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Abstract

This work compares several cooperative navigation solutions for formations of autonomous vehicles,

equipped with depth sensors and capable of taking bearing measurements to their neighbors under a

certain measurement topology. Two approaches based on the extended Kalman filter are described, one

centralized and the other decentralized. Additionally, four other Kalman filter implementations based on

systems with linear dynamics using artificial measurements are also described, one centralized and the

remaining ones decentralized. The presented algorithms were chosen for their simplicity, robustness,

and scalability, which are all important design parameters when choosing an observer. Special emphasis

was given to algorithms that require minimal communication, since the operating environment might

not allow for high-bandwidth and low-latency communication with current technology, as is the case in

underwater applications. Additionally, only algorithms that can handle arbitrary measurement topologies

were considered, since one of the objectives of this work is to investigate algorithms that are versatile

enough to do so. These algorithms were subsequently implemented in a simulation environment and

their performance was analyzed. Some results pertaining to each algorithm are presented and, following

that, Monte Carlo results were obtained in order to investigate the impact of the measurement topology

on the behavior of the algorithms. In particular, the root-mean-squared-error of the obtained estimates

and their mean error were investigated.
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Resumo

Esta tese compara vários algoritmos descentralizados para navegação de uma formação de veı́culos

autónomos. É assumido que cada veı́culo tem capacidade para fazer medidas de direção aos seus

vizinhos, parametrizadas por ângulos de azimute e elevação, e condicionadas de maneira a que estas

obedeçam a uma certa topologia de medição. Dois dos algoritmos apresentados são baseados no filtro

de Kalman para equações não-lineares, um centralizado, e outro descentralizado. Os outros quatro al-

goritmos, dos quais um deles é centralizado, são baseados na modelação do sistema de maneira a que

este seja linear em relação ao estado dos veı́culos. Os algoritmos aqui apresentados foram escolhidos

com base na sua simplicidade, robustez, e escalabilidade. Todas estas qualidades são importantes no

que toca à escolha de algoritmos para navegação. Dado que os veı́culos podem estar a operar numa

situação em que a qualidade da comunicação pode ser reduzida, esta tese foca-se em algoritmos cuja

quantidade de comunicação é baixa. Por fim, apenas algoritmos capazes de lidarem com topologias

de medição arbitrária foram considerados para apresentação, visto que um dos objetivos desta tese é

a análise de técnicas versáteis o suficiente para o fazer. Estes algoritmos foram implementados num

ambiente de simulação e alguns resultados são apresentados. Posteriormente, a qualidade das esti-

mativas é investigada, calculando o seu root-mean-squared-error e o seu erro médio, averiguando o

impacto da topologia de medição, nomeadamente, as vantagens e desvantagens de topologias cı́clicas

e acı́clicas.

Palavras Chave

Navegação descentralizada, filtro de Kalman, análise Monte Carlo, medidas de direção
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1
Introduction

1.1 Motivation

For the past two decades, there has been an increased interest and effort towards the development of

fully autonomous unmanned vehicle (UV) systems. This is, in large part, due to demand for applications

that are repetitive, unpleasant, or dangerous for human agents. Examples of domains of application are

agriculture, transportation, scientific exploration, resource mining, waste management, search and res-

cue missions, surveillance, and plenty of other applications, many among them military [1]. Unmanned

vehicles can be distinguished by their respective fields of application and operating environment (space,

water and ground). Unmanned aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs) are

of special interest. The navigation problem for these differs from that of the unmanned ground vehi-

cle (UGV) navigation problem, not only due to the extra spatial dimension, but also due to the fact that

their respective operating fluid’s momentum will have a much larger effect on the vehicles’ kinematics

than in the UGV problem.

Unmanned aerial vehicle technology has undeniable economic and social potential. It could have

a major impact on many applications, even being considered as a major part of the development of
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Figure 1.1: Mars rover, Curiosity. Image extracted from https://mars.nasa.gov/msl/home/

smart cities, playing an important role in transportation, environmental monitoring, security and delivery

of goods [2]. In fact, some companies have already announced package delivery services using UAVs

as delivery drones. UAVs have also successfully been used for crop monitoring [3] and aerobiological

sampling [4], showing this technology’s potential in agriculture as well. Furthermore, a Canadian com-

pany is currently using this type of vehicles in an effort to regenerate ecosystems on a global scale by

using them to plant large amounts of trees [5]. Due to the fact that these vehicles can move freely in

3D-space, they can easily traverse rough terrain, making them a great potential asset when it comes to

firefighting and disaster relief missions. Since these vehicles usually move at a relatively fast speed, and

accidents have a high probability to result in their destruction, a solution for the navigation problem for

these UVs must work at a fast rate and be very robust.

Similarly to the other types of vehicles, UGVs also have applications such as surveillance and pay-

load delivery. They also have uses in agriculture, nuclear plant operations, firefighting efforts, and are

regularly used for scientific purposes. As an example, the Mars rover presented in Fig. 1.1, Curiosity, is

an example of a UGV, responsible for investigating the Gale crater on Mars autonomously.

Autonomous underwater vehicles also have many uses, though these are mostly for military and sci-

entific purposes at present. Examples of these are oceanographic mapping, sea floor sample collection

and underwater mine termination [6]. AUVs have been used by the oil and gas industry to map the

seafloor, before starting underwater construction projects, and they can also be equipped with energy

harvesting devices, such as triboelectric nanogenerators, that allow them to extract energy from the

ocean, powering the devices needed for their operation [7]. One major aspect to have in consideration

is that wireless communication underwater is severely limited between AUVs, which will limit the number

of possible solutions depending on the mission at hand. On the other hand, these move rather slowly,
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allowing for lower frequency solutions, compensating for the low communication capabilities underwater.

As UV technology improves, the number of concurrent operating UVs is expected to increase, giving

rise to systems of increasing complexity, for which centralized approaches become impracticable. This is

mainly due to the large computational resources and inter-UV communication necessary for this kind of

solution, which some way or the other relies on all data being present on one central unit for computation

of an updated navigation estimate for the whole formation. Unlike a fully centralized approach, decen-

tralized approaches do not suffer from these problems, since each UV is responsible for computing its

own state, relying mostly on measurements and limited communication with their immediate neighbors.

One of the main advantages of centralized solutions is the fact that all the data in the system is

present for interpretation and manipulation within one central unit, meaning it is not limited in the in-

formation it has to work with. On the other hand, this is also why it can be problematic for large scale

systems. While simpler to design, it is much more resource demanding and becomes even more de-

manding as more agents (more UVs) are added to the system. Also, if it fails, it can disturb the whole

system dynamics, which, when composed of lots of agents, can be completely disruptive.

Another class of issues with centralized solutions has to do with communication. In underwater

applications, where conventional wireless communication techniques do not work due to the severe

attenuation of the electromagnetic radiation by the salty water, communication is usually performed

using acoustic modems, which, as the name implies, converts data into pressure waves that travel

through water at the speed of sound in this medium, i.e., around 1500m s−1. So, not only is underwater

communication more limited in terms of bandwidth, it also suffers from limitations in terms of latency,

meaning centralized solutions for agents that are operating at great distances from each other become

harder to implement and synchronize.

In decentralized solutions, agents are limited to work only with information local to them, that is,

measurements to other agents in their proximity and communication with these. Thus, computation and

communication requirements for any given agent scale mostly with the number of agents in its proximity,

rather than with the whole system, as is the case in centralized approaches. This inherent difference

between centralized and decentralized solutions means that the behavior of an agent should only directly

affect the behavior of agents around it, naturally improving the robustness and scalability of the solution.

A major part of fully autonomous UV systems is the navigation aspect, by which each UV in a for-

mation needs to be aware of its location, allowing for independent tackling of the control problem, which

has a higher dependence on the mission at hand. The control objective might be, for example, keeping

all the agents moving in a specified formation, or navigating all UVs to a specific location with arbitrary

trajectories [8]. Regardless, the majority of the control solutions, whether centralized or decentralized,

rely on accurate localization of the agents, which is an integral part of a well-operating UV system. This

thesis tackles this issue, focusing on the research and development of decentralized navigation algo-
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rithms, such that all the UVs in a formation can accurately estimate their position in the presence of

disturbances and noisy measurements.

1.2 State of the art

While this thesis concerns itself mostly with the navigation aspect of a UV system, the control problem

is much more widely studied in the literature, namely for UAVs, since these can easily be equipped

with cheap satellite-based navigation systems, such as those provided by the Galileo or GPS systems.

Nonetheless, given the similarities between the navigation and control problems, it is worthwhile to

discuss some of the approaches in the literature to deal with the latter.

Most of the decentralized solutions to the control problem of guiding UVs from their initial positions

to their respective goals are based on model predictive control (MPC) techniques. In [9], a control

problem for arbitrary motion models and trajectories is defined, in which each agent solves its own

optimal control problem at each time instance. The agents have two operating modes, one by which they

try to accomplish their mission of arriving at a certain destination, and an emergency operating mode in

case the optimal problem is not feasible, which in the authors’ implementation simply attempts to stop

the UV. The proposed solution is decentralized and admits time-varying interconnections between the

UVs. However, as pointed out by the authors, the proposed scheme may lead to a deadlock or jerky

behavior due to excessive operation in the emergency mode. The authors suggest some approaches to

deal with this problem, such as introduction of right-of-way rules.

In [10], an MPC approach is also taken, albeit with a different cost function that depends on the time

each UV takes to reach its goal. Collision avoidance and goal guidance objectives are taken care of by

including them as constraints in the optimization problem, meaning there is no need for an emergency

operating mode to deal with possible collisions. This solution requires that the first control command to

give each UV be computed in a centralized manner; if a solution is found, then the problem is feasible

and the decentralized sub-problems that are solved subsequently are also guaranteed to be feasible.

Another control problem that is often considered is that of formation stabilization, by which each UV

must converge to specified locations given by range or bearing constraints to their neighbors. In order

to deal with this problem, some solutions rely on the use of potential functions. For example, in [11],

the authors take a graph theoretical approach, in which they exploit the unambiguity of the formation

graph to generate a potential function with local minimum at the desired configuration, thus guarantying

local asymptotic stability with collision avoidance to the desired formation. In [12], a similar approach

is taken whereby the authors construct a feedback control law based on the bearing rigidity of the

formation, guaranteeing local convergence to the desired spatial configuration if the bearing graph is

rigid. Finally, [13] gives some more insight on the relationship between the rigidity of the underlying
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formation graph and its consequences for the control problem.

A problem that is closely related to the navigation of UV systems is the localization of mobile sensor

networks. Sensor networks consist of many spatially distributed devices that communicate between

themselves and are equipped with sensors that allow them to make measurements about their neighbors

and environment. Some nodes are capable of estimating their own position, known as anchor nodes.

The main difference between sensor networks and UV systems is that the former is usually assumed

to have a quite larger agent spatial density and typically does not assume a communication topology,

allowing for data exchange between any two neighbors that are close enough.

A very interesting solution to the localization problem for mobile and static sensor networks is pre-

sented in [14]. It does not rely on range or bearing measurements and, instead, utilizes the limited radio

range of the nodes to estimate the position of other nodes in the network. The solution consists of having

each node maintain a polygon representing the set of its possible locations (such that the node’s position

is guaranteed to be in its polygon). Nodes then dilate their polygons by the radio range and broadcast

the dilated versions of their polygons. This way, any node that has heard the sender’s message must be

within the radio range of the broadcasting node. Listening nodes then intersect their respective dilated

polygons with the received ones, resulting in a smaller convex polygon. Since the listening node must

be included in the dilated polygon of the broadcasting node, this new polygon represents the listening

node’s new set of possible locations. Over time, each node converges to a lower bound on its position

estimate, which depends on parameters such as anchor density and number of sides of the polygons.

