
Deep QL-APF: An Automated Playtesting Framework for
Unreal Engine

Gabriel Salvador Fernandes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Carlos António Roque Martinho
Prof. Rui Filipe Fernandes Prada

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. Carlos António Roque Martinho

Member of the Committee: Prof. Pedro Alexandre Simões dos Santos

November 2021

Acknowledgments

I want to thank my parents, girlfriend, brother and sister in law for the love and support they gave me

over all these years and for always motivating me to achieve my goals. Special thanks to Maria Carolina

for the help and courage she gave me during the thesis development.

I would also like to acknowledge my dissertation supervisors Prof. Carlos Antonio Roque Martinho

and Prof. Rui Filipe Fernandes Prada for the insight and knowledge shared with me, which made this

thesis possible. To the Funcom ZPX team, and specially Guilherme Santos and Susana Buinhas, for

staying in touch with me during the whole process, helping and pushing me to deliver the best out of me.

Last but not least, to all my friends who stayed by my side during these years, helping me grow as a

person. They were always there for me during the good and bad times in my life.

Thank you all.

i

Abstract

In this work we introduce an approach to automate part of the playtesting process in games made with

Unreal Engine 4 (UE4), with the objective of speeding up and reducing the costs associated with manual

playtesting. We use the Unreal Automation System to integrate the Deep QL-APF framework with the

UE4 in order to perform automated gameplay tests. We propose a Deep Q-Learning (DQL) method for

the agent to travel to a destination and achieve a well-defined game objective by trial and error, using

feedback from its own actions and experiences. To validate the solution we use a single case study

provided by Funcom ZPX.

Three experimental procedures were executed to assess the approach. We obtained results regard-

ing two different agents learning performance and a visual representation of the path they performed.

One agent is responsible for reaching the goal as quickly as possible while the other wants to reach the

goal while moving close to the map environment walls. The agents can also identify problems in the

game environment while they explore it. From the results we confirm that Reinforcement Learning (RL)

agents are capable of learning how to achieve a game objective and find problematic areas in a Unreal

Engine environment. We also found that the agents performed the behaviours we wanted them to, but,

crafting agents to perform the same test and achieve the same game objective with different behaviours

was complex and hard to come up with for us. We compared the problems found by agents with the

ones found during manual playtesting and concluded that these automated agents can replace human

testers when performing these type of exploratory test.

Keywords

Automated Playtesting, Artificial Agent, Reinforcement Learning, Deep Q-Learning, Neural Networks,

Unreal Engine, Unreal Automation System, Functional Tests, Actor Component, TensorFlow, Plugin

iii

Resumo

Neste trabalho introduzimos uma abordagem para automatizar parte do processo de testagem de um

jogo desenvolvido usando a Unreal Engine 4 (UE4), com o objectivo de acelerar e reduzir os custos

associados a realizar unicamente testes manuais.

Utilizamos o Sistema de Automação de Testes da UE4 para integrar a Deep QL-APF com a UE4, de

forma a realizar automaticamente testes de jogabilidade. Propomos um método de Deep Q-Learning

(DQL) para ensinar o agente a deslocar-se até um destino e alcançar um objectivo de jogo bem definido.

Para validar a solução, utilizamos um caso de estudo oferecido pela Funcom ZPX.

Foram realizados três procedimentos experimentais para validar a abordagem. Obtivemos resul-

tados relativamente à performance de aprendizagem de dois agentes diferentes e oferecemos uma

representação visual do caminho percorrido por ambos. Um agente é responsável de atingir o ob-

jetivo da forma mais rapida possı́vel enquanto que o outro quer atingir o objetivo deslocando-se o

mais próximo possı́vel das paredes do mapa. A partir dos resultados, confirmamos que os agentes

Reinforcement Learning (RL) são capazes de aprender como alcançar um objectivo de jogo e encontrar

áreas problemáticas em ambientes Unreal Engine. Também descobrimos que criar agentes diferentes

para atingir um objetivo com comportamentos diferentes é complexo e difı́cil de realizar. Os agentes

são capazes de identificar problemas no ambiente de jogo enquanto o exploram. Comparámos os

problemas encontrados pelos agentes com os encontrados durante uma sessão de testes manuais.

Concluı́mos que os agentes automatizados podem substituir pessoas na realização dete tipo de teste.

Palavras Chave

Playtesting Automatizado, Agente Artificial, Aprendizagem por reforço, Deep Q-Learning, Redes Neu-

ronais, Unreal Engine, Sistema de Automação da Unreal Engine, Testes Funcionais, TensorFlow, Plugin

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem . 4

1.3 Hypothesis . 5

1.4 Contributions . 6

1.5 Document Outline . 6

2 Related Work 9

2.1 Automated Playtesting Frameworks for Unreal Engine . 11

2.1.1 Automated Playtesting in Sea of Thieves1 . 11

2.1.2 Automated Playtesting In Videogames . 15

2.2 Using Player Modeling in Automated Playtesting . 17

2.2.1 Automated Playtesting with Procedural Personas 17

2.2.2 Modeling Sensorial and Actuation Limitations in Artificial Players 19

2.3 Developing artificial players to achieve game objectives 19

2.4 Curiosity/Novelty Search . 22

2.5 Implementing machine learning algorithms for Unreal projects 24

2.5.1 Unreal Engine plugin for TensorFlow . 24

2.5.2 Combining Deep Q-Learning with Unreal Engine 4 25

2.6 Discussion . 27

3 Proposed Solution for the Deep QL-APF 31

3.1 Deep QL-APF Model . 33

3.2 Machine Learning Integration with Unreal Engine 4 . 34

3.3 Unreal Automation System . 36

3.4 Functional Testing Framework . 38

1Sea of Thieves Game: https://www.seaofthieves.com

vii

4 Deep QL-APF Implementation 41

4.1 Algorithm Specifications . 43

4.2 Algorithm Preliminary Assessment . 45

4.3 Unreal Engine Actors . 48

4.4 Automated Playtesting Tests . 52

4.4.1 Pathway Exploration Test . 53

4.4.2 Wall Exploration Test . 54

5 Results and Analysis 57

5.1 Experimental Procedures . 59

5.1.1 Experimental Scenario 1: RL Agents learning how to reach a location in the game

environment . 60

5.1.2 Experimental Scenario 2: Agents with different handcrafted behaviours 61

5.1.3 Experimental Scenario 3: Comparing manual and automated playtesting for ex-

ploratory tests . 61

5.2 Automated Playtesting Framework Test Results and Analysis 62

6 Conclusion 67

6.1 Conclusions . 69

6.2 Future Work . 70

Bibliography 75

A Appendix 75

A.1 Automated Playtesting in Sea of Thieves . 75

B Appendix B 77

B.1 Problems in the game environment . 77

C Appendix C 81

C.1 Path executed by the crafted agents after being trained 81

viii

List of Figures

1.1 Initial part of the game environment that is going to be used as a case study. 4

2.1 Full testing process in Sea of Thieves. 12

2.2 The amount and percentage of each type of test in relation to the total of tests done. . . . 13

2.3 Integration test coded with Unreal Blueprint node based-scripting to check if an expected

behaviour happened. 14

2.4 Components diagram of the implemented framework [4]. It is divided in 3 layers, the

Game Layer, the UE4 layer and the APF layer, presenting how these layers interact with

each other. 15

2.5 Activity diagram of the framework [4]. Demonstrates the activities in the framework when

the game level designer chooses a test to perform. 16

2.6 The Unreal Engine plugin for TensorFlow Architecture [19] 25

2.7 Overview of the race game mode map [18] . 26

2.8 Plot of training session from 1 training agent in the race mode [18]. 27

3.1 Model showing the Deep QL-APF main constituents and the information that is shared

between them. 33

3.2 TensorFlow Component as a sub-object of an AIController in Actor Blueprint. 35

3.3 Plugins Browser to enable Automation Tests. 36

3.4 Session Frontend with the Automation tab in focus. 37

3.5 Functional Test Actor placed in a Map level. 38

3.6 Creating Functional test blueprint extending the base Functional Test class 39

4.1 Architecture of the feed-forward neural network used in the Deep Q-Learning system. . . 44

4.2 Deep Q-Learning algorithm pseudocode. 45

ix

4.3 The Unreal Engine map used to evaluate the agents performance over time. The green

square is the objective location while the blue square is the starting location. The agent

is represented as a red sphere and the red squares on the walls are the points where the

line traces intercept the map constituents. 46

4.4 Table presenting the hyperparameters used by similar agents that executed the algorithm

preliminary assessment. One agent is using a target network and the other is not. 47

4.5 Graph showing the evolution of the rewards sum over time for 2 similar agents. 48

4.6 Editor view of the three AIControllers objects produced during the thesis. 49

4.7 Visual Representation of player going from one map module to another. The red arrow

represents the player movement. 51

4.8 Editor view of the Map Module Actor proprieties. 52

4.9 Session Frontend Automation Tab containing the tests implemented using the Deep QL

Automated Playtesting Framework. 53

5.1 Hyperparameters used for the agents that perform the Pathway and Wall Exploration tests. 60

5.2 Chart that represents the variation of the reward sum during the training of Pathway Ex-

ploratory testing agent. 62

5.3 Chart that represents the variation of the reward sum during the training of Wall Explo-

ration testing agent. 63

5.4 The black line trace in the figure shows the path performed by the Pathway Exploratory

agent to achieve the first map module objective. 64

5.5 The black line trace in the figure shows the path performed by the Wall Exploration agent

to achieve the first map module objective. 64

5.6 Table demonstrating the number and type of tests found by each player that performed

the playtesting session. 65

A.1 Test that checks if a calculate distance function works corretly. 76

A.2 Actor test. 76

B.1 First location where the character can leave the map. A well timed jump can move the

character out of the map boundaries. It shows the agent line traces outside of the playable

area. 78

B.2 Second location where the character can leave the map. The character can move from

the right side and leave the map boundaries. 78

B.3 Location where the player can enter but can’t move because there’s a rock blocking the

passage. 79

x

B.4 Location where the character can get stuck between the cactus and the wall when falling

from the platform at the top of the figure. 79

B.5 Location between the bridge pillar and an rock placed in the context of this thesis. It

causes some animations glitches and the player can leave with some difficulty, while the

agent cant. 80

C.1 The black line trace in the figure shows the path performed by the Pathway Exploratory

agent to achieve the second map module objective. 82

C.2 The black line trace in the figure shows the path performed by the Pathway Exploratory

agent to achieve the second map module objective. 82

C.3 The black line trace in the figure shows the path performed by the Wall Exploratory agent

to achieve the second map module objective. 83

C.4 The black line trace in the figure shows the path performed by the Wall Exploratory agent

to achieve the third map module objective. 83

xi

xii

Acronyms

AI Artificial Inteligence

IT Information Technology

QA Quality Assurance

RL Reinforcement Learning

SL Supervised Learning

DQL Deep Q-Learning

DQN Deep Q-Networks

DRQN Deep Recursive Q-Network

CCS Candy Crush Saga

UE4 Unreal Engine 4

APF Automated Playtest Framework

MCTS Monte Carlo Tree Search

ALE Arcade Learning Environment

FPS First-Person Shooter

MOBA Multiplayer Online Battle Arena

LSTM Long-short Term Memory

ICM Intrinsic Curiosity Module

GA Genetic Algorithm

JSON JavaScript Object Notation

CNN Convolutional Neural Network

xiii

xiv

1
Introduction

Contents

1.1 Motivation . 3

1.2 Problem . 4

1.3 Hypothesis . 5

1.4 Contributions . 6

1.5 Document Outline . 6

1

2

1.1 Motivation

Performing playtesting sessions is an important and required step of game design and development.

However, it is somewhat expensive in terms of resources and time. It is a very intricate process with

numerous iterations where, game developers test their changes, expose their games to the target audi-

ence to obtain information about the current state of the game, and where level designers are capable of

understanding if the environmental elements that were carefully combined are able to provide the game

experience they were designed for, identifying potential design flaws and collecting feedback.

According to the Capgemini World Quality Report 2015, Information Technology (IT) spending on

Quality Assurance (QA) and testing has risen to 35% and is expected to continue rising to support

today’s complex IT operations. The game industry is looking for ways to increase the level of maturity

and efficiency of QA and testing while reducing the costs associated with it, using test automation as

one possible approach.

The idea behind Automated Playtesting is to use artificial agents that can play the game and achieve

the objectives in order to provide meaningful information about the game condition to the designers and

developers. It can reduce the costs associated with performing playtesting sessions and contribute to a

more stable product. King1, the creators of Candy Crush Saga (CCS)2, researched the advantages of

Artificial Inteligence (AI) over human-based playtesting [1], using CCS as the case study. By allowing

the designers to obtain feedback about the current state of the game before diving into playtesting with

human players, they improve their content production pipeline by offering better quality content and more

thorough and controlled playtesting.

The existence of success cases in the games industry regarding the usage of automation tests to

increase the overall quality of playtesting sessions drove Funcom ZPX3 to search for ways to automate

and improve their playtesting. For this reason, we were motivated in working hand in hand to develop an

automated playtesting framework that can be used to reduce the costs associated with the development

process of new game content while increasing the overall QA and testing standards.

When developing a 3D adventure and exploration video game, Funcom ZPX identified that it is

important to verify if the player can navigate between two points in the game environment. By automating

this type of test, we found that it has potential for easing the amount of work that humans perform in

testing and QA.

As a case study for this thesis, Funcom ZPX provided an early-stage prototype of a 3D adventure

and exploration video game made in Unreal Engine 4 (UE4).

As shown in Figure 1.1, the initial phase of the level consists of a flat surface with a path for the player

to climb and reach the top of the bridge. After climbing it, the only path available leads to a dead end

1King Ltd: https://www.king.com/
2Candy Crush Saga Game: https://king.com/game/candycrush
3Funcom ZPX: https://www.funcom.com/funcom-zpx/

3

Figure 1.1: Initial part of the game environment that is going to be used as a case study.

where the only solution is to climb the green cloth hanging on the left fortress wall. Finally, once inside

the fortress, the player is expected to collect a key and open the gate to achieve the game objective and

move forward.

1.2 Problem

The playtesting process is, as previously said, a time and resource consuming task that is expected

to consume even more resources in the near future. With the objective to ease at least some costs

such as time and human resources, we are interested in exploring if artificial intelligence can be used

to complement playtesting sessions and provide meaningful feedback to game developers and level

designers. Our intention is to use automation tests to verify if the player can navigate through each map

module (game environment) and achieve the game objective. In addition to verify traversability, we find

important to understand what problems the player may encounter while exploring the game environment

to achieve the game objective (at destination).

