/1.44 0.67/1.36 0.62/1.32

TABLE III
COMPARING SOCIAL AND SCENE COMPLIANCE OF OUR ARC-LSTM-SMF MODEL, ALONG WITH SEVERAL BASELINES. THE SOCIAL METRICS (COL-P

AND COL-GT) WERE COMPUTED ONLY ON THE PRIMARY PEDESTRIANS, AND THE SCENE METRICS (CSE AND OSB) WERE COMPUTED ON BOTH
PRIMARY PEDESTRIANS AND NEIGHBOURS. ALL VALUES ARE SHOWN IN PERCENTAGE (%). LOWEST VALUE (BEST MODEL) IN BOLD AND UNDERLINE.

Metrics CV SMF [5] S-LSTM [10] D-LSTM [25] S-GAN [11] Arc-LSTM-SMF (ours)
Col-P / Col-GT (%) 11.1/11.6 10.8/14.5 10.3/10.0 7.7/11.4 12.7/11.3 7.3/10.1

CSE / OSB (%) 1.5/14.5 0.4/0 1.1/10.9 1.1/12.9 0.9/6.0 0.4/12.2

First, the scene-compliance of the Arc-LSTM-SMF is qual-
itatively evaluated. Its predictions are compared to the scene-
specific SMF - which has very good performance in CSE and
OSB metrics -, as well as a simple CV and the S-GAN method
(do not consider the scene). A total of three situations are
shown in fig. 4. The scene environment poses more weight
for these situations than the social interactions, and as such
the neighbours are omitted from the visualisations. The maps
built for the CSE and OSB metrics are also shown in the
figure, to get a visual idea of how the scenes are structured.

The first situation, in fig. 4a, is fairly simple. The Arc-
LSTM-SMF, having access to scene-specific SMF predictions,
was able to predict the most accurate speed and direction
of motion. The simple CV baseline generated an inaccurate
prediction, going into an unwalkable region, and then out of
scene bounds. Even though CV has reasonably small displace-
ment errors on average, it can quite easily generate predictions
that are not compliant with the scene environment. For the
second situation (fig. 4b), both CV and S-GAN generate a
prediction that collides with an obstacle. The Arc-LSTM-
SMF has the most accurate prediction, while also avoiding the
obstacle (although narrowly). The SMF prediction also avoids
the obstacle, but it is much more deviated from the GT. It
is worth mentioning that the obstacle with which CV and S-
GAN predictions collide with, is a set of cars that are parked.
While they are present in all train and test set trajectories,
they cannot be considered an entirely static obstacle. In a
real-world application, the Arc-LSTM-SMF should be able
to handle changes in the environment, particularly regarding
scene-specific elements. A way to tackle this would be to make
the Arc-LSTM-SMF model support online learning, i.e., to
learn how the environment evolves as new trajectories are seen
or extracted. The situation from fig. 4c shows a limitation of
the Arc-LSTM-SMF model - inability to learn the concept of
scene bounds. While SMF and S-GAN restrict the predictions
to the bounds of the scene, the Arc-LSTM-SMF is unable to
do this, having a similar prediction to the CV method.

The next step is to see how socially accurate our model
is when compared to the state-of-the-art, consisting of the
three socially-aware methods used in section 4-D: S-LSTM,
D-LSTM, and S-GAN. Four situations are shown in fig. 5.
These situations include the motion of all neighbours in the
scene (gray arrows), to understand how each model behaves
with the surrounding social context.