A very different approach to the same problem is presented in [15]. The solution is based on rewrit-

ing the inter-node distance measurements as barycentric coordinate weights, and then using these to

update the position estimates of the nodes. The only requirement is that the updating node must lie in-

side the convex hull of its neighbors, meaning it must communicate with the appropriate number of valid

nodes whenever it performs an update. The advantage of using this representation is that it allows for

the writing of an update rule with a sub-stochastic system matrix, such that with only one seed node, and

given some easily satisfied conditions, the whole mobile network can eventually be localized, regardless

of the initial estimates or number of nodes.

In order to deal with the navigation problem considered in this work, the most commonly used meth-

ods to solve the UV navigation problem are based on cooperative probabilistic techniques, from which

Kalman and particle filters emerge as two possible solutions.

The most attractive aspect of particle filters is the multi-modality of the resulting particle distributions,

which relies on the amount of particles itself. However, since communication might be limited between

UVs, it is not practical to transmit all the information and thus parametrization of the particle distribution

must first be performed using, for example, a Gaussian mixture model, which allows for keeping the multi-

modal nature of the particle distribution. In [16], the author discusses this and proposes an algorithm
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which forward propagates measurement data in time, coupling it with newer data to create hypotheses

for the position of agents; then, using dead-reckoning information, it finds the most likely path through

the sets of hypotheses. This algorithm inherently maintains several hypotheses about the state of each

UV, updating them whenever new measurements are obtained.

Many of the decentralized approaches rely on the decoupling of the centralized Kalman filter equa-

tions such that each agent estimates only its state and covariance, communicating with neighbors to

acquire the necessary quantities for updating its belief. A major complication when building a decen-

tralized Kalman filter that is equivalent to its centralized counterpart, however, is the difficulty in estimat-

ing the correlation between different agents that do not communicate with each other. The work [17]

presents some of the solutions in the literature to deal with this problem, giving some insight on the need

for keeping track of the cross-correlation between agents when this type of decentralized solutions are

considered. Ignoring the cross-correlation between agents will cause these to become overconfident

in their estimates, which might cause the filter to ignore updates and diverge. Besides this, the cross-

correlation between agents allow for the state estimate of all of them to be improved in a cooperative

manner, meaning there are some clear benefits to correctly keeping track of it. A more recent solution

that will be studied in some detail in Section 3.2 is presented in [18].

Kalman filter solutions (both centralized and decentralized) that rely directly on the range or bearing

measurements have the additional complication that these models are nonlinear, meaning the extended

Kalman filter (EKF) must be used. Because of this, the initial guess of the UV states must be relatively

close to their true values, otherwise the Kalman filter may diverge.

Another way of solving the navigation problem, rather than trying to find a centralized equivalent

approach, is to design decentralized observers and then ensure the interconnection between these

systems leads to the correct solution. An example of this approach is given in [19], where a linear

time-varying system that is globally observable, under certain restrictions, is created by defining an

artificial output using bearing measurements. Then, a Kalman filter with globally exponentially stable

error dynamics is applied to the subsystem and globally convergent dynamics for the whole formation

are guaranteed for the case of acyclic tiered formations. In the considered topology, the UVs in the first

tier have access to absolute position measurements, and UVs in the tiers below these only take bearing

measurements and communicate with UVs in the tier directly above. This means that if the first tier

estimators converge to their true values, the lower tier ones will eventually converge to their true values

as well.

A similar approach is proposed in [20], where the authors augment the state vector of each UV

to include the range to other UVs, and then augment the output to include range constraints between

UVs participating in the measurement. While this approach has globally convergent observer error

dynamics and allows for correct tracking of inter-UV ranges, which could be useful in dealing with the
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collision avoidance problem discussed earlier, it is developed for continuous-time and as such can rely

too heavily on communication.

In [21], two solutions for the navigation of a single UV based on bearing measurements to three

stationary sources are proposed, both achieving globally convergent observer error dynamics given

some easily satisfied conditions. One of these allows for keeping track of the range to these sources

and is based on state augmentation; the other is based on the definition of an artificial output which

is equivalent to the original nonlinear bearing output. This solution could easily be extended to mobile

sources by allowing them to communicate their velocities to measuring UVs, thus serving to localize a

formation in which all follower UVs can communicate with the sources.

Some other approaches are based on iterative optimization techniques. In [22], a distributed solution

based on gradient optimization is proposed, in which the nodes start by exchanging information with

their neighbors to reach a consensus on a step-size (geometrically fast) and then optimize according

to the agreed upon value. This process is then repeated until some stopping criterion is met, making

this method very reliant on communication. A more recent alternative is proposed in [23], in which the

iterative minimization of a majorizer of a cost function is performed. This cost function has a form that

allows it to be distributively minimized by the agents in the network. Each node broadcasts its location to

its neighbors, which then compute a new estimate for their location. This solution achieves better results

than a centralized EKF solution and is provably convergent to a stationary point, whereas the EKF can

be unstable depending on the initial conditions.

In summary, there are many solutions to the problem considered in this work. The most common

ones in the field of cooperative navigation are based on probabilistic techniques, such as the Kalman

and particle filters, while others rely on building decentralized observers and then making interconnec-

tions between them, such that each observer ends up converging to a solution. Lastly, there are also

techniques based on iterative optimization.

In this work, some of these approaches will be detailed such as to give an overview of the current

state of the research in the field of decentralized navigation. This will be one of the main contributions

of this work, as well as a comparison between these state of the art approaches, analyzing their overall

performance under different types of measurement topologies by obtaining Monte Carlo results.

1.3 Objectives

The main objective of this work is the study of cooperative navigation techniques which allow for arbitrary

measurement topologies. Additionally, this work intends to investigate the effect of different topologies on

the estimation performance of the studied approaches, namely, the effect of having an acyclical versus

a cyclical measurement topology. As a third objective, this work intends to provide a general overview
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of some of the approaches in the literature.

1.4 Contributions

Several algorithms based on depth and bearing measurements are presented in this work. Two of

these are EKF-based, and the remaining ones are based on creating artificial outputs, such that the

resulting system model is linear relative to the state, allowing it to be studied using standard observability

techniques.

In order to accomplish the main two objectives of this work, a simulation environment that is versatile

enough to handle different missions was created. This allowed for designing missions and specifying

measurement topologies for the implemented algorithms, from which a Monte Carlo analysis was made.

This analysis revealed that, if the agents do not take into account enough information pertaining to the

measurement topology, such as cross-measurement information, the presence of cycles can be very

detrimental to the quality of the estimates, due to the reintroduction of the estimation error into the

algorithms. The third objective is accomplished in Section 1.2.

During the development of this work, [24] was published and presented in the OCEANS 2021 San

Diego - Porto conference, where a Monte Carlo study comparing the EKF-based algorithms presented

in Section 3 was made.

1.5 Organization

This work is organized as follows. In Chapter 1, the decentralized navigation problem is motivated and

some of current literature reviewed. In Chapter 2, the mathematical description of the problem is for-

malized, and, in Chapters 3 and 4, algorithms to solve it are presented. In Chapter 3, approaches

based on the direct use of the extended Kalman filter are described, and, in Chapter 4, artificial mea-

surements which are linear relative to the state of the system are considered, which allows for treating

the observability of the resulting system model using regular linear system analysis techniques. Finally,

in Chapter 5, the performance of the algorithms presented in this work is evaluated and compared via

Monte Carlo results.
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2
Problem Description

2.1 Notation

Here, the notation adopted throughout this work is briefly defined. Vectors and matrices are represented

in bold and their scalar entries are superscripted, such that v = (vi) ∈ Rn and A = (Aij) ∈ Rm×n. The

identity and zero square matrices of size n are represented as In and 0n, respectively. If the zero matrix

is not square, then it is represented as 0m×n ∈ Rm×n. The transpose operator is represented by (·)T

and diag(·) builds a diagonal matrix from its inputs. Additionally, the Kronecker product is denoted by

the symbol ⊗, such that, for A ∈ Rm×n, B ∈ Rp×q, one has

A⊗B :=

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 ∈ Rpm×qn.

If S denotes a set, |S| represents its cardinality, i.e., the number of elements in S.
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2.2 Problem statement

Consider a set of UVs, numbered from 1 to N , operating in a 3D environment such that the movement

of each agent in the inertial frame, {I}, is described by

{
ṗi(t) = Ri(t)vri(t) + vfi(t)

v̇fi(t) = 03

,

where pi(t) =
[
px
i (t) py

i (t) pz
i (t)

]T represents the position of the ith UV, Ri ∈ SO(3) is this agent’s

rotation matrix, that transforms coordinates in its body frame to coordinates in the inertial frame, and

vri(t) is its local velocity relative to the fluid it is operating in, represented in the UV’s body frame. Note

that, in practical terms, vfi is a function of both time and the position, pi, of the agent. However, in

nominal terms, it will be assumed to be constant. In practice, by appropriate tuning of the parameters of

the filtering solution, it is possible to estimate slowly time-varying quantities.

Since solutions are usually implemented on a digital computer, the continuous-time kinematics must

be discretized, resulting in {
pi(tk+1) = pi(tk) + Tvfi(tk) + ui[k]

vfi(tk+1) = vfi(tk)
, (2.1)

where

ui[k] =

∫ tk+1

tk

Ri(t)vri(t)dt (2.2)

and T is the sampling time. In state-space form, letting the state of the ith agent be defined as

xi[k] :=

[
pi(tk)
vfi(tk)

]
, (2.3)

and following (2.1), the motion model of an agent is given by

xi[k + 1] = Axi[k] +Bui[k],

where

A :=

[
I3 T I3
03 I3

]
(2.4)

and

B :=

[
I3
03

]
. (2.5)

The UVs are equipped with sensors that enable them to make measurements about themselves,

such as depth and orientation measurements; and about their neighbors, such as range or bearing

measurements. In addition to this, they are also capable of some degree of communication between
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Figure 2.1: Example measurement graph.

themselves, enabling them to share quantities such as position estimates with their neighbors or algo-

rithm specific data.

At this point, it is assumed that if the jth UV is capable of taking measurements about the ith agent,

then there is a bidirectional communication link between the two. The formation’s measurement con-

figuration can then be represented with a single directed graph G := (V, E), where V is the set of UVs

and E is the set of directed edges, representing measurement information flow. The jth UV takes mea-

surements about the ith UV if there is a directed edge leaving node i and entering node j, i.e., if there

is an edge eij = (i, j). The neighbor set of the ith UV is defined as the set of UVs that it takes mea-

surements about, i.e., Ni = {j : (j, i) ∈ E}. It is also assumed that V can be further separated into two

disjoint subsets, VL and VF , such that VL ∪ VF = V. The set VL contains the so-called leader UVs,

which are assumed to able to estimate their position with some accuracy by themselves, and the set VF

contains the follower UVs, that must estimate their state based on measurements about their neighbors

and communication with them. Note that, according to this definition for the measurement graph, the

leader agents have no neighbors, since they do not take measurements about any other UVs.