We can state that this research has four main objectives, which can be divided into two different

types of problems. From a scientific point of view, we want to deploy an agent in a game environment

and make him capable of navigating between two points to achieve game objectives. Besides this, we

aim to develop methods capable of detecting different results apart from the baseline solution, by us-

4

ing strategies that attempt to deviate from the procedure previously executed by the agent. We aim to

develop methods capable of detecting if something wrong happened while exploring the game environ-

ment. These methods should detect if there are locations in the game environment where the player

gets stuck or exits the map boundaries.

From an engineering perspective, we want to integrate the scientific contributions of our framework

with the Unreal Engine. We will be validating the machine learning integration with a single Unreal project

(case study) and explore the possibility of reusing the agents for different game environments. We are

interested in facilitating the usage of the framework, giving designers and developers the possibility to

adapt it for different contexts, i.e. different Unreal Engine projects.

1.3 Hypothesis

As an approach to the problem described above, we intend to create artificial players that can potentially

provide meaningful information about the behaviours that human players might perform while going

through a game environment.

Our main objective is to develop an agent capable of navigating between two points in the game

environment and perform the actions needed to achieve a well-defined game objective. As an approach

to this first problem, we intend to use Reinforcement Learning (RL), specifically Deep Q-Learning (DQL),

a machine learning algorithm that employs trial and error to come up with a solution and achieve a

specific objective. We hypothesize that by creating a DQL algorithm that can find a solution for the

agents to proceed, reach the destination and complete the objective, we can contribute to automatically

test a game level made in Unreal Engine. By handcrafting different types of agents that perform different

tests on the game environment, we will understand if they can find different ways of achieving a well-

defined game objective. The agents will differ from each other regarding the path performed to achieve

the objective. By offering a DQL solution for automation tests we are opening new possibilities for testing

games with RL.

As an approach to the engineering problems, we want to create an Unreal Engine plugin providing

the scientific contributions of the Deep QL-APF Automated Playtesting Framework. It uses an open-

source library to help the development and training of machine learning models. This plugin contains

collections of code and data that developers can easily enable within the Editor on a per-project basis to

perform automated tests. We will use Unreal Automation System to prepare the objectified automated

playtesting tests for the case study previously introduced. To improve the framework usability in different

contexts, our objective is to allow designers and developers to access and customize the functionalities

of the framework through the Blueprint Visual Scripting system in UE4.

5

1.4 Contributions

Within the scope of the thesis, follows the contributions it offers:

• An Automated Playtesting Framework that can be integrated with Unreal Engine projects and au-

tomate part of the testing and QA process in games made with UE4.

• A state of art summary on relevant topics to automated playtesting and to the creation of agents

capable of playing games, which have helped arrive at the current solution.

• Artificial intelligent agents that can be deployed in game environments to achieve game objectives

using DQL. They are capable of navigating through the environment and verify if the path between

two points is traversable, while presenting different behaviours between them.

• The integration with a case study provided by Funcom ZPX. This UE4 project was used to test if

the hypothesized solution is viable and if it fits in with the type of content produced by the company.

• Two pre-made tests that developers and designers can use to verify if there is an available path to

reach certain locations in the case study game environment, while looking for problematic locations

in the environment where the player can get stuck or leave the game environment.

• The evaluation of the Deep QL-APF Automated Playtesting Framework results while considering

this specific case study.

1.5 Document Outline

This thesis is organized as follows: In Chapter 1 we introduce the motivation behind the work, the prob-

lem raised by it, and the hypothesis based on the research done. The chapter ends with the document’s

delimitation. In Chapter 2 we give a bit of the background of the areas in which this thesis is operating.

We provide an extensive background about the state of art, presenting what is being done to automate

the playtesting process and create artificial players that can solve problems in a game environment.

In the first section we guide the reader through different research papers that sought to improve the

playtesting process in Unreal Engine projects by using automation techniques. This section is followed

by an exhibition of research documents that present distinctive approaches to create an agent based

on different player models. Through these agents, we can obtain information about players that have

the same traits and behaviours. After this, we provide research that aim to deploy agents capable of

achieving the game objectives in the best possible way. In the next section, we explore different methods

that succeeded in making the agent explore novel states. Finally, we present studies that use machine

learning algorithms in Unreal Engine projects. This chapter ends with a discussion about the different

6

methods, techniques and how the information provided by these studies can be used in our solution

to achieve the objectives described in Chapter 1. In Chapter 3 we present our automated playtesting

framework architecture, starting by presenting the Deep QL-APF components model, followed by the

machine learning library integration with Unreal Engine 4. Finally, we present the Unreal Automation

System and the architecture it has in place to execute automated tests in the UE4 editor or project

build. In Chapter 4 we present the implementation of our automated playtesting framework. We start

this chapter by presenting the algorithm specifications, followed by a preliminary assessment on the

Deep Q-Learning algorithm, performed to understand if the algorithm we approached fits our needs and

is suitable for achieving the expected contributions. An exposure on how Unreal Engine objects are

implemented to establish a communication between the Engine and the Deep Q-Learning algorithm is

detailed in the following section. Finally, we demonstrate how the automated tests are created and how

their test objectives are defined and implemented. In Chapter 5 we present the results we obtained,

the experimental procedures used to test the solution, and a deep analysis on the results. Finally, in

Chapter 6 we close this thesis discussing the implications of the work results, presenting a conclusion

and some routes in which the work can be continued and improved upon in the future.

7

8

2
Related Work

Contents

2.1 Automated Playtesting Frameworks for Unreal Engine 11

2.2 Using Player Modeling in Automated Playtesting . 17

2.3 Developing artificial players to achieve game objectives 19

2.4 Curiosity/Novelty Search . 22

2.5 Implementing machine learning algorithms for Unreal projects 24

2.6 Discussion . 27

9

10

The video game industry has been showing interest in automating the testing and QA process as a

way of reducing the costs associated with testing games. Automated playtesting applications must be

implemented in accordance with the game engine to allow the information to flow from the engine to

the framework in an understandable way. Since the objective of this research document is to provide an

Automated Playtesting Framework for Unreal Engine, we start the state of art by considering one article

that explains the playtesting process used in a commercial game made in UE4, as well as a research

paper that introduces a framework for automating playtests in UE4, made together with Funcom ZPX.

2.1 Automated Playtesting Frameworks for Unreal Engine

2.1.1 Automated Playtesting in Sea of Thieves1

When Rare2 started working on their latest project Sea of Thieves, they decided to completely change

their testing approach. Instead of relying only on manual testing, they used automated testing to check

every part of the code, including gameplay features [2, 3]. In Figure 2.1 we present their full QA and

testing process.

Sea of Thieves is an open-world game where players can take the role of pirates. The openness of

the game world meant that the scope for bugs was very high. There are so many interactions between

gameplay features that need to be checked, that manual testing can become a mind-numbingly boring

challenge. Instead of having humans spending so much time checking interactions between features,

they let the game do it itself via automated tests. As you can see in Figure 2.1, Internal QA Playtesting

with manual playtesting is only performed after the developer runs the changes through automated

playtests and the game build undergoes an extensive check of automated tests. This way, human

testers can focus on recognizing visual and auditory defects, performing exploratory testing to find new

and unexpected problems, and checking game experience and assessing how the game feels.

Automated tests can interact with the game at different levels, testing individual code functions if

necessary. Rare presented data on the advantages of using automated tests, ensuring that it increased

confidence in each game build they launched to be tested by manual testers. With the use of automated

tests, they were able to create and verify builds in a day and a half, in contrast with the sports video

game developed by them, Kinect Sport Rivals3, where they took 10 days. They also managed to reduce

the number of full-time manual testers from 50 on Kinect Sport Rivals to 17 on Sea of Thieves. Another

advantage was the reduction of bugs over the months of development. The maximum bug count that

they achieved on Sea of Thieves was 214, whereas on Banjo Kazooie Nuts and Bolts4 was nearly 3000,

1Sea of Thieves Game: https://www.seaofthieves.com
2Rare - Xbox Game Studios: https://www.rare.co.uk/
3Kinect Sport Rivals: https://www.rare.co.uk/games/kinect-sports-rivals
4Banjo Kazooie Nuts and Blots: Rare - Microsoft Game Studios, 2008

11

although one can always question the relevance of the comparison because they are totally different

games. Due to the simple fact of having an automated test system, they knew immediately when a

known problem had entered the build, managing to fix it early.

Figure 2.1: Full testing process in Sea of Thieves.

Figure 2.2 shows the amount of each type of test and its percentage in relation to the total of tests

done. They only created a relatively small amount of performance5, screenshot6 and bootflow7 tests.

These were by far the slowest, so they used these as sparingly as possible.

The unit tests were used for the logic of the program, to check a specific operation on the smallest

testable part of the code, which generally means testing at the code function level. In Appendix A,

Figure A.1, Rare presents an example of a unit test that checks if a calculate distance function works

as expected. First, they set up the data or objects that they want to test, next they run the operation

that they’re testing and finally assert if the results are what they expect. If the assertion fails, an error

will be logged by the automation system and mark the test as failed. Unit tests can be used to cover

every individual function of the game, and in theory build up testing that covers all the game. However,

sometimes the way units interact can itself contain bugs, so alongside the unit tests they also created

integration tests that generally cover a whole feature or action in the game.

5 Performance tests collect data from the game to spot trends in load times, memory usage or frame rate.
6Screenshot tests output screenshots for use in a visual comparison against last good images, to check for unforeseen changes

in the game visuals.
7Bootflow tests check the communications between client, server and game services.

12

Figure 2.2: The amount and percentage of each type of test in relation to the total of tests done.

Integration tests in Sea of Thieves were created as maps in the Unreal editor. Each map would

test a specific game behaviour in a fixed scenario and report back its results as a pass or fail, based

on whether the behaviour happened as expected or not. To create the logic of what happens in these

integration tests, they made use of the Unreal Blueprint system, a node based-scripting system within

the Unreal engine.

Blueprints are very convenient for running integration tests since nodes can be latent and pause

execution until a certain condition has occurred. As an example of an integration test for Sea of Thieves,

they present a test for one of the most basic activities in-game, which is checking if when the player

interacts and turns the wheel, its angle changes. Instead of loading a full client of Sea of Thieves,

connect to a server, and place the player on a ship and let them turn a wheel, they narrow things down

to test only the actual interaction between the player and the wheel. Therefore, they have a player, a

platform for the player to stand on and a ship’s wheel. As you can see in Figure 2.3 the logic for the

test follows the three test stages in a similar way to the unit test: first they do the setup, then run the

operation they want to test and finally check if the results are the expected.

Integration tests require a built version of the game or editor, which in turn relies on the whole Unreal

engine. This inevitably means that they will be slower and less reliable. This was a particular problem for

their gameplay code, which was built using common Unreal engine classes, like actors and components.

When this started to become unsustainable they created a new type of test called ‘actor tests’, for this

reason called because they used the Actor Unreal game object class. The actor test type gave them

a useful middle ground between integration tests and unit tests. They were in fact a unit test for game

13

code, but one that tested Unreal engine concepts like actors and components.

Figure 2.3: Integration test coded with Unreal Blueprint node based-scripting to check if an expected behaviour
happened.

As an example of an actor test, see Figure A.2 in Appendix A, where they present the test for

the shadow skeleton. The shadow skeleton has two states, dark and light, with different visuals. Its

current state is based on whether it is currently exposed to light or not. When in darkness, it is virtually

invulnerable, whereas in light, it has the same vulnerabilities as a normal skeleton. They created a test

that will check that a shadow skeleton shifts from its dark state to its light state when the time of day

changes. They could have done this with an integration test but doing it as an actor test is much more

efficient.

As you can see in Figure 2.2, 70.2% of their tests are actor tests, which makes them the most

common type by far. This was because it was the most convenient test type to provide coverage for

their gameplay features. Only 5.4% of their tests were integration tests, but they provided vital high-level

coverage of game features. This information is important for confirming that functional tests can be used

in the context of this thesis to cover high-level features, such as validating that the game environment

is in a good state for the player to play in, while checking if it presents an available path for the game

objective.

14

2.1.2 Automated Playtesting In Videogames

P. Negrão [4] implemented a playtesting framework for UE4 that tests the integrity of the level and

determines whether it is possible to exploit the game in some way. This dissertation was made in

partnership with Funcom ZPX and the case study is the same as the one we will use to experiment and

evaluate our playtesting framework.

The out of boundaries glitch was chosen as the focus for P. Negrão framework, making the designed

and implemented tests specific for this issue. It refers to going beyond the normal boundaries of an area

on the game map, by passing through walls or jumping off objects to get out of the map. These tests

were created to test the integrity of the playable area, area that a player is allowed to play in. By doing a

set of movements, such as walking, jumping and pulling objects, it could test if there were any holes or

ways to exploit the game in order to get out of the playable area.

Figure 2.4: Components diagram of the implemented framework [4]. It is divided in 3 layers, the Game Layer, the
UE4 layer and the APF layer, presenting how these layers interact with each other.

The architecture of the solution is composed by three main layers, the Game layer, the UE4 layer,

and the Automated Playtest Framework (APF) layer. In Figure 2.4, we present a component diagram

showing how these layers interact with each other. Firstly, the Game layer represents the game when

running. The UE4 layer is the platform between the support systems and the implementation of the

game mechanics, offering a system named “Test Automation” that allows the creation and execution of

unit and integration tests. The APF is integrated with the UE4 layer at the level of the component “Unit

Tests” which can be a unit test or an integration test. These tests define the game mechanics that the

APF should execute in each section of the playable area. The way the APF was integrated made it

independent of each project because the implementation of the game mechanics is made inside UE4

and therefore dissociated from the APF. This approach made it possible for the APF to be flexible and

easier to integrate new forms of testing with the addition of new unit/integration tests.

The Auto Playtest Module controls the logic of the program, and all modules are connected to it. By

15

getting the Playable Area Module, spawning the bots and calling the Report Module, the Auto Playtest

Module can orchestrate the logic of the unit tests. The Playable Area Module is responsible for dividing

the level area and check what locations are valid. The report module creates a report including the

locations where the test failed. This way, the game level designer can use the information to test further

or correct the problem.

Figure 2.5: Activity diagram of the framework [4]. Demonstrates the activities in the framework when the game level
designer chooses a test to perform.