The first situation, from Univ scene, in figs. 5a to 5c,
highlights an advantage of the Arc-LSTM-SMF model: only
considering the neighbours in front of the pedestrian. The other
methods consider neighbours behind, that do not influence the
pedestrian’s motion. The Arc-LSTM-SMF prediction does not
collide with a neighbour while other methods’ do (fig. 5b). In
a less crowded situation in figs. 5d to 5f, the Arc-LSTM-SMF
is able to avoid some stationary neighbours (it is actually a be-
haviour that Arc-LSTM-SMF is commonly capable of), while
other methods predict a straight trajectory (fig. 5e). There are
situations where the Arc-LSTM-SMF fails to generate accurate
predictions. Such is the case in figs. 5g to 5i. While the
direction of the Arc-LSTM-SMF is the most accurate (fig. 5h),
it cannot accurately predict the pedestrian’s acceleration. The
fourth trajectory, from figs 5j to 5l, shows that the Arc-
LSTM-SMF model can also be socially inaccurate. The Arc-
LSTM-SMF does not properly consider the neighbours mov-
ing towards the pedestrian (fig. 5j), and as such the predicted
trajectory collides with a neighbour (fig. 5k).

The results from fig. 5 show that the Arc-LSTM-SMF model
has the ability to generated socially accurate trajectories.
However, it has still limitations regarding collision avoidance.
Part of the reason for that could be that our model is not trained
to directly avoid collisions. A possible area of future research
involves creating an auxiliary training scheme to minimize
collisions between pedestrians, e.g., based on a metric like
Col-P or Col-GT.

5. CONCLUSIONS AND FUTURE WORK

Pedestrian motion can be influenced by many factors. We
highlighted two types of factors - presence of obstacles and
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(a) (b) (c)

Fig. 4. Examples of 3 situations to highlight the scene compliance of 4 models. Best viewed in colour. The models are: CV (green), SMF (red), S-GAN
(purple), and our Arc-LSTM-SMF (brown). Past trajectory (OBS) and real future trajectory of primary pedestrian (GT) in blue and orange, respectively. (a)
Hotel scene. The Arc-LSTM-SMF avoids colliding with a building. (b) Zara scene. The Arc-LSTM-SMF is able to not collide with an obstacle, while other
baselines collide. (c) Univ scene. The Arc-LSTM-SMF is not able to restrict its prediction to the bounds of the scene.

social interactions between pedestrians. The proposed Arc-
LSTM-SMF considers these two factors into its predictions.
To our knowledge, it is the first to do this using only pedestrian
trajectories. It does not require extra information such as
semantic maps or video frames for scene-complaint trajectory
forecast.

The experimental results show that our Arc-LSTM-SMF
model is able to outperform several state-of-the-art methods
in the task of trajectory forecasting. The number of collisions
with obstacles has been reduced, and it has competitive
results in terms of collision avoidance between pedestrians.
Nonetheless, the model still has some limitations. It cannot
restrict the trajectories to the scene bounds, and cannot cope
with changes in the scene environment.

Future work should dive into online training, to learn
changes in the environment as new trajectories are seen or
extracted. To improve the social accuracy of our model, we
should explore direct training to enforce social concepts like
collision avoidance.
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(a) First situation, t = 13 (b) First situation, t = 17 (c) First situation, t = 21 (final instant)

(d) Second situation, t = 13 (e) Second situation, t = 16 (f) Second situation, t = 21 (final instant)

(g) Third situation, t = 13 (h) Third situation, t = 16 (i) Third situation, t = 21 (final instant)

(j) Fourth situation, t = 13 (k) Third situation, t = 16 (l) Third situation, t = 21 (final instant)

Fig. 5. Examples of 4 social situations. Best viewed in colour. There are predictions of 4 models: S-LSTM in green, D-LSTM in red, S-GAN in purple,
and our Arc-LSTM-SMF in brown. Past trajectory (OBS) and GT of primary pedestrian (GT) in blue and orange, respectively. The GT neighbour motion
(NEIGH) is shown in gray. (a), (b), (c) Situation from Univ scene. Arc-LSTM-SMF avoid collision with neighbour. (d), (e), (f) Situation from Zara scene.
Arc-LSTM-SMF avoids stationary neighbour, while other methods do not. (g), (h), (i) Situation from Univ scene. Arc-LSTM-SMF avoids collision, but does
not predict accurate speed. (j), (k), (l) Situation from Univ scene. Arc-LSTM-SMF prediction collides with neighbour, while other predictions maintain some
distance from the neighbour.
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