Example 1. Consider the measurement graph, G, presented in Fig. 2.1. In this example, the leader set

is VL = {1}, and the follower set is VF = {2, 3}, which is graphically represented with grayed out nodes.

As per the previous definitions, the 2nd UV takes measurements about and receives information from

agents 1 and 3. Likewise for the 3rd UV, which takes measurements about agents 1 and 2, such that

N3 = {1, 2}. The neighbor sets of UVs 1 and 2 are N1 = ∅ and N2 = {1, 3}, respectively.

Consider now that the UVs in VF are equipped with pressure gauges and attitude and heading

reference systems, so that they can determine their own depth and orientation, as well some device

that allows them to take bearing measurements to neighboring UVs. As an example, an ultra-short

baseline acoustic positioning system readily gives bearing measurements [25]. Then, according to the

measurement graph, at time tk, in addition to its noisy attitude measurement, given by its rotation matrix,
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UV 3 has access to the following information

z3(tk) = pz
3(tk) + e1(tk)

θ31(tk) =
Bθ(p3(tk),p1(tk)) + e2(tk)

ϕ31(tk) =
Bϕ(p3(tk),p1(tk)) + e3(tk)

θ32(tk) =
Bθ(p3(tk),p2(tk)) + e4(tk)

ϕ32(tk) =
Bϕ(p3(tk),p2(tk)) + e5(tk)

p̂1(tk) = p1(tk) + e6(tk)

p̂2(tk) = p2(tk) + e7(tk)

,

where p3 represents the position of UV 3, p̂j is a position estimate of UV j ∈ {1, 2} that is communicated

to UV 3, Bθ(pi,pj) and Bϕ(pi,pj) are functions that return the noiseless bearing angles, measured by

an agent with index i about another agent with index j, represented in agent i’s body frame. The

quantities e1, e2, e3, e4, e5, e6 and e7 are unknown errors terms, due to, for instance, measurement noise

or estimation errors.

The problem of decentralized navigation considered in this work is then to estimate the position, pi,

of each UV, as well as its local fluid velocity, vfi(t), constrained by the fact that the agents only have

access to local information that they can capture, be it through measurements or limited communication

with their neighbors. In addition to the decentralized navigation approaches that will be discussed,

centralized solutions are presented as well, in order to establish a baseline for comparison with their

decentralized alternatives.
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3
Approaches Based on the Extended

Kalman Filter

The most straightforward approach to the navigation problem is by using the measurements captured by

the UVs directly, employing an extended Kalman filter, which requires the linearization of the observation

model. An issue with EKF-based approaches is that, due to their linearization step, the initial state

estimate of each UV must be close enough to the true state of its respective agent and might require

fine tuning of the filter parameters, otherwise, convergence to the true solution is not guaranteed. This

reduces the time efficiency of missions since an initial setup (using GPS, for example) is necessary,

which might require all agents to be at the surface to do so.

3.1 Centralized extended Kalman filter

While the centralized extended Kalman filter (CEKF) has access to all data, this comes with some

serious drawbacks, such as heavy reliance on communication between UVs and lack of scalability. In

13



some cases, the implementation of a fully centralized approach can become very cumbersome or even

unfeasible. Since all the data must be available at a single unit for computation, some information might

need to travel through long distances, thus resulting in the introduction of a delay into the system, which

might not be easy to deal with. Additionally, the amount of information shared and the high correlation

between agents might make the algorithm more sensitive to outliers, which may even cause it to diverge.

Regardless, centralized approaches have the potential to give the ”best” estimates, and, as such, the

CEKF is presented here as a baseline for comparison with its decentralized counterpart, presented in

Section 3.2.

3.1.1 Motion updates

Define the whole state as

x[k] :=

x1[k]
...

xN [k]

 ∈ R6N ,

where each xi is defined as in (2.3), representing the position and local fluid velocity of each UV. Then,

considering A and B as defined in (2.4) and (2.5), the complete system motion model is given by

x[k + 1] = Acx[k] +Bcu[k],

where 

Ac = IN ⊗A

Bc = IN ⊗B

u[k] =

u1[k]
...

uN [k]


, (3.1)

with ui[k] defined in (2.2), and N = |V| is the number of agents. The prediction equations for the CEKF

are then {
x̂[k + 1|k] = Acx̂[k] +Bcu[k]

Σ[k + 1|k] = AcΣ[k|k]AT
c +Qc

(3.2)

where x̂ and Σ are the state estimate mean and covariance matrix, respectively, and Qc is the central-

ized process noise covariance matrix. The process noise of each agent can be independently parame-

terized via Qi and Qc is then built as Qc = diag(Q1, . . . ,QN ).
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3.1.2 Measurement updates

Let yi[k] = hi(x[k]) be a measurement taken by an agent with index i, and let the complete measure-

ment vector, y[k], be the concatenation of all the individual measurement vectors, as in

y[k] = h(x[k]) =

h1(x[k])
...

hN (x[k])

 .

In order to perform the update step of the CEKF, the Jacobian of the measurement model must be

computed, as in

J(x) =

∂h1/∂x
...

∂hN/∂x

 =

∂h1/∂x1 · · · ∂h1/∂xN

...
. . .

...
∂hN/∂x1 · · · ∂hN/∂xN

 , (3.3)

where the discrete-time dependency was omitted for readability. Since the real state is unknown, the

Jacobian, J = J(x[k]), is approximated by Ĵ = J(x̂[k + 1|k]), hence one of the reasons why a good

enough initial state estimate is necessary.

Since EKF-based approaches allow for arbitrary measurement models, the general update equations

will be presented here, and some specific measurement models will be described in the following section.

Upon receiving measurements, the CEKF update equations are given byx̂[k + 1|k + 1] = x̂[k + 1|k] +K (y[k + 1]− ŷ[k + 1])

Σ[k + 1|k + 1] =
(
I6N −KĴ

)
Σ[k + 1|k]

,

where K = Σ[k + 1|k]ĴT
(
ĴΣ[k + 1|k]ĴT +Rc

)−1

is the Kalman gain and Rc is the centralized mea-

surement vector noise covariance matrix. Lastly, ŷ[k + 1] = h(x̂[k + 1|k]) is the expected value of the

measurement vector, given the current state estimate.

3.1.3 Measurement models

Some common measurement models will now be introduced. In particular, equations for position, depth,

range and bearing measurements are presented and the Jacobians of these models are computed. For

ease of representation, it is assumed that the measuring UV, with index i, is the one with that occupies

the first positions of the total state vector, such that x =
[
xT
i xT

j . . . xT
N

]T
. In case this is not verified,

the terms must be shifted to their correct positions according to their indices.

Note that any combination of these measurements can be considered simultaneously through ap-

propriate concatenation of measurement vectors and Jacobian matrices. This is a major strength of the

Kalman filter, which easily integrates all this information and produces a single estimate with increased

certainty, a process known as sensor fusion.
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3.1.3.A Position measurements

If the UV making a measurement has direct access to position measurements yi = hi(x) = pi(tk), its

relevant part in (3.3) is given by

∂hi

∂x
(x) =

[
I3 03 03×(6N−6)

]
.

It will often be assumed that the only UVs capable of acquiring this kind of measurements are leader

UVs, which usually remain at the top or near the surface, where position measurements are readily

available through satellite-based navigation systems.

3.1.3.B Depth measurements

Like position measurements, depth measurements do not involve other UVs. The model is given by

y = h(x) = pz
i (tk) and its Jacobian is then simply given by

∂h

∂x
(x) =

[
0 0 1 0 0 0 01×(6N−6)

]
.

While these measurements are simple, geometrically, they remove a degree of freedom from the pos-

sible positions of the ith UV, namely in the z direction. As such, coupling a depth measurement with a

bearing measurement to another UV will fix the possible positions of this agent to a single point, given

the position of the jth UV, and given that they do not lie on the same horizontal plane. Due to the sim-

plicity and cheap cost of depth gauges that provide this type of measurements, it is often be assumed

that UVs are equipped with this kind of sensor.

3.1.3.C Bearing measurements

If the ith UV takes a bearing measurements about another UV with index j, this measurement is modeled

using

hij(x) =

[
θ(pi,pj)
ϕ(pi,pj)

]
=

[
atan2

(
pz
j − pz

i ,
√
(px

j − px
i )

2 + (py
j − py

i )
2
)

atan2
(
py
j − py

i ,p
x
j − px

i

) ]
,

where the angles θ and ϕ are represented in the inertial frame. Bearing measurements are usually

measured in the UV’s body frame, however, it will be assumed that the UV knows its orientation and, as

such, can rotate the bearing measurement so that it is represented in {I}. For this measurement, one

has

∂hij

∂xi
(xi,xj) =


(pz

j − pz
i )(p

x
j − px

i )

LxyL2
xyz

(pz
j − pz

i )(p
y
j − py

i )

LxyL2
xyz

− Lxy

L2
xyz

01×3

py
j − py

i

L2
xy

px
j − px

i

L2
xy

0 01×3

 ,
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with 
Lxy =

√
(px

j − px
i )

2 + (py
j − py

i )
2

Lxyz =
√

(px
j − px

i )
2 + (py

j − py
i )

2 + (pz
j − pz

i )
2

,

and
∂hij

∂xj
(xi,xj) = −∂hij

∂xi
(xi,xj).

These measurements remove two degrees of freedom from the possible positions of the measuring

agent, constraining it to a line connecting both participating agents.

3.2 Decentralized extended Kalman filter

As mentioned in section 1.2, this algorithm is presented in depth in [18]. The main idea behind this

approach is that, rather than attempt to derive a decentralized estimator that is equivalent to the cen-

tralized Kalman filter presented in section 3.1, the decentralized extended Kalman filter (DEKF) tries to

approximate its centralized counterpart as best as possible while keeping communication to a minimum.

3.2.1 Motion updates

Upon receiving measurements that concern more than one agent, that is, relative measurements, the

CEKF introduces coupling between the different state estimates, such that the second equation of (3.2)

cannot be distributed among the UVs without extensive communication. One way around this issue

would be to simply ignore the coupling between the UVs, but this would lead to an overconfident es-

timation, which could cause the filter to ignore updates and diverge. However, while the covariance

prediction equation does affect the cross-covariance terms, the predicted covariance does not have any

effect on the predicted state estimate. The ultimate goal of having the cross-covariance terms, is to up-

date the state estimates upon the capture of measurements. So, as long as the UVs can keep track of

the correct cross-covariance terms to other UVs between measurement updates, there is no difference

in the prediction behavior of the algorithm.

Consider the state of the ith agent, xi, defined as in (2.3), and denote its filtered estimate and covari-

ance by x̂i and Σ̂ii, respectively. Note that the DEKF approximates the CEKF, thus, the covariances of

each agent and their cross-covariances to other agents will not be exact, hence the chosen hat notation.