The first step is for the game level designer to position the bounding boxes in a way that covers all

the playable area. After, it is expected to configure the variables of the test in the Test Interface and run

the test in the Unreal Automation System. Next, the manager class receives the valid locations, gets the

type of test to run, and the variables needed. It spawns a batch of agents and waits for a determined

period of time. Later, it checks the location of each agent and saves any failed locations. After testing all

valid locations, it sends the arrays with the failed locations found by the test to the report module. After

this, the Test Interface sends the result of the test. If a location with a functional problem is found, the

test appears as failed in the automation system, ending the work of the framework.

After testing the framework with the case study and comparing it with manual playtesting, P.Negrão

concluded that automating the playtesting process brings advantages for Funcom ZPX. The selected

group of people that performed manual playtesting took on average 13,33 minutes to complete the

playtesting and when added the time taken to fill out the report they took on average 18,33 minutes to

16

complete the process. The framework was able to run all the tests in sequence and create a report in

approximately 4,9 minutes, a significant reduction of time. Although both human players and artificial

agents were capable of finding the bugs in the case study, all the team felt improvements both on

time and information analysis with the reports produced by the framework. From this work we got

another confirmation that offering an automated playtesting framework to automatically execute a type

of Functional Test displays positive results and is useful to the game development pipeline.

2.2 Using Player Modeling in Automated Playtesting

Our thesis intention is to contribute to playtesting sessions using automated tests. We are considering

a 3D adventure and exploration game as case study, where it is interesting to understand what are the

different ways to explore the environment. Therefore, during our state of art research, we also focus

on research papers that use automated tests to understand how different types of players act when in

contact with a game environment. Player modeling is the learning and use of computational models of

player preference, experience and/or behaviour. The way the player interacts with the game depends

on his personality and gameplay skill, and for that reason we present papers that intend to model the

player personality using procedural personas and the player skill through sensory limitations.

2.2.1 Automated Playtesting with Procedural Personas

C. Holmgård et al. [5] present a method for modeling player decision making, using agents as AI-driven

personas. The paper argues that artificial agents, as generative player models, have properties that

allow them to be used as psychometrically valid, abstract simulations of a human player’s internal de-

cision making processes. They assume that players exhibit a particular decision making tendency or

style when playing a particular level or game, and that this tendency can be captured and expressed by

approximating a utility function that shapes their decisions in-game. The game environment, MiniDun-

geons 2 [6] is a turn-based puzzle game where a hero travels from the entrance of a dungeon level to

the exit. They use RL, specifically Q-learning where the action-choosing module uses a utility function

that maps states and actions to a numeric value (the utility). The small game world and limited num-

ber of hero moves in each level position permit the use of a lookup table for storing state action pairs.

The reward function of the Q-learning agent is simply the model of the player’s utility function. In order

to produce multiple different personas for comparisons with players, a number of distinct agents were

developed which had different playing styles. Two examples of agents that were crafted are the Runner

and the Munster Hunter. The Runner has the primary objective of finding the exit in the fewest moves

possible, while the Monster Hunter has the primary objective of killing as many monsters as possible

with the secondary objective of finding the exit. Their conclusion was that the agents were useful as per-

17

sonas for characterizing and discriminating between the human players. While the Q-learning agents

demonstrated to work well, the training of the agents is computationally demanding and hence time con-

suming. A better approach is using a generic trained agent, whose policy is not tied to a particular level.

Possible approaches could include using agents based on Q-learning with neural networks, Monte Carlo

Tree Search (MCTS) or evolutionary rule-based systems. They presented another paper [7] where they

compare an evolutionary (evolutionary algorithm) persona representation with the previously devised

method of Q-learning. They found that the evolutionary solution is better both at agreeing with human

players and optimizing the rewards, while also being generalized to unseen levels. However, we will

use RL in the context of this thesis because it is the machine learning technique we want to assess if

it can be used for automated testing. This work provides really useful information on how to craft utility

functions for RL in order to develop an agent that executes a specific behavior, such as the Runner and

Monster Hunter. It was important for us to understand how these utility functions were crafted so that we

can create agents with different behaviours for exploring the game environment.

Following this study, Holmgard et al. [8] presented another paper describing a method for generative

player modeling and its application to the automatic testing of game content using procedural personas.

They found that using archetypal generative player models (procedural personas) to playtest automat-

ically with certain playstyles (Monster Killer, Runner, etc..) enables the understanding of how different

players interact with different aspects of the game. They used the same case study (MiniDungeons 2),

a game that is designed specifically to have a high decision density, meaning that every action matters,

while requiring little to no manual skill. To control the personas, they used a variant of MCTS which is

well-suited for building biased search trees in large search spaces. MCTS is a tree search algorithm that

creates biased search trees for decision processes, focusing on exploiting the most promising moves to

expand next, while balancing that by exploring more neglected branches of the tree. For their purposes,

MCTS has several desirable properties which approximate how decision making occurs in humans: it

evaluates the next best action based on a utility score for a predicted future state and operates under

uncertainty of future outcomes. They found that the evolved personas differentiate their play styles, and

in most maps, perform better than other personas with regard to their core priority. This work is relevant

to confirm that automated testing using crafted agents is useful, even though it uses a totally different

game environment and different algorithm from the one we use.

Mugrai, Holmgard et al. [9] also developed a method for performing automated playtesting with proce-

dural personas for a match-3 tile game by evolving the utility function for the MCTS agent. By being able

to model human players and play styles, they open the possibility of playtesting new levels, analyzing

the approaches and how players play various levels for Match-3 games. Game designers gain further in-

sights on various interaction patterns and study how various categories of players would respond within

the Match-3 genre. Their objective was to develop four procedural personas, which model four different

18

types of play styles: trying to maximize score, trying to minimize score, trying to maximize the available

number of moves and trying to minimize the available number of moves. By deploying these agents into

real world Match-3 games, it opens up the ability to analyze level designs and the approaches taken

to play levels by various player perspectives. Their score maximizing and score minimizing agents al-

lowed them to evaluate and estimate the range of performance for human players. Also, comparing the

performance of such agents across multiple boards aided in measuring what can be perceived as their

difficulty levels. Just like the last work that was presented in this section, they confirm that procedural

personas are really useful for performing automated playtesting, although they don’t use a case study

or algorithm similar to ours.

2.2.2 Modeling Sensorial and Actuation Limitations in Artificial Players

In this master thesis, A.Soares [10] took the developments in the deep RL field applied to Atari environ-

ments, mainly Deep Q-Networks (DQN), and modulated different types of player limitations. The way

a player interacts with a game can in itself be different from how another one does it and that might

prompt different players to develop different strategies on how to play the same game. There are differ-

ent scenarios, for instance, delays, lag and action limitations. A metric of example can be the Actions

per Minute. Strategies applied by professional players will be different from casual players, since they

are able to act and react faster.

They present various types of manipulations tested, with multiple interactions between themselves.

By using Action Change, they are able of limiting implementations based on the principle of having an

error probability associated with the execution of a certain type of action. For the Action Delay limitation,

they replicate a delay in the execution of an action by the player. Finally, they use Miss Frame to simulate

a visual type of limitation a player might have, or a simple visual miscue. The results seem to indicate

the existence of different types of playing patterns for different limitations, although results are merely

theoretical, no user testing was made. However, they point out that these strategies would be visible in

real human players with real playing limitations. This work confirms that creating RL agents to simulate

behaviours and getting results from them is useful and can contribute to understanding how players

might interact with the game.

2.3 Developing artificial players to achieve game objectives

Automatically playtesting the game implies artificially controlling the player character to play the game.

While the main goal of these research papers is not to provide playtesting feedback to the designers and

developers, they can contribute to automated playtesting frameworks by presenting solutions on how to

create agents that can learn how to act in-game and achieve game objectives.

19

V. Mnih et al. [11] offered the first deep learning model to successfully learn control policies directly

from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural

network, trained with a variant of Q-learning that combines stochastic minibatch updates with experi-

ence replay memory to ease the training of deep networks for RL. The network takes as input raw

pixels and the output layer is a fully connected linear layer with a single output for each valid action. The

main advantage of this type of architecture is the ability to compute Q-values for all possible actions in

a given state with only a single forward pass through the network. They apply their method to seven

Atari 2600 games from the Arcade Learning Environment (ALE) and demonstrated its ability to master

difficult control policies for them. They use the same network architecture, learning algorithm and hy-

perparameters settings across all seven games, showing that their approach is robust enough to work

on a variety of games without incorporating game-specific information. The network was not provided

with any game-specific information or hand-designed visual features and was not privy to the internal

state of the emulator; it learned from nothing but the video input, the reward and terminal signals, and

the set of possible actions - just as a human player would. They show that their method achieves better

performance than an expert human player on three games and achieves close to human performance

on one. Three games are far from human performance, since they are more challenging and require

the network to find a strategy that extends over long time scales. This work clearly demonstrates that

RL can be used to train agents how to achieve a specific objective in a game environment and we used

exactly the same algorithm presented in this work during the implementation of this thesis.

Silver et al. [12] introduced AlphaGo8, a new approach to the game Go9 that uses “value networks” to

evaluate board positions and “policy networks” to select moves. The value network assigns value/score

to the state of the game by calculating an expected cumulative score for the current state, and the policy

network knows which actions should be performed at the current state to get maximum reward. These

deep neural networks are trained by a combination of supervised learning from human expert games,

and RL from games of self-play. Without any lookahead search, the neural networks play Go with MCTS

programs that simulate thousands of random games of self-play. They pass in the board position as a

19x19 image and use convolutional layers to construct a representation of the position. They use these

neural networks to reduce the depth and breadth of the search tree: evaluating positions using a value

network, and sampling actions using a policy network. They train the neural networks using a pipeline

consisting of several stages of machine learning beginning by training a Supervised Learning (SL) policy

network directly from expert human moves. Next, they train a RL policy network that improves the SL

policy network by optimizing the outcome of games of self-play. This adjusts the policy towards the

correct goal of winning games, rather than maximizing predictive accuracy. Finally, they train a value

network that predicts the winner of games played by the RL policy network against itself. Consequently,

8DeepMind AlphaGo: https://deepmind.com/research/case-studies/alphago-the-story-so-far
9Go is an abstract strategy board game for two players.

20

their program AlphaGo efficiently combines the policy and value networks with MCTS. Using this search

algorithm, AlphaGo achieved a 99.8% winning rate against other Go programs and defeated the human

European Go champion by 5 games to 0. Moreover, in [13] they introduce an algorithm based solely on

RL, without human data, guidance, or domain knowledge beyond game rules. It uses only the black and

white stones from the board as input features and uses a single neural network, rather than separate

policy and value networks. It uses a simpler tree search that relies upon this single neural network

to evaluate positions and sample moves, without performing any Monte Carlo rollouts. Their results

comprehensively demonstrate that a pure RL approach is fully feasible. Even in the most challenging

of domains it is possible to train to superhuman level, without human examples or guidance, given no

knowledge of the domain beyond basic rules. Using this approach, AlphaGo Zero defeated the strongest

previous versions of AlphaGo, which were trained from human data using handcrafted features, by a

large margin, winning 100-0.

G.Lample and D.Chaplot [14] offer an architecture to tackle 3D environments in first-person shooter

games that involve partially observable states. Doom10 is a classical First-Person Shooter (FPS) game,

and ViZDoom was presented as a testbed for deep RL. Agents learn from raw pixels and interact with the

ViZDoom environment in a first-person perspective. They introduce a method for co-training a DQN with

game features, which turned out to be critical in guiding the convolutional layers of the network to detect

enemies. The agent divides the problem into two phases: navigation (exploring the map to collect items

and find enemies) and action (fighting enemies when they are observed) and uses separate networks

for each phase of the game. This makes the architecture modular and allows different models to be

trained and tested independently for each phase. Both networks can be trained in parallel, which makes

the training much faster as compared to training a single network for the whole task. Furthermore, the

navigation phase only requires three actions (move forward, turn left and turn right), which dramatically

reduces the number of state-action pairs required to learn the Q-function. They used a Deep Recursive

Q-Network (DRQN) augmented with game features for the action network, and a simple DQN for the

navigation network. Therefore, at each step, the network receives a frame, as well as a Boolean value

for each entity, indicating whether this entity appears in the frame or not (an entity can be an enemy, a

health pack, a weapon, ammo, etc). During the evaluation, the action network is called at each step. If

no enemies are detected in the current frame, or if the agent does not have any ammo left, the navigation

network is called to decide the next action. Otherwise, the decision is given to the action network. They

conclude that the proposed model is able to outperform built-in bots as well as human players and

demonstrated the generalizability of their model to unknown maps.

One of the most remarkable works using DQL in Multiplayer Online Battle Arena (MOBA) was pro-

posed by OpenAI. Their results prove that deep RL method can be successful in a 5v5 Dota2 sce-

10Doom: id Software, 1993.

21

nario [15]. By defeating the Dota 2 world champion, OpenAI Five demonstrates that self-play RL can

achieve superhuman performance on a difficult task. They define a policy as a function from the his-

tory of observations to a probability distribution over actions, which they parameterize as a recurrent

neural network. The neural network consists primarily of a single-layer 4096-unit Long-short Term Mem-

ory (LSTM). Given a policy, they play games by repeatedly passing the current observation as input

and sampling an action from the output distribution at each timestep. Their objective is to find a policy

that maximizes the probability of winning the game against professional human experts. In practice,

they maximize a reward function which includes signals such as characters dying, collecting resources,

etc. This reward model is complex and well-structured, rewarding the agent for a set of actions which

humans playing the game generally agree to be good. Although the Dota 2 engine runs at 30 frames

per second, OpenAI Five acts on every 4th frame which they call a timestep. Each timestep, OpenAI

Five receives an observation from the game engine encoding all the information a human player would

see such as units’ health, position, etc. OpenAI Five then returns a discrete action to the game engine,

encoding a desired movement or attack. Certain game mechanics are controlled by hand-scripted logic

rather than the policy. Instead of using the pixels on the screen, they approximate the information avail-

able to a human player in a set of data arrays. OpenAI Five uses this semantic observation space for two

reasons: first, because its goal is to study strategic planning and high-level decision making rather than

focus on visual processing. Second, it is infeasible to render each frame to pixels in all training games;

this would multiply the computation resources required for the project many-fold. After ten months of

training, it defeated the Dota 2 world champions in a best-of-three match and 99.4% of human players

during a multi-day online showcase.