Consider then the factorization of the cross-covariance between agents i and j, Σ̂ij , such that

Σ̂ij [k] = Φ̂ij [k]Φ̂
T
ji[k]. (3.4)

Let each agent carry its estimated belief, Bi := {x̂i, Σ̂ii}, and cross-covariance factor, Φ̂ij , between
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itself and other agents it has knowledge of, i.e. Φ̂ij for all j ∈ Ni. The corresponding CEKF prediction

equations for agent i, which account for its motion, are given by
x̂i[k + 1|k] = Ax̂i[k|k] +Bui[k]

Σii[k + 1|k] = AΣii[k|k]AT +Qi

Σij [k + 1|k] = AΣij [k|k]

, (3.5)

leaving the remaining terms x̂j ,Σjj for all j ̸= i, unchanged. So, following [18], by letting UV i update

its cross-covariance factor to another UV j through

Φ̂ij [k + 1|k] = AΦ̂ij [k|k] (3.6)

when performing prediction steps, when they meet, their reconstructed cross-covariance is given by

Σ̂ij [k + 1|k] = AΦ̂ij [k|k]Φ̂ji[k|k]T

= AΣ̂ij [k|k]

= Σij [k + 1|k],

if it holds that Σ̂ij [k|k] = Σij [k|k]. In general, Σ̂ij [k|k] ̸= Σij [k|k], however, what is important is that,

since all terms are available, the prediction step of the CEKF can be reproduced exactly at each agent in

a decentralized way while requiring no communication, thus resulting in no loss of estimation capabilities

with respect to this step. All UVs then predict their beliefs and cross-covariance factors to other agents

according to the first two equations of (3.5) and to (3.6), substituting xi and Σii by their estimated state

and covariance matrix, x̂i and Σ̂ii.

3.2.2 Measurement updates

In order to simplify the solution and make it more flexible, an asynchronous behavior in which each

UV makes measurements independently is considered. This would be equivalent to considering only a

measurement at a time in the CEKF measurement model and performing several successive updates at

each time step. The DEKF makes a distinction between private measurements, those that only concern

one agent at a time, and relative measurements, which concern the participating UVs.
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3.2.2.A Private measurements

Consider the centralized update equations. If, at time t = tk+1, the ith UV makes a private measurement,

yi[k + 1] = hi(xi[k + 1]), its update equations are given byx̂i[k + 1|k + 1] = x̂i[k + 1|k] +Ki (yi[k + 1]− hi (x̂i[k + 1|k]))

Σii[k + 1|k + 1] =
(
I6 −KiĴi

)
Σii[k + 1|k]

. (3.7)

The other UVs would update their state and covariance matrices according to

{
x̂j [k + 1|k + 1] = x̂j [k + 1|k] +Kj

(
yi[k + 1]− hi(x̂i[k + 1|k])

)
Σjj [k + 1|k + 1] = Σjj [k + 1|k]−Kj ĴiΣij [k + 1|k]

, (3.8)

and their cross-covariance to other UVs update according to

Σij [k + 1|k + 1] =
(
I−KiĴi

)
Σij [k + 1|k], (3.9)

with 
Ĵi =

∂hi

∂xi
(x̂i[k + 1|k])

Ki = Σii[k + 1|k]ĴT
i (ĴiΣii[k + 1|k]ĴT

i +Ri)
−1

Kj = Σji[k + 1|k]ĴT
i (ĴiΣii[k + 1|k]ĴT

i +Ri)
−1

,

where Ri is measurement noise covariance matrix of UV i. The update (3.7) can be computed at the

ith UV using only local information. However, (3.8) can only be computed if one allows communication

between agents, since it would require cross-covariance reconstruction. Since this is not desirable, (3.8)

is not performed and the values remain unchanged.

In order to replicate the update (3.9), following a similar reasoning to the one presented in Sec-

tion 3.2.1, and as done in [18], the ith UV can update its cross-covariance factors to other UVs using

Φ̂ij [k + 1|k + 1] =
(
I−KiĴi

)
Φ̂ij [k + 1|k]. (3.10)

When the ith and jth UVs need to reproduce their associated cross-covariance, they can simply use

(3.4), resulting in

Σ̂ij [k + 1|k + 1] =
(
I−KiĴi

)
Φ̂ij [k + 1|k]Φ̂T

ij [k + 1|k]

=
(
I−KiĴi

)
Σ̂ij [k + 1|k],

which is equivalent to (3.9), if Σ̂ij [k + 1|k] = Σij [k + 1|k]. Again, this is generally not the case, however,

it shows that the centralized step can be reproduced in a decentralized way using no communication.
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Summing up, the update equations for when a UV makes a private measurement are given by (3.7) and

(3.10), using their estimated belief in place of xi and Σii for computation purposes.

3.2.2.B Relative measurements

Here, measurements that involve two UVs are considered. Following the derivation presented by the

authors of [18], consider that, at time tk+1, the ith UV makes a measurement that includes the state of

the jth UV,

yi[k + 1] = hi(xi[k + 1],xj [k + 1]) ∈ Rm.

Then, without loss of generality, let x̂a[k] :=
[
x̂T
i [k] x̂T

j [k]
]T

and x̂b[k] :=
[
x̂T
k [k] · · · x̂T

N [k]
]T , such

that the complete state estimation vector is given by x̂[k] :=
[
x̂T
a [k] x̂T

b [k]
]T . The Kalman gain for the

joint system is given by

K = Σ̂[k + 1|k]ĴT
(
ĴΣ̂[k + 1|k]Ĵ+Ri

)−1

,

where

Ĵ =

[
∂hi

∂xi
(x̂i, x̂j)

∂hi

∂xj
(x̂i, x̂j) 0m×6 · · · 0m×6

]
=

[
Ĵa 0m×6 · · · 0m×6

]
,

computed using the predicted state estimates, and Ri is the measurement noise covariance matrix.

Letting

Σ̂[k] :=

[
Σ̂aa[k] Σ̂ab[k]

Σ̂ba[k] Σ̂bb[k]

]
,

the Kalman gain can be decomposed into

K :=

[
Ka

Kb

]
,

where 
Ka = Σ̂aa[k + 1|k]ĴT

a

(
JaΣ̂aa[k + 1|k]ĴT

a +Ri

)−1

Kb = Σ̂ba[k + 1|k]ĴT
a

(
JaΣ̂aa[k + 1|k]ĴT

a +Ri

)−1
.

The decomposed update equations for x̂a and x̂b are then

{
x̂a[k + 1|k + 1] = x̂a[k + 1|k] +Ka(yi[k + 1]− ŷi[k + 1])

x̂b[k + 1|k + 1] = x̂b[k + 1|k] +Kb(yi[k + 1]− ŷi[k + 1])
,

(3.11)
(3.12)
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and the covariances update as


Σ̂aa[k + 1|k + 1] =

(
I−KaĴa

)
Σ̂aa[k + 1|k]

Σ̂ab[k + 1|k + 1] =
(
I−KaĴa

)
Σ̂ab[k + 1|k]

Σ̂bb[k + 1|k + 1] = Σ̂bb[k + 1|k]−KbĴaΣ̂ab[k + 1|k]

.

(3.13)

(3.14)

(3.15)

As before, the beliefs of UVs that do not participate in the measurement remain unchanged, since this

would require communication between participating and non-participating agents, thus updates (3.12)

and (3.15) are not performed. Letting Ka =

[
Ki

Kj

]
and Ĵa =

[
Ĵi Ĵj

]
, further decomposing of equations

(3.11) and (3.13) results in

{
x̂i[k + 1|k + 1] = x̂i[k + 1|k] +Ki(yi[k + 1]− ŷi[k + 1])

x̂j [k + 1|k + 1] = x̂j [k + 1|k] +Kj(yi[k + 1]− ŷi[k + 1])
,

and 
Σ̂ii[k + 1|k + 1] =

(
I−KiĴi

)
Σ̂ii[k + 1|k]−KiĴjΣ̂ji[k + 1|k]

Σ̂ij [k + 1|k + 1] =
(
I−Kj Ĵj

)
Σ̂ij [k + 1|k]−KiĴjΣ̂jj [k + 1|k]

Σ̂jj [k + 1|k + 1] =
(
I−Kj Ĵj

)
Σ̂jj [k + 1|k]−Kj ĴiΣ̂ij [k + 1|k]

.

Thus, to make the above equations implementable, when the ith agent takes a measurement about the

jth one, the latter communicates to the former its belief, Bj , and its cross-covariance factor between the

two, Φ̂ji. Then, the updates (3.11) and (3.13) can be performed locally, at the ith UV, by reconstructing

the cross-covariance term, Σ̂ij , according to (3.4). Afterwards, UV i can send UV j its updated belief,

extracted from x̂aa[k+ 1|k+ 1] and Σ̂aa[k+ 1|k+ 1]. The updated cross-covariance between the ith and

jth agents can be tracked without communication by agreeing upon a factorization beforehand, as done

in [18], by letting {
Φ̂ij [k + 1|k + 1] = Σ̂ij [k + 1|k + 1]

Φ̂ji[k + 1|k + 1] = I6
,

(3.16)

(3.17)

thus guaranteeing that Φ̂ij [k + 1|k + 1]Φ̂T
ji[k + 1|k + 1] = Σ̂ij [k + 1|k + 1].

The only part of the update that is missing is (3.14). Further decomposing of that equation results inΣ̂ik[k + 1|k + 1] = (I−KiJi) Σ̂ik[k + 1|k]−KiĴjΣ̂jk[k + 1|k]

Σ̂jk[k + 1|k + 1] = (I−KjJj) Σ̂jk[k + 1|k]−Kj ĴiΣ̂ik[k + 1|k]
,

which correspond to the update equations for the cross-covariance between participating agents and

non-participating ones. Since computation of these equations would require communication between

participating and non-participating UVs in order to reconstruct the associated cross-covariances, they
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are instead approximated byΣ̂ik[k + 1|k + 1] ≈ Σ̂ii[k + 1|k + 1]Σ̂−1
ii [k + 1|k]Σ̂ik[k + 1|k]

Σ̂jk[k + 1|k + 1] ≈ Σ̂jj [k + 1|k + 1]Σ̂−1
jj [k + 1|k]Σ̂jk[k + 1|k]

,

which are implemented on each UV through their cross-covariance factors as

{
Φ̂ik[k + 1|k + 1] = Σ̂ii[k + 1|k + 1]Σ̂−1

ii [k + 1|k]Φ̂ik[k + 1|k]
Φ̂jk[k + 1|k + 1] = Σ̂jj [k + 1|k + 1]Σ̂−1

jj [k + 1|k]Φ̂jk[k + 1|k]
.

(3.18)

(3.19)

This approximation is presented as the main contribution of the authors of this approach and the inter-

ested reader is referred to [18] for details, though it relies on the fact that it is a good approximation if

there is a high correlation between participating and non-participating agents.

In summary, when the ith UV makes a measurement about a neighbor UV, the latter communicates

x̂j , Σ̂jj and Φ̂ji to the former. The ith UV then performs the updates given by (3.11), (3.13), (3.16) and

(3.18) and transmits the updated x̂j and Σ̂jj back to its neighbor, who then performs the updates (3.17)

and (3.19). Note that (3.18) and (3.19) must be performed for every UV that is known by the updating

agent i or j.
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4
Observers Based on Artificial

Measurements

Here, navigation algorithms based on state observers that feature artificial quantities are presented.

These quantities can be observation matrices, measurement vectors or both, and are designed such

that the resulting system is linear, either time-varying or not. This makes it so the complete system

has the potential to present globally convergent error dynamics, given an appropriate measurement

topology and spatial formation. Unlike the EKF-based approaches presented previously, if the formation

configuration is appropriate, these algorithms might not require that the initial navigation estimates be

close to their real values, which eliminates the need for an initial setup of each UV, thus increasing

the time efficiency of missions. The approaches presented are largely based on the projection matrix

discussed in Section 4.1, which was presented previously in [19].
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4.1 The bearing projection matrix

An essential feature of each of these estimators is the matrix constructed from the direction vector that

points from agent i to agent j [19],

Dij(tk) := dij(tk)d
T
ij(tk), (4.1)

with

dij(tk) =
pj(tk)− pi(tk)

||pj(tk)− pi(tk)||
∈ R3.

Dij is a projection matrix which, when applied to a vector x, gives its projection along the line passing

through the origin with direction dij . In order to make this fact clear, let x ∈ R3 be any non-zero vector

and D ∈ R3×3 a matrix constructed from a direction vector, d, as in (4.1). Then, letting xd = x
||x|| ,

Dx = ddTx

= ddTxd||x||

= d||x|| cos(α),

that is, Dx is a vector with direction d, and magnitude ||Dx|| = ||x|| cos(α), where α = arccos(dTxd) ∈ R

is the angle between the vectors d and x.

Letting x be a position difference between two agents, x = pi − pj such that pi ̸= pj , and letting dij

be the direction vector from agent i to agent j, then

Dij(pi − pj) = pi − pj ,

or, equivalently,

D̄ij(pi − pj) = 03×1,

where

D̄ij(tk) := I3 − dij(tk)d
T
ij(tk) (4.2)

is the orthogonal complement of the projection matrix Dij . Considering now that one has access to

position estimates at time t = tk, that is, p̂i(tk) and p̂j(tk), the projection of these estimates by the

matrix Dij(tk), dropping the explicit time-dependence for readability, is given by

Dij(p̂i − p̂j) = Dij(pi − pj) +Dij(ei − ej)

= pi − pj +Dij(ei − ej),

where ei and ej are the unknown error terms associated with the position estimates. The projected
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position difference estimate error is then given by

Dij(p̂i − p̂j)− (pi − pj) = Dij(ei − ej)

and, since

Dij(ei − ej) = dij ||ei − ej || cos(α),

the projected position difference estimate vector is never a worse approximation of pi − pj than the

original vector (given noiseless direction measurements), such that

||pi − pj −Dij(p̂i − p̂j)|| ≤ ||pi − pj − (p̂i − p̂j)||.

4.1.1 Direction vector error bias

Consider that the agent with index i takes a bearing measurement about the jth UV in agent i’s body

frame. Then, the direction vector, dij(tk), can be built using

dij(tk) = Ri(tk)

cos θij(tk) cosϕij(tk)
cos θij(tk) sinϕij(tk)

sin θij(tk)

 . (4.3)

An issue with building this direction vector, however, is that the unbiased noise characteristics of

the original bearing angles, θij and ϕij , are lost. Consider the normally distributed random variable

X ∼ N (µ, σ2) and the transformation Y = ejX . Considering Z ∼ N (0, 1), one has that X = µ + σZ.

Taking the expected value of Y , one has

E [Y ] = E
[
ejX

]
= E

[
ejµ+jσZ

]
= E

[
ejµejσZ

]
= ejµE

[
ejσZ

]
.

Letting α = jσ and f(z) be the probability density function of the normally distributed variable, Z, one
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has

E
[
eαZ

]
=

∫ +∞

−∞
eαzf(z)dz =

=

∫ +∞

−∞
eαz

1√
2π

e−z2/2dz =

=

∫ +∞

−∞

1√
2π

e
1
2 (−z2+2α)dz =

=

∫ +∞

−∞

1√
2π

e−
1
2 (z

2−2α+α2)eα
2/2dz =

= eα
2/2

∫ +∞

−∞

1√
2π

e−(z−α)2/2dz =

= eα
2/2,

where the following equality was used, considering using u = z − α,

∫ +∞

−∞

1√
2π

e−u2/2du = 1.

Finally, it can be concluded that

E [Y ] = ejµe(jσ)
2/2 = ejµe−σ2/2 = e−σ2/2 (cosµ+ j sinµ) .

Since ejX = cosX + j sinX, it holds that

E [cosX + j sinX] = e−σ2/2 (cosµ+ j sinµ) ,

or, equivalently,

E [cosX] + jE [sinX] = e−σ2/2 cosµ+ je−σ2/2 sinµ,

from which it is possible to conclude thatE [cosX] = e−σ2/2 cosµ

E [sinX] = e−σ2/2 sinµ
. (4.4)

Consider the two independent and normally distributed random variables Θ ∼ N (µθ, σ
2
θ) and

Φ ∼ N (µϕ, σ
2
ϕ), modeling the bearing measurements at each time-step, and consider also the transfor-

mation

D =

cosΘ sinΦ
cosΘ cosΦ

sinΘ

 .
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Since Θ and Φ are independent, then, according to (4.4), one has

E [D] =

e−
1
2 (σ

2
θ+σ2

ϕ) cosµθ cosµϕ

e−
1
2 (σ

2
θ+σ2

ϕ) cosµθ sinµϕ

e−σ2
θ/2 sinµθ

 ,

which, when compared with the nominal direction vector, d, gives

d− E [D] =

cosµθ cosµϕ

cosµθ sinµϕ

sinµθ

−

e−
1
2 (σ

2
θ+σ2

ϕ) cosµθ cosµϕ

e−
1
2 (σ

2
θ+σ2

ϕ) cosµθ sinµϕ

e−σ2
θ/2 sinµθ



=


(
1− e−

1
2 (σ

2
θ+σ2

ϕ)
)
cosµθ cosµϕ(

1− e−
1
2 (σ

2
θ+σ2

ϕ)
)
cosµθ sinµϕ(

1− e−σ2
θ/2

)
sinµθ

 ̸= 03×1.

Thus, on average, the constructed direction vectors will not correspond to the nominal direction vector. If

this artificial direction vector is used, the Kalman filter state estimate error will generally not be unbiased.

4.2 Independently connected Kalman filters

In this section, the decentralized approach presented in [19] is described, whereby an artificial output,

using depth information and the bearing projection matrix, is created and used to ensure that each

UV sub-system is modeled as a globally observable linear time-variant system. Each agent is then

responsible for carrying a Kalman filter based on this system model, and the estimates produced by

each filter are fed to the other observers as ”true” information, interconnecting them in such a way that

the complete system presents globally convergent observer error dynamics. This can be considered the

least cooperative of the considered observers, since each agent has its own estimator which does not

take into account cross-measurement activity, unlike the other approaches which will be studied, which

use the measurement graph information to couple the estimates of each filter. However, besides the

approach presented in Section 4.5, it is the one which requires the least amount of communication.

Let i be a follower UV with state xi and neighbor set Ni = {1, . . . , |Ni|}, where, for ease of represen-

tation, it is assumed that the neighbors of the ith UV have indices 1 to |Ni|. From

D̄ij(tk)(pi(tk)− pj(tk)) = 03×1,

with D̄ij(tk) defined as in (4.2), an artificial output relating the position of the ith UV with the position of
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an agent j ∈ Ni can be written as

D̄ij(tk)pi(tk) = D̄ij(tk)pj(tk) =: yij [k].

If agent i has more than one neighbor, the artificial outputs can be concatenated, and the complete

measurement vector of UV i is given by

yi[k] :=


yi1[k]

...
yi|Ni|[k]
zi(tk)

 = Ci(tk)x[k],

where zi is the depth measurement obtained by the UV and

Ci(tk) =


D̄i1(tk) 03

...
...

D̄i|Ni|(tk) 03

ez 01×3

 ,

with ez =
[
0 0 1

]T .

A Kalman filter can then be independently defined for each agent using the artificial output, yi. The

prediction equations are given by

{
x̂i[k + 1|k] = Ax̂[k|k] +Bu[k]

Σii[k + 1|k] = AΣii[k|k]AT +Qi

,

where Qi is the agent’s process noise covariance matrix, and the update equations for this filter are

given by {
x̂i[k + 1|k + 1] = x̂i[k + 1|k] +Ki(yi[k + 1]−Ci(tk+1)x̂i[k + 1|k])

Σii[k + 1|k + 1] = (I6 −KiCi(tk+1))Σii[k + 1|k]
,

where Ki is the Kalman gain, computed according to

Ki = Σi[k + 1|k]CT
i (tk+1)

(
Ci(tk+1)Σi[k + 1|k]CT

i (tk+1) +Ri

)−1
,

and Ri is the measurement noise covariance matrix. Since the actual position vector of UV j, pj(tk+1),

is unknown, the current position estimate of the jth agent, p̂j(tk+1|tk), is extracted from the predicted
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estimate of UV j, x̂j [k + 1|k], and used instead to build the measurement vector, yi[k + 1], such that

yi[k + 1] =


D̄i1(tk+1)p̂1(tk+1|tk)

...
D̄i|Ni|(tk+1)p̂|Ni|(tk+1|tk)

zi(tk+1)

 .

By doing this, an error is introduced into the estimate of pi, however, provided that the error in p̂j is de-

caying, the error in p̂i will decay as well, which is easily shown to be the case for acyclical measurement

topologies [19,20].

In [19], the approach is considered for tiered formations, in which there are no loops in the mea-

surement graph, and thus no reintroduction of estimation errors into the update equations. For cyclical

measurement topologies, however, it is not as straightforward to show that the interconnected observers

will have globally stable error dynamics. The convergence of this algorithm for under both types of

measurement topologies is studied via Monte Carlo analysis in Section 5.2.

4.3 Centralized Kalman filter

The centralized version of the observers based on bearing and depth measurements is presented in this

section. Again, while a centralized approach might not be feasible in practice, it still serves as a baseline

for comparison with the decentralized approaches based on bearing-based artificial outputs.

Let the state of the centralized system be defined as

x[k] :=

x1[k]
...

xN [k]

 ∈ R6N ,

and let x̂ and Σ be its state estimate and covariance matrix, respectively. The motion model of this

approach is the same as that of the CEKF, i.e., upon receiving the control signals, the agents’ estimates

are predicted according to {
x̂[k + 1|k] = Acx̂[k|k] +Bcu[k]

Σ[k + 1|k] = AcΣ[k|k]AT
c +Qc

,

where Ac and Bc are defined as in (3.1) and Qc is the centralized process noise covariance matrix.

Regarding the update step, for the case of leader agents, yi is a position measurement and Ci =[
· · · I3 03 · · ·

]
. As for follower UVs, let Cc be the centralized observation matrix, such that y = Ccx,
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and let y and Cc be defined as

y[k] :=

y1[k]
...

yN [k]

 , Cc(tk) :=

C1(tk)
...

CN (tk)

 ,

where yi is the measurement vector captured by the follower agent i. Considering the relationship

presented in [19],

D̄ij(tk)(pi(tk)− pj(tk)) = 03×1,

and that the updating agent has access to depth measurements, then

yi[k] =

[
03|Ni|×1

zi(tk)

]
,

where zi is the depth measurement. Each Ci relates the measurements captured by the ith agent

with the total state vector, using the orthogonal complement of the bearing projection matrix and depth

information, as shown below, in Example 2. The total state estimate is then corrected according to the

standard Kalman filter update equations

{
x̂[k + 1|k + 1] = x̂[k + 1|k] +K(y[k + 1]−Cc(tk+1)x̂[k + 1|k])

Σ[k + 1|k + 1] = (I−KCc(tk+1))Σ[k + 1|k]
,

where K = Σ[k + 1|k]CT
c (tk+1)

(
Cc(tk+1)Σ[k + 1|k]CT

c (tk+1) +Rc

)−1 is the Kalman gain, with Rc a

suitable measurement noise covariance matrix.