The works presented in this section confirm that we can use RL in a complex 3D game environment,

while offering valid examples on how to craft a reward system and gather observations from a 3D game

environment.

2.4 Curiosity/Novelty Search

The papers presented above are concerned in finding an optimal solution by obtaining a policy that max-

imizes the probability of winning a game. However, we are interested in obtaining several solutions and

not only the best possible solution. We want to understand which are the possible paths for the agent to

explore and achieve a game goal, and therefore we are looking for a method that explores the solutions

space, noticing that Novelty and Curiosity-Learning is being used to encourage the agent to explore

“novel” states. In addition to this, it is also used to encourage the agent to perform actions that reduce

the error/uncertainty in the agent’s ability to predict the consequence of its own actions. D. Pathak et

al. [16], propose curiosity as an intrinsic reward signal to make the agent explore the environment and

22

learn skills that might be useful later in its life. They use this method to understand if curiosity-driven

exploration can be used when rewards extrinsic to the agent are extremely sparse, or absent altogether.

They formulate curiosity as the error in an agent’s ability to predict the consequence of its own actions in

a visual feature space learned by a self-supervised inverse dynamics model. Their agent is composed

of two subsystems: a reward generator that outputs a curiosity-driven intrinsic reward signal, named

Intrinsic Curiosity Module (ICM), and a policy that outputs a sequence of actions to maximize that re-

ward signal. In addition to intrinsic rewards, the agent optionally may also receive some extrinsic reward

from the environment. To evaluate their curiosity module on its ability to improve exploration and provide

generalization to novel scenarios, the proposed approach is evaluated in two environments: VizDoom

and Super Mario Bros. In VizDoom the agent explores a much larger state space and learns the explo-

ration behaviour of moving along corridors and across rooms without any rewards from the environment.

The intelligent walking behaviour learned by the curious VizDoom agent also transfers to completely new

maps with new textures. In Mario the agent crosses a significant portion of Level-1 without any rewards

from the game and helps the agent explore subsequent levels faster. E. Jackson and D. Daley [17]

introduce and evaluate the use of novelty search over agent action sequences as means for promoting

innovation. They also introduce a method for stagnation detection and population re-sampling inspired

by recent developments in the RL community that uses the same mechanisms as novelty search to

promote and develop innovative policies. Their methods extend a state-of-the-art method for deep neu-

roevolution using a simple-yet-effective Genetic Algorithm (GA) designed to efficiently learn deep RL

policy network weights. “Can the history of actions performed by agents be used to promote innovative

behaviour in benchmark RL problems?”. Towards answering this, they implemented two novel methods

for incorporating behavioural history in an evolutionary algorithm designed to effectively train deep RL

networks. The first method is an implementation of novelty search in which, during training, the reward

signal is completely substituted by a novelty score based on the Levenshtein distance 11 between se-

quences of game actions. The second method is not a novelty search, but rather a modification to the

base GA that incorporates elements of novelty search to avoid population convergence to locally opti-

mal behaviours. Using these two sets of experiments, they evaluated each method’s effectiveness for

learning RL policies for four Atari 2600 games. They found that while Method I is less effective than

the Base GA for learning high-scoring policies, it returns policies that are behaviourally distinct. Method

II was more effective than Method I for learning high-scoring policies. Method I experiment suggest

that novelty search indeed creates selection pressure for innovation. Results demonstrate that novelty

search over action sequences is an effective source of selection pressure that can be integrated into

existing evolutionary algorithms for deep RL.

11The Levenshtein distance is a string metric for measuring the difference between two sequences, by counting the minimum
number of operations required to transform one into the other.

23

2.5 Implementing machine learning algorithms for Unreal projects

The playtesting platform we want to deliver is dependent on a communication between the UE4 and a

machine learning library. On one side, we need a library that allows us to implement a Deep Q-Learning

algorithm that trains agents to achieve an objective based on feedback from his previous actions. On

the other end, we need to execute the actions that were chosen on each step by the Deep Q-Learning

algorithm in the Unreal Engine, so that the system controls the character during gameplay.

In this section we present a plugin that allows the usage of TensorFlow, an end-to-end open source

platform for machine learning that enables training and implementing state of the art machine learning

algorithms for Unreal Engine projects. Finally, we present a plugin that simplifies setting up a Deep

Q-Learning system with agents in UE4.

2.5.1 Unreal Engine plugin for TensorFlow

Tensorflow-ue4 [19] is a Unreal Engine plugin for TensorFlow that enables training and implementing

state of the art machine learning algorithms for Unreal Engine projects. It contains C++, Blueprint

and python scripts that encapsulate TensorFlow operations as an Unreal Engine Actor Component, a

special type of object that UE4 Actors12 can attach to themselves as sub-objects. This plugin implies

using the Tensorflow Actor Component as a Blueprint API to create a bridge between the Unreal Engine

Blueprint System and a python code file (PythonAPI) that implements a machine learning algorithm using

TensorFlow. It conveniently simplifies the communication between these two by making a component

inside of the Blueprint scripting system that we can use to send and receive data from TensorFlow.

The plugin supports input/output from UE4 via JavaScript Object Notation (JSON) encoding. JSON

is a lightweight data-interchange format that is easy for machines to parse and generate. An Actor

using the TensorFlow Actor Component is in direct contact with the functions written in the python code

file, changing information encoded in JSON back and forth. There is control on what type of data

is forwarded to the python module. Figure 2.6 shows highlighted the parts of the architecture where

should be handled how and what messages travel from the Deep Q-Learning system code to Blueprint

code and vice-versa.

12An Actor is any object that can be placed into a level, such as a Camera, static mesh, or an AI Controller. They can be created
(spawned) and destroyed through gameplay code (C++ or Blueprints).

24

Figure 2.6: The Unreal Engine plugin for TensorFlow Architecture [19]

To show that the plugin work as intended, they present an example of machine learning usage

inside of UE4. The example is a basic MNIST13 softmax classifier trained on begin play with sample

training inputs streamed to the editor during training. When fully trained, UTexture2D samples are tested

for prediction. These are examples for general TensorFlow control and different MNIST classification

methods with UE4 UTexture2D as input for prediction. The plugin enables control over training and also

offers functionalities to save/load the model, so if there is already a trained model it is simple to setup

model/load it from disk and omit the training function, forwarding the evaluation/input via the a callback.

This work offers a connection between the Unreal Engine and a machine learning library that we can

use to create RL algorithms, and we will use this plugin as a base for the development of this thesis.

2.5.2 Combining Deep Q-Learning with Unreal Engine 4

M. Bakhmadov [18] offers a system for UE4 that lets their users create controllers for characters us-

ing machine learning algorithms created using TensorFlow. The plugin that has a backend written in

Python to handle all the machine learning calculations while the frontend is a Blueprint class that in-

herits from UE4’s controller class. This way, it is possible to implement a controller that derives from

UE4’s AIController with added support for machine learning functions and variables that communicate

with the Python backend. Since the system was created based on UE4’s architecture, one can simply

change the controller, which is the “brain” of an agent. Different input types as well as different en-

vironments were used to test what work best, as well as figuring out the best way to train a machine

learning agent in UE4. All their research has been compiled into examples showing off different ways

to use the system. Their results show that the agents are able to learn within different environments,

13The MNIST database is a large database of handwritten digits that is commonly used for training various image processing
systems.

25

and that there’s potential for even better results through further experimentation with the state represen-

tation, adjustments to the hyperparameters and additions to the DQN. The research questions focus

on how different state representations will affect training and performance and how the agent performs

in different environments. During the scientific results they expose their input on testing with Double

DQN, Prioritized Experience Replay, Z-score. When comparing an agent using Double DQN and one

using normal DQN, there isn’t any notable difference in terms of learning rate or score. Double DQN

also requires an extra network that needs to run predictions on, and therefore it uses roughly twice the

computer power that DQN does. It is also shown that training using prioritized experience replay makes

the agent learn much faster. Finally, M. Bakhmadov [18] presents that not using z-score normalization

tends to deliver more fluctuations in the score compared to using z-score. These fluctuations are not

major, but the training process becomes more stable with z-score than without. It is also worth noting

that z-score normalization will give all the different observations the same importance when training.

Figure 2.7: Overview of the race game mode map [18]

To test his solution, M. Bakhmadov [18] introduces the race game mode shown in Figure 2.7, where

each agent has a goal and different obstacles on its way to the goal. All agents have a weapon that

they can attack the other agents with and if one of them gets hit they are sent back to their start location

(spawn). The first agent that reaches the goal will be the winner. The action space consists of 9 outputs:

rotate left (10 degrees), rotate right (10 degrees), move forward (high speed), move right (medium

speed), move back (medium speed), move left (slow speed), shoot closest target, jump or move towards

the goal using the navmesh (slow speed). The system has handpicked values as the state that is

being sent to the DQN. This handpicked state consists of the agent’s distance to goal, rotation value,

distances of what 8 line traces around the agent with 2000 in length can hit, the direction and rotation

to the enemies the agent can see. The agent is rewarded 1 point if they reach the goal, and -0,25 if

someone else reaches the goal. When an agent reaches the goal, everyone gets sent back to spawn. If

26

an agent kills an enemy, they are rewarded +0.05, and when an agent gets killed, they get -0,05. When

we look at Figure 2.8, we can see that it takes 90 000 iterations to get 17 in score with handpicked

inputs. Unfortunately, M. Bakhmadov [18] doesn’t explain what consists an iteration of the algorithm nor

how iterations translate to hours (time).

Figure 2.8: Plot of training session from 1 training agent in the race mode [18].

Based on the vast number of training sessions ran throughout the project, we conclude that combin-

ing RL algorithms with AI-tools in UE4 in the form of a plugin yield promising results both in usability as

well as the behaviour the agents exhibit. This work offers a really good example on how to deploy RL

agents in UE4 and was used as a guide during the development of the Deep QL-APF. It was also used

directly to perform a preliminary assessment on the use of the V. Mnih et al. [11] RL algorithm use to

perform the exploratory tests we want to. Results are shown in Chapter 4.

2.6 Discussion

The papers presented during the state of the art are all important sources of information to achieve the

objectives of this thesis. Rare [2, 3] provides information about the type of tests used in a AAA game,

and therefore we understand where we can contribute with automated tests. In addition, it shows that

it is possible to perform automatic tests in Unreal Engine and that these automatic tests can reduce

costs of playtesting sessions, such as the time to create/verify a build and the number of manual testers.

Both works from section 2.1 show that the Unreal Automation System is a very useful tool to create and

perform automated tests for Unreal Engine game, with P.Negrão work [4] ensuring us that it is possible

to create a library and use its code logic to perform automated tests together with the Unreal Automation

System. As presented during section 2.1, the Unreal Automation System allows the creation of a type of

27

test called Functional Test. These tests are created by spawning an Actor that can be scripted to perform

a variety of verifications. This actor is called FunctionalTest Blueprint Actor, and Unreal Automation

System recognizes it automatically when associated with a Map Level test.

Several studies such as [11, 13–15], show that deep RL can be successfully used to create agents

that explore complex game environments to achieve goals. [14, 15] show that it is possible to create

a RL algorithm that uses neural networks to train an agent into maximizing some score and win the

game. Their results comprehensively demonstrate that a pure RL approach is fully feasible, without

human examples or guidance, and given no knowledge of the domain beyond basic rules. The work

that uses Doom as a case study [14], shows that it is possible to use DQN in 3D environments and

that we can train the network to explore the game map. This study also demonstrated the potential

generalizability of their neural networks to unknown maps. OpenAI [15] reveals how their reward model

was implemented and how they defined the possible actions in a 3D game environment. Some of the

game mechanics were controlled by hand-scripted logic rather than the network policy. The information

described in these papers gives us possible directions for putting in practice a DQL method to explore

a 3D game environment and achieve well defined goals. With the studies presented in section 2.2 and

2.3 we can realize that it is possible to model the personality and skill of a player and perform tests with

different agents that use the different player models. C. Holmgård et al. [5] demonstrate that Q-learning

is capable of incorporating the concept of a utility function through the reward model, and A.Soares

work [10] reveals that we are able to create limitations at the level of observations and actions used

in Deep Q-Learning. With this information we know that we can model the observations, actions and

rewards passed to the network and therefore we can perform different types of tests depending on the

information we want to obtain.

To cover the space of solutions, we present papers on Curiosity and Novelty search that allow the

agent to explore novel states in an automated way. Results demonstrate that novelty search over action

sequences is an effective source of selection pressure for innovation that can be integrated into existing

evolutionary algorithms for deep RL, and that curiosity helps an agent to explore its environment in the

quest for new knowledge. As we first need to integrate the framework, train artificial neural networks

for the agent to move in the environment from a starting point to an end point and create tests that use

these networks, we leave these methods open, being possible directions for the future.

Finally, in section 2.5 we presented solutions for implementing machine learning algorithms in Unreal

Projects. The Unreal Engine plugin for TensorFlow is a precious tool that we can use to establish a

communication channel between the Deep Q-Learning system and the Unreal Engine Actor that controls

the agent in game, because TensorFlow provides the library needed to deliver neural networks and the

Q-Learning Algorithm. M. Bakhmadov [18] shows that it is indeed possible to make this connection

using the Unreal Engine plugin for TensorFlow and use outsource neural networks and Q-Learning

28

algorithm14 coded for TensorFlow and based on the implementation of Deep Q-learning with experience

replay made for “Playing Atari with Deep Reinforcement Learnin” [11]. This last work marked a starting

point in the implementation of the work reported in this dissertation, being a role model that we followed

during it. We want the Deep Q-Learning system to control the agent in a Unreal Engine 3D game and

M. Bakhmadov [18] showed us how to do it. However, our system is focused in performing tests on the

traversability and environmental issues of the map, rather than a race mode where agents compete to

reach an objective. The actions of our agent must be similar to the actions players can use in game,

because our objective is to explore the environment and find issues that we are not expecting and

players may randomly find. There is a deep necessity of crafting a reward system, per Unreal Project,

that matches the game and the tests we want to perform in it. There’s enough information to assume

that using a plugin to introduce a Deep Q-Learning testing platform to a Unreal Project is feasible and

contributes to a modular architecture with the advantage that users can use it in different projects.