Example 2. Consider the formation presented in Fig. 2.1, such that V = {1, 2, 3}, VL = {1}, and

VF = {2, 3}. The edge set is given by E = {(1, 2), (1, 3), (2, 3), (3, 2)}. The measurement vector, in this

example, is given by

y[k] =



y1[k]

06×1

z2(tk)

06×1

z3(tk)


,

where y1 is the position measurement captured by agent 1. Omitting the explicit time-dependence, one
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has 

C1 =
[
I3 03 03 03 03 03

]

C2(tk) =


−D̄12(tk) 03 D̄12(tk) 03 03 03

03 03 D̄32(tk) 03 −D̄32(tk) 03

01×3 01×3 eTz 01×3 01×3 01×3



C3 =


−D̄13(tk) 03 03 03 D̄13(tk) 03

03 03 −D̄23(tk) 03 D̄23(tk) 03

01×3 01×3 01×3 01×3 eTz 01×3



,

from which the centralized observation matrix becomes

Cc(tk) =



I3 03 03 03 03 03

−D̄21(tk) 03 D̄21(tk) 03 03 03

03 03 D̄23(tk) 03 −D̄23(tk) 03

01×3 01×3 eTz 01×3 01×3 01×3

−D̄31(tk) 03 03 03 D̄31(tk) 03

03 03 −D̄32(tk) 03 D̄32(tk) 03

01×3 01×3 01×3 01×3 eTz 01×3


.

4.4 Distributed Kalman filter with covariance factorization

The algorithm presented in this section is based on a slight extension of the distributed filter presented

in [18], allowing for asynchronous updates involving more than two agents at a time. Similarly to the

DEKF, each agent carries its own estimated belief, Bi = {x̂i, Σ̂ii}, and cross-covariance factors to other

UVs, Φ̂ij . The prediction equations for these quantities are performed as in the DEKF. In fact, the

only difference between these two approaches is the update step, which is not restricted to pairwise

communication and, instead, uses the orthogonal complement of the projection matrix, presented in

section 4.1, to construct an observer with linear dynamics.

Again, let agent i take bearing measurements about its neighbors, which will be assumed, without

loss of generality, to have indices j ∈ Ni = {1, . . . , |Ni|}. Additionally, the ith UV might have access to

depth measurements. Using the relationship presented in [19] once more, D̄ij(tk)(pi(tk)−pj(tk)) = 03,

then, considering the joint state vector

xa[k] :=


xi[k]
x1[k]

...
x|Ni|[k]

 ,
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where xi[k] is the current state of the measuring agent at time k, one has

Ca(tk)xa[k] =

[
03|Ni|×1

zi(tk)

]
=: ya[k],

where

Ca(tk) =


D̄i1(tk) 03 −D̄i1(tk) 03 03 03 · · · 03 03

D̄i2(tk) 03 03 03 −D̄i2(tk) 03 · · · 03 03

...
...

...
...

...
...

. . .
...

...
D̄i|Ni|(tk) 03 03 03 03 03 · · · −D̄i|Ni|(tk) 03

eTz 01×3 01×3 01×3 01×3 01×3 · · · 01×3 01×3

 ,

and ez =
[
0 0 1

]T .

Let the joint system state estimate be denoted as x̂a, and its associated covariance matrix estimate

as

Σ̂aa[k] =


Σ̂ii[k] Σ̂i1[k] · · · Σ̂i|Ni|[k]

Σ̂1i[k] Σ̂11[k] · · · Σ̂1|Ni|[k]
...

...
. . .

...
Σ̂|Ni|i[k] Σ̂|Ni|1[k] · · · Σ̂|Ni||Ni|[k]

 . (4.5)

In order to reduce the required amount of communication, the cross-covariance terms between UVs that

agent i makes measurements about can be ignored, such that

Σ̂aa[k] ≈


Σ̂ii[k] Σ̂i1[k] · · · Σ̂i|Ni|[k]

Σ̂1i[k] Σ̂11[k] · · · 06

...
...

. . .
...

Σ̂|Ni|i[k] 06 · · · Σ̂|Ni||Ni|[k]

 . (4.6)

If the communication restrictions are not as strict, the cross-covariance terms Σ̂jk, for j, k ∈ Ni, can be

obtained from the cross-covariance factors that the participating agents j and k carry. By letting them

communicate these quantities to agent i, it can then reconstruct the cross-covariance terms and place

them into Σ̂aa. The update equations are then performed as in the DEKF approach. The Kalman gain is

computed for the joint system using the reconstructed covariance matrix, Σ̂aa, and the new beliefs are

computed and communicated to the participating agents, which then also perform updates to their cross-

covariance factors according to the approximation presented in [18], i.e., each agent that participates in

the update performs

Φ̂ik[k + 1|k + 1] = Σ̂ii[k + 1|k + 1]Σ̂−1
ii [k + 1|k]Φ̂ik[k + 1|k]

for every non-participating agent k it has knowledge of. In case the full covariance matrix was used, the

new cross-covariance terms between the participating agents can be factorized and distributed in a way
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that does not double count information. A possible rule for distributing the cross-covariance terms could

be, for example

Φ̂ij [k + 1] =

Σ̂ij [k + 1] if i < j

I6 if i > j
,

though it is not necessarily the one which minimizes the amount of communication.

Two versions of this algorithm were implemented. The first relies on minimal communication which

scales with the number of neighbors at each agent, ignoring all cross-covariance entries between the

neighbors of the measuring agent, as in (4.6), and is labeled as the decentralized Kalman filter with

partial covariance sharing (DKF-PCS); and the second one reproduces the full joint covariance matrix,

thus requiring an amount of communication which scales with |Ni|2 at each agent. This latter approach

is labeled as the decentralized Kalman filter with full covariance sharing (DKF-FCS).

4.5 Static-gain observer

In this section, a technique for computing steady-state observer gains for agents that can acquire relative

position measurements to their neighbors, presented in [26], is briefly described. Local observers for

each follower agent are then designed, coupling these gains with an artificial relative position outputs

built from bearing measurements and depth differences between agents. Each observer has a prediction

step and an update step, as with regular Kalman filters, though a covariance matrix is not maintained.

Unlike the algorithms presented so far, this is the only one which requires the agents to have access

to depth measurements. This is due to a geometrical limitation when it comes to obtaining position

differences between two agents. This quantity can be extracted using a combination of range and

depth measurements, or using a combination of bearing and depth measurements of different value,

however, it is not possible to extract a position difference between two agents considering only bearing

measurements.

All agents predict their estimate according to

x̂i[k + 1|k] = Ax̂i[k|k] +Bui[k],

where A, B, and ui[k] are defined as in (2.4), (2.5), and (2.2), respectively. Agent i updates its estimate

upon receiving measurements, according to

x̂i[k + 1|k + 1] =

{
x̂i[k + 1|k] +Ki(yi[k + 1]− x̂i[k + 1|k]), if i ∈ VL

x̂i[k + 1|k] +Ki(mi[k + 1]−∆x̂i[k + 1|k]), if i ∈ VF

,
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where

∆x̂i[k] :=

 x̂i[k]− x̂1[k]
...

x̂i[k]− x̂|Ni|[k]

 ,

yi is an absolute position measurement, and mi is a vector containing the captured depth measurement

and relative position measurements between the measuring agent and its neighbors, assumed to be

Ni = {1, . . . , |Ni|}. The formation gains, Ki, are computed by propagating the centralized system’s

covariance prediction and update equations using a gain matrix computed subject to a certain sparsity

constraint, which, in this case, constrains the total system gain matrix, K, to be block diagonal. Upon

computing the formation gains, each block of K is extracted and set as Ki accordingly.

The centralized system’s motion model is identical to that of the CEKF, presented in Section 3.1.1,

such that Ac = IN ⊗A. As for the observation model, whereas leader agents can capture measure-

ments of their own position, follower agents can only capture relative position and depth measurements,

that is

mi[k] =


pi(tk)− p1(tk)

...
pi(tk)− p|Ni|(tk)

zi(tk)

 .

Let Cc be centralized system’s observation matrix, containing matrices CL =
[
I3 03

]
for leader mea-

surement entries. For follower measurement entries, the measuring agent’s entry is modeled with CL,

whereas the entry corresponding to the agent whose measurement is taken about is modeled with

−CL. Additionally, the depth measurements taken by follower agents are modeled using the vector

ez =
[
0 0 1 0 0 0

]
. This construction is exemplified in Example 3.

Following the results derived in [26], the centralized gain subject to a sparsity constraint is then

computed by propagating

Σ[k + 1|k] = AcΣ[k|k]AT
c +Qc, (4.7)

and

Σ[k + 1|k + 1] = (I6N −K[k]Cc)Σ[k + 1|k](I6N −K[k]Cc)
T +K[k]RcK[k]T (4.8)

until the trace of Σ[k + 1|k + 1] reaches a steady-state value. Define li ∈ R6N as the unit vector

such that all entries are zero except the ith one and let Li := diag(li). In the above equations, Qc =

diag(Q1, . . . ,QN ) is the centralized process noise covariance matrix, Rc is the centralized observation

model noise covariance matrix, and K[k] is given by

K[k] =

6N∑
i=1

LiΣ[k + 1|k]CT
c Mi (I6N −Mi +MiSMi)

−1
,
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where

S = CcΣ[k + 1|k]CT
c +Rc.

The sparsity constraint is imposed by the matrix Mi, which is built to encode the measurements each

agent has access to. Letting si be a vector such thatsji = 1, if Eij = 1,

sji = 0, otherwise,

where E ∈ R6N×m is the sparsity pattern matrix, with m the total measurement vector length, Mi is then

built as Mi = diag(si). For a derivation of these equations the reader is referred to [26].

Example 3. Consider again the formation presented in Fig. 2.1. Following the measurement ordering

adopted in Example 2, the centralized observation matrix, Cc, is given by

Cc =



CL 03×6 03×6

−CL CL 03×6

03×6 CL −CL

01×6 ez 01×6

−CL 03×6 CL

03×6 −CL CL

01×6 01×6 ez


,

and the sparsity pattern matrix is defined as

E =


16×3 06×7 06×7

06×3 16×7 06×7

06×3 06×7 16×7

 ,

where 1p×q ∈ Rp×q is a p by q matrix filled with ones. The sparsity matrix defines that UV 1 has access

to the first 3 entries of the total measurement vector, agent 2 to the following 7 entries, and agent 3

has access to the remaining ones. Note that, upon setting a measurement ordering for the centralized

observation matrix, that same ordering must be kept when building the measurement vector of each

agent.

35



4.5.1 Artificial relative position output

Consider the vector yij(tk) :=
[
01×3 zi(tk)− zj(tk)

]T , where zi(tk) and zj(tk) are the depth measure-

ments obtained by UVs with indices i and j, respectively. Letting ∆ij(tk) = pi(tk)− pj(tk) and

Pij(tk) =

[
D̄ij(tk)

0 0 1

]
,

with D̄ij defined as in (4.2), one then has that Pij(tk)∆ij(tk) = yij(tk), from which it is possible to

recover ∆ij(tk) as

∆ij(tk) =
(
PT

ij(tk)Pij(tk)
)−1

PT
ij(tk)yij(tk),

provided that PT
ij(tk)Pij(tk) is invertible, which is the case if zi(tk)− zj(tk) ̸= 0.

Rather than actual relative position measurements, the vector entries, mij [k] ∈ R3, of mi[k], are

instead taken as

mij [k + 1] = αij∆ij(tk+1) + (1− αij)Dij(tk+1)(p̂i(tk+1|tk)− p̂j(tk+1|tk)),

with Dij defined in (4.1). Each artificial relative position measurement is given by a weighted sum of the

extracted position difference, ∆ij , and the projected estimated position difference, Dij(p̂i − p̂j), where

p̂i and p̂j can be extracted from x̂i[k+1|k] and x̂j [k+1|k], respectively. This projection is done using Dij ,

which is built using the measured bearing angles via dij , according to (4.1). Since the matrix PT
ijPij is

close to singular if the height difference between the agents is close to zero, causing numerical instability,

the weights are chosen as αij = |dz
ij |. This ensures that when the extracted position difference, ∆ij , is

unreliable, the bearing measurement information can still be used.
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5
Simulation Results

In this section, the performance of each of the presented estimators is investigated. Firstly, in Sec-

tion 5.1, a simple formation configuration, composed of only 5 agents, performs a mock patrolling mis-

sion, whereby they have to visit the neighborhood of a predetermined set of waypoints, resulting in

the trajectory presented in Fig. 5.1. Afterwards, in Section 5.2, the performance of the algorithms was

then compared via Monte Carlo simulations, where the mean and root-mean-squared-error (RMSE) of

the produced estimates was computed. For this comparison, a larger team, composed of 10 agents

performs a different mission, which requires diving deep underwater and changing its formation before

doing so. The resulting trajectory for this mission is presented in Fig. 5.2.

5.1 Sample run

The patrolling mission was simulated and some results regarding the estimates obtained by each of the

estimators are presented in this section. The spatial distribution of the agents remains constant through-

out the whole mission, and their initial positions are depicted in Fig. 5.3. The nominal mission trajectory

is depicted in Fig. 5.1. In the following section, the simulation and filter parameters are specified.
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Figure 5.1: Nominal trajectory of the leader agent with index 1 for the patrolling mission.

Figure 5.2: Nominal trajectory of the leader agent with index 1 for the Monte Carlo study.
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Figure 5.3: Spatial formation considered for the example mission.

5.1.1 Setup

The relative positions of the agents remain constant throughout the whole mission and the UVs are

constrained to the measurement topology depicted in Fig. 5.4. This topology was chosen in order to

allow for the most correlation to be created between the agents, so that the behavior of the algorithms

is more differentiated, depending on how much cross-measurement information they can make use of.

Additionally, since agents 3, 4, and 5 are at the same depth, it serves to analyze how the static-gain

observer with the artificial relative position measurements deals with the fact that the Pij matrices, used

to extract the relative position measurements, are close to singular.

The fluid velocity was assumed to be constant throughout the whole operating space, such that

vfi(t) =
[
0.1 −0.2 0

]T
(m s−1) for all i ∈ V, where V = {1, 2, 3, 4, 5} is the set of UVs. Each agent has

access to vri at a rate of 50Hz, corrupted by zero-mean white Gaussian noise, with covariance matrix

Σu = 0.012I3. The agents have access to their orientation, parameterized by roll, pitch and yaw Euler

angles. These are also corrupted with independent zero-mean white Gaussian noise, with standard

deviation of 0.05◦ for the roll and pitch angles, and 0.3◦ for the yaw angle. The control signal of each

agent, ui[k], is obtained through trapezoidal integration of Ri(t)vri(t) between measurement time steps,

approximating (2.2).

UVs capture measurements every T = 1 s. The leader, agent 1, can capture measurements of its

position corrupted by zero mean white Gaussian noise, with covariance matrix Σpos = 0.12I3. The depth

measurements of the follower UVs are corrupted by zero mean white Gaussian noise, with standard

deviation of 0.1m, and the measured bearing angles, θ and ϕ, captured in the measuring agent’s body

frame, are corrupted by independent zero mean Gaussian noise, with standard deviation of 1◦.
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Figure 5.4: Measurement topology for example mission.

As for the filter parameters, all UVs have their process noise modeled using the covariance matrix

Qi = diag(0.12I3, 0.01
2I3). The position measurements taken by the leader agent are modeled with

the observation noise covariance matrix RGPS = 0.12I3, and the depth measurements taken by follower

agents are modeled with standard deviation of σd = 0.1m. For EKF-based approaches, the bearing

measurements are modeled using the covariance matrix Rbear = 0.22I2, and for the observers based on

artificial linear systems, the relative measurements are modeled with the covariance matrix Rrel = I3.

Since EKF-based approaches are not globally convergent, the initial state estimates of the UVs were

sampled from a small neighborhood around their true initial state. For this effect, x̂i[0] was sampled from

a normal distribution, centered at xi[0], with covariance matrix Σ0EKF = diag(102I3, 0.1
2I3). For the other

approaches, the initial state estimates were sampled from a normal distribution centered at xi[0], with

covariance matrix Σ0LTS = diag(252I3, 3
2I3).

At k = 0, all agents are assumed to be completely uncorrelated, such that Σij [0] = Φ̂ij [0] = 06

for all i, j ∈ V. For all filters, the initial covariance matrix of each agent was set as Σii[0] = Σ̂ii[0] =

diag(0.12I3, 0.1
2I3) for visualization purposes, so that the algorithms do not converge too fast. For each

estimator, the norm of the total state estimation error, ||x(t) − x̂(t)||, is presented, along with the state

estimation results for agent 3.

5.1.2 Extended Kalman filter based approaches

Here, the results relating the EKF-based approaches are presented. The total state estimation er-

ror norm, ||x[k] − x̂[k|k]||, is presented in Fig. 5.5. There is little difference in the behavior of either

approach, with the CEKF converging faster and both achieving similar steady-state performance. In
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Figure 5.5: Total state estimation error norm for the EKF-based approaches.
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(a) CEKF position estimation results.
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(b) DEKF position estimation results.
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(c) CEKF fluid velocity estimation results.
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(d) CEKF fluid velocity estimation results.

Figure 5.6: Position and fluid velocity estimation results of agent 3 using the EKF-based estimators.

Fig. 5.6, the estimated position and fluid velocity coordinates of agent 3 is shown for both approaches.

There is little difference in their estimation results, with the only noticeable one being the amplitude of

the position coordinate estimation errors, which is larger than the CEKF, even though the measurement

graph presents high connectivity. For visualization purposes, the estimation behavior was animated and

made available online. The reader can scan the QR-codes presented in Fig. 5.7, or, alternatively, can

follow the provided URL.

5.1.3 Linear Kalman filter approaches

Here, the results regarding the remaining estimators are presented. The algorithms are labeled as

follows: the independently interconnected Kalman fitler (IKF) corresponds to the algorithm presented in

Section 4.2, the centralized Kalman filter (CKF) to the one presented in Section 4.3; the DKF-FCS and

the DKF-PCS correspond to the two variants of the algorithm presented in Section 4.4. The DKF-FCS
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(a) CEKF animation URL: https://youtu.be/

Ybpzp5qD2so.
(b) DEKF animation URL: https://youtu.be/

5oJN7BwBoAQ.

Figure 5.7: Position estimation animation QR-codes for the EKF-based approaches.
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Figure 5.8: Total state estimation error norm for the linear Kalman filter approaches.

allows for the agents to communicate the necessary quantities to fill the joint state covariance matrix

estimate (4.5), whereas the DKF-PCS ignores all the cross-covariance terms between neighbors of the

measuring agent. Finally, the static-gain observer, presented in Section 4.5, is labeled as the static-gain

estimator (SLTI).

The total error norm of the estimators is presented in Fig. 5.8. Due to the high connectivity of

the measurement graph, the performances of the centralized approach, CKF, and the decentralized

approach which shares the most cross-measurement information, DKF-FCS, are very similar. Both the

IKF and the DKF-PCS, however, converge more slowly than the former other two approaches, presenting

a less dampened behavior. This is depicted in Figs. 5.9 and 5.10, where the position and fluid velocity

coordinate estimation errors are presented, respectively. Even though the SLTI contains plenty of cross-

measurement information in the form of the computed static-gains, it still presents an estimation behavior

similar to the IKF and the DKF-PCS. However, this is due to the fact that this estimator is designed to

perform in steady-state, where the specific static-gain coupling does present benefits. Similarly to the

EKF-based approaches, the estimation results were also animated and the respective URLs can be

reached via the QR-codes presented in Fig. 5.11.
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(a) IKF position estimation results.
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(b) CKF position estimation results.
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(c) DKF-FCS position estimation results.
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(d) DKF-PCS position estimation results.
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(e) SLTI position estimation results.

Figure 5.9: Position estimation results of agent 3 using the linear Kalman filter approaches.
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(a) CEKF position estimation results.
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(b) DEKF position estimation results.
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(c) CEKF fluid velocity estimation results.
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(d) CEKF fluid velocity estimation results.
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(e) CEKF fluid velocity estimation results.

Figure 5.10: Position and fluid velocity estimation results of agent 3 using the EKF-based estimators.
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(a) IKF animation URL: https://youtu.be/

yAb-D6UPALQ.
(b) CKF animation URL: https://youtu.be/

2Pszre_FS7g.

(c) DKF-FCS animation URL: https://youtu.be/
E4pTrPjiy-8.

(d) DKF-PCS animation URL: https://youtu.be/
4PLmRnvSdQY.

(e) SLTI animation URL: https://youtu.be/

Ve1O0II8haA.

Figure 5.11: Position estimation animation QR-codes for the linear Kalman filter approaches.
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5.2 Monte Carlo results

Due to the high sensitivity of EKF-based approaches to the initial conditions of the problem, as well as

to ascertain which algorithm gives the best estimates overall, a second mission was considered. This

mission was simulated N = 500 times under different noise conditions in each run, and the results of

this analysis are presented in this Section.

5.2.1 Setup

The setup considered for simulation analysis consists of a set of 10 UVs performing a mission, whereby

the agents must visit a set of waypoints while maintaining a certain formation. The agents start with

the spatial distribution presented in Fig. 5.12a, and maintain this formation for a portion of their mission.

Then, they change to a different spatial distribution, as represented in Fig. 5.12b before diving deeper

underwater. They accomplish this by stopping until all have reached their waypoints, and then moving

towards their next location in the formation until they reach it. Once all agents are in their respective

locations, they move on to the next waypoint. Fig. 5.2 shows the nominal trajectory of agent 1.

The parameters regarding the fluid velocity of the operating environment, as well as regarding the

noise corrupting the measurements and control signals is the same as in Section 5.1. As for the filter pa-

rameters, the process noise covariance matrix of each UV is given as before, Qi = diag
(
0.052I3, 0.005

2I3
)
.

The sampling time is T = 1 s, the measurement noise covariance matrix for absolute position measure-

ments is given by Rpos = 0.12I3, and the noise corrupting depth measurements is modeled with a

standard deviation of σd = 0.1m. All agents are assumed to be completely uncorrelated at time t = 0,

such that all the cross-covariance matrices and factors between agents are equal to the zero matrix, 06.

In order to compute the steady-state gains for the static gain observer, (4.7) and (4.8) were propagated

until | tr (Σ[k + 1|k + 1]) − tr (Σ[k|k]) | < 0.001, where tr(·) is the trace operator. The observers will be

studied using two separate sets of tuning parameters, one tuned for convergence, and the other for

steady-state behavior. The remaining filter parameters will be specified in each case.