14Arushir implementation of Deep Q-learning with experience replay: https://github.com/arushir/dqn

29

30

3
Proposed Solution for the Deep

QL-APF

Contents

3.1 Deep QL-APF Model . 33

3.2 Machine Learning Integration with Unreal Engine 4 34

3.3 Unreal Automation System . 36

3.4 Functional Testing Framework . 38

31

32

In the following sections we explain the architecture of this framework and each of the distinct com-

ponents that compose it. The playtesting framework produced in the context of this thesis is a plugin

that can be easily added to every UE4 project. The solution is set around the tensorflow-ue4 [19] plugin

since it offers the connection between the two elements needed to deploy a RL agent in the case study

game environment.

We start this chapter by presenting a model that shows an overview of each component of the Deep

QL-APF and how they communicate to provide a solution in the context of this thesis. The section that

follows provides an overview of how the tensorflow-ue4 [19] plugin architecture is used in the context

of this thesis. Finally, we detail the Unreal Automation System structure for performing Functional Tests

and in the final section it is explained the system integration with the Functional Testing Framework.

3.1 Deep QL-APF Model

In Figure 3.1 we present an overview of the Deep QL-APF playtesting framework main modules and the

information that flows between them. The framework main modules are distinguished by colors.

Figure 3.1: Model showing the Deep QL-APF main constituents and the information that is shared between them.

Following the DQN architecture by V. Mnih et al. [11], the green states represent the procedures a

normal DQN implementation with handpicked observations and actions would take. A training experi-

ence containing the reward and observation for the chosen action is passed to a memory that regulates

the storage of experiences, limiting the set of experiences the agent can save and sample through its ex-

perience replay. Multiple experiences are compiled together in a sample and used to tweak the gradients

of the neural network during the training session. The blue nodes represent the constituents that Unreal

Engine offers to perform actions in the game environment. The agent is composed by the AI Controller

and the Pawn1, which is the 3D character model that moves in the Unreal Engine 3D game environment.

1Pawn is the base class of all actors that can be possessed by players or AI. They are the physical representations of players
and creatures in a level.

33

It executes actions in-game and receives observations from a handpicked values that characterize the

surrounding environment.

At the center of the model, and identified by the orange color, we represent the constituents that

tensorflow-ue4 plugin [19] offers to setup a flow control with the machine learning library, receiving ac-

tions from the neural networks and performing them on the environment. The PythonAPI forwards to

the Engine an action the neural network chose to be executed in the environment. It is also respon-

sible for making the agent experiences flow from the Engine to the DQL algorithm. The TensorFlow

component is added as a special sub-object to the AI Controller to allow information to flow to and from

the RL PythonAPI, allowing neural networks to execute the chosen action at each step in the environ-

ment. As shown during Chapter 1, this solution lets us train the agents and then use them to achieve a

well-defined objective.

3.2 Machine Learning Integration with Unreal Engine 4

The tensorflow-ue4 plugin [19] is at the center of this thesis architecture. As previously presented, it is

an Unreal Engine plugin that enables the creation of this thesis Deep QL-APF playtesting framework for

UE4. As shown in Figure 2.6, it depends on two very important plugins, the UnrealEnginePython2 plugin

and SocketIO Client3 plugin.

UnrealEnginePython enables multi-threading, python script plugin encapsulation and automatic de-

pendency resolution via pip, a package-management system used to install and manage software pack-

ages. Simply specifying tensorflow as a python Module dependency makes the editor auto-resolve the

dependency on first run. The multi-threading support contains a callback system allowing long duration

operations to happen on a background thread (e.g. training) and then receiving callbacks on the game-

thread. This enables TensorFlow to work without noticeably impacting the game thread. SocketIO Client

is used for easy conversion between native engine types (Blueprint or C++ structs and variables) and

python objects via JSON. Every message going back and forward is coded in JSON. Both of these

plugin and an embedded python build are included in every release of tensorflow-ue4 [19] so you don’t

need to manually include anything, just drag and drop the plugin folder into the project.

The DQL components are represented as green in Figure 3.1. Each one of this states corresponds

to one Python object with its own properties and methods. The PythonAPI is responsible for creating the

python object that sets up the architecture for the Deep Q-Learning system. The DQL object is the main

code file in the RL architecture. It contains the Q-Learning algorithm and creates the neural networks

and the prioritized experience replay memory needed for the Deep Q-Learning system. It uses both of

these objects to train the agent based on its experiences. It is also responsible for sending the best

2UnrealEnginePython: https://github.com/getnamo/UnrealEnginePython
3SocketIO Client: https://github.com/getnamo/socketio-client-ue4

34

https://github.com/getnamo/UnrealEnginePython
https://github.com/getnamo/socketio-client-ue4

action to execute in the current state back to the PythonAPI. Each one of these objects have a particular

task that must be performed in the RL system, and will be detailed in the following Chapter 4.

The Blueprint API is set in the form of an Actor Component, a special type of object that can be added

as a sub-object of an Actor. Described in Figure 3.1 as an orange state, the TensorFlow Component

can be used to load the PythonAPI module presented above. Represented as a blue state in Figure

3.1 we present the playtesting AIController, a special type of actor that Unreal Engine offers to control

non-playable characters in-game. Controllers are non-physical actors that can be attached to a pawn to

control its actions, managing its artificial intelligence. In Figure 3.2 we present an AIController using the

Tensorflow Component as a sub-object.

Figure 3.2: TensorFlow Component as a sub-object of an AIController in Actor Blueprint.

This AIController is responsible for using the features offered by the Tensorflow Component and send

at the game start all the information needed by the PythonAPI to start up the DQL system. The Ten-

sorflow Component allows the AIController to receive callbacks on the game-thread in order to execute

the action selected by the algorithm. It also offers the possibility to run functions in the PythonAPI, for

instance, running a iteration of the algorithm or save the neural networks model.

35

3.3 Unreal Automation System

As shown in Figure 3.3, The Unreal Automation System is a test framework that comes with UE4 as a

plugin that developers can enable to perform automated tests.

Figure 3.3: Plugins Browser to enable Automation Tests.

The Automation system eliminates the need for human interference to complete a task and allows the

tests to be automated. This automation system is built on top of the Functional Testing Framework, which

is the overall system in which the tests will be automated. The functional testing framework is designed

to do gameplay level testing, which works by performing one or more automated tests. These tests

that are written in code can be broken down into the following categories depending on their purpose or

function:

– Unit tests: API level verification tests. By definition, unit tests check a specific operation on the

smallest testable part of the code, which generally means testing at the code function level. See

Figure A.1 in Appendix A for examples of these.

– Functional/Feature Tests: These tests generally evaluate larger pieces of software such as

gameplay mechanics or specific actions in game systems, for example, AI behavior or dropping an

inventory item.

– Content Stress: They are more thorough testing of a particular system to avoid crashes, such

as loading all maps or loading and compiling all Blueprints. The focus of this thesis is Functional

Tests, a test that is attached to a Unreal Engine Map.

– Screenshot Comparison: Enables QA testing to quickly compare screenshots to identify potential

rendering issues between versions or builds.

36

The Automation tab is part of the Unreal Session Frontend, as shown in Figure 3.4.

Figure 3.4: Session Frontend with the Automation tab in focus.

It enables developers to run automation tests on any other devices that are connected to their ma-

chine or are on their local network. Running tests in the editor is as simple as going to the automation

tab and selecting the tests to execute. In addition, the tests can be set to run on built executables or

remotely by a build system. A standalone tool can be created to allow running the tests from outside

the editor. This means that developers often don’t need to run the game at all to see if their latest

code iteration had broken anything, as the tests run automatically and give them fast feedback on their

changes. This point is very important because it enables agents to be trained automatically in a recent

build, erasing the need for developers to interact at all with the Unreal Automation System to train or test

with the trained agent. Tests are implemented in the game/engine code for each project and UE4 offers

an object named Gauntlet4 which is an automation tool in Unreal Engine. It is a C# program which can

install and run game builds on devices. Gauntlet will also gather any test artifacts (logs, crash reports,

etc), and package it nicely for the user. This framework allows developers to run tests outside the editor,

erasing the developers need of training the neural networks and running the tests by themselves.

4Gauntlet Automation Framework: https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/

Gauntlet/

37

https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/Gauntlet/
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/Gauntlet/

3.4 Functional Testing Framework

Setting up a test is done by placing a Functional Test Actor in a Level, as shown in Figure 3.5.

Figure 3.5: Functional Test Actor placed in a Map level.

This Actor is scripted to run a set of tests that can be built into the Functional Test itself (as a child

code class or Blueprint), or assembled directly in the Level Blueprint. If a Functional Test requires a

more complex setup, or is intended to run multiple times (either in a single Level, or on multiple Levels),

overriding the Unreal Engine class AFunctionalTest is the recommended method. Figure 3.6 shows the

creation of a Functional Test blueprint that it is offered by this framework to perform automated tests on

the game environment. We also recommend watching this video5 demonstrating an example on how to

create, execute and check the results of a Functional Test.

Extending the base Functional Test class in code or Blueprints grants the ability to use PrepareTest,

RunTest and IsReady functions, considered important for running tests with setup times longer than one

frame and more complex or inter-dependent tests. However, in the context of this thesis we will only use

the functional test to code functions that mostly log the information we want to obtain with the RL agents

during the training and testing performed in the game environment. Functional tests are created as maps

in the Unreal editor. In the context of this thesis, each map test uses specific handcrafted agents in a

fixed scenario and the test reports its results as a pass or fail, based on whether the behavior is the one

expected or not. Constructive and valuable feedback is sent to the message log during the execution

of the functional test, such as time spent on each map module, time to achieve the game objective and

number of times that the agent got stuck or left the map boundaries.

5Functional Tests setup video: https://www.youtube.com/watch?v=HscEt4As0_g

38

https://www.youtube.com/watch?v=HscEt4As0_g

Figure 3.6: Creating Functional test blueprint extending the base Functional Test class

In this chapter we presented the architecture of the Deep QL-APF, which is built in a modular way

separating the functionality of each framework component into independent, interchangeable modules,

such that each contains everything necessary to execute only one aspect of the desired functionality.

The DQL algorithm is detached from the tensorflow-ue4 [19] and any other neural networks and Q-

Learning algorithm can be used, as long as it is implemented using the TensorFlow machine learning

library. This is a strong point of this thesis because changes can be made without heavily impacting

how the framework is structured to perform test with RL agents in UE4. The Unreal Automation System

is a precious tool that we will use to create and perform different tests automatically, while the Gauntlet

Automation Framework allows us to execute the training and perform the tests outside the editor in

recently created builds, erasing the developers need of training the neural networks and running the tests

by themselves. In the next chapter it is detailed the steps that were executed during the implementation

of the Deep QL-APF playtesting framework.

39

40

4
Deep QL-APF Implementation

Contents

4.1 Algorithm Specifications . 43

4.2 Algorithm Preliminary Assessment . 45

4.3 Unreal Engine Actors . 48

4.4 Automated Playtesting Tests . 52

41

42

During the development of this thesis there was a special focus on implementing two different so-

lutions: a method for connecting the three modules presented in the Deep QL-APF model presented

in Figure 3.1, so that we can deploy RL in UE4, as well as a specific implementation for the types of

tests Funcom ZPX wants to execute on the game environment. In order to grant the tests proposed

during Chapter 1, different Unreal Engine Actors must be crafted depending on the type of test the de-

veloper wants to execute and the information that should be obtained during that particular test. The

agent rewards system and observations must be specific on how the agent should behave and it must

be rewarded to achieve a well-defined objective. Besides this, tests must be created to automatically

collect any feedback that may be valuable to the designer during the development of the game.

In this chapter we start by presenting the RL algorithm that was used to train the agents, explaining

how outsource TensorFlow neural networks and Q-Learning algorithm can be adapted to run in this

thesis context. The following subsection presents the Unreal Engine Actors needed to use the RL

algorithm and also control the character in game. Subsequently, we present preliminary results achieved

by training and testing a neural network on a simple environment. Last but not least, the automated tests

that this framework offers are detailed, describing how they are created and how to use them to receive

feedback from the agent behaviour.

4.1 Algorithm Specifications

The Deep QL-APF playtesting framework provides agents that use a RL algorithm to test the game en-

vironment. Being able to create RL agents is part of the general architecture for this thesis solution. The

algorithm implementation is offered by A. Raghuvanshi1 and it was implemented similarly to the model

presented in V. Mnih et al. work [11]. This code implements state-of-the art deep reinforcement learning

algorithms in Python and is integrated with the TensorFlow machine learning library. This solution is

convenient since tensorflow-ue4 [19] Plugin uses this machine learning library in specific.

A. Raghuvanshi uses a simple fully-connected network with 2 hidden layers and an output layer

instead of the Convolutional Neural Network (CNN) described in the paper [11]. A feed-forward neural

network consists of a number of simple neuron-like processing units, organized in layers and every unit

in a layer is connected with all the units in the previous layer. Not all of these connections are equal, as

each connection may have a different strength or weight. The weights on these connections encode the

knowledge of a network. For the sake of simplicity, a feed-forward neural network that takes handpicked

values as input is welcomed since a CNN requires to transform an image representation of a 3D game

environment into something the neural network can take as input. Figure 4.1 presents a structure similar

to the neural network used as models for the agents offered in the context of this thesis.

1A. Raghuvanshi RL alogrithm implementation: https://gist.github.com/arushir/a955f15ab8c5d641f45d8a32bba4f931

43

https://gist.github.com/arushir/a955f15ab8c5d641f45d8a32bba4f931

Figure 4.1: Architecture of the feed-forward neural network used in the Deep Q-Learning system.

The Deep Q-Learning algorithm updates the parameters of the neural network that estimate the value

function, while this function objective is to maximize the sum of rewards over time. It happens through

samples of experiences drawn from the algorithm’s interactions with the environment. This algorithm

utilizes a technique known as experience replay [20] where the agents experiences are stored at each

time-step in a data-set, pooled over many episodes into a replay memory. During the inner loop of

the algorithm, Q-learning updates, or mini-batch updates, are applied to samples of experience drawn

at random from a pool of stored samples. After performing experience replay, the agent selects and

executes an action according to an E-greedy policy. The full algorithm, which is called Deep Q-learning,

is presented in Figure 4.2 below.

44

Figure 4.2: Deep Q-Learning algorithm pseudocode.

During section 4.3 and Chapter 5, we present results and the hyperparameters used in this thesis

DQL algorithm. It is straightforward to follow the algorithm logic, correlate it with how it is implemented

by A. Raghuvanshi and adapt it to work in the context of this thesis. We found out that it wasn’t possible

to estimate a number of episodes needed for the agent to achieve the objective in-game and therefore

we employed continuous training over time, and not over only some episodes.