The considered measurement topologies are presented in Figs. 5.13a and 5.13b. The agents are

organized by tiers, such that T0 = {1, 2} = VL, T1 = {3, 4, 5, 6} and T2 = {7, 8, 9, 10} are the sets of

agents in tiers 0, 1, and 2, respectively. Note that there are two leaders, agents 1 and 2, and they both

are at the top of the formation, in tier 0. The cycles were made by flipping some of the edges (highlighted

in green in Fig. 5.13b) between tiers 1 and 2 in the acyclical topology, and by introducing the blue edges

around each tier of agents.

In order to evaluate the transient response and the steady-state performance of the presented es-

timators, RMSE of the position and fluid velocity estimates, obtained for each time instant from the
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(a) Initial spatial configuration, which the agents maintain for the first half of the mission.

(b) Second spatial configuration, which the agents change to at t = 400 s.

Figure 5.12: Spatial configurations maintained by the agents throughout the mission.
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(a) Acyclical topology measurement graph.

(b) Cyclical topology measurement graph.

Figure 5.13: Measurement topologies.
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collection of Monte Carlo runs, was computed, such that

RMSE(x[k]) =

√∑N
n=1 ||x[k]− x̂n[k]||2

N
,

where x[k] is the concatenation of the state vectors of all UVs at time k, and x̂n[k] is its estimate obtained

in the nth Monte Carlo run. Additionally, in order to investigate whether the estimators are biased, the

mean error of the estimated quantities, for each time instant, was computed from the collection of Monte

Carlo runs, as given by

mean(x[k]) =
1

N

N∑
n=1

x[k]− x̂n[k].

Due to the specific tuning parameters used in order to achieve good steady-state performance, the

algorithms can take a while to converge. In order to improve the convergence time of these solutions,

separate tuning parameters can be used, depending on the phase of the mission. Initially, if the agents

are completely unlocalized, they can adopt a certain set of tuning parameters optimized for convergence

speed. After a certain amount of time, they can change to parameters optimized for steady-state perfor-

mance. These parameters were set empirically, as is the case with most nonlinear estimation problems.

Taking this into account, the convergence of the algorithms was studied separately from their steady-

state performance. Firstly, the convergence behavior of the presented solutions is studied. Then, the

steady-state behavior is analyzed by considering small initial state estimation errors.

5.2.2 Convergence analysis

For the EKF-based approaches, the initial state estimate for each of the Monte Carlo runs was sam-

pled from a Gaussian distribution with mean identical to the true value, and with covariance matrix

Σ0 = diag(102I3, I3). During previous experiments, it was noted that, for this setting, the linear es-

timators present globally convergent dynamics, such that their initial state estimates were sampled

from a Gaussian distribution with covariance matrix Σ0 = diag(2502I3, 50
2I3), and mean at the true

value. The initial state covariance matrix of each agent was likewise set as Σii[0|0] = diag(502I3, 10
2I3)

and the noise affecting the relative measurement between UVs is modeled with the covariance matrix

Rb = 0.012I2 for the EKF-based approaches, and Rb = 0.52I3 for the remaining ones. The initial 400

seconds of the full mission were simulated N = 500 times, with the specified simulation and tuning

parameters, considering independent noise vectors for each run.

It is well known that EKF-based approaches do not guarantee global convergence and require rela-

tively accurate initial state estimates. How accurate these initial estimates must be depends on both the

spatial distribution of the agents in the formation, as well as their measurement topology. The number of

convergent runs, under each topology, for both the CEKF and DEKF, are presented in Table 5.1. Simi-
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Table 5.1: Number of convergent runs (and respective convergence percentage) for each EKF-based estimator
under the acyclical and cyclical measurement topologies.

Acyclical Cyclical

CEKF 443 (88.6%) 448 (89.6%)
DEKF 463 (92.6%) 487 (97.4%)
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(a) Acyclical topology RMSE results of observers tuned for convergence speed.
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(b) Cyclical topology RMSE results of observers tuned for convergence speed.

Figure 5.14: RMSE results of algorithms tuned for convergence speed.

lar results were obtained for different formation configurations, and show that the centralized approach

is more sensitive to the initial conditions of the agent configuration than its decentralized counterpart,

emphasizing the inherent robustness of decentralized approaches. Since the CEKF shares more in-

formation, its estimates are also more affected by erroneous initial state estimates, hence the added

difficulty in converging. As for the linear estimators, their estimates converged to the true solution on all

runs. The RMSE of the convergent estimates obtained by each of the considered estimators, for both

measurement topologies, is presented in Fig. 5.14.

As shown in Fig. 5.14a, all the linear observers, except the SLTI, produced estimates that converged

to the true solution in just a few time-steps when the measurement topology is acyclical. The SLTI

does not achieve this because it is a static-gain observer designed for steady-state performance, which

typically involves low gains, thus the slow convergence.
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Upon introduction of new edges to form cycles, the convergence speed of IKF is severely affected, as

shown in Fig. 5.14b. This is related to the fact that each agent following this observer design produces its

estimates independently of the other UVs, disregarding possible cross-measurement information. The

other linear time-variant Kalman filter approaches, however, converge to the solution unaffected by the

presence of cycles in the measurement graph. Similarly, the SLTI’s convergence is only slightly affected

by the introduction of these edges. Note that, in both cases, the EKF-based approaches might start

diverging at first, or converge to a non-optimal solution. However, the turns present in the trajectory

allow for enough perturbation that the algorithm leaves this non-optimal solution and, either diverges,

or finds a new equilibrium, which might or not be the true solution. This is the reason why the RMSE

curves of the EKF-based approaches look so erratic.

5.2.3 Steady-state performance

Here, the RMSE of the estimates obtained with each estimator, tuned for steady-state performance,

are compared. Since the observers were optimized for steady-state performance, their convergence

is quite slow. Thus, the initial state estimates were set very close to their real value by sampling

them from a Gaussian distribution, centered at the real state vectors and with covariance matrix Σ0 =

diag(0.052I3, 0.01
2I3). The initial covariance matrix of each agent was set as Σii[0|0] = Σ0 and the ar-

tificial measurements’ covariance matrix was set as Rb = 0.32I2 for the EKF-based estimators, and

Rb = 32I3 for the remaining ones. The RMSE results for the acyclical topology are presented in

Fig. 5.15a, and for the cyclical measurement topology in Fig. 5.15b.

The IKF has the worst performance of the considered estimators. As mentioned before, this is

because IKF keeps no cross-measurement information, whereas all the other estimators do some way

or the other. Also, contrary to what one would expect, the CKF does not have the best performance

out of the estimators in its class, which is due to the presence of a non-zero error bias in the artificial

quantities built from the bearing angles. Namely, the expected value of the direction vector dij , built

according to (4.3) considering noisy measurements, is not equal to the nominal direction vector built from

noiseless bearing angles. Since the centralized approaches make use of more information to produce

their estimates and, in this case, fail to account for biasing errors, this additional information ends up

being detrimental to the filter’s performance, depending on the tuning parameters. The CEKF and the

DEKF have the best performance, which is because they use the bearing angles directly (after rotation

to the inertial frame), unlike the other algorithms, and thus are not affected by the measurement error

bias originating from the construction of the direction vector. Note, however, that rotating the bearing

angles to the inertial frame can still result in the introduction of a bias into the estimation error, resulting

in the the DEKF presenting better estimation capabilities than CEKF.

The introduction of cycles was detrimental to the performance of IKF, which, again, is due the fact that
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Figure 5.15: RMSE results of algorithms tuned for steady-state performance.
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it keeps no cross-measurement information, and thus the estimation errors are re-fed to the estimation

algorithm with no regard for where they originated from, resulting in difficulties in converging and higher

RMSE. The SLTI has also seen its performance severely decreased. However, this is due to the fact that

the blue edges concern agents which are at the same height, and, as mentioned before, the matrices Pij

become singular when this happens, resulting in numerical instability. The CEKF and the DEKF have

benefited from the introduction of cycles, since their RMSE is lower. Likewise, the other estimators,

the CKF, DKF-FCS and DKF-PCS, saw their performance slightly improved. The introduction of new

edges and cycles has allowed the algorithms to work with more information and create better correlation

between the agents. However, the biasing errors for the the linear estimators make it so fine-tuning is still

required in order to balance measurement information with the amount of biasing error, which depends

on both the measurement topology and spatial formation.

In the following, the presence of a non-zero estimation error bias is investigated. For that effect, the

mean results for the x coordinate of estimated positions and fluid velocities of UVs 3 and 9 are presented

in Figs 5.16 and 5.17. Regardless of the measurement topology, there is a clear non-zero estimation

error bias for the linear estimators, though it is very small given these parameters, and the estimators

still provide a good enough estimate for most purposes. This bias is dependent on the spatial formation

of the agent, and comes mostly from the construction of the artificial direction vectors, dij . Since the

EKF-based approaches use the bearing angles directly (after rotation to the inertial frame), the noise

affecting the measurement vector of these approaches is closer to a normally distributed noise than the

one affecting the other approaches, hence why there is no noticeable bias in these approaches’ results.

As for the fluid velocity, there is no clear estimation error bias, though there is no guarantee that there

will not be one, since the control input, u[k], is computed using the noisy rotation matrix.
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Figure 5.16: Mean px
3 and vx

f3
estimation error of observers tuned for steady-state performance.
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6
Conclusions

This work gave a brief overview of the current state of the literature on decentralized navigation, dis-

cussing also some relevant work in fields that are similar to it, such as decentralized control and sensor

network localization. Some of the current navigation approaches were presented more in depth in this

work, namely those in [18, 19, 26], and some algorithms were developed by combining techniques pre-

sented in these approaches. In total, seven algorithms to the navigation problem were presented in this

thesis. Two of them based on the extended Kalman filter, and the remaining ones based on artificial

measurements, which are linear relative to the state of the observer. The effect of the measurement

topology on these algorithms was also studied, namely the advantages and disadvantages of consider-

ing acyclical or cyclical measurement topologies.

It was found that the cross-measurement information has a dampening-like effect on the produced

estimate dynamics, making cross-measurement information, in the form of cycles, valuable for the con-

vergence of the algorithm. On the other hand, this extra information can also be detrimental to the

estimation capabilities of the Kalman filters due to possible biased errors, such that fine-tuning is re-

quired. While the EKF-based approaches do not present as good convergence properties as the linear

estimators, their produced estimates are, generally, of higher quality. The reason for this was investi-
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gated and was found to be the presence of non-zero error biases in the artificial measurements. A brief

analysis of this biased error was made in Section 4.1.1. The linear observers produced estimates which

converged to the true state on all the considered experiments, suggesting that these approaches are

globally convergent in the considered scenarios, which makes it so an initial setup of the agents is not

necessary, increasing the time efficiency of missions.

An unexpected consequence of the presence the biased errors was the fact that the centralized

estimators tended to produce worse estimates, in terms of their RMSE, than their decentralized coun-

terparts. Since centralized approaches share so much information, they are very prone to unexpected

errors, such as the biases mentioned. The decentralized approaches, however, are not as affected by

this kind of errors, which are always present in practical applications.

Future works include the study of techniques to mitigate this biased error, while maintaining the

convergence qualities of the linear estimators. Finally, a formal analysis of the convergence of the

algorithms is necessary, in order to assess the conditions under which the estimates converge to the

true solution.
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