4.2 Algorithm Preliminary Assessment

It was made a preliminary assessment of the agent behaviour while using the Deep Q-Learning algorithm

presented above to control the Character in UE4. Before scaling it to the case study and use the Deep

Q-Learning system to perform tests on the game environment, the general solution must be validated

to understand its feasibility in the context of this thesis. The agent is trained and the sum of rewards

is logged over the period of time it is running. After training the neural networks, the developer should

be able to import the neural networks model and use it to perform tests, therefore the functionality of

importing the module must work perfectly.

It was used a simple and controlled Unreal Engine game environment to test the agent performance,

as you can see in Figure 4.3 below.

45

Figure 4.3: The Unreal Engine map used to evaluate the agents performance over time. The green square is
the objective location while the blue square is the starting location. The agent is represented as a
red sphere and the red squares on the walls are the points where the line traces intercept the map
constituents.

An overview of the neural networks architecture is presented in Figure 4.1. The input layer is the

agent observation at each step and consists of nine different inputs, one providing the pathfinding dis-

tance from the current position to the objective location and 8 other line traces cast around the character

to get the distance from the agent current position to the other actors that the line traces collide with. The

actions are 4 and correspond to the basic general movement: forward, backwards, left and right. Since

we use a frame skipping technique, the neural network isn’t continuously sending inputs to the agent,

and the UE4 Move to Location2 function was used to move the character in each direction during the

frames that are skipped. When the agent is closer to the initial position, the reward it gets is smaller but

when closer to the objective the reward is more significant. M. Bakhmadov [18] implemented perception

of the game environment is similar to the one we hypothesized in our approach and use in the algorithm

assessment, but the reward system is totally different. We want to perform exploratory tests on the game

environment and in the algorithm assessment we use a reward system and define possible actions more

well suited for exploratory testing. We don’t train the agents for the same tasks that M. Bakhmadov [18]

did, but we take the structure and test it to perform exploratory tests on the game environment.

2Makes AI go towards specified destination location, providing the possibility of using pathfinding and projecting the destination
to navmesh.

46

Figure 4.4: Table presenting the hyperparameters used by similar agents that executed the algorithm preliminary
assessment. One agent is using a target network and the other is not.

While testing the algorithm, we let some hyperparameters stay constant while varying others during

the different runs made on the game environment. Hyperparameters are used to control the learning

process. The hyperparameters that remain unchanged during the different runs are the learning rate, the

gamma and regularization. Learning rate controls the rate or speed at which the model learns, while the

gamma quantifies how important are future rewards. Regularization provides an approach to reduce the

over fitting of a deep learning neural network model on the training data and improve the performance

of the model on new data. The epsilon is a hyperparameter that defines the probability of selecting a

random action at each step. During the run, the value decreases from 1.0 to 0.1 to oblige the agent

to explore as many new states as possible during the training. We conducted an assessment prior to

the results shown in this subsection to find the amount of nodes the neural network must have in each

hidden layer, the optimal mini-batch size and the number of frames that should be skipped. During the

training of these different agents it was found that 64 nodes for each neural network hidden layer wielded

the best results in this game environment, while the mini-batch size with best results was 32. To find

out how many frames the algorithm should skip we compare the results obtained by agents skipping 4,

8 and 16 frames, finding out that agents that skip eight frames between each algorithm iteration are the

ones that yielded the best results. In Figure 4.4 we present the hyperparameters used in the results of

the two different agents presented as algorithm assessment for this thesis.

The results presented in Figure 4.5 display the rewards sum over time for the agents that got the

best results during all of the preliminary assessments previously executed. The results demonstrate that

during the agents training they were able to reach the objective location regularly. They also manage

to reach the goal regularly when the trained neural network model is imported. We also use a simple

frame-skipping technique where the agent obtains observations from the game environment and selects

actions on every 8 frames. Without frameskip, the agent is incapable of learning how to achieve the

47

objective efficiently. The agents that used frameskip of 4 and 16 don’t demonstrate a stable learning,

presenting inumerous fluctuations in the rewards sum value over time. Frameskip value of 8 frames

present smaller fluctuations if compared with other frameskip assessment results. According to the

state of art, a target network is used to make the learning more stable, however, by comparing both

agents results we can’t observe a big improvement regarding learning stability.

Figure 4.5: Graph showing the evolution of the rewards sum over time for 2 similar agents.

As a final remark, we can conclude that the algorithm is capable of training agents to achieve a well-

defined objective in an UE4 game environment, therefore it delivers what we need in our solution and

can be used in the context of this thesis. The algorithm needs 6 hours of training in this simple game

environment to reach a state where the agents achieve the best results and maintain them maximized.

It is expected that training RL agents in the case study will take longer.

4.3 Unreal Engine Actors

In the context of this thesis we want to automatically obtain information about what may happen when

the player is walking through an Unreal Engine game environment. For that, we need to craft a specific

AI Controller that controls the Character in-game and instructs it how to behave using RL. The agent

behaviour must be crafted in a way that offers meaningful information during the development of the

game.

During this thesis a base AIController was implemented which will be called from now on Deep

QL-APF Playtesting AIController and integrates the TensorFlow Component as a sub-object. The

48

tensorflow-ue4 [19] offers to the base AIController features to initialize everything needed to start running

the Deep Q-Learning algorithm. These features are passed down to the derived AIControllers that need

to be implemented per each type of test performed in the environment. All the logic implemented for the

AIControllers was done using the Blueprint visual scripting system.

The first mission of the Deep QL-APF Playtesting AIController is to use the TensorFlow Component

to call an initialize function in the PythonAPI, in order to setup the Deep Q-Learning algorithm using the

TensorFlow library. It sends at the game start a tuple containing ordered variables needed to create

the main loop of the algorithm presented in Figure 4.2. It is also responsible for triggering two different

looping events in the Deep QL-APF Playtesting AIController to control the algorithm loop. There’s an

event for saving the neural network model each minute of the Engine runtime through a TensorFlow

library method, and another that retrieves the experience from the derived AIController that is controlling

the agent every 8 frames. This experience is sent to the function that runs the RL algorithm epoch,

returning an action to the derived AIController that’s attached to the Character in-game. The actions,

rewards and observations must be crafted depending on the type of test the developer wants the agent

to perform in the game environment. In the context of this thesis, the tests that should be performed

are exploratory tests using the general character movement to navigate thought the game environment,

meaning that the actions are specific to this type of test. The climbing mechanic should be checked using

functional tests or by creating another neural network and AI Controller for climbing, which is presented

in Chapter 6 as Future Work.

The observations and rewards system must be set depending on the objective the agent should

achieve and how the developer wants it to behave during the algorithm runs. This implementation must

be created in the classes that derive from the Base Deep QL-APF Playtesting AIController. We offer two

different AIControllers that can be used to train and test the case study game environment, which are

named Pathway Exploration AI Controller and Wall Exploration AI Controller, as shown in Figure

4.6.

Figure 4.6: Editor view of the three AIControllers objects produced during the thesis.

49

As it was previously explained, each derived AIController receives and executes the action in the

game environment. Both of the derived AIControllers use the same actions for the different tests they

perform, however, the reward system and the observations differentiate themselves. For the Pathway

Exploration AI Controller, the observations consist on the distance from the character to the objective us-

ing the pathfinding distance. It is calculated using the navigation mesh and the A* pathfinding algorithm

offered by UE4. It also uses 32 line traces that calculate the distance to the other map constituents it

collides with. The reward system is crafted in a way that rewards the agent depending on if the action ex-

ecuted got the UE4 character closer to the objective or not. This means that we must verify the previous

distance to the objective and check if it is higher than the current distance. The Wall Exploration AI Con-

troller introduces one new input to the neural network that informs the agent if there are any line traces

colliding with other map constituents, meaning that the agent is closer to an environmental wall. The

line traces are shorter than the Pathway Exploration AIController and the reward system was modified to

push the agent to move closer to the environmental walls. The reward given at each timestep depends

on the same reward system created for the Pathway Exploration agent, but comprehended between -0.7

and 0.7, depending on if the agent is moving towards the objective or not. It also incorporates another

reward signal calculated from the line trace that found the shorter distance to the actor it collides with in

the game environment. This reward value varies from -0.1 to 0.4. The negative reward is offered when

there are not any line traces hitting an environmental wall. We hypothesize that this way the agent will

tend to move closer to the boundaries of the map since the rewards are higher there. By using this test,

the developer can verify what may happen to the player when trying to achieve the objective the best

way possible as well as achieving the objective while walking near the map walls. These are two differ-

ent behaviours that players may perform while playing the game, and therefore, there may be valuable

feedback to be obtained from these two agents procedures.

While training the agents in the case study game environment we spotted different types of problems.

The main problem was the agent getting stuck using only the directional movement, which was solved by

simulating the jump action to release the character, a behaviour that players tend to execute while trying

to free themselves from this type of situations. It worked effectively for most of the cases, but sometimes

the agent stayed stuck. On those cases, the location where the agent got stuck was saved in a log file

and the training was restarted. All of these places ended up being confirmed as problematic locations

for the player. The agent was also capable of discovering a place where it could leave the playable area,

which is a problem in the game environment and precious feedback to the developer. Therefore when

the character leaves the playable area and falls out of the game world, these locations are also saved

on the testing log.

By taking a look at the game environment, we can spot three different map modules that are sep-

arated by the climbing mechanic. This is very common in exploration and adventure games, where

50

players finds obstacles that need to be solved using a specific game mechanic. This means that we

need neural networks trained for executing those mechanics in order to get past the obstacles. In the

context of this thesis, we are focusing on exploring the game environment with the directional movement,

using a single neural network for that purpose, which means that different sub objectives must be placed

in the environment for each map module where the agent can move before encountering the climbing

obstacle.

When the agent is exploring the environment, it may fall directly into other map modules, meaning that

it can’t achieve the objective that was set to be attained in the last map module. Figure 4.7 demonstrate

an example of this occurrence, where the player can jump off the bridge directly into the initial area.

Figure 4.7: Visual Representation of player going from one map module to another. The red arrow represents the
player movement.

While taking this into consideration, we crafted a way to detect when that happens to reset the

current objective and set the next respawn point. It was created a Modular system for testing the agent,

separating each map module. The developer is obliged to place them in the environment and explicitly

tell the module order for the path that the agent must execute. The modular system consists of an Unreal

Engine Actor that contains as a sub-object a Trigger Collider3. When the agent starts colliding with this

trigger, the objective and respawn point of the agent is updated through the Actor. In Figure 4.8 we

present the proprieties that must be set in the Map Module Actor.

3Triggers are Actors that are used to cause an event to occur when they are interacted with by some other object in the level

51

Figure 4.8: Editor view of the Map Module Actor proprieties.

The developer must identify the objective and respawn point of that map module, as well as the

order in which the agent should travel to achieve the main objective of the case study, which is to

reach the fortress gate. The starting module and terminal module must also be identified. All of these

systems were really important in order to execute the tests presented in the next subsection. This means

that developers can reuse the Deep QL Automated Playtesting Framework to create RL agents, more

precisely the Deep QL-APF Playtesting AIController, but they still must implement different solutions for

problems that may appear from using the framework to perform specific types of tests in different game

environments.

4.4 Automated Playtesting Tests

The focus of this framework is to find different ways of exploring the game environment, making the

designed and implemented Actors and Functional tests specific for solving this issue. To create the logic

of what happens in these Functional Tests, we made use of the Unreal Blueprint system. During the

exploration of the environment, it is possible to craft methods for gathering precious feedback and report

it through a Functional Test. The agent must be trained in the game environment first, so that it can then

be used to test the environment. In the course of the implementation of this thesis, it was obvious that

the agent could find issues during training, and therefore the agent training also became a possible way

to obtain feedback. The training of the agent must be ran jointly with the Functional Tests that are placed

in the map, and therefore a derived AI controller must be associated with one specific Functional Test.

When the Functional Test is used for training the agent, the Test always passes without a time limit, and

prints out the feedback the test is expected to deliver in the message log. This way, while the agent is

learning to explore the environment and reach an objective it is also looking for problems in the game

environment. The idea is that the training can occur off working hours, i.e night time or weekends, and

the trained agents are always available for testing the environment during work days. If the test doesn’t

pass within the time limit, it means that the agent is incapable of achieving the game objective. Figure

4.9 presents the Session Front End Automation Tab containing the tests that were created in the context

of this thesis.

52

Figure 4.9: Session Frontend Automation Tab containing the tests implemented using the Deep QL Automated
Playtesting Framework.

We want to deploy functional tests that can be run in the builds that are created after the developers

submit something new to the file management system. The Gauntlet Automation System takes the build

and runs the specified tests automatically. It can be used to verify certain features, for instance, if the

path is traversable and the player doesn’t get stuck in any environment constituents (for instance, rocks

and vegetation). This way, agents can be trained automatically without humans preparing and running

the test. The file system is capable of training the agents from time to time. If there are any problems,

test engineers can take a look at it and solve the problems in order to get it back working automatically

again.

Agents don’t have time constraints and therefore we can speed up the world timer in order to tick

faster. The time dilation for both agents is set to 5, which means that the world is ticking 5 times faster

than usual. We found that this value speeds up the training while giving us enough control over the

amount of frames we wish to skip using the frame skipping technique. Another concern was that raising

this value ends up reducing the machine performance.

4.4.1 Pathway Exploration Test

The purpose of this test is to find the best route to the objective location. It is one simple test that

guarantees that there is an available path for the player to advance in a linear game level.

The Pathway Exploration AIController contains the implementation for executing the training and the

actual test with the trained agent. At each timestep, it is responsible for: checking if the agent is stuck

or fell from the world boundaries, executing the pretended action using a movement function, gathering

observations from the environment, calculating a reward based on those observations and also send

back to the functional test log the feedback the developer wants to obtain with this test.

The Unreal Engine Pathfinding System offers a method to find the distance from the current position

to the objective position using the nav mesh. The remaining observations are provided by the line traces

53

cast around the agent, in order to create a perception of its surroundings. When the line traces hit an

Actor, they return the distance to that actor. The agent is controlled with the UE4 Move to Location

function that move the agent up, left and right in straight line, during the specified algorithm frame-

skip. The reward system compares the previous distance to the objective with the current one, giving

a positive reward if the agent gets closer to the objective, and a negative reward if it goes further away.

The reward value is set depending on the distance it moved during the last iteration. There’s a divisible

value that controls the amount of reward that is calculated at each step. The agent always receives -0.1

reward to prevent it from getting stuck and avoid those places again. The reward value is normalized

between -1 and 1.

By running this agent within a functional test, we can check if the player has an available path to

progress trough the environment and reach a certain position on the map. The functional test is used to

start the tests automatically from the file system and record messages in the test log for the developer to

read the information afterwards. If any, this feedback is composed by the location where the agent got

stuck, the location where the agent left the world bounds and the time that it took to reach the objective.

4.4.2 Wall Exploration Test

The intention of this test is to find an available path to the objective while moving close to the environment

walls. This test was made to demonstrate, in the context of this thesis, that it is indeed possible to create

various tests with agents that behave differently while executing them. The agents behaviours must be

set by crafting different reward systems and handpick observations, while maintaining the same actions.

We also hypothesized that this test will be able to find more problems related with getting stuck, leaving

the map boundaries and actor mesh problems. The Wall Exploration test has the same objective as the

test presented in the section above, which is to move to a specific location in the game environment. The

main difference is how the observations and reward system work together to create a different behaviour

for the agent. The line traces cast around the character are shorter and the reward system delivers pos-

itive rewards when the line traces touch a wall in-game. Since the rewards will be higher when this

happens, and there is a input informing the agent when the line traces hit something, it is expected that

the agent will try to maximize the actions by walking close to the walls. The reward system was inspired

by the work of C. Holmgård et al. [5], where it is presented the Runner agent which receives a positive

reward when reaching the objective location, and a negative reward when not moving. In comparison,

for instance, the Treasure Collector agent receives the same rewards as the Runner agent, with the ad-

dition of receiving a positive reward when it collects treasures. Inspired by these agents, we created the

Wall Exploration agent that wants to move to the objective while walking close to environmental walls,

being a derived agent from the Pathway Exploration agent because it is tasked to achieve the same

game objective but in a different way, just like the agents presented in Holmgård et al. [5] work. The

54

distance from the agent current position to the objective position is given by getting the linear distance

between them, instead of using the pathfinding distance. We do this because we don’t want to find the

best available path with this agent, and it is interesting to understand how the agent behaves with this

slightly different observation value.

In this chapter we presented results confirming that the RL algorithm is a promising solution for teach-

ing agents to achieve a specific objective in an UE4 game environment. Subsequently we presented the

Unreal Engine Actors we had to introduce to the project in order to perform the tests detailed in this last

section, stating that every test that uses RL agents need a specific implementation regarding the Engine

objects needed to perform them. Developers who use this framework on their Unreal Engine project do

not need to change the Deep QL-APF AIController, which is used to create a connection between the

machine learning library and the UE4, but are compelled to create a Functional Test to automatically run

the test and receive useful information in the test log, as well as creating a derived AIController in order

to obtain observations, calculate rewards and execute the actions relevant to the test that the developer

wants to execute. This thesis offers 2 implemented agents that can be used to perform exploratory

tests in any other UE4 project with minimal changes. They can also be used as a guideline for the

implementation of similar tests with RL agents in other UE4 projects. In the next chapter we present the

experimental procedures executed for both testing agents, detailing the results obtained and performing

a deep analysis on what those results mean. We will assess if the DQL solution can be used to perform

the type of tests we want to deploy in the case study game environment.

55

56

5
Results and Analysis

Contents

5.1 Experimental Procedures . 59

5.2 Automated Playtesting Framework Test Results and Analysis 62

57

58

In the previous chapter we demonstrated that the algorithm preliminary assessment was promising

because the agent learned how to go through a simple maze and reach the objective consecutively in

a controlled environment. We want to validate the DQL solution with the case study that was provided,

and therefore we are going to present results on the agents learning behaviour during this chapter.

Besides evaluating the learning capacity of DQL agents, we also want to assess if they can be used

to perform exploratory tests. By handcrafting different types of agents to execute different tests on the

game environment, we hypothesize that this framework can be used to provide meaningful information

about different procedures that players might take to explore the environment and reach a well-defined

objective. This chapter provides results on the two different agents presented in the previous chapter.

It will be discussed if the agents behaviour is different from each other and if the feedback they provide

while exploring is useful to validate the case study game environment. Besides looking for different

paths to reach the objective, it is interesting that agents find problems in the game environment, such

as places where the player might get stuck or leave the map boundaries. The case study already

presents places where the character can get stuck, but, as an experimental procedure, the case study

will also be modified to contain another 2 places where the agent can leave the environment and three

specific locations where the character can get stuck and can’t leave the place. The results regarding the

problems found by the agents will be compared with real players that playtested the game environment

manually to find an available path to the game objective while reporting any problem they find. If the

playtesting framework agents find the same amount of problems as real players, then we can confirm

that the Deep QL-APF has potential to be used to automated tests and reduce valuable resources such

as people availability and time. During Chapter 3 we already concluded that developers and designers

don’t need to spend time executing the functional tests offered in the context of this thesis because they

can run automatically to train the agent in a submitted build while logging any problem they find.

5.1 Experimental Procedures

The experimental procedures will be conducted in the case study offered by Funcom ZPX to test the

Deep QL-APF playtesting framework. As summarily detailed above, three different procedures were

done in the context of this thesis. We want to use the Pathway Exploratory Functional Test and Wall

Exploration Functional Test to assess if the agents learn how to maximize the sum of rewards in the long

run and achieve a certain position on the map (objective) consecutively. This procedure will let us know

if the DQL algorithm is working as expected and can be used in the context of this thesis to control a

character in-game, train the agent to achieve an objective and perform a specific test using that same

agent.

The second experimental procedure will be performed by comparing the behaviours of the agent

59

trained during the Pathway Exploratory test with the agent trained during the Wall Exploration test.

We argue that by changing the agent perception and reward system, we can craft agents that present

different ways of exploring the environment. The assessment will be done by visually comparing both

agents after they are trained and their neural network model is imported. The agent will leave a line

trace while moving in the game environment so that its possible to compare the paths they perform to

reach the gate fortress (game objective).

Last but not least, the final procedure is focused on understanding if the Deep QL-APF playtesting

framework is capable of reducing human and time resources needed to perform this type of exploratory

tests manually. When the agent is training and testing, their main task is to find an available path to

the objective location while looking for problems such as getting stuck and leaving the playable area.

We want to compare the problems that the agents find in the case study with the problems that human

players performing an exploratory playtesting in the same game environment find. We draw conclusions

by analysing the playtesting questionnaire1 given after the playtesting session and comparing the results

relative to the problems players found in the game environment. During the following subsections the

testing scenarios are explained in detail.

5.1.1 Experimental Scenario 1: RL Agents learning how to reach a location in

the game environment

The environment where the experiments where performed is the case study detailed in Chapter 1. The

player character is possessed by one of the derived AI Controllers created for the available tests and

the reinforcement learning agent is placed in the game environment. We start the game by running the

functional tests in the session front end and leave the agents training during 10 hours. In figure 5.1 it is

presented the hyperparameters for both agents.

Figure 5.1: Hyperparameters used for the agents that perform the Pathway and Wall Exploration tests.

With this experimental scenario we want to understand if the crafted agents are both capable of

being trained by the proposed DQL algorithm to find one available path to specific locations in the game

1Questionnaire that was handed to human players after the manual playtesting: https://forms.gle/P4QLkci5ogTBDKZFA

60

https://forms.gle/P4QLkci5ogTBDKZFA

environment. The rewards sum should reach an high value and maintain it when the agent is constantly

reaching the objective. We will analyze the reward sum line chart and draw conclusions for both agents

learning performance.

5.1.2 Experimental Scenario 2: Agents with different handcrafted behaviours

This experience consists in using the two agents trained during the previous experiment and comparing

the path they took to reach the objective position in the game environment. The Pathway Exploratory

testing agent is trying to find the best path to the objective, while the Wall Exploration testing agent has its

rewards system modified to maximize the rewards when the agent is near an environmental constituent

while moving towards the objective. The two agents behaviours are compared by a visual representation

of the path done by both agents to the objective location. Both agents neural network model is imported

after the training session and the agents are set to run until they reach the final objective (fortress gate

location). With this experiment we can understand if it is possible to create different behaviours for

reinforcement learning agents that want to achieve the same game objective. We will also assess the

number of times each agent gets stuck or leaves the playable area, in order to compare both agents

ability to find problems in the game environment.

5.1.3 Experimental Scenario 3: Comparing manual and automated playtesting

for exploratory tests

During this experience we are going to compare the RL agents ability to find problems in the game

environment with the problems that human testers performing manual playtesting find. The human

testers are asked to play the game for 30 minutes and their objective is to check if there’s an available

path to the fortress gate (objective) while looking for problems in the game environment constituents.

The manual testers are asked to go from the beginning of the level until the end, repeatedly, during

30 minutes and point out the problems they find. They are asked to find problems in the environment

constituents that may ruin the players experience while exploring the environment. We don’t explicitly tell

the problems they are expected to find, such as getting stuck or leaving the playable area. The actions

available are the same as the ones the agents use, which are the directional movement and the jump

action. The case study was modified to introduce the 5 problematic locations displayed in Appendix B.

We want to check if the manual testers or the agents are capable of finding these problems. The results

obtained by the manual testers are then compared with the agents results so that we can conclude if the

agents are suitable for performing exploratory testing. If we can observe similar behaviours between the

agents and the human testers, and if the number of problems found is similar, then we can confirm that

this framework can replace the human testers and therefore reduce the resources needed to perform

61

this types of exploratory tests. The human playtesting will be observed so that it is possible to compare

the human behaviour with the agents behaviour. We will deliver the questionnaire after playtesting in

order to assess the problems players found and how they felt while performing this type of exploratory

test.

5.2 Automated Playtesting Framework Test Results and Analysis

The agents were trained in a single run that took around 10 hours. The system specifications are the

same for all the agents that were trained in the context of this thesis. The CPU is a AMD Ryzen 7 3800X

8-Core Processor with base clock of 3.89 GHz and the GPU is a NVIDIA GeForce RTX 2060. The

installed RAM has a memory size of 64GB.

During the first experiment we found out that the Pathway Exploratory agent is indeed capable of

learning how to reach a specific location in the game environment consistently with the parametrization

scenarios presented in Chapter 4, but the Wall Exploration agent struggles with learning how to achieve

the objective repeatedly while walking close to the environment walls. It takes way longer for this last

agent to achieve the objective and its movement is irregular, moving randomly while close to the envi-

ronment walls until it achieves the objective. In Figure 5.2 and 5.3 we present the charts that display the

variation of the rewards sum during the training of each agent.

Figure 5.2: Chart that represents the variation of the reward sum during the training of Pathway Exploratory testing
agent.

62

Figure 5.3: Chart that represents the variation of the reward sum during the training of Wall Exploration testing
agent.

From observing the results we can easily see that the Pathway Exploratory agent rewards sum is

growing steadily during the 10 hours of training and it seems to start stabilizing after that period of time,

maintaining the same reward sum for some time. This means that the agent is learning what actions

maximize the reward value at each time step and therefore we can conclude that it is learning how to

achieve a specific objective in the game environment by trial and error, using the algorithm presented

in Chapter 4. Although the Wall Exploration agent is capable of learning the behaviour we want it to

execute, which is to walk close to the environment walls and eventually reach the objective, the learning

chart represents an irregular reward sum line that grows slightly over time. We also found that this agent

took over 10 hours to stabilize the rewards sum, meaning that its training is not efficient. For us, it is

obvious that the Wall Exploration agent is capable of reaching the objective, but not in an efficient way,

meaning that this agent doesn’t find the objective location repeatedly in each map module while moving

close to the environment walls. Taking into account the results, we state that the Pathway Exploratory

agent utility function is well crafted and that the agent is capable of learning the exact behaviour we want

it to perform. Comparing the two agents reward sum growth, we can confirm that the Wall Exploration

agent doesn’t show the positive results the Pathway Exploration agent does, since its chart doesn’t grow

over time to a point where it stays relatively constant. This means that the RL policy is not getting well

defined by the agent and therefore we conclude that it is not easy to craft a very specific behaviour for

the agent to execute that complements two different objectives, walking close to the environment walls

63

and reach the objective. After importing the trained agents neural networks models and execute both

agents in the environment, we found out that the Pathway Exploratory agent takes around 7 seconds to

reach the objective, while the Wall Exploration agent time to reach to objective is very irregular, taking

between 1 minute to an undetermined amount of time to reach the fortress gate.

During the experiment described in experimental scenario 2 we were focused on understanding if

it’s possible to handcraft agents that execute different behaviours while performing tests in the game

environment. We focused on tests that explore the game environment and find an available path to each

map module objective location while checking for problematic areas in the case study. In Figure 5.4 and

5.5 it is visually described the path that the Pathway Exploratory agent and the Wall Exploration agent

perform in the first map module while executing the functional test with the previously trained RL agents.

In Appendix C it is presented the path performed by both agents in all of the map modules.

Figure 5.4: The black line trace in the figure shows the path performed by the Pathway Exploratory agent to achieve
the first map module objective.

Figure 5.5: The black line trace in the figure shows the path performed by the Wall Exploration agent to achieve the
first map module objective.

64

From observing both pictures, we can see that both agents path is totally different. The Wall Explo-

ration agent behaviour is erratic and struggles to find an available path from the starting location to the

fortress gate, while the Pathway Exploratory agent moves directly to the objective in the best possible

way. However, the Wall Exploration agent still tries to move closer to the Actors that the line traces hit,

while the Pathway Exploratory agent doesn’t. This results prove that it is possible to handcraft agents

that produce different behaviours, but we consider to be difficult to craft two agents that achieve the

same objective efficiently while behaving differently. The reward system we prepared might not be the

best for this type of agent, since it seemed confused about what actions to execute, not understanding

how to maximize the rewards sum over time consistently. During this experiment we were also inter-

ested in assessing which agent found most of the problems introduced in the environment, while training

to achieve the game objective. Normally, agents don’t find these problematic locations after they are

trained to achieve the objective, since they are not trained to find issues in the environment. The Wall

Exploration agent is the only one that can find problems after being trained, however, it always finds the

same problems as it did during training. The agents found most of the introduced problematic areas

because they are exploring the environment during a considerable amount of time while training. During

training, both agents find the problematic locations shown in Appendix B in Figure B.1, B.3, B.5, while

the Wall Exploration Agent also found the second place where the player can leave the game environ-

ment boundaries, represented in Figure B.2 and the Pathway agent finds the problematic area presented

in Figure B.4. After this experiment, we can conclude that we are capable of creating two agents that

behave differently from each other and both are capable of finding almost all of the problems introduced

in the game environment. However, only the Pathway Exploratory agent can efficiently find a path to the

objective after being trained and their neural network model loaded to perform the test. We conclude that

both agents are suitable for performing exploratory tests to find the type of problems introduced in the

game environment while training, while the Pathway Exploratory agent can be used to find an available

path for the objective.

Figure 5.6: Table demonstrating the number and type of tests found by each player that performed the playtesting
session.

During the 3rd experimental procedure we want to compare the problems found by performing tests

with RL agents, with the issues that humans found in the game environment during manual playtesting.

Since we already collected information about the number and type of problems found by each agent,

65

we had to perform a playtesting session with human players to collect results for comparison. I inquired

multiple people, at random, to perform this manual playtesting session and 5 people that regularly play

videogames were submitted to a 30 minutes playtesting session that we attended and observed closely,

asking the players to explore the game environment and report any problems found on it. They are

asked to progress on the level until they reach the objective location. Results show that every player is

capable of reaching the fortress gate and the problems each one found is presented in Figure 5.6.

The questionnaire results show that players found most of the problems introduced in the game

environment but can’t find all of them by themselves. The 5 playtesting sessions ended up being enough

to find all of the problems in the game environment, finding the same problems that agents did. Although

human testers have shown good results regarding finding these problems, they felt really frustrated in

performing this type of test. Most of them, after 10 minutes of gameplay felt that there wasn’t anything

more to do in the game environment and wanted to stop the playtesting session. Only one human tester

(Player 5) performed the playtesting during the 30 minutes and, not surprisingly, was the one that found

most problems. When asked how they felt while performing the playtesting, their answer was mostly

that they were pretty bored due to the fact that there aren’t any game features besides the climbing

mechanic. Their opinion is that finding problems in the environment is not something they are willing to

do because it doesn’t imply exploiting a game feature to find bugs, a task they say that would be more

fun for them. While observing the playtesting, we found that players moved closer to the environment

walls in order to find the environmental problems. That was a great discovery, since we tried to create

a agent with similar behaviour. Last but not least, we found that people are not effective nor efficient

to perform this type of test because it is a repetitive procedure without any meaningful reward. They

show that their attention span while performing the playtesting is short, and most of them decided to

stop playtesting.

In Chapter 6 we present the conclusions that arise from the analysis on the results shown in this

chapter. Taking into account the results and the research done, future work is presented as possible

upgrades to the Deep QL-APF test framework.

66

6
Conclusion

Contents

6.1 Conclusions . 69

6.2 Future Work . 70

67

68

In this chapter there is a summary of the work produced during this thesis and the conclusions

obtained from the results that were achieved. To finish off, we present some possibilities on how to

improve the proposed playtesting framework.

6.1 Conclusions

This thesis work began with the intent of understanding if it was possible to offer an automated playtest-

ing framework capable of automating certain types of tests that could reduce resources, such as the

time and human resources needed to assess the quality of the game environment during the develop-

ment of games made in UE4. Our intention is to use automation tests to verify if the player can navigate

through each map module and achieve a certain location in the game environment (game objective). Be-

sides the importance of verifying traversability, it is also worth to understand what problems the player

may encounter while exploring the game environment to achieve the game objective. We want to de-

ploy agents in an UE4 game environment and make them capable of navigating between two points to

achieve certain objective on the map. Besides this, we aim to develop methods capable of detecting

different paths to the game objective. During the research we did, we found different works that intend

to reduce this type of resources, providing different solutions on how to do it. We hypothesized the use

of RL agents to perform tests that can offer relevant information to developers and designers about the

game environment quality, assessing if they could be used as a solution for performing exploratory tests

that find a way of achieving the game objective while presenting different ways of doing it. We found that

the Unreal Automation System and the Gauntlet Automation Framework could be used to automatically

execute this type of tests in the UE4 without the need of developers doing it.

In order to test the solution, we created two different agents that execute different behaviours when

trying to find a path between the initial location and the game objective (fortress gate). The Pathway

Exploration agent is tasked to find one of the most efficient paths to the game environment, while the

Wall Exploration agent is tasked to find an available path through each game environment while moving

close to the environmental walls.

During the presentation of results, we show that Pathway Exploratory agent is able to learn how to

find one of the most efficient paths to reach the game objective. We also provide results showing that

both agents can find problems in the environment while they are training. Although the Wall Exploration

agent is capable of performing a different behaviour apart from the Pathway Exploration agent, we

found that it isn’t capable of achieving the game environment consistently. However, it is clear that it

can still explore the environment while trying to achieve the game objective, and results show that they

find a similar amount of problems in the game environment constituents. Comparing the results of the

problems found by manual testers with the problems found by agents, we can conclude that RL agents

69

can be used to replace humans performing this type of tests. Also, by assessing the questionnaire done

in the context of this thesis, we conclude that human players are not interested in performing this type of

test on the game environment, explicitly saying that automated tests should be used in these cases.

In light of what has been said above, we have achieved the contributions proposed during this thesis

proposal. We can also state that the platform needs an update before being used in a game environment,

including the improvements suggested in the future work. However, taking into account the results, we

can say that reinforcement learning has the potential of being used to test game environments. Given the

state of the art, RL proves to be versatile enough to perform different types of testing, such as a test that

checks how many resources a player can obtain in a specific game environment. Our test automation

platform demonstrates this potential, but, it was difficult to create different behaviors to achieve a specific

goal. In the next section we offer possible improvements to the playtesting framework.

6.2 Future Work

We believe that there are still some aspects that need to be addressed, and for that reason we intend to

explore them on future work.

One of the topics to address is the generalization of neural networks to similar game environments.

Agents can be trained without overfitting to the game environment in which they were trained, and this

makes them available for solving multiple RL problems as 1 test for several similar game environments.

Curiosity/Novelty Search was not used in the context of this thesis because the idea of this thesis is to

lay down the foundations for using RL to perform functional tests in UE4 games. However, it is something

interesting to deepen and explore in the future. It opens the opportunity for generating different behavior

policies automatically while removing the necessity of handcrafting agents, a task that was proven to be

difficult for complex tasks.

As a way of adding value to the framework capacity of creating different types of RL tests, there

should be an assessment on how new mechanics could also be trained and added to the agent be-

haviour. The climbing mechanic is crucial for progressing through the environment, and should be

developed further in time since it would make the test automation platform more complete. Using agents

trained to perform the different mechanics needed for the case study requires the identification of zones

where the agent must perform each mechanic. We recognize it would be advantageous for the devel-

oper to have access to a neural network model generally trained for climbing that could find not only

different ways to climb but also problems regarding climbing. It was not implemented in the context of

this thesis, since we decided to focus on the directional movement (WASD) of the character to explore

the game environment. Another challenge I had during this thesis was to transform the discrete actions

chosen by the neural networks into exactly the same input the player has access to, that is, continuous

70

input on the analog sticks to move the character around the game environment.

At the moment, the framework saves the locations where there is an environmental problem, but,

for future work, the path the agent took to reach the problematic location should be saved and a visual

representation of that path should be drawn in the game environment automatically. This way, the

developer can easily identify the problem and how to reproduce it.

In conclusion, we believe it is possible to improve the framework in conjunction with a tests automa-

tion team in order to deploy a deep reinforcement learning playtesting framework for the production of a

game such as the one Funcom ZPX is currently producing.

71

72

Bibliography

[1] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,B. Kozakowski, R. Meurling,

and L. Cao, “Human-like playtesting with deep learning” in 2018 IEEE Conference on Computational

Intelligence and Games (CIG). IEEE, pp. 1–8.

[2] R. Masella. “Automated Testing of Gameplay Features in Sea of Thieves” In: (2019).

url: https://www.gdcvault.com/play/1026366/Automated-Testing-of-Gameplay-Features (visited on

06/11/2020).

[3] J. Baker, “Automated Testing at Scale in Sea of Thieves”, Unreal Fest Europe 2019, Unreal Engine.

url: https://www.youtube.com/watch?v=KmaGxprTUfI (visited on 06/11/2020).

[4] P.Negrão, “Automated Playtesting In Videogames”, Master thesis in Computer Science and Engi-

neering, FCT NOVA University of Lisbon, 2020.

[5] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Generative Agents for Player Decision

Modeling in Games”, Proceedings of the 9th International Conference on Foundations of Digital

Games, 2014, pp. 1-8.

[6] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “MiniDungeons 2: An Experimental Game

for Capturing and Modeling Player Decisions” in Proceedings of the Foundations of Digital Games

Conference, 2015, pp. 1–3.

[7] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Evolving personas for player decision

modeling” in 2014 IEEE Conference on Computational Intelligence and Games. IEEE, pp. 1–8.

[8] C. Holmgard, M. C. Green, A. Liapis, and J. Togelius, “Automated playtesting with procedural per-

sonas through MCTS with evolved heuristics”, in 2018 IEEE Transactions on Games (ToG), IEEE,

pp. 1–10.

[9] L. Mugrai, F. Silva, C. Holmgåard, and J. Togelius, “Automated playtesting of matching tile games” in

2019 IEEE Conference on Games (CoG). IEEE, pp. 1–7.

73

[10] A. Soares, “Modelling Human Player Sensorial and Actuation Limitations in Artificial Players”, Mas-

ter thesis in Information Systems and Computer Engineering, Instituto Superior Técnico (IST), 2019.

[11] Mnih, V., Kavukcuoglu, K., Silver, D. et al. “Human-level control through deep reinforcement learn-

ing”, Nature 518, 529–533 (2015). https://doi.org/10.1038/nature14236

[12] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of go with deep neural

networks and tree search” nature, vol. 529, no. 7587, 2016, pp. 484–489.

[13] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,A. Guez, T. Hubert, L. Baker, M.

Lai, A. Bolton et al., “Mastering the game of go without human knowledge” nature, vol. 550, no. 7676,

2017, pp. 354–359.

[14] G. Lample, D. Chaplot, “Playing FPS Games with Deep Reinforcement Learning” in Proceedings of

the Thirty-First AAAI Conference on Artificial Intelligence, 2018, pp. 1-7.

[15] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fischer,

S. Hashme, C. Hesse et al., “Dota 2 with large scale deep reinforcement learning”arXiv preprint

arXiv:1912.06680, 2019, pp. 1-66.

[16] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by self-supervised

prediction” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, 2017, pp. 1–12.

[17] E. C. Jackson and M. Daley, “Novelty search for deep reinforcement learning policy network weights

by action sequence edit metric distance” in Proceedings of the Genetic and Evolutionary Computa-

tion Conference Companion, 2019, pp. 1-10.

[18] M. Bakhmadov, “IAP”, Bachelors thesis in Machine Learning, Norwegian University of Science and

Technology (NTNU) , 2020, url: https://github.com/magomedb/IAP

[19] J. Kaniewski, “tensorflow-ue4”: TensorFlow plugin for UE4. 2019, url:

https://github.com/getnamo/tensorflow-ue4

[20] L. Lin. “Reinforcement learning for robots using neural networks. Technical report”, DTIC Document,

1993.

74

https://doi.org/10.1038/nature14236

A
Appendix

A.1 Automated Playtesting in Sea of Thieves

75

Figure A.1: Test that checks if a calculate distance function works corretly.

Figure A.2: Actor test.

76

B
Appendix B

B.1 Problems in the game environment

77

Figure B.1: First location where the character can leave the map. A well timed jump can move the character out of
the map boundaries. It shows the agent line traces outside of the playable area.

Figure B.2: Second location where the character can leave the map. The character can move from the right side
and leave the map boundaries.

78

Figure B.3: Location where the player can enter but can’t move because there’s a rock blocking the passage.

Figure B.4: Location where the character can get stuck between the cactus and the wall when falling from the
platform at the top of the figure.

79

Figure B.5: Location between the bridge pillar and an rock placed in the context of this thesis. It causes some
animations glitches and the player can leave with some difficulty, while the agent cant.

80

C
Appendix C

C.1 Path executed by the crafted agents after being trained

81

Figure C.1: The black line trace in the figure shows the path performed by the Pathway Exploratory agent to achieve
the second map module objective.

Figure C.2: The black line trace in the figure shows the path performed by the Pathway Exploratory agent to achieve
the second map module objective.

82

Figure C.3: The black line trace in the figure shows the path performed by the Wall Exploratory agent to achieve
the second map module objective.

Figure C.4: The black line trace in the figure shows the path performed by the Wall Exploratory agent to achieve
the third map module objective.

83

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Hypothesis
	1.4 Contributions
	1.5 Document Outline

	2 Related Work
	2.1 Automated Playtesting Frameworks for Unreal Engine
	2.1.1 Automated Playtesting in Sea of ThievesSea of Thieves Game: https://www.seaofthieves.com
	2.1.2 Automated Playtesting In Videogames

	2.2 Using Player Modeling in Automated Playtesting
	2.2.1 Automated Playtesting with Procedural Personas
	2.2.2 Modeling Sensorial and Actuation Limitations in Artificial Players

	2.3 Developing artificial players to achieve game objectives
	2.4 Curiosity/Novelty Search
	2.5 Implementing machine learning algorithms for Unreal projects
	2.5.1 Unreal Engine plugin for TensorFlow
	2.5.2 Combining Deep Q-Learning with Unreal Engine 4

	2.6 Discussion

	3 Proposed Solution for the Deep QL-APF
	3.1 Deep QL-APF Model
	3.2 Machine Learning Integration with Unreal Engine 4
	3.3 Unreal Automation System
	3.4 Functional Testing Framework

	4 Deep QL-APF Implementation
	4.1 Algorithm Specifications
	4.2 Algorithm Preliminary Assessment
	4.3 Unreal Engine Actors
	4.4 Automated Playtesting Tests
	4.4.1 Pathway Exploration Test
	4.4.2 Wall Exploration Test

	5 Results and Analysis
	5.1 Experimental Procedures
	5.1.1 Experimental Scenario 1: RL Agents learning how to reach a location in the game environment
	5.1.2 Experimental Scenario 2: Agents with different handcrafted behaviours
	5.1.3 Experimental Scenario 3: Comparing manual and automated playtesting for exploratory tests

	5.2 Automated Playtesting Framework Test Results and Analysis

	6 Conclusion
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	Bibliography
	Appendix A

	A Appendix
	A.1 Automated Playtesting in Sea of Thieves
	Appendix B

	B Appendix B
	B.1 Problems in the game environment
	Appendix C

	C Appendix C
	C.1 Path executed by the crafted agents after being trained

